
The Role of Language Technology
in Trustworthy Operating Systems

Gernot Heiser
NICTA and University of New South Wales
Sydney, Australia

PLOS'11 Keynote

©2011 Gernot Heiser NICTA 2

LANGUAGES AS TOOLS

PLOS'11 Keynote

©2011 Gernot Heiser NICTA 3

seL4 Aim: Formal Verification

High-Performance
C implementation

Design &
Specify

Formal
Model

Safety
Theorem

Pr
oo

f

COMP9242 S2/2011 W11

???

©2011 Gernot Heiser NICTA 4

Clash of Mentalities

COMP9242 S2/2011 W11

Formal Methods Practitioner Kernel Hacker

©2011 Gernot Heiser NICTA 5

Standard Kernel Design

Kernel Hacker View

Design &
Specify

High-Performance
C implementation

White-
board

Safety
Theorem

Formal
Model

 Step 2

Prototype on
Real Hardware

Pr
oo

f

COMP9242 S2/2011 W11

©2011 Gernot Heiser NICTA 6

Formal Design

Design &
Specify

Formal
Model

Safety
Theorem

Design in
Theorem Prover

Formal Methods View

High-Performance
C implementation

Step 2

COMP9242 S2/2011 W11

©2011 Gernot Heiser NICTA 7

Haskell as Lingua Franca

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

Haskell
Model Proof

Inspired by existing code

COMP9242 S2/2011 W11

Iterative
Design

Produc-
tivity

©2011 Gernot Heiser NICTA 8

Haskell Model as Executable Prototype

PLOS'11 Keynote

Haskell
Model QEMU

Test App
Binary

Syscall

Return

Execute

Built with
Standard
Toolchain

Built with
Standard
Toolchain

Custom
Interface

©2011 Gernot Heiser NICTA 9

Haskell Model as Intermediate Refinement

COMP9242 S2/2011 W11

Safety
Theorem

Haskell
Spec

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo

f
Pr

oo
f

Formalization

Formalization Haskell
Model

Im
pl

.

Low-level
Data-struct.

& Algorithms

Nice

Ugly

©2011 Gernot Heiser NICTA 10

LANGUAGES FOR
TRUSTWORTHINESS

PLOS'11 Keynote

©2011 Gernot Heiser NICTA 11

Trustworthiness

PLOS'11 Keynote

Trustworthiness

Reliability Safety Security

These are full-system properties!

©2011 Gernot Heiser NICTA 12

Prerequisites: Isolation, communication and legacy support!

Real-World Trustworthiness

 Complex
 GUIs etc

 Simple
 Control

Critical Non-critical

Isolation

Controlled communication

Imperial, Oct'11

Untrustworthy
Legacy
Code

©2011 Gernot Heiser NICTA 13

MMU-enforced protection

•  Kernel:
–  controls HW
–  IPC for communication
–  Address spaces for isolation

Type Safety

•  Language runtime
–  controls HW
–  manages memory
–  …?

Two Approaches to Isolation

PLOS'11 Keynote

Hardware

Kernel H/W
control

Addr-
Spaces IPC

Trusted Userland

App App

Hardware

Language runtime support

H/W
control

Garbage
Collector Stuff

App App

TCB

©2011 Gernot Heiser NICTA 14

MMU-protected: L4

•  State-of-the-art microkernels
–  for 18 years

•  IPC performance still unbeaten
–  lots of published data

•  Widely deployed:
–  OKL4 on 1.2 billion devices

Type-safe: Singularity

•  Most complete recent system
•  Some published performance

–  Surprisingly no L4
comparison!

Representative Systems

PLOS'11 Keynote

Hardware

Kernel H/W
control

Addr-
Spaces IPC

Trusted Userland

App App

Hardware

Language runtime support

H/W
control

Garbage
Collector Stuff

App App

TCB

©2011 Gernot Heiser NICTA 15

MMU-enforced protection

•  Context switching
–  thread context
–  protection context
–  IPC semantics

•  Other execution at full speed
Large per-switch overhead

Type Safety

•  Run-time bounds checks
•  Garbage collection
•  Switching is just function call
Small continuous overhead

Cost of Isolation

PLOS'11 Keynote

Hardware

Kernel H/W
control

Addr-
Spaces IPC

Trusted Userland

App App

Hardware

Language runtime support

H/W
control

Garbage
Collector Stuff

App App

TCB

©2011 Gernot Heiser NICTA 16

L4

Direct overhead: zero
•  Any code runs at native speed
Indirect overheads: TLB reloads
•  Dependent on program size
•  Mostly low, can be 10s of %

Singularity

Bounds-check overhead: 4.7%
[Hunt & Larus, OSR’07]

Does not include:
•  Cost of garbage collector
•  Optimization opportunity

Performance: Intra-Domain Execution

PLOS'11 Keynote

Hardware

Kernel H/W
control

Addr-
Spaces IPC

Trusted Userland

App App

Hardware

Language runtime support

H/W
control

Garbage
Collector Stuff

App App

TCB

Type-safe system incurs
same O/H when supporting

legacy software!

W I N N E R

©2011 Gernot Heiser NICTA 17

L4

AMD-64 @ 1.6 GHz:
•  230 cycles for 0–24 bytes

[http://www.l4ka.org/126.php]

Singularity

AMD-64 @ 2.0 GHz
•  803 cycles for 1 byte
•  933 cycles for 4 bytes

[Hunt & al, EuroSys’07]

Performance: Cross-Domain IPC

PLOS'11 Keynote

Hardware

Kernel H/W
control

Addr-
Spaces IPC

Trusted Userland

App App

Hardware

Language runtime support

H/W
control

Garbage
Collector Stuff

App App

TCB

W I N N E R

©2011 Gernot Heiser NICTA 18

L4

Kernel code: ! 10 kLOC
•  seL4 on ARM: 9 kLOC
Userland: depends
•  seL4: as small as 1.5 kLOC

for real-world systems

Singularity

No published data, but
•  ”probably bigger than L4”
Other systems similar
•  … or incomplete functionality,

e.g. no legacy support

TCB Size

PLOS'11 Keynote

Hardware

Kernel H/W
control

Addr-
Spaces IPC

Trusted Userland

App App

Hardware

Language runtime support

H/W
control

Garbage
Collector Stuff

App App

TCB

W I N N E R

Formally verified ⇒
size no longer matters!

©2011 Gernot Heiser NICTA 19

MMU-enforced protection

•  Faster
•  Probably smaller TCB
•  Functionally-correct

Type Safety

•  ???

Summary

PLOS'11 Keynote

Hardware

Kernel H/W
control

Addr-
Spaces IPC

Trusted Userland

App App

Hardware

Language runtime support

H/W
control

Garbage
Collector Stuff

App App

TCB

©2011 Gernot Heiser NICTA 20

Does Memory-Safety Help Safety or Security?

•  It’s better than nothing
–  … but on its own it doesn’t help much in proving safety

•  Type safety doesn’t stop:
–  your garbage collector being buggy

•  possibly destroying type safety
–  your scheduler being buggy

•  leading to unsafe thread execution order
•  leaks information through scheduling decisions

–  your IPC primitive having unsafe side effects
•  affecting or leaking data to third threads

PLOS'11 Keynote

©2011 Gernot Heiser NICTA 21

Safety and Security

PLOS'11 Keynote

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

©2011 Gernot Heiser NICTA 22

The seL4 Experience

COMP9242 S2/2011 W11

Integrity

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo

f
Pr

oo
f

Confiden-
tiality

30–35 py
4.5 years
30–35 py
4.5 years

1 py
4 months

WCET
Analysis

2 py,1 year
Mostly for tools

Availability

0 py
By construction

©2011 Gernot Heiser NICTA 23

seL4: Next 12 Months

COMP9242 S2/2011 W11

Integrity

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo

f
Pr

oo
f

Confiden-
tiality

WCET
Analysis

Non-Inter-
ference

Timing-
Channel

Mitigation

Availability

©2011 Gernot Heiser NICTA 24

seL4 for Safety and Security

PLOS'11 Keynote

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination

Integrity

Confident. /
Info Flow

Confident. /
Info Flow

©2011 Gernot Heiser NICTA 25

seL4 Summary

•  First (and still only) general-purpose OS kernel with
–  Functional correctness proof
–  Integrity proof
–  Complete, sound WCET analysis

•  Yet, performance at par with any comparable system!
–  200 cycle IPC on ARM11

•  Likely to be the first kernel with
–  Confidentiality proof
–  Non-interference proof
–  Sound covert-channel mitigation

PLOS'11 Keynote

©2011 Gernot Heiser NICTA 26

Let’s Stop Kidding Ourselves

… and the people who trust our expertise!

•  By implying that type-safe = safe
–  Type-safe ≪ safe; type-safe ≪ secure
–  … and there’s no easy way to get there

•  By implying that a system where all code is managed is practicable
–  Nothing will be used if it can’t provide legacy support
–  Test: Can it run Linux?

Trustworthiness is best achieved through functional correctness!
•  Excellent basis for showing integrity and confidentiality

PLOS'11 Keynote

©2011 Gernot Heiser NICTA 27

Our View of Implementation Languages

mailto:gernot@nicta.com.au
Google: “ertos”

PLOS'11 Keynote

Hardware

Kernel H/W
control

Addr-
Spaces IPC

Trusted Userland

Linux

App

App

Managed
runtime

GC Other
Stuff

Managed
App

C +
asm

DSL/C

Your choice!
(… but managed
is clearly better)

Formal
Verification

