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LANGUAGES AS TOOLS 
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seL4 Aim: Formal Verification 

High-Performance 
C implementation 

Design & 
Specify 

Formal 
Model 

Safety 
Theorem 

Pr
oo

f 

COMP9242 S2/2011 W11 

??? 



©2011 Gernot Heiser NICTA 4 

Clash of Mentalities 
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Haskell as Lingua Franca 
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Haskell Model as Executable Prototype  
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Haskell Model as Intermediate Refinement 
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LANGUAGES FOR 
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Trustworthiness 
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Prerequisites: Isolation, communication and legacy support! 
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MMU-enforced protection 

•  Kernel: 
–  controls HW 
–  IPC for communication 
–  Address spaces for isolation 

Type Safety 

•  Language runtime 
–  controls HW 
–  manages memory 
–  …? 

Two Approaches to Isolation 
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MMU-protected: L4 

•  State-of-the-art microkernels  
–  for 18 years 

•  IPC performance still unbeaten 
–  lots of published data 

•  Widely deployed:  
–  OKL4 on 1.2 billion devices 

Type-safe: Singularity 

•  Most complete recent system 
•  Some published performance 

–  Surprisingly no L4 
comparison! 

Representative Systems 
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MMU-enforced protection 

•  Context switching  
–  thread context 
–  protection context 
–  IPC semantics 

•  Other execution at full speed 
Large per-switch overhead 

Type Safety 

•  Run-time bounds checks 
•  Garbage collection 
•  Switching is just function call 
Small continuous overhead 

Cost of Isolation 
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L4 

Direct overhead: zero 
•  Any code runs at native speed 
Indirect overheads: TLB reloads 
•  Dependent on program size 
•  Mostly low, can be 10s of % 

Singularity 

Bounds-check overhead: 4.7% 
[Hunt & Larus, OSR’07] 

Does not include: 
•  Cost of garbage collector 
•  Optimization opportunity 

Performance: Intra-Domain Execution 
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L4 

AMD-64 @ 1.6 GHz: 
•  230 cycles for 0–24 bytes 

[http://www.l4ka.org/126.php] 

Singularity 

AMD-64 @ 2.0 GHz 
•  803 cycles for 1 byte 
•  933 cycles for 4 bytes 

[Hunt & al, EuroSys’07] 

Performance: Cross-Domain IPC 
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L4 

Kernel code: ! 10 kLOC 
•  seL4 on ARM: 9 kLOC 
Userland: depends 
•  seL4: as small as 1.5 kLOC 

for real-world systems 

Singularity 

No published data, but 
•  ”probably bigger than L4” 
Other systems similar 
•  … or incomplete functionality, 

e.g. no legacy support 

TCB Size 
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MMU-enforced protection 

•  Faster 
•  Probably smaller TCB 
•  Functionally-correct 

Type Safety 

•  ??? 

Summary 
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Does Memory-Safety Help Safety or Security? 

•  It’s better than nothing 
–  … but on its own it doesn’t help much in proving safety 

•  Type safety doesn’t stop: 
–  your garbage collector being buggy 

•  possibly destroying type safety 
–  your scheduler being buggy 

•  leading to unsafe thread execution order 
•  leaks information through scheduling decisions 

–  your IPC primitive having unsafe side effects  
•  affecting or leaking data to third threads 
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Safety and Security 
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The seL4 Experience 
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seL4: Next 12 Months 
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seL4 for Safety and Security 
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seL4 Summary 

•  First (and still only) general-purpose OS kernel with  
–  Functional correctness proof 
–  Integrity proof 
–  Complete, sound WCET analysis 

•  Yet, performance at par with any comparable system! 
–  200 cycle IPC on ARM11 

•  Likely to be the first kernel with 
–  Confidentiality proof 
–  Non-interference proof 
–  Sound covert-channel mitigation 
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Let’s Stop Kidding Ourselves 

… and the people who trust our expertise! 

•  By implying that type-safe = safe 
–  Type-safe ≪ safe; type-safe ≪ secure 
–  … and there’s no easy way to get there 

•  By implying that a system where all code is managed is practicable 
–  Nothing will be used if it can’t provide legacy support 
–  Test: Can it run Linux? 

Trustworthiness is best achieved through functional correctness! 
•  Excellent basis for showing integrity and confidentiality 
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Our View of Implementation Languages 

mailto:gernot@nicta.com.au 
Google: “ertos” 
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