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What’s Next? 
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Trust Without Trustworthiness 
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Core Issue: Complexity 

•  Massive functionality ⇒ huge software stacks 
–  Expensive recalls of CE devices 

•  Increasing usability requirements 
–  Wearable or implanted medical devices 
–  Patient-operated  
–  GUIs next to life-critical functionality 

•  On-going integration of critical and entertainment functions 
–  Automotive infotainment and engine control 
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Our Vision: Trustworthy Systems 

We will change industry’s approach to the design and implementation 
of critical systems, resulting in true trustworthiness. 

Trustworthy means highly 
dependable, with hard 
guarantees on security, 
safety or reliability. 
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Dealing With Complexity 

•  Complexity of critical devices will continue to grow 
–  Critical systems with millions of lines of code (LOC) 

•  We need to learn to ensure dependability despite complexity 
–  Need to guarantee dependability 

•  Correctness guarantees for MLOCs unfeasible  

•  Key to solution: isolation 
–  … with controlled 

communication 
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Isolation: Physical 

Dedicated CPUs for critical tasks 
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Isolation: Logical 
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•  Protect critical components by  
sandboxing complex components 

•  Provide tightly-controlled  
communication channels 

•  Trustworthy microkernel 
provides general mechanisms  
to enforce isolation 

•  Policy layer defines access rights 
•  Microkernel becomes core of 

trusted computing base 
–  System trustworthiness 

only as good as microkernel 
–  But: small enough so that real 

trustworthiness may actually be 
achievable! 



Isolation Requirements 

To guarantee dependability, following must be guaranteed: 
•  Isolation infrastructure function must be specified  

–  To allow reason about operation of isolated critical instances 
•  Isolation infrastructure must behave as specified 

–  Functional correctness 
–  Bounded and know worst-case latencies 

•  Isolation infrastructure must provide actual isolation 
–  Integrity guarantees 
–  Temporal isolation 
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Dependability Requirements 
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NICTA Trustworthy Systems Agenda 
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1.  Dependable microkernel (seL4) as a rock-solid base 
–  Formal specification of functionality 
–  Proof of functional correctness of implementation 
–  Proof of safety/security properties 
–  Timeliness guarantees 

2.  Lift microkernel guarantees to whole system 
–  Use kernel correctness and integrity to guarantee critical functionality 
–  Ensure correctness of balance of trusted computing base 
–  Prove dependability properties of complete system 
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Binary Code Verification (In Progress) 
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Formal Verification Summary 
Kinds of properties proved 
•  Behaviour of C code is fully captured by abstract model 
•  Behaviour of C code is fully captured by executable model 
•  Can prove many interesting properties on higher-level models 

•  Kernel never fails, behaviour is always well-defined 
•  assertions never fail 
•  will never de-reference null pointer 
•  cannot be subverted by misformed input 

•  All syscalls terminate, reclaiming memory is safe, ... 
•  Well typed references, aligned objects, kernel always mapped… 
•  Access control is decidable 
Effort: 
•  Average 6 people over 5.5 years 
•  About 50–100% higher than traditional (low-assurance) projects 

© NICTA 2011  15 Academia Sinica Oct'11 



Kernel Worst-Case Execution Time 

Issues for WCET analysis of seL4 
•  Need knowledge of worst-case interrupt-latency 

–  Longest non-preemptible path + IRQ delivery cost 
–  seL4 runs with interrupts disabled 

•  System calls in well-designed microkernel are short! 
•  Strategic preemption points in long-running operations 
•  Optimal average-case performance with reasonable worst-case 

•  Applications also need to know cost of system calls 
–  Need WCET analysis of all possible code paths 
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Kernel Worst-Case Execution Time 

Challenges for WCET analysis of OS kernels in general: 
•  Kernel code notoriously unstructured 
•  Low-level system-specific instructions 
•  Context-switching 
•  Assembly code 

seL4-specific advantages: 
•  (Relatively) structured design (evolved from Haskell prototype) 
•  Event-based kernel (single kernel stack) 
•  Small (as far as operating systems go!) 
•  No function pointers in C 
•  Preemption points are explicit and preserve code structure 
•  Memory allocation performed in userspace 
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WCET analysis process 
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Evaluation platform 

•  OMAP3-based BeagleBoard-xM 
–  ARM Cortex-A8 @ 800 MHz 
–  128 MB memory 
–  32KB 4-way set-associative L1 instruction cache 

•  random replacement ⇐ pessimistic model 
–  Disabled L2 cache 

•  Cache analysis does not (yet) scale 
•  Fairly accurate (but sound) model 

–  dual-issue pipeline (simplified) 
–  no branch prediction 

Image Koen Kooi CC-SA 2.0 
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Early Days… 

µs 
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Improve WCET 

•  Knowledge about seL4 can eliminate many paths 
–  Invariants proved during verification 
–  E.g. loop iteration counts,  

non-interference 
–  Can easily prove new invariants 
–  Presently done manually (no proof) 

•  Cache pinning 
–  Big reduction in WCET 
–  Eliminate cache pessimism 

•  Analysis helps placing preemption points 
–  Can optimise further 

•  Improved pipeline modelling 
–  May have practical approach 

for complex pipelines 
•  Aim: IRQ WCET < 10 µs 
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Phase Two: Full-System Guarantees 

•  Achieved: Verification of 
microkernel (8,700 LOC) 

•  Next step: Guarantees for 
real-world systems 
(1,000,000 LOC) 
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Overview of Approach 
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   Build system with minimal TCB 
   Formalize and prove security properties about architecture 
   Prove correctness of trusted components  
   Prove correctness of setup 
   Prove temporal properties (isolation, WCET, …) 
   Maintain performance 



Proof of Concept: 
Secure Access Controller 
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SAC Aim 
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Solution Overview 
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Solution Overview 
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Specifying Security Architecture 

System Architecture
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Security Policy
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Trusted Synthesized Drivers 
•  Correct driver synthesis 

–  given model of driver  
interface, basic behaviour, 
and hardware 

–  driver is automatically generated 
–  performance as good as hand-knitted 

•  Challenge: device spec 
•  Vision: 

–  automatically extract hardware model 
from HDL description 

–  potential impact beyond our immediate 
agenda 

driver.c 

Formal 
OS interface 

spec 

Formal 
device spec HDL 
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Trustworthy Systems Are Possible! 

•  Achieved to date: 
–  First general-purpose OS kernel with 

•  proof of functional correctness 
•  proof of integrity enforcement 
•  complete and sound timing model 

–  … and high performance! 
–  Secure system prototype 
–  Demonstration of driver synthesis feasibility 
–  Framework for reasoning about system-wide access rights 

•  In progress: 
–  Confidentiality proof 
–  General real-time capabilities 
–  Eliminating holes in verification 

•  Compiler, asm code, multicore… 
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Trustworthy Systems Are Possible! 

•  Further away 
–  Whole-of-system security/safety proofs 
–  Truly safe languages for higher-level code 

•  Haskell, RT Java with verified runtime system 
–  General component synthesis… 

mailto:gernot@nicta.com.au 
Google: “ertos” 
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