
Towards Trustworthy Systems
Gernot Heiser
NICTA and UNSW, Sydney

© NICTA 2011 2 Academia Sinica Oct'11

What’s Next?

© NICTA 2011 3 Academia Sinica Oct'11

Trust Without Trustworthiness

© NICTA 2011 4 Academia Sinica Oct'11

Core Issue: Complexity

•  Massive functionality ⇒ huge software stacks
–  Expensive recalls of CE devices

•  Increasing usability requirements
–  Wearable or implanted medical devices
–  Patient-operated
–  GUIs next to life-critical functionality

•  On-going integration of critical and entertainment functions
–  Automotive infotainment and engine control

© NICTA 2011 5 Academia Sinica Oct'11

Our Vision: Trustworthy Systems

We will change industry’s approach to the design and implementation
of critical systems, resulting in true trustworthiness.

Trustworthy means highly
dependable, with hard
guarantees on security,
safety or reliability.

© NICTA 2011 6 Academia Sinica Oct'11

Dealing With Complexity

•  Complexity of critical devices will continue to grow
–  Critical systems with millions of lines of code (LOC)

•  We need to learn to ensure dependability despite complexity
–  Need to guarantee dependability

•  Correctness guarantees for MLOCs unfeasible

•  Key to solution: isolation
–  … with controlled

communication

© NICTA 2011 7 Academia Sinica Oct'11

 Complex
 GUIs etc

 Simple
 Control

Critical Non-critical

Isolation

Controlled communication

Isolation: Physical

Dedicated CPUs for critical tasks

© NICTA 2011 8 Academia Sinica Oct'11

Isolation: Logical

© NICTA 2011 9 Academia Sinica Oct'11

 Hardware

 Microkernel

 Linux
 Server

Legacy App.
Legacy App.

 Legacy
 Apps

 Trusted
 Service

 Sensitive
 App

Trusted Untrusted

 Policy Layer

•  Protect critical components by
sandboxing complex components

•  Provide tightly-controlled
communication channels

•  Trustworthy microkernel
provides general mechanisms
to enforce isolation

•  Policy layer defines access rights
•  Microkernel becomes core of

trusted computing base
–  System trustworthiness

only as good as microkernel
–  But: small enough so that real

trustworthiness may actually be
achievable!

Isolation Requirements

To guarantee dependability, following must be guaranteed:
•  Isolation infrastructure function must be specified

–  To allow reason about operation of isolated critical instances
•  Isolation infrastructure must behave as specified

–  Functional correctness
–  Bounded and know worst-case latencies

•  Isolation infrastructure must provide actual isolation
–  Integrity guarantees
–  Temporal isolation

© NICTA 2011 10 Academia Sinica Oct'11

Dependability Requirements

© NICTA 2011 11 Academia Sinica Oct'11

Unambiguous
Specification

Implementation

Functional
Correctness Timeliness

Overall System
Properties

Confidentiality Integrity

Security Safety

NICTA Trustworthy Systems Agenda

© NICTA 2011 12 Academia Sinica Oct'11

1.  Dependable microkernel (seL4) as a rock-solid base
–  Formal specification of functionality
–  Proof of functional correctness of implementation
–  Proof of safety/security properties
–  Timeliness guarantees

2.  Lift microkernel guarantees to whole system
–  Use kernel correctness and integrity to guarantee critical functionality
–  Ensure correctness of balance of trusted computing base
–  Prove dependability properties of complete system

13

capDL Model (4,800) Initial
protection
state

Abstract Model (4,900) Manual Spec
(Isabelle/HOL)

22,000 lop

117,000 lop

50,000 lop

Kernel Formal Verification

© NICTA 2011

Executable Model (13,000) Haskell (5,700)

Integrity (1,000)

Confidentiality (???)

C Code (8,700) High Performance
Implementation Asm Code (320) Sane initial state

Hardware Hardware model

Multicore

Academia Sinica Oct'11

Binary Code Verification (In Progress)

© NICTA 2011 14

C source

Formal C
semantics Abstract

compiler

Abstract
machine code

Executable
binary

Formal
ISA spec

Abstract executable
of real machine

Abstract
machine code

Abstracted
C code

Code
simplifier

Equivalence
checker

Academia Sinica Oct'11

Formal Verification Summary
Kinds of properties proved
•  Behaviour of C code is fully captured by abstract model
•  Behaviour of C code is fully captured by executable model
•  Can prove many interesting properties on higher-level models

•  Kernel never fails, behaviour is always well-defined
•  assertions never fail
•  will never de-reference null pointer
•  cannot be subverted by misformed input

•  All syscalls terminate, reclaiming memory is safe, ...
•  Well typed references, aligned objects, kernel always mapped…
•  Access control is decidable
Effort:
•  Average 6 people over 5.5 years
•  About 50–100% higher than traditional (low-assurance) projects

© NICTA 2011 15 Academia Sinica Oct'11

Kernel Worst-Case Execution Time

Issues for WCET analysis of seL4
•  Need knowledge of worst-case interrupt-latency

–  Longest non-preemptible path + IRQ delivery cost
–  seL4 runs with interrupts disabled

•  System calls in well-designed microkernel are short!
•  Strategic preemption points in long-running operations
•  Optimal average-case performance with reasonable worst-case

•  Applications also need to know cost of system calls
–  Need WCET analysis of all possible code paths

© NICTA 2011 16 Academia Sinica Oct'11

Kernel Worst-Case Execution Time

Challenges for WCET analysis of OS kernels in general:
•  Kernel code notoriously unstructured
•  Low-level system-specific instructions
•  Context-switching
•  Assembly code

seL4-specific advantages:
•  (Relatively) structured design (evolved from Haskell prototype)
•  Event-based kernel (single kernel stack)
•  Small (as far as operating systems go!)
•  No function pointers in C
•  Preemption points are explicit and preserve code structure
•  Memory allocation performed in userspace

© NICTA 2011 17 Academia Sinica Oct'11

WCET analysis process

CFG extractor

seL4 binary

Path Analysis, Arch.
modeling

Loop bounds

ILP
equations

CPLEX

WCET
Upper bound

Observed
execution time

Hardware platform CFG

Worst-case
scenarios

© NICTA 2011 18 Academia Sinica Oct'11

Evaluation platform

•  OMAP3-based BeagleBoard-xM
–  ARM Cortex-A8 @ 800 MHz
–  128 MB memory
–  32KB 4-way set-associative L1 instruction cache

•  random replacement ⇐ pessimistic model
–  Disabled L2 cache

•  Cache analysis does not (yet) scale
•  Fairly accurate (but sound) model

–  dual-issue pipeline (simplified)
–  no branch prediction

Image Koen Kooi CC-SA 2.0
© NICTA 2011 19 Academia Sinica Oct'11

Early Days…

µs

© NICTA 2011 20 Academia Sinica Oct'11

µs

Improve WCET

•  Knowledge about seL4 can eliminate many paths
–  Invariants proved during verification
–  E.g. loop iteration counts,

non-interference
–  Can easily prove new invariants
–  Presently done manually (no proof)

•  Cache pinning
–  Big reduction in WCET
–  Eliminate cache pessimism

•  Analysis helps placing preemption points
–  Can optimise further

•  Improved pipeline modelling
–  May have practical approach

for complex pipelines
•  Aim: IRQ WCET < 10 µs

© NICTA 2011 21

Find an
infeasible

critical
path

Find an
invariant to
invalidate
the path

Express
invariants

as ILP
constraints

Measure
impact on
estimated

WCET

Academia Sinica Oct'11

Phase Two: Full-System Guarantees

•  Achieved: Verification of
microkernel (8,700 LOC)

•  Next step: Guarantees for
real-world systems
(1,000,000 LOC)

© NICTA 2011 22 Academia Sinica Oct'11

Overview of Approach

© NICTA 2011 23 Academia Sinica Oct'11

  Build system with minimal TCB
  Formalize and prove security properties about architecture
  Prove correctness of trusted components
  Prove correctness of setup
  Prove temporal properties (isolation, WCET, …)
  Maintain performance

Proof of Concept:
Secure Access Controller

© NICTA 2011 24 Academia Sinica Oct'11

SAC

US NATO
AUS

SIN
www

SAC Aim

© NICTA 2011 25 Academia Sinica Oct'11

SAC

Information Provider A Information Provider B

Terminal

User

Network A Network B

Network Interface B

Terminal Network Interface

Network Interface A

Terminal Network

Providers A & B should not be
able to leak info between each
other even if they actively
cooperate

Solution Overview

© NICTA 2011 26 Academia Sinica Oct'11

Windows Linux

Terminal

User

Network A Network B

Network Interface B

Terminal Network Interface

Network Interface A

Terminal Network

Control Interface

Control Network

Web Server
(Linux)

Web-based
control

interface

Solution Overview

© NICTA 2011 27 Academia Sinica Oct'11

Windows Linux

Terminal

User

Network A Network B

Network Interface B

Terminal Network Interface

Network Interface A

Terminal Network

Control Interface

Control Network

Web Server
(Linux)

Router
(Linux)

Not
Connected

Linux-based
Router
minimal
device
access

Specifying Security Architecture

System Architecture

Trusted Components

Security Policy

Trusted Component
Behaviour Spec

CapDL Spec

Bootstrapper

Components and
Glue Code

System Image
Untrusted

Components

System Security
ProofseL4 proofs

4

1

2

3

5

© NICTA 2011 28 Academia Sinica Oct'11

Trusted Synthesized Drivers
•  Correct driver synthesis

–  given model of driver
interface, basic behaviour,
and hardware

–  driver is automatically generated
–  performance as good as hand-knitted

•  Challenge: device spec
•  Vision:

–  automatically extract hardware model
from HDL description

–  potential impact beyond our immediate
agenda

driver.c

Formal
OS interface

spec

Formal
device spec HDL

29 © NICTA 2011 Academia Sinica Oct'11

Device class
behavioural

spec

Trustworthy Systems Are Possible!

•  Achieved to date:
–  First general-purpose OS kernel with

•  proof of functional correctness
•  proof of integrity enforcement
•  complete and sound timing model

–  … and high performance!
–  Secure system prototype
–  Demonstration of driver synthesis feasibility
–  Framework for reasoning about system-wide access rights

•  In progress:
–  Confidentiality proof
–  General real-time capabilities
–  Eliminating holes in verification

•  Compiler, asm code, multicore…

© NICTA 2011 30 Academia Sinica Oct'11

Trustworthy Systems Are Possible!

•  Further away
–  Whole-of-system security/safety proofs
–  Truly safe languages for higher-level code

•  Haskell, RT Java with verified runtime system
–  General component synthesis…

mailto:gernot@nicta.com.au
Google: “ertos”

© NICTA 2011 31 Academia Sinica Oct'11

