

A Platform for Trustworthy Systems

Gernot Heiser NICTA and University of New South Wales Sydney, Australia

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

NICTA Funding and Supporting Members and Partners

Windows

An exception 06 has occured at 0028:C11B3ADC in VxD DiskTSD(03) + 00001660. This was called from 0028:C11B40C8 in VxD voltrack(04) + 00000000. It may be possible to continue normally.

- Press any key to attempt to continue.
- Press CTRL+ALT+RESET to restart your computer. You will lose any unsaved information in all applications.

Press any key to continue

Present Systems are *NOT* Trustworthy!

What's Next?

Claim:

A system must be considered *insecure/unsafe* unless *proved* otherwise!

Corollary [with apologies to Dijkstra]:

Testing, code inspection, etc. can only show *insecurity/unsafety*, not security or safety!

Core Issue: Complexity

- - How secure are your paym
- Increasing usability requ
 - Wearable or implante
 - Patient-operated
 - GUIs next to life-d

Systems far too complex to prove their trustworthiness!

- On-going integration
 - Automotive infotainment an
 - Gigabytes of software on 100 CPUs...

Dealing with Complexity: Physical Isolation

How About Logical Isolation?

Our Vision: Trustworthy Systems

Suitable for real-world systems

We will change the *practice* of designing and implementing critical systems, using rigorous approaches to achieve *true trustworthiness*

Hard
guarantees on
safety/security/
reliability

Isolation is Key!

Isolation is Key!

NICTA Trustworthy Systems Agenda

1. Dependable microkernel (seL4) as a rock-solid base

- Formal specification of functionality
- Proof of functional correctness of implementation
- Proof of safety/security properties

- Use kernel correctness and integrity to guarantee critical functionality
- Ensure correctness of balance of trusted computing base
- Prove dependability properties of complete system
 - despite 99 % of code untrusted!

Requirements for Trustworthy Systems

seL4 Design Goals

- 1. Isolation
 - Strong partitioning!
- 2. Formal verification
 - Provably trustworthy!
- 3. Performance
 - Suitable for real world!

Fundamental Design Decisions for seL4

- 1. Memory management is user-level responsibility
 - Kernel never allocates memory (post-boot) o
 - Kernel objects controlled by user-mode servers

Isolation

2. Memory management is fully delegatable

Enabled by capability-based access control

Fast transitions between consistent states

Restartable operations with progress guarantee

Perfor-

mance

- 4. No concurrency in the kernel o
 - Interrupts never enabled in kernel
 - Interruption points to bound latencies
 - Clustered multikernel design for multicores

Verification, Performance

Incremental Consistency

Example: Destroying IPC Endpoint

seL4 as Basis for Trustworthy Systems

Proving Functional Correctness

Why So Long for 9,000 LOC?

Costs Breakdown

Haskell design	2 py
C implementation	2 weeks
Debugging/Testing	2 months
Kernel verification	12 py
Formal frameworks	10 py
Total	25 py ₀
Repeat (estimated)	6 py
Traditional engineering	4–6 py

Did you find bugs???

- During (very shallow) testing: 16
- During verification: 460
 - 160 in C, ~150 in design, ~150 in spec

Does not include subsequent fastpath verification

seL4 Formal Verification Summary

Kinds of properties proved

- Behaviour of C code is fully captured by abstract model
- Behaviour of C code is fully captured by executable rode
- Kernel never fails, behaviour is always well-defined
 - assertions never fail
 - will never de-reference null pointer
 - cannot be subverted by misformed input
- All syscalls terminate, reclaiming memory is safe, ...
- Well typed references, aligned objects, kernel always mapped...
- Access control is decidable

Can prove further poperties on abstract level!

How About Performance?

Let's face it, seL4 is basically slow!

- C code (semi-blindly) translated from Haskell
- Many small functions, little regard for performance

IPC: one-way, zero-length

Standard C code: 1455 cycles

C fast path: 185 cycles

Bare "pass" in
Advanced Operating
Systems course!

Fastest-ever IPC on ARM11!

But can speed up critical operations by short-circuit "fast paths"

... without resorting to assembler!

seL4 as Basis for Trustworthy Systems

Integrity: Limiting Write Access

To prove:

- Domain-1 doesn't have write capabilities to Domain-2 objects
 ⇒ no action of Domain-1 agents will modify Domain-2 state
- Specifically, kernel does not modify on Domain-1's behalf!
 - Event-based kernel operates on behalf of well-defined user thread
 - Prove kernel only allows write upon capability presentation

seL4 as Basis for Trustworthy Systems

Availability: Ensuring Resource Access

- Strict separation of kernel resources
 - ⇒ agent cannot deny access to another domain's resources

seL4 as Basis for Trustworthy Systems

Confidentiality: Limiting Read Accesses

Domain 1

To prove:

Domain-1 doesn't have read capabilities to Domain-2 objects
 ⇒ no action of any agents will reveal Domain-2 state to Domain-1

Non-interference proof in progress:

Evolution of Domain 1 does not depend on Domain-2 state

Domain 2

Presently cover only overt information flow

seL4 as Basis for Trustworthy Systems

Timeliness

Need worst-case execution time (WCET) analysis of kernel

WCET Analysis Approach

Result

WCET presently limited by verification practicalities

• 10 µs seem achievable

seL4 as Basis for Trustworthy Systems

Proving seL4 Trustworthiness

©2012 Gernot Heiser NICTA

ICTAC'12

seL4 - the Next 24 Months

Binary Verification

IPC: one-way, zero-length		
Compiler	gcc	Compcert
Standard C code:	1455 cycles	3749 cycles
C fast path:	185 cycles	730 cycles

Uncompetitive performance!

Use verified compiler (Compcert)?

C Implementation

Binary code

Bigger problem:

- Our proofs are in Isabel/HOL, Compcert uses Coq
- We cannot prove that they use the same C semantics!

Binary Code Verification (In Progress)

Phase Two: Full-System Guarantees

 Achieved: Verification of microkernel (8,700 LOC)

 Next step: Guarantees for real-world systems (1,000,000 LOC)

Overview of Approach

- Build system with minimal TCB
- Formalize and prove security properties about architecture
- Prove correctness of trusted components
- Prove correctness of setup
- Prove temporal properties (isolation, WCET, ...)
- Maintain performance

Architecting Security/Safety

Proof of Concept: Secure Access Controller

Logical Function

Logical Function

ICTAC'12

Minimal TCB

Implementation

Access Rights

Building Secure Systems: Long-Term View

Trustworthy Systems – We've Made a Start!

Thank You!

mailto:gernot@nicta.com.au @GernotHeiser

Google: "nicta trustworthy systems"