NICTA

A Platform for Trustworthy Systems

Gernot Heiser

NICTA and University of New South Wales
Sydney, Australia

NICTA Funding and Supporting Members and Partners

M Australian Government Australian m
: I e UNSW
“ Department of Broadband, Communications a2y University > NSW

HE UNIVERSITY OF NEW SOUTH WALES

and the Digital Economy
Australian Research Council 52 SYBREY di Wy Griffith = B

Quesnsland University of Technology W AUSTRALIA
Government

Hindows

An exception 06 has occured at 0028:C11B3ADC in WXD DiskTSD{03) +
00001660, This was called from 0028:C11B40C8 in WxD voltrack{04) +
00000000, It may be possible to continue normally.

* Press any key to attempt to continue,
* Press CTRL+ALTHRESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

Present Systems are NOT Trustworthy! L)e

 Hieeriensrsreas

©2012 Gernot Heiser NICTA 3 ICTAC'12

What’s Next? (1@

©2012 Gernot Heiser NICTA 4 ICTAC'12

@
T TN

So, why don’t NICTA

we prove
security?
Claim: O

A system must be considered insecure/unsafe
unless proved otherwise!

Corollary [with apologies to Dijkstra]:

Testing, code inspection, etc. can only show
insecurity/unsafety, not security or safety!

©2012 Gernot Heiser NICTA 5 ICTAC'12

Core Issue: Complexity o
(@)

« Massive functionality of @devices
= huge software stacks Q
m !

— How secure are your pay

* Increasing usability req
— Wearable or implantg

— Patient-operated
— GUIls next to life-

Systems far too
complex to prove
their trustworthiness!

« On-going integration™ 4
— Automotive infotainment aMe
— Gigabytes of software on 100 CPUs...

©2012 Gernot Heiser NICTA 6 ICTAC'12

Dealing with Complexity: Physical Isolation e

NICTA

Separate processors for
' ’ lonality

Correctness
of bus
protocols?

RT App RT App

©2012 Gernot Heiser NICTA 7 ICTAC'12

How About Logical Isolation? ()@

NICTA

Shared processor with
software isolation

Remember: A system
IS Insecure unless
proved otherwise!

VM '
Ao

OS OS

Hypervisor

DomO Linux

Hardware

©2012 Gernot Heiser NICTA 8 ICTAC'12

Our Vision: Trustworthy Systems

Suitable for
real-world
systems

We will change the pracfice of designing and
implementing critical systems, using rigorous
approaches to achieve frue frustworthiness

Hard
guarantees on
safety/security/
reliability

©2012 Gernot Heiser NICTA 9 ICTAC'12

Isolation is Key! e

NICTA
Identify, minimise and
isolate critical
components! Critical,
| trusted

Complex,
untrusted

Sensitive
App

Defines
access
rights

System-
specific,
simple!

General-
purpose

Mechanisms
for enforcing
isolation

Processor

©2012 Gernot Heiser NICTA 10 ICTAC'12

Isolation is Key! e

Critical,
trusted

Core of trusted
computing base:
System can only be
as dependable as the
microkernel!

Sensitive

App

Defines
access
rights

yste
specific,
simple!

A General-

Mechanisms 4 Trustworthy Microkernel —seL4 <& @ purpose

for enforcing
isolation Processor

©2012 Gernot Heiser NICTA (N ICTAC'12

NICTA Trustworthy Systems Agenda e

1. Dependable microkernel (seL4) as a rock-solid base
— Formal specification of functionality

— Proof of functional correctness of implementation
— Proof of safety/security properties

2. Lift microkernel guarantees
to whole system

— Use kernel correctness and integrity
to guarantee critical functionality

— Ensure correctness of balance of
trusted computing base

— Prove dependability properties of
complete system

 despite 99 % of code untrusted!

©2012 Gernot Heiser NICTA 12

Requirements for Trustworthy Systems OC

Safety © Security

>

Isolation!

©2012 Gernot Heiser NICTA 13 ICTAC'12

selL4 Design Goals

k:?ozcy Sensitive
App

Linux Trusted

Server Service

Policy Layer

{ Trustworthy Microkernel — seL4 »

Processor

©2012 Gernot Heiser NICTA 14

NICTA

Isolation
« Strong

partitioning!
Formal verification
 Provably

trustworthy!
Performance
« Suitable for

real world!

ICTAC'12

Fundamental Design Decisions for seL4 (e
NICTA

1. Memory management is user-level responsibility

o

— Kernel never allocates memory (post-boot) o
@)

— Kernel objects controlled by user-mode servers
2. Memory management is fully delegatable
O © — Supports hierarchical system design

Perfor- — Enabled by capability-based access control
mance

3. ’Incremental consistency” design pattern

O O_ Fast transitions between consistent states

Real-time — Restartable operations with progress guarantee

Verification,
Performance

4. No concurrency in the kernel o 4
— Interrupts never enabled in kernel
— Interruption points to bound latencies
— Clustered multikernel design for multicores

©2012 Gernot Heiser NICTA 15 ICTAC'12

Incremental Consistency

Disable Avoids concurrency in (single-core) kernel Enable

interrupts

interrupts

Abort &

' restart later
Kernel | o(1) . Kernel
nt operation exit

Check pending
interrupts

5 O(1) }_ > O()
operation ° operation operation
o —

« Consistency
» Restartability

* Progress —

©2012 GeW 16 ICTAC'12

N

Example: Destroying IPC Endpoint Oe

NICTA

1®

endpoint

Client, 33‘

@ <

Client,
it

Message
queue Actions:

1. Disable EP cap (prevent new messages)
2. while message queue not empty do

3. remove head of queue (abort message)
4. check for pending interrupts

5. done

©2012 Gernot Heiser NICTA 17 ICTAC'12

selL4 as Basis for Trustworthy Systems OC

©2012 Gernot Heiser NICTA 18 ICTAC'12

Proving Functional Correctness OQ

NICTA

Abstract
Model

Refinement: All
possible
implementation
behaviours are
captured by moldel

117,000 lop

°OQ

30-35 py Executable

Model Q
O

O
50,000 lop

C Imple-
mentation

©2012 Gernot Heiser NICTA 19 ICTAC'12

Why So Long for 9,000 LOC?

selL4 call
graph

©2012 Gernot Heiser NICTA 20

Costs Breakdown)

Haskell design 2 py
C implementation 2 weeks
Debugging/Testing 2 months
Kernel verification 12 py
Formal frameworks 10 py
Total 25 pyo

@
Repeat (estimated) 6 py
Traditional engineering 4—6 py @

Did you find bugs??? Does not include
e During (very shallow) testing: 16 subsequent fastpath

e During verification: 460 verification
e 160in C, ~150 in design, ~150 in spec

©2012 Gernot Heiser NICTA 21

selL4 Formal Verification Summary O

Kinds of properties proved
e Behaviour of C code is fully captured by abstract model
e Behaviour of C code is fully captured by executabl
« Kernel never fails, behaviour is always well-defined

Can prove further
poperties on
abstract level!

e assertions never fail
* will never de-reference null pointer
e cannot be subverted by misformed input

e All syscalls terminate, reclaiming memory is safe, ...
 Well typed references, aligned objects, kernel always mapped...
e Access control is decidable

©2012 Gernot Heiser NICTA 22

How About Performance? @

NICTA
Device Let’s face it, seL4 is basically slow!
Application Driver « C code (semi-blindly) translated
T from Haskell
IPC, virtual memory N ipc « Many small functions,
_ little regard for performance
O

O

IPC: one-way, zero-length
Standard C code: 1455 cycles
C fast path: ~_~185 cycles

Bare “pass” in
Advanced Operating
Systems course!

Fastest-ever
IPC on But can speed up critical operations

ARM11! by short-circuit “fast paths”
* ... without resorting to assembler!

©2012 Gernot Heiser NICTA 23 ICTAC'12

selL4 as Basis for Trustworthy Systems OC

Security

D
2
D>

©2012 Gernot Heiser NICTA 24 ICTAC'12

Integrity: Limiting Write Access OQ

Kernel data
partitioned

™ like user data

To prove:

 Domain-1 doesn’t have write capabilities to Domain-2 objects
= no action of Domain-1 agents will modify Domain-2 state
« Specifically, kernel does not modify on Domain-1’s behalf!
— Event-based kernel operates on behalf of well-defined user thread

— Prove kernel only allows write upon capability presentation
©2012 Gernot Heiser NICTA ICTAC'12

selL4 as Basis for Trustworthy Systems OC

Security

Y
o

©2012 Gernot Heiser NICTA 26 ICTAC'12

Availability: Ensuring Resource Access OO

NICTA
Domain 2

(R N

« Strict separation of kernel resources
= agent cannot deny access to another domain’s resources

©2012 Gernot Heiser NICTA 27 ICTAC'12

selL4 as Basis for Trustworthy Systems OQ

Security

(e
.
e

©2012 Gernot Heiser NICTA 28 ICTAC'12

Confidentiality: Limiting Read Accesses ()@
NICTA

Violation not
observable
by Domain 2!

To prove:

« Domain-1 doesn’t have read capabilities to Domain-2 objects
= no action of any agents will reveal Domain-2 state to Domain-1

Non-interference proof in progress:
« Evolution of Domain 1 does not depend on Domain-2 state
* Presently cover only overt information flow

©2012 Gernot Heiser NICTA 29 ICTAC'12

selL4 as Basis for Trustworthy Systems OC

©2012 Gernot Heiser NICTA 30 ICTAC'12

Timeliness Oe

NICTA
Makes Delivery
arbitrary with
\ system , -~ bounded
/ /
| lat
S stency_

e

Non- ,
- preemptible

Need worst-case execution time (WCET) analysis of kernel

©2012 Gernot Heiser NICTA 31 ICTAC'12

WCET Analysis Approach

selL4
binary

NICTA

Automatic,

o

Control
Flow
Graph

Loop
bounds

Accurate &
sound model of

ARM pipeline

©2012 Gernot Heiser NICTA

System
model

Tune WCET by inserting
interrupt checks

from separate
tool

Manually
determined,
proved by tool

Integer
Linear I1.P solver WCET!
Equations

Infeasible
path
information |/

Main source
of pessimism!

32 ICTAC'12

Result (]®

NICTA
Pessimism due to
under-specified
hardware
99 5 “ Observed
378 wComputed
0 100 200 300 us

WCET presently limited by verification practicalities
10 uys seem achievable

©2012 Gernot Heiser NICTA 33 ICTAC'12

selL4 as Basis for Trustworthy Systems OC

Security

(e
.
e

©2012 Gernot Heiser NICTA 34 ICTAC'12

Qe

: NICTA
¥ gyees

{ = 2 py Abstract M
(estimate) Model

e
Non-Inter Executable) 30-35 py

ference Model d
oo

Proving selL4 Trustworthiness

C Imple-
mentation 2 py, 1 year J

Mostly for tools

Binary WCET
-

©2012 Gernot Heiser NICTA ICTAC'12

selL4 — the Next 24 Months O‘

: NICTA
Confiden- D :
tiality Availability Integrity

Al\?lsc’)tJth /m Multicore

Non-Inter- Executable
ference Model
\%\
Initiali- 7 .Y C Imple-
zation m mentation

A5

G P
Analysis

©2012 Gernot Heiser NICTA ICTAC'12

Binary Verification o

IPC: one-way, zero-length .
Uncompetitive
Compiler gcc Compcert \\ performance!
Standard C code: 1455 cycles 3749 cycles
C fast path: 185 cycles 730 cycles
Bigger problem:

 Our proofs are in Isabel/HOL,
Compcert uses Coq

* We cannot prove that they
Q use the same C semantics!

©2012 Gernot Heiser NICTA I!’ ICTAC'12

Use verified
compiler
(Compcert)?

Binary Code Verification (In Progress) OO

NICTA

lliHHHHHII'
Function Function
code code

|
- -

Fonnahsed

©2012 Gernot Heiser NICTA 38 ICTAC'12

Phase Two: Full-System Guarantees

 Achieved: Verification of
microkernel (8,700 LOC)

* Next step: Guarantees for
real-world systems
(1,000,000 LOC)

©2012 Gernot Heiser NICTA

39

ICTAC'12

Overview of Approach @

architecture

Tw=, | HiEE

components, connections

N\

©O)

|
| |
glue cone, ‘ | | | whole system
separation boundaries | : | assurance
N @ |
| | .
separation setup
| | ! @

selL4 kernel ' l [

= Build system with minimal TCB

= Formalize and prove security properties about architecture
= Prove correctness of trusted components

= Prove correctness of setup

* Prove temporal properties (isolation, WCET, ...)

= Maintain performance

©2012 Gernot Heiser NICTA 40 ICTAC'12

Architecting Security/Safety Oe
NICTA

Architecture Specification

—

Requirements
(specific set of
security/safety

properties)

Component Model

ICTAC'12

Proof of Concept: Secure Access Controller

©2012 Gernot Heiser NICTA

42

(Jo

NICTA

SAC

ICTAC'12

Logical Function [1O

NICTA

Security Property:

 No data leakage between
red and blue networks

€2012 Gernot Heiser NICTA 43 ICTAC'12

Logical Function [1O
NICTA
Gigabit
Network
Drivers
Nic-C
3 C
Web Server
om0 LoC Router
controllers Network|routing
C

Security Property:

 No data leakage between
red and blue networks

©2012 Gernoi Heiser NICTA

ICTAC'12

Minimal TCB e

NICTA

SAC S, e
controller " 1Router O
iy {vr

€2012 Gernot Heiser NICTA 45 ICTAC'12

Implementation @

written,
1500 LoC
_—]

.
oo’

i P Untrusted

Virtualized
Linux,
10 MLoC

Virtualized
Linux,
10 MLoC

written,
300 LoC

©2012 Gernot Heiser NICTA 46 ICTAC'12

Access Rights ®

©2012 Gernot Heiser NICTA 47 ICTAC'12

Building Secure Systems: Long-Term View {Jeo

NICTA

Formal
Verification?

Your choice!
(... but managed
is clearly better)

_F _R R R R }/

i Formal
I Verification

;IE DSL

selL4 Microkernel C + asm

Hardware

©2012 Gernot Heiser NICTA 48 ICTAC'12

Trustworthy Systems — We’ve Made a Start! OQ

Security

Thank You!

mailto:gernot@nicta.com.au
@GernotHeiser
Google: “nicta trustworthy systems”

©2012 Gernot Heiser NICTA 49 ICTAC'12

mailto:gernot@nicta.com.au

