
Towards Trustworthy
Embedded Systems
Gernot Heiser
NICTA and University of New South Wales
Sydney, Australia

©2012 Gernot Heiser NICTA 2
LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 3

Present Systems are NOT Trustworthy!

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 4

What’s Next?

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 55

Claim:
A system must be considered insecure/unsafe
unless proved otherwise!

Corollary [with apologies to Dijkstra]:

Testing, code inspection, etc. can only show
insecurity/unsafety, not security or safety!

So, why don’t
we prove
security?

©2012 Gernot Heiser NICTA 6

Core Issue: Complexity

• Massive functionality of CE devices
⇒ huge software stacks
– How secure are your payments?

• Increasing usability requirements
– Wearable or implanted medical devices
– Patient-operated
– GUIs next to life-critical functionality

• On-going integration of critical and entertainment functions
– Automotive infotainment and engine control
– Gigabytes of software on 100 CPUs…

LCTES Keynote, June’12

Systems far too
complex to prove

their trustworthiness!

©2012 Gernot Heiser NICTA 7

Dealing with Complexity: Physical Isolation

LCTES Keynote, June’12

Does not
scale!

Separate processors for
critical functionality

Correctness
of bus

protocols?

©2012 Gernot Heiser NICTA 8

How About Logical Isolation?

LCTES Keynote, June’12

Shared processor with
software isolation

Hardware

Hypervisor

VM

OS

App

VM

OS

App

VM

OS

App

Xen:
0.3 MLOC

Dom0 Linux

Linux:
7.5 MLOC

Remember: A system
is insecure unless
proved otherwise!

©2012 Gernot Heiser NICTA 9

Our Vision: Trustworthy Systems

LCTES Keynote, June’12

We will change the practice of designing and
implementing critical systems, using rigorous

approaches to achieve true trustworthiness

Hard
guarantees on
safety/security/

reliability

Suitable for
real-world
systems

©2012 Gernot Heiser NICTA 10

Isolation is Key!

Processor

Linux
Server

Legacy App.
Legacy App.
Legacy
Apps

Trusted
Service

Sensitive
App

LCTES Keynote, June’12

Identify, minimise and
isolate critical
components! Critical,

trusted

Mechanisms
for enforcing

isolation

Trustworthy Microkernel – seL4

Complex,
untrusted
Complex,
untrusted

Policy Layer
General-
purpose

System-
specific,
simple!

Defines
access
rights

©2012 Gernot Heiser NICTA 11

Isolation is Key!

Processor

Linux
Server

Legacy App.
Legacy App.
Legacy
Apps

Trusted
Service

Sensitive
App

LCTES Keynote, June’12

Identify, minimise and
isolate critical
components! Critical,

trusted

Mechanisms
for enforcing

isolation

Trustworthy Microkernel – seL4

Complex,
untrusted
Complex,
untrusted

Policy Layer
General-
purpose

System-
specific,
simple!

Defines
access
rights

Core of trusted
computing base:

System can only be
as dependable as the

microkernel!

©2012 Gernot Heiser NICTA 12

NICTA Trustworthy Systems Agenda

1. Dependable microkernel (seL4) as a rock-solid base
– Formal specification of functionality
– Proof of functional correctness of implementation
– Proof of safety/security properties

2. Lift microkernel guarantees
to whole system
– Use kernel correctness and integrity

to guarantee critical functionality
– Ensure correctness of balance of

trusted computing base
– Prove dependability properties of

complete system
• despite 99 % of code untrusted!

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 13

Requirements for Trustworthy Systems

Safety Security

Functional
Correctness

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

LCTES Keynote, June’12

Isolation!

©2012 Gernot Heiser NICTA 14

seL4 Design Goals

LCTES Keynote, June’12

Trustworthy Microkernel – seL4

Policy Layer

Processor

Linux
Server

Legacy App.
Legacy App.
Legacy
Apps

Trusted
Service

Sensitive
App 1. Isolation

• Strong
partitioning!

2. Formal verification
• Provably

trustworthy!
3. Performance

• Suitable for
real world!

©2012 Gernot Heiser NICTA 15

Fundamental Design Decisions for seL4

1. Memory management is user-level responsibility
– Kernel never allocates memory (post-boot)
– Kernel objects controlled by user-mode servers

2. Memory management is fully delegatable
– Supports hierarchical system design
– Enabled by capability-based access control

3. “Incremental consistency” design pattern
– Fast transitions between consistent states
– Restartable operations with progress guarantee

4. No concurrency in the kernel
– Interrupts never enabled in kernel
– Interruption points to bound latencies
– Clustered multikernel design for multicores

LCTES Keynote, June’12

Isolation

Perfor-
mance

Verification

Real-time

©2012 Gernot Heiser NICTA 16

seL4 User-Level Memory Management

LCTES Keynote, June’12

Global Resource Manager

RAM Kernel
Data

GRM
Data
GRM
Data

Resource Manager
RM
Dat
a

Resource Manager
RM
Dat
a

Addr
Space

AS

Addr
Space

Addr
Space

RM
RM
Dat
a

Resources fully
delegated, allows

autonomous
operation

Strong isolation,
No shared kernel

resources

“Untyped” (unallocated) memory

Delegation
can be

revoked

©2012 Gernot Heiser NICTA 17

seL4 Memory Management Mechanics: Retype

Tsinghua Software Day 2012

UT0

Retype (Untyped, 21)

UT1 UT2F0 F3F2F1

Retype (Untyped, 21)

UT3 UT4

Retype (TCB, 2n)

……

Retype (CNode, 2m, 2n)

r,w r,w r,w r,w

Retype (Frame, 22)

……

Capability
storage

User
memory

Thread
control
block

Capability
to “untyped”

©2012 Gernot Heiser NICTA 18

Incremental Consistency

Tsinghua Software Day 2012

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

Check pending
interrupts

O(1)
operation

O(1)
operation

O(1)
operation

Abort &
restart later

Disable
interrupts

Enable
interrupts

©2012 Gernot Heiser NICTA 19

Clustered Multikernel

LCTES Keynote, June’12

node memory

shared memory

node memory

msguserlevel

kernel

untyped

kernel

idle

user

kernel

idle

user

userlevel

kernel

untyped

kernel

idle

user

kernel

idle

user

CPU A CPU B CPU C CPU D

IPI

Cache 1 Cache 2

Shared
data, big

lock

No sharing,
no lock

©2012 Gernot Heiser NICTA 20

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness
Functional

Correctness

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 21

Proving Functional Correctness

LCTES Keynote, June’12

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo
f

Pr
oo
f

30–35 py
4.5 years
30–35 py
4.5 years

Refinement: All
possible

implementation
behaviours are

captured by model

Refinement: All
possible

implementation
behaviours are

captured by model

©2012 Gernot Heiser NICTA 22

Why So Long for 9,000 LOC?

LCTES Keynote, June’12

seL4 call
graph

©2012 Gernot Heiser NICTA 23

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

✔

✔

✔

Integrity

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 24

Integrity: Limiting Write Access

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

LCTES Keynote, June’12

To prove:
• Domain-1 doesn’t have write capabilities to Domain-2 objects

⇒ no action of Domain-1 agents will modify Domain-2 state
• Specifically, kernel does not modify on Domain-1’s behalf!

– Prove kernel only allows write upon capability presentation

Domain 1 Domain 2

©2012 Gernot Heiser NICTA 25

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

✔

✔

✔

✔

Availability

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 26

Availability: Ensuring Resource Access

• Strict separation of kernel resources
⇒ agent cannot deny access to another domain’s resources

LCTES Keynote, June’12

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

Domain 1 Domain 2

©2012 Gernot Heiser NICTA 27

seL4 as Basis for Trustworthy Systems

LCTES Keynote, June’12

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination
✔

✔

✔

Integrity

Confident. /
Info Flow

✔

Confident. /
Info Flow

✔

©2012 Gernot Heiser NICTA 28

Confidentiality: Limiting Read Accesses

To prove:
• Domain-1 doesn’t have read capabilities to Domain-2 objects

⇒ no action of any agents will reveal Domain-2 state to Domain-1

LCTES Keynote, June’12

Domain 1 Domain 2
Violation not
observable

by Domain 2!

Non-interference proof in progress:
• Evolution of Domain 1 does not depend on Domain-2 state
• Presently cover only overt information flow

©2012 Gernot Heiser NICTA 29

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

✔

✔

✔

✔

✔

LCTES Keynote, June’12

✔

Timeliness

©2012 Gernot Heiser NICTA 30

Timeliness

Domain 1 Domain 2

Microkernel

Makes
arbitrary
system

calls

IRQ

Delivery
with

bounded
latency

Non-
preemptible

LCTES Keynote, June’12

Need worst-case execution time (WCET) analysis of kernel

©2012 Gernot Heiser NICTA 31

WCET Analysis Approach

LCTES Keynote, June’12

Main source
of pessimism!

Manual,
being
automated

Accurate &
sound model of
ARM pipeline

Tune WCET by inserting
interrupt checks

©2012 Gernot Heiser NICTA 32

Result

LCTES Keynote, June’12

378
99.5

0 100 200 300

Observed
Computed

Pessimism due to
under-specified

hardware

µs

WCET presently limited by verification practicalities
• 10 µs seem achievable

©2012 Gernot Heiser NICTA 33

Future: Whole-System Schedulability

seL4

Hardware

Arbitrary
behaviour

Moderately
Critical

Highly
Critical

Not
Critical

Guarantee
schedulability

Requires model
for managing
time resource

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 34

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination
✔

✔

✔

✔

✔

Integrity

Confident. /
Info Flow

✔

✔

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 35

Proving seL4 Trustworthiness

LCTES Keynote, June’12

Integrity

Pro
of

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo
f

Pr
oo
f

Proof

Confiden-
tiality

30–35 py
4.5 years
30–35 py
4.5 years

1 py
4 months

WCET
Analysis

2 py, 1 year
Mostly for tools

Availability

0 py
By construction

≈ 2 py
(estimate)

©2012 Gernot Heiser NICTA 36

seL4 – the Next 24 Months

LCTES Keynote, June’12

Integrity

Pro
of

Abstract
Model

Executable
Model

C Imple-
mentation

Proof

Confiden-
tiality

WCET
Analysis

Initiali-
zation Proof

Timing-
Channel

Mitigation?

Availability

Binary
code

Pr
oo
f

Non-Inter-
ference

Proof

MulticoreProof

©2012 Gernot Heiser NICTA 37

Phase Two: Full-System Guarantees

• Achieved: Verification of
microkernel (8,700 LOC)

• Next step: Guarantees for
real-world systems
(1,000,000 LOC)

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 38

Overview of Approach

§ Build system with minimal TCB
§ Formalize and prove security properties about architecture
§ Prove correctness of trusted components
§ Prove correctness of setup
§ Prove temporal properties (isolation, WCET, …)
§ Maintain performance

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 39

Specifying Security Architecture

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 40

Device Drivers

LCTES Keynote, June’12

Processor

Linux
Server

Legacy App.
Legacy App.
Legacy
Apps

Trusted
Service

Sensitive
App

Trustworthy Microkernel – seL4

Policy Layer

Device
Driver

Complex,
untrusted

Drivers at
user level –

can en-
capsulate

Some
devices

are critical!

Device
Driver

How make
trustworthy?

©2012 Gernot Heiser NICTA 41

Driver Development

driver.c

OS Interface
Spec

Device Spec

Can we
automate?

Error-
prone!

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 42

Driver Development

driver.c

OS Interface
Spec

Device Spec

Can we
automate?

Error-
prone!Formal

OS Interface
Spec

Formal
Device Spec

Formalise
specs!

Formalise
specs!

Synthesis!

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 43

Drivers Synthesised (To Date)

Asix AX88772
USB-to-Eth adapter

SD host controller

W5100 Eth shield

IDE disk controller

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 44

Driver Synthesis: Interface Specs

driver.c

Formal
OS Interface

spec

Formal
Device Spec

Straightforward –
do once per OS

Where
from???

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 45

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

Manual transformation

• Low-level description:
registers, gates, wires.

• Cycle-accurate
• Precisely models internal

device architecture and
interfaces

• “Gold reference”

Too
detailed
(for now)

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 46

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

Manual transformation

• Captures external
behaviour

• Abstracts away structure
and timing

• Abstracts away the low-
level interface

bus_write(u32 addr, u32 val)
{
...

}

High-level model

Use for now

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 47

From Drivers to File Systems?

FS.c

OS interface

Media layout

Functional
interface

Data
structure

Needs
different

approach!

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 48

Building Secure Systems: Long-Term View

Hardware

seL4 Microkernel

Trusted Userland

Linux

App

Native
App

Managed
runtime

GCOther
Stuff

Managed
App

C + asm

DSL

Your choice!
(… but managed
is clearly better)

Formal
Verification

Formal
Verification?

LCTES Keynote, June’12

©2012 Gernot Heiser NICTA 49

Trustworthy Systems – We’ve Made a Start!

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination
✔

✔

✔

✔

✔

Integrit
y

Confident. /
Info Flow

✔

✔

Thank You!
mailto:gernot@nicta.com.au

@GernotHeiser
Google: “nicta trustworthy systems”

LCTES Keynote, June’12

mailto:gernot@nicta.com.au

