
Towards a Platform for
Trustworthy Systems
Gernot Heiser
NICTA and University of New South Wales
Sydney, Australia



©2012 Gernot Heiser NICTA 2
Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 3

What’s Next?

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 4

Trust Without Trustworthiness

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 5

Core Issue: Complexity

• Massive functionality ⇒ huge software stacks
– Expensive recalls of CE devices

• Increasing usability requirements
– Wearable or implanted medical devices
– Patient-operated 
– GUIs next to life-critical functionality

• On-going integration of critical and entertainment functions
– Automotive infotainment and engine control

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 6

Our Vision: Trustworthy Systems

Tsinghua Software Day 2012

We will change the practice of designing and 
implementing critical systems, using rigorous 

approaches to achieve true trustworthiness

Hard 
guarantees on 
safety/security/

reliability

Suitable for 
real-world 
systems



©2012 Gernot Heiser NICTA 7

Dealing With Complexity

• Complexity of critical devices will continue to grow
– Critical systems with millions of lines of code (LOC)

• We need to learn to ensure dependability despite complexity
– Need to guarantee dependability

• Correctness guarantees for MLOCs unfeasible 

Complex
GUIs etc

Simple 
Control

CriticalNon-critical

Isolation

Tsinghua Software Day 2012

Key to solution: 
Isolation!

… with 
controlled 

communication



©2012 Gernot Heiser NICTA 8

Isolation: Physical

Tsinghua Software Day 2012

Does not scale!

Separate processors for 
critical functionality



©2012 Gernot Heiser NICTA 9

Isolation: Logical

Processor

Linux
Server

Legacy App.
Legacy App.
Legacy
Apps

Trusted
Service

Sensitive
App

Tsinghua Software Day 2012

Shared processor with 
software isolation Critical, 

trusted

Mechanisms 
for enforcing 

isolation

Trustworthy Microkernel – seL4

Complex, 
untrusted
Complex, 
untrusted

Policy Layer
General-
purpose

System-
specific

Defines 
access 
rights



©2012 Gernot Heiser NICTA 10

Isolation: Logical

Processor

Linux
Server

Legacy App.
Legacy App.
Legacy
Apps

Trusted
Service

Sensitive
App

Tsinghua Software Day 2012

Shared processor with 
software isolation Critical, 

trusted

Mechanisms 
for enforcing 

isolation

Trustworthy Microkernel – seL4

Complex, 
untrusted
Complex, 
untrusted

Policy Layer
General-
purpose

System-
specific

Defines 
access 
rights

Core of trusted 
computing base: 

System can only be 
as dependable as the 

microkernel!



©2012 Gernot Heiser NICTA 11

NICTA Trustworthy Systems Agenda

1. Dependable microkernel (seL4) as a rock-solid base
– Formal specification of functionality
– Proof of functional correctness of implementation
– Proof of safety/security properties

2. Lift microkernel guarantees
to whole system
– Use kernel correctness and integrity 

to guarantee critical functionality
– Ensure correctness of balance of

trusted computing base
– Prove dependability properties of 

complete system

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 12

Core Ingredients: People

Systems Researchers

Tsinghua Software Day 2012

Formal Methods Practitioners



©2012 Gernot Heiser NICTA 13

seL4 as Basis for Trustworthy Systems

Safety Security

Functional 
Correctness

Memory 
Safety

Availability

Timeliness

Termination

Confident. / 
Info Flow

Integrity

✔

✔

✔

Integrity

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 14

Integrity is about Write Accesses

To prove:
• Domain-1 doesn’t have write capabilities to Domain-2 objects

⇒ no action of Domain-1 agents will modify Domain-2 state
• Specifically, kernel does not modify on Domain-1’s behalf!

Domain 1 Domain 2

Helped by seL4 
resource-

management model

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 15

seL4 Memory Management Approach

Tsinghua Software Day 2012

Global Resource Manager

RAM Kernel
Data

GRM
Data
GRM
Data

Resource Manager
RM
Dat
a

Resource Manager
RM
Dat
a

Addr
Space

Addr
Space

Addr
Space

Addr
Space

RM
RM
Dat
a

Resources fully 
delegated, allows 

autonomous 
operation

Strong isolation,
No shared kernel 

resources

“Untyped” (unallocated) memory



©2012 Gernot Heiser NICTA 16

seL4 Memory Management Mechanics: Retype

Tsinghua Software Day 2012

UT0

Retype (Untyped, 21)

UT1 UT2F0 F3F2F1

Retype (Untyped, 21)

UT3 UT4

Retype (TCB, 2n)

……

Retype (CNode, 2m, 2n)

r,w r,w r,w r,w

Retype (Frame, 22)

……

Capability 
storage

User 
memory

Thread 
control 
block

Capability  
to “untyped”



©2012 Gernot Heiser NICTA 17

Separation of Kernel Data

• Kernel data structures allocated/managed by user 
– Protected by capabilities just as user data!

• For integrity show that no object can be modified without a write cap

Domain 1 Domain 2

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 18

seL4 for Safety and Security

Tsinghua Software Day 2012

Safety Security

Functional 
Correctness

Memory 
Safety

Availability

Timeliness

Termination
✔

✔

✔

Integrity

Confident. / 
Info Flow

✔

Confident. / 
Info Flow



©2012 Gernot Heiser NICTA 19

Confidentiality is about Read Accesses

To prove:
• Domain-1 doesn’t have read capabilities to Domain-2 objects

⇒ no action of any agents will reveal Domain-2 state to Domain-1
• Harder than write, as protected data doesn’t change

– Violation not observable in Domain-2!
• In progress – details in Gerwin’s talk

Domain 1 Domain 2

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 20

seL4 as Basis for Trustworthy Systems

Safety Security

Functional 
Correctness

Memory 
Safety

Availability

Timeliness

Termination

Confident. / 
Info Flow

Integrity

✔

✔

✔

✔

Availability

✔

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 21

Availability is Trivially Ensured at Kernel Level

• Strict separation of kernel resources
⇒ agent cannot deny access to another domain’s resources

Domain 1 Domain 2

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

Managing resource 
availability is user-

level issue!

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 22

seL4 as Basis for Trustworthy Systems

Safety Security

Functional 
Correctness

Memory 
Safety

Availability

Timeliness

Termination

Confident. / 
Info Flow

Integrity

✔

✔

✔

✔

✔

Timeliness ✔

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 23

Timeliness

Need worst-case execution time (WCET) analysis of kernel

Domain 1 Domain 2

Microkernel

Makes 
arbitrary 
system 

calls

IRQ

Delivery 
with 

bounded 
latency

Non-
preemptible

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 24

WCET Analysis Approach

Result: WCET >1 sec!
• Pessimism of analysis (loop bounds, infeasible paths)
⇒ Manual elimination of infeasible paths

– Result: 600 ms L

Tsinghua Software Day 2012

Main source
of pessimism!

Manual

Accurate & 
sound model of 
ARM pipeline



©2012 Gernot Heiser NICTA 25

Improving Real-Time Behaviour of seL4

• Challenge: Improving WCET while 
– retaining ability to verify
– maintaining high average-case performance

Tsinghua Software Day 2012

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

Check pending
interrupts

Event-oriented 
kernel running with 
interrupts disabled!

O(1)
operation

O(1)
operation

O(1)
operation

Abort & 
restart later



©2012 Gernot Heiser NICTA 26

Placing Preemption Points

• Enabled by design pattern of “incremental consistency”:
– Large composite objects can be constructed (or deconstructed) from 

individual components
– Each component can be added/removed in O(1) time
– Intermediate states are consistent

Tsinghua Software Day 2012

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

O(1)
operation

O(1)
operation

O(1)
operation

Check pending
interrupts



©2012 Gernot Heiser NICTA 27

Example: Revoking IPC “Badge”

State to keep across preemptions
• Badge being removed
• Point in queue where preempted
• End of queue at time operation started
• Thread performing revocation

Need to squeeze into endpoint data structure!

Tsinghua Software Day 2012

Client1
Server

Client1 
state

Client2 Client2 
state

IPC
endpoint

Message
queue

Badge

Removing 
orange 
badge

New 
invariants!



©2012 Gernot Heiser NICTA 28

Example: Scheduling

Blocking IPC: Each send/receive blocks a thread!
• Remove thread from ready queue
• Will be re-inserted in the reply!

Classical L4 optimisation “lazy scheduling”
• Good average-case performance

Tsinghua Software Day 2012

Client Server

Frequent 
sending & 
replying

Idea:
Leave blocked

threads in
ready queue!



©2012 Gernot Heiser NICTA 29

Lazy Scheduling

Scheduler must clean up the mess:

But scheduling cannot be preempted!

Tsinghua Software Day 2012

thread_t schedule() {
foreach (prio in priorities) {

foreach (thread in runQueue[prio]) {
if (isRunnable(thread))

return thread;
else

schedDequeue(thread);
}

}
return idleThread;

}

Scheduling 
becomes 

unbounded!

Must re-
factor code



©2012 Gernot Heiser NICTA 30

Improving Scheduling

Blocking IPC: Each send/receive unblocks a thread!
• At preemption time, insert presently running thread into ready queue 

New scheduling invariant: all threads in ready queue are runnable
• Same average-case performance as lazy scheduling
• Scheduling WCET becomes O(1)

Tsinghua Software Day 2012

Client Server

Benno scheduling:
Do not insert 

newly unblocked 
thread in ready 

queue!

O(1) 
cleanup

!

Use priority 
bitmap and 

CLZ instruction



©2012 Gernot Heiser NICTA 31

Result

Tsinghua Software Day 2012

378
99.5

0 100 200 300

Observed
Computed

µs

• Verification of modifications will be mostly routine
• In progress (almost complete):

– automatic determination of loop counts
– automatic infeasible path elimination

Factor 1,500 
improvement

Pessimism due to 
under-specified 

hardware



©2012 Gernot Heiser NICTA 32

RT Requirements in Industrial Automation

Tsinghua Software Day 2012

seL4 today

First protected 
RTOS with sound 
WCET analysis



©2012 Gernot Heiser NICTA 33

Future: Whole-System Schedulability

seL4

Hardware

Arbitrary
behaviour

Moderately 
Critical

Highly
Critical

Not 
Critical

Guarantee 
schedulability

Requires model 
for managing 
time resource

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 34

seL4 for Safety and Security

Safety Security

Functional 
Correctness

Memory 
Safety

Availability

Timeliness

Termination
✔

✔

✔

✔

✔

Integrity

Confident. / 
Info Flow

✔

✔

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 35

Device Drivers

Tsinghua Software Day 2012

Processor

Linux
Server

Legacy App.
Legacy App.
Legacy
Apps

Trusted
Service

Sensitive
App

Trustworthy Microkernel – seL4

Policy Layer

Device
Driver

Complex, 
untrusted

Drivers at 
user level –

can en-
capsulate

Some 
devices 

are critical!

Device
Driver

How make 
trustworthy?



©2012 Gernot Heiser NICTA 36

Driver Development

driver.c

OS Interface
Spec

Device Spec

Can we 
automate?

Error-
prone!

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 37

Driver Development

driver.c

OS Interface
Spec

Device Spec

Can we 
automate?

Error-
prone!Formal

OS Interface
Spec

Formal
Device Spec

Formalise
specs!

Formalise
specs!

Synthesis!

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 38

Driver Synthesis as Controller Synthesis

Driver = controller

OS requests = control objective

device

send() - send a network
packet

Packet has been sent

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 39

Game Theory
• Framework for verification and synthesis of reactive systems
• Provides classification of games and complexity bounds
• Provides algorithms for winning strategies!

Synthesis Algorithm (Main Idea)

G

2

1

3
I

u

u

c3

c2

c1 G

Force 
device into 
goal state2

1
CPre(G) = {1,2}
CPre(G,1,2} = {1,2,3}

3

CPre(G) = {1,2}CPre(G) = {1,2}
CPre(G,1,2} = {1,2,3}
CPre(G,1,2,3} = 
{I,1,2,3}

I

Initial
state

Device 
driver!

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 40

Drivers Synthesised (To Date)

Asix AX88772 
USB-to-Eth adapter

SD host controller

W5100 Eth shield

IDE disk controller

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 41

Driver Synthesis Challenges

• State explosion
– Symbolic state space representation, predicate abstraction

– done
• Synthesis with imperfect information

– Generalisation of a perfect information strategy
– work in progress

• Efficient C code generation
– Avoid code bloat

– work in progress
• Support for DMA

– this year
• Verification: is the synthesised driver correct?

– Errors in the synthesis tool
– future work

Un-observable 
state 

transitions

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 42

Driver Synthesis: Interface Specs

driver.c

Formal
OS Interface

spec

Formal
Device Spec

Straightforward –
do once per OS

Where 
from???

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 43

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

Manual transformation

• Low-level description: 
registers, gates, wires.

• Cycle-accurate
• Precisely models internal 

device architecture and 
interfaces

• “Gold reference”

Too 
detailed 
(for now)

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 44

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

Manual transformation

• Captures external 
behaviour

• Abstracts away structure 
and timing

• Abstracts away the low-
level interface

bus_write(u32 addr, u32 val) 
{
...

}

High-level model

Use for now

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 45

From Drivers to File Systems?

FS.c

OS interface

Media layout

Functional 
interface

Data 
structure

Needs 
different 

approach!

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 46

Does it Work in the Real World?

• Customer product prototypes
– Military-grade cross-domain (multi-level secure) devices 
– Safety-critical monitoring devices (mining)

• RapiLog: Leverage seL4 reliability to improve DBMS performance 
– driver for virtualization performance, multicore

• Fiji on seL4: Enable RT programming in HLL (Java)
– driver for RT work, potential for verified run time

• Secure system components: web browser, banking clients
– performance, resource-management practicalities
– remote attestation of critical software (TPM support)

• Energy management
– managing energy as a resource

• Eat your own dog food (web server, solar racing car)
– performance, functionality

Tsinghua Software Day 2012

Must build 
realistic 

systems!



©2012 Gernot Heiser NICTA 47

Example: RapiLog – Fast DBMS without sync()

Databases require durability guarantees
• In the presence of failures (OS crash, power)
• Ensured typically by write-ahead logging
• Flush log before continuing processing
• Disk writes on critical path

Idea: Avoid synchronous I/O 
• using guaranteed dependability of seL4

Tsinghua Software Day 2012

DBMS

OS
Device
Driver

Log



©2012 Gernot Heiser NICTA 48

Example: RapiLog – Fast DBMS without sync()

DBMS on seL4
• Using virtualized Linux

• Performance should 
matches unsafe (no-sync) 
operation on
native Linux

• Benefits from 
driver synthesis

Tsinghua Software Day 2012

Virtual Machine

DBMS

Linux
Device
Driver

Virtual
Storage
Device

Device
Driver

Buffer

seL4

Log



©2012 Gernot Heiser NICTA 49

Initial Results: PostgreSQL Throughput

Tsinghua Software Day 2012

Performance 
issues in 

virtual disk

Virtualization 
overhead

Performance 
gain



©2012 Gernot Heiser NICTA 50

Initial Results: PostgreSQL Throughput

Tsinghua Software Day 2012

Room for 
improvement

!



©2012 Gernot Heiser NICTA 51

Trustworthy Systems Platform: Almost There!

Safety Security

Functional 
Correctness

Memory 
Safety

Availability

Timeliness

Termination
✔

✔

✔

✔

✔

Integrit
y

Confident. / 
Info Flow

✔

✔

Thank You!
mailto:gernot@nicta.com.au

@GernotHeiser
Google: “ertos”

Stay tuned for the 
grotty verification 

details from 
Gerwin!

Tsinghua Software Day 2012

mailto:gernot@nicta.com.au


©2012 Gernot Heiser NICTA 52

Our View of Implementation Languages

Tsinghua Software Day 2012

Hardware

Kernel H/W
control

Addr-
SpacesIPC

Trusted Userland

Linux

App

App

Managed 
runtime

GCOther
Stuff

Managed
App

C +
asm

DSL/C

Your choice!
(… but managed 
is clearly better)

Formal
Verification



©2012 Gernot Heiser NICTA 53

seL4 Call Graph

Tsinghua Software Day 2012



©2012 Gernot Heiser NICTA 54

Verification vs Certification

Common Criteria: Military-Strength Security

Evaluation
Level Requirements Functional 

Specification
Top Down 

Design
Imple-

mentation Cost

EAL1 Informal

EAL2 Informal Informal

EAL3 Informal Informal

EAL4 Informal Informal Informal

EAL5 Semi-formal Semi-formal Informal

EAL6 Formal Semi-formal Semi-formal Informal 1K/LoC

EAL7 Formal Formal Formal Informal

seL4 Formal Formal Formal Formal 0.6K/LoC

Tsinghua Software Day 2012


