
1 APSys'13 Keynote

Making Trusted Systems
Trustworthy
Gernot Heiser
NICTA and University of New South Wales
Sydney, Australia

©2013 Gernot Heiser, NICTA 2
ARTIST SS, Sep’12

©2013 Gernot Heiser, NICTA 3

Present Systems are NOT Trustworthy!

APSys'13 Keynote

Yet they are expensive:
• $1,000 per line of code for

“high-assurance” software!

3

©2013 Gernot Heiser, NICTA 4

Fundamental issue: large stacks, need isolation

E.g. medical implant

APSys'13 Keynote4

Processor

Device
drivers

Life-
supporting

• 1 kLOC critical code
• 20–100 kLOC trusted

computing base (TCB)
• 100s of bugs
• dozens of exploits!

RTOS

Network
stacks

Control,
monitoring,
maintenance

1,000 LOC

1,000 LOC

1,000 LOC

>10,000
LOC

>10,000
LOC

©2013 Gernot Heiser, NICTA 5

High Assurance Bad Practice

Processor

Uncritical/
untrusted

Sensitive/
critical/
trusted

• TCB of millions of LOC
• Expect 1000s of bugs
• Expect 100s of vulnerabilities

Isolation?

Xen/VMware/KVM
hypervisor

Huge TCB

Hacker’s
delight!

APSys'13 Keynote5

©2013 Gernot Heiser, NICTA 6

High Assurance Best Practice

Processor

Uncritical
/
untrusted

Sensitive/
critical/
trusted

• Isolate
• Minimise the TCB
• Assure TCB by

• testing
• code inspection
• bug-finding tools

Separation kernel

Minimal
“trusted

computing
base”

Minimal
“trusted

computing
base” (TCB)

Always
incomplete!

APSys'13 Keynote6

©2013 Gernot Heiser, NICTA 77

Claim:
A system must be considered untrustworthy unless
proved otherwise!

Corollary [with apologies to Dijkstra]:

Testing, code inspection, etc. can only show
lack of trustworthiness!

So, why don’t
we prove

trustworthiness
?

ARTIST SS, Sep’12

©2013 Gernot Heiser, NICTA 8

State of the Art: NICTA’s seL4 Microkernel

Processor

Uncritical
/
untrusted

Sensitive/
critical/
trusted

Strong
Isolation

seL4 microkernel

Truly
dependable

TCB

APSys'13 Keynote8

• Provable isolation!
• Provable assurance!

No place for
bugs to hide!

©2013 Gernot Heiser, NICTA 9

Fundamental Design Decisions for seL4

1. Memory management is user-level responsibility
– Kernel never allocates memory (post-boot)
– Kernel objects controlled by user-mode servers

2. Memory management is fully delegatable
– Supports hierarchical system design
– Enabled by capability-based access control

3. “Incremental consistency” design pattern
– Fast transitions between consistent states
– Restartable operations with progress guarantee

4. No concurrency in the kernel
– Interrupts never enabled in kernel
– Interruption points to bound latencies
– Clustered multikernel design for multicores

ARTIST SS, Sep’12

Isolation

Perfor-
mance

Verification,
Performance

Real-time

©2013 Gernot Heiser, NICTA 10

What are Capabilities?

ARTIST SS, Sep’12

Obj reference

Access rights

Cap = Access Token

Eg. read,
write, send,
execute…

Cap typically in kernel to
protect from forgery

Ø user references cap
through handle

Eg. thread,
file, …

Object

©2013 Gernot Heiser, NICTA 11

seL4 User-Level Memory Management

ARTIST SS, Sep’12

Global Resource Manager

RAM Kernel
Data

GRM
Data

Resource Manager
RM
Dat
a

Resource Manager
RM
Dat
a

Addr
Space

AS

Addr
Space

Addr
Space

RM
RM
Dat
a

Resources fully
delegated, allows

autonomous
operation

Strong isolation,
No shared kernel

resources

“Untyped” (unallocated) memory

Delegation
can be

revoked

©2013 Gernot Heiser, NICTA 12

NICTA’s seL4: Mathematical Proof of Isolation

APSys'13 Keynote

Integrity

Proof

Abstract
Model

C Imple-
mentation

Proof

Confiden-
tiality Availability

Binary
code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional
correctness
[SOSP’09]

Isolation
properties

[ITP’11, S&P’13]

Translation
correctness

[PLDI’13]

Exclusions (at present):
• Initialisation
• Assembler, TLB & caches
• Multicore
• Covert timing channels

Timeliness
[RTSS’11]

12

©2013 Gernot Heiser, NICTA 13

Proving Functional Correctness

ARTIST SS, Sep’12

Abstract
Model

Executable
Model

C Imple-
mentation

©2013 Gernot Heiser, NICTA 14 Cyber Security August'1314

©2013 Gernot Heiser, NICTA 15

Binary Code Verification

ARTIST SS, Sep’12

C source

Binary code

Formalised
C

Formalised
binary

Function
code

Function
code

Formal
ISA spec

SAT
solver etc

Formal
C semantics Rewrite

rules

De-
compiler

Symbol
tables

etc

©2013 Gernot Heiser, NICTA 16

Integrity: Limiting Write Access

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

LCTES Keynote, June’12

To prove:
• Domain-1 doesn’t have write capabilities to Domain-2 objects

⇒ no action of Domain-1 agents will modify Domain-2 state
• Specifically, kernel does not modify on Domain-1’s behalf!

– Event-based kernel operates on behalf of well-defined user thread
– Prove kernel only allows write upon capability presentation

Domain 1 Domain 2

Kernel data
partitioned

like user data

©2013 Gernot Heiser, NICTA 17

Availability: Ensuring Resource Access

• Strict separation of kernel resources
⇒ agent cannot deny access to another domain’s resources

ARTIST SS, Sep’12

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

Domain 1 Domain 2

©2013 Gernot Heiser, NICTA 18

Confidentiality: Limiting Read Accesses

To prove:
• Domain-1 doesn’t have read capabilities to Domain-2 objects

⇒ no action of any agents will reveal Domain-2 state to Domain-1

ARTIST SS, Sep’12

Domain 1 Domain 2
Violation not
observable

by Domain 2!

Non-interference proof:
• Evolution of Domain 1 does not depend on Domain-2 state
• Also shows absence of covert storage channels

©2013 Gernot Heiser, NICTA 19

NICTA’s seL4 Microkernel: Unique Assurance

APSys'13 Keynote

First and only operating-system with
functional-correctness proof: operation
is always according to specification

First and only operating-system with
proof of integrity and confidentiality
enforcement – at the level of binary code!

First and only protected-mode
operating-system with complete
and sound timing analysis

World’s fastest microkernel
on ARM architecture

Predecessor
deployed on
2 billion devices

19

©2013 Gernot Heiser, NICTA 20

seL4: Cost of Assurance

APSys'13 Keynote

Integrity

Proof

Abstract
Model

C Imple-
mentation

Proof

Confiden-
tiality Availability

Binary
code

Pr
oo

f
Pr

oo
f

Pr
oo

f
21 py

4.5 years

1 py
4 months

0 py
By construction

4.5 py

2 py, 1.5 years
Mostly for tools

20

2 py, 1 year
Mostly for tools

$400 per line
of code!

Estimate repeat
cost: $200/LOC

©2013 Gernot Heiser, NICTA 21

Why 21 py for 9,000 LOC?

ARTIST SS, Sep’12

seL4 call
graph

©2013 Gernot Heiser, NICTA 22

Costs Breakdown

Did you find bugs???
• During (very shallow) testing: 16
• During verification: 460
• 160 in C, ~150 in design, ~150 in spec

Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Kernel verification 11.5 py
Formal frameworks 9 py
Total 21 py

Repeat (estimated) 6 py
Traditional engineering 4–6 py

ARTIST SS, Sep’12

Including subsequent
fastpath verification

©2013 Gernot Heiser, NICTA 23

Cost of Assurance

Industry Best Practice:
• “High assurance”: $1,000/LOC, no guarantees, unoptimised
• Low assurance: $100–200/LOC, 1–5 faults/kLOC, optimised

State of the Art – seL4:
– $400/LOC, 0 faults/kLOC, optimised

• Estimate repeat would cost half
– that’s about the development cost of the predecessor Pistachio!

• Aggressive optimisation [APSys’12]
– much faster than traditional high-assurance kernels
– as fast as best-performing low-assurance kernels

APSys'13 Keynote23

©2013 Gernot Heiser, NICTA 24

What Have We Learnt?

Formal verification probably didn’t produce a more secure kernel
• In reality, traditional separation kernels are probably secure
But:
• We now have certainty
• We did it probably at less cost

Real achievement:
• Cost-competitive at a scale where traditional approaches still work
• Foundation for scaling beyond: 2 ⨉ cheaper, 10 ⨉ bigger!

How?
• Combine theorem proving with

– synthesis
– domain–specific languages (DSLs)

APSys'13 Keynote24

©2013 Gernot Heiser, NICTA 25

Phase Two: Full-System Guarantees

• Achieved: Verification of
microkernel (8,700 LOC)

• Next step: Guarantees for
real-world systems
(10,000,000 LOC,
<100,000 verified)

ARTIST SS, Sep’12

©2013 Gernot Heiser, NICTA 26

Overview of Approach

ARTIST SS, Sep’12

§ Build system with minimal TCB
§ Formalize and prove security properties about architecture
§ Prove correctness of trusted components
§ Prove correctness of setup
§ Prove temporal properties (isolation, WCET, …)
§ Maintain performance

©2013 Gernot Heiser, NICTA 27

Boeing Unmanned
Little Bird (AH-6)
Deployment Vehicle

SMACCMcopter
Research Vehicle

Next Step: Full System Assurance

DARPA HACMS Program:
• Provable vehicle safety
• “Red Team” must not be able

to divert vehicle

APSys'13 Keynote27

©2013 Gernot Heiser, NICTA 28

Hardware

Hardware

Sensors
• gyro,
• accel,
• …

C&C
Radio

Micro-
controller

Radio
control

Verified RTOS

C
on

tro
l

M
on

ito
r

C
AN

 b
us

co

nt
ro

lle
r

Network
camera

Proces-
sor

Verified OS Kernel (seL4)

C&C

Untrusted
Linux

kernel,
image

processing

Mission BoardControl Board

Devic
e

drivers

File
system

CAN Bus
Key:
Trusted
Trusted, NICTA
Untrusted

SMACCMcopter System Structure

BSI Sep'13

©2013 Gernot Heiser, NICTA 29

Architecture Specification

Requirements
(specific set of
security/safety

properties)

Component Model

Untr

trusted Untr

Automatic
Analysis
(Requirements
fulfilled)

Verified Glue Code

Component Implementations

Untr

trusted Untr

seL4 Kernel

Glue Code Proof

seL4 Proof

Correctness Formal
proof Synthesis

Functional
correctness Security

Automatic Generation
of Glue code

Communication Init

Architecting System-Level Security/Safety

Cyber Security August'1329

©2013 Gernot Heiser, NICTA 30

Device Drivers

ARTIST SS, Sep’12

Processor

Linux
Server

Legacy App.
Legacy App.
Legacy
Apps

Trusted
Service

Sensitive
App

Trustworthy Microkernel – seL4

Policy Layer

Device
Driver

Complex,
untrusted

Drivers at
user level –

can en-
capsulate

Some
devices

are critical!

Device
Driver

How make
trustworthy?

©2013 Gernot Heiser, NICTA 31

Synthesis: Device Drivers [SOSP’09]

driver.c

OS Interface
Spec

Device Spec

Formal
OS Interface

Spec

Formal
Device Spec

Formalise
specs!

Formalise
specs!

APSys'13 Keynote31

©2013 Gernot Heiser, NICTA 32

Actually works! (On Linux & seL4)

Asix AX88772
USB-to-Eth adapter

SD host controller

W5100 Eth shield

IDE disk controller Intel PRO/1000
Ethernet

UART controller

Cyber Security August'1332

Working on proving
correctness

©2013 Gernot Heiser, NICTA 33

Synthesis: Device Drivers

In progress:
• Extract device spec from

device design work-flow
• Manual optimisations
• Verified synthesis

APSys'13 Keynote

driver.c

Formal
OS Interface

Spec

Formal
Device Spec

33

©2013 Gernot Heiser, NICTA 34

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

Manual transformation

• Low-level description:
registers, gates, wires.

• Cycle-accurate
• Precisely models internal

device architecture and
interfaces

• “Gold reference”

Too
detailed

APSys'13 Keynote34

©2013 Gernot Heiser, NICTA 35

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

Manual transformation

• Captures external
behaviour

• Abstracts away structure
and timing

• Abstracts away the low-
level interface

bus_write(u32 addr, u32 val)
{
...

}

High-level model

Use for now

APSys'13 Keynote35

©2013 Gernot Heiser, NICTA 36

DSLs: File System

Abstract
Spec
(Isabelle)

Component
Implementation
(Generated C)

Component
Implementation
(C)Generated

Component
Implementation
(C)

Component
Spec
(DSL)

Component
Spec
(DSL)

Component
Spec
(DSL)

Generated
Proof

Manual
Proof

Component
Spec
(Isabelle)

Component
Spec
(Isabelle)

Component
Spec
(Isabelle)Gene-

rator

APSys'13 Keynote

File-system properties:
• Multiple, pre-defined

abstraction levels
• Naturally modular
• Lots of “boring” code

• (de-)serialisation
• error handling

36

©2013 Gernot Heiser, NICTA 37

File System Code and Proof Co-Generation

DDSL code

CDLS code
Declarations
of Types,
Functions

ve
rif

ie
d

fil
es

ys
te

m
co

de

generatio
n

Control
Code

Data layout

Ve
rif

ie
d

C
 c

od
e

Control
Code

ADT
Code

(De-)seriali-
sation Code

Is
ab

el
le

 s
pe

cs
 &

 p
ro

of
s

Control
Code Spec

ADT
Code Spec

(De)-serial.
Code Spec

Fu
nc

tio
na

l s
pe

c

Proof

Proof

Proof

Proof

Proof

Proof

Manual, FS-specific

Manual, FS-independent

Generated

generatio
n

ge
ne

ra
tio

n

APSys'13 Keynote

Case study: Flash file system
• Linux-compatible
• Fits between VFS and

flash abstraction (UBI)

37

©2013 Gernot Heiser, NICTA 38

Future: Full-Scale Trustworthy System

Cyber Security August'13

Verified critical application

Verified microkernel

Verified
Device
Drivers

Processor Devices

Verified
File systems

Verified Resource Management

Verified
Network
Stacks

Verified
High-level
runtime

Untrusted VM

Untrusted
Linux

Untrusted
Apps

Untrusted Apps

38

©2013 Gernot Heiser, NICTA 39

Lessons Learnt So Far

Formal methods are expensive?
• Cost-effective for high assurance on small to moderate scale
• $200-400/LOC for 10kLOC

We think we can scale bigger and cheaper:
• Componentisation

– verify components in isolation – enabled by seL4 guarantees
– cost – performance tradeoff

• Synthesis
• Abstraction: DSLs, HLLs increase productivity

APSys'13 Keynote39

google: “NICTA trustworthy”

mailto: gernot@nicta.com.au

