
Towards Verified Real-World Systems
Gernot Heiser
NICTA and University of New South Wales
Sydney, Australia



©2013 Gernot Heiser NICTA 22

Claim: 
A system must be considered untrustworthy unless 
proved otherwise!

Corollary [with apologies to Dijkstra]:

Testing, code inspection, etc. can only show 
lack of trustworthiness!

So, why don’t 
we prove 

trustworthiness
?

Core challenge: 
Complexity



©2013 Gernot Heiser NICTA 3

Our Vision: Trustworthy Systems

Lund WS Apr'13

We will change the practice of designing and 
implementing critical systems, using rigorous 

approaches to achieve true trustworthiness

Hard 
guarantees on 
safety/security/

reliability

Suitable for 
real-world 
systems



©2013 Gernot Heiser NICTA 4

Isolation is Key!

Processor

Linux
Server

Legacy App.
Legacy App.
Legacy
Apps

Trusted
Service

Sensitive
App

Lund WS Apr'13

Identify, minimise and 
isolate critical 
components! Critical, 

trusted

Mechanisms 
for enforcing 

isolation

Trustworthy Microkernel – seL4

Complex, 
untrusted
Complex, 
untrusted

Policy Layer
General-
purpose

System-
specific, 
simple!

Defines 
access 
rights



©2013 Gernot Heiser NICTA 5

Isolation is Key!

Processor

Linux
Server

Legacy App.
Legacy App.
Legacy
Apps

Trusted
Service

Sensitive
App

Lund WS Apr'13

Identify, minimise and 
isolate critical 
components! Critical, 

trusted

Mechanisms 
for enforcing 

isolation

Trustworthy Microkernel – seL4

Complex, 
untrusted
Complex, 
untrusted

Policy Layer
General-
purpose

System-
specific, 
simple!

Defines 
access 
rights

Core of trusted 
computing base: 

System can only be 
as dependable as the 

microkernel!

Kernel properties:
1. Isolation

• Strong 
partitioning!

2. Formal verification
• Provably 

trustworthy!
3. Performance

• Suitable for 
real world!



©2013 Gernot Heiser NICTA 6

NICTA Trustworthy Systems Agenda

1. Dependable microkernel (seL4) as a rock-solid base
– Formal specification of functionality
– Proof of functional correctness of implementation
– Proof of safety/security properties

2. Lift microkernel guarantees
to whole system
– Use kernel correctness and integrity 

to guarantee critical functionality
– Ensure correctness of balance of

trusted computing base
– Prove dependability properties of 

complete system
• despite 99 % of code untrusted!

Lund WS Apr'13



©2013 Gernot Heiser NICTA 7

seL4: Proof Chain: From Requirements to Binary

Integrity

Pro
of

Abstract
Model

Executable
Model

C Imple-
mentation

Proof

Confiden-
tiality

WCET
Analysis

Availability

Binary 
code

Pr
oo
f

Exclusions (at present):
• Initialisation
• Privileged state & caches
• Covert timing channels

Complex, 
untrusted

Refinement 
proof 

(Isabelle)

Non-interference
(Isabelle)

Re-writing, 
formal de-

compilation, 
SAT solver

Static 
analysis and 
SAT solver

Lund WS Apr'13



©2013 Gernot Heiser NICTA 8

How About Performance?

seL4 is basically slow!
• C code quickly (semi-blindly) 

translated from Haskell
• Many small functions, 

little regard for performance

Lund WS Apr'13

Bare “pass” in 
Advanced Operating 

Systems course!

But can speed up critical operations
by short-circuit “fast paths”
• … without resorting to assembler!

Hardware

IPC, virtual memory

Application

Unix
Server

File
ServerDevice

Driver

IPC

IPC: one-way, zero-length
Standard C code: 1455 cycles

IPC: one-way, zero-length
Standard C code: 1455 cycles
C fast path: 185 cycles

Fastest-ever 
IPC on 
ARM11!



©2013 Gernot Heiser NICTA 9

Full-System Guarantees

• Achieved: Verification of
microkernel (8,700 LOC)

• Next step: Guarantees for
real-world systems
(1,000,000s LOC, 99% untrusted)

Lund WS Apr'13



©2013 Gernot Heiser NICTA 10

Overview of Approach

Lund WS Apr'13

§ Build system with minimal TCB
§ Formalize and prove security properties about architecture
§ Prove correctness of trusted components 
§ Prove correctness of setup
§ Prove temporal properties (isolation, WCET, …)
§ Maintain performance



©2013 Gernot Heiser NICTA 11

Architecture Specification

Requirements
(specific set of 
security/safety 

properties)

Component Model

Untr

trusted Untr

Automatic 
Analysis 
(Requirements
fulfilled)

Verified Glue Code

Component Implementations

Untr

trusted Untr

seL4 Kernel

Glue Code Proof

seL4 Proof

Correctness Formal 
proof Synthesis

Functional 
correctness Security

Automatic Generation
of Glue code

Communication Init

Architecting System-Level Security/Safety

Lund WS Apr'13



©2013 Gernot Heiser NICTA 12

Synthesis 1: Device Drivers

driver.c

OS Interface
Spec

Device Spec

Can we 
automate?

Formal
OS Interface

Spec

Formal
Device Spec

Formalise
specs!

Formalise
specs!

Synthesis!

Lund WS Apr'13



©2013 Gernot Heiser NICTA 13

Actually works!

Asix AX88772 
USB-to-Eth adapter

SD host controller

W5100 Eth shieldIDE disk controller Intel PRO/1000
Ethernet

UART controller

Lund WS Apr'13



©2013 Gernot Heiser NICTA 14

Synthesis 2: Domain-Specific Language (DSL)

Abstract
Spec 

(Isabelle)

Component
Implementation 
(Generated C)

Component
Implementation 
(C)Generated

Component
Implementation 
(Generated C)

Component
Spec
(DSL)

Component
Spec
(DSL)

Component
Spec
(DSL)

Generated 
Proof

Manual 
Proof

Component
Spec

(Isabelle)

Component
Spec

(Isabelle)

Component
Spec

(Isabelle)

Lund WS Apr'13



©2013 Gernot Heiser NICTA 15

Testbed: SMACCM Project (DARPA)

Lund WS Apr'13

/* The STM32F405 has 1024Kb of FLASH beginning at address 0x0800:0000 and
* 192Kb of SRAM. SRAM is split up into three blocks:
*
* 1) 112Kb of SRAM beginning at address 0x2000:0000
* 2) 16Kb of SRAM beginning at address 0x2001:c000
* 3) 64Kb of TCM SRAM beginning at address 0x1000:0000
*
* When booting from FLASH, FLASH memory is aliased to address 0x0000:0000
* where the code expects to begin execution by jumping to the entry point in
* the 0x0800:0000 address range.
*
* HWF4: In the original linker script, the first 0x4000 of flash was
* reserved for the bootloader. For now, we'll place the application
* at the start of flash until we start using a boot loader again.
*/

MEMORY
{
/* flash (rx) : ORIGIN = 0x08004000, LENGTH = 1008K */

flash (rx) : ORIGIN = 0x08000000, LENGTH = 1024K
sram (rwx) : ORIGIN = 0x20000000, LENGTH = 128K
ccsram (rwx) : ORIGIN = 0x10000000, LENGTH = 64K

}

/* Top of the user mode stack. */
_estack = 0x20020000; /* top of 128KiB of SRAM */

/* Error in the linker if heap and stack don't fit. */
_min_heap_size = 0;
_min_stack_size = 0x400;

OUTPUT_ARCH(arm)

ENTRY(Reset_Handler)

/*
* Ensure that abort() is present in the final object. The exception handling
* code pulled in by libgcc.a requires it (and that code cannot be easily avoided).
*/

/* EXTERN(abort) */

BOEING UNMANNED LITTLE BIRD (AH-6)

AR.DRONE 
QUADCOPTER 
(RESEARCH VEHICLE)

NEW ELECTRONICS TO 
HOST PROVABLY SECURE 
SOFTWARE

Partners:
• Rockwell Collins
• NICTA
• Galois
• Boeing



©2013 Gernot Heiser NICTA 16

Building Trustworthy Systems: Long-Term View

Hardware

seL4 Microkernel

Trusted Userland

Linux

App

Native
App

Managed 
runtime

GCOther
Stuff

Managed
App

C + asm

DSL

Your choice!
(… but managed 
is clearly better)

Formal
Verification

Formal 
Verification?

Lund WS Apr'13


