
https://trustworthy.systems/

Provable Security and Safety

https://trustworthy.systems/SMACCM

The seL4 Microkernel and its Use in Critical Systems

Gernot Heiser | gernot.heiser@data61.csiro.au | @GernotHeiser
http://microkerneldude.wordpress.com
February 2016

FAQ: What is Data61?

WSOS Graz Feb'162 |

Digital Productivity
Business Unit

National Centre
of Excellence

for ICT Research

Federal Gov’t
Research

Organisation

Mesa, AZ, 24 July 2015

WSOS Graz Feb'163 |

Inside!

L3→L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

OKL4-µKernel

OKL4-Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

Nova
GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Other (commercial)

OK Labs

L4 Family Tree

API Inheritance

Code Inheritance

WSOS Graz Feb'164 |

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

seL4: The latest (and most advanced) member of the L4
microkernel family – 20 years of history and experience

Qualcomm
modem chips

iOS security
processor

What is seL4?

seL4: The world’s most (only?) secure
OS kernel – provably!

GPLed

2014-07-29

WSOS Graz Feb'165 |

Philosophy Underlying seL4

1. Security is paramount and drives design

2. Security is no excuse for bad performance

3. General-purpose platform for wide range of use cases

WSOS Graz Feb'166 |

What seL4 Is Not: An Operating System

Processor

Device
DriverDevice

DriverDevice
Driver

NW
Stack

Device
DriverDevice

DriverFile
System

Process
Mgmt

Memory
Mgmt

AppAppApp

VM

Linux

AppAppApp

Strong
Isolation

All device drivers, OS services, VMM
are usermode processes

IPC

Controlled
Communication

VMM

Microkernel = context-switching engine

WSOS Graz Feb'167 |

Requirements for Trustworthy Systems

Safety Security

Availability

Timeliness Confidentiality

Integrity

Isolation!

WSOS Graz Feb'168 |

Fundamental Requirement: Isolation

Trustworthy
separation

kernel

Processor

Uncritical/
untrusted

Sensitive/
critical/
trusted

Strong
Isolation

Communication
subject to global

security policy

WSOS Graz Feb'169 |

Xen/Vmware/KVM/…

“High Assurance” Bad Practice

Huge TCB:
• 10s MLOC
• 1000s bugs
• 100s vulnerab.

Processor

Uncritical/
untrusted

Sensitive/
critical/
trusted

Weak
Isolation

WSOS Graz Feb'1610 |

Claim:
A system must be considered untrustworthy
unless proved otherwise!

Corollary [with apologies to Dijkstra]:

Testing, code inspection, etc. can only show
lack of trustworthiness!

So, why don’t we
prove

trustworthiness?

WSOS Graz Feb'1611 |

Integrity

Proof

Abstract
Model

C Imple-
mentation

Proof

Confiden-
tiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional
correctness
[SOSP’09]

Isolation properties
[ITP’11, S&P’13]

Translation
correctness

[PLDI’13]

Exclusions (at present):
• Initialisation
• Privileged state & caches
•Multicore
• Covert timing channels

Worst-case
execution time

[RTSS’11, RTAS’16]

World’s fastest
microkernel!

seL4: Provable Isolation

WSOS Graz Feb'1612 |

Fundamental Design Decisions for seL4
1. Memory management is user-level responsibility

• Kernel never allocates memory (post-boot)
• Kernel objects controlled by user-mode servers

2. Memory management is fully delegatable
• Supports hierarchical system design
• Enabled by capability-based access control

3. “Incremental consistency” design pattern
• Fast transitions between consistent states
• Restartable operations with progress guarantee

4. No concurrency in the kernel
• Interrupts never enabled in kernel
• Interruption points to bound latencies
• Clustered multikernel design for multicores

Isolation

Perfor-
mance

Verification,
Performance

Real-time

WSOS Graz Feb'1613 |

Key Mechanism: seL4 Capabilities

• OO API:
err = method(cap, args);

• Used in some earlier microkernels:
• KeyKOS [‘85], Mach [‘87], EROS [‘99]

Obj reference

Access rights

Cap = Access Token:
Prima-facie evidence of
privilege

Read, Write,
Grant Caps stored in kernel object

(Cnode) to prevent forgery

Ø user references cap
through handle: CPTR

Endpoint,
thread, …

Object

WSOS Graz Feb'1614 |

What’s Different to Other Microkernels?

Global Resource Manager

RAM
I+D

GRM
I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Addr
Space

AS

Addr
Space

Addr
Space

RM

RM
I+D

Resources fully
delegated, allows

autonomous
operation

Strong isolation,
No shared kernel

resources

“Untyped” (unallocated) memory

Design for isolation: No
memory allocation by
kernel

WSOS Graz Feb'1615 |

seL4 Isolation Goes Deep

High Low

TCBs Caps

PTs

TCBs Caps

PTs

Kernel data
partitioned

like user data

WSOS Graz Feb'1616 |

WiP: Temporal Isolation Guarantees

Safety: Timeliness
• Execution interference

Security: Confidentiality
• Leakage via timing channels

High Low

Observe execution speed:
Confidentiality violation

Affect execution speed:
Integrity violation

WSOS Graz Feb'1617 |

Using seL4: DARPA HACMS Program

HACMS: High-Assurance Cyber-Military Systems
• Goal: create technology for the construction of high-assurance

cyber-physical systems
• functionally correct
• satisfying appropriate safety and security properties

• Specific project aims:
• Protect autonomous systems from cyber attacks
• Demonstrate deployment in real-world systems
• Open-source all non-vehicle-specific code

WSOS Graz Feb'1618 |

HACMS: 3 Teams

WSOS Graz Feb'1619 |

Image courtesy of chanpipat at FreeDigitalPhotos.net

Red
Team

Air Team – “SMACCM”
Land Team

http://freedigitalphotos.net/

HACMS: 3 Phases

• Phase 1: August ‘12 to January ‘14
• Simplified high-assurance system

• Phase 2: February ‘14 to July ‘15
• Adding real-world complexity
• Full-system demo

• Phase 3: August’15 to January’17
• Transition to real-world military vehicle

– Boeing Unmanned Little Bird helicopter
– Autonomous US Army trucks
– Possibly research drone as “minimal viable product”

WSOS Graz Feb'1620 |

WSOS Graz Feb'1621 |

Unmanned Little Bird
Deployment Vehicle

SMACCMcopter
Research Vehicle

SMACCM Objectives:
• Provable vehicle safety
• “Red Team” must not be able

to divert vehicle
• No sacrificing performance

Secure, Mathematically-Assured
Composition of Control Models

SMACCMcopter Architecture

CONTROL BOARD
Se

ns
or

s

Radio
Modem

Radio
Control

ARM M3
Micro-

controller Ra
di

o
RX

H
A
R
D
W
A
R
E

Sp
ee

d
Cn

trl

Co
nt

ro
l

M
on

ito
r

M
iss

io
n

Pl
an

Se
ns

or

Fi
lte

rin
g

eChronosSO
FT
W
AR
E

CA
N

bu
s

CAN Bus

MISSION BOARD

C&C
Radio

COTS
Network
Camera

ARM
A15

processor
H
A
R
D
W
A
R
E

Image
Processing

SO
FT
W
AR
E

Command &
Control

Linux Kernel
Ethernet driver

trusted untrusted

WSOS Graz Feb'1622 |

SMACCM Building Blocks

Automatic
Synthesis

Secure
Architecture
AADL Analysis

Secure
Components

Ivory/Tower

Secure Kernel
seL4

WSOS Graz Feb'1623 |

Phase 2 Security Evaluation

Radio
Control

Ra
di

o
RX

CA
N

bu
s

CAN Bus

MISSION BOARD

C&C
Radio

COTS
Network
Camera

ARM
A15

processor

H
A
R
D
W
A
R
E

Image
Processing

SO
FT
W
AR
E

Command &
Control

Linux Kernel
Ethernet driver

WSOS Graz Feb'1624 |

Image courtesy of chanpipat at FreeDigitalPhotos.net

Root access

Red Team unable to compromise
rest of system (white-box attack)

“World’s most highly
assured drone” [DARPA]

http://freedigitalphotos.net/

Dealing with Multicore

WSOS Graz Feb'1625 |

Approaches for Multicore Kernels

Core

User
thread

Kernel

User
thread

Core Core

User
thread

User
thread

Core

Kernel Kernel

Core

User
thread

Kernel

User
thread

Core

SMP
big lock

SMP
fine-grained locks

Multikernel
no locks

WSOS Graz Feb'1626 |

Multicore Kernel Trade-Offs

Property Big Lock Fine-grained
Locking

Multikernel

Data structures shared shared distributed

Scalability poor good excellent

Concurrency in
kernel

zero high zero

Kernel complexity low high low

Resource
management

centralised centralised distributed

Core

User
threa
d

Kernel

User
threa
d

Core Core

User
threa
d

User
threa
d

Core

Kernel Kernel

Core

User
threa
d

Kernel

User
threa
d

Core
Really?

WSOS Graz Feb'1627 |

Remember: Microkernel ≠ Operating System!

Processor

Device
DriverDevice

DriverDevice
Driver

NW
Stack

seL4 microkernel (= context-switching engine)

Device
DriverDevice

DriverFile
System

Process
Mgmt

Memory
Mgmt

AppAppApp

VM

Linux

AppAppApp

All device drivers, OS services, VMM
are usermode processes

IPC

VMM

WSOS Graz Feb'1628 |

Microkernel vs Linux Execution

10s of ms 10s of ms

10s of ms

App

KernelLinux

10s of ms 10s of ms

10s of ms

App

Server

Microkernel

Kernel

0.1µs

WSOS Graz Feb'1629 |

Cost of Locking: Round-Trip Intra-Core IPC

n
o
n
e

B
K

L

fi
n
e

6
6

3

7
8

7

1
0

9
5

ARM A9

 400

 600

 800

 1000

 1200
n
o
n
e

B
K

L

fi
n
e

R
T
M

C
y

c
le

s

6
6

1

7
2

6

8
4

6

8
3

1

x86 Haswell

Cycles

WSOS Graz Feb'1630 |

Microkernel Multicore Design

Assertion 1: Minimise locks, not locked code
• Amount of locked code is small anyway, 100–200 instructions
• Corresponds to fine- to medium-grained locks in Linux
• Cost of locks is within an OoM of kernel execution time
• Kernel times are short ⇒ contention is low

What about
many cores?

WSOS Graz Feb'1631 |

Cache Line Migration Latencies

Core

HW
context

HW
context

L1 cache

Core

HW
context

HW
context

L1 cache

L2/L3 cache

Main memory

Core

HW
context

HW
context

L1 cache

L2/L3 cache

Core

HW
context

HW
context

L1 cache

10–20
cycles

1,000–10,000
cycles

Data transfer takes
much longer than
code execution!

WSOS Graz Feb'1632 |

Microkernel Multicore Design

Assertion 1: Minimise locks, not locked code
• Amount of locked code is small anyway, 100–200 instructions
• Corresponds to medium-grained locks in Linux
• Cost of locks is within an OoM of kernel execution time
• Kernel times are short ⇒ contention is low

Assertion 2: Don’t share mikrokernel data without shared cache
• Migrating only a few cache lines takes longer than rest of syscall

WSOS Graz Feb'1633 |

seL4 Multicore Design: Clustered Multikernel

Core

HW
context

HW
context

L1 cache

Core

HW
context

HW
context

L1 cache

L2/L3 cache

Main memory

Core

HW
context

HW
context

L1 cache

L2/L3 cache

Core

HW
context

HW
context

L1 cache

Kernel

User
thread

User
thread

User
thread

User
thread

Kernel

User
thread

User
thread

User
thread

User
thread

Virtu-
al CPU

Virtu-
al CPU

Virtu-
al CPU

Virtu-
al CPU

Virtu-
al CPU

Virtu-
al CPU

Virtu-
al CPU

Virtu-
al CPU

SMP Linux

Still no
concurrency in

the kernel!

WSOS Graz Feb'1634 |

Microkernel Multicore Design

Assertion 1: Minimise locks, not locked code
• Amount of locked code is small anyway, 100–200 instructions
• Corresponds to medium-grained locks in Linux
• Cost of locks is within an OoM of kernel execution time
• Kernel times are short ⇒ contention is low

Assertion 2: Don’t share mikrokernel data without shared cache
• Migrating only a few cache lines takes longer than rest of syscall

Assertion 3: Big lock will perform for closely-coupled cores
• Shared caches presently have moderate core counts
• Big lock in a well-designed microkernel will scale there

WSOS Graz Feb'1635 |

https://trustworthy.systems/

Gernot Heiser | gernot.heiser@data61.csiro.au | @GernotHeiser
http://microkerneldude.wordpress.com
February 2016

Thank you

