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seL4: The latest (and most advanced) member of the L4 
microkernel family – 20 years of history and experience

Qualcomm 
modem chips

iOS security 
processor



What is seL4?

seL4: The world’s most (only?) secure
OS kernel – provably!

GPLed

2014-07-29
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Philosophy Underlying seL4

1. Security is paramount and drives design

2. Security is no excuse for bad performance

3. General-purpose platform for wide range of use cases
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What seL4 Is Not: An Operating System
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Microkernel = context-switching engine
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Requirements for Trustworthy Systems

Safety Security

Availability

Timeliness Confidentiality

Integrity

Isolation!
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Fundamental Requirement: Isolation

Trustworthy 
separation 

kernel

Processor

Uncritical/ 
untrusted

Sensitive/ 
critical/ 
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Strong 
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Communication 
subject to global 

security policy
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Xen/Vmware/KVM/…

“High Assurance” Bad Practice

Huge TCB:
• 10s MLOC
• 1000s bugs
• 100s vulnerab. 

Processor

Uncritical/ 
untrusted

Sensitive/ 
critical/ 
trusted

Weak 
Isolation
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Claim: 
A system must be considered untrustworthy 
unless proved otherwise!

Corollary [with apologies to Dijkstra]:

Testing, code inspection, etc. can only show 
lack of trustworthiness!

So, why don’t we 
prove 

trustworthiness?
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[SOSP’09]

Isolation properties
[ITP’11, S&P’13]

Translation 
correctness

[PLDI’13]

Exclusions (at present):
• Initialisation
• Privileged state & caches
•Multicore
• Covert timing channels

Worst-case 
execution time

[RTSS’11, RTAS’16]

World’s fastest 
microkernel!

seL4: Provable Isolation
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Fundamental Design Decisions for seL4
1. Memory management is user-level responsibility

• Kernel never allocates memory (post-boot)
• Kernel objects controlled by user-mode servers

2. Memory management is fully delegatable
• Supports hierarchical system design
• Enabled by capability-based access control

3. “Incremental consistency” design pattern
• Fast transitions between consistent states
• Restartable operations with progress guarantee

4. No concurrency in the kernel
• Interrupts never enabled in kernel
• Interruption points to bound latencies
• Clustered multikernel design for multicores

Isolation

Perfor-
mance

Verification, 
Performance

Real-time
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Key Mechanism: seL4 Capabilities

• OO API:
err = method( cap, args );

• Used in some earlier microkernels:
• KeyKOS [‘85], Mach [‘87], EROS [‘99]

Obj reference

Access rights

Cap = Access Token:
Prima-facie evidence of 
privilege

Read, Write, 
Grant Caps stored in kernel object 

(Cnode) to prevent forgery

Ø user references cap
through handle: CPTR

Endpoint, 
thread, …

Object
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What’s Different to Other Microkernels?

Global Resource Manager
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Resources fully 
delegated, allows 

autonomous 
operation
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No shared kernel 

resources

“Untyped” (unallocated) memory

Design for isolation: No 
memory allocation by 
kernel
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seL4 Isolation Goes Deep

High Low

TCBs Caps

PTs

TCBs Caps

PTs

Kernel data 
partitioned 

like user data
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WiP: Temporal Isolation Guarantees

Safety: Timeliness
• Execution interference

Security: Confidentiality
• Leakage via timing channels

High Low

Observe execution speed:
Confidentiality violation

Affect execution speed:
Integrity violation
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Using seL4: DARPA HACMS Program

HACMS: High-Assurance Cyber-Military Systems
• Goal: create technology for the construction of high-assurance 

cyber-physical systems
• functionally correct 
• satisfying appropriate safety and security properties

• Specific project aims:
• Protect autonomous systems from cyber attacks
• Demonstrate deployment in real-world systems
• Open-source all non-vehicle-specific code
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HACMS: 3 Teams
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Image courtesy of chanpipat at FreeDigitalPhotos.net

Red 
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Air Team – “SMACCM”
Land Team 

http://freedigitalphotos.net/


HACMS: 3 Phases

• Phase 1: August ‘12 to January ‘14
• Simplified high-assurance system

• Phase 2: February ‘14 to July ‘15
• Adding real-world complexity
• Full-system demo

• Phase 3: August’15 to January’17
• Transition to real-world military vehicle

– Boeing Unmanned Little Bird helicopter
– Autonomous US Army trucks
– Possibly research drone as “minimal viable product”
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Unmanned Little Bird
Deployment Vehicle

SMACCMcopter
Research Vehicle

SMACCM Objectives:
• Provable vehicle safety
• “Red Team” must not be able 

to divert vehicle
• No sacrificing performance

Secure, Mathematically-Assured 
Composition of Control Models



SMACCMcopter Architecture
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SMACCM Building Blocks
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Secure 
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AADL Analysis

Secure 
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Secure Kernel
seL4
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Phase 2 Security Evaluation
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Root access

Red Team unable to compromise
rest of system (white-box attack)

“World’s most highly 
assured drone” [DARPA]
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Dealing with Multicore
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Approaches for Multicore Kernels
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Multicore Kernel Trade-Offs

Property Big Lock Fine-grained 
Locking

Multikernel

Data structures shared shared distributed

Scalability poor good excellent

Concurrency in 
kernel

zero high zero
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Remember: Microkernel ≠ Operating System!
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Microkernel vs Linux Execution
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Cost of Locking: Round-Trip Intra-Core IPC
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Microkernel Multicore Design

Assertion 1: Minimise locks, not locked code
• Amount of locked code is small anyway, 100–200 instructions
• Corresponds to fine- to medium-grained locks in Linux
• Cost of locks is within an OoM of kernel execution time
• Kernel times are short ⇒ contention is low

What about 
many cores?
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Cache Line Migration Latencies
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Data transfer takes 
much longer than 
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Microkernel Multicore Design

Assertion 1: Minimise locks, not locked code
• Amount of locked code is small anyway, 100–200 instructions
• Corresponds to medium-grained locks in Linux
• Cost of locks is within an OoM of kernel execution time
• Kernel times are short ⇒ contention is low

Assertion 2: Don’t share mikrokernel data without shared cache
• Migrating only a few cache lines takes longer than rest of syscall
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seL4 Multicore Design: Clustered Multikernel
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Microkernel Multicore Design

Assertion 1: Minimise locks, not locked code
• Amount of locked code is small anyway, 100–200 instructions
• Corresponds to medium-grained locks in Linux
• Cost of locks is within an OoM of kernel execution time
• Kernel times are short ⇒ contention is low

Assertion 2: Don’t share mikrokernel data without shared cache
• Migrating only a few cache lines takes longer than rest of syscall

Assertion 3: Big lock will perform for closely-coupled cores
• Shared caches presently have moderate core counts
• Big lock in a well-designed microkernel will scale there
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