
Operating Systems
For Secure and Safe Embedded Systems
Part 1: Fundamentals
@GernotHeiser

2 © 2017 Gernot Heiser. Distributed under CC Attribution License

These slides are distributed under the Creative Commons
Attribution 3.0 License

• You are free:
– to share—to copy, distribute and transmit the work
– to remix—to adapt the work

• under the following conditions:
– Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

ACACES'17 Pt 1

Copyright Notice

3 © 2017 Gernot Heiser. Distributed under CC Attribution License

Present Systems are NOT Trustworthy!

Yet they are expensive:
• $1,000 per line of code for

“high-assurance” software!

ACACES'17 Pt 1

4 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 1

OS Fundamentals

5 © 2017 Gernot Heiser. Distributed under CC Attribution License

1. OS is an abstract machine
– Extends basic hardware with added functionality
– Provides high-level abstractions

o More programmer-friendly
o Common core of functionality for applications (eg file systems)

– Abstracts hardware details irrelevant to programs
o Portability

2. OS is a resource manager
– Partition/multiplex limited resources
– Ensure efficient resource usage
– Ensure fairness/progress
– Ensure security & safety

ACACES'17 Pt 1

Purpose of the OS / OS Functions

6 © 2017 Gernot Heiser. Distributed under CC Attribution License

Security and Safety

Safety SecurityAvailability

Timeliness Confiden-
tiality

Integrity

ACACES'17 Pt 1

No unauthorised
reading

No unauthorised
writing

No unauthorised
resource denial

No unauthorised
processor denial

Resource
isolation!

7 © 2017 Gernot Heiser. Distributed under CC Attribution License

Trusted
Computing

Base
(TCB)

ACACES'17 Pt 1

Hardware Execution Modes and Privilege

Processor
Mode

Unprivileged
“User”

Privileged
“Kernel” All hardware

resources
accessible

Subset of
Hardware
resources
accessible

Software

OS Kernel:
Privileged by hardware

OS Demons etc:
Privileged by software

Applications:
Unprivileged software

Low-end microcontrollers
only have a single mode

8 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 1

Memory Protection 1: None

P1 P2 OSMemory

• Software issues memory addresses
• No way to limit access
• Processes can overwrite each other and the OS
• OS has no special privilege – ”real-time executive”

Low-end microcontrollers
• Eg AVR
• ARM Cortex-M0

9 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 1

Memory Protection 2: Bounds Registers

P1 P2 OSMemory

• Software issues memory addresses
• Processes know their memory location
• Bounds registers limit access
• Privileged OS controls and switches

bounds registers

Base Limit

High-end microcontroller
• Eg ARM Cortex-M4

10 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 1

Memory Protection 3: Virtual Memory (Paging)

Virtual memory P1 P2 OS

Physical memory

Memory map
(Page tables)

Page

Frame

• Software issues virtual addresses
• Unmapped memory not addressable
• Physical memory completely hidden
• Privileged OS controls memory map

Typical microprocessor
• x86
• ARM Cortex-A

11 © 2017 Gernot Heiser. Distributed under CC Attribution License

TCB

ACACES'17 Pt 1

Real-Time Executives vs Security/Safety

Hardware

RT
ExecutiveLibrariesRT

Task
Network

Stack

1 kSLOC5 kSLOC
0.5 kSLOC

20 kSLOC
E.g. simple
sensor

• Cooperative system
• Everything trusts everything else
• Any bug anywhere can be an exploit Totally defenceless,

unsuitable for IoT

SLOC:
source lines

of code

12 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 1

13 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 1

Protected-Mode OS

Hardware

OS kernel

Other
Services

RT
Task

Network
Stack

OS-imposed
isolation

• Misbehaving process cannot
directly hurt OS or other process

• Potential to contain faults

Only sensible
approach for non-
trivial systems

User
mode

Kernel
mode

14 © 2017 Gernot Heiser. Distributed under CC Attribution License

Traditional embedded-systems approach: one µ-controller per function
• Automotive reached 100 ECUs in top-of-line cars 10 years ago
• ECUs must be robust – expensive

– Tolerant to wide temperature range
– Resistant to dust, water, grease, acid
– Resistant to Vibrations

• Packaging and cabling adds significant
weight, consumes space & energy

• SWaP: space, weight and power
• Autonomous vehicles require far more functions than traditional
• General challenge for cyber-physical systems (CPS)

– Robots, autonomous aircraft, smart factories

ACACES'17 Pt 1

CPS Challenge: SWaP

Way out: Consolidation of multiple functions on single processor

15 © 2017 Gernot Heiser. Distributed under CC Attribution License

TCB

ACACES'17 Pt 1

Consolidation: Mixed-Criticality Systems (MCS)

Certification requirement [ARINC-653]:
More critical components must not
depend on any less critical ones!

OS

Highly-
critical
subsystem

Less critical
subsystem

Eg flight control

Shared
subsystem

Eg autopilot Eg sensor inputs,
audit logs

16 © 2017 Gernot Heiser. Distributed under CC Attribution License

TCB

ACACES'17 Pt 1

Security Equivalent: Cross-Domain Systems

Multiple classification
levels on same device

OS

Highly-
sensitive
subsystem

Less
sensitive
information

Eg secret data

Shared
subsystem

Eg internet
connection

Downgrader:
Crypto module

17 © 2017 Gernot Heiser. Distributed under CC Attribution License

An operating system for safety/security-critical systems must:
• Support functionalities of different criticalities
• Prevent low-crit functions from interfering with high-crit ones
• Prevent low-crit subsystems from inferring classified info
• Support certification of high-crit parts independent of low-crit
• Itself be certifiable at highest criticality

ACACES'17 Pt 1

OS Requirements for Security & Safety

Enforce strong, certifiable isolation, spatial and temporal!

Operating Systems
For Secure and Safe Embedded Systems
Part 2: Security and OS Structure
@GernotHeiser

2 © 2017 Gernot Heiser. Distributed under CC Attribution License

These slides are distributed under the Creative Commons
Attribution 3.0 License

• You are free:
– to share—to copy, distribute and transmit the work
– to remix—to adapt the work

• under the following conditions:
– Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

ACACES'17 Pt 2

Copyright Notice

3 © 2017 Gernot Heiser. Distributed under CC Attribution License

• Saltzer & Schroeder [SOSP ’73, CACM ’74]
– Economy of mechanism – KISS
– Fail-safe defaults – as in good engineering
– Complete mediation – check everything
– Open design – not security by obscurity
– Separation of privilege – defence in depth
– Least privilege – aka principle of least authority (POLA)
– Least common mechanism – minimise sharing
– Psychological acceptability – if it’s hard to use it won’t be

Security Design Principles

ACACES'17 Pt 2

4 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 2

Security:
Access Control

5 © 2017 Gernot Heiser. Distributed under CC Attribution License

• Who can access what in which ways
– The “who” are called subjects

o e.g. users, processes etc.
– The “what” are called objects

o e.g. individual files, sockets, processes etc.
o includes all subjects

– The “ways” are called permissions
o e.g. read, write, execute etc.
o are usually specific to each kind of object
o include those meta-permissions that allow modification of the

protection state
§ e.g. own

Access Control

ACACES'17 Pt 2

6 © 2017 Gernot Heiser. Distributed under CC Attribution License

Access control matrix defines the protection state at particular time
[Lampson’71]

Note: All subjects are also objects!

Protection State

Obj1 Obj2 Obj3 Subj2

Subj1 R RW send

Subj2 RX control

Subj3 RW
RWX
own

recv

ACACES'17 Pt 2

7 © 2017 Gernot Heiser. Distributed under CC Attribution License

• Not usually as access control matrix
– too sparse, inefficient, dynamic

• Two obvious choices:
– store individual columns with each object

o defines the subjects that can access each object
o each such column is called the object’s access control list

– store individual rows with each subject
o defines the objects each subject can access

aka subject’s protection domain
o each such row is called the subject’s capability list

Storing Protection State

ACACES'17 Pt 2

8 © 2017 Gernot Heiser. Distributed under CC Attribution License

• Subjects usually aggregated into classes
– e.g. UNIX: owner, group, everyone
– more general lists in Windows
– Can have negative rights

eg. to overwrite group rights
• Meta-permissions (e.g. own)

– control class membership
– allow modifying the ACL

• Implemented in almost all commercial OSes

Access Control Lists (ACLs)

Subj1 R

Subj2

Subj3 RW

Obj1

ACACES'17 Pt 2

9 © 2017 Gernot Heiser. Distributed under CC Attribution License

• A capability [Dennis & Van Horn, 1966] is a capability-list element

– Names an object to which the capability refers
– Confers permissions over that object

• Capability is prima facie authority to perform an operation
– System will perform operation iff appropriate capability is presented

• Less common in commercial systems
– IBM System-38 → AS/400 → i-Series
– KeyKOS (Visa transaction processing) [Bromberger et al, 1992]

• More common in research: EROS [Shapiro’99], Cheri, seL4

Capabilities

Obj1 Obj2 Obj3 Subj2

R RW send
Subj1

ACACES'17 Pt 2

10 © 2017 Gernot Heiser. Distributed under CC Attribution License

Capability-Based Access Control

Any system call is invoking a capability:
err = method(cap, args);

Obj reference

Access rights

Cap = Access Token:
Prima-facie evidence
of privilege

Eg. read,
write, send,
execute…

Capabilities provide
• Fine-grained access

control
• Reasoning about

information flow

Eg. thread,
address
space

Object

ACACES'17 Pt 2

11 © 2017 Gernot Heiser. Distributed under CC Attribution License

• Capabilities must be unforgeable
– Traditionally protected by hardware (tagged memory), eg System-38
– Can be copied etc like data

• On conventional hardware, either:
– Stored as ordinary user-level data, but unguessable due to sparseness

o contains password or secure hash: PCS [Anderson’86], Mungi
o “sparse” capabilies

– Stored separately (in-kernel), referred to by user programs by
index/address, eg Mach [Accetta’86], EROS
o “partitioned” or “segregated” capabilities
o like UNIX file descriptors

• Sparse capabilities can be leaked more easily
– Huge amplification of covert channels!

Capabilities: Implementations

ACACES'17 Pt 2

12 © 2017 Gernot Heiser. Distributed under CC Attribution License

• In theory:
– Dual representations of access control matrix

• Practical differences:
– Naming and namespaces

o Ambient authority
o Deputies

– Evolution of protection state
– Forking
– Auditing of protection state

ACLs and Capabilities: Duals?

ACACES'17 Pt 2

13 © 2017 Gernot Heiser. Distributed under CC Attribution License

• ACLs:
– objects referenced by name

o e.g. open(“/etc/passwd”,O_RDONLY)
– require a subject (class) namespace

o e.g. UNIX users and groups
• Capabilities:

– objects referenced by capability
– no further namespace required

Duals? Naming and Namespaces

ACACES'17 Pt 2

14 © 2017 Gernot Heiser. Distributed under CC Attribution License

• ACLs: separation of object naming and permission can lead to
confused deputies

• Problem is dependence on ambient authority
– Deputy uses its own authority when performing action on behalf of client

• Capabilities are both names and permissions, avoids confusion
– You can’t name something without having permission to it
– Presentation is explicit (not ambient)

Duals? Confused Deputies

gcc
RW

LogFileAlice
X

exec “gcc” “-o LogFile” “source.c”

ACACES'17 Pt 2

Subject
Deputy

Unsolvable
with ACLs!

15 © 2017 Gernot Heiser. Distributed under CC Attribution License

• ACLs:
– Protection state changes by modifying ACLs

o Requires certain meta-permissions on the ACL
• Capabilities:

– Protection state changes by delegating and revoking capabilities
– Fundamental properties enable reasoning about information flow:

o A can send message to B only if A holds cap to B
o A can obtain access to C only if it receives message with cap to C

– Right to delegate may also be controlled by capabilities
o e.g. A can delegate to B only if A has a capability to B that carries

appropriate permissions
o A can delegate X to B only if it has grant authority on X

ACACES'17 Pt 2

Duals? Evolution of Protection State

16 © 2017 Gernot Heiser. Distributed under CC Attribution License

• What permissions should children get?
• ACLs: depends on the child’s subject

– UNIX etc.: child inherits parent’s subject
o Inherits all of the parent’s permissions
o Any program you run inherits all of your authority
o Eg must trust web browser not to leak data

– Violation of least privilege
• Capabilities: child has no caps by default

– Parent gets a capability to the child upon fork
– Used to delegate explicitly the necessary authority
– Defaults to least privilege

Duals? Forking

ACACES'17 Pt 2

17 © 2017 Gernot Heiser. Distributed under CC Attribution License

Caps are opaque object references (pure names)
• Holder cannot tell which object a cap references nor the authority
• Supports transparent interposition (virtualisation)

ACACES'17 Pt 2

Interposing Object Access

A
B

invoke

ref B

“B”

ref Bref “B”

Usage:
• API virtualisation
• Security monitor

– Security policy enforcement
– Info flow tracing
– Packet filtering…

• Secure logging
• Debugging
• Lazy object creation

– Initial cap to constructor
– Replace by proper object cap

18 © 2017 Gernot Heiser. Distributed under CC Attribution License

Security Principle ACLs Capabilities
Economy of Mechanism Dubious Yes!
Fail-safe defaults Generally not Yes!
Complete mediation Yes (if properly done) Yes (if properly done)
Open design Neutral Neutral
Separation of privilege No Doable
Least privilege No Yes
Least common mechanism No Yes
Psychological acceptability Neutral Neutral

ACACES'17 Pt 2

Duals: Saltzer & Schroeder Principles

19 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 2

OS Structure

20 © 2017 Gernot Heiser. Distributed under CC Attribution License

Classic layered approach
• Going back to THE [Dijkstra’68],

Multics [60s]
• Hierarchy of abstractions,

higher ones built on lower ones
1. Scheduling
2. Memory management
3. Devices
4. File systems
5. Users

ACACES'17 Pt 2

OS Structure

a b c d e

Courtesy Kevin Elphinstone

21 © 2017 Gernot Heiser. Distributed under CC Attribution License

• Too many inter-dependencies
• Resulting in weak modularity,

layer-cutting
• Complex interactions of

functionality no-one
understands

• Huge number of corner
cases that are impractical
to test

ACACES'17 Pt 2

Problem with Layered Model

Courtesy Kevin Elphinstone

22 © 2017 Gernot Heiser. Distributed under CC Attribution License

Trends in Operating Systems

Time

K
er

ne
l S

iz
e,

 C
om

pl
ex

ity

Complexity Drivers
• New hardware

Ø New device drivers / driver
classes

Ø New file systems
Ø Multicore scalability

• New usage domains
Ø Better power management
Ø New network protocols
Ø Better real-time behaviour

• New security challenges
Ø New crypto libs, protocols
Ø Improved access control

• Etc …

ACACES'17 Pt 2

23 © 2017 Gernot Heiser. Distributed under CC Attribution License

Complexity: Enemy of Dependability

• Typical defect density of industry-standard code: 2–5 bugs per kSLOC
– Linux might be somewhat better: ≈ 1 bug/kSLOC

• 10–25% of kernel bugs are security vulnerabilities
– Conservatively, this means 0.1 vulnerability / kSLOC

• Linux kernel is 10s of MSLOC ⇒ thousands of vulnerabilities!
– Plus system services (daemons) running with high privileges

ACACES'17 Pt 2

24 © 2017 Gernot Heiser. Distributed under CC Attribution License

Trends in Commodity Operating Systems

Time

K
er

ne
l S

iz
e,

 C
om

pl
ex

ity

Dependability

Complexity Drivers
• New hardware
ØNew device drivers / driver

classes
ØNew file systems
ØMulticore scalability

• New usage domains
ØBetter power management
ØNew network protocols
ØBetter real-time behaviour

• New security challenges
ØNew crypto libs, protocols
Ø Improved access control

• Etc …

ACACES'17 Pt 2

25 © 2017 Gernot Heiser. Distributed under CC Attribution License

Complexity: Enemy of Dependability

• Typical defect density of industry-standard code: 2–5 bugs per kSLOC
– Linux might be somewhat better: ≈ 1 bug/kSLOC

• 10–25% of kernel bugs are security vulnerabilities
– Conservatively, this means 0.1 vulnerability / kSLOC

• Linux kernel is 10s of MSLOC ⇒ thousands of vulnerabilities!

Core problem: New features increase kernel complexity
⇒ reduced dependability
• Impossible to assure security – too many bugs
• Impossible to assure safety – too complex to analyse timeliness

The monolithic OS model
Is fundamentally broken!

ACACES'17 Pt 2

26 © 2017 Gernot Heiser. Distributed under CC Attribution License

I’m not alone saying this…

ACACES'17 Pt 2

Operating Systems
For Secure and Safe Embedded Systems
Part 3: Microkernels and seL4
@GernotHeiser

2 © 2017 Gernot Heiser. Distributed under CC Attribution License

These slides are distributed under the Creative Commons
Attribution 3.0 License

• You are free:
– to share—to copy, distribute and transmit the work
– to remix—to adapt the work

• under the following conditions:
– Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

ACACES'17 Pt 3

Copyright Notice

3 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 3

Microkernels

4 © 2017 Gernot Heiser. Distributed under CC Attribution License

Need certifiable argument for isolation:
• Able to convince a skeptical certification authority
• Requires thorough analysis of trusted computing base

– What can possibly go wrong?
– Usually informal or semi-formal arguments
– Ideally formal proof

ACACES'17 Pt 3

What is Needed for Safety & Security?

Intractable unless
• Small TCB
• Low conceptual complexity
• Well-defined interfaces/

interactions

5 © 2017 Gernot Heiser. Distributed under CC Attribution License

• Idea of microkernel:
– Flexible, minimal platform
– Mechanisms, not policies
– Actual OS functionality provided by user-mode servers
– Servers invoked by kernel-provided message-passing mechanism (IPC)
– Goes back to Nucleus [Brinch Hansen’70]

ACACES'17 Pt 3

Reducing TCB: Microkernels

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
ServerDevice

Driver

Syscall

IPC

Kernel
Mode

User
Mode

IPC performance
is critical!

6 © 2017 Gernot Heiser. Distributed under CC Attribution License

Monolithic OS

• New features add code kernel
• New policies add code kernel
• Kernel complexity grows

Microkernel OS

• Features add usermode code
• Policies replace usermode code
• Kernel complexity is stable

Monolithic vs Microkernel OS Evolution

ACACES'17 Pt 3

• Adaptable
• Dependable
• Highly optimised

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
ServerDevice

Driver

Syscall

IPC

Kernel
Mode

User
Mode

7 © 2017 Gernot Heiser. Distributed under CC Attribution License

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mach
[µs]

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mach

L4

[µs]

ACACES'17 Pt 3

1993 “Microkernel”: IPC Performance

115 µs

5 µs

i486 @
50 MHz

Culprit:
Cache
footprint
[Liedtke’95]

raw copy

8 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 3

Microkernel Principle: Minimality

• Advantages of resulting small kernel:
– Easy to implement, port?
– Easier to optimise
– Hopefully enables a minimal trusted computing base
– Easier debug, maybe even prove correct?

• Challenges:
– API design: generality despite small code base
– Kernel design and implementation for high performance

Limited by arch-
specific micro-
optimisations

Small attack
surface, fewer
failure modes

A concept is tolerated inside the microkernel
only if moving it outside the kernel, i.e.
permitting competing implementations, would
prevent the implementation of the system’s
required functionality. [SOSP’95]

9 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 3

Microkernel Evolution

IPC, MMU abstr.
Scheduling

Kernel memory
Devices

Low-level FS,
Swapping

Memory Objects

IPC, MMU abstr.
Scheduling

Memory-
mangmt
library

IPC, MMU abstr.
Scheduling

Kernel memory

First generation

• Eg Mach [’87]
(QNX, Chorus)

Third generation

• seL4 [’09]

Second generation

• L4 [’95]
(PikeOS, Integrity)

• 180 syscalls
• 100 kSLOC
• 100 µs IPC

• ~7 syscalls
• ~10 kSLOC
• ~ 1 µs IPC

• ~3 syscalls
• 9 kSLOC
• 0.1 µs IPC
• capabilities
• design for isolation

10 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 3

L4: A Family of High-Performance Microkernels

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnu
t Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

NOVAGMD/IBM/Karlsruhe

UNSW/NICTA/Data61

Dresden

Commercial Clone

OK Labs

API Inheritance

Code Inheritance

Qualcomm
modem chips

iOS security
co-processor

First L4
kernel with
capabilities

11 © 2017 Gernot Heiser. Distributed under CC Attribution License

Name Year Processor MHz Cycles µs
Original 1993 i486 50 250 5.00
Original 1997 Pentium 160 121 0.75
L4/MIPS 1997 R4700 100 86 0.86
L4/Alpha 1997 21064 433 45 0.10
Hazelnut 2002 Pentium 4 1,400 2,000 1.38
Pistachio 2005 Itanium 1,500 36 0.02
OKL4 2007 XScale 255 400 151 0.64
NOVA 2010 i7 Bloomfield (32-bit) 2,660 288 0.11
seL4 2017 i7 Skylake (32-bit) 3,400 203 0.06
seL4 2017 I7 Skylake (64-bit) 3,400 138 0.04
seL4 2017 Cortex A53 1,200 225 0.19

L4 IPC Performance over 20 Years

ACACES'17 Pt 3

12 © 2017 Gernot Heiser. Distributed under CC Attribution License

Name Architecture C/C++ asm total kSLOC
Original i486 0 6.4 6.4
L4/Alpha Alpha 0 14.2 14.2
L4/MIPS MIPS64 6.0 4.5 10.5
Hazelnut x86 10.0 0.8 10.8
Pistachio x86 22.4 1.4 23.0
L4-embedded ARMv5 7.6 1.4 9.0
OKL4 3.0 ARMv6 15.0 0.0 15.0
Fiasco.OC x86 36.2 1.1 37.6
seL4 ARMv6 9.7 0.5 10.2

ACACES'17 Pt 3

Minimality: Source Code Size

13 © 2017 Gernot Heiser. Distributed under CC Attribution License

• Fundamentally, the microkernel must abstract
– Physical memory: Address spaces
– CPU: Threads
– Interrupts/Exceptions

• Unfettered access to any of these bypasses security
– No further abstraction needed for devices

o memory-mapping device registers and interrupt abstraction suffices
o …but some generalised memory abstraction needed for I/O space

• Above isolates execution units, hence microkernel must also provide
– Communication (traditionally referred to as IPC)
– Synchronization

Design subject to performance goals:

• Frequent operations as fast as possible (near hardware limit)
• Don’t pay for what you don’t need

ACACES'17 Pt 3

What Mechanisms?

14 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 3

The seL4 Microkernel

15 © 2017 Gernot Heiser. Distributed under CC Attribution License

Design Motivation

1. Object capabilities are good for reasoning about usermode access
– Just retro-fitting them to traditional L4 is insufficient:

o Availability – need strong control over kernel resources
o Confidentiality – reason about information flow through kernel data

2. Real trustworthiness requires
strong confidence in
implementation correctness
ideally formal proof

Uncritical/
untrusted

Critical/
trusted

Truly
dependable

TCB

Strong
isolation

ACACES'17 Pt 3

16 © 2017 Gernot Heiser. Distributed under CC Attribution License

Fundamental Design Decisions

1. Memory management is user-level
responsibility
– Kernel never allocates memory (post-boot)
– Kernel objects controlled by user-mode servers

2. Memory management is fully delegatable
– Supports hierarchical system design
– Enabled by capability-based access control

3. “Incremental consistency” design pattern
– Fast transitions between consistent states
– Restartable operations with progress guarantee

4. No concurrency in the kernel
– Interrupts never enabled in kernel
– Interruption points to bound latencies
– Clustered multikernel design for multicores

Isolation
Perfor-
mance

Verification,
Performance

Real-time

ACACES'17 Pt 3

17 © 2017 Gernot Heiser. Distributed under CC Attribution License

What’s Different to Other Microkernels?

Global Resource Manager

RAM
I+D

GRM
I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Addr
Space

AS

Addr
Space

Addr
Space

RM

RM
I+D

Resources fully
delegated, allows

autonomous
operation

Strong isolation,
No shared kernel

resources

“Untyped” (unallocated) memory

Design for isolation:
No memory
allocation by kernel

ACACES'17 Pt 3

Can revoke
delegation

18 © 2017 Gernot Heiser. Distributed under CC Attribution License

Core Mechanism: Retype of “Untyped” Memory

UT0

Retype (Untyped, 21)

UT1 UT2F0 F3F2F1

Retype (Untyped, 21)

UT3 UT4

Retype (TCB, 2n)

……

Retype (CNode, 2m, 2n)

r,w r,w r,w r,w

Retype (Frame, 22)

……
r

Mint (r)

Revoke()

ACACES'17
Pt 3

19 © 2017 Gernot Heiser. Distributed under CC Attribution License

seL4 Isolation Goes Deep

High Low

TCBs Caps

PTs

TCBs Caps

PTs

Kernel data
partitioned

like user data

ACACES'17 Pt 3

20 © 2017 Gernot Heiser. Distributed under CC Attribution License

• Kernel runs with interrupts disabled
– No concurrency control ⇒ simpler kernel

o Easier reasoning about correctness
o Better average-case performance

• How about long-running system calls?
– Use strategic premption points
– (Original) Fiasco has fully preemptible kernel

o Like commercial microkernels (QNX, Green Hills INTEGRITY)

ACACES'17 Pt 3

How About Real Time?

while (!done) {
process_stuff();
PSW.IRQ_disable=1;
PSW.IRQ_disable=0;

}

Limited
concurrency

in kernel!

Lots of
concurrency

in kernel!

21 © 2016 Gernot Heiser. Distributed under CC Attribution License

Incremental Consistency

ACACES'17 Pt 3

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

Check pending
interrupts

O(1)
operation

O(1)
operation

O(1)
operation

Abort &
restart later

Disable
interrupts

Enable
interrupts

No concurrency in (single-core) kernel!

• Consistency
• Restartability
• Progress

22 © 2017 Gernot Heiser. Distributed under CC Attribution License

Multicore seL4

ACACES'17 Pt 3

23 © 2017 Gernot Heiser. Distributed under CC Attribution License

Microkernel vs Monolithic OS Execution

10s of ms 10s of ms

10s of ms

App

KernelLinux

10s of ms 10s of ms

10s of ms

App

Server

Microkernel

Kernel

0.1µs

ACACES'17 Pt 3

24 © 2017 Gernot Heiser. Distributed under CC Attribution License

Cache Line Migration Latencies

Core
HW
context

HW
context

L1 cache

Core
HW
context

HW
context

L1 cache

L2/L3 cache

Main memory

Core
HW
context

HW
context

L1 cache

L2/L3 cache

Core
HW
context

HW
context

L1 cache

10–20
cycles

1,000–10,000
cycles

Data transfer takes
much longer than
code execution!

ACACES'17 Pt 3

25 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cost of Locking

ACACES'17 Pt 3

Locks have a cost –
significant in a fast microkernel!

 100

 200

 300

 400

 500

 600

no
ne

C
LH

fin
e

R
T
M

C
yc

le
s

4
2
4

4
3
6

5
0
8

4
9
6

X86 (Haswell)

No
 lo

ck

Bi
g

lo
ck

Fi
ne

-g
ra

in
ed

lo
ck

in
g

Tr
an

sa
ct

io
ns

n
o
n
e

C
L
H

fi
n
e

3
1
6

3
9
0

5
4
8

ARM A9

No
 lo

ck

Bi
g

lo
ck

Fi
ne

-g
ra

in
ed

lo
ck

in
g

26 © 2016 Gernot Heiser. Distributed under CC Attribution License

Multicore Design: Clustered Multikernel

ACACES'17 Pt 3

Core
HW
context

HW
context

L1 cache

Core
HW
context

HW
context

L1 cache

L2/L3 cache

Main memory

Core
HW
context

HW
context

L1 cache

L2/L3 cache

Core
HW
context

HW
context

L1 cache

Kernel

User
threa
d

User
threa
d

User
threa
d

User
threa
d

Kernel

User
threa
d

User
threa
d

User
threa
d

User
threa
d

Virtual
CPU

Virtual
CPU

Virtual
CPU

Virtual
CPU

Virtual
CPU

Virtual
CPU

Virtual
CPU

Virtual
CPU

NUMA-aware Linux

27 © 2016 Gernot Heiser. Distributed under CC Attribution License

Big-Lock Scalability

ACACES'17 Pt 3

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40

S
p
e
e
d
u
p

Cores

500
1000
2000
4000
8000

Cycles between
system calls

Very high

Extreme

Un-
realistic

Size of
cluster

28 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 3

Mixed Criticality:
Temporal Integrity

29 © 2017 Gernot Heiser. Distributed under CC Attribution License

Classical L4 Scheduling

• 256 hard priorities (0–255)
– Priorities are strictly observed
– The scheduler will always pick the highest-prio runnable thread
– Round-robin scheduling within prio level

• Thread scheduling parameters:
– Priority
– Time slice

prio0 255

Issue:
• highest-prio can monopolise CPU
• Priority = “importance”

ACACES'17 Pt 3

30 © 2016 Gernot Heiser. Distributed under CC Attribution License

Issue with Priority = Importance

Runs every 100 ms
for few millisecods Runs frequently but for

short time (order of µs)

Control
loopSensor

readings
NW
driver

NW
interrupts

NW driver must preempt control loop
• … to avoid packet loss
• Driver must run at high prio
• Driver must be trusted not to monopolise CPU

ACACES'17 Pt 3

31 © 2016 Gernot Heiser. Distributed under CC Attribution License

Shared Intra-Core Servers

Server

Prio PSClient2

Prio P2

Client1

Prio P1
PS > max (P1, P2)

ACACES'17 Pt 3

32 © 2016 Gernot Heiser. Distributed under CC Attribution License

Problem With Shared Servers

Server

Client1

Client2

Running

Running

Shared server has
highest prio, runs as
long as it has work

Has used no time,
Keeps running

Can effectively DoS
same-prio threads!

ACACES'17 Pt 3

33 © 2016 Gernot Heiser. Distributed under CC Attribution License

Separate Scheduling & Threads

Classical thread attributes
• Priority
• Time slice

New thread attributes
• Priority
• Scheduling context capability

Not
runnable

if null

Not
runnable

if null

Scheduling context object
• T: period
• C: budget (≤ T)

C = 2
T = 3

C = 250
T = 1000

Limits CPU
access!

SchedControl capability
conveys right to assign
budgets (i.e. perform
admission control)

ACACES'17 Pt 3

High-prio thread
cannot monopolise

34 © 2016 Gernot Heiser. Distributed under CC Attribution License

Shared Server w. Scheduling Contexts

Server

Running

Running

Server runs on
client’s scheduling

context

Client2

Client1

Client is
charged for

server’s time

Budget expiry
during server
execution?

ACACES'17 Pt 3

35 © 2017 Gernot Heiser. Distributed under CC Attribution License

Budget Expiry Options

• Multi-threaded servers (COMPOSITE [Parmer ‘10])
– Model allows this
– Forcing all servers to be thread-safe is policy 😢

• Bandwidth inheritance with “helping” (Fiasco [Steinberg ‘10])
– Ugly dependency chains 😢
– Wrong thread charged for recovery cost 😢

• Use timeout exceptions to trigger one of several possible actions:
– Provide emergency budget
– Cancel operation & roll-back server
– Change criticality
– Implement priority inheritance (if you must…)

ACACES'17 Pt 3

Operating Systems
For Secure and Safe Embedded Systems
Part 4: Formal Verification
@GernotHeiser

2 © 2017 Gernot Heiser. Distributed under CC Attribution License

These slides are distributed under the Creative Commons
Attribution 3.0 License

• You are free:
– to share—to copy, distribute and transmit the work
– to remix—to adapt the work

• under the following conditions:
– Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

ACACES'17 Pt 4

Copyright Notice

3 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 4

Proving Security

4 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 4

A 30-Year Dream

5 © 2017 Gernot Heiser. Distributed under CC Attribution License

Integrity

Proof

Abstract
Model

C Imple-
mentation

Proof

Confiden-
tiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional
correctness
[SOSP’09]

Isolation
properties

[ITP’11, S&P’13]

Translation
correctness
[PLDI’13]

Exclusions (at present):
• Initialisation
• Privileged state & caches
• Multicore
• Covert timing channels

Worst-case
execution time

[RTSS’11, RTAS’16]

World’s fastest
microkernel!

Provable Security Enforcement

ACACES'17 Pt 4

6 © 2017 Gernot Heiser. Distributed under CC Attribution License

Proving Functional Correctness

ACACES'17 Pt 4

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo

f
Pr

oo
f Refinement: All

possible
implementation
behaviours are

captured by model

Refinement: All
possible

implementation
behaviours are

captured by model

117,000 LOP

50,000 LOP

7 © 2017 Gernot Heiser. Distributed under CC Attribution License

Pr
oo

f
Pr

oo
f

Proving Functional Correctness

ACACES'17 Pt 4

Abstract
Model

Executable
Model

C Imple-
mentation

8 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 4

9 © 2017 Gernot Heiser. Distributed under CC Attribution License

seL4 Formal Verification Summary

Kinds of properties proved

• Behaviour of C code is fully captured by abstract model
• Behaviour of C code is fully captured by executable model
• Kernel never fails, behaviour is always well-defined
• assertions never fail
• will never de-reference null pointer
• cannot be subverted by misformed input

• All syscalls terminate, reclaiming memory is safe, ...
• Well-typed references, aligned objects, kernel always mapped…
• Access control is decidable

ACACES'17 Pt 4

Can prove further
properties on
abstract level!

10 © 2017 Gernot Heiser. Distributed under CC Attribution License

Binary Code Verification

ACACES'17 Pt 4

C source

Binary code

Formalised
C

Formalised
binary

Functional
code

Functional
code

Formal
ISA spec

SAT
solver etc

Formal
C semantics Rewrite

rules

De-
compiler

Symbol
tables

etc

Target of functional
correctness proof

11 © 2017 Gernot Heiser. Distributed under CC Attribution License

Security

Security vs Safety

Safety
Availability

Timeliness Confidentiality
Integrity

ACACES'17 Pt 4

12 © 2017 Gernot Heiser. Distributed under CC Attribution License

Integrity: Limiting Write Access

ACACES'17 Pt 4

To prove:
• Domain-1 doesn’t have write capabilities to Domain-2 objects

⇒ no action of Domain-1 agents will modify Domain-2 state
• Specifically, kernel does not modify on Domain-1’s behalf!

– Event-based kernel operates on behalf of well-defined user thread
– Prove kernel only allows write upon capability presentation

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

Domain 1 Domain 2

Kernel data
partitioned

like user data

13 © 2017 Gernot Heiser. Distributed under CC Attribution License

Availability: Ensuring Resource Access

ACACES'17 Pt 4

• Strict separation of kernel resources
⇒ agent cannot deny access to another domain’s resources

• Nothing to do: implied by other properties

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

Domain 1 Domain 2

14 © 2017 Gernot Heiser. Distributed under CC Attribution License

Confidentiality: Limiting Read Accesses

ACACES'17 Pt 4

To prove:
• Domain-1 doesn’t have read capabilities to Domain-2 objects

⇒ no action of any agents will reveal Domain-2 state to Domain-1

Domain 1 Domain 2
Violation not
observable

by Domain 2!

Non-interference proof :
• Evolution of Domain 1 does not depend on Domain-2 state
• Also shows absence of covert storage channels

15 © 2017 Gernot Heiser. Distributed under CC Attribution License

Worst-Case Execution Time (WCET) Analysis

Program
binary

Control
Flow

Graph

Loop
bounds

Micro-
architecture

model

Integer
linear

equations

Infeasible
path info

WCETILP solverAnalysis
tool

Accurate &
sound model of
pipeline, caches

Scalability!

Pessimism!

ACACES'17 Pt 4

16 © 2017 Gernot Heiser. Distributed under CC Attribution License

Proving Loop Bounds & Infeasible Paths

ACACES'17 Pt 4

Abstract
Model

Model +
Invariants

Pr
oo

f

C Imple-
mentation

Pr
oo

f

BinarySemantic-rich
Binary

Pr
oo

f

Inject Invariants

Add Annotations

Loop
bounds

Path
Infeasibility

Proof

Proof

WCET
Analysis

High-
assurance

WCET

• seL4 is world’s only protected-
mode OS with complete &
sound WCET analysis

• High-assurance loop bounds
and path elimination without
trusted compiler
[RTSS’11, EuroSys’12, RTAS’14]

17 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 4

Verification Cost

18 © 2017 Gernot Heiser. Distributed under CC Attribution License

Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 5 months
Formal frameworks 9 py
Total 24 py

Verification Cost Breakdown

ACACES'17 Pt 4

Reusable!

Abstract
Spec

Executable
Spec

C Imple-
mentation

Pr
oo

f
Pr

oo
f

Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 5 months
Formal frameworks 9 py
Total 24 py
Repeat (estimated) 6 py
Traditional engineering 3–4 py

19 © 2017 Gernot Heiser. Distributed under CC Attribution License

Why So Hard for 9,000 LOC?

ACACES'17 Pt 4

seL4 call
graph

20 © 2017 Gernot Heiser. Distributed under CC Attribution License

Cost of Assurance

ACACES'17 Pt 4

Integrity

Proof

Abstract
Model

C Imple-
mentation

Proof

Confiden-
tiality Availability

Binary
code

Pr
oo

f
Pr

oo
f

Pr
oo

f

11 py
4.5 years

1 py
4 months

0 py
By construction

4.5 py

2 py, 1.5 years
Mostly for tools

3 py, 2 years
Mostly for tools

$400 per line
of code!

Estimate repeat
cost: $200/SLOC

21 © 2017 Gernot Heiser. Distributed under CC Attribution License

Microkernel Life-Cycle Cost in Context

L4
Pistachio

$100

$400

Green Hills
Integrity
$1000

A
ss

ur
an

ce

Cost ($/SLOC)
1000750500250100

Slow!

Fast!Fast!

?

Revolution
!

ACACES'17 Pt 4

22 © 2017 Gernot Heiser. Distributed under CC Attribution License

Cost of Assurance

Industry Best Practice:
• “High assurance”: $1,000/SLOC, no guarantees, unoptimised
• Low assurance: $100–200/SLOC, 1–5 faults/kSLOC, optimised

State of the Art – seL4:
– $400/LOC, 0 faults/kSLOC, optimised

• Estimate repeat would cost half
– that’s about twice the development cost of the predecessor Pistachio!

• Aggressive optimisation [APSys’12]
– much faster than traditional high-assurance kernels
– as fast as best-performing low-assurance kernels

ACACES'17 Pt 4

Operating Systems
For Secure and Safe Embedded Systems
Part 5: Using seL4 for Trustworthy Systems
@GernotHeiser

2 © 2017 Gernot Heiser. Distributed under CC Attribution License

These slides are distributed under the Creative Commons
Attribution 3.0 License

• You are free:
– to share—to copy, distribute and transmit the work
– to remix—to adapt the work

• under the following conditions:
– Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

ACACES'17 Pt 5

Copyright Notice

3 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 5

seL4 Concepts

4 © 2017 Gernot Heiser. Distributed under CC Attribution License

Remember: Microkernel ≠ Operating System

Processor

Device
DriverDevice

DriverDevice
Driver

NW
Stack

Device
DriverDevice

DriverFile
System

Process
Mgmt

Memory
Mgmt

AppAppApp

VM

Linux

AppAppApp

Strong
Isolation

Device drivers, file systems, crypto,
power management, virtual-machine
monitors are all usermode processes

IPC

Controlled
Communication

VMM

Microkernel = context-switching engine

ACACES'17 Pt 5

5 © 2017 Gernot Heiser. Distributed under CC Attribution License

• Capabilities (Caps)
– mediate access

• Kernel objects:
– Threads (thread-control blocks: TCBs)
– Address spaces (page table objects: PDs, PTs)
– Endpoints (IPC)
– Notifications
– Capability spaces (CNodes)
– Frames
– Interrupt objects (architecture specific)
– Untyped memory

• System calls
– Send, Wait (and variants)
– Yield

ACACES'17 Pt 5

seL4 Concepts

6 © 2017 Gernot Heiser. Distributed under CC Attribution License

Inter-Process Communication (IPC)

• Fundamental microkernel operation
– Kernel provides no services, only mechanisms
– OS services provided by (protected) user-level server processes
– invoked by IPC

• seL4 IPC uses a handshake through endpoints:
– Transfer points without storage capacity
– Message must be transferred instantly

o Single-copy user ➞ user by kernel

ACACES'17 Pt 5

seL4

Client Server

IPC

send receive

7 © 2017 Gernot Heiser. Distributed under CC Attribution License

IPC: Endpoints

• Threads must rendez-vous for message transfer
– One side blocks until the other is ready
– Implicit synchronisation

• Message copied from sender’s to receiver’s message registers
– Message is combination of caps and data words

…....

Thread1
Running Blocked

Thread2
Blocked Running

Send (ep1_cap, …)

….. Wait (ep1_cap, …)

Send (ep2_cap, …)

…....
Wait (ep2_cap, …)

…....

ACACES'17 Pt 5

8 © 2017 Gernot Heiser. Distributed under CC Attribution License

Kernel

IPC Endpoints are Message Queues

• EP has no sense of direction
• May queue senders or receivers

– never both at the same time!
• Communication needs 2 EPs!

Server

First invocation
queues caller

Client1

Client2

TCB1 TCB2 EP

Further callers of
same direction
queue behind

ACACES'17 Pt 5

9 © 2017 Gernot Heiser. Distributed under CC Attribution License

Client-Server Communication

• Asymmetric relationship:
– Server widely accessible, clients not
– How can server reply back to

correct client?

• Client can pass (session) reply cap in first request
– Server needs to maintain session state
– Forces stateful server design

• seL4 solution: Kernel provides single-use reply cap
– Only for Call operation (Send+Wait)
– Allows server to reply to client
– One-shot (automatically destroyed after first use)
– Supports stateless servers

ACACES'17 Pt 5

Client1 Server Client2

10 © 2017 Gernot Heiser. Distributed under CC Attribution License

Call RPC Semantics

Client Server

Client

Call(ep,…)

process

Server
Wait(ep,&rep)

process
Send(rep,…)

process

Kernel

mint rep
deliver to server

deliver to client
destroy rep

ACACES'17 Pt 5

11 © 2017 Gernot Heiser. Distributed under CC Attribution License

Stateful Servers: Identifying Clients

Stateful server serving multiple clients
• Must respond to correct client

– Ensured by reply cap

• Must associate request
with correct state

• Could use separate EP per client
– endpoints are lightweight (16 B)
– but requires mechanism to wait on a set of EPs (like select)

• Instead, seL4 allows to individually mark (“badge”) caps to same EP
– server provides individually badged caps to clients
– server tags client state with badge
– kernel delivers badge to receiver on invocation of badged caps

ACACES'17 Pt 5

Client1
Server

Client1
state

Client2 Client2
state

Msg

12 © 2017 Gernot Heiser. Distributed under CC Attribution License

Notifications: Semaphore Synchronisation

• Logically, a Notification is an array of binary semaphores
– Multiple signalling, select-like wait
– Not a message-passing IPC operation!

• Implemented by
data word in Notification
– Send OR-s sender’s

cap badge to data word
– Receiver can poll or wait

o waiting returns and
clears data word

o polling just returns
data word

ACACES'17 Pt 5

…....

Thread1
Running Blocked

Thread2
Blocked Running

w = Poll (ep_cap, …)

…... w = Wait (ep_cap,…)
….... Notify (not_cap, …)

Notify (not_cap, …)

13 © 2017 Gernot Heiser. Distributed under CC Attribution License

Shared Servers for Critical Sections

Server2

Client2

Client1

Server1

serv_2() {
…
while (1) {

wait(sem_rq);
/* critical section */
signal(sem_ry);
}

}

serv_1() {
…
wait(ep);
while (1) {

/* critical section */
Reply&wait(ep);

}
}

client() {
while (1) {
…

call(ep);
…

signal(sem_ry);
…

wait(sem_rq);
}

}

Hoare-style monitor
Suitable intra-core

Semaphore synchronisation
Suitable inter-core

Messages

Semaphores

ACACES'17 Pt 5

14 © 2017 Gernot Heiser. Distributed under CC Attribution License

Shared Intra-Core Servers Implement
Priority Ceiling Protocol (IPCP)

Server

Prio PSClient2

Prio P2

Client1

Prio P1

IPCP:
PS = max (P1, P2) + 1

Immediate Priority Ceiling:
• Requires correct priority

configuration
• Deadlock-free
• Easy to implement
• Good worst-case

blocking times

ACACES'17 Pt 5

15 © 2017 Gernot Heiser. Distributed under CC Attribution License

E.g. UAV (HACMS) Mission Computer

ACACES'17 Pt 5

UART
Rx

UART
Rdy

UART
in

200Hz

UART
out

200Hz

Server

200Hz

CAN
Rx

CAN
Tx

UART
Tx

CAN
200Hz

Server
Event-

triggered
Task

Periodic
Task

Critical
Section

CAN
Rx

CAN
Tx

CAN
200Hz

Gateway
200HzLx VM

camera
20Hz

16 © 2017 Gernot Heiser. Distributed under CC Attribution License

Waiting on EP and Notification

Server with synchronous and asynchronous interface
• Example: file system

– synchronous (RPC-style) client protocol
– asynchronous notifications from driver

• Could have separate threads waiting on endpoints
– forces multi-threaded server, concurrency control

• Alternative: allow single thread to wait on both channels
– Notification is bound to thread
– thread waits on endpoint
– Notification delivered as if caller had been waiting on it

ACACES'17 Pt 5

Server
Client Driver

17 © 2017 Gernot Heiser. Distributed under CC Attribution License

Interrupt Handling

ACACES'17 Pt 5

Interrupt handler
(device driver)

IRQ triggered.
Kernel signals

Notification

Handler performs
appropriate action.

Handler waits
on NotificationKernel ACKs IRQ

18 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 5

Building
Trustworthy Systems

19 © 2017 Gernot Heiser. Distributed under CC Attribution License

Uncritical/
untrusted

Security by Architecture

Critical/
trusted

Incremental
process:

migrate in
pieces

Uncritical/
untrusted

Linux

AppsAppsApps

Critical/
trusted

Virtual
machine

for legacy

Extract
critical bits,
run native

ACACES'17 Pt 5

20 © 2017 Gernot Heiser. Distributed under CC Attribution License

Example: Communicating Processes

Thread-ObjectA CNodeA1 EP Thread-ObjectBCNodeB1
CNodeA2

VSpace

VSpace

CSpace CSpace

Se
nd

Re
ce
ive

PDAPTA1
FRAME

FRAME

...

...

... ...

...

...CO
N
TE

XT

CO
N
TE

XT

A B
Endpoint

ACACES'17 Pt 5

21 © 2017 Gernot Heiser. Distributed under CC Attribution License

Component Middleware: CAmkES

���������	
�������� �
������������������������ &9�#�$"

�2
-!�

3 ��
��������������
������
(�����������
�

3 ���*������������<$8(�����-������

3 ������������������(��������)���)����)�����

component

connector

interface
Higher-level abstractions of
low-level seL4 constructs

ACACES'17 Pt 5

22 © 2017 Gernot Heiser. Distributed under CC Attribution License

Case Study: DARPA HACMS

Boeing Unmanned Little Bird US Army Autonomous
Trucks

TARDEC
GVRbot

SMACCMcopter
Research Vehicle

Retrofit
existing
system!

Retrofit
existing
system!

Develop
technology

ACACES'17 Pt 5

23 © 2017 Gernot Heiser. Distributed under CC Attribution License

Case Study: Simplified HACMS UAV

Radio
Driver

Crypto

CAN
Driver

Data
Link

Uncritical/untrust
ed,
contained

Linux

Camera

Wifi

Root
 ac

ces
s

ACACES'17 Pt 5

Attacker cannot
break out of VM

No other
data
flow!

24 © 2017 Gernot Heiser. Distributed under CC Attribution License

Automating the Abstraction

A

CNode EP CNode
CSpace CSpace

Se
nd

Re
ce
ive

... ...

CO
N
TE

XT

CO
N
TE

XT
VSpace

component
code+

CAmkES

capDL
glue
code

+ proof

initialised system + proof

+ proof
Thread
Object

Thread
Object

VSpace

A B

B

CAmkES: Architecture spec

A

CNode EP CNode
CSpace CSpace

Se
nd

Re
ce
ive

... ...

CO
N
TE

XT

CO
N
TE

XT

VSpace

component
code+

CAmkES

capDL
glue
code

+ proof

initialised system + proof

+ proof
Thread
Object

Thread
Object

VSpace

A B

B

capDL: Authority spec

init.c

A.c B.c
glue.

c

Compiler/
Linker

binary

Limitations (at
present):
• Glue code verification

on subset of connectors
• Initialisation verified

on model-level only

ACACES'17 Pt 5

25 © 2017 Gernot Heiser. Distributed under CC Attribution License

Model-Driven Design Using AADL

AADL
Architecture
Analysis &
Design

CAmkES Component
Description

.h, .c Glue
Code.h, .c

Behavioural
Code

Binary

Ivory/To
wer

Control
DSL

Compile

Generate

G
enerate

G
en.

G
en.

Com
pil

e

ACACES'17 Pt 5

26 © 2017 Gernot Heiser. Distributed under CC Attribution License

in the Real World (Courtesy Boeing, DARPA)

ACACES'17 Pt 5

27 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 5

Work in Progress:
Automating Verification

28 © 2016 Gernot Heiser. Distributed under CC Attribution License

Remember: 2-Step Refinement

ACACES'17 Pt 5

Abstract
Spec

Executable
Spec

C Imple-
mentation

Pr
oo

f
Pr

oo
f

Implementation
in HLL

Manual
translation

Domain-
specific

language?

Automate?

29 © 2017 Gernot Heiser. Distributed under CC Attribution License

COGENT compiler

generated
C code

ADT
library

COGENT code

C code
semantics

COGENT
specification

proof

import

generate

generate

high-level
proofs

Isabelle/HOL

ACACES'17 Pt 5

Cogent: Code and Proof Co-Generation

Cogent language:
• Purely functional, type- and memory-
safe
• Not managed, no run-time system

Compiles
to C

Compiler
generates spec

and proof
linking to C

Manually prove
program logic

30 © 2016 Gernot Heiser. Distributed under CC Attribution License

Remember: Verification Cost Breakdown

ACACES'17 Pt 5

Abstract
Spec

Executable
Spec

C Imple-
mentation

Pr
oo

f
Pr

oo
f

8 py

3 py

Cogent spec
higher level than
seL4 exec spec

Fully automated
in Cogent

• Successful
file-system
case study

• Extending to
network
stacks

31 © 2017 Gernot Heiser. Distributed under CC Attribution License

Thank you!

ACACES'17 Pt 5

