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These slides are distributed under the Creative Commons
Attribution 3.0 License

• You are free:
– to share—to copy, distribute and transmit the work
– to remix—to adapt the work

• under the following conditions:
– Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) 
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at 
http://creativecommons.org/licenses/by/3.0/legalcode
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Present Systems are NOT Trustworthy!

Yet they are expensive:
• $1,000 per line of code for

“high-assurance” software!

ACACES'17 Pt 1
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OS Fundamentals
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1. OS is an abstract machine
– Extends basic hardware with added functionality
– Provides high-level abstractions

o More programmer-friendly
o Common core of functionality for applications (eg file systems)

– Abstracts hardware details irrelevant to programs
o Portability

2. OS is a resource manager
– Partition/multiplex limited resources
– Ensure efficient resource usage
– Ensure fairness/progress
– Ensure security & safety

ACACES'17 Pt 1

Purpose of the OS / OS Functions
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Security and Safety

Safety SecurityAvailability

Timeliness Confiden-
tiality

Integrity

ACACES'17 Pt 1

No unauthorised
reading

No unauthorised
writing

No unauthorised
resource denial

No unauthorised
processor denial

Resource 
isolation!
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Trusted 
Computing 

Base 
(TCB)     
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Hardware Execution Modes and Privilege

Processor
Mode

Unprivileged
“User”

Privileged
“Kernel” All hardware

resources
accessible

Subset of 
Hardware
resources 
accessible

Software

OS Kernel:
Privileged by hardware

OS Demons etc:
Privileged by software

Applications:
Unprivileged software

Low-end microcontrollers 
only have a single mode
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Memory Protection 1: None

P1 P2 OSMemory

• Software issues memory addresses
• No way to limit access
• Processes can overwrite each other and the OS
• OS has no special privilege – ”real-time executive”

Low-end microcontrollers
• Eg AVR
• ARM Cortex-M0
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Memory Protection 2: Bounds Registers

P1 P2 OSMemory

• Software issues memory addresses
• Processes know their memory location
• Bounds registers limit access
• Privileged OS controls and switches 

bounds registers

Base Limit

High-end microcontroller
• Eg ARM Cortex-M4 
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Memory Protection 3: Virtual Memory (Paging)

Virtual memory P1 P2 OS

Physical memory

Memory map
(Page tables)

Page

Frame

• Software issues virtual addresses
• Unmapped memory not addressable
• Physical memory completely hidden
• Privileged OS controls memory map

Typical microprocessor
• x86
• ARM Cortex-A 
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TCB     
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Real-Time Executives vs Security/Safety

Hardware

RT
ExecutiveLibrariesRT

Task
Network

Stack

1 kSLOC5 kSLOC
0.5 kSLOC

20 kSLOC
E.g. simple
sensor

• Cooperative system
• Everything trusts everything else
• Any bug anywhere can be an exploit Totally defenceless, 

unsuitable for IoT

SLOC:
source lines 

of code
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Protected-Mode OS

Hardware

OS kernel

Other
Services

RT
Task

Network
Stack

OS-imposed
isolation

• Misbehaving process cannot 
directly hurt OS or other process

• Potential to contain faults

Only sensible 
approach for non-
trivial systems

User
mode

Kernel
mode
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Traditional embedded-systems approach: one µ-controller per function
• Automotive reached 100 ECUs in top-of-line cars 10 years ago
• ECUs must be robust – expensive

– Tolerant to wide temperature range
– Resistant to dust, water, grease, acid
– Resistant to Vibrations

• Packaging and cabling adds significant 
weight, consumes space & energy

• SWaP: space, weight and power
• Autonomous vehicles require far more functions than traditional
• General challenge for cyber-physical systems (CPS)

– Robots, autonomous aircraft, smart factories

ACACES'17 Pt 1

CPS Challenge: SWaP

Way out: Consolidation of multiple functions on single processor
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TCB

ACACES'17 Pt 1

Consolidation: Mixed-Criticality Systems (MCS)

Certification requirement [ARINC-653]:
More critical components must not
depend on any less critical ones!

OS

Highly-
critical
subsystem

Less critical 
subsystem

Eg flight control

Shared
subsystem

Eg autopilot Eg sensor inputs,
audit logs
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TCB
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Security Equivalent: Cross-Domain Systems

Multiple classification 
levels on same device

OS

Highly-
sensitive
subsystem

Less 
sensitive 
information

Eg secret data

Shared
subsystem

Eg internet
connection

Downgrader:
Crypto module
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An operating system for safety/security-critical systems must:
• Support functionalities of different criticalities
• Prevent low-crit functions from interfering with high-crit ones
• Prevent low-crit subsystems from inferring classified info
• Support certification of high-crit parts independent of low-crit
• Itself be certifiable at highest criticality

ACACES'17 Pt 1

OS Requirements for Security & Safety

Enforce strong, certifiable isolation, spatial and  temporal!
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These slides are distributed under the Creative Commons
Attribution 3.0 License

• You are free:
– to share—to copy, distribute and transmit the work
– to remix—to adapt the work

• under the following conditions:
– Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) 
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at 
http://creativecommons.org/licenses/by/3.0/legalcode
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• Saltzer & Schroeder [SOSP ’73, CACM ’74]
– Economy of mechanism – KISS
– Fail-safe defaults – as in good engineering
– Complete mediation – check everything
– Open design – not security by obscurity
– Separation of privilege – defence in depth
– Least privilege – aka principle of least authority (POLA)
– Least common mechanism – minimise sharing
– Psychological acceptability – if it’s hard to use it won’t be

Security Design Principles

ACACES'17 Pt 2



4 © 2017 Gernot Heiser. Distributed under CC Attribution LicenseACACES'17 Pt 2

Security:
Access Control



5 © 2017 Gernot Heiser. Distributed under CC Attribution License

• Who can access what in which ways
– The “who” are called subjects

o e.g. users, processes etc.
– The “what” are called objects

o e.g. individual files, sockets, processes etc.
o includes all subjects

– The “ways” are called permissions
o e.g. read, write, execute etc.
o are usually specific to each kind of object
o include those meta-permissions that allow modification of the 

protection state
§ e.g. own

Access Control

ACACES'17 Pt 2
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Access control matrix defines the protection state at particular time
[Lampson’71]

Note: All subjects are also objects!

Protection State

Obj1 Obj2 Obj3 Subj2

Subj1 R RW send

Subj2 RX control

Subj3 RW
RWX
own

recv

ACACES'17 Pt 2
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• Not usually as access control matrix
– too sparse, inefficient, dynamic

• Two obvious choices:
– store individual columns with each object

o defines the subjects that can access each object
o each such column is called the object’s access control list

– store individual rows with each subject
o defines the objects each subject can access

aka subject’s protection domain
o each such row is called the subject’s capability list

Storing Protection State

ACACES'17 Pt 2
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• Subjects usually aggregated into classes
– e.g. UNIX: owner, group, everyone
– more general lists in Windows
– Can have negative rights 

eg. to overwrite group rights
• Meta-permissions (e.g. own)

– control class membership
– allow modifying the ACL

• Implemented in almost all commercial OSes

Access Control Lists (ACLs)

Subj1 R

Subj2

Subj3 RW

Obj1

ACACES'17 Pt 2
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• A capability [Dennis & Van Horn, 1966] is a capability-list element

– Names an object to which the capability refers
– Confers permissions over that object

• Capability is prima facie authority to perform an operation
– System will perform operation iff appropriate capability is presented

• Less common in commercial systems
– IBM System-38 → AS/400 → i-Series
– KeyKOS (Visa transaction processing)  [Bromberger et al, 1992]

• More common in research: EROS [Shapiro’99], Cheri, seL4

Capabilities

Obj1 Obj2 Obj3 Subj2

R RW send
Subj1

ACACES'17 Pt 2
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Capability-Based Access Control

Any system call is invoking a capability:
err = method( cap, args );

Obj reference

Access rights

Cap = Access Token:
Prima-facie evidence 
of privilege

Eg. read, 
write, send, 
execute…

Capabilities provide
• Fine-grained access 

control
• Reasoning about 

information flow

Eg. thread, 
address 
space

Object

ACACES'17 Pt 2
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• Capabilities must be unforgeable
– Traditionally protected by hardware (tagged memory), eg System-38
– Can be copied etc like data

• On conventional hardware, either:
– Stored as ordinary user-level data, but unguessable due to sparseness

o contains password or secure hash: PCS [Anderson’86], Mungi
o “sparse” capabilies

– Stored separately (in-kernel), referred to by user programs by 
index/address, eg Mach [Accetta’86], EROS
o “partitioned” or “segregated” capabilities
o like UNIX file descriptors

• Sparse capabilities can be leaked more easily
– Huge amplification of covert channels!

Capabilities: Implementations

ACACES'17 Pt 2
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• In theory:
– Dual representations of access control matrix

• Practical differences:
– Naming and namespaces

o Ambient authority
o Deputies

– Evolution of protection state
– Forking
– Auditing of protection state

ACLs and Capabilities: Duals?

ACACES'17 Pt 2
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• ACLs:
– objects referenced by name

o e.g. open(“/etc/passwd”,O_RDONLY)
– require a subject (class) namespace

o e.g. UNIX users and groups
• Capabilities:

– objects referenced by capability
– no further namespace required

Duals? Naming and Namespaces

ACACES'17 Pt 2
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• ACLs: separation of object naming and permission can lead to 
confused deputies

• Problem is dependence on ambient authority
– Deputy uses its own authority when performing action on behalf of client

• Capabilities are both names and permissions, avoids confusion
– You can’t name something without having permission to it
– Presentation is explicit (not ambient)

Duals? Confused Deputies

gcc
RW

LogFileAlice
X

exec “gcc” “-o LogFile” “source.c”

ACACES'17 Pt 2

Subject
Deputy

Unsolvable 
with ACLs!
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• ACLs: 
– Protection state changes by modifying ACLs

o Requires certain meta-permissions on the ACL
• Capabilities:

– Protection state changes by delegating and revoking capabilities
– Fundamental properties enable reasoning about information flow:

o A can send message to B only if A holds cap to B
o A can obtain access to C only if it receives message with cap to C

– Right to delegate may also be controlled by capabilities
o e.g. A can delegate to B only if A has a capability to B that carries 

appropriate permissions
o A can delegate X to B only if it has grant authority on X

ACACES'17 Pt 2

Duals? Evolution of Protection State
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• What permissions should children get?
• ACLs: depends on the child’s subject

– UNIX etc.: child inherits parent’s subject
o Inherits all of the parent’s permissions
o Any program you run inherits all of your authority
o Eg must trust web browser not to leak data

– Violation of least privilege
• Capabilities: child has no caps by default

– Parent gets a capability to the child upon fork
– Used to delegate explicitly the necessary authority
– Defaults to least privilege

Duals? Forking

ACACES'17 Pt 2
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Caps are opaque object references (pure names)
• Holder cannot tell which object a cap references nor the authority
• Supports transparent interposition (virtualisation)

ACACES'17 Pt 2

Interposing Object Access

A
B

invoke

ref B

“B”

ref Bref “B”

Usage:
• API virtualisation
• Security monitor

– Security policy enforcement
– Info flow tracing
– Packet filtering…

• Secure logging
• Debugging
• Lazy object creation

– Initial cap to constructor
– Replace by proper object cap
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Security Principle ACLs Capabilities
Economy of Mechanism Dubious Yes!
Fail-safe defaults Generally not Yes!
Complete mediation Yes (if properly done) Yes (if properly done)
Open design Neutral Neutral
Separation of privilege No Doable
Least privilege No Yes
Least common mechanism No Yes
Psychological acceptability Neutral Neutral

ACACES'17 Pt 2

Duals: Saltzer & Schroeder Principles
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OS Structure
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Classic layered approach
• Going back to THE [Dijkstra’68], 

Multics [60s]
• Hierarchy of abstractions, 

higher ones built on lower ones
1. Scheduling
2. Memory management
3. Devices
4. File systems
5. Users

ACACES'17 Pt 2

OS Structure

a b c d e

Courtesy Kevin Elphinstone
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• Too many inter-dependencies
• Resulting in weak modularity,

layer-cutting
• Complex interactions of

functionality no-one 
understands

• Huge number of corner
cases that are impractical
to test

ACACES'17 Pt 2

Problem with Layered Model

Courtesy Kevin Elphinstone
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Trends in Operating Systems

Time

K
er

ne
l S

iz
e,

 C
om

pl
ex

ity

Complexity Drivers
• New hardware

Ø New device drivers / driver 
classes

Ø New file systems
Ø Multicore scalability

• New usage domains
Ø Better power management
Ø New network protocols
Ø Better real-time behaviour

• New security challenges
Ø New crypto libs, protocols
Ø Improved access control

• Etc …

ACACES'17 Pt 2
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Complexity: Enemy of Dependability

• Typical defect density of industry-standard code: 2–5 bugs per kSLOC
– Linux might be somewhat better: ≈ 1 bug/kSLOC

• 10–25% of kernel bugs are security vulnerabilities
– Conservatively, this means 0.1 vulnerability / kSLOC

• Linux kernel is 10s of MSLOC ⇒ thousands of vulnerabilities!
– Plus system services (daemons) running with high privileges

ACACES'17 Pt 2
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Trends in Commodity Operating Systems

Time

K
er

ne
l S

iz
e,
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om

pl
ex

ity

Dependability

Complexity Drivers
• New hardware
ØNew device drivers / driver 

classes
ØNew file systems
ØMulticore scalability

• New usage domains
ØBetter power management
ØNew network protocols
ØBetter real-time behaviour

• New security challenges
ØNew crypto libs, protocols
Ø Improved access control

• Etc …

ACACES'17 Pt 2
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Complexity: Enemy of Dependability

• Typical defect density of industry-standard code: 2–5 bugs per kSLOC
– Linux might be somewhat better: ≈ 1 bug/kSLOC

• 10–25% of kernel bugs are security vulnerabilities
– Conservatively, this means 0.1 vulnerability / kSLOC

• Linux kernel is 10s of MSLOC ⇒ thousands of vulnerabilities!

Core problem: New features increase kernel complexity 
⇒ reduced dependability
• Impossible to assure security – too many bugs
• Impossible to assure safety – too complex to analyse timeliness

The monolithic OS model
Is fundamentally broken!

ACACES'17 Pt 2
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I’m not alone saying this…

ACACES'17 Pt 2
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These slides are distributed under the Creative Commons
Attribution 3.0 License

• You are free:
– to share—to copy, distribute and transmit the work
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• under the following conditions:
– Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) 
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http://creativecommons.org/licenses/by/3.0/legalcode
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Microkernels
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Need certifiable argument for isolation:
• Able to convince a skeptical certification authority
• Requires thorough analysis of trusted computing base

– What can possibly go wrong?
– Usually informal or semi-formal arguments
– Ideally formal proof

ACACES'17 Pt 3

What is Needed for Safety & Security?

Intractable unless
• Small TCB
• Low conceptual complexity
• Well-defined interfaces/

interactions 
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• Idea of microkernel:
– Flexible, minimal platform
– Mechanisms, not policies
– Actual OS functionality provided by user-mode servers
– Servers invoked by kernel-provided message-passing mechanism (IPC)
– Goes back to Nucleus [Brinch Hansen’70]

ACACES'17 Pt 3

Reducing TCB: Microkernels

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
ServerDevice

Driver

Syscall

IPC

Kernel
Mode

User
Mode

IPC performance
is critical!
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Monolithic OS

• New features add code kernel
• New policies add code kernel
• Kernel complexity grows

Microkernel OS

• Features add usermode code 
• Policies replace usermode code
• Kernel complexity is stable

Monolithic vs Microkernel OS Evolution

ACACES'17 Pt 3

• Adaptable
• Dependable
• Highly optimised

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
ServerDevice

Driver

Syscall

IPC

Kernel
Mode

User
Mode
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1993 “Microkernel”: IPC Performance

115 µs

5 µs

i486 @ 
50 MHz

Culprit: 
Cache 
footprint 
[Liedtke’95]

raw copy
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Microkernel Principle: Minimality

• Advantages of resulting small kernel:
– Easy to implement, port?
– Easier to optimise
– Hopefully enables a minimal trusted computing base
– Easier debug, maybe even prove correct?

• Challenges:
– API design: generality despite small code base
– Kernel design and implementation for high performance

Limited by arch-
specific micro-
optimisations

Small attack 
surface, fewer 
failure modes

A concept is tolerated inside the microkernel 
only if moving it outside the kernel, i.e. 
permitting competing implementations, would 
prevent the implementation of the system’s 
required functionality. [SOSP’95]
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Microkernel Evolution

IPC, MMU abstr.
Scheduling

Kernel memory
Devices

Low-level FS,
Swapping 

Memory Objects

IPC, MMU abstr.
Scheduling

Memory-
mangmt
library

IPC, MMU abstr.
Scheduling

Kernel memory

First generation

• Eg Mach [’87]
(QNX, Chorus)

Third generation

• seL4 [’09]

Second generation

• L4 [’95]
(PikeOS, Integrity)

• 180 syscalls
• 100 kSLOC
• 100 µs IPC

• ~7 syscalls
• ~10 kSLOC
• ~ 1 µs IPC

• ~3 syscalls
• 9 kSLOC
• 0.1 µs IPC
• capabilities
• design for isolation
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L4: A Family of High-Performance Microkernels

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnu
t Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

NOVAGMD/IBM/Karlsruhe

UNSW/NICTA/Data61

Dresden

Commercial Clone

OK Labs

API Inheritance

Code Inheritance

Qualcomm 
modem chips

iOS security 
co-processor

First L4 
kernel with 
capabilities
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Name Year Processor MHz Cycles µs
Original 1993 i486 50 250 5.00
Original 1997 Pentium 160 121 0.75
L4/MIPS 1997 R4700 100 86 0.86
L4/Alpha 1997 21064 433 45 0.10
Hazelnut 2002 Pentium 4 1,400 2,000 1.38
Pistachio 2005 Itanium 1,500 36 0.02
OKL4 2007 XScale 255 400 151 0.64
NOVA 2010 i7 Bloomfield (32-bit) 2,660 288 0.11
seL4 2017 i7 Skylake (32-bit) 3,400 203 0.06
seL4 2017 I7 Skylake (64-bit) 3,400 138 0.04
seL4 2017 Cortex A53 1,200 225 0.19

L4 IPC Performance over 20 Years

ACACES'17 Pt 3
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Name Architecture C/C++ asm total kSLOC
Original i486 0 6.4 6.4
L4/Alpha Alpha 0 14.2 14.2
L4/MIPS MIPS64 6.0 4.5 10.5
Hazelnut x86 10.0 0.8 10.8
Pistachio x86 22.4 1.4 23.0
L4-embedded ARMv5 7.6 1.4 9.0
OKL4 3.0 ARMv6 15.0 0.0 15.0
Fiasco.OC x86 36.2 1.1 37.6
seL4 ARMv6 9.7 0.5 10.2

ACACES'17 Pt 3

Minimality: Source Code Size
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• Fundamentally, the microkernel must abstract
– Physical memory: Address spaces
– CPU: Threads
– Interrupts/Exceptions

• Unfettered access to any of these bypasses security
– No further abstraction needed for devices

o memory-mapping device registers and interrupt abstraction suffices
o …but some generalised memory abstraction needed for I/O space

• Above isolates execution units, hence microkernel must also provide
– Communication (traditionally referred to as IPC)
– Synchronization

Design subject to performance goals:

• Frequent operations as fast as possible (near hardware limit)
• Don’t pay for what you don’t need

ACACES'17 Pt 3

What Mechanisms?
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The seL4 Microkernel
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Design Motivation

1. Object capabilities are good for reasoning about usermode access
– Just retro-fitting them to traditional L4 is insufficient:

o Availability – need strong control over kernel resources
o Confidentiality – reason about information flow through kernel data

2. Real trustworthiness requires 
strong confidence in
implementation correctness
ideally formal proof

Uncritical/
untrusted

Critical/
trusted

Truly 
dependable 

TCB

Strong 
isolation

ACACES'17 Pt 3
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Fundamental Design Decisions

1. Memory management is user-level 
responsibility
– Kernel never allocates memory (post-boot)
– Kernel objects controlled by user-mode servers

2. Memory management is fully delegatable
– Supports hierarchical system design
– Enabled by capability-based access control

3. “Incremental consistency” design pattern
– Fast transitions between consistent states
– Restartable operations with progress guarantee

4. No concurrency in the kernel
– Interrupts never enabled in kernel
– Interruption points to bound latencies
– Clustered multikernel design for multicores

Isolation
Perfor-
mance

Verification, 
Performance

Real-time

ACACES'17 Pt 3
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What’s Different to Other Microkernels?

Global Resource Manager

RAM
I+D

GRM
I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Addr
Space

AS

Addr
Space

Addr
Space

RM

RM
I+D

Resources fully 
delegated, allows 

autonomous 
operation

Strong isolation,
No shared kernel 

resources

“Untyped” (unallocated) memory

Design for isolation: 
No memory 
allocation by kernel

ACACES'17 Pt 3

Can revoke
delegation
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Core Mechanism: Retype of “Untyped” Memory

UT0

Retype (Untyped, 21)

UT1 UT2F0 F3F2F1

Retype (Untyped, 21)

UT3 UT4

Retype (TCB, 2n)

……

Retype (CNode, 2m, 2n)

r,w r,w r,w r,w

Retype (Frame, 22)

……
r

Mint (r)

Revoke()

ACACES'17 
Pt 3
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seL4 Isolation Goes Deep

High Low

TCBs Caps

PTs

TCBs Caps

PTs

Kernel data 
partitioned 

like user data

ACACES'17 Pt 3
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• Kernel runs with interrupts disabled
– No concurrency control ⇒ simpler kernel

o Easier reasoning about correctness
o Better average-case performance

• How about long-running system calls?
– Use strategic premption points
– (Original) Fiasco has fully preemptible kernel

o Like commercial microkernels (QNX, Green Hills INTEGRITY)

ACACES'17 Pt 3

How About Real Time?

while (!done) {
process_stuff();
PSW.IRQ_disable=1;
PSW.IRQ_disable=0;

}

Limited 
concurrency 

in kernel!

Lots of 
concurrency 

in kernel!
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Incremental Consistency

ACACES'17 Pt 3

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

Check pending
interrupts

O(1)
operation

O(1)
operation

O(1)
operation

Abort & 
restart later

Disable 
interrupts

Enable 
interrupts

No concurrency in (single-core) kernel!

• Consistency
• Restartability
• Progress
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Multicore seL4
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Microkernel vs Monolithic OS Execution

10s of ms 10s of ms

10s of ms

App

KernelLinux

10s of ms 10s of ms

10s of ms

App

Server

Microkernel

Kernel

0.1µs
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Cache Line Migration Latencies

Core
HW 
context

HW 
context

L1 cache

Core
HW 
context

HW 
context

L1 cache

L2/L3 cache

Main memory

Core
HW 
context

HW 
context

L1 cache

L2/L3 cache

Core
HW 
context

HW 
context

L1 cache

10–20
cycles

1,000–10,000
cycles

Data transfer takes 
much longer than 
code execution!
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Cost of Locking

ACACES'17 Pt 3

Locks have a cost –
significant in a fast microkernel!
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Multicore Design: Clustered Multikernel

ACACES'17 Pt 3

Core
HW 
context

HW 
context

L1 cache

Core
HW 
context

HW 
context

L1 cache

L2/L3 cache

Main memory

Core
HW 
context

HW 
context

L1 cache

L2/L3 cache

Core
HW 
context

HW 
context

L1 cache

Kernel

User 
threa
d

User 
threa
d

User 
threa
d

User 
threa
d

Kernel

User 
threa
d

User 
threa
d

User 
threa
d

User 
threa
d

Virtual 
CPU

Virtual 
CPU

Virtual 
CPU

Virtual 
CPU

Virtual 
CPU

Virtual 
CPU

Virtual 
CPU

Virtual 
CPU

NUMA-aware Linux
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Big-Lock Scalability
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Mixed Criticality:
Temporal Integrity
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Classical L4 Scheduling

• 256 hard priorities (0–255)
– Priorities are strictly observed
– The scheduler will always pick the highest-prio runnable thread
– Round-robin scheduling within prio level

• Thread scheduling parameters:
– Priority
– Time slice

prio0 255

Issue: 
• highest-prio can monopolise CPU
• Priority = “importance”

ACACES'17 Pt 3
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Issue with Priority = Importance

Runs every 100 ms
for few millisecods Runs frequently but for 

short time (order of µs) 

Control 
loopSensor

readings
NW 
driver

NW
interrupts

NW driver must preempt control loop
• … to avoid packet loss
• Driver must run at high prio
• Driver must be trusted not to monopolise CPU

ACACES'17 Pt 3
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Shared Intra-Core Servers

Server

Prio PSClient2

Prio P2

Client1

Prio P1
PS > max (P1, P2)
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Problem With Shared Servers

Server

Client1

Client2

Running

Running

Shared server has 
highest prio, runs as 
long as it has work

Has used no time,
Keeps running

Can effectively DoS
same-prio threads!
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Separate Scheduling & Threads

Classical thread attributes
• Priority
• Time slice

New thread attributes
• Priority
• Scheduling context capability

Not 
runnable 

if null

Not 
runnable 

if null

Scheduling context object
• T: period
• C: budget (≤ T)

C = 2
T = 3

C = 250
T = 1000

Limits CPU 
access!

SchedControl capability 
conveys right to assign 
budgets (i.e. perform 
admission control)

ACACES'17 Pt 3

High-prio thread 
cannot monopolise
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Shared Server w. Scheduling Contexts

Server

Running

Running

Server runs on 
client’s scheduling 

context

Client2

Client1

Client is 
charged for 

server’s time

Budget expiry 
during server 
execution?
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Budget Expiry Options

• Multi-threaded servers (COMPOSITE [Parmer ‘10])
– Model allows this
– Forcing all servers to be thread-safe is policy 😢

• Bandwidth inheritance with “helping” (Fiasco [Steinberg ‘10])
– Ugly dependency chains 😢
– Wrong thread charged for recovery cost 😢

• Use timeout exceptions to trigger one of several possible actions:
– Provide emergency budget
– Cancel operation & roll-back server
– Change criticality
– Implement priority inheritance (if you must…)

ACACES'17 Pt 3
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These slides are distributed under the Creative Commons
Attribution 3.0 License

• You are free:
– to share—to copy, distribute and transmit the work
– to remix—to adapt the work

• under the following conditions:
– Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) 
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at 
http://creativecommons.org/licenses/by/3.0/legalcode
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Copyright Notice
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Proving Security
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A 30-Year Dream
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Integrity

Proof

Abstract
Model

C Imple-
mentation

Proof

Confiden-
tiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional 
correctness
[SOSP’09]

Isolation 
properties

[ITP’11, S&P’13]

Translation 
correctness
[PLDI’13]

Exclusions (at present):
• Initialisation
• Privileged state & caches
• Multicore
• Covert timing channels

Worst-case 
execution time

[RTSS’11, RTAS’16]

World’s fastest 
microkernel!

Provable Security Enforcement
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Proving Functional Correctness

ACACES'17 Pt 4

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo

f
Pr

oo
f Refinement: All 

possible 
implementation 
behaviours are 

captured by model

Refinement: All 
possible 

implementation 
behaviours are 

captured by model

117,000 LOP

50,000 LOP
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Pr
oo

f
Pr
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f

Proving Functional Correctness
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Abstract
Model

Executable
Model

C Imple-
mentation
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seL4 Formal Verification Summary

Kinds of properties proved

• Behaviour of C code is fully captured by abstract model
• Behaviour of C code is fully captured by executable model
• Kernel never fails, behaviour is always well-defined
• assertions never fail
• will never de-reference null pointer
• cannot be subverted by misformed input

• All syscalls terminate, reclaiming memory is safe, ...
• Well-typed references, aligned objects, kernel always mapped…
• Access control is decidable

ACACES'17 Pt 4

Can prove further 
properties on 
abstract level!
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Binary Code Verification
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C source

Binary code

Formalised
C

Formalised
binary

Functional
code

Functional
code

Formal
ISA spec

SAT
solver etc

Formal
C semantics Rewrite

rules

De-
compiler

Symbol
tables 

etc

Target of functional 
correctness proof
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Security

Security vs Safety

Safety
Availability

Timeliness Confidentiality
Integrity
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Integrity: Limiting Write Access

ACACES'17 Pt 4

To prove:
• Domain-1 doesn’t have write capabilities to Domain-2 objects

⇒ no action of Domain-1 agents will modify Domain-2 state
• Specifically, kernel does not modify on Domain-1’s behalf!

– Event-based kernel operates on behalf of well-defined user thread
– Prove kernel only allows write upon capability presentation

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

Domain 1 Domain 2

Kernel data 
partitioned 

like user data
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Availability: Ensuring Resource Access

ACACES'17 Pt 4

• Strict separation of kernel resources
⇒ agent cannot deny access to another domain’s resources

• Nothing to do: implied by other properties

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

Domain 1 Domain 2
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Confidentiality: Limiting Read Accesses
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To prove:
• Domain-1 doesn’t have read capabilities to Domain-2 objects

⇒ no action of any agents will reveal Domain-2 state to Domain-1

Domain 1 Domain 2
Violation not 
observable 

by Domain 2!

Non-interference proof :
• Evolution of Domain 1 does not depend on Domain-2 state
• Also shows absence of covert storage channels



15 © 2017 Gernot Heiser. Distributed under CC Attribution License

Worst-Case Execution Time (WCET) Analysis

Program
binary

Control 
Flow 

Graph

Loop 
bounds

Micro-
architecture 

model

Integer 
linear 

equations

Infeasible 
path info

WCETILP solverAnalysis 
tool

Accurate & 
sound model of 
pipeline, caches

Scalability!

Pessimism!
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Proving Loop Bounds & Infeasible Paths
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Abstract
Model

Model +
Invariants

Pr
oo

f

C Imple-
mentation

Pr
oo

f

BinarySemantic-rich
Binary

Pr
oo

f

Inject Invariants

Add Annotations

Loop 
bounds

Path
Infeasibility

Proof

Proof

WCET
Analysis

High-
assurance 

WCET

• seL4 is world’s only protected-
mode OS with complete & 
sound WCET analysis

• High-assurance loop bounds 
and path elimination without 
trusted compiler
[RTSS’11, EuroSys’12, RTAS’14]
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Verification Cost
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Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 5 months
Formal frameworks 9 py
Total 24 py

Verification Cost Breakdown

ACACES'17 Pt 4

Reusable!

Abstract
Spec

Executable
Spec

C Imple-
mentation

Pr
oo

f
Pr

oo
f

Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 5 months
Formal frameworks 9 py
Total 24 py
Repeat (estimated) 6 py
Traditional engineering 3–4 py
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Why So Hard for 9,000 LOC?
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seL4 call 
graph
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Cost of Assurance
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Integrity

Proof

Abstract
Model

C Imple-
mentation

Proof

Confiden-
tiality Availability

Binary 
code

Pr
oo

f
Pr

oo
f

Pr
oo

f

11 py
4.5 years

1 py
4 months

0 py
By construction

4.5 py

2 py, 1.5 years
Mostly for tools

3 py, 2 years
Mostly for tools

$400 per line 
of code!

Estimate repeat
cost: $200/SLOC
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Microkernel Life-Cycle Cost in Context

L4
Pistachio

$100

$400

Green Hills
Integrity
$1000

A
ss

ur
an

ce

Cost ($/SLOC)
1000750500250100

Slow!

Fast!Fast!

?

Revolution
!
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Cost of Assurance

Industry Best Practice: 
• “High assurance”: $1,000/SLOC, no guarantees, unoptimised
• Low assurance: $100–200/SLOC, 1–5 faults/kSLOC, optimised

State of the Art – seL4:
– $400/LOC, 0 faults/kSLOC, optimised

• Estimate repeat would cost half
– that’s about twice the development cost of the predecessor Pistachio!

• Aggressive optimisation [APSys’12]
– much faster than traditional high-assurance kernels
– as fast as best-performing low-assurance kernels
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These slides are distributed under the Creative Commons
Attribution 3.0 License

• You are free:
– to share—to copy, distribute and transmit the work
– to remix—to adapt the work

• under the following conditions:
– Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) 
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at 
http://creativecommons.org/licenses/by/3.0/legalcode
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Remember: Microkernel ≠ Operating System

Processor

Device
DriverDevice

DriverDevice
Driver

NW
Stack

Device
DriverDevice

DriverFile
System

Process
Mgmt

Memory
Mgmt

AppAppApp

VM

Linux

AppAppApp

Strong 
Isolation

Device drivers, file systems, crypto, 
power management, virtual-machine 
monitors are all usermode processes

IPC

Controlled 
Communication

VMM

Microkernel = context-switching engine
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• Capabilities (Caps)
– mediate access

• Kernel objects:
– Threads (thread-control blocks: TCBs)
– Address spaces (page table objects: PDs, PTs)
– Endpoints (IPC)
– Notifications
– Capability spaces (CNodes)
– Frames
– Interrupt objects (architecture specific)
– Untyped memory

• System calls
– Send, Wait (and variants)
– Yield

ACACES'17 Pt 5

seL4 Concepts



6 © 2017 Gernot Heiser. Distributed under CC Attribution License

Inter-Process Communication (IPC)

• Fundamental microkernel operation
– Kernel provides no services, only mechanisms
– OS services provided by (protected) user-level server processes
– invoked by IPC

• seL4 IPC uses a handshake through endpoints:
– Transfer points without storage capacity
– Message must be transferred instantly

o Single-copy user ➞ user by kernel

ACACES'17 Pt 5

seL4

Client Server

IPC

send receive
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IPC: Endpoints

• Threads must rendez-vous for message transfer
– One side blocks until the other is ready
– Implicit synchronisation

• Message copied from sender’s to receiver’s message registers
– Message is combination of caps and data words

….... 

Thread1
Running Blocked

Thread2
Blocked Running

Send (ep1_cap, …)

….. Wait (ep1_cap, …)

Send (ep2_cap, …)    

….... 
Wait (ep2_cap, …)

….... 

ACACES'17 Pt 5
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Kernel

IPC Endpoints are Message Queues

• EP has no sense of direction
• May queue senders or receivers

– never both at the same time!
• Communication needs 2 EPs!

Server

First invocation
queues caller

Client1

Client2

TCB1 TCB2 EP

Further callers of 
same direction 
queue behind

ACACES'17 Pt 5
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Client-Server Communication

• Asymmetric relationship: 
– Server widely accessible, clients not
– How can server reply back to 

correct client?

• Client can pass (session) reply cap in first request
– Server needs to maintain session state
– Forces stateful server design

• seL4 solution: Kernel provides single-use reply cap
– Only for Call operation (Send+Wait)
– Allows server to reply to client
– One-shot (automatically destroyed after first use)
– Supports stateless servers

ACACES'17 Pt 5

Client1 Server Client2



10 © 2017 Gernot Heiser. Distributed under CC Attribution License

Call RPC Semantics

Client Server

Client

Call(ep,…)

process

Server
Wait(ep,&rep)

process
Send(rep,…)

process

Kernel

mint rep
deliver to server

deliver to client
destroy rep
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Stateful Servers: Identifying Clients

Stateful server serving multiple clients
• Must respond to correct client

– Ensured by reply cap

• Must associate request
with correct state

• Could use separate EP per client
– endpoints are lightweight (16 B)
– but requires mechanism to wait on a set of EPs (like select)

• Instead, seL4 allows to individually mark (“badge”) caps to same EP
– server provides individually badged caps to clients
– server tags client state with badge
– kernel delivers badge to receiver on invocation of badged caps

ACACES'17 Pt 5

Client1
Server

Client1 
state

Client2 Client2 
state

Msg



12 © 2017 Gernot Heiser. Distributed under CC Attribution License

Notifications: Semaphore Synchronisation

• Logically, a Notification is an array of binary semaphores
– Multiple signalling, select-like wait
– Not a message-passing IPC operation!

• Implemented by 
data word in Notification
– Send OR-s sender’s 

cap badge to data word
– Receiver can poll or wait

o waiting returns and 
clears data word

o polling just returns 
data word
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….... 

Thread1
Running Blocked

Thread2
Blocked Running

w = Poll (ep_cap, …)

…... w = Wait (ep_cap,…)    
….... Notify (not_cap, …)

Notify (not_cap, …)
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Shared Servers for Critical Sections

Server2

Client2

Client1

Server1

serv_2() {
…
while (1) {

wait(sem_rq);
/* critical section */
signal(sem_ry);
}

}

serv_1() {
…
wait(ep);
while (1) {

/* critical section */
Reply&wait(ep);

}
}

client() {
while (1) {
…

call(ep);
…

signal(sem_ry);
…

wait(sem_rq);
}

}

Hoare-style monitor
Suitable intra-core

Semaphore synchronisation
Suitable inter-core

Messages

Semaphores
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Shared Intra-Core Servers Implement
Priority Ceiling Protocol (IPCP)

Server

Prio PSClient2

Prio P2

Client1

Prio P1

IPCP: 
PS = max (P1, P2) + 1

Immediate Priority Ceiling:
• Requires correct priority 

configuration
• Deadlock-free
• Easy to implement
• Good worst-case 

blocking times

ACACES'17 Pt 5
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E.g. UAV (HACMS) Mission Computer

ACACES'17 Pt 5

UART
Rx

UART
Rdy

UART
in

200Hz

UART 
out

200Hz

Server

200Hz

CAN
Rx

CAN
Tx

UART
Tx

CAN
200Hz

Server
Event-

triggered
Task

Periodic
Task

Critical
Section

CAN
Rx

CAN
Tx

CAN
200Hz

Gateway
200HzLx VM

camera
20Hz
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Waiting on EP and Notification

Server with synchronous and asynchronous interface
• Example: file system

– synchronous (RPC-style) client protocol
– asynchronous notifications from driver

• Could have separate threads waiting on endpoints
– forces multi-threaded server, concurrency control

• Alternative: allow single thread to wait on both channels
– Notification is bound to thread
– thread waits on endpoint
– Notification delivered as if caller had been waiting on it

ACACES'17 Pt 5

Server
Client Driver
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Interrupt Handling
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Interrupt handler
(device driver)

IRQ triggered.
Kernel signals 

Notification

Handler performs 
appropriate action.

Handler waits 
on NotificationKernel ACKs IRQ
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Building 
Trustworthy Systems
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Uncritical/
untrusted

Security by Architecture

Critical/
trusted

Incremental 
process: 

migrate in 
pieces

Uncritical/
untrusted

Linux

AppsAppsApps

Critical/
trusted

Virtual 
machine 

for legacy

Extract 
critical bits, 
run native

ACACES'17 Pt 5



20 © 2017 Gernot Heiser. Distributed under CC Attribution License

Example: Communicating Processes

Thread-ObjectA CNodeA1 EP Thread-ObjectBCNodeB1
CNodeA2

VSpace

VSpace

CSpace CSpace

Se
nd

Re
ce
ive

PDAPTA1
FRAME

FRAME

...

...

... ...

...

...CO
N
TE

XT

CO
N
TE

XT

A B
Endpoint
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Component Middleware: CAmkES

���������	
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component

connector

interface
Higher-level abstractions of 
low-level seL4 constructs
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Case Study: DARPA HACMS

Boeing Unmanned Little Bird US Army Autonomous 
Trucks

TARDEC 
GVRbot

SMACCMcopter
Research Vehicle

Retrofit 
existing 
system!

Retrofit 
existing 
system!

Develop 
technology
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Case Study: Simplified HACMS UAV

Radio
Driver

Crypto

CAN
Driver

Data
Link

Uncritical/untrust
ed,
contained

Linux

Camera

Wifi

Root
 ac

ces
s
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Attacker cannot 
break out of VM

No other
data
flow!
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Automating the Abstraction

A

CNode EP CNode
CSpace CSpace

Se
nd

Re
ce
ive

... ...

CO
N
TE

XT

CO
N
TE

XT
VSpace

component 
code+

CAmkES

capDL
glue
code

+ proof

initialised system +  proof

+ proof
Thread
Object

Thread
Object

VSpace

A B

B

CAmkES: Architecture spec

A

CNode EP CNode
CSpace CSpace

Se
nd

Re
ce
ive

... ...

CO
N
TE

XT

CO
N
TE

XT

VSpace

component 
code+

CAmkES

capDL
glue
code

+ proof

initialised system +  proof

+ proof
Thread
Object

Thread
Object

VSpace

A B

B

capDL: Authority spec

init.c

A.c B.c
glue.

c

Compiler/
Linker

binary

Limitations (at 
present):
• Glue code verification 

on subset of connectors
• Initialisation verified

on model-level only
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Model-Driven Design Using AADL

AADL
Architecture
Analysis &
Design

CAmkES Component
Description

.h, .c Glue
Code.h, .c

Behavioural
Code

Binary

Ivory/To
wer

Control
DSL

Compile

Generate

G
enerate

G
en.

G
en.

Com
pil

e
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in the Real World (Courtesy Boeing, DARPA)
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Work in Progress:
Automating Verification
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Remember: 2-Step Refinement
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Abstract
Spec

Executable
Spec

C Imple-
mentation

Pr
oo

f
Pr

oo
f

Implementation
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Domain-
specific 
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Automate?
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COGENT compiler

generated
C code

ADT
library

COGENT code

C code
semantics

COGENT
specification

proof

import

generate

generate

high-level
proofs

Isabelle/HOL
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Cogent: Code and Proof Co-Generation

Cogent language:
• Purely functional, type- and memory-
safe
• Not managed, no run-time system

Compiles 
to C

Compiler 
generates spec 

and proof 
linking to C

Manually prove 
program logic
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Remember: Verification Cost Breakdown
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Abstract
Spec

Executable
Spec

C Imple-
mentation
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8 py

3 py

Cogent spec 
higher level than 
seL4 exec spec

Fully automated 
in Cogent

• Successful 
file-system 
case study

• Extending to 
network 
stacks
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Thank you!
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