Operating Systems
For Secure and Safe Embedded Systems

Part I: Fundamentals
@GernotHeiser

AUSTRALIA

Never Stand Still Engineering Computer Science and Engineering




Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work
— to remix—to adapt the work

» under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

2 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License



Present Systems are NOT Trustworthy!

UUCTrien Srsrens o

Yet they are expensive:

« $1,000 per line of code for HEE
“high-assurance” software! L'[1"[4"2"

3 ACACES"7 Pt1



OS Fundamentals

4 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License

AAAUSTRALIA



Purpose of the OS / OS Functions

1. OS is an abstract machine
— Extends basic hardware with added functionality
— Provides high-level abstractions
o More programmer-friendly
o Common core of functionality for applications (eg file systems)
— Abstracts hardware details irrelevant to programs
o Portability

2. OS is aresource manager

—  Partition/multiplex limited resources
—  Ensure efficient resource usage

—  Ensure fairness/progress

—  Ensure security & safety

5 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License




Security and Safety

No unauthorised
resource denial

Availability Security
Resource Confiden-
isolation! tiality
No unauthorised @
No unauthorised

processor denial
reading

No unauthorised
writing

6 ACACES'"17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License




Hardware Execution Modes and Privilege

Low-end microcontrollers
only have a single mode

Applications:
Unprivileged software
Subset of
Hardware
o OS Demons etc:
Unprivileged resources Privileged by software
“User” accessible
Privileged Trusted
K gl All hardware B OS Kernel: Computing
(11 erne 7 . .
FeSOUICes Privileged by hardware Base
: (TCB)
accessible
Processor
Mode Software

7 ACACES'"17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License




8

Memory Protection 1: None

Low-end microcontrollers
« EgAVR
« ARM Cortex-M0

Software issues memory addresses
No way to limit access

Processes can overwrite each other and the OS
OS has no special privilege — "real-time executive”

Memory

P1

P2 OS

ACACES'17 Pt 1

© 2017 Gernot Heiser. Distributed under CC Attribution License




Memory Protection 2: Bounds Registers

« Software issues memory addresses
* Processes know their memory location
* Bounds registers limit access

* Privileged OS controls and switches _ _
bounds registers High-end microcontroller

- Eg ARM Cortex-M4

Base | Limit

Memory P1 P2 0S

9 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License




Memory Protection 3: Virtual Memory (Paging)

« Software issues virtual addresses Typical microprocessor
 Unmapped memory not addressable  x86
* Physical memory completely hidden - ARM Cortex-A

* Privileged OS controls memory map

Page \

Virtual memory P1 P2 0S

Memory map

(Page tables) ’/

Physical memory /
Frame

10 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License




Real-Time Executives vs Security/Safety

« Cooperative system
« Everything trusts everything else

* Any bug anywhere can be an exploit Totally defenceless,
unsuitable for loT

20 kSLOC 5 kSLOC

E.g. simple 0.5 kSLOC
sensor

1 kSLOC

RT SLOC:
source lines
of code

NIl al Libraries
Stack Task Executive

Hardware

11 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License



a, DATACENTRE SOFTWARE  SECURITY TRANSFORMATION DEVOPS  BUSINESS PERSONAL TECH

Security @R s1
loT worm can hack Philips Hue lightbulbs,
spread across cities

Easy chain reaction hack would spread across Paris, boffins say

By Darren Pauli 10 Nov 2016 at 06:02 SHARE ¥

Researchers have developed a proof-of-concept worm they say can rip through Philips Hue
lightbulbs across entire cities — causing the insecure web-connected globes to flick on and
off.

The software nasty, detailed in a paper titled /oT Goes Nuclear: Creating a ZigBee Chain
Reaction [PDF], exploits hardcoded symmetric encryption keys to control devices over
Zigbee wireless networks. This allows the malware to compromise a single light globe from

12 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License



Protected-Mode OS

Only sensible
approach for non-

 Misbehaving process cannot
I ving b trivial systems

directly hurt OS or other process
« Potential to contain faults

OS-imposed
isolation
Network RT Other
User Stack Task Services
mode
Kernel
mode OS kernel
Hardware

13 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License



CPS Challenge: SWaP

Traditional embedded-systems approach: one y-controller per function
* Automotive reached 100 ECUs in top-of-line cars 10 years ago

« ECUs must be robust — expensive

— Tolerant to wide temperature range
— Resistant to dust, water, grease, acid
— Resistant to Vibrations

« Packaging and cabling adds significant
weight, consumes space & energy

- SWaP: space, weight and power
 Autonomous vehicles require far more functions than traditional

« General challenge for cyber-physical systems (CPS)
— Robots, autonomous aircraft, smart factories

Way out: Consolidation of multiple functions on single processor

14 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License



Consolidation: Mixed-Criticality Systems (MCS)

Q:ertification requirement [ARINC-653]:\
More critical components must not

depend on any less critical ones!

Eg autopilot Eg sensor inputs, Eg flight control

\ audit logs

Less critical Shared
subsystem subsystem

Highly-
critical
subsystem

TCB

15 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License




Security Equivalent: Cross-Domain Systems

Multiple classification

levels on same device

Eg internet Downgrader: Eg secret data
connection Crypto module

Less. : Shared H|ghI.y_-

sensitive sensitive

. : subsystem

information subsystem TCB

16 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License




OS Requirements for Security & Safety

An operating system for safety/security-critical systems must:
« Support functionalities of different criticalities

* Prevent low-crit functions from interfering with high-crit ones

* Prevent low-crit subsystems from inferring classified info

« Support certification of high-crit parts independent of low-crit

» ltself be certifiable at highest criticality

Enforce strong, certifiable isolation, spatial and temporal!

17 ACACES'17 Pt 1 © 2017 Gernot Heiser. Distributed under CC Attribution License




Operating Systems

For Secure and Safe Embedded Systems

Part 2: Security and OS Structure
@GernotHeiser

AUSTRALIA

Never Stand Still Engineering Computer Science and Engineering




Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work

— to remix—to adapt the work
» under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

2 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License



Security Design Principles

« Saltzer & Schroeder [SOSP 73, CACM '74]
— Economy of mechanism — KISS
— Fail-safe defaults — as in good engineering
— Complete mediation — check everything
— Open design — not security by obscurity
— Separation of privilege — defence in depth
— Least privilege — aka principle of least authority (POLA)
— Least common mechanism — minimise sharing
— Psychological acceptability — if it's hard to use it won't be

3 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Security:
Access Control

4 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License

“AUSTRALIA



Access Control

« Who can access what in which ways

— The “who” are called subjects
o e.g. users, processes efc.

— The “what” are called objects
o e.g. individual files, sockets, processes etc.
o Includes all subjects

— The “ways” are called permissions
o e.g. read, write, execute etc.
o are usually specific to each kind of object

o include those meta-permissions that allow modification of the
protection state

= e.g. own

5 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Protection State

Access control matrix defines the protection state at particular time
[Lampson’71]

Obj1 Obj2 Obj3 Subj2
Subj1 R RW send
Subj2 RX control
: RWX
Subj3 RW recv
own

Note: All subjects are also objects!

6 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Storing Protection State

* Not usually as access control matrix
— too sparse, inefficient, dynamic
 Two obvious choices:
— store individual columns with each object
o defines the subjects that can access each object
o each such column is called the object’s access control list
— store individual rows with each subject

o defines the objects each subject can access
aka subject’s protection domain

o each such row is called the subject’s capability list

7 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Access Control Lists (ACLSs)

* Subjects usually aggregated into classes
— e.g. UNIX: owner, group, everyone Obj1
— more general lists in Windows

— Can have negative rights Subj1 (R
eg. to overwrite group rights

« Meta-permissions (e.g. own) Subj2
— control class membership
— allow modifying the ACL Subj3 RW
« Implemented in almost all commercial OSes

8 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Capabillities

« A capability [Dennis & Van Horn, 1966] is a capability-list element

Subj2

Subj1
send

— Names an object to which the capability refers

— Confers permissions over that object
« Capability is prima facie authority to perform an operation

— System will perform operation iff appropriate capability is presented
 Less common in commercial systems

— IBM System-38 — AS/400 — i-Series

— KeyKOS (Visa transaction processing) [Bromberger et al, 1992]

 More common in research: EROS [Shapiro’99], Cheri, selL4

9 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Capability-Based Access Control

4 D
Cap = Access Token:

Prima-facie evidence
of privilege

km

Obj reference

Eg. thread,
address
space

)

N

write, send,

/Capabilities provide
execute...

* Fine-grained access
control

 Reasoning about
information flow
\ %

Any system call is invoking a capability:
err = method( cap, args );

10 ACACES'17 Pt2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Capabilities: Implementations

« Capabilities must be unforgeable
— Traditionally protected by hardware (tagged memory), eg System-38
— Can be copied etc like data
« On conventional hardware, either:
— Stored as ordinary user-level data, but unguessable due to sparseness
o contains password or secure hash: PCS [Anderson’86], Mungi
o “sparse” capabilies
— Stored separately (in-kernel), referred to by user programs by
index/address, eg Mach [Accetta’86], EROS

o “partitioned” or “segregated” capabilities
o like UNIX file descriptors
« Sparse capabilities can be leaked more easily
— Huge amplification of covert channels!

11 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License



ACLs and Capabilities: Duals?

* In theory:
— Dual representations of access control matrix
* Practical differences:
— Naming and namespaces
o Ambient authority
o Deputies
— Evolution of protection state
— Forking
— Auditing of protection state

12 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Duals? Naming and Namespaces

« ACLs:
— objects referenced by name
o e.g. open(‘/etc/passwd”,O_RDONLY)
— require a subject (class) namespace
o e.g. UNIX users and groups
« Capabilities:
— objects referenced by capability
— no further namespace required

13 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Duals”? Confused Deputies

 ACLs: separation of object naming and permission can lead to
confused deputies

Subject

(f"

LogFile

Unsolvable
with ACLs!

FE A1} EE 1]

-0 LogFile” “source.c”

exec “gcc

* Problem is dependence on ambient authority

— Deputy uses its own authority when performing action on behalf of client
« Capabilities are both names and permissions, avoids confusion

— You can’t name something without having permission to it

— Presentation is explicit (not ambient)

14 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Duals”? Evolution of Protection State

« ACLs:
— Protection state changes by modifying ACLs
o Requires certain meta-permissions on the ACL
« Capabilities:
— Protection state changes by delegating and revoking capabilities
— Fundamental properties enable reasoning about information flow:
o A can send message to B only if A holds cap to B
o A can obtain access to C only if it receives message with cap to C
— Right to delegate may also be controlled by capabilities

o e.g. A can delegate to B only if A has a capability to B that carries
appropriate permissions

o A can delegate X to B only if it has grant authority on X

15 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Duals? Forking

« What permissions should children get?

 ACLs: depends on the child’s subject
— UNIX etc.: child inherits parent’s subject

o Inherits all of the parent’s permissions
o Any program you run inherits all of your authority

o Eg must trust web browser not to leak data
— Violation of least privilege
« Capabilities: child has no caps by default
— Parent gets a capability to the child upon fork
— Used to delegate explicitly the necessary authority
— Defaults to least privilege

16 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License



Interposing Object Access

Caps are opaque object references (pure names)
« Holder cannot tell which object a cap references nor the authority
« Supports transparent interposition (virtualisation)

Usage:
APl virtualisation

invoke

? « Security monitor

o — Security policy enforcement
Info fl yf 'y
redf‘B” — IN10 1Iow tracing

— Packet filtering...
Secure logging
Debugging

Lazy object creation
— Initial cap to constructor
— Replace by proper object cap

-
mg
—_
o
[ J [ J

17 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License



Duals: Saltzer & Schroeder Principles

Security Principle Capabilities

Economy of Mechanism
Fail-safe defaults
Complete mediation

Open design

Separation of privilege
Least privilege

Least common mechanism
Psychological acceptability

18 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License

Dubious

Generally not

Yes (if properly done)
Neutral

No

No

No

Neutral

Yes!

Yes!

Yes (if properly done)
Neutral

Doable

Yes

Yes

Neutral




OS Structure

19 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License

) AUSTRALIA



OS Structure

Classic layered approach

« Going back to THE [Dijkstra’68],
Multics [60s]

« Hierarchy of abstractions,
higher ones built on lower og

1. Scheduling

2. Memory manageg
3. Devices

4. File syste

5. Users

Courtesy Kevin Elphinstone

20 ACACES'17 Pt2 © 2017 Gernot Heiser. Distributed under CC Attribution License



Problem with Layered Model

 Too many inter-dependencies

* Resulting in weak modularity,
layer-cutting

« Complex interactions of
functionality no-one
understands

 Huge number of corner

File System

Memory
Manager

Network
Intesface

/

cases that are impractical
to test

Process
Scheduler

Inter-Process
Communication

<

Initialization

Library

Legend: Subsystem | ——extracted dependency —

Courtesy Kevin Elphinstone

21 ACACES"17 Pt 2

) AUSTRALIA



Trends in Operating Systems

Complexity Drivers

> * New hardware

'5"‘ > New device drivers / driver

- classes

g > New file systems

(&) » Multicore scalability

4 « New usage domains

n > Better power management

T:’ > New network protocols

o > Better real-time behaviour

X « New security challenges
» New crypto libs, protocols

» Improved access control

Ti
'me  Etc ...

22 ACACES'17 Pt2 © 2017 Gernot Heiser. Distributed under CC Attribution License



Complexity: Enemy of Dependability

« Typical defect density of industry-standard code: 2—5 bugs per kSLOC
— Linux might be somewhat better: = 1 bug/kSLOC

« 10-25% of kernel bugs are security vulnerabilities
— Conservatively, this means 0.1 vulnerability / kKSLOC

* Linux kernel is 10s of MSLOC = thousands of vulnerabilities!
— Plus system services (daemons) running with high privileges

23 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Trends in Commodity Operating Systems

Complexity Drivers

* New hardware

> New device drivers / driver
classes

» New file systems
» Multicore scalability
 New usage domains

» Better power management

» New network protocols

» Better real-time behaviour
> ° New security challenges
Time » New crypto libs, protocols

» Improved access control

 Etc ...

>

Kernel Size, Complexity

24 ACACES'17 Pt 2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Complexity: Enemy of Dependability

» Typical defect density of industry-standard code: 2—-5 bugs per kKSLOC
— Linux might be somewhat better: = 1 bug/kSLOC

« 10-25% of kernel bugs are security vulnerabilities

— Conservatively, this means 0.1 vulnerability / kKSLOC

 Linux kernel is 10s of MSLOC = thousands of vulnerabilities!

Core problem: New features increase kernel complexity

= reduced dependability
* Impossible to assure security — too many bugs
« Impossible to assure safety — too complex to analyse timeliness

The monolithic OS model
Is fundamentally broken!

25 ACACES'17 Pt2 © 2017 Gernot Heiser. Distributed under CC Attribution License




I'm not alone saying this...

S TCCHNICA @ Biz&Im TECH SCIENCE  POLICY CARS  GAMING & Cl

RISK ASSESSMENT —

Unsafe at any clock speed:
Linux kernel security needs a
rethink

Ars reports from the Linux Security Summit—and finds much work
that needs to be done.

J.M. PORUP (UK) - 9/27/2016, 10:57 PM

A The | intiv kearnal tndav farec an iinnreradanted cafatv rricic Miich like when

26 ACACES'17 Pt2 © 2017 Gernot Heiser. Distributed under CC Attribution License




Operating Systems

For Secure and Safe Embedded Suystems

Part 3: Microkernels and seL4
@GernotHeiser

AUSTRALIA

Never Stand Still Engineering Computer Science and Engineering




Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work

— to remix—to adapt the work
» under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

2 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License



Microkernels

3 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License

) AUSTRALIA



What is Needed for Safety & Security?

Need certifiable argument for isolation:
« Able to convince a skeptical certification authority

 Requires thorough analysis of trusted computing base

— What can possibly go wrong?
— Usually informal or semi-formal arguments
— ldeally formal proof

/Intractable unless )
« Small TCB
« Low conceptual complexity
 Well-defined interfaces/
interactions

< >

4 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License




Reducing TCB: Microkernels

IPC performance
— Flexible, minimal platform is criticall
— Mechanisms, not policies
— Actual OS functionality provided by user-mode servers

— Servers invoked by kernel-provided message-passing mechanism (IPC)

— Goes back to Nucleus [Brinch Hansen’70]

« ldea of microkernel: {

Application Syscall

Mode

Device

Application Driver

Kernel
Mode

IPC, virtual memory

5 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License



Monolithic vs Microkernel OS Evolution

Monolithic OS Microkernel OS
 New features add code kernel  Features add usermode code
 New policies add code kernel * Policies replace usermode code
« Kernel complexity grows * Kernel complexity is stable
4 )
« Adaptable

 Dependable
* Highly optimised/

Application Syscall k

Mode

Device

Application Driver

Kernel
Mode

IPC, virtual memory

6 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License



1993 “Microkernel”: IPC Performance

[IJS]l
400 Mach
1486 @

300 4 50 MHz
Culprit:
Cache 200 T
footprint 115 ps
[Liedtke’95] \i

100 L4

o s raw copy
0

0 2000 4000 6000
Message Length [B]

7 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License




Microkernel Principle: Minimality

A concept is tolerated inside the microkernel
only if moving it outside the kernel, i.e.
permitting competing implementations, would
prevent the implementation of the system’s
required functionality. [SOSP’95]

Limited by arch-
specific micro-
optimisation

« Advantages of resulting small kernel:
— Easy to implement, port?e © ©
— Easier to optimise
— Hopefully enables a minimal trusted computingé)ase
— FEasier debug, maybe even prove correct? Q
« Challenges:
— API design: generality despite small code base
— Kernel design and implementation for high performance

Small attack
surface, fewer
failure mode

8 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License




Microkernel Evolution

First generation

9

Eg Mach ['87]
(QNX, Chorus)

Memory Objects
Low-level FS,
Swapping
Devices
Kernel memory

Scheduling
IPC, MMU abstr.

180 syscalls
100 kSLOC
100 pys IPC

ACACES"7 Pt 3

Second generation

L4 ['995]
(PikeOS, Integrity)

Kernel memory

Scheduling
IPC, MMU abstr.

~7 syscalls
~10 kSLOC
~1 us IPC

© 2017 Gernot Heiser. Distributed under CC Attribution License

Third generation

 selL4[09]

Memory-

mangmt
library

IPC, MMU abstr.

« ~3 syscalls

« 9KkSLOC

« 0.1uslIPC

« capabilities

« design for isolation




L4: A Family of High-Performance Microkernels

First L4
kernel with
capabilities

iIOS security
CO-processor

API Inheritance

Code Inheritance

L4/MIPS
L4/Alpha
Qualcomm
. . modem chips
L3 - L4 “X” Pistachio

Fiasco Fiasco.OC
UNSW/NICTA/Data61

GMD/IBM/Karlsruhe NOVA
Dresden OK Labs

Commercial Clone

P4 — PikeOS

193 194 195 196 197 198 199 100! 01 102 03104050607 08 !09!10!11 112 113

10 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License

d . AUSTRALIA



L4 IPC Performance over 20 Years

Original 1993 486 o0 250\ 5.00
Original 1997 Pentium 160 121 \0.75
L4/MIPS 1997 R4700 100 86 10.86
L4/Alpha 1997 21064 433 45 10
Hazelnut 2002 Pentium 4 1,400 2,000 .38
Pistachio 2005 Itanium 1,500 36 .02
OKL4 2007 XScale 255 400 151 .64
NOVA 2010 i7 Bloomfield (32-bit) 2,660 288 11
selL4 2017 i7 Skylake (32-bit) 3,400 203 /0.06
selL4 2017 17 Skylake (64-bit) 3,400 138 /0.04

selL4 2017 Cortex A53 1,200 225/ 0.19

11 ACACES'17 Pt 3




Minimality: Source Code Size

Original 1486 6.4
L4/Alpha Alpha 0 14.2 14.2
L4/MIPS MIPS64 6.0 4.5 10.5
Hazelnut x86 10.0 0.8 10.8
Pistachio x86 22.4 1.4 23.0
L4-embedded ARMv5 7.6 1.4 9.0
OKL4 3.0 ARMv6 15.0 0.0 15.0
Fiasco.OC x86 36.2 1.1 37.6
selL4 ARMv6 9.7 0.5 10.2

12 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License




What Mechanisms?

 Fundamentally, the microkernel must abstract

— Physical memory: Address spaces
— CPU: Threads
— Interrupts/Exceptions

« Unfettered access to any of these bypasses security
— No further abstraction needed for devices
o memory-mapping device registers and interrupt abstraction suffices
o ...but some generalised memory abstraction needed for 1/O space

 Above isolates execution units, hence microkernel must also provide
— Communication (traditionally referred to as /IPC)
— Synchronization

Design subject to performance goals:

* Frequent operations as fast as possible (near hardware limit)
« Don’t pay for what you don’t need

13 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License




The selL4 Microkernel

14 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License

»_AUSTRALIA



@214 Design Motivation

1. Object capabilities are good for reasoning about usermode access
— Just retro-fitting them to traditional L4 is insufficient:
o Availability — need strong control over kernel resources
o Confidentiality — reason about information flow through kernel data

2. Real trustworthiness requires
strong confidence in
Implementation correctness
ideally formal proof

Critical/ Uncritical/
trusted untrusted

(o J

15 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License



@ 514 Fundamental Design Decisions

1.  Memory management is user-level ° o
responsibility
— Kernel never allocates memory (post-boot)

— Kernel objects controlled by user-mode servers

Perfor-
mance

O
P Memory management is fully delegatable

— Supports hierarchical system design
— Enabled by capablility-based access control

3. .“Incremental consistency” design pattern
O — Fast transitions between consistent states
— Restartable operations with progress guarantee

~ Real-time

4. No concurrency in the kernel
— Interrupts never enabled in k&rrél ©
— Interruption points to bound latencies
— Clustered multikernel design for multicores

Verification,
Performance

16 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License



What’s Different to Other Microkernels?

(. : :
Design for isolation: v
N Strong isolation,
o me':nory No shared kernel
allocation by kernel resources

Can revoke
delegation

Resource Manager Resource Manager
Resources fully
delegated, allows
autonomous |+D 1+D
operation

~am (@ 14| GRrM
1+D 1+D

= UNSW

17 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License




Core Mechanism: Retype of “Untyped” Memory

Retype (Untyped, 27)

Retype (Frame, 22) Retype (Untyped, 21)

\ Retype (CNode, 2, 2n) Retype (TCB, 2")
Revoke()

.“vw@m..w




selL4 Isolation Goes Deep

/High 3

~

“Low h

Kernel data
partitioned
like user data

19 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License




How About Real Time?

* Kernel runs with interrupts disabled
— No concurrency control = simpler kernel

o Easier reasoning about correctness

Limited
concurrency
in kernel!

while (!done) {

o Better average-case performance process_stuff();
_ " PSW.IRQ_disable=1;
* How about long-running system calls” PSW.IRQ_disable=0;
— Use strategic premption points J

— (Original) Fiasco has fully preemptible kernel
o Like commercial microkernels (CiNX,Green Hills INTEGRITY)

WRONG
WAY

GO BACK

Lots of
concurrency
in kernel!

20 ACACES'17 Pt3 © 2017 Gernot Heiser. Distributed under CC Attribution License




@214 Incremental Consistency

interrupts
Abort &
- restart later
Kernel . O(1) . Kernel

Enable
interrupts

entry operation exit
A
Check pending
interrupts
O(1) O(1) O(1)
operation operation operation

« Consistency
» Restartability
* Progress

5} Y

=
21 ACACES'17Pt3 © 2016 Gernot Heiser. Distributed under CC Attribution License " v: AU S TRALIA
]



Multicore selL4

22 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License

) AUSTRALIA



Microkernel vs Monolithic OS Execution

a o ml m\

Linux Kernel 10s of ms

N /

Microkernel

Server 10s of ms

Kernel

\ 0.1us

23 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License




Cache Line Migration Latencies

Core Core Core Core

L1 cache L1 cache L1 cache

L1 cache

1,000-10,000
cycles

10-20
ycle

Q

L2/L3 cache ‘

p—

Data transfer takes
much longer than

‘ code execution!
/

\
Main memory

24 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License

“AUSTRALIA



1 Cost of Locking

X86 (Haswell) ARM A9
600 | | | | | | l
500+ T —— IR R B
" A0 H 1 e ERRREERRES o . - =
@ L o Sl |
(% 300 H R S R R f —
200 H « © 0o © M - © o 0o [
Al o o (@) ~— (@)) <t
100 H R EEEEREE R EEREEECEE T — — =
| \é | | | ~s¢| |
= X
O [e; O [o;
¢ 9 go & $ ¢ g
(@) \O) ~N \Q N o) \O) N \P
T @ §§& 5 T @ §¢
NS (%) TN
Q IS Q
& ® &
L IS g

Locks have a cost —
significant in a fast microkernel!

25 ACACES'17 Pt 3 © 2016 Gernot Heiser. Distributed under CC Attribution License



. Multicore Design: Clustered Multikernel

Virtual Virtual Virtual Virtual
CPU CPU CPU CPU

HW HW HW HW
context context context context

L2/L3 cache

Virtual Virtual Virtual Virtual
CPU CPU CPU CPU

HW HW HW HW
context context context context

L2/L3 cache

Main memory

26 ACACES'17 Pt3

© 2016 Gernot Heiser. Distributed under CC Attribution License

=

AUSTRALIA



¢ 4 Big-Lock Scalability

Speedup

35 Cycles between
system calls

30
25
20
15
10 Un-

realistic

UGG

10 5> 20

Cores

25 30 35

Size of
cluster

27 ACACES'17 Pt3 © 2016 Gernot Heiser. Distributed under CC Attribution License




Mixed Criticality:
Temporal Integrity

28 ACACES'17 Pt 3 © 2017 Gernot Heiser. Distributed under CC Attribution License e UNSW
| 2

AAAAAAAAA



Classical L4 Scheduling

« 256 hard priorities (0—255)
— Periorities are strictly observed
— The scheduler will always pick the highest-prio runnable thread
— Round-robin scheduling within prio level

 Thread scheduling parameters:

— Priority
— Time slice

29 ACACES"17 Pt3

Issue:
* highest-prio can monopolise CPU

* Priority = “importance”

~

/

© 2017 Gernot Heiser. Distributed under CC Attribution License




@24 Issue with Priority = Importance

‘N A

e ... to avoid packet loss

W driver must preempt control loop

* Driver must run at high prio

* Driver must be trusted not to monopolise CPU
N P Y,

R eVE 00
Sjeiis ay— Runs frequently but for
short time (order of ys)
S Control W
ensor loop
readings 2 3 (_> drlver 3 € interrupts
L

30 ACACES'17 Pt3 © 2016 Gernot Heiser. Distributed under CC Attribution License




o 14 Shared Intra-Core Servers

Client; 3
Prio P | Server

Ps > max (P4, P,)
Client, 3 Prio Ps

Prio P,

31 ACACES'17 Pt 3 © 2016 Gernot Heiser. Distributed under CC Attribution License



@214 Problem With Shared Servers

Running

Has used no time,

Keeps running l Running

Client, 3

Client, 3

Can effectively DoS Shared server has
same-prio threads! highest prio, runs as
long as it has work

32 ACACES'17 Pt3 © 2016 Gernot Heiser. Distributed under CC Attribution License




@ +4 Separate Scheduling & Threads

Classical thread attributes New thread attributes

o Priority Not o Priority

« Time slice \alLpnatle _/ * Scheduling context capability

Limits CPU /

access! Scheduling context object
« T: period High-prio thread
"¢ C:budget (=£T) cannot monopolise

SchedControl capability

a8 S conveys right to assign
C= 250 5 . budgets (i.e. perform

-‘ admission control)

\
~ -
C=2
— _ _
- ~,
/ \
|

33 ACACES'17 Pt 3 © 2016 Gernot Heiser. Distributed under CC Attribution License



@214 Shared Server w. Scheduling Contexts

Running
Client is l
charged for Running
server’s time Client, 3

i
Com [ &

Client, 3

Server runs on
client’s scheduling
context

Budget expiry
during server
execution?

34 ACACES'17 Pt3 © 2016 Gernot Heiser. Distributed under CC Attribution License




q 1 Budget Expiry Options

e Multi-threaded servers (COMPOSITE [Parmer ‘10])

— Model allows this
— Forcing all servers to be thread-safe is policy &

« Bandwidth inheritance with “helping” (Fiasco [Steinberg “10])
— Ugly dependency chains &
— Wrong thread charged for recovery cost @

« Use timeout exceptions to trigger one of several possible actions:
— Provide emergency budget ( 1.
— Cancel operation & roll-back server
— Change criticality
— Implement priority inheritance (if you must...)

35 ACACES'17 Pt3 © 2017 Gernot Heiser. Distributed under CC Attribution License




Operating Systems
For Secure and Safe Embedded Suystems

Part 4: Formal Verification
@GernotHeiser

AUSTRALIA

Never Stand Still Engineering Computer Science and Engineering




Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work

— to remix—to adapt the work
» under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

2 ACACES'17 Pt 4 © 2017 Gernot Heiser. Distributed under CC Attribution License



Proving Security

3 ACACES'17 Pt 4 © 2017 Gernot Heiser. Distributed under CC Attribution License

) AUSTRALIA



A 30-Year Dream

1. Introduction

Early attempts to make operating systems secure mere-

Iy found and fixed flaws in existing systems. As these

efforts failed, it became clear that piecemeal alterations

Operating R. Stockton Gaines were unlikely ever to succeed [20]. A more systematic
Systems Editor method was required, presumably one that controlled the
. v system'’s design and implementation. Then secure opera-
Speclﬁcatlon and tion could be demonstrated in a stronger sense than an in-
genuous claim that the last bug had been eliminated, par-

Veriﬁcation Of the ticularly since production systems are rarely static, and er-

rors easily introduced.

UCLA UniXT Security Our research seeks to develop means by which an

operating system can be shown data secure, meaning that

Kernel direct access to data must be possibie only if the recorded

protection palicy permits it. The two major components

Bruce J. Walker, Richard A, K=~=a=as a=d of this sk are: (1) develanine svstem hi that
B s N

Gerald J. Popek
University of California, Los A

Data Secure Unix, a kernel structy

Our research seeks to develop means by which an
fnsheinh i operating system can be shown data secure, meaning that

methods were extensively applied as a
means of demonstrating security enfor

e e (1 PCCEL ACCESS 1O data must be possible only if the recorded

work represents a significant attempt
scale, production level software systen

st PFOtECtiON palicy permits it. The two major components

Key Words and Phrases: verificatio

operating systems, pr progran.
gy, ALPHARD, formal specifications, Unix, security PVEe. " . ‘
kernel step is discussed, an estimate of the completed portion of

CR Categories: 4.29, 4,35, 6.35 that step is given, together with an indication of the

amount of work required for completion. One should
realize that it is essential to carry the verification process
through the steps of actual cede-level proofs because most
security flaws in real systems are found at this level [20].
Sccurity flaws were found in our system  during
verification. despite the fact that the implementation was
written car

 Unix is a Trademark of Bell Laboratories. oncTc::;ct:: - -

Permission to copy without fee all or part of this material is ' mm t F b ‘lla l 980
granted provided that the copies are not made or distributed for engineering 0 unl Ca ,ons e r l ’
direct commercial advantage, the ACM copyright notice and the this case st
title of the publication and its date appear, and notice is given that 4
copying is by permission of the Association for Computing gram provi O vo u me 2
Machinery. To copy otherwise, or to republish. requires a fee munity bec
and/or specific permission, archi

This research was suppoerted by the Advanced Research Pro- em '".‘hw
jects_Agency of the Department of Defense under Contract MDA the researc e um cr
903-77-C-0211. Authors' present addresses: B.J. Walker and G J. We assume
Popek. Department of Computer Science, University of Califor-

nia, Los Angeles, CA 90024; R.A. Kemmerer, Computer Science ing system
Department, University of California, Santa Barbara, CA 93106 methods, 4
© 1980 ACM 0001-0782/80/0200-01 15 $00.75. structured software. Understa B
s Communications February 1980
of Volume 23

the ACM Number 2

4 ACACES'17 Pt 4 © 2017 Gernot Heiser. Distributed under CC Attribution License




@214 Provable Security Enforcement

Confiden-
tiality

Translation C Imple- /Exclusions (at present): N
correctness mentation
[PLDI'13]

Integrity Avalilability

Isolation
properties
[ITP'11, S&P’13]

Abstract
Model Functional

correctness
[SOSP’09]

* Initialisation
lg - Privileged state & caches
a8

Worst-case = * Multicore
execution time

[RTSS'11, RTAS'16] Binary code \-Covert timing channels /

5 ACACES'17 Pt 4 © 2017 Gernot Heiser. Distributed under CC Attribution License




o .4 Proving Functional Correctness

Abstract

Model

Refinement: All
possible
implementation
behaviours are
captured by model

117,000 LOP

oQQ

Executable
Model

OCDC>

50,000 LOP

C Imple-
mentation

6 ACACES'17 Pt 4 © 2017 Gernot Heiser. Distributed under CC Attribution License




g 4 Proving Functional Correctness

constdefs
schedule :: "unit s monad"

"schedule = do
threads <« allactiveTCBs;
thread <« select threads;

do _machine op flushCaches OR return ();

modify (As. s (| cur thread := thread [)
Odll
schedule :: Eernel ()
schedule = do
—_ . - PR S BEPTS PR, PR SR R S ——
wold
setPriority(tch_t *tptr, prio_t prio) £

prio_t oldprio;

if(thread_state_get_tchQueued(tptr->tchState)) {
oldprio = tptr->tchPriority;
ksReadyQueues[oldprio] = tcbSchedDequeue(tptr, ksReadyQueues([t

if({isRunnable(tptr)) £
ksReadyQueues[prio] = tcbSchedEngueue(tptr, ksReadyQueues
3

else {
thread_state_ptr_set_tcbQueued{&tptr->tchState, false);

3

tptr->tcbPriority = prio;
3

wold
yieldTo(tch_t *target) f§
target->tchTimeSlice += ksCurThread->tchTimeSlice;

7 ACACES'17 Pt 4 © 2017 Gernot Heiser. Distributed under CC Attribution License

ad

curThread
meSlice curThread

ime

0) chooseThread

AUSTRALIA




MIT
Technology

Review

A LISTS = INNOVATORSUNDER35 @ DISRUPTIVE COMPANIES BREAKTHROUGH TECHNOLOGIES

|0 BREAKTHROUGH
TECHNOLOGIES

Crash-Proof Code

Making critical software safer

WILLIAM BULKELEY




seL4 Formal Verification Summary

Can prove further
properties on
abstract level!

Kinds of properties proved

e Behaviour of C code is fully captured by abstract model

e Behaviour of C code is fully captured by executable model
« Kernel never fails, behaviour is always well-defined

e assertions never fail

* will never de-reference null pointer

e cannot be subverted by misformed input
e All syscalls terminate, reclaiming memory is safe, ...
 Well-typed references, aligned objects, kernel always mapped...
e Access control is decidable

9 ACACES'17 Pt 4 © 2017 Gernot Heiser. Distributed under CC Attribution License



@14 Binary Code Verification

C semantics |
Functional ”
code

solver etc
compiler

4—— LT

ISA spec |

10 ACACES'17 Pt4 © 2017 Gernot Heiser. Distributed under CC Attribution License

Target of functional
correctness proof

Formalised

C source

3

Functional

code

Formalised
binary




Security vs Safety

Safety e

Avalilability

Timeliness PR Confidentiality

Integrity




@14 Integrity: Limiting Write Access

Domain 2

Kernel data
partitioned
like user data

To prove:

« Domain-1 doesn’t have write capabilities to Domain-2 objects
= no action of Domain-1 agents will modify Domain-2 state

« Specifically, kernel does not modify on Domain-1’s behalf!
— Event-based kernel operates on behalf of well-defined user thread

— Prove kernel onlz allows write qun caEabiIitz Bresentation

12 ACACES'17 Pt4 © 2017 Gernot Heiser. Distributed under CC Attribution License




@214 Availability: Ensuring Resource Access

» Strict separation of kernel resources
= agent cannot deny access to another domain’s resources

* Nothing to do: implied by other properties

13 ACACES'17 Pt4 © 2017 Gernot Heiser. Distributed under CC Attribution License




@::.4 Confidentiality: Limiting Read Accesses

Violation not
observable
by Domain 2!

To prove:

« Domain-1 doesn’t have read capabilities to Domain-2 objects
= no action of any agents will reveal Domain-2 state to Domain-1

~
Non-interference proof :

« Evolution of Domain 1 does not depend on Domain-2 state

« Also shows absence of covert storage channels
N /

14 ACACES'17 Pt4 © 2017 Gernot Heiser. Distributed under CC Attribution License




Worst-Case Execution Time (WCET) Analysis

Accurate &
Control sound model of
Flow pipeline, caches

Graph

Program
binary

Micro- Integer
architecture linear
model equations

-

Loop Infeasible
bounds path info Scalability!

Pessimism!

15 ACACES'17 Pt4 © 2017 Gernot Heiser. Distributed under CC Attribution License




@14 Proving Loop Bounds & Infeasible Paths

 selL4is world’s only protected-

Moael +

: Inject Invariants
Invariants

C Imple-

. Add Annotations
menfation

Loop
<00t bounds

High-

Semantic-rich

Binary P\ Path

Infeasibility

WCET

_ - assurance
Analysis

16 ACACES'17 Pt4 © 2017 Gernot Heiser. Distributed under CC Attribution License




Verification Cost

17 ACACES'17 Pt 4 © 2017 Gernot Heiser. Distributed under CC Attribution License

) AUSTRALIA



@24 Verification Cost Breakdown

Haskell design 2 py

C implementation 2 months
Debugging/Testing 2 morﬁ/
Abstract spec refinement 8 py

Executable spec refinement | 3 py
Fastpath verification 5 months

Formal frameworks 9 py
Total 24 py
Repeat (estimated) 6 py
Traditional engineering 3—4 py

18 ACACES'17 Pt4 © 2017 Gernot Heiser. Distributed under CC Attribution License




Why So Hard for 9,000 LOC?

selL4 call
graph

19 ACACES'17 Pt4 © 2017 Gernot Heiser. Distributed under CC Attribution License




er.l4 Cost of Assurance

Confiden-
{E=1114Y;

Availability Integrity

&\L o
4 months
{ 4.5 py Abstract
Model
0 py
11 py jLBy construction}

4.5 years
2 py, 1.5 years C ITptI_e-
Mostly for tools A
3 py, 2 years Estimat t
Mostly for tools Binary Stimate repea
code cost: $200/SLOC

20 ACACES'17 Pt4 © 2017 Gernot Heiser. Distributed under CC Attribution License




Microkernel Life-Cycle Cost in Context

q 1
$400
_ Green Hills
Revo:utlon Integrity
g - Fast! $1000
c
O
5’; Slow!
N
< L4
Pistachio

$100

100 250 500 750 1000
Cost ($/SLOC)

21 ACACES'17 Pt 4 © 2017 Gernot Heiser. Distributed under CC Attribution License




Cost of Assurance

Industry Best Practice:
« “High assurance”: $1,000/SLOC, no guarantees,
 Low assurance: $100-200/SLOC, 1-5 faults/kSLOC,

State of the Art — selL4:

— $400/LOC, 0 faults/kSLOC,
« Estimate repeat would cost half

— that’s about twice the development cost of the predecessor Pistachio!
« Aggressive optimisation [APSys’'12]

— much faster than traditional high-assurance kernels

— as fast as best-performing low-assurance kernels

22 ACACES'17 Pt4 © 2017 Gernot Heiser. Distributed under CC Attribution License




Operating Systems

For Secure and Safe Embedded Suystems

Part 5: Using sel4 for Trustworthy Systems
@GernotHeiser

AUSTRALIA

Never Stand Still Engineering Computer Science and Engineering




Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work

— to remix—to adapt the work
» under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

2 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License



selL4 Concepts

3 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License

) AUSTRALIA



Remember: Microkernel # Operating System

4 N\
Device drivers, file systems, crypto,

power management, virtual-machine

Kmonitors are all usermode processes

)

Strong
Isolation
File NW Device Process Memory
System Stack Driver Mgmt Mgmt
IPC

Processor
Controlled

Communication

4 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License



selL4 Concepts

« Capabilities (Caps)
— mediate access ( m
* Kernel objects: /3
— Threads (thread-control blocks: TCBs)
— Address spaces (page table objects: PDs, PTs)
— Endpoints (IPC)
— Notifications

— Capability spaces (CNodes)

— Frames———

— Interrupt objects (architecture specific)
— Untyped memory

 System calls -
— Send, Wait (and variants)

— Yield

5 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License




@ Inter-Process Communication (IPC)

 Fundamental microkernel operation
— Kernel provides no services, only mechanisms

— OS services provided by (protected) user-level server processes
— invoked by IPC

Server

« selL4 IPC uses a handshake through endpoints:

— Transfer points without storage capacity _
_ send receive
— Message must be transferred instantly

o Single-copy user = user by kernel

6 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License




@ IPC: Endpoints

Thread, Thread,
Running Blocked Blocked F§Jnning
3 ..... Wait (ep1_cap, ...)

Send (ep1_cap, )_@_) l ......
Wait (ep2_cap, ...) 3
I (_@_ Send (ep2_cap, ...)
E E

« Threads must rendez-vous for message transfer
— One side blocks until the other is ready

— Implicit synchronisation
« Message copied from sender’s to receiver’'s message reqisters

— Message is combination of caps and data words

© 2017 Gernot Heiser. Distributed under CC Attribution License

AUSTRALIA

7  ACACES"7Pt5



@ IPC Endpoints are Message Queues

Server

Client, ?
\
Client, 3 g

Kernel

First invocation * EP has no sense of direction
queues caller « May queue senders or receivers
Further callers of :
O — never both at the same time!
queue behind « Communication needs 2 EPs!

8 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License




@ Client-Server Communication

* Asymmetric relationship:
— Server widely accessible, clients not Client, Client,

— How can server reply back to
correct client?

« Client can pass (session) reply cap in first request
— Server needs to maintain session state
— Forces stateful server design

« sel4 solution: Kernel provides single-use reply cap
— Only for Call operation (Send+Wait)
— Allows server to reply to client
— One-shot (automatically destroyed after first use)
— Supports stateless servers

9 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License




@ Call RPC Semantics

Client
Client Kernel Server
Wait(ep,&rep)
Call(ep,...)
mint rep
deliver to server
process
Send(rep,...)
deliver to client
destroy rep
process process

10 ACACES'17 Pt5 © 2017 Gernot Heiser. Distributed under CC Attribution License




@ Stateful Servers: Identifying Clients

Stateful server serving multiple clients

 Must respond to correct client
— Ensured by reply cap

Client, Server

No'—N

Client,

|

 Could use separate EP per client

— endpoints are lightweight (16 B)
— but requires mechanism to wait on a set of EPs (like select)

Client; \/
state

 Must associate request

with correct state Client, \/

state

* Instead, selL4 allows to individually mark (“badge”) caps to same EP
— server provides individually badged caps to clients
— server tags client state with badge
— kernel delivers badge to receiver on invocation of badged caps

11 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License




% Notifications: Semaphore Synchronisation

« Logically, a Notification is an array of binary semaphores
— Multiple signalling, select-like wait
— Not a message-passing IPC operation!

Thread; Thread,

Implemented by Running Blocked Blocked  Running

data word in Notification

— Send OR-s sender’s w = Poll (ep_cap, ...)
cap badge to data word
w = Wait (ep_cap,...)

— Receiver can poll or wait | -----
T Notify (not_cap, ...
o waiting returns and ify (not_cap )—ﬂ I I I;-)

clears data word ?
Notify (not_cap, ...)

o polling just returns 3
data word

12 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License




Q 4 Shared Servers for Critical Sections

Client, 3
Messages v WddJ
Semaphores
Client, 3
Hoare-style monitor Semaphore synchronisation
Suitable intra-core Suitable inter-core
serv_1() { client() { serv_2() {
while (1)
wait(ep); while (1) {
while (1) { call(ep) wait(sem_rq);
[* critical section */ S|gnal sem ry/ [* critical section */
Reply&walt(ep signal(sem_ry);
walt(sem rq): }
} }
}

13 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License




@ ::.4 Shared Intra-Core Servers Implement
Priority Ceiling Protocol (IPCP)

: IPCP:
Client; 3 Ps = max (Ps, Py) + 1
Prio P, | Server

' Prio P
Client 3 : Immediate Priority Ceiling:
-. » Requires correct priority
e configuration

 Deadlock-free

« Easy to implement

 Good worst-case
blocking times

14 ACACES'17 Pt5 © 2017 Gernot Heiser. Distributed under CC Attribution License




E.g. UAV (HACMS) Mission Computer

UART HARY Server CAN CAN
Rx n 200Hz ¥ Tx
200Hz 200Hz
UART CAN
out RXx
200Hz Gateway
Lx VM 200Hz
camera
200z \.\ CAN _| CAN
200Hz Tx
triE"eer;g o | Periodic || | [Ne CAN
gl'gsk Task Section Rx

15 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License




@% Waiting on EP and Notification

Client

Driver

Server with synchronous and asynchronous interface
« Example: file system
— synchronous (RPC-style) client protocol
— asynchronous notifications from driver
« Could have separate threads waiting on endpoints
— forces multi-threaded server, concurrency control
« Alternative: allow single thread to wait on both channels
— Notification is bound to thread
— thread waits on endpoint
— Notification delivered as if caller had been waiting on it

16 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License




% Interrupt Handling

IRQ triggered. Handler performs
Kernel signals appropriate action.
Notification

‘% - Interrupt handler
. 3 (device driver)

Handler waits }

Kernel ACKs IRQJ on Notification

17 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License

) AUSTRALIA



Building
Trustworthy Systems

18 ACACES'17 Pt5 © 2017 Gernot Heiser. Distributed under CC Attribution License o UNSW
| 2

AAAAAAAAA



@214 Security by Architecture

Incremental

process:
migrate in
pieces

Virtual
machine

for legacy

/UncriticaI/

untrusted

- Apps
(CriticaI/ Critical/
ktrusted trusted \ v/

19 ACACES'17 Pt5 © 2017 Gernot Heiser. Distributed under CC Attribution License




er.l4 Example: Communicating Processes

Thread-Object 5 CSpace e Thread-Object,
CNOdeA1 CNOdeB1

CNodeA2

CONTEXT [,["]

=
— |
[
X
L
=
Z
o




q 1 Component Middleware: CAmKES

Higher-level abstractions of
low-level selL4 constructs

CompA:A g

Gomponent

SharedData

Cconnector)

CompC:C g

interface )

CompB:B {

AsynchEvent

<

21 ACACES'17 Pt 5 © 2017 Gernot Heiser. Distributed under CC Attribution License




o 4 Case Study: DARPA HACMS

Retrofit
existing

system!

= E o
S

US Army Autonomoué
Tru‘cks

Develop

SMACCMcopter decliueleel

Research Vehicle GVRbot

22 ACACES17 Pt5




g 4 Case Study: Simplified HACMS UAV

Attacker cannot
break out of VM

No other
data

________ Radio Data flow!
Driver Link
Uncriticallu

CryptOE ) contalned
o

-------- B
= |

23 ACACES'17 Pt5 © 2017 Gernot Heiser. Distributed under CC Attribution License




@24 Automating the Abstraction

CAmMKES: Architecture spec /Limitations (at N
present):

» Glue code verification
on subset of connectors

u Initialisation verified
on model-level only

capDL: Authority spec
A

@

— glue.
rea
Object CSpace C
CNode EP -
- |

I
\ \ J, Compiler/
Linker
init.c binary J

24 ACACES'17 Pt5 © 2017 Gernot Heiser. Distributed under CC Attribution License



g 4 Model-Driven Design Using AADL

Roclaé_ve A
Control Architecture ofins
DSL Generate Analysis &

. . UNIVERSITY
gd lois Design OF MINNESOTA

Component
Description

SIIENETD)

Behavioural
Code Glue

Code

25 ACACES'17 Pt5




In the Real World (Courtesy Boeing, DARPA)

26 ACACES'17 Pt5 © 2017 Gernot Heiser. Distributed under CC Attribution License




Work In Progress:
Automating Verification

27 ACACES'17 Pt5 © 2017 Gernot Heiser. Distributed under CC Attribution License e UNSW

B/ AUSTRALIA



er.l4 Remember: 2-Step Refinement

Abstract
Spec Implementation
in HLL

Domain-
specific
language?

- "y Executable
Spec

Automate? °
®
Manual
translation
C Imple-
mentation

28 ACACES'17 Pt5 © 2016 Gernot Heiser. Distributed under CC Attribution License




Cogent: Code and Proof Co-Generation

R Manually prove
program logic

Cogent language:
 Purely functional, type- and memory-

safe
, r I N N S -I
I COGENT high-level
Compiles specification . proofs

to C

COGENT compiler _
Compiler

generate I
generates spec
: and proof
ADT g;enerated import : C code linking to C
library C code semantics
[ Isabelle/HOL
\‘—-—-—-—-—-—J

29 ACACES'17 Pt5 © 2017 Gernot Heiser. Distributed under CC Attribution License

2 AUSTRALIA



051-.14 Remember: Verification Cost Breakdown

Abstract
Spec

Cogent spec
higher level than
selL4 exec spec

/- Successful \

file-system 8p
case study

a

. E::Vevg?;(ng 0 Executable
\_ stacks Y Spec
C Imple-
mentation

Fully automated
in Cogent

30 ACACES'17 Pt5 © 2016 Gernot Heiser. Distributed under CC Attribution License




Thank you

© 2017 Gernot Heiser. Distributed under CC Attribution License

ACACES"7 Pt 5

31

& UNSW

AUSTRALIA



