

Trustworthy Operating Systems

For Critical Embedded / Cyber-Physical Systems

Gernot Heiser | gernot.heiser@data61.csiro.au | @GernotHeiser Trustworthy Systems | Data61 CSIRO and UNSW Sydney

Embedded Systems Week, Seoul 2017

Embedded Systems Security – An Oxymoron?

Car Hacking – What's Behind?

Networking for:

- Entertainment
- Connected car
- Safety (tire pressure...)
- Maintenance (OTA upgrades)

No security

whatsoever

on CAN bus!

Challenge of Networking

Networking creates remote attack opportunities

- from passengers (wifi, Bluetooth)
- from nearby cars (wifi, Bluetooth) –
 drive-by shooting, spread of viruses
- from anywhere (cellular)

BlueBorne

Attack vectors:

- Insecure protocols
- Reusing crypto keys
- Software

Software Vulnerabilities

Complexity Drivers

- Features/functionality
- Legacy reuse

Linux kernel:
Tens of millions lines

Linux "Security"

RISK ASSESSMENT -

Unsafe at any clock speed: Linux kernel security needs a rethink Software will break

Ars reports from the Linux Security Summit—and finds much work that needs to be done

J.M. PORUP (UK) - The enemy will be on the platform!

OK, So Let's Patch Regularly

Patch-and-Pray: A losing proposition

So, Let's Use Firewalls!

- Imposes overhead (SWaP) or
- Runs on vulnerable OS ⇒ worthless if OS compromised
- Even more code may *increase* attack surface
- No help for valid messages that trigger bugs in software

Firewalls treat symptoms, not causes of problems!

Let's Use AI to Detect Compromise!

- Runs on vulnerable OS ⇒ worthless if OS compromised
- Even more code may *increase* attack surface
- Can only detect that system is already compromised

Intrusion detection: admission of defeat

Trustworthy Operating Systems

Fundamental Security Requirement: Isolation

Communication subject to global security policy

Trustworthiness: Can We Rely on Isolation?

A system is **trustworthy** if and only if:

- it behaves exactly as it is specified,
- in a timely manner,
- while ensuring secure execution

Claim:

A system must be considered *untrustworthy* unless *proved* otherwise!

Corollary [with apologies to Dijkstra]:

Testing, code inspection, etc. can only show lack of trustworthiness!

Provably Secure Operating System

~10,000 lines of code

Small attack surface,

Amenable to verification

All operations explicitly authorised by an access token, i.e. capability

- Confined damage
- Least privilege

World's fastest OS designed for security and safety

Suitable for real world

capability-based, Code that

OS kernel

fast,-

stueucodwoo access control VM IPC Threads

hardware

Code that runs in privileged mode of the hardware

Most critical part

Unprivileged mode

Privileged mode

SEL4 20+ Years of L4 Microkernel R&D

Sel4 Proving Trustworthiness of sel4

Isolation properties

[ITP'11, S&P'13]

Confidentiality

Integrity

Availability

Exclusions (at present):

- Initialisation
- Low-level MMU model
- Caches
- Multicore
- Covert timing channels

Translation correctness [PLDI'13]

Worst-case execution time [RTSS'11, RTAS'16] **Abstract** Model

<u>100</u>

C Implementation

Binary code

Functional

correctness [SOSP'09]

Provably impossible:

- **Buffer overflow**
- Null-pointer dereference
- Code injection
- Memory leaks
- Kernel crash
- Undefined behaviour
- Privilege escalation

Sel4 How Does sel4 Compare?

Feature	seL4	Other hypervisors, RTOSes, separation kernels
Performance	Fastest	2–10 × slower
Functional	Proved	No Guarantee
correctness		
Isolation	Proved	No Guarantee
Worst-case	Sound &	Estimates only
latency bounds	complete	or no protection
Storage channel	Proved	No Guarantee
freedom		
Timing channel	Low overhead	None or High Overhead
prevention	(in progress)	
Mixed-criticality	Fully supported,	Limited, resource-wastive
support	high utilisation	

What's Under the Hood?

Capability-Based Access Control

Capability = Access Token: Prima-facie evidence of privilege

Eg. thread, address space communication channel

Eg. send, receive, stop...

Any system call is invoking a capability: err = method(cap, args);

Capabilities provide

- Fine-grained access control
- Reasoning about information flow

Sel4 Example: Communicating **Processes**

Example: Virtualisation

Only seL4 can bypass isolation!

Cross-Partition Communication

No communication unless:

- explicitly authorised
- via an Endpoint capability

Result: Security by Architecture

Real-World Use

DARPA HACMS Program

Boeing Unmanned Little Bird

Retrofit existing system!

US Army Autonomous Trucks

SMACCMcopter Research Vehicle

Develop technology

TARDEC GVR-Bot

Sel4 Issue: Capabilities are Low-Level

Component Middleware: CAmkES

Example: Simplified HACMS UAV

Sel4 Enforcing the Architecture

Architecture Analysis

Real-World Use **Courtesy Boeing, DARPA**

Military-Grade Security

Cross-Domain Desktop Compositor

Multi-level secure terminal

- Successful defence trial in AU
- Evaluated in US, UK, CA
- Formal security evaluation soon

Pen10.com.au crypto communication device undergoing formal security evaluation in UK

Beyond the Kernel: Verifying Userland

Beyond Kernel: Trustworthy Userland

Cogent: Code + Proof Co-Generation

Cogent language:

- Purely functional, type- and memory-safe
- Not managed, no run-time system

Manually prove program logic

Dependable & Affordable Systems

Dependability-cost tradeoff:

- Reduced faults through safe language
- Property-based testing (QuickCheck)
- Model checking
- Full functional correctness proof

Work in progress:

- File-system case study
- Extending to network stacks and device drivers
- More domain-specific language layer

Trustworthy Systems Are Possible!

Thank you, awesome Trustworthy Systems Team!

Thank you, Audience!

Military-Grade Security for You!

Security is no excuse for poor performance!

Gernot Heiser | gernot.heiser@data61.csiro.au | @GernotHeiser Embedded Systems Week, Seoul 2017

Temporal Isolation

OSEL4 Core Mechanism: Budget

Thread scheduling parameters

- P: Priority
- SC: Scheduling context capability

- Integrates with spatial access control
- Supports reasoning about isolation

Integrity property:

- Observe priorities for runnable threads
- Thread not runnable when out of budget

C = 2 T = 3

C = 250 T = 1000

- **Scheduling context object**
- T: period
- C: budget (≤ T)

Critical Sections: Resource Server

Can implement arbitrary policy

SEL4 Example: SMACCMcopter

