
https://trustworthy.systems

Stop the Leaks!
Towards Provable Information Security with seL4
Gernot Heiser | gernot.heiser@data61.csiro.au | @GernotHeiser
Trustworthy Systems | Data61

Operating-System Security – An
Oxymoron?

ISSISP July'18 | Gernot Heiser2 |

Abstract
Model

Integrity

Proof

C Imple-
mentation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional
correctness

Isolation properties

Translation
correctness

Exclusions (in progress):
• Initialisation
• Privileged state & caches
• Multicore

Worst-case
execution time

World’s fastest
microkernel!

Provable Security Enforcement

ISSISP July'18 | Gernot Heiser3 |

SPATIAL ISOLATION ONLY!

Background: Timing Channels
Safety: Timeliness
• Execution interference

Security: Confidentiality
• Leakage via timing channels

High Low

Observe execution speed:
Confidentiality violation

Affect execution speed:
Integrity violation

ISSISP July'18 | Gernot Heiser4 |

Timing Channels: Conflicts on Shared HW

ISSISP July'18 | Gernot Heiser5 |

Cache

Cache footprint of one process
affects progress of others!

Sharing can be:
• Concurrent multicore,

HW thread
• Time-shared

“Caches” include:
• L1 I-, D-cache
• TLB
• Branch predictor
• Instr. prefetcher
• Data prefetcher
• off-core caches & busses

High Low

Aim: Black-Box Mitigation

ISSISP July'18 | Gernot Heiser6 |

High Low

Prevent observation of
execution speed

• OS-enforced isolation
• No requirement for modifying user code
• High and Low code untrusted – mandatory confinement
• Should also protect against data-dependent execution time

Time protection,
just like standard
memory protection

Eliminates covert channels
required for
Meltdown/Spectre
exploits

Mitigation: Prevent Sharing of State

ISSISP July'18 | Gernot Heiser7 |

High Low

Cache
Context Switch

Flush

Cannot partition on-core
caches (L1, TLB, branch
predictor, prefetchers)
• virtually-indexed
• OS cannot control access

Cache

High Low

High Low

Cache
Partition through

page colouring

Issues
1. Feasibility: Can we close all channels?

2. Efficiency: Can we do this with bearable cost?

3. Trustworthiness: Can we prove there are no channels?

ISSISP July'18 | Gernot Heiser8 |

Feasibility

Methodology: Intra-Core Channels

High Low

Cache
Context Switch

Flush

Cache

High Low

• Disable data prefetcher
• On context switch, perform all architected flush operations:

• wbinvd
• invpcid (Intel-64) or reload CR0, CR3 (IA-32)

• Optionally test (meanwhile revoked) Spectre microcode patch

ISSISP July'18 | Gernot Heiser10 |

Channel Analysis

ISSISP July'18 | Gernot Heiser11 |

High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

L1 D-cache channel
Intel Sandy Bridge 32-bit

Unmitigated Maximally mitigated

High cache footprint
Lo

w
 e

xe
cu

tio
n

tim
e

Horizontal variation
indicates channel

No channel

Channel Analysis

ISSISP July'18 | Gernot Heiser12 |

High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

L1 I-cache channel
Intel Sandy Bridge 32-bit

Unmitigated Maximally mitigated
High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Channel!

Channel Analysis

ISSISP July'18 | Gernot Heiser13 |

High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

L1 I-cache channel
Intel Haswell 64-bit

Unmitigated Maximally mitigated
High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e
Reason unclear,
suspect instruction
prefetcher

Channel!

Channel Analysis

ISSISP July'18 | Gernot Heiser14 |

High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

L1 I-cache channel
Intel Haswell 64-bit

Unmitigated Maximally mitigated
Including Spectre microcode patch

High cache footprint
Lo

w
 e

xe
cu

tio
n

tim
e

Channel!

Channel Analysis

ISSISP July'18 | Gernot Heiser15 |

Branch target buffer channel
Intel Haswell 64-bit

High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Unmitigated Maximally mitigated
High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Channel!

Channel Analysis

ISSISP July'18 | Gernot Heiser16 |

Branch target buffer channel
Intel Haswell 64-bit

High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Unmitigated Maximally mitigated
Including Spectre microcode patch

High cache footprint
Lo

w
 e

xe
cu

tio
n

tim
e

No channel
(probably)

Channel Analysis

ISSISP July'18 | Gernot Heiser17 |

Branch history buffer channel
Intel Sandy Bridge 32-bit

High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Unmitigated Maximally mitigated
High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Channel!

Channel Analysis

ISSISP July'18 | Gernot Heiser18 |

Branch history buffer channel
Intel Haswell 64-bit

High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Unmitigated Maximally mitigated
High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Channel!

Channel Analysis

ISSISP July'18 | Gernot Heiser19 |

Branch history buffer channel
Intel Haswell 64-bit

High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Unmitigated Maximally mitigated
Including Spectre microcode patch

High cache footprint
Lo

w
 e

xe
cu

tio
n

tim
e

No channel

Channel Analysis

ISSISP July'18 | Gernot Heiser20 |

Branch history buffer channel
Intel Skylake 64-bit

High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Unmitigated Maximally mitigated
High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Channel!

Channel Analysis

ISSISP July'18 | Gernot Heiser21 |

Branch history buffer channel
Intel Skylake 64-bit

High cache footprint

Lo
w

 e
xe

cu
tio

n
tim

e

Unmitigated Maximally mitigated
Including Spectre microcode patch

High cache footprint
Lo

w
 e

xe
cu

tio
n

tim
e

Channel!

Result Summary: Channel Capacities

ISSISP July'18 | Gernot Heiser22 |

Channel Sandy
Bridge

Haswell Skylake ARM A9 ARM A53

L1 D-
cache

4.0 0.04 4.7 0.43 3.3 0.18 5.0 0.11 2.8 0.15

L1 I-
cache

3.7 0.85 0.46 0.36 0.37 0.18 4.0 1.0 4.5 0.5

TLB 3.2 0.47 3.2 0.18 2.5 0.11 0.33 0.16 3.4 0.14

BTB 2.0 1.7 4.1 1.6 1.8 1.9 1.1 0.07 1.3 0.64

BHB 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.01 1.0 0.5

Uncloseable channel on each processor studied!Residual channels

Summary
• All evaluated processors have un-closable timing channels
• Hardware manufacturers can do something about this

• Demonstrated by the (partially-effective) Spectre fix
• Need OS-controlled flush of all microarchitectural on-core state

• L1 cache
• TLB
• BTB
• BHB
• prefetchers
• whatever else they are hiding under the hood ISA

https://ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation.pml

ISSISP July'18 | Gernot Heiser23 |

Efficiency

Efficiency
• Flushing on-core state should not be a performance issue

• no cost when not used
• direct cost should be round 1 µs for dirty L1-D, far less for everything else
• indirect cost should be negligible, if used on security-partition switch

– eg VM switch, 10–100 Hz rate
– no hot data in cache after other partition’s execution

• Partitioning off-core state cost should be low
• replacing dynamic (hardware) by static (software) partitioning
• less efficient, in average few % performance degradation
• advantage: performance isolation/predicatbility

ISSISP July'18 | Gernot Heiser25 |

Hardware Requirements

New Hardware-Software Contract Needed!
• The ISA is a purely functional contract

• sufficient to ensure functional correctness
• abstracts away time
• insufficient for ensuring either timing safety or security

• For security need an abstraction of microarchitectural state
• essential for letting OS provide time protection

ISSISP July'18 | Gernot Heiser27 |

Timing channels can be closed iff all shared hardware state can
be
• Partitioned or
• Flushed

New Hardware-Software Contract: AISA
Augmented ISA must provide abstractions that support time protection:

1. Identify partitionable state and how to partition
• Generally physically-addressed caches, memory interfaces
• Mostly there, just make it part of the contract

2. Identify existence of non-partitionable state and how it can be flushed
• Can probably lump all on-core state into single abstraction
• A single flush-on-core-state operation may be sufficient

ISSISP July'18 | Gernot Heiser28 |

OS-Level Time Protection

Recall: Mitigation Approaches

ISSISP July'18 | Gernot Heiser30 |

High Low

Cache
Context Switch

Flush

Cannot partition on-core
caches (L1, TLB, branch
predictor, prefetchers)
• virtually-indexed
• OS cannot control access

Cache

High Low

High Low

Cache

Concurrently Shared Hardware

ISSISP July'18 | Gernot Heiser31 |

High Low

Last-Level Cache

L1 Cache L1 Cache

Flushing shared cache
doesn’t help, must
partition

Core Core

Partition Cache Through Memory
Colouring

ISSISP July'18 | Gernot Heiser32 |

0 1 … n-1 …

Cache

RAM

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1

0 1 … n-1

Exploit associative cache lookup:
• Particular address maps to specific cache subset,

called cache colour
• # colours = cache size / (page size * associativity)

Page colouring: Allocate to
security partitions only
memory of disjoint colours

Colouring User Memory Is Easy

ISSISP July'18 | Gernot Heiser33 |

Global Resource Manager

RAM
I+D

GRM
I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Partitions
restricted to

coloured memory

System permanently
coloured

Still share
kernel image!

Colouring the Kernel

ISSISP July'18 | Gernot Heiser34 |

Global Resource Manager

RAM
I+D

GRM
I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Each partition has
own kernel image

Kernel
clone!

I+DI+D

Remaining shared kernel data:
• Scheduler queue array & bitmap
• A few pointers to current thread state

Flushing on Context Switch

ISSISP July'18 | Gernot Heiser35 |

Domain switch:
1. T0 = current_time()
2. Switch context
3. Flush caches
4. Touch all code/data needed for return
5. Reprogram timer
6. while (T0+WCET < current_time()) ;
7. return

Latency depends
on prior execution!

Remove
dependency

Ensure
deterministic

timing

Can We Verify Time Protection?

1. Correct treatment of partitionable state:
• Need hardware model that identifies all such state (i.e. AISA)
• Enables functional correctness argument:

No two domains can access the same physical state

2. Correct flushing of non-partitionable state
• Not trivial: eg proving all cleanup code/data are forced into cache after flush

– Needs an actual cache model
• Even trickier: need to prove padding is correct

– … without explicitly reasoning about time!

What Needs To Be Proved?

Transforms timing
channels into

storage channels!

ISSISP July'18 | Gernot Heiser37 |

• Idea: Minimal formalisation of hardware clocks
• Monotonically-increasing counter
• Can add constants to time values
• Can compare time values

ISSISP July'18 | Gernot Heiser

How Can We Prove Time Padding?

38 |

To prove: padding loop terminates
as soon as timer value ≥ T0+WCET

Functional
property

Summary
• Time protection is doable

• But requires manufacturers to adhere to more detailed HW/SW contract
• They seem to have started listening

• Time protection seems provable
• Core insight: Explicitly (& abstractly) represent state exploited by channels
• Converts timing into storage channels
• Reduces to functional correctness argument

ISSISP July'18 | Gernot Heiser39 |

https://trustworthy.systems

Thank You

Gernot Heiser | gernot.heiser@data61.csiro.au | @GernotHeiser

