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Operating-System Security – An 
Oxymoron?
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Exclusions (in progress):
• Initialisation
• Privileged state & caches
• Multicore

Worst-case 
execution time

World’s fastest 
microkernel!

Provable Security Enforcement
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Background: Timing Channels
Safety: Timeliness
• Execution interference

Security: Confidentiality
• Leakage via timing channels

High Low

Observe execution speed:
Confidentiality violation

Affect execution speed:
Integrity violation
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Timing Channels: Conflicts on Shared HW
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Cache

Cache footprint of one process 
affects progress of others!

Sharing can be:
• Concurrent multicore, 

HW thread
• Time-shared

“Caches” include:
• L1 I-, D-cache
• TLB
• Branch predictor
• Instr. prefetcher
• Data prefetcher
• off-core caches & busses

High Low



Aim: Black-Box Mitigation
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High Low

Prevent observation of 
execution speed

• OS-enforced isolation
• No requirement for modifying user code
• High and Low code untrusted – mandatory confinement
• Should also protect against data-dependent execution time

Time protection, 
just like standard 
memory protection

Eliminates covert channels 
required for 
Meltdown/Spectre 
exploits



Mitigation: Prevent Sharing of State
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High Low

Cache
Context Switch

Flush

Cannot partition on-core 
caches (L1, TLB, branch 
predictor, prefetchers)
• virtually-indexed
• OS cannot control access

Cache

High Low

High Low

Cache
Partition through 

page colouring



Issues
1. Feasibility: Can we close all channels?

2. Efficiency: Can we do this with bearable cost?

3. Trustworthiness: Can we prove there are no channels?
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Feasibility



Methodology: Intra-Core Channels

High Low

Cache
Context Switch

Flush

Cache

High Low

• Disable data prefetcher
• On context switch, perform all architected flush operations:

• wbinvd
• invpcid (Intel-64) or reload CR0, CR3 (IA-32)

• Optionally test (meanwhile revoked) Spectre microcode patch
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Channel Analysis
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Channel Analysis
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Channel Analysis
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Channel Analysis
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Channel Analysis
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Channel Analysis

ISSISP July'18  |  Gernot Heiser16 |

Branch target buffer channel
Intel Haswell 64-bit

High cache footprint

Lo
w

 e
xe

cu
tio

n 
tim

e

Unmitigated Maximally mitigated
Including Spectre microcode patch

High cache footprint
Lo

w
 e

xe
cu

tio
n 

tim
e

No channel
(probably)



Channel Analysis
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Channel Analysis
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Channel Analysis
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Channel Analysis

ISSISP July'18  |  Gernot Heiser20 |

Branch history buffer channel
Intel Skylake 64-bit

High cache footprint

Lo
w

 e
xe

cu
tio

n 
tim

e

Unmitigated Maximally mitigated
High cache footprint

Lo
w

 e
xe

cu
tio

n 
tim

e

Channel!



Channel Analysis
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Result Summary: Channel Capacities
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Channel Sandy 
Bridge

Haswell Skylake ARM A9 ARM A53

L1 D-
cache

4.0 0.04 4.7 0.43 3.3 0.18 5.0 0.11 2.8 0.15

L1 I-
cache

3.7 0.85 0.46 0.36 0.37 0.18 4.0 1.0 4.5 0.5

TLB 3.2 0.47 3.2 0.18 2.5 0.11 0.33 0.16 3.4 0.14

BTB 2.0 1.7 4.1 1.6 1.8 1.9 1.1 0.07 1.3 0.64

BHB 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.01 1.0 0.5

Uncloseable channel on each processor studied!Residual channels



Summary
• All evaluated processors have un-closable timing channels
• Hardware manufacturers can do something about this

• Demonstrated by the (partially-effective) Spectre fix
• Need OS-controlled flush of all microarchitectural on-core state

• L1 cache
• TLB
• BTB
• BHB
• prefetchers
• whatever else they are hiding under the hood ISA

https://ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation.pml
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Efficiency



Efficiency
• Flushing on-core state should not be a performance issue

• no cost when not used
• direct cost should be round 1 µs for dirty L1-D, far less for everything else
• indirect cost should be negligible, if used on security-partition switch

– eg VM switch, 10–100 Hz rate
– no hot data in cache after other partition’s execution

• Partitioning off-core state cost should be low
• replacing dynamic (hardware) by static (software) partitioning
• less efficient, in average few % performance degradation
• advantage: performance isolation/predicatbility
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Hardware Requirements



New Hardware-Software Contract Needed!
• The ISA is a purely functional contract

• sufficient to ensure functional correctness
• abstracts away time
• insufficient for ensuring either timing safety or security

• For security need an abstraction of microarchitectural state
• essential for letting OS provide time protection
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Timing channels can be closed iff all shared hardware state can 
be
• Partitioned or
• Flushed



New Hardware-Software Contract: AISA
Augmented ISA must provide abstractions that support time protection:

1. Identify partitionable state and how to partition
• Generally physically-addressed caches, memory interfaces
• Mostly there, just make it part of the contract

2. Identify existence of non-partitionable state and how it can be flushed
• Can probably lump all on-core state into single abstraction
• A single flush-on-core-state operation may be sufficient

ISSISP July'18  |  Gernot Heiser28 |



OS-Level Time Protection



Recall: Mitigation Approaches
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High Low

Cache
Context Switch

Flush

Cannot partition on-core 
caches (L1, TLB, branch 
predictor, prefetchers)
• virtually-indexed
• OS cannot control access

Cache

High Low

High Low

Cache



Concurrently Shared Hardware
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High Low

Last-Level Cache

L1 Cache L1 Cache

Flushing shared cache 
doesn’t help, must 
partition

Core Core



Partition Cache Through Memory 
Colouring
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0 1 … n-1 …

Cache

RAM

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1

0 1 … n-1

Exploit associative cache lookup:
• Particular address maps to specific cache subset,

called cache colour
• # colours = cache size / (page size * associativity)

Page colouring: Allocate to 
security partitions only 
memory of disjoint colours



Colouring User Memory Is Easy
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Global Resource Manager

RAM
I+D

GRM
I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Partitions 
restricted to 

coloured memory

System permanently 
coloured

Still share 
kernel image!



Colouring the Kernel
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Global Resource Manager

RAM
I+D

GRM
I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Each partition has 
own kernel image

Kernel 
clone!

I+DI+D

Remaining shared kernel data:
• Scheduler queue array & bitmap
• A few pointers to current thread state



Flushing on Context Switch
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Domain switch:
1. T0 = current_time()
2. Switch context
3. Flush caches
4. Touch all code/data needed for return
5. Reprogram timer
6. while (T0+WCET < current_time()) ;
7. return

Latency depends
on prior execution!

Remove
dependency

Ensure 
deterministic 

timing



Can We Verify Time Protection?



1. Correct treatment of partitionable state:
• Need hardware model that identifies all such state (i.e. AISA)
• Enables functional correctness argument: 

No two domains can access the same physical state

2. Correct flushing of non-partitionable state
• Not trivial: eg proving all cleanup code/data are forced into cache after flush

– Needs an actual cache model
• Even trickier: need to prove padding is correct

– … without explicitly reasoning about time!

What Needs To Be Proved?

Transforms timing 
channels into 

storage channels!
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• Idea: Minimal formalisation of hardware clocks
• Monotonically-increasing counter
• Can add constants to time values
• Can compare time values
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How Can We Prove Time Padding?

38 |

To prove: padding loop terminates 
as soon as timer value ≥ T0+WCET

Functional 
property



Summary
• Time protection is doable

• But requires manufacturers to adhere to more detailed HW/SW contract
• They seem to have started listening

• Time protection seems provable
• Core insight: Explicitly (& abstractly) represent state exploited by channels
• Converts timing into storage channels
• Reduces to functional correctness argument

ISSISP July'18  |  Gernot Heiser39 |



https://trustworthy.systems

Thank You

Gernot Heiser | gernot.heiser@data61.csiro.au | @GernotHeiser


