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Threats
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Speculation

Microarchitectural 
Timing Channel

An “unknown 
unknown” until 

recently

A “known 
unknown” 

for decades



What Are 
Timing 
Channels?
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Timing Channels
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Information leakage through timing of events
• Typically by observing response latencies or own execution speed

Covert channel: Information flow that bypasses the security policy

Side channel: Covert channel exploitable without insider help

High LowTrojan
encodes 

info

Spy
observes
Attacker 
observes

Victim 
executes 
normally



Cause: Competition for Shared HW Resources
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Affect execution speed

Shared hardware

• Inter-process interference
• Competing access to micro-

architectural features 
• Hidden by the HW-SW contract!

High Low



Preventing
Timing
Channels
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Confidentiality Needs Time Protection

Time protection: A collection 
of OS mechanisms which 
collectively prevent 
interference between security 
domains that make execution 
speed in one domain 
dependent on the activities of 
another.

[Ge et al. EuroSys’19]
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High Low

Traditionally OSes enforce 
security by memory protection, 
i.e. enforcing spatial isolation



Time Protection: Partition Hardware
LowHigh

Cache
Flush

Temporally 
partition

Cannot spatially partition on-
core caches (L1, TLB, branch 
predictor, pre-fetchers)
• virtually-indexed
• OS cannot control

Low

Cache

High

LowHigh

Cache

Spatially partition

Flushing useless for 
concurrent access
• HW threads
• cores

Need
both!
Need
both!
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Requirements for Time Protection
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Timing channels can be closed iff the OS can
• (spatially) partition or
• reset
all shared hardware

On-core
state

Off-core
state & 

stateless HW



Sharing 1: Stateless Interconnect
H/W is bandwidth-limited
• Interference during concurrent 

access
• Generally reveals no data or 

addresses
• Must encode info into access 

patterns
• Only usable as covert channel, not 

side channel

Shared
interconnect

Memory No effective defence
with present hardware!
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High Low



Sharing 2: Stateful Hardware
HW is capacity-limited
• Interference during
• concurrent access
• time-shared access

• Collisions reveal addresses
• Usable as side channel

Cache

Any state-holding microarchitectural feature:
• cache, branch predictor, pre-fetcher state machine

Solvable problem –
focus of this work
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High Low



Implementing
Time Protection
on Stateful
Hardware
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Spatial Partitioning: Cache Colouring
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Cache

RAM

• Partitions get frames of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours dynamic 
kernel memory

• Per-partition kernel image to colour kernel
[Ge et al. EuroSys’19]

High Low

TCB PT PTTCB



Temporal Partitioning: Flush on Switch
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1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. Touch all shared data needed for return
5. while (T0+WCET < current_time()) ;
6. Reprogram timer
7. return

Latency depends
on prior execution!

Time padding 
to Remove

dependency

Ensure 
deterministic 

execution

Must remove any 
history dependence!



Reality Check:
Flushing
On-Core State
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Evaluating Intra-Core Channels
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Flush

Mitigation on Intel and Arm processors:
• Disable data prefetcher (just to be sure)
• On context switch, perform all architected flush operations:
• Intel: wbinvd + invpcid (no targeted L1-cache flush supported!)
•Arm: DCCISW + ICIALLU + TLBIALL + BPIALL

LowHigh

Cache
Flush

Low

Cache

High



Methodology: Prime and Probe
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Output
Signal

2. Touch n cache lines

1. Fill cache with own data

3. Traverse cache, 
measure execution timeInput

Signal

High Low
Trojan

encodes
Spy

observes



Methodology: Channel Matrix
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Channel Matrix:
• Conditional probability of 

observing time, t, given input, n.
• Represented as heat map: 

• bright = high probability



I-Cache Channel With Full State Flush
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HiSilicon A53 Branch History Buffer 
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• One-bit channel
• All reset operations applied

Channel!



Intel Haswell Branch Target Buffer
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Found residual channels 
in all recent Intel and ARM 
processors examined!

Branch target buffer
• All reset operations 

applied



Intel Spectre Defences
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Intel added indirect 
branch control (IBC) 
feature, which closes 
most channels, but…

Intel Skylake
Branch history buffer

Small 
channel!

https://ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation.pml



Requirements 
on Hardware
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New HW/SW Contract: aISA

For all shared microarchitectural resources:
1. Resource must be spatially partitionable or flushable
2. Concurrently shared resources must be spatially partitioned
3. Resource accessed solely by virtual address must be flushed and not 

concurrently accessed
• Implies cannot share HW threads across security domains!

4. Mechanisms must be sufficiently specified for OS to partition or reset
5. Mechanisms must be constant time, or of specified, bounded latency
6. Desirable: OS should know if resettable state is derived from data, 

instructions, data addresses or instruction addresses

Augmented ISA supporting time protection
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