
https://trustworthy.systems

Time Protection:
Principled Prevention of Timing Channels
Gernot Heiser | gernot@unsw.edu.au | @GernotHeiser
• ENTROPY’19, Stockholm, 16 June 2019

Threats

DAC, Las Vegas, 5 June 20192 |

Speculation

Microarchitectural
Timing Channel

An “unknown
unknown” until

recently

A “known
unknown”

for decades

What Are
Timing
Channels?

DAC, Las Vegas, 5 June 20193 |

Timing Channels

DAC, Las Vegas, 5 June 20194 |

Information leakage through timing of events
• Typically by observing response latencies or own execution speed

Covert channel: Information flow that bypasses the security policy

Side channel: Covert channel exploitable without insider help

High LowTrojan
encodes

info

Spy
observes
Attacker
observes

Victim
executes
normally

Cause: Competition for Shared HW Resources

DAC, Las Vegas, 5 June 20195 |

Affect execution speed

Shared hardware

• Inter-process interference
• Competing access to micro-

architectural features
• Hidden by the HW-SW contract!

High Low

Preventing
Timing
Channels

DAC, Las Vegas, 5 June 20196 |

Confidentiality Needs Time Protection

Time protection: A collection
of OS mechanisms which
collectively prevent
interference between security
domains that make execution
speed in one domain
dependent on the activities of
another.

[Ge et al. EuroSys’19]

DAC, Las Vegas, 5 June 20197 |

High Low

Traditionally OSes enforce
security by memory protection,
i.e. enforcing spatial isolation

Time Protection: Partition Hardware
LowHigh

Cache
Flush

Temporally
partition

Cannot spatially partition on-
core caches (L1, TLB, branch
predictor, pre-fetchers)
• virtually-indexed
• OS cannot control

Low

Cache

High

LowHigh

Cache

Spatially partition

Flushing useless for
concurrent access
• HW threads
• cores

Need
both!
Need
both!

DAC, Las Vegas, 5 June 20198 |

Requirements for Time Protection

DAC, Las Vegas, 5 June 20199 |

Timing channels can be closed iff the OS can
• (spatially) partition or
• reset
all shared hardware

On-core
state

Off-core
state &

stateless HW

Sharing 1: Stateless Interconnect
H/W is bandwidth-limited
• Interference during concurrent

access
• Generally reveals no data or

addresses
• Must encode info into access

patterns
• Only usable as covert channel, not

side channel

Shared
interconnect

Memory No effective defence
with present hardware!

DAC, Las Vegas, 5 June 201910 |

High Low

Sharing 2: Stateful Hardware
HW is capacity-limited
• Interference during
• concurrent access
• time-shared access

• Collisions reveal addresses
• Usable as side channel

Cache

Any state-holding microarchitectural feature:
• cache, branch predictor, pre-fetcher state machine

Solvable problem –
focus of this work

DAC, Las Vegas, 5 June 201911 |

High Low

Implementing
Time Protection
on Stateful
Hardware

DAC, Las Vegas, 5 June 201912 |

Spatial Partitioning: Cache Colouring

DAC, Las Vegas, 5 June 201913 |

Cache

RAM

• Partitions get frames of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours dynamic
kernel memory

• Per-partition kernel image to colour kernel
[Ge et al. EuroSys’19]

High Low

TCB PT PTTCB

Temporal Partitioning: Flush on Switch

DAC, Las Vegas, 5 June 201914 |

1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. Touch all shared data needed for return
5. while (T0+WCET < current_time()) ;
6. Reprogram timer
7. return

Latency depends
on prior execution!

Time padding
to Remove

dependency

Ensure
deterministic

execution

Must remove any
history dependence!

Reality Check:
Flushing
On-Core State

DAC, Las Vegas, 5 June 201915 |

Evaluating Intra-Core Channels

DAC, Las Vegas, 5 June 201916 |

Flush

Mitigation on Intel and Arm processors:
• Disable data prefetcher (just to be sure)
• On context switch, perform all architected flush operations:
• Intel: wbinvd + invpcid (no targeted L1-cache flush supported!)
•Arm: DCCISW + ICIALLU + TLBIALL + BPIALL

LowHigh

Cache
Flush

Low

Cache

High

Methodology: Prime and Probe

DAC, Las Vegas, 5 June 201917 |

Output
Signal

2. Touch n cache lines

1. Fill cache with own data

3. Traverse cache,
measure execution timeInput

Signal

High Low
Trojan

encodes
Spy

observes

Methodology: Channel Matrix

DAC, Las Vegas, 5 June 201918 |

 7000
 8000
 9000

 10000
 11000
 12000

 0 10 20 30 40 50 60P
ro

b
in

g
 t
im

e
 (

cy
cl

e
s)

Cache sets accessed

datafile using 1:2:($3>pmax ? pmax : $3)

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04

Horizontal
variation indicates

channel

Raw I-cache channel
Intel Sandy Bridge

Channel Matrix:
• Conditional probability of

observing time, t, given input, n.
• Represented as heat map:

• bright = high probability

I-Cache Channel With Full State Flush

DAC, Las Vegas, 5 June 201919 |

 60000

 61000

 62000

 63000

 64000

 0 10 20 30 40 50 60

T
im

e
 (

cy
cl

e
s) datafile using 1:2:3

 0.001

 0.01

Intel Sandy Bridge

 12500

 13000

 13500

 14000

 0 2 4 6 8 10

T
im

e
 (

cy
cl

e
s) datafile using 1:2:3

 0.001

 0.01

Intel Haswell

 7000

 8000

 9000

 10000

 11000

 0 10 20 30 40 50 60

O
u
tp

u
t
(c

yc
le

s)

Input (sets)

datafile using 1:2:3

0.00010

0.00100 Intel Skylake

 90000

 92000

 94000

 0 5 10 15 20 25 30 35 40

T
im

e
 (

cy
cl

e
s)

Cache sets

datafile using 1:2:3

0.00010

0.00100 HiSilicon A53

CHANNEL!

CHANNEL!

No evidence
of channel

SMALL CHANNEL!

HiSilicon A53 Branch History Buffer

DAC, Las Vegas, 5 June 201920 |

0 1

10-1

10-3

10-2

10-4

10-5400

600

800

1000

Trojan signalSp
y

ex
ec

ut
io

n
tim

e

Branch history buffer (BHB)
• One-bit channel
• All reset operations applied

Channel!

Intel Haswell Branch Target Buffer

DAC, Las Vegas, 5 June 201921 |

 31000

 32000

 33000

 34000

 3500 4000 4500 5000

T
im

e
 (

cy
cl

e
s) datafile using 1:2:3

 0.001

 0.01

Sp
y

ex
ec

ut
io

n
tim

e

Trojan cache footprint
Channel!

Found residual channels
in all recent Intel and ARM
processors examined!

Branch target buffer
• All reset operations

applied

Intel Spectre Defences

DAC, Las Vegas, 5 June 201922 |

Intel added indirect
branch control (IBC)
feature, which closes
most channels, but…

Intel Skylake
Branch history buffer

Small
channel!

https://ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation.pml

Requirements
on Hardware

DAC, Las Vegas, 5 June 201923 |

New HW/SW Contract: aISA

For all shared microarchitectural resources:
1. Resource must be spatially partitionable or flushable
2. Concurrently shared resources must be spatially partitioned
3. Resource accessed solely by virtual address must be flushed and not

concurrently accessed
• Implies cannot share HW threads across security domains!

4. Mechanisms must be sufficiently specified for OS to partition or reset
5. Mechanisms must be constant time, or of specified, bounded latency
6. Desirable: OS should know if resettable state is derived from data,

instructions, data addresses or instruction addresses

Augmented ISA supporting time protection

DAC, Las Vegas, 5 June 201924 |

https://trustworthy.systems

THANK YOU

Gernot Heiser | gernot@unsw.edu.au | @GernotHeiser

