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Security Needs a New 
Hardware-Software Contract
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The New Year Shock
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Threats
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Speculation

Timing
Channel

A “known 
unknown” 

for decades

An “unknown 
unknown” 

until recently
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Overview
• What are timing channels?
• Time protection: OS must close microarchitectural channels
• How helpful is present hardware?
• What are the requirements on hardware for closing timing channels?
• Defining the new hardware-software contract – aISA

SeHAS, HiPEAC'19, Valencia4 |



What Are Timing Channels?
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Timing Channels
Information leakage through timing of events
• Typically by observing response latencies or own execution speed

Covert channel: Information flow that bypasses the security policy

Side channel: Covert channel exploitable without insider help

High LowTrojan
encodes 

info

Spy
observes
Attacker 
observes

Victim 
executes 
normally
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Cause: Temporal Interference
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High Low

Affect execution speed

Shared hardware
• Inter-process interference
• Competing access to micro-

architectural features 
• not exposed by the ISA
• hidden by the HW-SW contract!
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Sharing 1: Stateless Interconnect
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H/W is bandwidth-limited
• Interference during concurrent 

access
• Generally reveals no data or 

addresses
• Must encode info into access 

patterns
• Only usable as covert 

channel, not side channel

High Low

Shared
interconnect

Memory
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Sharing 2: Stateful Hardware
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HW is capacity-limited
• Interference during
• concurrent access
• time-shared access

• Collisions reveal data or 
addresses

• Usable as side channelCache

High Low

Any state-holding microarchitectural feature:
• cache, branch predictor, pre-fetcher state machine



Time Protection
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OS Must Enforce Time Protection
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High Low

Shared hardware

Preventing interference is core duty of the OS!
• Memory protection is well established 
• Time protection is completely absent
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Time Protection: No Sharing of State
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High Low

Cache

Context Switch

Flush

Cannot partition on-core 
caches (L1, TLB, branch 
predictor, prefetchers)
• virtually-indexed
• OS cannot control

Cache

High Low

High Low

Cache

Partition Flushing useless for 
concurrent access
• between HW 

threads, cores
• for stateless HW

Need
both!
Need
both!
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Requirements For Time Protection
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Timing channels can be closed iff the OS can
• partition or
• reset
all shared hardware

On-core
state

Off-core
state & 

stateless HW



Implementing Time Protection:
Stateful Hardware
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Flush on Domain Switch

HW-SW Contract15 |

1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. Touch all code/data needed for return
5. while (T0+WCET < current_time()) ;
6. Reprogram timer
7. return

Latency depends
on prior execution!

Time padding 
to Remove

dependency

Ensure 
deterministic 

execution

Must remove any 
history dependence
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Partition Caches: Page Colouring
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0 1 … n-1 …

Cache

RAM

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1

0 1 … n-1

Exploit associative cache lookup:
• Particular address maps to specific cache subset,

called cache colour
• # colours = cache size / (page size * associativity)

Page colouring: 
Allocate to security 
partitions only memory 
of disjoint colours
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Testbed: seL4 Microkernel

seL4 | FMATS Cambridge | Sep'1817 |

seL4: The world’s only
operating-system kernel with 

provable security enforcement 
(incl. memory protection)

seL4: The world’s 
fastest microkernel

seL4: The world’s 
only protected-mode OS 

with complete, sound 
timeliness analysis

Open Source
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A Microkernel is not an OS

seL4 | FMATS Cambridge | Sep'1818 |

Processor

Device
DriverDevice

DriverDevice
Driver

NW
Stack

Device
DriverDevice

DriverFile
System

Process
Mgmt

Memory
Mgmt

AppAppApp

VM

Linux

AppAppApp
Strong 

Isolation

Device drivers, file systems, crypto, 
power management, virtual-machine 
monitor are all usermode processes

IPC

Controlled 
Communication

VMM

Microkernel = context-switching engineMicrokernel
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Security Proof Chain
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Abstract
Model

Integrity

Proof

C Imple-
mentation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional 
correctness

Isolation 
properties

Translation 
correctness

Exclusions (in progress):
• Initialisation
• MMU & caches
• Multicore
• Time protection

Worst-case 
execution time
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Memory Management Model
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Initial Process

Free memory (“Untyped”)RAM
I+D

GRM
I+D

Partition Manager
RM
I+D Free memory

Partition Manager
RM
I+D Free memory

Addr
Space

AS

Addr
Space

Addr
Space

RM
RM
I+D

Resources fully 
delegated, allows 

autonomous 
operation

Strong isolation,
No shared kernel 

resources

Design for isolation: 
No memory 
allocation by kernel
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Colouring User Memory Is Easy
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Initial Process

RAM
I+D

GR
M

I+D

Partition Manager

RM
I+D

Partition Manager

RM
I+D

Partitions 
restricted to 

coloured memory
System 
permanently 
coloured
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Isolation Goes Deep

SeHAS, HiPEAC'19, Valencia22 |

High Low
seL4 has no heap
• All kernel memory 

supplied by user-
level managers

User

Kernel
TCB Page

table

Capabilities

TCB Page
table

Capabilities
Colouring user data 
automatically 
colours kernel data

Kernel 
code?
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Colouring the Kernel
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Initial Process

RAM
I+D

GR
M

I+D

Partition Manager

RM
I+D

Partition Manager

RM
I+D

Each partition has 
own kernel image

Kernel 
clone!

I+DI+D

Remaining shared kernel data:
• Scheduler queue array & bitmap
• Few pointers to current thread state
Access deterministically!



Reality Check:
Resetting On-Core State
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Evaluating Intra-Core Channels

SeHAS, HiPEAC'19, Valencia25 |

High Low

Cache

Context Switch

Cache

High Low
Flush

Mitigation on Intel and Arm processors:
• Disable data prefetcher (just to be sure)
• On context switch, perform all architected flush operations:
• Intel: wbinvd + invpcid (no targeted L1-cache flush supported!)
• Arm: DCCISW + ICIALLU + TLBIALL + BPIALL
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Methodology: Prime & Probe

SeHAS, HiPEAC'19, Valencia26 |

High Low
Trojan

encodes

Output
Signal

2. Touch n cache lines

1. Fill cache with own data

3. Traverse cache, 
measure execution time

Spy
observes

Input
Signal
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Methodology: Channel Matrix

SeHAS, HiPEAC'19, Valencia27 |

Channel Matrix:
• Conditional probability of 

observing time, t, given input, n.
• Represented as heat map: 

• bright = high probability
• dark = low probability 
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I-Cache Channel With Full State Flush
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HiSilicon A53 Branch History Buffer
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Branch history buffer (BHB)
• One-bit channel
• All reset operations applied

Channel!
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Branch target buffer
• All reset operations 

applied

Example: Intel Haswell BTB

SeHAS, HiPEAC'19, Valencia30 |

Trojan cache footprint

 31000

 32000

 33000

 34000

 3500  4000  4500  5000

T
im

e
 (

cy
cl

e
s) datafile using 1:2:3

 0.001

 0.01

Sp
y 

ex
ec

ut
io

n 
tim

e

Channel!

Found residual channels 
in all recent Intel and ARM 
processors examined!
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Intel Spectre Defences

SeHAS, HiPEAC'19, Valencia31 |

Intel added indirect branch 
control (IBC) feature, which 
closes most channels, but…

Intel Skylake
Branch history buffer

Small 
channel!

https://ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation.pml



Requirements on Hardware
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Hardware-Software Contract: ISA

SeHAS, HiPEAC'19, Valencia33 |

• The ISA is a purely operational contract
• sufficient to ensure functional correctness
• abstracts away time
• insufficient for ensuring either timing safety or security

• For security need an abstraction of microarchitectural state
• essential for letting OS provide time protection



© 2019 Gernot Heiser

New HW/SW Contract: aISA
Augmented ISA supporting time protection

For all shared microarchitectural resources:
1. Resource must be partitionable or resetable
2. Concurrently shared resource must be partitioned
3. Resource accessed solely by virtual address must be reset and not 

concurrently accessed
– Implies cannot share HW threads across security domains!

4. Mechanisms must be sufficiently specified for OS to partition or reset
– Must be constant time or of specified, bounded latency

5. OS must know if resettable state is derived from data, instructions, data 
addresses or instruction addresses

SeHAS, HiPEAC'19, Valencia34 |
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Cost of Reset
• Flushing on-core state is not a performance issue:
• no cost when not used
• direct flush cost should for dirty L1-D in the order of 1µs
• direct flush cost for everything else in the order of 100 cycles
• indirect cost is negligible, if used on security-partition switch
– eg VM switch, 10–100 Hz rate
– no hot data in cache after other partition’s execution

• Hardware support (eg targeted L1 flush) is essential!

SeHAS, HiPEAC'19, Valencia35 |



© 2019 Gernot Heiser

Summary
• Timing channels are a mainstream security threat
• They are based on competition for shared hardware
• Prevention through OS-enforced time protection
• OS must prevent sharing by partitioning or flushing

• The shared hardware is hidden by the ISA, the present HW-SW contract
• OS cannot systematically prevent timing channels based on ISA

• Need a new, security-oriented contract, the aISA
• aISA must expose enough microarchitecture for OS to enforce time protection

SeHAS, HiPEAC'19, Valencia36 |
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