
https://trustworthy.systems

Gernot Heiser
gernot.heiser@data61.csiro.au | gernot@unsw.edu.au | @GernotHeiser

Security Needs a New
Hardware-Software Contract

© 2019 Gernot Heiser

The New Year Shock

SeHAS, HiPEAC'19, Valencia2 |

© 2019 Gernot Heiser

Threats

SeHAS, HiPEAC'19, Valencia3 |

Speculation

Timing
Channel

A “known
unknown”

for decades

An “unknown
unknown”

until recently

© 2019 Gernot Heiser

Overview
• What are timing channels?
• Time protection: OS must close microarchitectural channels
• How helpful is present hardware?
• What are the requirements on hardware for closing timing channels?
• Defining the new hardware-software contract – aISA

SeHAS, HiPEAC'19, Valencia4 |

What Are Timing Channels?

© 2019 Gernot Heiser

Timing Channels
Information leakage through timing of events
• Typically by observing response latencies or own execution speed

Covert channel: Information flow that bypasses the security policy

Side channel: Covert channel exploitable without insider help

High LowTrojan
encodes

info

Spy
observes
Attacker
observes

Victim
executes
normally

SeHAS, HiPEAC'19, Valencia6 |

© 2019 Gernot Heiser

Cause: Temporal Interference

SeHAS, HiPEAC'19, Valencia7 |

High Low

Affect execution speed

Shared hardware
• Inter-process interference
• Competing access to micro-

architectural features
• not exposed by the ISA
• hidden by the HW-SW contract!

© 2019 Gernot Heiser

Sharing 1: Stateless Interconnect

SeHAS, HiPEAC'19, Valencia8 |

H/W is bandwidth-limited
• Interference during concurrent

access
• Generally reveals no data or

addresses
• Must encode info into access

patterns
• Only usable as covert

channel, not side channel

High Low

Shared
interconnect

Memory

© 2019 Gernot Heiser

Sharing 2: Stateful Hardware

SeHAS, HiPEAC'19, Valencia9 |

HW is capacity-limited
• Interference during
• concurrent access
• time-shared access

• Collisions reveal data or
addresses

• Usable as side channelCache

High Low

Any state-holding microarchitectural feature:
• cache, branch predictor, pre-fetcher state machine

Time Protection

© 2019 Gernot Heiser

OS Must Enforce Time Protection

SeHAS, HiPEAC'19, Valencia11 |

High Low

Shared hardware

Preventing interference is core duty of the OS!
• Memory protection is well established
• Time protection is completely absent

© 2019 Gernot Heiser

Time Protection: No Sharing of State

SeHAS, HiPEAC'19, Valencia12 |

High Low

Cache

Context Switch

Flush

Cannot partition on-core
caches (L1, TLB, branch
predictor, prefetchers)
• virtually-indexed
• OS cannot control

Cache

High Low

High Low

Cache

Partition Flushing useless for
concurrent access
• between HW

threads, cores
• for stateless HW

Need
both!
Need
both!

© 2019 Gernot Heiser

Requirements For Time Protection

SeHAS, HiPEAC'19, Valencia13 |

Timing channels can be closed iff the OS can
• partition or
• reset
all shared hardware

On-core
state

Off-core
state &

stateless HW

Implementing Time Protection:
Stateful Hardware

© 2019 Gernot Heiser

Flush on Domain Switch

HW-SW Contract15 |

1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. Touch all code/data needed for return
5. while (T0+WCET < current_time()) ;
6. Reprogram timer
7. return

Latency depends
on prior execution!

Time padding
to Remove

dependency

Ensure
deterministic

execution

Must remove any
history dependence

© 2019 Gernot Heiser

Partition Caches: Page Colouring

SeHAS, HiPEAC'19, Valencia16 |

0 1 … n-1 …

Cache

RAM

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1

0 1 … n-1

Exploit associative cache lookup:
• Particular address maps to specific cache subset,

called cache colour
• # colours = cache size / (page size * associativity)

Page colouring:
Allocate to security
partitions only memory
of disjoint colours

© 2019 Gernot Heiser

Testbed: seL4 Microkernel

seL4 | FMATS Cambridge | Sep'1817 |

seL4: The world’s only
operating-system kernel with

provable security enforcement
(incl. memory protection)

seL4: The world’s
fastest microkernel

seL4: The world’s
only protected-mode OS

with complete, sound
timeliness analysis

Open Source

© 2019 Gernot Heiser

A Microkernel is not an OS

seL4 | FMATS Cambridge | Sep'1818 |

Processor

Device
DriverDevice

DriverDevice
Driver

NW
Stack

Device
DriverDevice

DriverFile
System

Process
Mgmt

Memory
Mgmt

AppAppApp

VM

Linux

AppAppApp
Strong

Isolation

Device drivers, file systems, crypto,
power management, virtual-machine
monitor are all usermode processes

IPC

Controlled
Communication

VMM

Microkernel = context-switching engineMicrokernel

© 2019 Gernot Heiser

Security Proof Chain

SeHAS, HiPEAC'19, Valencia19 |

Abstract
Model

Integrity

Proof

C Imple-
mentation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional
correctness

Isolation
properties

Translation
correctness

Exclusions (in progress):
• Initialisation
• MMU & caches
• Multicore
• Time protection

Worst-case
execution time

© 2019 Gernot Heiser

Memory Management Model

SeHAS, HiPEAC'19, Valencia20 |

Initial Process

Free memory (“Untyped”)RAM
I+D

GRM
I+D

Partition Manager
RM
I+D Free memory

Partition Manager
RM
I+D Free memory

Addr
Space

AS

Addr
Space

Addr
Space

RM
RM
I+D

Resources fully
delegated, allows

autonomous
operation

Strong isolation,
No shared kernel

resources

Design for isolation:
No memory
allocation by kernel

© 2019 Gernot Heiser

Colouring User Memory Is Easy

SeHAS, HiPEAC'19, Valencia21 |

Initial Process

RAM
I+D

GR
M

I+D

Partition Manager

RM
I+D

Partition Manager

RM
I+D

Partitions
restricted to

coloured memory
System
permanently
coloured

© 2019 Gernot Heiser

Isolation Goes Deep

SeHAS, HiPEAC'19, Valencia22 |

High Low
seL4 has no heap
• All kernel memory

supplied by user-
level managers

User

Kernel
TCB Page

table

Capabilities

TCB Page
table

Capabilities
Colouring user data
automatically
colours kernel data

Kernel
code?

© 2019 Gernot Heiser

Colouring the Kernel

SeHAS, HiPEAC'19, Valencia23 |

Initial Process

RAM
I+D

GR
M

I+D

Partition Manager

RM
I+D

Partition Manager

RM
I+D

Each partition has
own kernel image

Kernel
clone!

I+DI+D

Remaining shared kernel data:
• Scheduler queue array & bitmap
• Few pointers to current thread state
Access deterministically!

Reality Check:
Resetting On-Core State

© 2019 Gernot Heiser

Evaluating Intra-Core Channels

SeHAS, HiPEAC'19, Valencia25 |

High Low

Cache

Context Switch

Cache

High Low
Flush

Mitigation on Intel and Arm processors:
• Disable data prefetcher (just to be sure)
• On context switch, perform all architected flush operations:
• Intel: wbinvd + invpcid (no targeted L1-cache flush supported!)
• Arm: DCCISW + ICIALLU + TLBIALL + BPIALL

© 2019 Gernot Heiser

Methodology: Prime & Probe

SeHAS, HiPEAC'19, Valencia26 |

High Low
Trojan

encodes

Output
Signal

2. Touch n cache lines

1. Fill cache with own data

3. Traverse cache,
measure execution time

Spy
observes

Input
Signal

© 2019 Gernot Heiser

Methodology: Channel Matrix

SeHAS, HiPEAC'19, Valencia27 |

Channel Matrix:
• Conditional probability of

observing time, t, given input, n.
• Represented as heat map:

• bright = high probability
• dark = low probability

 7000
 8000
 9000

 10000
 11000
 12000

 0 10 20 30 40 50 60P
ro

b
in

g
 t
im

e
 (

cy
cl

e
s)

Cache sets accessed

datafile using 1:2:($3>pmax ? pmax : $3)

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04

Horizontal
variation indicates

channel

Raw I-cache channel
Intel Sandy Bridge

© 2019 Gernot Heiser

I-Cache Channel With Full State Flush

SeHAS, HiPEAC'19, Valencia28 |

 60000

 61000

 62000

 63000

 64000

 0 10 20 30 40 50 60

T
im

e
 (

cy
cl

e
s) datafile using 1:2:3

 0.001

 0.01

Intel Sandy Bridge

 12500

 13000

 13500

 14000

 0 2 4 6 8 10

T
im

e
 (

cy
cl

e
s) datafile using 1:2:3

 0.001

 0.01

Intel Haswell

 7000

 8000

 9000

 10000

 11000

 0 10 20 30 40 50 60

O
u
tp

u
t
(c

yc
le

s)

Input (sets)

datafile using 1:2:3

0.00010

0.00100

Intel Skylake

 90000

 92000

 94000

 0 5 10 15 20 25 30 35 40

T
im

e
 (

cy
cl

e
s)

Cache sets

datafile using 1:2:3

0.00010

0.00100

HiSilicon A53

CHANNEL!

CHANNEL!

No evidence
of channel

SMALL CHANNEL!

© 2019 Gernot Heiser

HiSilicon A53 Branch History Buffer

SeHAS, HiPEAC'19, Valencia29 |

0 1

10-1

10-3
10-2

10-4

10-5400

600

800

1000

Trojan signal

Sp
y

ex
ec

ut
io

n
tim

e

Branch history buffer (BHB)
• One-bit channel
• All reset operations applied

Channel!

© 2019 Gernot Heiser

Branch target buffer
• All reset operations

applied

Example: Intel Haswell BTB

SeHAS, HiPEAC'19, Valencia30 |

Trojan cache footprint

 31000

 32000

 33000

 34000

 3500 4000 4500 5000

T
im

e
 (

cy
cl

e
s) datafile using 1:2:3

 0.001

 0.01

Sp
y

ex
ec

ut
io

n
tim

e

Channel!

Found residual channels
in all recent Intel and ARM
processors examined!

© 2019 Gernot Heiser

Intel Spectre Defences

SeHAS, HiPEAC'19, Valencia31 |

Intel added indirect branch
control (IBC) feature, which
closes most channels, but…

Intel Skylake
Branch history buffer

Small
channel!

https://ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation.pml

Requirements on Hardware

© 2019 Gernot Heiser

Hardware-Software Contract: ISA

SeHAS, HiPEAC'19, Valencia33 |

• The ISA is a purely operational contract
• sufficient to ensure functional correctness
• abstracts away time
• insufficient for ensuring either timing safety or security

• For security need an abstraction of microarchitectural state
• essential for letting OS provide time protection

© 2019 Gernot Heiser

New HW/SW Contract: aISA
Augmented ISA supporting time protection

For all shared microarchitectural resources:
1. Resource must be partitionable or resetable
2. Concurrently shared resource must be partitioned
3. Resource accessed solely by virtual address must be reset and not

concurrently accessed
– Implies cannot share HW threads across security domains!

4. Mechanisms must be sufficiently specified for OS to partition or reset
– Must be constant time or of specified, bounded latency

5. OS must know if resettable state is derived from data, instructions, data
addresses or instruction addresses

SeHAS, HiPEAC'19, Valencia34 |

© 2019 Gernot Heiser

Cost of Reset
• Flushing on-core state is not a performance issue:
• no cost when not used
• direct flush cost should for dirty L1-D in the order of 1µs
• direct flush cost for everything else in the order of 100 cycles
• indirect cost is negligible, if used on security-partition switch
– eg VM switch, 10–100 Hz rate
– no hot data in cache after other partition’s execution

• Hardware support (eg targeted L1 flush) is essential!

SeHAS, HiPEAC'19, Valencia35 |

© 2019 Gernot Heiser

Summary
• Timing channels are a mainstream security threat
• They are based on competition for shared hardware
• Prevention through OS-enforced time protection
• OS must prevent sharing by partitioning or flushing

• The shared hardware is hidden by the ISA, the present HW-SW contract
• OS cannot systematically prevent timing channels based on ISA

• Need a new, security-oriented contract, the aISA
• aISA must expose enough microarchitecture for OS to enforce time protection

SeHAS, HiPEAC'19, Valencia36 |

https://trustworthy.systems

Thank You
Gernot Heiser
gernot.heiser@data61.csiro.au | @GernotHeiser

