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Born August 2009
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What is seL4?
seL4 is an open source, high-assurance, high-performance operating system microkernel

Piece of software that 
runs at the heart of any 
system and controls all 
accesses to resources

World’s most comprehensive 
mathematical proofs of 

correctness and security

Available on GitHub 
under GPLv2 license

World’s fastest 
microkernel

attack
s

hardware

software

critical non-critical,
untrusted
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What is seL4?
seL4 is the most trustworthy foundation for safety- and security-critical systems

Already in use across many domains: 
automotive, aviation, space, defence, critical infrastructure, 
cyber-physical systems, IoT, industry 4.0, certified security...
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The Performance Benchmark

Source seL4 Fisco.OC Zircon
Mi et al, 2019 986 2717 8157
Gu et al, 2020 1450 3057 8151
seL4.systems, Nov’20 797 N/A N/A

Latency (in cycles) of a round-trip cross-address-space IPC on x64

Sources:
• Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen: “SkyBridge: Fast and Secure Inter-Process 

Communication for Microkernels”, EuroSys, April 2020
• Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, Haibo Chen: “Harmonizing Performance and Isolation 

in Microkernels with Efficient Intra-kernel Isolation and Communication”, Usenix ATC, June 2020
• seL4 Performance, https://sel4.systems/About/Performance/, accessed 2020-11-08

Temporary performance 
regression in Dec’19

World’s fastest 
microkernel!

https://sel4.systems/About/Performance/
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Proofs
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• Interactive theorem proving
• Shows C code correctly 

implements specification

• Automated tool chain
• Shows binary is correct 

translation of C

• Interactive theorem proving
• Shows kernel can guarantee 

security properties

Still only capability-based 
OS kernel with functional 
correctness proof
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Functional Correctness Summary
Kinds of properties proved
• Behaviour of C code is fully captured by abstract model
• Behaviour of C code is fully captured by executable model
• Kernel never fails, behaviour is always well-defined
• assertions never fail
• will never de-reference null pointer
• will never access array out of bounds
• cannot be subverted by misformed input

• All syscalls terminate, reclaiming memory is safe, ...
• Well typed references, aligned objects, kernel always mapped…
• Access control is decidable
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Can prove further 
properties on 
abstract level!

Bugs found:
• 16 in (shallow) testing
• 460 in verification

• 160 in C, 
• 150 in design, 
• 150 in spec
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Verification Assumptions
1. Hardware behaves as expected

• Formalised hardware-software contract (ISA)
• Hardware implementation free of bugs, Trojans, …

2. Spec matches expectations
• Can only prove “security” if specify what “security” means
• Spec may not be what we think it is

3. Proof checker is correct
• Isabel/HOL checking core that validates proofs against logic

7 seL4 – CODE Workshop – Munich – Nov'20

With binary verification do 
not need to trust C compiler!

Abstract Model

Integrity

Proof

C Implementation
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Verification Cost in Context
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Slow!
Fast!Fast!
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Real-World Use
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DARPA HACMS
Retrofit 
existing 
system!

Retrofit 
existing 
system!

Develop 
technology

Unmanned Little Bird (ULB)

Autonomous trucks

GVR-BotOff-the-shelf
Drone airframe
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ULB Architecture
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Incremental Cyber Retrofit
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Original 
Mission

Computer
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Incremental Cyber Retrofit
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Incremental Cyber Retrofit
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[Klein et al, CACM, Oct’18]Original
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Issue: seL4 Objects are Low-Level
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>50 capabilities 
for trivial program!
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Simple But Non-Trivial System
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Component Middleware: CAmkES
Higher-level abstractions of 
low-level seL4 constructs

Comp A

Comp C

Comp B

Shared memory

RPC

Interface

Component

Connector

Semaphore
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HACMS UAV Architecture

Radio Driver

CAN Driver

Data Link

Crypto

Uncritical/
untrusted,
contained

Linux

Camera

Wifi

Security enforcement: 
Linux only sees 
encrypted data
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Enforcing the Architecture 
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Military-Grade Security
Cross-Domain Desktop Compositor

Multi-level secure terminal
• Successful trials in AU, US, UK, CA
• Commercialisation in progress

Secure communication 
device in use in AU, 
UK defence forces
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Real-World Use
Courtesy Boeing, DARPA


