
seL4: Verified Operating System
for the Real World

Gernot Heiser
gernot@unsw.edu.au
@GernotHeiser

© Gernot Heiser 20201 seL4 – CODE Workshop – Munich – Nov'20

Born August 2009

© Gernot Heiser 20202 seL4 – CODE Workshop – Munich – Nov'20

What is seL4?
seL4 is an open source, high-assurance, high-performance operating system microkernel

Piece of software that
runs at the heart of any
system and controls all
accesses to resources

World’s most comprehensive
mathematical proofs of

correctness and security

Available on GitHub
under GPLv2 license

World’s fastest
microkernel

attack
s

hardware

software

critical non-critical,
untrusted

© Gernot Heiser 20203 seL4 – CODE Workshop – Munich – Nov'20

What is seL4?
seL4 is the most trustworthy foundation for safety- and security-critical systems

Already in use across many domains:
automotive, aviation, space, defence, critical infrastructure,
cyber-physical systems, IoT, industry 4.0, certified security...

© Gernot Heiser 20204 seL4 – CODE Workshop – Munich – Nov'20

The Performance Benchmark

Source seL4 Fisco.OC Zircon
Mi et al, 2019 986 2717 8157
Gu et al, 2020 1450 3057 8151
seL4.systems, Nov’20 797 N/A N/A

Latency (in cycles) of a round-trip cross-address-space IPC on x64

Sources:
• Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen: “SkyBridge: Fast and Secure Inter-Process

Communication for Microkernels”, EuroSys, April 2020
• Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, Haibo Chen: “Harmonizing Performance and Isolation

in Microkernels with Efficient Intra-kernel Isolation and Communication”, Usenix ATC, June 2020
• seL4 Performance, https://sel4.systems/About/Performance/, accessed 2020-11-08

Temporary performance
regression in Dec’19

World’s fastest
microkernel!

https://sel4.systems/About/Performance/

© Gernot Heiser 20205 seL4 – CODE Workshop – Munich – Nov'20

Proofs

Proof P
ro

of

Proo
f

Integrity

Abstract
Model

C Imple-
mentation

Confidentiality Availability

Binary code

P
ro

of
P

ro
of

Functional
Correctness

Translation
Correctness

Security
Enforcement

• Interactive theorem proving
• Shows C code correctly

implements specification

• Automated tool chain
• Shows binary is correct

translation of C

• Interactive theorem proving
• Shows kernel can guarantee

security properties

Still only capability-based
OS kernel with functional
correctness proof

© Gernot Heiser 2020

Functional Correctness Summary
Kinds of properties proved
• Behaviour of C code is fully captured by abstract model
• Behaviour of C code is fully captured by executable model
• Kernel never fails, behaviour is always well-defined
• assertions never fail
• will never de-reference null pointer
• will never access array out of bounds
• cannot be subverted by misformed input

• All syscalls terminate, reclaiming memory is safe, ...
• Well typed references, aligned objects, kernel always mapped…
• Access control is decidable

6 seL4 – CODE Workshop – Munich – Nov'20

Can prove further
properties on
abstract level!

Bugs found:
• 16 in (shallow) testing
• 460 in verification

• 160 in C,
• 150 in design,
• 150 in spec

© Gernot Heiser 2020

Verification Assumptions
1. Hardware behaves as expected

• Formalised hardware-software contract (ISA)
• Hardware implementation free of bugs, Trojans, …

2. Spec matches expectations
• Can only prove “security” if specify what “security” means
• Spec may not be what we think it is

3. Proof checker is correct
• Isabel/HOL checking core that validates proofs against logic

7 seL4 – CODE Workshop – Munich – Nov'20

With binary verification do
not need to trust C compiler!

Abstract Model

Integrity

Proof

C Implementation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

© Gernot Heiser 20208 seL4 – CODE Workshop – Munich – Nov'20

Verification Cost in Context

L4
Pistachio
$100–150

$400 Green Hills
INTEGRITY

$1000

A
ss

ur
an

ce

Cost ($/SLOC)
1000750500250100

Slow!
Fast!Fast!

© Gernot Heiser 2020

Real-World Use

9 seL4 – CODE Workshop – Munich – Nov'20

© Gernot Heiser 202010 | seL4 – CODE Workshop – Munich – Nov'20

DARPA HACMS
Retrofit
existing
system!

Retrofit
existing
system!

Develop
technology

Unmanned Little Bird (ULB)

Autonomous trucks

GVR-BotOff-the-shelf
Drone airframe

© Gernot Heiser 202011 | seL4 – CODE Workshop – Munich – Nov'20

ULB Architecture

Mission
Computer

Flight
Computer

N
et

w
or

k

Ground
Station Link

Sensors

GPS

Camera

Motors

© Gernot Heiser 202012 | seL4 – CODE Workshop – Munich – Nov'20

Incremental Cyber Retrofit

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Virt-Mach Monitor

Trusted

Miss
Mgr

GS Lk

Cam-
eraGPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Original
Mission

Computer

© Gernot Heiser 2020

Original
Mission

Computer

13 | seL4 – CODE Workshop – Munich – Nov'20

Incremental Cyber Retrofit

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Miss
Mgr

GS Lk

Cam-
eraGPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Trusted

Mission
Mngr

Comms GPS
Local
NW

Crypto

Cam-
era

Linux

VMM

© Gernot Heiser 202014 | seL4 – CODE Workshop – Munich – Nov'20

Incremental Cyber Retrofit

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto Trusted

Mission
Mngr

Comms GPS
Local
NW

Crypto

Cam-
era

Linux

VMM

[Klein et al, CACM, Oct’18]Original
Mission Computer

Cyber-secure Mission
Computer

© Gernot Heiser 202015 | seL4 – CODE Workshop – Munich – Nov'20

Issue: seL4 Objects are Low-Level

Thread-ObjectA CNodeA1 EP Thread-ObjectBCNodeB1
CNodeA2

VSpace

VSpace

CSpace CSpace

Se
nd

Re
ce
ive

PDAPTA1
FRAME

FRAME

...

...

... ...

...

...CO
N
TE

XT

CO
N
TE

XT

A B

>50 capabilities
for trivial program!

S
en

d

R
ec

ei
ve

A B

© Gernot Heiser 202016 | seL4 – CODE Workshop – Munich – Nov'20

Simple But Non-Trivial System

© Gernot Heiser 202017 | seL4 – CODE Workshop – Munich – Nov'20

Component Middleware: CAmkES
Higher-level abstractions of
low-level seL4 constructs

Comp A

Comp C

Comp B

Shared memory

RPC

Interface

Component

Connector

Semaphore

© Gernot Heiser 202018 | seL4 – CODE Workshop – Munich – Nov'20

HACMS UAV Architecture

Radio Driver

CAN Driver

Data Link

Crypto

Uncritical/
untrusted,
contained

Linux

Camera

Wifi

Security enforcement:
Linux only sees
encrypted data

© Gernot Heiser 202019 | seL4 – CODE Workshop – Munich – Nov'20

Enforcing the Architecture
Architecture
specification
language

A

CNode EP CNode
CSpace CSpace

Se
nd

Re
ce
ive

... ...

CO
N
TE

XT

CO
N
TE

XT

VSpace

component
code+

CAmkES

capDL
glue
code

+ proof

initialised system + proof

+ proof
Thread
Object

Thread
Object

VSpace

A B

B

Low-level access rights

driver.c VMM.cglue.c

Compiler/
Linker

binaryinit.c

Conditions
apply

Radio Driver

Crypto

CAN Driver

Data Link Uncritical/
untrusted,
contained

Linux

Camera

Wifi

© Gernot Heiser 202020 | seL4 – CODE Workshop – Munich – Nov'20

Military-Grade Security
Cross-Domain Desktop Compositor

Multi-level secure terminal
• Successful trials in AU, US, UK, CA
• Commercialisation in progress

Secure communication
device in use in AU,
UK defence forces

© Gernot Heiser 202021 seL4 – CODE Workshop – Munich – Nov'20

Real-World Use
Courtesy Boeing, DARPA

