7~

I DATA
bl

N 7~

The Formally Verified 794

selL4 Microkernel
Present and Future

Gernot Heiser | gernot.heiser@data61.csiro.au | @GernotHeiser
* Multicore World, Wellington NZ, Feb’20

https://trustworthy.systems M

Linux Vulnerabilities Over Time

Linux CVEs

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Source: https://cvedetails.com S
& I DATA

61
N~

A 30-Year Dream: Prove the OS Correct

Operating R. Stockton Gaines
Systems Editor

Specification and
Verification of the
UCLA Unixt Security
Kernel

Bruce J. Walker, Richard A. Kemmerer, and

Gerald J. Popek
University of California, Los Angeles

Data Secure Unix, & kernel structured operating sys-
tem, was constructed as part of an ongoing effort at
UCLA to develop procedures by which operating systems
can be produced and shown secure. Program verification
methods were extensively applied as a constructive

enforcement.

Here we report the specification and verification ex-

erience in producing a secure operating system. The
work represents a significant attempt to verify a large-
scale, production level software system, including all as-
pects from initial specification to verification of imple-
mented code.

Key Words and Phrases: verification, security,
operating systems, protection, programming methodolo-
2y, ALPHARD, formal specifications, Unix, security
kernel

CR Categories: 4.29, 4.35, 6.35

1. Introduction

Early attempts to make operating systems secure mere
ly found and fixed Maws in existing systems. As these
efforts failed, it became clear that piecemeal alierations
were unlikely ever 10 succeed [20]. A more systematic
method was required, presumably one that controlled the
system’s design and implementation. Then secure opera

uld be demonstrated in a stronger sense than an in
m that the last bug had been eliminated, par
since production systems are rarely static, and er-
tors easily introduced
Our research secks 10 develop means by which an
ting system can be shown data secure, meaning that
to data must be possible only if the recorded
ction policy permits it. The (wo major components
this task arc: (1) developing system architectures that
minimize the amount and complexity of software involved
in both protection decisions and enforcement, by isolating
them into kermel modules; and (2) applying cxtensive
verification methods to that kernel software in order to
prove that our of data security critetion is met. This paper
reports on the latter part, the verification experience
Those interested in architectural issues should see 23]
Related work includes the PSOS operating system project
at SRI [25) which uses the hicrarchical design methodolo-
gy described by Robinson and Levitt in [26], and cfforts
1o prove communications software at the University of
Texas (31]

Every verification step, from the development of top-
level specifications to machine-aided proof of the Pascal
code, was carricd out. Although these steps were not
completed for all portions of the kernel, most of the job
was done for much of the kernel. The remainder is clear-
ly more of the same. We therefore consider the project
essentially complete. In this paper, as cach verification
step is discussed, an estimate of the completed portion of
that step is given, together with an indication of the
amount of work required for completion. One should
realize that it is esscntial 1o carry the verification process
through the steps of actual code-level proofs because most
sccurity flaws in real systems arc found at this level [20)
Sccurity flaws were found in our system during
verification, despite the fact that the implementation was
wrilten carcfully and tested extensiv An example of

Qur research seeks to develop means by which an
operating system can be shown data secure, meaning that
direct access to data must be possible only if the recorded
protection policy permits it. The two major components

Communications February 1980
of Volume 23
the ACM Number 2

selL4: The Dream Come True

The world’s first operating-
system kernel with provable
security enforcement

World’s most
advanced mixed-

The world’s only

protected-mode OS general-purpose
with complete, sound microkernel, designed

timeliness analysis for real-world use

What is selL4?

A Microkernel is not an OS

Device drivers, file systems, crypto,
power management, virtual-machine Strong
monitor are all usermode processes Isolation

File NW Device Process ‘ .
System Stack Driver Mgmt

Controlled

Communication | e |
N~

World’s Most Secure OS: Armv7 @sel4

Limitations (work in progress):

« Kernel initialisation not yet verified
« MMU & caches modelled abstractly
» Multicore version not yet verified

* Timing channels not ruled out

Verification: x86-64 Status el

Confidentiality ~ Availability
|

Q/f

Verification: RISC-V (RV64) Status @=cl4

Confidentiality Integrity Availability
LV \W

Multicore: Clustered Multikernel el

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual
CPU CPU CPU CPU CPU CPU CPU CPU

context context context context context context context context

)))

Military-Strength Security

DARPA HACMS:
Retrofit existing

Take-Aways

selL4 provides strong isolation — enabler of system security

selL4 is suitable for real-world use, even for retrofitting security

... but software and tool support is still quite limited
... and multikernel support is presently non-existent

selL4 won’t stop you designing a system with no security at all

Using (static) architecture for security enforcement is well understood
Achieving security in dynamic systems much less so

Mixed-
Criticality

Systems

13 | Multicore World | Wellington NZ | Feb'20 © Gernot Heiser 2020

Mixed Criticality: Critical + Untrusted @sel4

NW driver must preempt control loop

e ... to avoid packet loss

 Driver must run at high prio

 Driver must be trusted not to monopolise CPU

Critical: Untrusted:
BN Control NW 2

loop K driver

NW
interrupts

Sensor
readings

MCS Challenge: Sharing

Vehicle Shared , Navigation

Control pemmmmmg Data

Sharing: Delegation to Resource Server@seld

Control 3

Implements immediate priority

Who pays for ceiling protocol (IPCP) if
server time? Ps = max (P4, P3)

Solution: Time Capabilities el

Classical thread attributes New thread attributes

» Priority * Priority
Not runnable
* Time slice o © if null ® «-.Scheduling context capability
L

Limits CPU .
access! Scheduling context object Cfarr)?'tr)r:“ty
« T: period orume

C: budget (= T)

Enables reasoning about
time and temporal isolation
for mixed-criticality systems

MCS with Scheduling Contexts el

Control NW

Sensor __ QRIS driver ¢ PEMEEMN'Y
readings P = low P = high interrupts

C= 25000 A c=2)
T=100,000 . T=3

Utilisation = 25% Utilisation = 67%

Shared Server Time Charged to Client @sel4

4\
Pt o &
Client, 2
ezl

Timeout exception
to deal with

budget exhaustion)

Take-Aways: MCS Support paele

Time as a first-class resource

Enforcement of delegatable time budgets
Suitable for formal reasoning
Verification to be completed this year

Supports mixed-criticality systems without strict time and space partitioning

avoids by-design low utilisation
avoids high interrupt latencies

vd

| DATA
61

N~

Time

Protection

Threats

@sclq

' Speculation

Microarchitectural
Timing Channel

& I DATAI

Cause: Competition for HW Resources @s&l4

High
Security is a core OS job

« Mandatory enforcement

* Must not depend on app
cooperation

Shared hardware \-j-

* Inter-process interference

« Competing access to micro-architectural features
* Hidden by the HW-SW contract!

Systematic Defence: Time Protection @sel4
High Low

Time protection:

A collection of OS mechanisms
which collectively prevent
interference between security
domains that make execution
iIn one domain dependent on

the activities of another.
[Ge et al. EuroSys’19]

me Protection: Partition Hardware

o Lo%\- HOS E“O
C X

Cannot spatially partition on- Flushing useless for
core caches (L1, TLB, branch concurrent access

predictor, pre-fetchers) « HW threads
 virtually-indexed e cores
« OS cannot control

Performance Impact

50% so0ur clane « Overhead mostly low
* Not evaluated is cost of
not using super pages
[Ge et al., EuroSys’19]

Slowdown

x86 79 us 257 ys

Arm 608 us 4,300 ps
Mean slowdown 3.4% 1.1%

Challenge: Broken Hardware paele

« Systematic study of COTS hardware (Intel and Arm) [Ge et al, APSys’18]:

« contemporary processors hold state that cannot be reset

HiSilicon A53 branch history buffer
Intel branch history buffer

() O
£ £
C (-
i) o
—-— —-—
> >
@) @)
O O
X X
() ()
> >
Q. Q.
7) 7)

Small
channel!

Challenge: Broken Hardware paele

« Systematic study of COTS hardware (Intel and Arm) [Ge et al, APSys’18]:

« contemporary processors hold state that cannot be reset

Intel L2 cache

157600
157200 §
156800 | ——

156400
200 300

Trojan signal

<))
=
e
C
i)
—
>
&)
o
X
o
P
Q.
(7))

Channel
resulting from
data prefetcher

Solution: New HW-SW Contract!

ISA is purely functional contract, abstracts too much away

New contract (augmented ISA):

All shared HW resources must be
spatially or temporally partitionable by OS

[Ge et al, APSys’18]

: 4 RISC-V to the rescue:
B Strong commitment to making it happen!

@sclq

Take-Aways: Time Protection

Security is a core operating-system job
Enforcement must be mandatory

OS-provided isolation must be extended from space to time domain

We understand the mechanisms required to do this

implementation shows low overhead
can verify against suitable hardware model

Outstanding problems:

turn models into an actual operating-system security model
Fix the hardware!

7~

I DATA
bl

N 7~

THANK YOU

Gernot Heiser | gernot.heiser@data61.csiro.au | @GernotHeiser

https://trustworthy.systems

