
School of Computer Science & Engineering

Trustworthy Systems Group

State of seL4-related Research
at Trustworthy Systems
Gernot Heiser
gernot@trustworthy.systems

© Gernot Heiser 2022 – CC BY 4.0

Armv7
RISC-V

Armv7
RISC-V

Armv7
x86

RISC-V

1 seL4 Research Update – seL4 Summit – Oct'22

Success Story – What’s Next?

Proof Pr
oo

f

Proof

Integrity

Abstract
Model

C Imple-
mentation

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Functional
Correctness

Translation
Correctness

Security
Enforcement

seL4: Still only verified
OS kernel with fine-
grained access control

seL4: World’s first
OS kernel with
correctness proof!

Present limitations
• initialisation code not verified
• MMU, caches modelled abstractly
• Multicore not yet verified

AArch64 in
progress

seL4: Unique, policy-free
resource management
(time and space)

© Gernot Heiser 2022 – CC BY 4.0

Time – The Final Frontier

2 seL4 Research Update – seL4 Summit – Oct'22

© Gernot Heiser 2022 – CC BY 4.0

Issues With Time

3 seL4 Research Update – seL4 Summit – Oct'22

High Low

Low affects High’s progress
• Cause deadline miss
• Integrity violation

High affects Low’s progress
• Information leakage
• Confidentiality violation

© Gernot Heiser 2022 – CC BY 4.0

Temporal Integrity: MCS Kernel

4 seL4 Research Update – seL4 Summit – Oct'22

Client1

Passive Server

Running
Running

Server runs on client’s
scheduling context

Client is charged
for server’s time

Client2
• Time as a first-class resource
• Restrict CPU access for high-

prio threads
• Time-out exception if budget

expires in server

However: Complex recovery,
transaction semantics needed

© Gernot Heiser 2022 – CC BY 4.0

Goal: Simple Servers, Minimal Policy

5 seL4 Research Update – seL4 Summit – Oct'22

Idea: Budget contract
1. Client cannot enter server with less than C0 budget
2. Server cannot consume more than C0 budget

No budget expiry in
well-configured server

Protect client from
mis-behaving server

Client1 Passive Server

C0

Threshold is
Endpoint attribute

Status:
• Student Mitch Johnston

working through various
implementation issues

• Expect RFC soonInvocation deferred if
remaining budget is insufficient

© Gernot Heiser 2022 – CC BY 4.0

Later: Formal Scheduling Analysis

6 seL4 Research Update – seL4 Summit – Oct'22

Challenge: Prove timeliness of critical real-time components
• MCS provides mechanisms
• WCET analysis of kernel done (for old version on old HW 😢)
• In principle can reason about schedulability

Reality:
• Need to resolve usability issues with MCS
• WCET analysis for old version on old HW 😢
• More theory work needed

Status:
• Not started yet
• Looking for good PhD student!

© Gernot Heiser 2022 – CC BY 4.0

Confidentiality: Timing Channels

7 seL4 Research Update – seL4 Summit – Oct'22

Shared resources

High Low

Microarchitectural timing channels:
Contention for shared hardware
resources affects execution speed

Standard approach:
Patch & Pray

© Gernot Heiser 2022 – CC BY 4.0

Time Protection: Principled Prevention

8 seL4 Research Update – seL4 Summit – Oct'22

Aim: Provably prevent
information flow through
micro-architectural
timing channels

Idea: Prevent channels
by temporal or spatial
partitioning of all HW

[Ge et al, EuroSys’19]

High Low

Cache Flush

Temporally
partition

Spatially
partition

High Low

Cache

High Low

Cache

© Gernot Heiser 2022 – CC BY 4.0

Must remove any
history dependence!

Temporal Partitioning: Flush on Switch

seL4 Research Update – seL4 Summit – Oct'22

1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. while (T0+WCET < current_time()) ;
5. Reprogram timer
6. return

Latency depends
on prior execution!

Time padding
to remove

dependency

9

© Gernot Heiser 2022 – CC BY 4.0

1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. while (T0+WCET < current_time()) ;
5. Reprogram timer
6. return

Must remove any
history dependence!

Proving Temporal Partitioning

seL4 Research Update – seL4 Summit – Oct'22

Prove: flush all non-partitioned HW
• Needs model of stateful HW
• Somewhat idealised on present HW

… but matches RISC-V prototype
• Functional property

Prove: access to shared
data is deterministic
• Each access sees

same cache state
• Needs cache model
• Functional property

Prove: padding is correct

10

© Gernot Heiser 2022 – CC BY 4.0

Padding: Use Minimal Clock Abstraction

11 seL4 Research Update – seL4 Summit – Oct'22

Abstract clock = monotonically increasing counter
Operations:
• Add constant to clock value
• Compare clock values

To prove: padding loop terminates as soon as clock ≥ T0+WCET
• Functional property!

© Gernot Heiser 2022 – CC BY 4.0

Time Protection Verification: Status

12 seL4 Research Update – seL4 Summit – Oct'22

1. [Done] Specify isolation property
2. [Done] Prove enforcement on high-level model
3. [In progress] Connect to seL4 proofs

1. [Done] Update seL4 abstract specification to account for memory accesses
2. Prove these accesses are bounded according to security policy
3. Connect 3.1-3.2 to high-level model to prove isolation property
4. Prove preservation of 3.1-3.3 by refinement to lower-level seL4 specifications

Support:
• Australian Research Council
• USAF-AOARD
• NCSC (UK)

© Gernot Heiser 2022 – CC BY 4.0

Hardware Support for Time Protection

seL4 Research Update – seL4 Summit – Oct'22

1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. while (T0+WCET < current_time()) ;
5. Reprogram timer
6. return

Hardware Reality:
Mainstream processors do not allow
resetting all history-dependent state!

[Ge et al., APSys’18]

RISC-V to the rescue!
• Add instruction to clean state
• Also help with padding
• See talk by Nils Wistoff

13

© Gernot Heiser 2022 – CC BY 4.0

Multicore Performance

14 seL4 Research Update – seL4 Summit – Oct'22

© Gernot Heiser 2022 – CC BY 4.0

Getting Rid of the Big Kernel Lock?

15 seL4 Research Update – seL4 Summit – Oct'22

Issue:
• While not generally a performance issue,

BKL leads to very pessimistic WCET
• Also large cross-core timing channels
• Removing take single-kernel image further

Background:
• Multicore seL4 uses a single big lock
• Works because seL4 syscalls are short
• Makes sense as long cost of migrating

cache line is small fraction of syscall cost
Aim:
Resolve locking issue
before progressing with
multicore verification

© Gernot Heiser 2022 – CC BY 4.0

Getting Rid of the Big Kernel Lock?

16 seL4 Research Update – seL4 Summit – Oct'22

Support:
• NCSC (UK)

Idea:
• Bounded reader-writer lock
• Lock-free updates

Status:
• Done: Implementations for x86 and Arm
• Done: Proofs of desired properties
• In progress: Implementation in seL4Writer has to wait at

most 1 reader’s locking
time to obtain lock

© Gernot Heiser 2022 – CC BY 4.0

So, Why Isn’t seL4 Everywhere by Now?
• Usability
• Functionality: Native services
• Trustworthiness: More than the kernel
• Applicability: Embedded vs general-purpose

17 seL4 Research Update – seL4 Summit – Oct'22

© Gernot Heiser 2022 – CC BY 4.0

Usability

18 seL4 Research Update – seL4 Summit – Oct'22

© Gernot Heiser 2022 – CC BY 4.0

Recommended Framework: CAmkES

19 seL4 Research Update – seL4 Summit – Oct'22

Architecture
specification

A

CNode EP CNode
CSpace CSpace

Se
nd

Re
ce
ive

... ...

CO
N
TE

XT

CO
N
TE

XT

VSpace

component
code+

CAmkES

capDL
glue
code

+ proof

initialised system + proof

+ proof
Thread
Object

Thread
Object

VSpace

A B

B

CapDL: Low-level access rights

driver.c VMM.cglue.c

Compiler/
Linker

binary
init.c

Conditions
apply

Radio Driver

Crypto

CAN Driver

Data Link Uncritical/
untrusted,
contained

Linux

Camera

Wifi

• Forces use of kernel
build system on apps

• Fully static
• Hard to extend
• Significant overheads

• Good for
assurance

• Bad for usability
& functionality

© Gernot Heiser 2022 – CC BY 4.0

New Framework: seL4 Core Platform
Small OS/SDK for IoT, cyber-physical and other embedded use cases

• Leverage seL4-enforced isolation for strong security/safety
• Lean, retain seL4’s superior performance
• Retain near-minimal trusted computing base (TCB)
• Integrate with build system of your choice
• Support ”correct” use of seL4 mechanisms by default
• Be amenable to formal verification of the TCB

20 seL4 Research Update – seL4 Summit – Oct'22

Details in Zoltan
Kocsis’ talk

Support:
• NCSC (UK)

© Gernot Heiser 2022 – CC BY 4.0

Functionality: Native Services

21 seL4 Research Update – seL4 Summit – Oct'22

© Gernot Heiser 2022 – CC BY 4.0

Key Component: Driver Framework

seL4 Research Update – seL4 Summit – Oct'22

Transport

MUX Driver

Control

VM

OS Virtual
Driver

AppsAppsApps

Virtual NW

Client

Device

Aim:
• Simple model for robust drivers
• Secure, low-overhead sharing of

devices between components
• Low overhead

Approach:
• Zero-copy transport layer
• Standard interfaces, virtIO
• Re-use Linux drivers in per-device VM
• Investigate verifying MUX, Controller

Details in Lucy
Parker’s talk Support:

• seL4 Foundation
• TII

22

© Gernot Heiser 2022 – CC BY 4.0

Trustworthiness
More than the kernel

23 seL4 Research Update – seL4 Summit – Oct'22

© Gernot Heiser 2022 – CC BY 4.0

Cost of Verification?

24 seL4 Research Update – seL4 Summit – Oct'22

Abstract
Model

C code

Pr
oo

f

10,000 lines
of code

170,000 lines of proof
11 person years

Designed and
implemented
for verification!

Complete seL4 proof base
now ≫ 1,000,000 lines!

Verifying code not written for
verification is infeasible,
significant expertise required
for writing verifiable code!

© Gernot Heiser 2022 – CC BY 4.0

$400/SLOC

Verification Cost in Context

25 seL4 Research Update – seL4 Summit – Oct'22

L4 Pistachio
$100–150/SLOC

Green Hills
INTEGRITY

$1,000/SLOC

A
ss

ur
an

ce

Design-Implementation-Assurance Cost ($/SLOC)
1000750500250100

Performance:
Slow!

Performanc
e: Fast!
Performance:
Fast!

Cost of Evolution

© Gernot Heiser 2022 – CC BY 4.0

Trusted
Computing
Base

Beyond the Kernel

26 seL4 Research Update – seL4 Summit – Oct'22

Trusted
Component

Untrusted
Component

Net-
working

File
System

Virtual
Machine

Linux

Linux
App

seL4CP
Device
Driver

10 kSLOC?

100 kSLOC?

n×1 kSLOC?
1 kSLOC?<1 kSLOC?

© Gernot Heiser 2022 – CC BY 4.0

Reducing Cost of Verified Systems Code

27 seL4 Research Update – seL4 Summit – Oct'22

Aim: Simplify
verifying user-level
OS components

Compiler

Binary

Pancake
Language

Idea:
• Use low-level but safe

systems language with
certifying compiler

• Gives many proof
obligations for free

Systems language:
• memory safe
• not managed (no garbage collector)
• low-level (obvious translation)
• interfacing to hardware
• no run-time system

Pr
oo

f

© Gernot Heiser 2022 – CC BY 4.0

Approach: Re-Use CakeML Framework

28 seL4 Research Update – seL4 Summit – Oct'22

CakeML:
• functional language
• type & memory safe
• managed (garbage collector)
• high-level, abstract machine
• verified run time
• verified compiler
• mature system
• active ecosystem

CakeML
compiler

Approach:
Re-use lower part of
CakeML compiler stack
for imperative language

Great, but too
high-level!

Pancake
compiler

© Gernot Heiser 2022 – CC BY 4.0

Verified Pancake Compiler

29 seL4 Research Update – seL4 Summit – Oct'22

Pancake compiler is written in CakeML
⇒ can use CakeML compiler to produce

verified Pancake compiler binary!

Status:
• Mostly done: Toy (serial) driver

verification to explore semantics
• Prototype done: Parser
• Almost done: Verification of link

to CakeML compiler:
• In progress: Binary compiler

bootstrap
• Not started: Shared-memory

driver-device, driver-client

Collaborators:
• ANU
• Chalmers
Support:
• TII

© Gernot Heiser 2022 – CC BY 4.0

Applicability
Embedded vs General-Purpose

30 seL4 Research Update – seL4 Summit – Oct'22

© Gernot Heiser 2022 – CC BY 4.0

Makatea: Secure VPN Service

31 seL4 Research Update – seL4 Summit – Oct'22

sDDF Transport

MUX NW
Driver

Control

VM

Linux
virtIO
Driver

VMM

VPN Host

NIC

VM

Linux
virtIO
Driver

VMM

VPN Host
VM

Linux
virtIO
Driver

VMM

VPN Host

x86_64 Server-Class Platform

Aim:
Secure communications for
humanitarian organisations

Requires:
• Support for server-

class Intel platform
• Efficient network

virtualisation

Client:
• Neutrality
Support:
• NLnet

© Gernot Heiser 2022 – CC BY 4.0

Provably Secure General-Purpose OS

32 seL4 Research Update – seL4 Summit – Oct'22

Security
Server

Resource
Manager Memory

Regions
Connec-

tions
Resource

Containers Tasks Threads

Connection
Server

File
Server

N/W
Server

Device
Manger

…

Client

Problem:
• GP-OS with security policy diversity
• Proof that policy is enforced
• Performance

Solution:
• Multi-server OS with policy

isolated in security server
• Object servers provable to

ensure complete mediation
• Connection server

authorises comms channels

Status:
• prototyping

core servers

Partners
Penn State

Support
NCSC

© Gernot Heiser 2022 – CC BY 4.0

FAQ: If You Did It Again,
What Would Be Different?

33 seL4 Research Update – seL4 Summit – Oct'22

© Gernot Heiser 2022 – CC BY 4.0

Major Issues?

34 seL4 Research Update – seL4 Summit – Oct'22

Main issues with original seL4:
• Need protocols for establishing reply channel
• Naïve scheduling with no serious time management

Addressed by
• reply caps
• reply objects

Addressed by
scheduling
contexts (MCS)

© Gernot Heiser 2022 – CC BY 4.0

Annoyances [1/2]: Map/Unmap Args

35 seL4 Research Update – seL4 Summit – Oct'22

Issue:
• Mapping operates on frame, taking

address space as argument:
frame_c.Map(AS_c, vaddr)

Cost:
• Mapping multiple frames

requires one syscall per frame
• Same for Unmap

Better:
• AS_c.Map(frame_c, vaddr,

frame_c, vaddr, …)
• AS_c.Unmap(vaddr, vaddr, …)

Multi-frame operations:
• Process creation
• Write-protecting/unprotecting for

• copy-on-write
• garbage collection

Status:
• SMOS, AutoOS will

demonstrate costs

Issue:
• Mapping operates on frame, taking

address space as argument:
frame_c.Map(AS_c, vaddr)

• User view is that the the mapping
is added to the AS, which is
modified:
AS_c.Map(frame_c, vaddr)

© Gernot Heiser 2022 – CC BY 4.0

Annoyances [2/2]: Lazy FPU Switch

36 seL4 Research Update – seL4 Summit – Oct'22

Issue:
• Compilers use FPU registers

for string ops, etc
• Most app code uses FPU
• No benefit from lazy switching

Cost:
• Extra kernel entry
• For servers not using FPU:

• wastes memory in
thread control block

• WCET must assume
FPU switch!

Better:
• Principled resource management:

make FPU access a right,
provided by FPU object

• Switch FPU eagerly

Present FPU context switching is lazy:
1. At context switch, disable FPU
2. Access causes fault
3. On fault, switch FPU state & enable

© Gernot Heiser 2022 – CC BY 4.0

Issues Under Investigation

37 seL4 Research Update – seL4 Summit – Oct'22

Issue:
• Signal that unblocks thread moves

it to front of scheduling queue
• ACKing IRQ requires a syscall
• Can we abort IPC by Signal?

Messes with
scheduling analysis

Why not implicit in waiting
on IRQ Notification?

• Would much simplify
timeout implementation

• Idea is to have a mask
that says which Signals
may abort

© Gernot Heiser 2022 – CC BY 4.0

Summary
• seL4 is the best – but we can still improve it!

• Budget thresholds: simplify implementation of passive servers
• Time protection: principled way for preventing timing channels
• Improved locks: make multicore better
• Hopefully get rid of some long-standing annoyances

• seL4 is real-world capable – but we can make it easier!
• seL4 Core Platform: lean & easy to deploy
• seL4 Device Driver Framework: ease driver writing
• Pancake: towards verified device drivers

• seL4 can own the embedded space – but we can take it further!
• seL4 on server platforms
• General-purpose, provably-secure system

38 seL4 Research Update – seL4 Summit – Oct'22

© Gernot Heiser 2022 – CC BY 4.0 39 seL4 Research Update – seL4 Summit – Oct'22

Defining the state of the art in
trustworthy systems since 2009

