School of Computer Science & Engineering
N Trustworthy Systems Group

UNSW | g
SYDNEY LIVEISILY

State of selL4-related Research
at Trustworthy Systems

Gernot Heiser
gernot@trustworthy.systems

O =

Success Story — What's Next? O

Confidentiality Integnty Availability

Security
Enforcement

Abstract
Model

selL4: World's first
OS kernel with
correctness proof!

Functional Armv/
Correctness X86

C Imple- RISC-V

mentation

, . Translation
sel4: Still only verified Coras TEes Armv7/

OS kernel with fine- RISC-V

grained access control

selL4 Research Update — seL4 Summit — Oct'22

AArch64 in
. progress

RISC-V

selL4: Unique, policy-free
resource management
(time and space)

Present limitations

« initialisation code not verified

* MMU, caches modelled abstractly
» Multicore not yet verified

© Gernot Heiser 2022 — CC BY 4.0

Time — The Final Frontier

=]

selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW

VVVVVV

Issues With Time O

Low affects High's progress
« Cause deadline miss
* Integrity violation

High affects Low's progress
» Information leakage
« Confidentiality violation

VVVVVV

selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW
A

Temporal Integrity: MCS Kernel

Running

~~\\
Client, ?

Client is charged
for server’s time

I
\ I %
7 \

1

Time as a first-class resource
Restrict CPU access for high-
prio threads

Time-out exception if budget

expires in server

selL4 Research Update — seL4 Summit — Oct'22

O =

Running

{

Passive Server

K

Server runs on client’s
scheduling context

© Gernot Heiser 2022 — CC BY 4.0

Goal: Simple Servers, Minimal Policy O =

Idea: Budget contract

No budget expiry in
well-configured server

1. Client cannot enter server with less than Cy budget
2. Server cannot consume more than Cy budget

Client; I

Protect client from
mis-behaving server

Passive Server

Co

Threshold is
Endpoint attribute

selL4 Research Update — seL4 Summit — Oct'22

Invocation deferred if
remaining budget is insufficient

Status:

« Student Mitch Johnston
working through various
implementation issues

« Expect RFC soon

VVVVVV

Later: Formal Scheduling Analysis O

Challenge: Prove timeliness of critical real-time components
MCS provides mechanisms

« WCET analysis of kernel done (for old version on old HW &)
* In principle can reason about schedulability

Reality:

* Need to resolve usability issues with MCS

« WCET analysis for old version on old HW &
More theory work needed

Status:
* Not started yet
« Looking for good PhD student!

=]

selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW

VVVVVV

el

Confidentiality: Timing Channels O

Low

% High |

selL4 Research Update — seL4 Summit — Oct'22

Microarchitectural timing channels:
Contention for shared hardware
resources affects execution speed

Standard approach:
Patch & Pray

VVVVVV

Gz

© Gernot Heiser 2022 — CC BY 4.0 UNSW

Time Protection: Principled Prevention = Q=

Temporally

High || Low B partition ol High || Low |

Spatially
partition
Idea: Prevent channels

Low by temporal or spatial
partitioning of all HW
[Ge et al, EuroSys’'19]

YYYYYY

selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW

Temporal Partitioning: Flush on Switch ~ O=re=

Must remove any
history dependence!

Latency depends

1. Ty = current_time() on prior execution!

2. Switch user context

3. Flush on-core state

4. while (Typ+WCET < current_time()) ; Time padding
5. Reprogram timer to remove
6. return dependency

selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UM@EW

Proving Temporal Partitioning O

Must remove any Prove: flush all non-partitioned HW
history dependence! « Needs model of stateful HW
 Somewhat idealised on present HW
... but matches RISC-V prototype

1. T, = current_time()
2. Switch user context Prove: access to shared
5 EUE GreeE e Sl data is deterministic

_ . « Each access sees
4. while (Typ+WCET < current_time()) ; same cache state
5. Reprogram timer * Needs cache model
6. return

Prove: padding is correct

10 selL4 Research Update — seL.4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 USN§EW

11

Padding: Use Minimal Clock Abstraction Q=

Abstract clock = monotonically increasing counter
Operations:

« Add constant to clock value

« Compare clock values

To prove: padding loop terminates as soon as clock = TO+WCET
* Functional property!

selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW

VVVVVV

12

1.
2.
3.

Time Protection Verification: Status O

[Done] Specify isolation property
[Done] Prove enforcement on high-level model
[In progress] Connect to seL4 proofs
1. [Done] Update sel4 abstract specification to account for memory accesses
2. Prove these accesses are bounded according to security policy
3. Connect 3.1-3.2 to high-level model to prove isolation property
4. Prove preservation of 3.1-3.3 by refinement to lower-level seL4 specifications

Support:

« Australian Research Council
« USAF-AOARD

« NCSC (UK)

seL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW

Hardware Support for Time Protection Qe

Hardware Reality:

Mainstream processors do not allow

resetting all history-dependent state!
[Ge et al., APSys'18]

1. Tg=current_time()

2. Switch user context

3. Flush on-core state RISC-V to the rescue!

4. while (Tog+WCET < current_time()) ; « Add instruction to clean state
5. Reprogram timer * Also help with padding

6. return « See talk by Nils Wistoff

VVVVVV

13 selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW

Multicore Performance

=]

14 selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW

VVVVVV

Getting Rid of the Big Kernel Lock? O

Background:

* Multicore selL4 uses a single big lock

« Works because sel4 syscalls are short

 Makes sense as long cost of migrating
cache line is small fraction of syscall cost

Issue:

« While not generally a performance issue,
BKL leads to very pessimistic WCET

« Also large cross-core timing channels

« Removing take single-kernel image further

15 selL4 Research Update — seL4 Summit — Oct'22

Aim:

Resolve locking issue
before progressing with
multicore verification

VVVVVV

Getting Rid of the Big Kernel Lock?

Writer has to wait at
most 1 reader’s locking
time to obtain lock

Idea:
« Bounded reader-writer lock
* Lock-free updates

16 selL4 Research Update — seL.4 Summit — Oct'22

Support:
« NCSC (UK)

© Gernot Heiser 2022 — CC BY 4.0

O =

YYYYYY

So, Why Isn’t seL4 Everywhere by Now? Q==

 Usability

* Functionality: Native services
 Trustworthiness: More than the kernel
 Applicability: Embedded vs general-purpose

17 selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UM%W

Usability

=

18 seL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW

Recommended Framework: CAMKES Orr=

Good for
Wifi assurance
Bad for usability
» [camera & functionality
Conditions ... [CAN Driver]

apply

------ [Radio Driver] [Data Link]

Linux

Architecture
specification

Forces use of kernel driver.c lw
build system on apps

Fully static (L:i%rlzlepr"er/ /
Hard to extend

2 Significant overheads *

19 seL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 :n: UNSW

YYYYYY

CapDL: Low-level access rights
A B

Thread
Object CSpace
CNode

20

New Framework: seL4 Core Platform O

Small OS/SDK for loT, cyber-physical and other embedded use cases
 Leverage sel4-enforced isolation for strong security/safety
 Lean, retain selL4’s superior performance
 Retain near-minimal trusted computing base (TCB)
* Integrate with build system of your choice
« Support “correct” use of seL4 mechanisms by default
« Be amenable to formal verification of the TCB

Support:

Details in Zoltan NCSC (UK)

Kocsis’ talk

selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UM%W

21

Functionality: Native Services

selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0

=]

UNSW

Key Component: Driver Framework O
VM m

Aim:
. Control « Simple model for robust drivers
\[;Ir:/ueil { - Secure, low-overhead sharing of

T Client |«» MUX <> Driver devices between components

4 "
T Low overhead
Q:cla
Approach:
Details in Lucy « Zero-copy transport layer
Parker’s talk Support: « Standard interfaces, virtlO
. sel4 Foundation * Re-use Linux drivers in per-device VM
e Tl Investigate verifying MUX, Controller
22 selL4 Research Update — seL4 Summit — Oct'22

VVVVVV

23

Trustworthiness

More than the kernel

selL4 Researc h Update — seL4 Summit — Oct'22

VVVVVV

24

Cost of Verification? O

Verifying code not written for
verification is infeasible,

significant expertise required Abstract

for writing verifiable code!

Model

170,000 lines of proof
11 person years

10,000 lines
of code

Designed and
implemented
for verification!

seL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0

YYYYYY

25

Verification Cost in Context O

$400/SLOC
Q
8 Green Hills
© INTEGRITY
S Performance: $1,000/SLOC
m)
2 Fast!

L4 Pistachio

$100-150/SLOC

100 250 500 750 1000
Design-Implementation-Assurance Cost ($/SLOC)

Cost of Evolution

selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0

vvvvvv

Beyond the Kernel C =

Virtual
Machine
Linux
App
Device Trusted Untrusted
Driver Component Component

26 selL4 Research Update — seL.4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UsvnN§£vW
a2

Trusted
Computing
Base

Reducing Cost of Verified Systems Code O

Aim: Simplify
verifying user-level
OS components

Idea:
« Use low-level but safe
systems language with

Pancake certifying compiler
Language

» Gives many proof
obligations for free

Compiler
Systems language:

* memory safe

« not managed (no garbage collector)
 low-level (obvious translation)
 interfacing to hardware

* NO run-time system

27 selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 E\: UNSW

VVVVVV

Approach: Re-Use CakeML Framework =

CakeML

CakeML: compiler

« functional language

* type & memory safe

« managed (garbage collector)

 high-level, abstract machine
verified run time

Pancake
compiler

verified compiler
* mature system
« active ecosystem

Approach:

Re-use lower part of
CakeML compiler stack
for imperative language

28 selL4 Research Update — seL4 Summit — Oct'22

Pancake AST)

Languages
CakeML syn(ax

Cak ML AST

ﬁ;

FlatLang:
alanguage for
compiling away

high-level
lang. features

—

ClosLang:
last language
with closures
(has multi-arg

closures)

J

Flatten structs <

CreplLang:

imperative

language
without structs

BVL:
functional
language

without
closures

J
\

Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

> Global dead code elim.

P

>
>

Turn pattem matches into
if-then-else decision trees

Switch to de Bruijn
indexed local variables

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow & inline small functions

> Introduce C-style fast
calls wherever possible

> Remove deadcode

2> Annotate closure creations
> Perform closure conv.
) Inline small functions

> Fold m‘anh and

shrini
P

Split over-sized function:
into many small fummons
> Compile global vars into a
resized array

ise program <:
LoopLang:
expressions
occur only on
RHS of
assignment
statements
——

%

'ﬁlace Ioops
tail calls

BVI:
one global
variable

—

Datalang:
imperative
language
N

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

StackLang:
imperative
Ianguage

optional GC
LabLang:
assembly Iang

© Gernot Heiser 2022 — CC BY 4.0 E:
Gy

as HOL functions
producing C

Venlog generator

> Optimise Let-expressions

> Make some functions tail-
recursive using an acc.

> Switch to imperative style
) Reduce caller-saved vars

> Combine adjacent
memory allocations

) Remove data abstraction
o> Simplify program

Select target instructions
> Perform SSA-like renaming
> Force two-reg code (if req.)
> Remove deadcode
> Allocate register names
&> Concretise stack

) Introduce (raw) calls past
function preambles

o> Implement GC primitive

2 momory aceases o "
P

Rename registers to match
arch registers/conventions

2> Flatten code

> Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

Sllver ISA

Silver CPU
in Verilog

Languages

Verified Pancake Compiler

)

FlatLang:
alanguage for
compiling away

high-level

lang. features

Pancake compiler is written in CakeML N
= can use CakeML compiler to produce

with closures

s, exitif fail
Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Gilobal dead code elim.

Turn pattern matches into
if-then-else decision trees

Switch to de Bruijn

indexed local variables
Fuse function calls/apps
into multi-arg calls/apps
Track where closure values
flow & inline small functions
Introduce C-style fast

(has multi-arg calls wherever possible

verified Pancake compiler binary! e

Remove deadcode

Annotate closure creations

Flatten structs < Perform closure conv.
Inline small functions
CrepLang: Fold constants and
imperative shrink Lets
language Split over-sized functions
without structs into many small functions
Compile global vars into a
\ J dynamically resized array
program C Optimise Let-expressions
LoopLang: Make some functions tail-
expressions recursive using an acc.
Replace loops occur only on i . .
wﬁ e < ASIor Switch to imperative style
assignment Reduce caller-saved vars
statements Combine adjacent
\ J memory allocations
u Remove data abstraction
Simplify program
Select target instructions
imperative . o
language with Perform SSA-like renaming

machine words,
memory and
a GC primitive

Force two-reg code (if req.)
Remove deadcode
Allocate register names
Concretise stack

Introduce (raw) calls past
function preambles

Collaborators:

StackLang:
L] imperative Implement GC primitive
anguage Turn stack accesses into
R memory acceses
stack and N
optional GC Rename registers to match

arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

e Chalmers
Support:
o TII

VA EVEVAVEVEV AV A VARV AV VAV VY VRV AV AV VARV VAV VIV VARVAV Y,

Implements

Hardware below this line ’
Silver CPU
as HOL functions

Proof. i
Verilog generator <

29 selL4 Research Update — seL.4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0

SYDNEY

30

Applicabllity

Embedded vs General-Purpose

selL4 Research Update — seL4 Summit — Oct'22

© Gernot Heiser 2022 — CC BY 4.0

VVVVVV

Makatea: Secure VPN Service O =

Aim:
VM VM VM Secure communications for
VPN Host VPN Host VPN Host humanitarian organisations
, :) Control Requires:
virtlo virtlO virtlO « Support for server-
Driver Driver Driver $
class Intel platform
MUX > W « Efficient network
Driver

virtualisation

A 1\ A
sDDF Transport
0&14 Client:
* Neutrality
x86_64 Server-Class Platform Support:
* NLnet

31 seL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW

Provably Secure General-Purpose OS

Problem: Solution:
« GP-0S with security policy diversity > e O il polioy

. isolated in security server
* Proof that policy is enforced : y
* Object servers provable to

- Performance ensure complete mediation
« Connection server

Client authorises comms channels

Connection File N/W _ Device
Server Server Server Manger

Security Resource
Memory Resource Connec-
Server Manager s Containers tions Tasks Threads

O =

Status:
* prototyping
core servers

Partners
Penn State

Support
NCSC

32 seL4 Research Update — seL4 Summit - Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW

FAQ: If You Did It Again,
What Would Be Different?

CCBY 4.0 UNSW

34

Major Issues”?

Addressed by
* reply caps
« reply objects

selL4 Research Update — seL.4 Summit — Oct'22

Addressed by
scheduling
contexts (MCS)

© Gernot Heiser 2022 — CC BY 4.0

YYYYYY

35

Annoyances [1/2]: Map/Unmap Args O

Issue:

Mapping operates on frame, taking
address space as argument:
frame_c.Map(AS_c, vaddr)

User view is that the the mapping
is added to the AS, which is
modified:

AS_c.Map(frame_c, vaddr)

Better:

e AS_c.Map(frame_c, vaddr,
frame_c, vaddr, ...)
e AS_c.Unmap(vaddr, vaddr, ...)

selL4 Research Update — seL4 Summit — Oct'22

Cost:

« Mapping multiple frames
requires one syscall per frame

« Same for Unmap

Multi-frame operations:

* Process creation

« Write-protecting/unprotecting for
e COpy-on-write
« garbage collection

Status:
e SMOS, AutoOS will
demonstrate costs

VVVVVV

Annoyances [2/2]: Lazy FPU Switch O

Present FPU context switching is lazy:
1. At context switch, disable FPU

2. Access causes fault

3. On fault, switch FPU state & enable

Issue:

 Compilers use FPU registers
for string ops, etc

« Most app code uses FPU

» No benefit from lazy switching

Cost:
 Extra kernel entry
Better: * For servers not using FPU:
» Principled resource management: * wastes memory Iin
make FPU access a right, thread control block
provided by FPU object * WCET must assume
» Switch FPU eagerly FPU switch!

36 selL4 Research Update — seL.4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UNSW

&~/ sYDNEY
el

Issues Under Investigation O

Messes with

scheduling analysis
Issue:

« Signal that unblocks thread moves
it to front of scheduling queue

« ACKing IRQ requires a syscall

« Can we abort IPC by Signal?

Why not implicit in waiting
on IRQ Notification?

« Would much simplify
timeout implementation

« Ideais to have a mask
that says which Signals
may abort

37 selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UM@EW

Summary O

» seL4 is the best — but we can still improve it!
« Budget thresholds: simplify implementation of passive servers
 Time protection: principled way for preventing timing channels
* Improved locks: make multicore better
« Hopefully get rid of some long-standing annoyances

» seL4 is real-world capable — but we can make it easier!
« selL4 Core Platform: lean & easy to deploy
» seL4 Device Driver Framework: ease driver writing
« Pancake: towards verified device drivers

« seL4 can own the embedded space — but we can take it further!
« seL4 on server platforms
« General-purpose, provably-secure system

38 selL4 Research Update — seL4 Summit — Oct'22 © Gernot Heiser 2022 — CC BY 4.0 UM@EW

Defining the state of the art in
trustworthy systems since 2009

