School of Computer Science & Engineering
Trustworthy Systems Group

UN SW Australia’s

Global
SYDNEY

University

Can We Make Trustworthy
Systems a Reality?

Gernot Heiser

UNSW Sydney & selL4 Foundation
@GernotHeiser

Cyberattacks Are Everywhere

Cyberattacks on Automated

Vehicles Rise by 99%: Report
R e p 0 I"t S h OWS Cyb er Cyber Attacks That Target Electrical |

Attacks.on Cloud Services Devicesand Eauipment: What
ngineers Should Know
H av e D 0 u b le d February 10, 2020 Ikimi .0

News / World

URITY -

ﬁ;l Cyber attack on Saudi plant designed to

'Most serious cyberattack of the Ukraine war': Tens P
of thousands modems crippled 1 E

Increasingly used by
» organised crime
« state actors

AP By Associated Press | 5:38pm Mar 31, 2022

NEWS | February 7, 2022

PAY

ONE @8 | Ransomware attack on Swissport causes delay at Zurich Airport

TO UNLOCK

SYSTOR Keynote, June'22 © Gemnot Heiser 2022, CCBY 4.0 &5 UNSW

2

Core Problem: Complexity

Software-engineering rule of thumb:

B*A * 1-5bugs per 1,000 lines of quality code

5

(@)

Q

‘g Bluetooth protocol stack:

e 100s kSLOC

@)

©

©

cC

Q

(@R

()

< > Linux/Windows kernel:
System Complexity 10s MSLOC

SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0

UNSW

3

Standard Approach: Patch-and-Pray

A losing
proposition!

SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0

ssssss

4

Solution 1: Minimise Trusted Computing Base

Modularisation: Separate components
* operating-system services
« applications

Microkernel enforces isolation

« kernel code reduced to minimum Virtual
Machine

« mediates hardware resources

« performance critical Linux

App
File Net- Device Trusted Untrusted User
System working Driver Component Component Mode

Kernel

Microkernel Mode

Hardware

=

SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 UNSW

VVVVVV

(selg Solution 2: Mathematical Proof

Confidentiality Integrlty

selL4: World's first
OS kernel with
correctness proof!

selL4: Still only verified
OS kernel with fine-
grained access control

5 SYSTOR Keynote, June'22

Availability

Security
Enforcement

Abstract

Model

Functional
Correctness

C Imple-
mentation

Translation
Correctness

Armv/
x86
RISC-V

Armv7/
RISC-V

AArch64 in
. progress

RISC-V

Present limitations

« initialisation code not verified

* MMU, caches modelled abstractly
» Multicore not yet verified

YYYYYY

6

Solution 1: Minimise Trusted Computing Base

Virtual
Verification makes Machine

isolation bullet-proof! Linux
App
File Net- Device Trusted Untrusted User
System working Driver Component Component Mode

; Kernel
Microkernel Mode
Hardware
SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 UNSW

7

Security Is No Excuse For Bad Performance!

Latency (in cycles) of a round-trip cross-address-space IPC on x64

Mi et al, 2019 986 2717 8157
World’s fastest |
T Gu et al, 2020 1450 3057 8151
selL4.systems, Jun'22 767 N/A N/A
Within 10% of
hardware limit!
Sources:

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen: “SkyBridge: Fast and Secure Inter-Process Communication
for Microkernels”, EuroSys, April 2020

Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, Haibo Chen: “Harmonizing Performance and Isolation in
Microkernels with Efficient Intra-kernel Isolation and Communication”, Usenix ATC, June 2020

selL4 Performance, https://sel4.systems/About/Performance/, accessed 2020-11-08

SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 UNSW

ssssss

https://sel4.systems/About/Performance/

8

Made For Real-World Use

= AYRRTTE
mm— I

===

Secure communication device
In use in AU, UK defence forces

SYSTOR Keynote, June'22

Laot: Critical
infrastructure
protection

© Gernot Heiser 2022, CC BY 4.0

VVVVVV

DARPA HACMS: Incremental Cyber Retrofit

Trusted

Original Trusted
Mission
Computer

Trusted

Cam-
era

Linux

Linux Linux

VMM

Linux

SR
~—
'SR

9 SYSTOR Keynote, June'22 © Gernot Heiser 2022,CCBY 4.0 [#5 UNSW

ssssss

DARPA HACMS: Incremental Cyber Retrofit

Original Trusted

Mission
Computer

Trusted

Cam- Cam-
Trusted era

era l
Linux Linux - - Linux

vam
Q=14 J

Linux [

10 SYSTOR Keynote, June'22 © Gernot Heiser 2022,CCBY 4.0 8| UNSW

YYYYYY

DARPA HACMS: Incremental Cyber Retrofit

Original
Mission
Computer

Trusted

Mission Manager
Crypto Camera
Local NW GPS

Ground Stn Link

Linux

11 SYSTOR Keynote, June'22

[Klein et al, CACM, Oct'18]

Cyber-secure
Mission Computer

Trusted

— Crypto

Mission
Mngr

Comms GPS

Cam-
era

Linux

VMM

VVVVVV

12

World’'s Most Secure Drone

SYSTOR Keynote, June'22

< Tweet

DARPA &
@DARPA
We brought a hackable quadcopter with defenses built
on our HACMS program to @defcon
#AerospaceVillage. As program manager
@raymondrichards reports, many attempts to

breakthrough were made but none were successful.
Formal methods FTW!

© Gernot Heiser 2022, CC BY 4.0 UNSW

So, Why Isn’t selL4 Everywhere By Now?

« Usability

 Functionality: Native services
 Trustworthiness: More than the kernel
« Embedded vs general-purpose

13 SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 UNSW

=

14

Usability

SYSTOR Keynote, June'22

© Gernot Heiser 2022, CC BY 4.0

(]

«

Recommended Framework: CAMKES

Uneriti Good for

ncritical/

untrusted, assurance
contained Bad for usability
& functionality

Conditions
apply

Architecture
specification

([
Forces use of @ @;
kernel build system
Fully static & hard \ Compiler/ /
Linker
to extend |

15 SYSTOR Keynote, June'22 © Gernot Heiser 2022,CCBY 4.0 8| UNSW

CapDL: Low-level access rights
A B

Thread
Object CSpace
CNode

CONTEXT

VSpace

YYYYYY

New Framework: selL.4 Core Platform

Small OS for loT, cyber-physical and other embedded use cases
* Leverage selL4-enforced isolation for strong security/safety
 Retain selL4's superior performance
 Support “correct” use of seL4 mechanisms by default

 Ease development and deployment
 SDK, integrate with build system of your choice

« Retain near-minimal trusted computing base (TCB)
« Be amenable to formal verification of the TCB

16 SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 UNSW

selL4CP Abstractions

* Thin wrapper of
selL4 abstractions

» Encourage “correct”
use of selL 4

==

Protection
Domain (PD)

Memory Region (MR)

17 SYSTOR Keynote, June'22

Protection
Domain (PD)

© Gernot Heiser 2022, CC BY 4.0

vvvvvv

18

selL4CP Status

« Used in products (AArch64-based)
« Platform and ISA ports in progress (x64, RV64)
» Virtualisation support in progress

« Dynamic features prototype:
« fault handlers

g
PD _PD_

» start/stop protection domains
e re-initialise protection domains
« empty protection domains (for late app loading)

* Verified mapping to CapDL in progress
 Push-button verification of CapDL under investigation

SYSTOR Keynote, June'22

© Gernot Heiser 2022, CC BY 4.0 ::«:

VVVVVV

Functionality: Native Services

CCBY 4.0 UNSW
=2

Gy

Key Component: Device Driver Framework

Apps
Control

s - Secure, low-overhead sharing of
\[;Ir:/i?l { devices between components
Client <> MUX <> Driver « Defined interfaces to guide
T 4 driver writers

Aim:

Transport

eselg

Virtual NW

Approach:

« Zero-copy transport layer

« Standard interfaces, VirtlO

* Re-use Linux drivers in per-device VM
* Investigate verifying MUX, Controller

20

VVVVVV

Low-Overhead Transport

Status:
« Optimising transport layer
« Release soon

» Driver
E Rx S T
<
/ \
' tail \IXE / -~ tail

head 7

21 SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 UNSW

YYYYYY

Trustworthiness

22 SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 UNSW

SYDNEY

23

Cost of Verification?

Verifying code not

written for verification
is infeasible!

Abstract

Model

170,000 lines of proof
11 person years

10,000 lines
of code

Designed and
implemented
for verification!

SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0

YYYYYY

24

Verification Cost in Context

$400/SLOC
Q
8 Green Hills
© INTEGRITY
S Performance: $1,000/SLOC
m)
2 Fast!

L4 Pistachio

$100-150/SLOC

100 250 500 750 1000
Design-Implementation-Assurance Cost ($/SLOC)

Cost of Evolution

SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0

vvvvvv

Beyond the Kernel

Virtual
Machine

Linux
App

Trusted Device Trusted Untrusted
Computing Driver Component Component

25 SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 UmN§;W
a2

Reducing Cost of Verified Systems Software

Aim: Reduce cost of

verified systems code I.dea:

Use low-level but safe
systems language with
certifying compiler

 Gives many proof
obligations for free

Pancake
Language

Clenmglen Systems language:

* memory safe

« not managed (no garbage collector)
 low-level (obvious translation)

* interfacing to hardware

* minimal run time

26 SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 {«: UNSW

VVVVVV

27

Approach: Re-Use CakeML Framework

CakeML;

functional language

type & memory safe
managed (garbage collector
high-level, abstract machine
verified run time

verified compiler

mature system

active ecosystem

SYSTOR Keynote, June'22

CakeML

Flatten structs <

Pancake

Pancake AST

G

CreplLang:

imperative

language
without structs

program <

Replace loops
wﬁﬁ tail calls

Approach:
* re-use lower part of
CakeML compiler stack

© Gernot Heiser 2022, CC BY 4.0

g

p
LoopLang:
expressions
occur only on
RHS of
assignment
statements

—

—

Hardware below this line

Languages

CakeML syntax >

FlatLang:

a language for
compiling away
high-level
lang. features

ClosLang:
last language
with closures
(has multi-arg

closures)

BVL:
functional
language

without
closures

3

BVI:
one global
variable

Datalang:
imperative
language

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

StackLang:
imperative
language
with array-like
stack and
optional GC

Proof-producing
Verilog generator

AVIAVAVAVAVAVAVAVAVAVAVIAVAVARRVAV)

<

Transformations

Parse concrete syntax

Infer types, exit if fail

Introduce globals vars,
es &

eliminate modul
replace constructor
names with numbers
Gilobal dead code elim.

Turn pattern matches into
if-then-else decision trees

Switch to de Bruijn
indexed local variables

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow & inline small functions

Introduce C-style fast
calls wherever possible

Remove deadcode
Annotate closure creations
Perform closure conv.
Inline small functions
Fold constants and

k Lets

shrin}

Split over-sized functions
into many small functions

Compile %Iobal vars into a
dynamically resized array

Optimise Let-expressions

Make some functions tail-
recursive using an acc.

Switch to imperative style
Reduce caller-saved vars

Combine adjacent
memory allocations

Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Remove deadcode
Allocate register names
Concretise stack

Introduce (raw) calls past
function preambles

Implement GC primitive

Turn stack accesses into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code
Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

Implements

UNSW

SYDNEY

Secure General-Purpose 0S?

CCBY 4.0 UNSW
=5

Gy

(sl Secure, General-Purpose OS

Security Server

Policy Store

File Server

Policy
Enforce-

ment

29 SYSTOR Keynote, June'22

Connection Server

Policy
Enforcement

Client
@

Requires:
mandatory policy
enforcement
policy diversity
minimal TCB
low-overhead
enforcement

© Gernot Heiser 2022, CC BY 4.0 UNSW
e

YYYYYY

Preventing Timing Channels —
Provably

CCBY 4.0 UNSW
==

S

What is Spectre?

Speculation

'» —

SPECTRE

Microarchitectural
timing channel

31 SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 {«: UNSW

vvvvvv

32

Microarchitectural Timing Channels

%High | Low

SYSTOR Keynote, June'22

Contention for shared hardware
resources affects execution speed,
leading to timing channels

Standard approach:
more patch&pray

VVVVVV

Time Protection: Timing-Channel Prevention

Aim: Provably prevent
| | information flow through

micro-architectural
Cache Cache timing channels

W Spatially

partition

|dea: Prevent channels
by temporal or spatial

partitioning of all HW
[Ge et al, EuroSys’19]

Status:

1. Specified isolation property

2. Proved enforcement on high-level model

3. Now working on connecting to seL4 proofs

33 SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 UNSW

VVVVVV

34

Summary

* sel4 is usable for real-world systems — but more functionality needed
« Usability should (hopefully) be addressed with the Core Platform

 selL4 Device Driver Framework will support I/0 and device sharing
» ... including per-device Linux driver VMs

« We think Pancake will enable verified drivers
« We're about 1 year away from proving timing-channels prevention

SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 UNSW

Thanks To Our Sponsors!

Australian Government
Department of Defence

Yok | ~’ Australian Government

¥ Australian Research Council

35 SYSTOR Keynote, June'22

Technology
T I I Innovation
Institute

in association with
National Cyber
Security Centre

© Gernot Heiser 2022, CC BY 4.0 UNSW

VVVVVV

The selL4 Foundation
Cyber

Premium Members
& HENSOLDY
)‘5 W T s

L\ O\ .
‘ Horizon Robotics frqding “ LI Auto
Adventium’ <RJIJI1O
General Ce 3‘, rm GHoST A<
Members DORNERWORKS

W\

@ \\\\// (7~ SECOND i T
LOTUS penten Jproofcrof"c_-] —%/& #:g';:glggi o D s Xﬂﬂ“hy I
Associate grgy i -i~f KANSAS STATE

“ ational Cyber o
Members UNIVERsSITY 2w |Security Centre : A RISC ."-rrl

36 SYSTOR Keynote, June'22 © Gernot Heiser 2022, CC BY 4.0 UNSW

