School of Computer Science & Engineering
, Trustworthy Systems Group
UNSW | =
SYDNEY LIVEISILY

Trustworthy Systems R&D Update

Gernot Heiser

UNSW and selL4 Foundation
gernot@unsw.edu.au %

Agenda O =

e Lions OS

« Push-button verification of OS components

« Pancake: systems language with verified compiler
« Other developments

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UM%W

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 E: UNSW

vvvvvv

selL4 Principles O =

Result: High

barrier to uptake!
Security:
» Suitable base for security-
critical systems
* Provably correct and

Proper microkernel:
* Minimal
» Provides policy-free mechanisms only

secure
« Single access-control mechanism: Capabilities
Performance:
Anti-Principles: « Security is no excuse for poor performance!
* Hardware abstraction * Don’t pay for what you don’t use
* Prevent foot guns
« Usability

The microkernel is the assembly
User-level issue! language of operating systems!

TS R&D Update — seL.4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

Taming selL4: The Microkit

Protection
Domain 1

« Minimal abstractions

« Thin wrapper of sel 4
« Encourage “correct”
use of selL4 primitives
« For loT/cyberphysical
 Morein lvan’s talk!

notified(...)
protected(...)

O =

Protection
Domain 2

init(...)

notified(...)

Memory Region

4 TS R&D Update — seL4 Summit — Sep'23

© 2023 Gernot Heiser — CC BY 4.0 UNSW

vvvvvv

5

Networking File Sy stem

Lions OS: Highly Modular OS on Microkit Q=g
e - .‘. Microkit

I=
Stack
Microkernel

Hardware

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

6

Lions OS: Aims O =

Fast:
Best-performing
microkernel-based OS ever

Secure:

Most secure real-

world OS ever Adaptable:

Suitable for a wide range
of cyberphysical / loT /
embedded systems

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UM%W

Lions OS: Principles O

Least Privilege : :
Strict separation of concerns

Overarching principle: KISS
“Keep it simple, stupid!”

Radical simplicity Use-case-specific policies
Design for verification

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UM@EW

Least Privilege

Time-honoured security principle
[Saltzer & Schroeder, 1975]

Future:

mandatory policy:

static architecture
discretionary policy:
per-component rights,
subject to mandatory policy

TS R&D Update — seL4 Summit — Sep'23

O =

sDDF example

* Driver model uses 3 different memory regions
* Notifications signal updates to these regions

Server Driver

¢ 3

\
Control
Metadata

Data

© 2023 Gernot Heiser — CC BY 4.0 UNSW

vvvvvv

9

Strict Separation of Concerns O

Each component has
one and only one job!

MUX

Driver NIC
>< Client
Client < > VaI RX
----------- MUX
IP Stack « > Copy ————>
TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 f:: UNSW

Radical Simplicity ™ O =

Provide exactly the

functionality needed, Simple programming model:

not more « strictly sequential code (Microkit)
event-based (Microkit)

single-producer, single-consumer queues

Static architecture,
mostly static resource
management

10 TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

Use-Case—Specific Policies

Source of '‘80s model of
massive computer use!
complexity

Lions-0S: Use-case diversity through policies that are:
« optimised for one specific use case

» simple, localised implementation

» easy to replace by swapping component

O =

11 TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UM%W

Design for Verification O

Verification enabled by:
« modularity
 radical simplicity

12 TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

Lions OS: Status O

 have partial funding, looking for more

 networking layer: mature design, fine-tuning implementation
« prototype SDcard storage, NFS client, touch screen

» working on virtualised graphics

13 TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UM%W

Lions OS: Timeline O

« Q4°23: First release of OS prototype
« minimal OS services, some using preliminary design
 with point-of-sale reference system
« debugging & profiling support inherited from Microkit [Ivan’s talk]

« Q1'24: Release of matured, documented PoS system
* initial experience verifying components

« Q4’24 Verification of key components of OS

« Q3'25: Complete & mature OS [subject to funding!]

14 TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

Push-Button Verification

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UM%W

What is Push-Button Verification? O

Push-Button (SMT) Techniques:
» specify correctness condition
state-exploration tool (SMT solver)
e proves correctness, or
» finds counter-example, or
« times out

Model checking:
specify (simple!) model of system

exhaustively search state space
more limited than SMT

. fiddly but fast (when it works) used for proving liveness of protocols etc

« can only prove simple properties
» used for selL4 translation-correctness proof

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser - CC BY 4.0 ##s) UNSW

YYYYYY

17

Verifying the Microkit Implementation O =

C parser i

SIMPL
SimplExport
SydTV-GL SMTLIB2

Gordian

Manual
spec

Result: Functional correctness
proof of (original) libmicrokit
SMT solver z3 and monitor PD

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0

Verifying Microkit Initialisation O

Isabelle Isabelle

SDF CapDL

Translation Validation Proofﬂ

microkit CapDL tool +

SDK (new) microkit SDK (new)
User- —
supplied
SDF config microkit SDK
. Executable
User-supplied microkit SDK System
ELF binaries

Image

microkit SDK
init.c

18 TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0

Microkit Verification O

Conditions sel4 spec
apply microkit spec
CapDL spec
PDo PD1

Thread
Object CoPace

Proof-

: S
generating 4 S
e PD1.c libmikrokit.c Push-
button
Compiler/ proof

Linker

v

system.elf

init.o

19 TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0

20

Present Microkit Verification Gaps O

Functional correctness: in progress

 Presently for original (fully static) version

_ needs AArch64, MCS
System initialisation: kernel verification

« CapDL mismatch (64 vs 32-bit, MCS vs non-MCS)

Spec gap:
« SMT sel4 spec is an unverified “projection” of seL.4 Abstract Spec

Main take-away: exploring
Approach will work for
OS components too!

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UM%W

21

Pancake

TS R&D Update — seL4 Summit — Sep'23

© 2023 Gernot Heiser — CC BY 4.0

22

Pancake: Language for Verified Systems Qe

Idea:

« Systems language

* C-like but safer

No fancy type system!
Verified compiler

Clean semantics

Ease verification of logic

TS R&D Update — seL4 Summit — Sep'23

Theorem
Prover
Pancake
Language
Compiler

© 2023 Gernot Heiser — CC BY 4.0

vvvvvv

Verified Pancake Compiler

Pancake AST

CreplLang:

Pancake compiler is written in CakeML
= can use CakeML compiler to produce o ———

Flatten structs <

verified Pancake compiler binary! o s

Languages

CakeML syntax]

FlatLang:
alanguage for
compiling away

high-level
lang. features

ClosLang:
last language
with closures
(has multi-arg

closures)

N

BVL:
functional
language

without
closures

BVI:
one global
variable

Datalang:
imperative
language

WordLang:
imperative

memory and
a GC primitive

StackLang:
imperative
language
with array-like
stack and
optional GC

Hardware below this line

23 TS R&D Update — seL4 Summit — Sep'23

AVIAVAVAVAVAVAVAVAVAVAVIVAVARRVAVAV

Transformations

Parse concrete syntax
Infer types, exit if fail
Introduce globals vars,
eliminate modules &
replace constructor
names with numbers
Global dead code elim.

Turn pattem matches into
if-then-else decision trees

Switch to de Bruijn
indexed local variables

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow & inline small functions

Introduce C-style fast
calls wherever possible

Remove deadcode
Annotate closure creations
Perform closure conv.
Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compileglnbal vars into a
dynamically resized array

Optimise Let-expressions

Make some functions tail-
recursive using an acc.

Switch to imperative style
Reduce caller-saved vars

Combine adjacent
memory allocations

Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Remove deadcode
Allocate register names
Concretise stack

Introduce (raw) calls past
function preambles

Implement GC primitive

Turn stack accesses into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code
Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

Implements

Silver CPU
as HOL functions

Proof. i
Verilog Fgenera(m <

© 2023 Gernot Heiser — CC BY 4.0

24

Using Pancake: Ethernet sDDF Mux

Pancake C Total C
Tx Mux 81 206 287 85
Rx Mux 179 314 493 222

O =

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser - CC BY 4.0 ##s) UNSW

ssssss

Pancake Performance

Received Throughput (Mb/s)

25

1,000 100 — 1,000 100
900 |- 90 = 900 190
800 | /:’ 80 © = 800f 30 ®
700 70 & 2 700 0 ¢
(@] (@)
600 |- 60 o 5 600 60 o
fa]) g
500 |- 50 & 35 500 2 50 .4
400 |- | —— Xput Pancake || 49 5 ..E 400 5 —®— Xput Pancake || 49 5
300 |- —o— Xput C 30 D g 300 Xput Linux |30 2
200 —5—CPU Pancake |20 O 2 200 2 —5— CPU Pancake ({20 O
100 —=—CPUC 1 10 o 100 Q) CPU Linux - 10
0 N R J 0 ~ 0 | e — 0
S O O O O O O o o oS O o O O oS O oS O oS O O O
oSO O O O O o o O o O o O oS O o O o O O O
Requested Throughput (Mb/s) ™ Requested Throughput (Mb/s) ™
sDDF setup with Performance degradation
Pancake Muxes for well-understood reasons
TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UM%W

Other Developments

=]

26 TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UM%W

27

RFC 14: Budget Limit Thresholds O

Problem: Server runs on client’s

: . scheduling context
* Budget may expire while Running &

server executes Running
* Requires complex & costly Client, ? /
recovery X Server
Solution: o
* Only allow call if client has ?
sufficient budget Client,
* Timeout becomes a true s Client is charged
o . for server's time

error condition
(misconfigured server)

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UM%W

28

RFC 12: selL4 Device Driver Framework O=re=

TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser - CC BY 4.0 ##s) UNSW

ssssss

29

Verified Time Protection

Temporally

High]| Low B partition High]| Low

e

Spatially
partition

Status: On hold, waiting
for more funding

TS R&D Update — seL4 Summit — Sep'23

O =

Aim: Provably prevent
information flow through
micro-architectural
timing channels

© 2023 Gernot Heiser — CC BY 4.0

Provably Secure General-Purpose OS (O=r=

Aim:

« GP-0S with security policy diversity
| fully dynamic

P i . .

e Proof that policy is enforced

e Performance

Security Server Connection Server

File Server Client

Policy
Enforce- : @
ment

30 TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 :n: UNSW

YYYYYY

Summary O

« Main learning form past year: Simplicity wins

 KISS Principle can deliver high performance

« Resulting code is tractable by push-button techniques
 Result: Lions OS!

« Pancake is promising but jury is still out

31 TS R&D Update — seL4 Summit — Sep'23 © 2023 Gernot Heiser — CC BY 4.0 UM%W

32

@stlq

Security is no excuse
for bad performance!

TS R&D Update — seL4 Summit — Sep'23

© 2023 Gernot Heiser — CC BY 4.0

YYYYYY

https://trustworthy.systems

= Rl “ﬂ; -ﬁs ‘L

TS R&D Update — seL4 Summit — Sep'23

