
School of Computer Science & Engineering

Trustworthy Systems Group

Why Change the Kernel
When You Have seL4?

Gernot Heiser
gernot@unsw.edu.au
@microkerneldude.bsky.social
https://gernot-heiser.org/

© 2025 Gernot Heiser – CC BY 4.0

Which kernel?

Why?

Why change the kernel ...? – KISV Keynote – Oct'251

© 2025 Gernot Heiser – CC BY 4.0

Arm-32
RISC-V

Arm-32
RISC-V

Arm-32/64
x86

RISC-V

Are We Talking About This Kernel?

Why change the kernel ...? – KISV Keynote – Oct'25

Proof Pr
oo

f

Pr
oo
f

Integrity

Abstract
Model

C Imple-
mentation

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Functional
Correctness

Translation
Correctness

Security
Enforcement

2

© 2025 Gernot Heiser – CC BY 4.0

Or This One?

Why change the kernel ...? – KISV Keynote – Oct'253

© 2025 Gernot Heiser – CC BY 4.0

40M SLoC of C

Changing The Kernel

Why change the kernel ...? – KISV Keynote – Oct'254

Kernel

User
ü Protects rest of kernel

from Rust modules
v Unsafe code?
v Doesn’t protect Rust

module from rest of kernel
v Requires writing modules

from scratch

Changing The Kernel: Modules in Rust

© 2025 Gernot Heiser – CC BY 4.0

40M SLoC of C

Changing: Partition Kernel Space

Why change the kernel ...? – KISV Keynote – Oct'255

Kernel

User

Core kernel – full access

Partition – restricted
address space

Partition –
restricted
address
space

ü Protects partitions from
each other

v Requires HW extensions
⇒ not on older platforms

v Increases ISA/manufacturer
dependence

v Still fully trust core kernel
v Privilege revocation?
v Cost?

© 2025 Gernot Heiser – CC BY 4.0

ü Protects partitions from
each other

v Requires HW extensions
⇒ not on older platforms

v Increases ISA/manufacturer
dependence

v Fully trust monitor (but it
does very little)

v Privilege revocation?
v Cost?

ü Protects partitions from
each other

v Requires HW extensions
⇒ not on older platforms

v Increases ISA/manufacturer
dependence

v Fully trust monitor (but it
does very little)

v Privilege revocation?
v Cost?
v Squats hypervisor mode

– lose virtualisation
support?

40M SLoC of C

Changing: Partition Kernel Space

Why change the kernel ...? – KISV Keynote – Oct'256

Kernel

User

Core kernel – full access

Partition – restricted
address space

Partition –
restricted
address
space

Monitor – super-privilegedHypv.

© 2025 Gernot Heiser – CC BY 4.0

40M SLoC of C

Changing: De-Privileging “Kernel”

Why change the kernel ...? – KISV Keynote – Oct'257

Module – separate
address space

Module –
separate
address
space

Module –
separate
address
space

ü Protects all modules from
each other

ü Requires no special HW
ü Verified kernel
ü Retain virtualisation support
v High cost?

Microkernel/HypervisorKernel/
Hypv.

User

© 2025 Gernot Heiser – CC BY 4.0

Microkernel Overheads

Why change the kernel ...? – KISV Keynote – Oct'25

seL4 Fiasco.OC
L4Re

Zircon

Latency (cycles) 986 2717 8157
Mandatory HW cost* (cycles) 790 790 790
Overhead absolute (cycles) 196 1972 7367
Overhead relative 25% 240% 930%

seL4 Fiasco.OC
L4Re

Zircon

Latency (cycles) 986 2717 8157
Mandatory HW cost* (cycles) 790 790 790

seL4 Fiasco.OC
aka L4Re

Google
Zircon

Latency (cycles) 986 2717 8157

Round-trip cross-address-space IPC on 64-bit Intel Skylake

*: The Cost of SYCALL + 2×SWAPGS + SYSRET = 395 cycles, times 2 for round-trip
Source:
Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen: “SkyBridge: Fast and Secure Inter-Process Communication for
Microkernels”, EuroSys, April 2019

Smaller
is better

8

© 2025 Gernot Heiser – CC BY 4.0

Microkernel Overheads

9 Why change the kernel ...? – KISV Keynote – Oct'25

High syscall rate = 61k/s
seL4 round-trip address-space switch = 1k cy

Assume average 2 R-T AS switches / syscall:

 Switch O/H = 2 × 61k/k × 1kcy = 122M cy/s

Assume 3GHz clock:
 O/H = 122M cy/s / 3Gcy/s = 122/3k = 4%

Assume 4-core CPU:

 O/H = 4%/4 = 1% of CPU!
Assume Linux max CPU load = 25%

 relative O/H = 4 × 1% = 4%

Chen et al, OSDI’24

Why would
anyone care?

Conservative
IMHO

© 2025 Gernot Heiser – CC BY 4.0

But Is This Real?

10 Why change the kernel ...? – KISV Keynote – Oct'25

Test bed: LionsOS
• Simple, from-scratch seL4-based OS
• Highly modular design,

strict separation of concerns
• Adaptable “Lego® kit” approach
• Designed for embedded / cyber-

physical systems

© 2025 Gernot Heiser – CC BY 4.0

Underneath https://sel4.systems/

Why change the kernel ...? – KISV Keynote – Oct'25

Runtime lwIPVFSTimerConsole

Application Webserver.py Microdot

Clock
Driver

NFS
lwIP

Serial
Driver

Tx Virt Rx Virt

Ethernet
Driver

Tx-Virt Rx-Virt
Copy

Copy

11

Web-server OS:
• 10 modules
• 3 libraries

Microkernel/Hypervisor

© 2025 Gernot Heiser – CC BY 4.0

Networking Layer

Why change the kernel ...? – KISV Keynote – Oct'25

NIC

Driver
Copy

Copy

Rx
Virt

Tx
Virt

ARP

Client

lwIP

Client
lwIP

IP stack is library –
not in system’s TCB!

Client can
be a VM Tx Virt encapsulates

traffic-shaping policy

Strict separation
of concerns!

Translates HW-specific
device interface to HW-
independent device-
class interface

Handles broadcasts

Virtualiser shares device,
incl address mapping,
cache maintanance

Copier for security
(if needed)

12

© 2025 Gernot Heiser – CC BY 4.0

Networking Layer

Why change the kernel ...? – KISV Keynote – Oct'2513

NIC

Driver
Copy

Copy

Rx
Virt

Tx
Virt

ARP

Client

lwIP

Client
lwIP

NIC

Driver

Copy

Copy

Tx

Rx
Rx
Virt

Tx
Virt

ARP

Client

lwIP

Client
lwIP

Benefits:
• simple components
• location transparency

Zero-copy communication:
• Lock-free, single-producer, single-

consumer, bounded queues
• Synchronised by semaphores

© 2025 Gernot Heiser – CC BY 4.0

Packet Round-Trip Context Switches

Why change the kernel ...? – KISV Keynote – Oct'25

NIC

Driver

Copy

Copy

Rx
Virt

Tx
Virt

ARP

Client

IP Stack

Client
IP Stack

Copy

Copy

NIC

Driver

Copy

Copy

Tx

Rx
Rx
Virt

Tx
Virt

ARP

Client

lwIP

Client
lwIP

14

Must return
free buffers!

#13: Driver→Tx Virt

#12: Completion IRQ –
switch Idle→Driver

#5: Client→Copy

#6: Copy→Virt #7: Virt→Driver
#8: Driver→Client

#4: Copy→Client

#9: Client→Tx Virt

#15: Client→Idle

#14: Tx Virt→Client

#11: Driver→Idle

#10: Tx Virt→Driver

#2: Driver→Rx Virt
#1: Rx IRQ –
switch Idle→Driver

#3: Rx Virt→Copy

15 context switches
per packet!

© 2025 Gernot Heiser – CC BY 4.0

Comparing to Linux

15 Why change the kernel ...? – KISV Keynote – Oct'25

Driver

Rx
Virt

Tx
Virt

Client

IP
Stack

NIC

Client Copy

ARP

Copy

NIC Driver

Client

NIC

IP Stack

Idle

#1: Rx IRQ –
switch Idle→Client#2: Client→Idle

Completion IRQ –
No context switch

• LionsOS: 30 mode switches, 15 context switches
• Linux: 6 mode switches, 2 context switches

© 2025 Gernot Heiser – CC BY 4.0

Comparing Performance: Setup

16 Why change the kernel ...? – KISV Keynote – Oct'25

• External load generator
• Measures throughput, latency
• Client echoes packets

Driver

Rx
Virt

Tx
Virt

Client

IP
Stack

NIC

Client Copy

ARP

Copy

NIC Driver

Client

NIC

IP Stack

Idle

Load
Generator

NW

Load
Generator

NW

© 2025 Gernot Heiser – CC BY 4.0

What Do We Expect?

17 Why change the kernel ...? – KISV Keynote – Oct'25

Ethernet packet size = 1.5kB
Assume Linux mode switch = half context switch
LionsOS O/H = 12/pk × 0.5k cy = 6k cy/pkt
Max packet rate for 1Gb/s NIC:
 rate = 1Gb/s / 1.5kB = 1Gb/s / 12kb = 833k/s

Worst-case O/H for 1Gb/s NIC:
 O/H = 6k cy/pkt * 833k pkt/s = 0.5G cy/s
Assume 3GHz clock:
 rel O/H = 0.5G cy/s / 3G cy/s = 17% of core

© 2025 Gernot Heiser – CC BY 4.0

However, There’s Batching

Why change the kernel ...? – KISV Keynote – Oct'25

NIC

Driver
Copy

Copy

Rx
Virt

Tx
Virt

ARP

Client

IP Stack

Client
IP Stack

18

NIC

Driver

Copy

Copy

Tx

Rx
Rx
Virt

Tx
Virt

ARP

Client

lwIP

Client
lwIP

• Each component will process everything in its
queue before signalling another component

• No component will ever busy-poll!

• Dramatically reduces context
switches under load!

• Measure 5–10 pkt/IRQ!

© 2025 Gernot Heiser – CC BY 4.0

What Do We Expect?

19 Why change the kernel ...? – KISV Keynote – Oct'25

Ethernet packet size = 1.5kB
Assume Linux mode switch = half context switch
LionsOS O/H = 12/pk × 0.5k cy = 6k cy/pkt
Max packet rate for 1Gb/s NIC:
 rate = 1Gb/s / 1.5kB = 1Gb/s / 12kb = 833k/s

Worst-case O/H for 1Gb/s NIC:
 O/H = 6k cy/pkt * 833k pkt/s = 0.5G cy/s
Assume 3GHz clock:
 rel O/H = 0.5G cy/s / 3G cy/s = 17% of core
At 100Mb/s, packet spacing = 1/(83k/s) = 12µs
 rel O/H = 17%/10 = 1.7% of core

Highly pessimistic
due to natural

batching!

Avoid batching by
spacing packets!

© 2025 Gernot Heiser – CC BY 4.0

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LionsOS
Linux

Applied Load (Gb/s)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

LionsOS
Linux

Applied Load (Gb/s)

Performance: i.MX8M, 1Gb/s Eth, UDP

Why change the kernel ...? – KISV Keynote – Oct'25

Single-core configuration

Large is good!

CPU: Small
is good!
CPU: Small
is good!

20

17%

1.7%

© 2025 Gernot Heiser – CC BY 4.0

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
10
20
30
40
50
60
70
80

LionsOS
Linux

Applied Load (Gb/s)

Performance: Processing Cost per Byte

Why change the kernel ...? – KISV Keynote – Oct'25

CPU: Small
is good!
Cycles: Small
is good!

Factor 1.8

Factor 3.5

Factor 3

21

© 2025 Gernot Heiser – CC BY 4.0

Performance: Round-Trip Times

Why change the kernel ...? – KISV Keynote – Oct'25

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

100

1000

10000

LionsOS
Linux

Applied Load (Gb/s)

CPU: Small
is good!
RTT: Small
is good!

0.5–1 OoM!

22

© 2025 Gernot Heiser – CC BY 4.0

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LionsOS
Linux

Applied Load (Gb/s)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
20
40
60
80
100
120
140
160
180

LionsOS
Linux

Applied Load (Gb/s)

Performance: i.MX8M, 1Gb/s Eth, UDP

Why change the kernel ...? – KISV Keynote – Oct'25

Multicore configuration
23

© 2025 Gernot Heiser – CC BY 4.0

0

2

4

6

8

10

0 2 4 6 8 10
0

20

40

60

80

100

LionsOS
Linux

s)
(%
)

(Gb/s)

Performance: x86, 10Gb/s Eth, UDP

Why change the kernel ...? – KISV Keynote – Oct'25

Single-core configuration
24

© 2025 Gernot Heiser – CC BY 4.0

Performance: x86, 10Gb/s Eth, UDP

Why change the kernel ...? – KISV Keynote – Oct'25

Multicore configuration
25

0 1 2 3 4 5 6 7 8 9 10
0

40

80

120

160

200

LionsOS
Linux

(%
)

Load (Gb/s)
0 1 2 3 4 5 6 7 8 9 10

0

40

80

120

160

200

240

280

LionsOS
Linux

Linux 2-threads

Applied Load (Gb/s)

0

2

4

6

8

10

0 2 4 6 8 10
0

20

40

60

80

100

LionsOS
Linux

s)
(%
)

(Gb/s)

© 2025 Gernot Heiser – CC BY 4.0

Syscall cost simulations (x86)

26 Why change the kernel ...? – KISV Keynote – Oct'25

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

LionsOS
"free" IPC

Applied Load (Gb/s)
Single-core configuration

Subtract 500cy
per kernel entry

© 2025 Gernot Heiser – CC BY 4.0

Why Is LionsOS Faster Than Linux?

Why change the kernel ...? – KISV Keynote – Oct'25

Linux:
• NW driver: 3k lines
• NW system total: 1M lines

LionsOS:
• NW driver: 400 lines
• Virtualiser: 160 lines
• Copier: 80 lines
• IP stack: much simpler, client library
• shared NW system total: < 1,000 lines

LionsOS executes less code!

27

Microkernel overheads
are in the noise!

© 2025 Gernot Heiser – CC BY 4.0

Why Is LionsOS So Simple?

Why change the kernel ...? – KISV Keynote – Oct'25

Radical simplicity:
• Fine-grained modularity,

strict separation of concerns
• Event-driven programming model,

strictly sequential modules
• Static architecture
• Use-case-specific policies

Helps development
and correctness!

Use-case diversity by
replacing components

28

Concurrency
by distributing
modules
across cores

Matches embedded
space – little dynamic
resource management

© 2025 Gernot Heiser – CC BY 4.0

But I Want A Real OS!

Why change the kernel ...? – KISV Keynote – Oct'2529

© 2025 Gernot Heiser – CC BY 4.0

Cost Of A Dynamic OS
• More complexity, larger code size

• Double book-keeping, multiple server invocations

• Higher startup times due to dynamic resource allocation

• Resource revocation may require indirection

• “Universal” policies are complex & costly

30 Why change the kernel ...? – KISV Keynote – Oct'25

Might affect cache footprint?

fork() will be the test!

IPC overheads in the noise

seL4 caps can be
revoked without

Do we need them?

© 2025 Gernot Heiser – CC BY 4.0

Do We Need “Universal” Policies?

31 Why change the kernel ...? – KISV Keynote – Oct'25

Claim:
• Systems rarely change policies on-the-fly
• Can change policy by replacing policy module

Keep configuration
complexity off-line! LionsOS experiment:

• Reload component with
new policy implementation

LionsOS experiment:
• Reload component with

new policy implementation
• Cost: 17µs on i.MX8M

© 2025 Gernot Heiser – CC BY 4.0

Djawula: PoC Of General-Purpose OS

Why change the kernel ...? – KISV Keynote – Oct'25

Aim: General-purpose OS
that provably enforces a
general security policy Requires:

• mandatory security-policy
enforcement

• Security-policy diversity
• minimal TCB
• low-overhead enforcement

Resource
manager

Security
server

Connection
manager

Object
server

Client

Trusted core
servers

32

© 2025 Gernot Heiser – CC BY 4.0

Core Ideas: Dynamic Enforcement

Why change the kernel ...? – KISV Keynote – Oct'25

Security
Server

Decision
making

Policy
store

Security
State

Object Server

Policy
Enforce-

ment
Service

ClientInvoke for security-
sensitive operations

Consult if
no cached
decision

Consult &
update for

dynamic policy

33

© 2025 Gernot Heiser – CC BY 4.0

Core Ideas: Resource Donation

Why change the kernel ...? – KISV Keynote – Oct'25

Object Server

Client1
state

Clientx
state

Client1

Resource
ManagerRc_O Rc_C Rc_x

Resource containers

Request
stateful service

Early days:
• Working on framework,

details of model
• Adopt components

from LionsOS

34

© 2025 Gernot Heiser – CC BY 4.0

My View Of “Changing The Kernel”

Why change the kernel ...? – KISV Keynote – Oct'2535

© 2025 Gernot Heiser – CC BY 4.0

40M SLoC of C

“Changing The Kernel”

Why change the kernel ...? – KISV Keynote – Oct'2536

Kernel
/ Hypv.

User

Module –
separate address
space

Module –
separate
address
space

Module –
separate
address
space

ü Protects all modules from
each other

ü Requires no special HW
ü Verified kernel
ü Retain virtualisation support
ü Cost is in the noise with

the right design!

Microkernel/Hypervisor

© 2025 Gernot Heiser – CC BY 4.0

https://trustworthy.systems

Why change the kernel ...? – KISV Keynote – Oct'25

We’re hiring!
Operating-systems

faculty

37

