
Can We Put the “S” Into IoT?
Gernot Heiser

UNSW Sydney, Australia
0000-0002-7069-0831

Lucy Parker
UNSW Sydney, Australia

lucy.parker@student.unsw.edu.au

Peter Chubb
UNSW Sydney, Australia
peter.chubb@unsw.edu.au

Ivan Velickovic
UNSW Sydney, Australia
i.velickovic@unsw.edu.au

Ben Leslie
Breakaway Pty Ltd, Australia

benno@brkawy.com

Abstract—Security of IoT systems is often weak or absent,
resulting in systems being compromised. We present the seL4
Core Platform, an operating-system framework that leverages the
formally verified security enforcement of the seL4 microkernel to
enable the construction of secure-by-design IoT systems, and even
enables an incremental cyber retrofit of existing systems. The
framework is designed to make its formal verification tractable.
An initial evaluation shows that for performance-sensitive high-
throughput networking, the platform significantly outperforms
Linux.

Index Terms—operating systems; verification; performance;
internet of things; microkernel; hypervisor.

I. INTRODUCTION

“In IoT, the ’S’ stands for security” is a meme that has
been around since at least early 2017,1 yet seems as fitting as
ever. The reasons for the widespread lack of security in IoT are
multiple, including lack of care or awareness of the developers,
the classical market failure which rewards security shortcuts
that reduce time-to-market, and lack of availability of security-
enabling development frameworks that are easy enough to use.

While it is unrealistic to think that there is an easy solution
to this combination of challenges, it seems that the last reason
in the above list is particularly worthwhile to target: If we
can provide a development environment that is easy use for
building deployable products, but at the same time provides
a good degree of security-by-construction, then it might be
possible to significantly raise the bar in IoT security.

While a complete IoT development framework will re-
quire significant development effort in itself, once a security-
oriented core exists, much of the remaining effort is engi-
neering, based on well-established techniques and re-using
established protocols and components (many of them open
source).

Here we present such a core framework, based on a highly
secure operating system kernel, that can scale to meet the
requirements of present and near-future IoT systems. We
present this seL4 IoT framework in the following sections,
specifically:

• the seL4 microkernel, Section II;
• the seL4 core platform (seL4CP), Section III;
• the seL4 device driver framework (sDDF), Section IV

1We would love to credit the person who coined the phrase but were unable
to find the original quote.

• virtualisation for legacy reuse, Section V.

We also provide a threat assessment for the framework and
how this will be impacted by verification activities that are
in progress. A preliminary evaluation demonstrates that the
security enabled by the framework does not have a detrimental
effect on performance, and in fact outperforms Linux. We
finally present the state of the implementation and open-source
availability of the framework.

II. BACKGROUND: THE SEL4 MICROKERNEL

seL4 is a highly secure, high-performance, open-source
operating system (OS) microkernel. It is the world’s first OS
kernel with a formal proof of implementation correctness [1].
It is also the first OS kernel with formal proof of enforcement
of the core security properties of confidentiality, integrity and
availability, with the proof extending to the kernel’s executable
binary, and the first protected-mode OS with a sound and
complete worst-case execution-time (WCET) analysis [2]. It
furthermore has support for mixed-criticality real-time sys-
tems [3]. seL4’s performance is unbeaten and within 25% of
the limits imposed by hardware [4].2 Furthermore, while there
now exist other verified OS kernels, seL4 remains the only one
using fine-grained access control based on capabilities [5], a
key enabler of reasoning about overall system security.

As a microkernel, seL4 only provides fundamental mecha-
nisms, just enough to securely multiplex the hardware between
mutually-distrusting components. In particular, it provides
none of the OS services that applications depend on, such
as file systems, network services and resource mamagement.
These must be provided by unprivileged service components
(usually called an OS personality). seL4 can also serve as a
hypervisor to support virtual machines (VMs) that can run a
legacy OS.

The advantage of the seL4-based approach is that system
services are subject to the kernel-enforced security policies,
just as applications (and VMs) are. In fact, the kernel makes
no distinction between applications and OS services, resulting
in the horizontal system structure shown in Figure 1.

2Note that while [4] demonstrates even better performance by utilising
virtualisation-support features of the Intel hardware, this approach hijacks
hypervisor mode and is therefore unsuitable for a system which needs that
mode to support virtual machines.



Kernel
Mode

User
Mode

Hardware

SD
Driver

Native 
App

TCP/IP
File

System

VM

Linux

App

Microkernel = secure multiplexing of hardware

NIC 
Driver

Fig. 1. Structure of an seL4-based system.

As the kernel provides bullet-proof isolation between com-
ponents, failure of a component can be contained, no matter
whether it is a system service or an app. This includes
VMs: Virtualization is enabled by a user-mode virtual-machine
monitor (VMM) component. Each VM has its own, private
VMM [6], which is subject to the same isolation as normal
usermode components. Hence, the VMM cannot break isola-
tion between VMs, and each VM only needs to trust its own
VMM. The kernel does provide communication channels, and
the capability-based access control ensures that two compo-
nents can only communicate if an explicit channel is set up
between them, limiting interference between components.

seL4 is designed for real-world use, and has been suc-
cessfully deployed on real-world embedded and cyberphysical
systems [7]. Devices based on seL4 are in day-to-day use in
several defence forces, and the kernel is being designed into
critical infrastructure and autonomous vehicles.

In summary, while seL4 on its own is not a sufficient
platform for IoT development, it provides the secure base on
which to build such a platform.

III. THE SEL4 CORE PLATFORM

seL4’s API is not only extremely low-level (and thus
difficult to use), it is also very general, aiming to support the
construction of arbitrary systems on top. This generality is not
needed for IoT. By narrowing the application domain, an OS
personality can provide simpler abstractions that are easy to
understand and use.

The seL4 Core Platform [8] is an OS personality designed to
support use cases in the IoT and cyberphysical domains. The
core property that leads to a dramatically simpler model is that
of a static architecture, meaning that the software architecture
of the system is fixed at build time. Specifically there is a fixed
number of components, each providing some functionality to
other components (or the external world).

The seL4CP’s abstractions are: protection domain (PD),
communication channel (CC), memory region (MR), notifica-
tion and protected procedure call (PPC). A virtual machine
(VM) is a special case of a PD with extra, virtualisation-related
attributes.

The PD represents a very simple process abstraction that
provides an event-driven programming style, where events are
triggered by notifications sent along a CC. A PD can optionally
provide a protected procedure that can be invoked through
a channel by performing a PPC, resulting in a synchronous
execution of the protected procedure in its PD. MRs can be

combined with CCs to support shared memory, with notifica-
tions providing semaphore-like synchronisation.

The original version of the seL4CP was fully static, in
that all code had to be fixed at system build time, and PDs
could not be restarted. The addition of dynamic features are in
progress [9], specifically re-initialising PDs and dynamically
loading code into PDs (which suports live code upgrades).

The seL4CP is designed to be itself formally verifiable.
Work on its verification is in progress, exploring the use of
push-button verification techniques [10].

IV. THE SEL4 DEVICE DRIVER FRAMEWORK

Device drivers are the components of an OS that interface
with peripheral hardware, especially I/O devices. As they deal
with low-level hardware, they tend to be complex, and, as
a result, exhibit high defect densities, more than other OS
code [11]. As a result, drivers present a major attack vector:
of about 1200 vulnerabilities reported on Linux over the past
five years [12], 39% are due to drivers.

In an seL4-based system, a driver, like any other OS service,
is a usermode program, with no special privileges other than
the ability to access the control registers of the device it drives.
This in itself significantly reduces the attack surface.

The seL4 device driver framework [13] further reduces the
likelihood of driver bugs by presenting a, compared to Linux
or Windows, much simplified programming model for drivers:
sDDF drivers implement a simple event loop that eliminates
all concurrency control from the driver itself. It also presents
a simple, yet low-overhead interface between the driver and
the rest of the OS, using shared memory and asynchronous
communication based on simple, lock-free, single-producer,
single-consumer bounded queues; the interfaces are designed
to avoid copying data. Finally, we keep sDDF drivers simple
with a strict separation of concerns: A driver serves the single
purpose of abstracting over device hardware. Other operations,
such as setting up DMA mappings in the IOMMU, that do
not depend on the specific device (but possibly on the device
class), are kept in separate modules.

The sDDF programming model maps well onto the seL4CP
abstractions, and leads to drivers that are much less complex
(and error-prone) than those of mainstream OSes. This is
illustrated by the network driver we evaluate in Section VII: It
consists of about 400 source lines of code (SLOC), compared
to the Linux driver that weighs in at over 3,000 SLOC for
comparable functionality.

At the time of writing, the sDDF targets primarily network
drivers, extension to storage devices and USB is in progress.

A related activity is the Pancake project [14], which de-
velops a new programming language specifically designed
for implementing device drivers, with the aim of enabling
their formal verification. Pancake complements the sDDF, and
benefits from its simplified driver model that should ease
verification. The project is at an early stage.

V. VIRTUALIZATION

Virtualization serves two purposes in IoT: legacy re-use
(Section V-A) and incremental cyber retrofit (Section V-B),



the former being a deployment scenario while the latter is a
development scenario. The deployment case needs to share
devices, requiring device virtualisation (Section V-C).

A. Legacy reuse

Mainstream OSes provide a wealth of services, especially
many file systems optimised for different use cases, and drivers
for many devices. These represent an immense amount of
development effort that is often not feasible to replicate for
a new OS, such as the seL4CP. In addition, IoT devices
may need to integrate with enterprise frameworks that require
proprietary clients deployed on the IoT device. Furthermore,
the IoT device may represent a step in de-centralising a
previously centralised system and needs to incorporate exist-
ing components. Moreover, the specific circumstances of an
IoT device may require the integration of components that
are designed to work on different OSes (enterprise-style vs
embedded OS).

These are all reasons why the integration of legacy services
into IoT systems is required, not only as a transitory measure
but for on-going use. Virtualization is a key enabler for such
scenarios [15]: It supports the concurrent use of multiple OS
environments, and allows running a (likely less trustworthy)
legacy software stack besides critical components.

Driver VM

Linux

Linux
Driver

Client

Device

Fig. 2. A driver VM, wrapping a single Linux driver with its private, stripped-
down Linux instance.

An attractive approach is wrapping each legacy component
with its own (legacy) OS instance into its own, private VM.
This is particularly attractive for legacy OS services, such
as file systems and device drivers: Each such service runs
in a separate VM, supported by a stripped-down copy of its
“native” OS, reduced to the minimum functionality required
to support the service [16], Figure 2 shows such a setup. Such
a driver is encapsulated as any untrusted component in the
system, protecting the rest of the system if the driver (or its
OS) is misbehaving.

The main requirement on the OS personality is the need to
support multiple VMs, and provide communication channels
between them and the native components.

B. Incremental cyber retrofit

Given the deplorable state of security in contemporary
IoT, a transition path to higher security is highly desirable.
While “security must be designed in, not added later” is
another popular meme, we have demonstrated in the DARPA

MUX Driver

Control

VM

OS
Virtual
Driver

AppsAppsApps

Virtual NW

Client

Device

Fig. 3. Device virtualisation: A multiplexer (MUX) switches access to the
device between clients as directed by the controller that implements the access
policy.

HACMS program [17] that this is not necessarily true: Using
a process dubbed “incremental cyber retrofit” (in analogy to
the incremental seismic retrofit used to improve the resilience
of buildings in earthquake-prone areas), an existing, highly
vulnerable commercial autonomous aircraft was secured to
the point where DARPA’s professional penetration testers were
unable to compromise it, despite being given root access to a
VM running on the platform. DARPA even offered the design
for a “steal this drone” challenge at DEFCON’21, which
defeated all attackers [18].

The stepwise approach, described in detail in [7], first put
the complete, Linux-based legacy system into a VM running
on seL4. Then the developers broke this VM up into several
VMs containing different parts of the legacy system, and
ported some components to run natively on seL4. In further
steps, they extracted more components from the VMs and
either ported or re-implemented as native seL4 components.
The final system comprised just one VM running a complex
vision subsystem, and all other functionality was running as
native, isolated components directly on seL4.

Virtualisation is a critical enabler of this approach.

C. Device virtualisation

Once there are multiple subsystems, be they native or legacy
components hosted inside VMs, there inevitably arises the
need to share devices between subsystems: Multiple subsys-
tems need access to storage for saving/accessing persistent
state, and multiple subsystems likely need access to networks,
USB and display.

Such sharing of devices can be achieved by presenting each
subsystem with the illusion of owning the device (and having
a device driver for it). In effect, the device is virtualised.

Device virtualisation needs to be subject to a security policy,
to prevent an untrusted (legacy) component from monopolising
the device. This is achieved by a device virtualisation frame-
work as indicated in Figure 3. Here, a multiplexer switches
device access between multiple clients. The multiplexer is
transparent to native clients, as it uses the same protocol as
the (native) clients use to access an exclusively owned device.

The guest OS in a VM uses a virtual driver that translates
the guest’s native driver protocol to the sDDF protocol. Given
that Linux uses virtIO [19] as a device virtualisation protocol,



the multiplexer uses the virtIO protocol to interface to VMs.
Among others, this has the advantage that existing Linux
virtual drivers can be re-used.

The control component implements the (security or QoS)
access policy, e.g. limiting network bandwidth or persistent
storage usage.

The sDDF is presently being extended to support device
virtualisation.

VI. THREATS

The framework presented above mitigates threats by strong,
seL4-enforced modularity and a design that aims to minimise
the trusted computing base (TCB). The TCB contains the
underlying processor, including its security mechanisms (such
as an IOMMU), the seL4 microkernel, and the seL4CP, plus
any trusted services that a specific system depends on.

seL4 is trustworthy as a result of its comprehensive verifica-
tion [2], at least on a verified hardware platform. There exists
only a small number of these at the moment; running seL4
on an platform not from this small set voids any verification
guarantees. However, in practice, even on a platform for
which seL4 is not specifically verified, the risk is dramatically
reduced compared with any other OS, as most of the seL4
code is not platform-specific and can be expected to operate to
specification. Also, seL4’s verification still has limitations: The
kernel’s boot code is not (yet) verified, and some correctness-
relevant hardware manipulations, including cache management
and details of managing the MMU, are not verified to ISA
level. But overall, the risk of compromising seL4 is tiny.

The largest risk of seL4 failure comes from multicore con-
figurations: While seL4 runs and performs well on multicore
platforms, nothing to do with multicore is verified at present,
and this is likely the one significant source of critical vulnera-
bilities. Some early-stage work towards multicore verification
of seL4 is in progress, but there is no timeline yet for its
conclusion, other than that it will take years.

The biggest overall threat is an attack that compromises the
system before seL4 gets control. We rely on the BIOS or U-
Boot to establish initial conditions. This code can compromise
the platform by changing the Arm monitor-mode code, re-
routing interrupts or applying other mis-configurations that
allow hijacking the system later. Obviously this is nothing
that seL4 or its verification can protect against, and defences
against this attack are platform-specific. Once possible pro-
tection is to burn a trusted setup code, including seL4, into
ROM [20].

The seL4CP is presently unverified, but its implementation
is extremely simple; the mapping to seL4 primitives consists
of only about 200 SLOC, plus about 1 kSLOC of initialisation
code. Verification of the seL4CP is in progress [10]. As this
verification effort employs push-button techniques, and the
code base is and will remain small, we are confident that it
will also scale to the forthcoming extensions that add limited
dynamic features. These features will grant extra powers to
some privileged PDs; these are obviously part of the TCB and
should be assured.

Linux

Driver

Client

Device

IP 
Stack

Driver

Device

Client IP
stack

Fig. 4. Benchmark setup: Linux (left) vs seL4 (right).

Device drivers, and the sDDF, are only part of the TCB
in so far as drivers need to be trusted. seL4-enforced driver
encapsulation means that a compromised driver cannot com-
promise the rest of the system. A driver can be prevented
from compromising confidentiality and integrity of the data
it handles by encrypting all data, e.g. using TLS for network
traffic. This leaves denial-of-service threats on the table, we
hope to address this eventually by verifying critical drivers
(through the Pancake project [14]).

A trusted driver will have to trust (parts of) the sDDF —
this is, again, a fairly simple code base that poses a verification
challenge similar to the seL4CP, and might also be amenable
to push-button verification.

Short of actually verifying these components, their
simplicity-by-design, enabled by strong separation of con-
cerns, and complemented by seL4-enforced isolation, dramat-
ically reduces the attack surface.

VII. PRELIMINARY EVALUATION

Our approach to secure IoT heavily relies on modularisation,
with module boundaries enforced by the secure seL4 micro-
kernel (Figure 1). There is a cost: every time a component
boundary is crossed, the microkernel is involved. Instead of a
simple function call (costing dozens of cycles), the crossing
involves a mode switch for trapping into the kernel, a context
switch, and another mode switch for returning to usermode,
at a total cost of hundreds of cycles. Fortunately, typical
execution times between such switches are tens to hundreds
of thousands of cycles, so we can expect the overhead to be
low.

We perform a preliminary evaluation to quantify the per-
formance impact. We use an extreme case of high context-
switching rates (and correspondingly little work done between
context switches): high-throughput networking. Many of the
typical IoT platforms barely have the CPU power to process
Gigabit Ethernet traffic at wire speed, indicating that this is a
tough test case.

A. Setup

We compare two configurations, as shown in Figure 4, both
running on a single core. For Linux we use a standard setup,
with an in-kernel network driver and the in-kernel IP stack,
only the client running in usermode. The client simply echos
back every received packet. Sending and receiving a packet
requires at most one system call each; if more than one packet



Fig. 5. Network performance of the seL4-based setup compared to Linux,
showing throughput and CPU utilisation as a function of applied network
load.

is available at a time, all will be processed with a single pair
of system calls.

In contrast, the seL4 configuration runs the driver, IP stack
(we use lwip [21]) and the client in usermode. We co-
locate the IP stack with the client in a single protection
domain. Compared to Figure 3 we omit the multiplexer, so
this represents a reasonable configuration where the device is
exclusively owned by the client. Still, sending and receiving
a packet requires context switches. In total this configuration
requires 9 kernel entries (and 6 context switches) for each
packet round trip (i.e. driver receives a packet, hands it to
the client via the IP stack, and the client echos it back via
the IP stack to the driver). This number includes the driver
receiving and acknowledging interrupts, the driver notifying
the IP stack of data availability, the IP stack notifying the
driver, a system call for each cache maintenance operation,
plus the kernel scheduler switching to a background thread
when the I/O system is idle. This compares to four kernel
entries (each a context switch) for Linux (including switches
to a background process).

We use a low-priority busy-looping usermode background
thread in the seL4 system for measuring CPU utilisation of
the I/O system: The time that thread manages to consume is
the complement of the time used by the I/O system. In Linux
we can use the top utility for measuring CPU utilisation.

While the sDDF I/O interface is asynchronous and zero-
copy, we simulate Linux’ copying read/write interface by
copying each received packet twice before transmitting it back.

Our evaluation platform is a Freescale i.MX8MM Quad
based on Arm Cortex A-53 cores, running at 1.2 GHz. The
Ethernet adapter is the on-chip 10/100/1000 NIC connected to
an Atheros AR8031 PHY capable of 1 Gb/s throughput. We
use a local cluster running ipbench [22] for load generation.

B. Results

Figure 5 shows the results. Looking at throughput (solid
lines, yellow for Linux and green for seL4) we see that
seL4 keeps up with the applied, reaching 958 Mb/s. This

represents 99.6% of the theoretical limit of 962 Mb/s (allowing
for protocol overhead of 20 bytes per packet), meaning that
our setup is able to fully keep up with traffic.

In contrast, Linux cannot handle more than 332 Mb/s.
Comparing CPU utilisation (broken lines) we see the reason:
Linux maxes out the processor at around 400 Mb/s and is
therefore unable to handle more than that traffic. In contrast,
seL4 can handle the maximum load with 90.5% CPU usage. In
other words, the seL4-based setup can handle more throughput
because its per-packet processing cost is 1/3 of that of Linux,
despite the higher inherent mode and context-switching over-
head.

These results clearly show that the seL4 I/O system is
sufficiently lightweight to make up for the unavoidably higher
number of kernel entries. In particular we observe that the
sDDF’s simplified driver model, aimed at enabling verification,
does not hurt performance.

VIII. IMPLEMENTATION STATUS

At time of writing, seL4 runs on Arm, x86 and RISC-V
processors. Its verification presently applies to 32-bit Arm and
64-bit x86 and RISC-V, although for x86 this applies only to
implementation correctness (excluding proof of compilation
correctness and the security-enforcement proofs). Verification
for 64-bit Arm processors is in progress.

The seL4CP presently runs on 64-bit Arm and RISC-
V processors, we do not expect difficulties in porting it
to x86 or 32-bit mode. The total implementation presently
comprises about 1,200 SLOC. The dynamic prototype adds
only 53 SLOC. This will grow somewhat as not all the desired
functionality is implemented yet, but the dynamic features are
unlikely to have much impact on verifiability.

The sDDF is largely ISA-independent but presently only
seriously tested on 64-bit Arm processors. The framework
presently comprises about 1,500 SLOC, integrating with
seL4CP adds another 200 SLOC. This will grow significantly
as other device classes and essential services, such as device
discovery and dynamic DRAM mapping are added. Drivers
and servers are on top of this, eg. 400 SLOC for our Ethernet
driver and some 2,000 SLOC for lwip.

Neither the seL4CP nor the sDDF are of mature production
quality yet, although the seL4CP is already used in a product
prototype.

All artefacts described here, including proofs (where avail-
able), are open source. Pointers to the code repositories can
be found on the relevant project pages:

seL4: https://sel4.systems/contact/
seL4CP: https://trustworthy.systems/projects/TS/sel4cp/
sDDF: https://trustworthy.systems/projects/TS/drivers/

IX. CONCLUSIONS

The formally verified seL4 microkernel is a rock-solid
base for military-grade security, and is applicable to IoT
devices, but requires much expertise to use correctly. The seL4
Core Platform is a simple operating system that is suitable
for IoT development, as it simplifies the seL4 model and

https://sel4.systems/contact/
https://trustworthy.systems/projects/TS/sel4cp/
https://trustworthy.systems/projects/TS/drivers/


enables security by design. Virtualization plays an important
role as an enabler of legacy re-use: It allows utilising OS
services not natively available on seL4, and enables reuse
of complex application software that would be expensive to
port. Virtualization also is a core enabler of the incremental
cyber retrofit that can demonstrably secure legacy systems by
migrating them to seL4.

The security benefits from running on seL4 stem from
seL4 itself being practically impossible to compromise, due to
its formal verification, but also from seL4 enforcing module
boundaries in a componentised system. The latter has a cost:
Crossing a module boundary requires a context switch, which
bears a base cost that is an order of magnitude higher than
that of a function call. Our initial evaluation, investigating
high-throughput networking, which represents an extreme case
in terms of context-switching rates, shows that seL4 can in
fact outperform Linux I/O by a factor of three. In other
words, the increased robustness and security, as well as the
greatly simplified device driver model that aims to enable
formal verification of drivers, does not come at a significant
performance cost.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support provided
by the UAE’s Technology Innovation Institute (TII) for the
work on the sDDF and device virtualisation. We are equally
grateful for the support provided by the UK’s National Cyber
Security Centre (NCSC) for work on verifying the seL4CP.
The original development of the seL4CP was supported by
an ICERA grant from the Australian Defence Science and
Technology Group. We thank the many members of the
seL4 Foundation who are making invaluable contributions
to the seL4 ecosystem, by contributing to the development
and maintenance, and directly or through their membership
fees funding some of the verification work. We also thank
the anonymous reviewer whose questions triggered significant
improvements to the paper.

REFERENCES

[1] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in ACM Symposium on Operating Systems Principles. Big Sky, MT,
USA: ACM, Oct. 2009, pp. 207–220.

[2] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser, “Comprehensive formal verification of an OS
microkernel,” ACM Transactions on Computer Systems, vol. 32, no. 1,
pp. 2:1–2:70, Feb. 2014.

[3] A. Lyons, K. McLeod, H. Almatary, and G. Heiser, “Scheduling-context
capabilities: A principled, light-weight OS mechanism for managing
time,” in EuroSys Conference. Porto, Portugal: ACM, Apr. 2018.

[4] Z. Mi, D. Li, Z. Yang, X. Wang, and H. Chen, “SkyBridge: Fast
and secure inter-process communication for microkernels,” in EuroSys
Conference, Mar. 2019.

[5] J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computations,” Communications of the ACM, vol. 9, pp.
143–155, 1966.

[6] U. Steinberg and B. Kauer, “NOVA: A microhypervisor-based secure
virtualization architecture,” in Proceedings of the 5th EuroSys Confer-
ence. Paris, FR: ACM, Apr. 2010, pp. 209–222.

[7] G. Klein, J. Andronick, I. Kuz, T. Murray, G. Heiser, and M. Fernandez,
“Formally verified software in the real world,” Communications of the
ACM, vol. 61, pp. 68–77, Oct. 2018.

[8] B. Leslie and G. Heiser. (2020, Nov.) The sel4 core
platform. [Online]. Available: https://trustworthy.systems/projects/TS/
sel4cp/2011-draft-spec.pdf

[9] ——. (2022, Mar.) Evolving seL4CP into a dynamic OS.
[Online]. Available: https://trustworthy.systems/projects/TS/sel4cp/
2203-report-dynamic.pdf

[10] Trustworthy Systems Group. (2022) Verifying the seL4 core platform.
Project web page. [Online]. Available: https://trustworthy.systems/
projects/TS/sel4cp/verification

[11] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in ACM Symposium on Operating
Systems Principles, Lake Louise, Alta, CA, Oct. 2001, pp. 73–88.

[12] MITRE Corporation. (2022) Linux kernel: CVE security vulnerabilities,
versions and detailed reports. Accessed: 2022-04-14. [Online].
Available: https://www.cvedetails.com/product/47/Linux-Linux-Kernel.
html?vendor{ }id=33

[13] Trustworthy Systems. (2022) Research on device drivers. Project
web page. [Online]. Available: https://trustworthy.systems/projects/TS/
drivers/

[14] ——. (2022) Pancake: A language for formally verified device drivers.
Project web page. [Online]. Available: https://trustworthy.systems/
projects/TS/drivers/pancake

[15] G. Heiser, “The role of virtualization in embedded systems,” in Work-
shop on Isolation and Integration in Embedded Systems, Glasgow, UK,
Apr. 2008, pp. 11–16.

[16] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz, “Unmodified device
driver reuse and improved system dependability via virtual machines,”
in Proceedings of the 6th USENIX Symposium on Operating Systems
Design and Implementation, San Francisco, CA, US, Dec. 2004, pp.
17–30.

[17] K. Fisher, J. Launchbury, and R. Richards, “The HACMS program:
using formal methods to eliminate exploitable bugs,” Philosophical
Transactions of the Royal Society A, vol. 375, no. 2104, 2017.

[18] Trustworthy Systems. (2021) seL4 protects world’s most secure drone
from DEFCON hackers. [Online]. Available: https://sel4.systems/news/
2021#defcon

[19] R. Russell, “virtio: towards a de-facto standard for virtual I/O devices,”
ACM Operating Systems Review, vol. 42, pp. 95–103, Jul. 2008.

[20] HENSOLDT Cyber. (2022) MiG-V – made in Germany RISC-V.
[Online]. Available: https://hensoldt-cyber.com/mig-v/

[21] A. Dunkels, “Minimal TCP/IP implementation with proxy support,”
SICS, Tech. Rep. T2001-20, Feb. 2001, http://www.sics.se/∼adam/
thesis.pdf.

[22] I. Wienand and L. Macpherson, “ipbench: A framework for distributed
network benchmarking,” in Conference for Unix, Linux and Open Source
Professionals (AUUG), Melbourne, Australia, Sep. 2004, pp. 163–170.

https://sel4.foundation
https://trustworthy.systems/projects/TS/sel4cp/2011-draft-spec.pdf
https://trustworthy.systems/projects/TS/sel4cp/2011-draft-spec.pdf
https://trustworthy.systems/projects/TS/sel4cp/2203-report-dynamic.pdf
https://trustworthy.systems/projects/TS/sel4cp/2203-report-dynamic.pdf
https://trustworthy.systems/projects/TS/sel4cp/verification
https://trustworthy.systems/projects/TS/sel4cp/verification
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor{_}id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor{_}id=33
https://trustworthy.systems/projects/TS/drivers/
https://trustworthy.systems/projects/TS/drivers/
https://trustworthy.systems/projects/TS/drivers/pancake
https://trustworthy.systems/projects/TS/drivers/pancake
https://sel4.systems/news/2021#defcon
https://sel4.systems/news/2021#defcon
https://hensoldt-cyber.com/mig-v/
http://www.sics.se/~adam/thesis.pdf
http://www.sics.se/~adam/thesis.pdf

	Introduction
	Background: The seL4 Microkernel
	The seL4 Core Platform
	The seL4 Device Driver Framework
	Virtualization
	Legacy reuse
	Incremental cyber retrofit
	Device virtualisation

	Threats
	Preliminary Evaluation
	Setup
	Results

	Implementation Status
	Conclusions
	References

