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Abstract

We present LionsOS, an operating system for security-
and safety-critical embedded systems. LionsOS is based
on the formally verified seL4 microkernel and designed
with verification in mind. It uses a static architecture and
features a highly modular design driven by strict separa-
tion of concerns and a focus on simplicity. We demon-
strate that LionsOS outperforms Linux.

1 Introduction

Safety- and security-critical systems, such as aircraft,
autonomous cars, industrial control systems or defence
systems, require a highly dependable operating sys-
tem (OS). The complexity (and code size) of these
embedded/cyber-physical systems keeps growing, and it
is unavoidable to have highly critical (and, presumably,
highly assured) functionality co-exist with less critical
(and less trustworthy) functionality. These systems are
therefore mixed criticality systems (MCS), where the cor-
rect operation of a critical component must not depend
on the correctness of a less critical component [Barhorst
et al., 2009; Burns and Davis, 2017].

Unlike more traditional MCS, which are mostly con-
cerned with (spatial and temporal) integrity and avail-
ability, the mixed-criticality requirement must also ex-
tend to confidentiality: Assume an untrusted component
of the system is compromised by an attacker, and this
component can be used to obtain the system’s encryp-
tion key used to validate over-the-air software upgrades,
then the attacker could replace critical components and
thus completely compromise the system.

The core requirement such critical systems impose on
the OS is strong temporal and spatial isolation. As such,
the seL4 microkernel [seL4 Foundation, 2021a] seems
a perfect foundation: seL4 has undergone extensive for-
mal verification, including proofs of confidentiality and
integrity enforcement, proof of implementation correct-

ness and proofs that the binary has the same semantics as
the verified C code, taking the compiler out of the trusted
computing base (TCB) [Klein et al., 2014]. There is fur-
thermore a MCS version of seL4 which provides the tem-
poral isolation properties required by real-time systems
[Lyons et al., 2018], verification of the MCS variant is
currently in progress [seL4 Foundation, 2024].

These features have resulted in some deployment suc-
cess, including autonomous military aircraft [Cofer et al.,
2018] and, more recently, commercial electric cars [Qu,
2024]. Yet more than a decade after its verification was
completed, seL4 is not as widely deployed as might have
been expected.

The core reason behind this slow uptake is the low-
level nature of seL4, which goes beyond the already
low-level nature of other microkernel APIs. For exam-
ple, seL4 makes all memory management (including for
the kernel) a user-level responsibility [Elkaduwe et al.,
2008]; while this is a core enabler of reasoning about
isolation, the developer experiences it as a foot gun. To-
gether with a lack of support for writing device drivers,
this makes seL4 the “assembly language of operating
systems”. The upshot is that it requires an unusual level
of expertise to build functioning and performant systems
on seL4 – the kernel is largely unapproachable by indus-
trial developers of critical systems.

In short, to benefit from seL4’s provable isolation en-
forcement, developers of critical systems need an ac-
tual operating system, providing appropriate abstrac-
tions, such as processes, files and network connections,
while retaining (and extending) the isolation guarantees
provided by seL4. We propose to address this need with
LionsOS, designed to meet the following aims:
Fast: LionsOS performance should be competitive with

that of mainstream systems, such as Linux;
Secure: LionsOS should, by design, not only leverage

seL4’s verified isolation properties to protect appli-
cations from each other, but make an eventual for-
mal verification of LionsOS itself tractable;
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Adaptable: LionsOS should be deployable on most crit-
ical embedded, IoT and cyberphysical systems.

These aims are somewhat in conflict: adaptability and
verifiability call for a highly modular design. While such
a design is natural for a microkernel-based system, the
cost of context switches could undermine performance
[Chen et al., 2024]. However, in this paper we show that
a highly principled (Section 3), modular design (Sec-
tion 4), combined with an implementation focused on
simplicity (Section 5) can result in a system that does
meet the performance aim (Section 6).

2 Background and Related Work

2.1 Verification and scalability

The formal verification of seL4 demonstrated that it
is possible to prove the implementation correctness of
real-world systems of considerable complexity. How-
ever, the cost was high: about 12 person years of non-
recurring engineering for 8,500 source lines of code
(SLOC), and an estimated cost of $350/SLOC [Klein
et al., 2009]. While potentially justified for a stable,
foundational piece of infrastructure, this cost is too high
for most systems, including an OS that will be signifi-
cantly larger than seL4.

The seL4 project delivered another key insight: Veri-
fication effort scales with the square of the specification
size [Matichuk et al., 2015]. This implies that there could
be a large scalability benefit from keeping things small
and simple, i.e. a highly modular design, where each
component has a narrow and simple specification, and
where module boundaries are enforced by seL4, making
it possible to verify modules independently of each other.

While seL4 used labour-intensive interactive theorem
proving, recent work increasingly uses automated theo-
rem proving techniques [Cebeci et al., 2024; Chen et al.,
2023; Narayanan et al., 2020; Nelson et al., 2017, 2019;
Paturel et al., 2023; Sigurbjarnarson et al., 2016; Zaostro-
vnykh et al., 2017, 2019]. These automated techniques
are in essence based on (symbolic) state-space explo-
ration with the help of heuristics to deal with combina-
torial explosion. Yet they have severe limitations in the
complexity of the code they can tackle, and will gener-
ally work best on simple and small modules.

2.2 Modularity in operating systems

The idea of a modular OS with hardware-enforced mod-
ule boundaries is old, going back to the original micro-
kernel (before the term was coined), Brinch Hansen’s
Nucleus [Brinch Hansen, 1970]. The approach was pop-
ularised by Mach [Rashid et al., 1989] and taken up by

other microkernel systems of the time, such as Chorus
[Rozier et al., 1988] and QNX [Hildebrand, 1992].

These systems were plagued by poor performance,
resulting in moving functionality back into the kernel
[Welch, 1991], which did not prevent expensive deba-
cles, such as IBM’s ill-fated, Mach-based Workplace OS
[Fleisch et al., 1998].

Almost all microkernel-based OSes exhibited course-
grained modularity, typically at the level of major sub-
systems such as file service, networking and process
management [Härtig et al., 2005; Herder et al., 2006;
Qubes; Rawson, 1997; Whitaker et al., 2002], too large
for verification. Nevertheless, even the most recent work
argues that the cost of crossing module boundaries is
too high, resulting in co-locating services into even more
course-grained isolation domains [Chen et al., 2024].

The Flux OSKit [Ford et al., 1997] was an early de-
sign featuring a more fine-granular design. Performance
comparison to Linux and FreeBSD showed a 13% degra-
dation in networking throughput and a 45% increase in
latency. SawMill was an ambitious project aiming to
break up Linux into components isolated by a microker-
nel, file-system benchmarks showed a throughput degra-
dation of about 18%. No CPU load values are reported
for any of these systems, but the degradation in achieved
throughput indicates a significant increase in per-packet
processing cost.

Genode (formerly called Bastei) [Feske, 2015; Feske
and Helmuth, 2007] features a modular design aiming
for assurance and explicitly prioritising this over per-
formance (we could not find any published performance
data). Its implementation in C++ will prevent a complete
formal verification for the foreseeable future.

An alternative is modularisation enforced by program-
ming languages (as opposed to address-space isolation
mediated by a microkernel), as pioneered by SPIN [Ber-
shad et al., 1995], and later adopted by Singularity
[Fähndrich et al., 2006] and RedLeaf [Narayanan et al.,
2020]. These systems generally exhibit lower perfor-
mance than mainstream OSes. Furthermore, as their se-
curity relies on type-safety enforcement by the program-
ming language, they require the whole OS to be imple-
mented in that language. Inevitably this requires unsafe
escapes for dealing with hardware. More importantly,
this rules out re-using code from mainstream OSes.

Writing all device drivers from scratch is generally in-
feasible. We therefore ignore language-based isolation
approaches and instead focus on modularity enforced by
address-space isolation.

3 LionsOS Design Principles

Given this experience, what makes us think we can meet
all our aims from Section 1?
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We observe that a commonality of these earlier sys-
tems is a significant complexity in design and implemen-
tation. We posit that the key to meeting our aims is a
strict application of the time-honoured KISS Principle
[Wikipedia, 2001]. Following this high-level principle,
we aim for a highly modular design which incorporates
the following secondary principles:
Strict separation of concerns: Each module has one

and only one purpose (as far as feasible). Further-
more, a particular concern (e.g. the traffic-shaping
policy of a network subsystem) should be fully con-
tained in a single module.

Least privilege: Each module only has the access rights
it needs, not more. While not strictly a consequence
of KISS, this time-honoured security principle of
Saltzer and Schroeder [1975] will simplify reason-
ing about security and safety of the system.

Design for verification: Given the scalability and com-
plexity limits of verification (Section 2.1), this prin-
ciple calls for keeping module interfaces narrow and
module implementations simple.

Use-case specific policies: This is arguably the most
controversial principle, as it calls for tailoring each
(resource) policy to the system’s particular use case,
in order to simplify the policy implementation.

It seems clear that adhering to these principles, which
we summarise as “radical simplicity”, will give us the
best chance to produce a highly dependable system and
maximize the chances of formally proving its correctness
and security.

Simplicity is aided by restricting our target domain to
embedded systems. While aiming for generality within
that domain – which specifically includes cyber-physical
systems such as autonomous aircraft and cars, some of
which are quite complex and demanding – we do not
(yet) aim to support more general-purpose systems, such
as cloud servers, smartphones and certainly not laptops.

The common thread of the embedded domain is that it
can be served with a static system architecture, i.e. a set
of components that is known at configuration time. Note
that this does not mean that the system is fully static,
it can still support late loading of components, dynamic
component updates, and place-holders for components
that can be instantiated with programs not known at build
time. Dependable embedded systems generally cannot
over-commit resources, which is what makes the static
architecture work. We are yet to see a realistic use case
in the embedded space that cannot be addressed with a
static architecture.

The inherent constraints of embedded systems are also
in line with the principle of use-case specific policies. A
computer system generally has two classes of policies:
security and resource policies. In the embedded space,
the security policy is generally defined by the use case,

and will only change in the context of a significant re-
configuration of the system (accompanied with a major
software upgrade).

But the embedded system’s defined set of resources
implies that, at least for the critical systems we are tar-
geting, the designer also has (or should have) a clear idea
of how they should be managed. The more tailored the
policy is to the use case, the simpler its implementation,
and the easier it is to assure (formally or informally) that
it matches requirements.

This principle of use-case specific policies is arguably
the clearest departure from conventional approaches.
OSes tend to be designed to adapt to changing applica-
tion scenarios with no or minimal code changes. This
naturally leads to a (whether conscious or not) desire to
provide universal policies. Of course, no policy is truly
universal, and sooner or later it will encounter a use case
where the existing policy behaves pathologically, result-
ing in attempts to generalise it. This approach is a mas-
sive driver of complexity: For example, the Linux sched-
uler contains five scheduling classes, each of which has
one or more per-thread tuning parameters; the scheduler
has grown from around 11,kSLOC in 2011 (version 3.0)
to over 30 kSLOC today (version 6.12). Furthermore, the
approach frequently leads to optimising particular “hot”
use cases at the expense of overall performance [Ren
et al., 2019].

Use-case specific policies represent the opposite ap-
proach: Each policy is highly specialised for the use
case, and the system achieves use-case diversity not by
generalising policies, but by re-writing them as needed.
Of course, this can only work if the policies are simple
enough to implement.

Our underlying argument is that by taking a radical ap-
proach to simplicity and use-case specificity, policies do
become simple. Moreover, for most resources there is a
small to moderate set of policies that can be pre-supplied,
letting the system designer chose from an existing set (or
trivially adapting an existing one to the use case).

An illustrative example is network traffic shaping: If
multiple clients of a network interface overload the inter-
face, there really are a small number of obvious policies
to choose from: Clients may be given a priority, their
bandwidth may be limited, or they may be served round-
robin. And in an embedded system, it is usually obvious
which one is appropriate, and this is unlikely to change
for the lifetime of the system.

Taken together, our principles lead to an OS becoming
something akin to a Lego® set: The OS is built from dif-
ferent kinds of components (brick shapes). Each compo-
nent comes in multiple, functionally compatible versions
(brick colours), and the choice of version (colour) can be
made largely independent of the rest of the system.

An obvious concern is how the fine-granular modular-
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ity affects our performance aim, as this necessarily leads
to high context-switching rates. Given there is a cost
to every context switch (depending on the architecture,
400–600 cycles for seL4 [seL4 Foundation, 2021b]), this
has the potential to make the system slow [Chen et al.,
2024]. We will examine the performance impact in Sec-
tion 6.

4 LionsOS Design

Like most OSes, LionsOS consists mostly of I/O sub-
systems (device drivers, protocol stacks, file systems)
and resource management. The latter part is particu-
larly small in LionsOS because of its static architecture,
which reduces resource management to some simple pol-
icy modules that are not only use-case specific (as per our
principle) but also local in their nature (e.g. shaping traf-
fic of a network interface).

Some global resource management is required but not
yet fully designed (nor implemented), such as core man-
agement (off- and on-lining processor cores based on
overall CPU load). We will discuss this in Section 5.3.

4.1 Devices
We demonstrate how our principle of strict separation of
concerns applies to I/O, using networking, specifically
Ethernet, as a case study. We briefly discuss other device
classes in Section 4.1.5.

4.1.1 Device drivers

Applying separation of concerns, we reduce the pur-
pose of a device driver to translate between a hardware-
specific device interface and a hardware-independent
device class interface. Hence an Ethernet driver ab-
stracts the specific NIC as a generic Ethernet device.

Unsurprisingly, the Ethernet device-class interface
(i.e. the driver’s OS interface) looks similar to that of
an actual Ethernet NIC, with some differences that help
simplify its use. NICs typically use ring buffers in DMA
memory to pass references to DMA buffers from and to
the driver; each ring buffer entry contains a pointer to a
buffer in the DMA region, together with some meta-data
(indicating whether a buffer contains valid data). A NIC
usually references two such ring buffers, one for transmit
(Tx) and one for receive (Rx) data.

To simplify the OS interface, we separate queues for
buffers containing valid data from those that do not. This
means that the SW side of the driver has four queues:
transmit available (TxA): references buffers provided

by the OS to be sent to the network;
transmit free (TxF): references buffers returned by the

NIC to the OS for re-use;

DeviceDriver
Tx Virt

Rx Data

Tx D MD

Dev MDRx D MDRx Virt

Dev CtrlTx V MD

Rx V MD
Client

Tx Data

Figure 1: Memory regions for Ethernet: device con-
trol (Dev Ctl), device metadata (Dev MD), transmit
and receive data (Tx Data, Rx Data), driver meta-
data (Tx D MD, Rx D MD) and virtualiser metadata
(Tx V MD, Rx V MD). Arrows indicate access to regions
by components, thick black arrows indicate DMA by the
device, the thick coloured arrow indicates uncached ac-
cess by the driver. The TxVirt only maps the Tx Data re-
gion if needed for cache management (shown as dashed).
We only show a single client of the virtualiser.

receive available (RxA): references buffers filled with
data by the NIC to be consumed by the OS;

receive free (RxF): references buffers provided by the
OS to the NIC to receive data from the network.

These queues are allocated in driver metadata regions,
for Ethernet there is one for Tx data (containing the TxA
and TxF queues) and a separate one for Rx data (RxA
and RxF queues). These are “normal” memory invisible
to the device (i.e. not accessed by DMA).

Note that the driver only handles pointers to DMA
buffers, it has no need to access the actual data. We
make this explicit by separating the data region, which
contains the buffers to be filled/emptied by the device,
from the device metadata region, which contains the ring
buffers pointing to the data buffers. In addition there is
the device control region, which maps the device regis-
ters for memory-mapped I/O. Data and device metadata
regions are memory regions accessed by the device via
DMA.

As the driver has no need to access the I/O data, it does
not have the data region mapped into its address space,
in line with the principle of least privilege. The device
control region is mapped to the driver uncached.

The right half of Figure 1 shows the memory regions
relevant to the driver. For the Ethernet device class, we
treat the Tx and Rx paths separately, hence the driver’s
OS interface has two metadata regions, one for transmit
and one for receive.

4.1.2 Virtualisers

While the driver abstracts the device hardware, it does
not deal with address translation, nor with sharing the
device between multiple clients. This is the purpose of a
separate virtualiser (Virt) component, which:

• shares a physical device between multiple clients,
presenting each with a virtual device;
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• translates references to DMA buffers from client ad-
dresses to device addresses (physical addresses or
IOMMU-translated I/O-space addresses);

• performs cache management (flushing/invalidating)
where needed (the x86 architecture keeps caches
coherent with DMA and thus does not require this
functionality).

For the Ethernet device class, we have independent
virtualisers for the Tx and Rx paths (TxVirt and RxVirt).

The Virt replicates its driver interface at the client
side, meaning its client-side interfaces look exactly like
its device interface. Specifically it has a metadata re-
gion (Tx V MD, Rx V MD) that structurally replicates
the respective device metadata region. The key differ-
ence is that while the device MD regions use I/O ad-
dresses for referring to data buffers, the Virt MD regions
refers to data buffers by offsets from the beginning of the
respective data region, thus making the Virt’s address-
translation task independent of client virtual address-
space layout.

The RxVirt needs to inspect the headers of incoming
packets and thus requires the data region to be mapped
(R/O). The TxVirt does not need to access the data region
directly, but may need to have it mapped in its address
space to perform cache management. For example, the
Arm architecture performs cache operations on virtual
address ranges, so the TxVirt needs the data region to be
mapped into its address space. Arm does not have cache-
coherent DMA, so memory that will be transferred to a
device using DMA has to be cache-cleaned before DMA
occurs. Likewise, the RxVirt on Arm needs to invalidate
caches after DMA into its buffers. These mappings are
indicated in the left half of Figure 1.

The TxVirt must implement a traffic shaping policy if
its clients generate load that exceeds the NIC’s Tx capac-
ity. In line with our principle of use-case specific policy,
the Tx policy is as simple as the specific use-case allows.
It is typically one of round-robin, priority-based or band-
width limiting.

The RxVirt may only require a simple policy: what
to do when data arrives for a client whose RxA queue is
full, possible choices are to block or (more likely) dis-
card the packet and return the buffer to the driver’s RxF
queue. We generally avoid this this need by ensuring that
all client queues are large enough to hold all available
Rx buffers, starving the device of buffers if the clients
fail to process input fast enough – this leads to the NIC
dropping packets under overload without wasting CPU
cycles, and leaves the RxVirt policy-free.

4.1.3 Data regions and copiers

The Tx data region is seen as a single region by the
driver. However, each client has its own sub-region,

which is mapped into the client address space (and the
Virt’s where required).

While each client data region is contiguous in physi-
cal memory, there is no need for contiguity of the over-
all data region. Obviously, the whole region must be
mapped to the device by the IOMMU.

The same approach does not work for Rx data, as the
device will deposit input in any free buffer, and only the
Virt determines the target address space. There are three
possible approaches to making Rx data available to the
correct client:

1. have only a single, global Rx data region, and the
Virt maps each buffer to the client when inserting it
into the client’s RxA queue, and unmapping it when
retrieving a buffer from the client’s RxF queue. This
needs additional privilege in the Virt, but the Virt
must be trusted anyway;

2. have only a single, global Rx data region, which is
mapped R/O in all client address spaces. This im-
plies that clients can read other client’s input data;

3. have an explicit copier (Copy) component between
the RxVirt and each client, which copies the data
from the global data region into a per-client data re-
gion.

The actual choice comes down to performance (incl.
a trade-off between the cost of copying and the cost of
mapping operations) and the system’s security policy.
The advantage of the model is that the decision can be
made without affecting the implementation/operation of
either the driver or the clients. For example, option (2)
is suitable if there is no concern about one client see-
ing another’s input data (e.g. when all network traffic is
encrypted). The Copy component can be inserted trans-
parently: the difference between case (2) and (3) above
does not affect the implementation of either the Virt or
the client/copier.

4.1.4 Broadcast

We offer two schemes for handling address resolution re-
quest (ARP) packets coming from the network.

The first approach uses a separate ARP client, whose
only job is to respond to those requests. This requires
that incoming traffic is routed to clients based on MAC
address, and that the ARP client has (R/O) access to the
MAC-address allocation table.

The alternative approach handles broadcast packets in
the RxVirt by enqueuing a copy of the ARP packet in
each client’s queue, and reference counting the driver’s
buffer containing the packet. We return the buffer to
the driver’s RxF queue once each client has enqueued
its copy in its RxF queue (and thus the reference count
has dropped to zero). Each client is then responsible for
handling any broadcast traffic it receives.
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4.1.5 Other device classes

Some other device classes look similar to Ethernet at a
high level, and result in a similar design. This includes
most serial devices (serial ports, SPI, I2C) with differ-
ences in the details for the protocol. Some have no sep-
aration between data and metadata (the queues directly
contain the data).

Others, especially storage devices, do not have the
clear separation of Tx and Rx traffic of Ethernet, and in-
stead, the storage device only reacts to explicit read or
write requests. This results in a slightly different design:

• there is a single driver metadata region;
• there are only two queues, the request (Rq) and the

response (Rs) queue;
• there is a single Virt, which presents an Rq and Rs

queue to each client in a per-client metadata region
• there is one data region per client.
In addition to read and write requests, the Rq may also

contain barrier requests, across which the device is not
allowed to reorder other requests. Other protocol details
support batching of requests. The storage Virt statically
partitions the devices between its clients.

The driver exports an information page of device prop-
erties, which is appropriately virtualised by the Virt.

4.2 OS services

For best performance, LionsOS presents a native API
that is asynchronous and modelled largely on the de-
vice interfaces. For developer convenience and to ease
porting of legacy applications, LionsOS also provides a
blocking, POSIX-like API that is layered over the native
one.

As network traffic is explicitly (de)multiplexed by the
virtualisers, there is no need for a global IP stack, it be-
comes a library linked directly into the client. This takes
the complex (and probably buggy) protocol stack out of
the system’s TCB.

The same approach can be used for storage, by provid-
ing a per-client file-system library that directly operates
on the virtual storage device provided by the Virt (with
an optional copier in between). Alternatively, a single
(trusted) file system can be used for all clients, which
then is the sole client of the storage Virt.

Sharing across per-client file systems can be enabled
by an explicit multiplexer component that connects to
multiple clients.

A unified view of multiple storage devices can be pro-
vided to a client through a virtual file system that inter-
faces to multiple per-device file systems. However, mul-
tiple storage devices are rare in the embedded space.

Figure 2 shows these options. The main take-away is
that separation of concerns means that such choices come

MuxClient2

FS

FS

Client3 VFS

Client1 FS

Virt
Storage
Driver

Virt
Storage
Driver

Figure 2: File system configuration options.

down to selecting the appropriate components from the
“Lego” set and combining them as needed.

5 LionsOS Implementation

5.1 The starting point: seL4 Microkit

We base the design of LionsOS on the seL4 Microkit
[seL4 Foundation, 2023] (formerly “Core Platform”).
The Microkit simplifies seL4 usage by imposing a static
system architecture and an event-driven programming
model. It presents an abstraction of the seL4 API that
is partially verified using SMT solvers [Paturel et al.,
2023].

The Microkit provides a process abstraction called
protection domain (PD). PDs are single-threaded and
combine the seL4 abstractions of virtual address space,
capability space, thread and scheduling context. Multi-
threaded processes can be implemented through multi-
ple PDs that share an address space. While useful for
applications, we do not use this for LionsOS itself – all
LionsOS components are strictly sequential.

PDs communicate via shared memory and semaphores
(seL4 notifications). Server-type PDs can be invoked
synchronously via protected procedure calls (PPCs),
which map onto seL4 synchronous IPC – such a server
executes on the caller’s core.

PDs are structured as event handlers, signalling their
semaphore will execute the notified function, identi-
fying the sender PD. A server has another handler func-
tion, protected, to receive PPCs. Each PD also has an
init handler for initialisation.

The system architecture of PDs and their communica-
tion channels (semaphores and shared memory regions)
is defined in a system description file (SDF). It specifies
the ELF files to be loaded into each PD and a PD’s meta-
data, including scheduling parameters, access rights to
memory regions and caching attributes, and access to in-
terrupts (which appear as semaphores). A PD can mon-
itor a virtual machine, in which case it acts as a private
virtual-machine monitor (VMM) which handles virtuali-
sation events from the VM.

Microkit tooling generates from the SDF the seL4 sys-
tem calls that set up the PDs, channels and memory re-
gions and invokes each PD’s init function. The tooling
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hides the complexities of seL4’s capability system from
the developer.

5.2 Queues and state

The design using explicit virtualisers (for separation of
concerns) enables another important simplification: All
queues are single producer, single consumer (SPSC),
lending themselves to simple, lock-free implementa-
tions. Specifically, the TxF and RxA queues hold data
that is provided by the driver (original producer) and con-
sumed by the client (ultimate consumer), packets flow
from right to left in Figure 1; for the TxA and RxF queues
the flow is in the opposite direction.

The queues are also inherently bounded, leading to a
simple, array-based implementation, where references to
particular queue entries are simply array indices. We also
require all queues to be a power of two in size, further
simplifying implementation and sanitation.

An important property of this design is that all policy-
independent state is held in shared memory. This makes
it easy to restart a failed component without affecting
the rest of the system (other than by a transient latency
glitch). This even enables switching policies on the fly,
by reloading the code of a component. We demonstrate
this in Section 6.3.1.

5.3 Location transparency

In standard producer-consumer fashion, the lock-free
SPSC queues are synchronised by semaphores (sig-
nalling a Microkit channel). A producer component sig-
nals the consumer if new buffers have been enqueued,
and the consumer has indicated that it requires signalling
by setting a flag that resides in shared memory. A con-
sumer chooses whether or not to set this flag based on if
there is meaningful work that it can do with new buffers.
In most of our sub-systems it is more common for a pro-
ducer to be signalling a consumer, but a consumer can
also signal a producer if it has done meaningful work,
and if the producer has indicated that it needs signalling
by setting its shared flag. This can be useful when a pro-
ducer wishes to enqueue more data in a queue which is
currently full.

This approach is completely location transparent: A
particular component is not aware whether the compo-
nent with which it shares a queue is running on the same
or a different core. This location transparency of com-
ponents makes up for the strictly sequential nature of
Microkit components: Instead of requiring error-prone,
multi-threaded implementation of components to make
use of multicore hardware, LionsOS utilises multicore
processors by distributing components across cores.

The result is that concurrency is tamed: almost all
code is freed from concurrency control. The only re-
quirements are correct use of semaphores and flags, and
the correct implementation of the enqueue/dequeue li-
brary functions (which are straightforward due to the
SPSC nature of the queues).

Location transparency will also simplify core manage-
ment: If a core needs to be off-lined, components run-
ning on it can be transparently migrated to other cores,
without affecting the system’s operation (other than some
temporary latency increases). However, we have not yet
implemented this.

5.4 Legacy driver reuse
The LionsOS design vastly simplifies drivers compared
to other OSes (see Section 6.2), and implementing
drivers from scratch will result in the best performance.

However, it is unrealistic to expect adopters to write all
drivers from scratch, especially since in practice few de-
vices are performance critical enough to justify such an
effort. It is also frequently impractical, as many devices
are poorly (or un-)documented. For such cases, LionsOS
allows reusing a driver from Linux by encapsulating it in
a virtual machine (VM). Unlike the Dom0 driver VM of
Xen [Barham et al., 2003] and used in other microkernel
systems [Chen et al., 2024], we follow the approach of
LeVasseur et al. [2004] and wrap each driver in its own
VM.

Figure 3 shows the architecture. The driver VM
runs the legacy driver as part of a (minimally config-
ured) Linux guest. The guest runs a single, statically-
linked usermode program, the UIO driver (which re-
places init). The program uses normal Linux system
calls to interact with the device, and the Linux user I/O
(UIO) framework to interact with the LionsOS driver
queues.

Specifically we use UIO to map guest physical mem-
ory (to access the queues) and receive virtual interrupts.
seL4’s virtual machine architecture re-directs virtualisa-
tion exceptions to a per-VM virtual-machine monitor.
We use this to inject semaphore signals from the Virt as
IRQs into the VM, to be received by the UIO driver.

We supply the driver VM’s complete userspace as a
CPIO archive loaded at boot time from a RAM disk.

5.5 Implementation status
5.5.1 Device drivers

Most of our development happens on the HardKer-
nel Odroid-C4 (Amlogic S905X3 SoC) and the Avnet
MaaXBoard (i.MX8MQ SoC) platforms, so this is where
we have the largest set of native drivers. Specifically, we
have native drivers for the following device classes:
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Figure 3: Driver-VM architecture

• Serial for all supported platforms.
• PinMux and clock for MaaXBoard and Odroid-C4.
• Ethernet for Odroid-C4, MaaXBoard and the i.MX8

series FEC.
• Block: SDHC drivers for the MaaXBoard and

Odroid-C4 – the latter written in Rust.
• VirtIO drivers (for running on top of QEMU) for

serial, block, network and graphics (2D).
• an I2C host driver for the Odroid-C4.
• I2C drivers (using the I2C host driver) for a PN532

NFC card reader and a DS3231 real-time-clock.
These are written in C unless otherwise stated, but the
system does not prescribe an implementation language,
as demonstrated by the Odroid-C4 SDHC driver being
written in Rust.

We have Linux-based driver VMs for the following de-
vice classes:

• GPU via exported framebuffer for Odroid-C4.
• Ethernet for Odroid-C4.
• Block (SDHC) for the Odroid-C4.
• Sound using the ALSA framework for Odroid-C4.

5.5.2 Services

At present we have full networking functionality, using
lwIP [Dunkels, 2001] as a client library. Both the native
(synchronous) as well as the blocking API are supported,
the latter is layered over the former using a coroutine li-
brary. We also have an NFS client (using an open-source
NFS library) which uses the blocking API. For address-
space separation (Section 4.1.3) we use an optional Copy
component in the Rx path.

We have an asynchronous filesystem API that is used
to talk to a component running NFS or to a VM. The
Linux guest in the VM uses the standard VirtIO block in-
terface (converted to our block interface by the VMM),
and can make any filesystem supported by Linux avail-
able to other components using the filesystem API.

For security, the VM-based filesystem need not be
shared between components. Block device sharing is
then by partition and enforced by the block virtualiser.
Particular use cases can allow more sharing if desired, by
using a component between the filesystem and its clients

Runtime lwIPVFSTimerConsole

Application Webserver.py MicrodotMicro-
python

Clock
Driver

NFS

lwIP

Serial
Driver

Serial
Tx-Virt

Serial
Rx-Virt

Ethernet
Driver

Ethernet
Tx-Virt

Ethernet
Rx-VirtLionsOS

Figure 4: Architecture of the LionsOS-based web server.

to check allowable access. The VM-based Linux filesys-
tem is not amenable to any kind of formal verification.

The system is complete enough to run several com-
plete systems in daily use. One of them is a reference
design for a point-of-sales terminal. It uses a driver
VM for re-using the Linux GPU driver, and either a na-
tive Ethernet driver or another driver VM for re-using
a Linux driver (to demonstrate multiple driver VMs).
Another deployed system is a web server that hosts the
sel4.systems web site.

The web server has the business logic implemented in
Python, supported by a port of MicroPython [Develop-
ers] to LionsOS, Figure 4 shows the architecture.

5.5.3 Resource management

We have not yet implemented dynamic resource manage-
ment, such as core off-/on-lining (cf. Section 5.3), but
plan to do this within a year.

6 Evaluation

We evaluate multiple aspects of LionsOS, covering de-
velopment and debugging effort, legacy driver re-use,
and performance.

6.1 Platforms
LionsOS supports the Arm AArch64, Intel x86 64 and
RISC-V RV64 architectures. Development happens pri-
marily on Arm platforms and is then ported to the other
architectures. We evaluate on Arm and x86.

The Arm platform is an Avnet MaaXBoard with an
NXP i.MX8MQ SoC, having four Cortex A53 cores run-
ning at a maximum of 1.5 GHz; we run our measure-
ments at a clock rate of 1 GHz. It has 2 GiB of RAM,
an on-chip 1 Gb/s NIC, and an on-chip SDHC controller.
We perform Linux measurements on this board with a
small Buildroot system using kernel version 6.1.0.

The x86 platform is an Intel Xeon® W-1250 six-core
CPU running at 3.3 GHz, with an Intel IXGBE X550
10 Gb/s copper NIC. We disable hyperthreading and
turbo-boost. For Linux measurements we use a Debian
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Bullseye userspace and use the “performance” CPU fre-
quency controller to keep the CPU frequency at its max-
imum value.

6.2 Complexity and development effort
6.2.1 Code size

Our subjective experience is that the LionsOS model
dramatically simplifies development of core OS compo-
nents. A striking example is the i.MX8 network driver,
which was the first device driver written to the LionsOS
driver model of Section 4.1.1. It was implemented by a
second-year undergraduate student, less than 18 months
after she wrote her first program. Table 1 compares its
size with the Linux driver for the same device. It also
compares drivers we use on our x86 platform. We use
sloccount [Wheeler, 2001] for all code-size measure-
ments.

The size gives an indication of the complexity of the
task. The student found she was spending very little time
in debugging the driver logic, unlike normal driver de-
velopment.

Our experience with other LionsOS components is
similar, components are small and simple. Table 2 gives
a breakdown of the point-of-sales terminal we developed
as a demonstrator (see Section 5.5.2). LionsOS, as con-
figured for this application, consists of about 3.1 kSLOC
of trusted code, plus 66 kSLOC of untrusted library code
that cannot break isolation. All the trusted code is written
from scratch.

6.2.2 Signalling protocols

While the LionsOS design clearly reduces overall com-
plexity, it does shift some complexity into the inter-
component synchronisation protocols. A pessimistic im-
plementation of those protocols is trivial: the producer
notifies the consumer whenever it inserted something
into a shared queue, and the consumer signals whenever
it took something out of a queue. This clearly leads to
over-signalling and should be avoided.

A potential refinement is to signal only if there is a
substantial change to a queue: The producer signals only
if the queue becomes non-empty, the consumer only if
the queue becomes non-full. Implementing such a proto-
col correctly however can prove to be difficult, as check-
ing the fullness status of a queue modified by two com-

Platform Speed Linux LionsOS Ratio
i.MX8 1 Gb/s 4,775 569 8.4
x86 10 Gb/s 3,019 668 4.5

Table 1: Code sizes in lines-of-code of LionsOS drivers
compared to Linux.

ponents in shared memory can introduce race conditions.
The components can obtain disagreeing measurements,
causing both unnecessary signals or failures to signal at
critical times. As well as this, the design can still re-
sult in over-signalling as a component’s ability to make
progress is usually not dependent on only one queue.

As an example, consider the Ethernet driver. It re-
moves active buffers from the device Rx ring and im-
mediately inserts them into the Virt’s RxA queue. It also
removes buffers from the Virt’s RxF queue and inserts
them into the hardware ring. This means that the Rx code
of the driver can only make progress if one of two condi-
tions are satisfied:

1. The hardware Rx ring is non-empty and has active
buffers and the RxVirt’s RxA queue is non-full

2. The Virt’s RxF queue is non-empty and the hard-
ware Rx ring is non-full.

This means that if the Virt signals the driver whenever the
RxA queue becomes non-full or the RxF queue becomes
non-empty, it may wake the driver only for the latter to
find that the hardware Rx ring is not in the necessary state
to make progress and go back to sleep.

We address this by letting the driver indicate with a
flag for each queue whether it wants to be woken. This
allows the driver to incorporate its knowledge of the
hardware ring state into the Virt’s decision of whether
to signal. However, the resulting increase of complexity
of the intertwined protocols is a source of subtle concur-
rency bugs that can lead to deadlocks.

Fortunately we find that model-checking is a useful
tool to alleviate these protocol bugs, and we are able
to create models of each of our components using SPIN
[Holzmann, 1997], and use these models to prove dead-
lock freedom of our protocols. This allows us to optimise
each component’s decision to signal more aggressively,

Component LoC Library LoC
Serial Driver 249 Microkit 303
Serial TxVirt 175 Serial queue 219
Serial RxVirt 126 I2C queue 101
I2C Driver 514 Eth queue 140
I2C Virt 154 Filesys queue

& protocolTimer Driver 136
268

Eth Driver 397 Coroutines 848
Eth TxVirt 122 lwIP 16,280
Eth RxVirt 160 NFS 45,707
Eth Copier 79 VMM 3,098
Total 2,112 1,031 + 65,933

Table 2: Code-size breakdown of the point-of-sale ter-
minal demonstrator. Components in red font are not part
of the LionsOS TCB. The lwIP and NFS libraries ported
from other systems, the rest is written from scratch.
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as we can be assured that no critical signals are missed.

6.2.3 Driver VMs

Contrary to claims made by Chen et al. [2024] (which are
based on work by LeVasseur et al. [2004] that preceded
hardware virtualisation support), we find that reusing a
Linux driver in a virtual machine is an easy way to gain
access to a device. The main challenges are platform ini-
tialisation, and avoiding excessive resource consumption
at runtime.

Effort During the development process, the VM image
can include standard Linux development and debugging
tools, supporting rapid development of the UIO driver,
typically within a few days. Once built, that UIO driver
will work for any device of the class it has been built for.

The resulting engineering effort per device-class is
small (a few weeks). The main disadvantage (apart from
the relatively large size of an entire VM for a single
driver) is increased latency in accessing the device.

Limiting resource usage RAM usage can be limited
by carefully configuring kernel and userspace to use only
what is needed (see Table 3). The size differences be-
tween the unoptimised GPU and the optimised audio and
block device VMs show the order-of-magnitude gains
possible with a bit of effort. The resulting memory foot-
prints are small given today’s memory sizes. However,
complex SoCs may contain hundreds of devices, so when
using a separate VM for each driver, the space cost will
add up. We can amortise this cost over multiple devices
by supporting multiple drivers from a single VM, at the
expense of reduced isolation between drivers – likely a
sensible approach for the myriad of simple devices on a
complex chip.

Platform initialisation Most devices need various
platform registers to be set appropriately, to set up clocks
for the device, and connections to the outside world
(pins). We use native PinMux and clock drivers to set
up the platform to enable all devices in the device tree.
The driver VM traps accesses to the PinMux and clock
registers, discards writes, and passes the actual values in
the registers to the native drivers, which provide an in-
terface for querying register values. For debugging, the
native drivers support printing the values passed to them.

Driver Kernel RAM disk Runtime
GPU 33 MiB 6.4 MiB 128 MiB
Audio 3 MiB 2.4 MiB 18 MiB
Block 3 MiB 48 KiB 12 MiB

Table 3: Sizes of driver VMs (GPU is not optimised).
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Figure 5: LionsOS vs Linux performance on i.MX8MQ
UDP echo benchmark, single core. Solid lines are
throughput, dashed lines CPU utilisation

Some devices require changing PinMux or clock set-
tings at run time. For example Odroid C4 uses a pin ei-
ther as a clock output, or as a GPIO, while upgrading
an SDHC card from its initial low-speed to a high-speed
state. Supporting such dynamic setting is future work.

6.3 Performance
6.3.1 Networking

To measure networking performance, we configure the
evaluation system (LionsOS or Linux) with an echo
client, which receives packets from the network and im-
mediately sends them back. The evaluation system also
measures CPU load. For LionsOS we use the lwIP pro-
tocol stack as a library, linked against the client, and an
RxCopy.

We use an external load-generator machine, connected
to the evaluation platform via a switch. The load gener-
ator runs ipbench [Wienand and Macpherson, 2004] to
apply a varying load of UDP traffic and measures the
achieved throughput, i.e. the bandwidth received back
from the evaluation system. ipbench also measures
round-trip time (RTT).

We compare against Linux Debian 6.6.15-2 (2024-02-
04) running the standard in-kernel IP stack.

Figure 5 shows the result on the Arm platform, where
everything is pinned to a single core. The LionsOS sys-
tem has no problem keeping up with the load, up to the
capacity of the 1 Gb/s NIC, while Linux plateaus at just
under 600 Mb/s throughput. Looking at the CPU load we
see the reason: Linux maxes out the core at an applied
load of 600 Mb/s, while LionsOS achieves the full Gb/s
throughput with about 10% CPU capacity left spare. In
other words, LionsOS uses just over half the CPU of
Linux for handling the same load.

We also run this benchmark on Genode 24.11 [Feske,
2015], using the ”hw” base platform, which runs bare
metal without a microkernel underneath. We configure
Genode with three components: the echo server (using
lwIP), the uplink component (similar to our Virts), and
the NIC driver, which is transplanted from Linux 6.6.47.
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Figure 6: LionsOS vs Linux performance on i.MX8MQ
UDP echo benchmark, SMP.

We take all directly from the Genode source tree, com-
pose into a single system with a custom run script based
on the mnt pocket stmmac nic example.

The Genode throughput is the blue line in Figure 5.
It reaches a maximum of about 100 Mb/s throughput,
where it maxes out the CPU, and then collapses at
300 Mb/s applied load. Given this disappointing re-
sult, we also run netperf benchmarks on the netperf lwip
example provided by Genode. The TCP STREAM
and TCP MAERTS benchmarks, which measure uni-
directional TCP performance, achieve around 250Mb/s
and 230Mb/s respectively, still far below throughputs
achieved by either Linux or LionsOS.

Figure 6 shows multicore results on Arm. The story is
similar to unicore: Linux fails to handle the full load (but
only uses 1.4 cores at maximum load) while LionsOS
handles the full load with just over 1.0 cores. CPU load
is higher than on unicore as cross-core signalling is more
expensive than intra-core.

We perform the comparison to Linux on the x86 plat-
form as well, Figure 7 shows unicore results. LionsOS
handles the traffic up to an applied load of about 6 Gb/s
despite almost maxing out the CPU at a load of 4 Gb/s,
after which it can no longer keep up. However, through-
put still increases, maxing out at about 7 Gb/s. The con-
tinued increase in throughput results from natural batch-
ing: the driver finds an increasing number of packets to
process per IRQ.

In contrast, Linux, while similarly maxing out the
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Figure 7: LionsOS vs Linux performance on x86 64
UDP echo benchmark, single core.
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Figure 8: Single core median round-trip times on x86 64
for LionsOS and Linux, bars show observed range.
Dashed lines represent the CPU cost per unit of data.

CPU at around 4 Gb/s, shows a performance collapse at
increasing load, dropping from a maximum throughput
of 3.5 Gb/a to less than 2 Gb/s at maximum applied load.

Figure 8 compares round-trip times for the two sys-
tems. LionsOS RTT is consistently low (below 200 µs)
until it increases sharply when the load exceeds 6 Gb/s.
In contrast, Linux’ RTT is consistently much higher,
around 1000 µs across the range. Looking at the CPU
cycles per KiB processed, LionsOS and Linux start out
the same but then diverge, as LionsOS per-packet pro-
cessing cost drops (due to batching) with increasing load,
while Linux’ cost increases.

As can be see from Figure 9 LionsOS can achieve
full network bandwidth using two cores, whereas Linux
achieves only 4Gb/s (but avoids a performance collapse).

IPC cost We now perform an experiment to investi-
gate the impact of the cost of microkernel IPC oper-
ations. Mi et al. [2019] compare IPC costs between
seL4, Fiasco.OC and Google’s Zircon microkernel on
an x86 platform. They find intra-core fastpath round-
trip IPC latencies for the three kernels to be 986, 2717
and 8157 cycles respectively. So we simulate those ker-
nels by adding (2717 − 986)/2 = 865 (”Fiasco”) and
(8157− 986)/2 = 3585 (“Zircon”) respectively to each
seL4 system call (by executing a tight loop while moni-
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Figure 9: LionsOS vs Linux performance on x86 64
UDP echo benchmark, SMP.
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Figure 10: Single core throughput and CPU utilisation on
x86 64 for seL4-based compared with simulated Fiasco-
and Zircon-basedLionsOS.

toring the cycle counter). We do not claim that this is in
any way precise, but it should give a rough estimate of
how the same setup will perform on those kernels.

Figure 10 shows the results. We see that the seL4-
based LionsOS has lower CPU usage and achieves higher
throughput than the Fiasco simulation. Simulated Zircon
only achieves about 2/3 of the seL4 throughput.

Virtualiser policy Figure 11 shows an experiment
with three clients, to which the TxVirt assigns different
policies (high, medium, low). We vary the load on the
medium-priority client and impose no load on the oth-
ers, other than pinging. The graph shows ping latencies
of the three clients as a function of load on the medium-
priority client. The priorities are reflected in the ping
times being fastest on the high-priority, and slowest on
the low-priority client.

Dynamic policy swap We investigate swapping poli-
cies at run time. To demonstrate this we configure a sys-
tem with a TxVirt that monitors bandwidth, plus a Swap-
per that can reload the TxVirt with a different executable,
a bandwidth limiter. When a preset throughput thresh-
old is exceeded, the Virt signals the Swapper, which the
loads the new program into the Virt. (This setup uses
experimental Microkit features.)
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Figure 11: Ping latencies on system with three prioritised
clients as a function of load on the medium-priority client
on Arm.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 20

 40

 60

 80

 100

Client 0
Client 1
CPU

T
hr
ou
gh
pu
t (
G
b/
s)

C
P
U

 
U
ti
li
sa
ti
on

 
(%
)

Applied Load (Gb/s)

Figure 12: Two client system demonstrating virtualiser
swapping and throughput limiting.

Figure 12 shows the system running on the Arm plat-
form. Client 0 has a threshold of 500 Mb/s, and is throt-
tled to 500 Mb/s. Client 1 has a threshold of 200 Mb/s
and also throttled to 200 Mb/s. The swap happens at
the point where the clients reach 200 Mb/s. The graph
clearly shows the bandwidth limitation working as in-
tended. We measure the time to perform the switch to be
17 µs.

6.3.2 Block device

We compare our block device driver and virtualiser with
raw reads from Linux on a Samsung SDXC card, see Fig-
ure 13. Performance is essentially identical on the two
platforms, and limited by the card’s performance. Linux
does a slightly better job with small block sizes on a ran-
dom read workload, due to LionsOS presently handling
the device sub-optimally. However, LionsOS per-block
processing cost is vastly lower than that of Linux.

7 Conclusions

To summarise our experience with building and evaluat-
ing LionsOS:

• It is possible to build an OS based on strict separa-
tion of concerns, without sacrificing performance.
In fact, LionsOS significantly outperforms Linux
(and by implication any other modular OSes for
which performance data are available).
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Figure 13: Random read bandwidth on LionsOS and
Linux.
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• Simplicity wins – it more than compensates for the
high context-switch rates resulting from modularity.

• The simplicity of design and implementation makes
us confident that the verification aim is achiev-
able. The from-scratch implemented components
that make up the system’s TCB are all far simpler
than other systems verified with automated provers,
and similar to the SMT-verified the Microkit.

• The adaptability aim also seems in reach: use-
case specific policy modules are simple and easy to
swap. Good tooling will be required to help devel-
opers design and tailor a system for their use case.

• All this is achieved without changing a single line
of code in seL4. In particular, we see no need for
shortcuts and compromises such as migrating criti-
cal functionality into the kernel, or co-locating ser-
vices, as Chen et al. [2024] found necessary.
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