% T N A
\/
N Y X

Building Trustworthy Systems on v'

selL4 v

lhor Kuz
seL4 Summit: 25 September 2019

www.data6l.csiro.au

Overview

What is a Trustworthy System?

What does sel4 provide?
- sel4 kernel

- Other sel4 platform tools

How to build a Trustworthy System
- Steps to trustworthiness

Example

2 | Building Trustworthy Systems on sel4 | lhor Kuz

What is a Trustworthy System?

A system where the the Trusted Computing Base is
worthy of the trust put into it

* Trusted Computing Base (TCB)
- Parts of system that must be trusted to maintain safety and security properties
- |f TCB fails then safety and security of the system can be compromised
- Consists of trusted (critical) components

* Trustworthiness = Confidence that components:
- Do what they are supposed to do

- Cannot be compromised or subverted
- Will not fail

* Assurance

- What assurance do you have that system is trustworthy?
- Ideal: have high-assurance that all trusted components are trustworthy

3 | Building Trustworthy Systems on sel4 | Ihor Kuz

IANININANSNS 2N NS IANINIONNSN N NS VNSNS AN NN SN NSNS

| . I .. I . | L I || I

rd
I DATA
b1
N7~

5

Building Trustworthy Systems on selL4 | Ihor Kuz

selL4 Kernel
Functional correctness & I AN IIAS ;

- The implementation does exactly what the specification says
* No more, no less
- Ccode, Binary

Security properties
- Confidentiality

- Integrity

- Availability

WCET

- Research quality

Restrictions
Assumptions (including hardware model and correctness)
Kernel init
Platforms and features
Correct user-level setup

% | DATAI

6 | Building Trustworthy Systems on sel4 | Ihor Kuz

Other sel4 Platform Tools

CapDL 4
- User-level initialisation »
- Formally verified (in progress) » 4

- Component platform
- Verified (in progress) CAmkKES to CapDL mapping —

* CapDL has same security (data flow) properties as componentised system model o, -
- Verified glue code (in progress) |

{i

Cogent programming language (in progress) Y ———
- Type system, proof generation Eﬂ__ ! o

CakeML programming language support (in progress)
- Verified compiler

Rust programming language support
- Type system, memory safety

7 | Building Trustworthy Systems on sel4 | Ihor Kuz

What (useful) Guarantees do we get?

Integrity
- Requires correct user-level setup

Confidentiality
- Basic confidentiality (others can’t read your memory)

- Non-interference (specific setup: domain scheduler, strict partitioning)
- Time protection (in progress)

No unintended data flows
- CAmKES architecture correctly implemented

Kernel protections can’t be bypassed
- No bugs (in verified part & assumptions)
- No kernel vulnerabilities to exploit to bypass Integrity, confidentiality guarantees

8 | Building Trustworthy Systems on sel4 | Ihor Kuz

rd
I DATA
b1
N7~

Steps to Trustworthiness

1. Determine Safety and/or Security Requirements
2. Architect
3. Implement
4. Validate and Verify
5. Repeat
6. Profit!

10 | Building Trustworthy Systems on sel4 | Ihor Kuz

1. Determining Safety Requirements

Incorect Insulin
dose administered

* Functional Safety
- Functions required for system safety (to mitigate risks and hazards)
- Must have correct execution and behaviour

* |ldentify Hazards
- Hazard analysis
- Fault Trees

* Determine safety-critical functions
- To control hazards
- Address failure modes (hardware, software, human, system)
- Additional components in the system
- Functional path requirements Ngoitm | | At | | Aot | | At
- Functionality and sub-system boundaries

11 | Building Trustworthy Systems on selL4 | Ihor Kuz

1. Determining Security Requirements

PSS feasible for —mM8M8M8MH ——M (Successful)

Threat X /'/_-—v Attack
launches —
avers

interacts /
with
interacts with /
L~
N .

Threat modeling
|dentify threats

xploits
- Bad things that can happen to assets e e
] .]] dlsoo;irable *
PY Posesses
Discover vulnerabilities and exploits ,\ ;
e . Defect . P
- Vulnerability: weakness in system or code (Bug Fiaw) [+ > | Vlnerabiity | — s
- Exploit: way to take advantage of vulnerability PR S “Result
(exploitation) comprised of
| \’\ steps, each a
* Develop attacks T S /
M - + ac al
- Realisation of a threat susiress | soouty | [oo et
jective olicy

. of T
- Ap p Iy eXp I OItS involv;ngan v::ﬂﬁjlgzs

v 1

Business

“Shall not” requirements -
- Ensure that attacks are not possible I S

e
@
N~

12 | Building Trustworthy Systems on selL4 | Ihor Kuz

\. F .
-1 pIebAutonomous UAV

.
g 2

Example: Autonomous UAV

Web Browser

Video Stream

GPS

bi/

GCS

Config
Computer

Al

Autonomy System

4 N\
" video ! flight ! flight
_Streamer i planner . _controller
! camera E: SLAM i: Sensors E
E GCS E E GPS i E web server E

Linux

_ J

T CPU || Serial || WiFi || sensors
Storage

RAM| | Camera | | GPS | | GCS

Flight
Controller

SR

Flight

Con-

troller
+

RTOS

—

CPU

RAM

14 | Building Trustworthy Systems on selL4 | Ihor Kuz

% | DATAI

Example: Threat Model: Vulnerabilities/Exploits

Communication:
- Vulnerabilities: plain-text, poor authentication, poor encryption, poor resource management
- Exploits: sniff messages, man-in-the-middle, spoof messages, replay messages , DoS

Data:
- Vulnerabilities: plain-text, poor encryption, poor integrity controls, poor isolation
- Exploits: access data (read/write), bypass authentication/authorisation

* Code
- Vulnerabilities: poor integrity controls, poor isolation
- Exploits: load malicious code, modify code, read code

General
- Vulnerabilities: code bugs, poor authentication, poor authorisation
- Exploits: access data, modify control flow, run arbitrary code, crash, bypass authentication/

authorisation
% I OATA I

15 | Building Trustworthy Systems on sel4 | Ihor Kuz

Example: Threat Model: Some Attacks

 Steal Vehicle
- exploit vulnerability in web server to run arbitrary code on web server,
- exploit vulnerability in OS to run code in privileged mode,
- modify code to cause the vehicle to fly to incorrect location,
- wait for it there, then take vehicle.

 Steal collected data
- exploit vulnerability in GCS component by sending malicious RF communication
- causing it to run arbitrary code in the GCS component
- exploit vulnerability to elevate privilege to root,
- run code to read collected mission data,
- send it out over WiFi to third party

 Steal encryption keys
- modify 3rd party library used in GPS component to include specific attack code,
- exploit vulnerability to access storage at elevated privilege level,
- read keys from storage,
- insert them into web server content files,
- monitor web server and read keys from web server when they appear.

% | DATAI

16 | Building Trustworthy Systems on sel4 | Ihor Kuz

2. Architecting: Principles

Minimal TCB
- Minimise number of trusted components
- Minimise size of trusted components

Minimise attack surface
- Minimise (superfluous) functionality

Least privilege
- Let components access only what they need

Separation of Duties

Defense in depth
- Number of exploits needed to reach a goal

* Auditing

17 | Building Trustworthy Systems on sel4 | Ihor Kuz

2. Architecting: Patterns

Partition data
- Based on who accesses it (e.g. not a single file-system)

Split stacks
- Horizontal (e.g. FS vs storage, network stack vs ethernet)

Split data flows
- Vertical (e.g. separate network streams)

Encrypt data
- Atrest (e.g. collected data)
- In motion (e.g. telemetry data sent to ground station)

Isolate Cryptography

- Isolated component storing and accessing keys

18 | Building Trustworthy Systems on sel4 | Ihor Kuz

2. Architecting: Mechanisms

* |Isolation
- Decompose system into components
- Use sel4 isolation to protect components from each other
- Critical vs non-critical components

* Filter
- Sanitise inputs and outputs

* Monitor
- Monitor component outputs
- Corrective action when there’s a problem

* Static vs dynamic systems
- We know how to architect static systems to provide isolation guarantees
- Dynamic systems are still “Research in progress”

19 | Building Trustworthy Systems on sel4 | Ihor Kuz

3 Implementing: Cyber Retrofit

Untrusted |)

()

Mission Manager &
Ground Station Link

Camera
(Linux VM)

Net

Untrusted

-
q
=
n
-
o
o

Mission
X Manager Camera
'i & Ground & Camera

Station WiFi Network [Mission &
WiFi

Link Stack Manager
(Native)“(LinuxVM) (Linux VM) [t (Native) Bl (| inux vMm)

Virtual Machine Monitor (VMM)

i &

l
WiFi & |

First put all of the existing software
inside a VM running on sel4
2
No security benefit yet,
simply showing that selL4 runs on
the target platform and that all the
software can run virtualised

20 | Building Trustworthy Systems on sel4 | Ihor Kuz

i Stack

Then start pulling some trusted Full security architecture, with all trusted
components out of the VM to run components running as a sel4
natively on sel4 components
4 4
Some security benefit: Important security benefit:
compromise in VM cannot propagate All components run isolated in a
to trusted component container, only the VM is still vulnerable

% | DATA
\/

3. Implementing: Harden Components

* Good Programming
- Power of 10
- Secure coding practices

* Tools to find weaknesses
- Static analysis
- Dynamic analysis

* Good Programming Languages
- Rust, Haskell, etc.

* Verification
- Manual

- Semi-Automated
- Automated

21 | Building Trustworthy Systems on sel4 | Ihor Kuz

4. Validating and Verifying

 Attack and fault analysis (‘threat modeling’, attack trees, fault trees)
* Testing (including Fuzzing)
* Software assessment/auditing

* Formal verification of components
- Theorem prover
- Model checking
- Generated Proofs (e.g. CakeML, CAmMKES)

* Formal verification of architecture
- Architecture level Properties
- Architecture implementation
- Infoflow

* Red team

e
G

N~

22 | Building Trustworthy Systems on sel4 | lhor Kuz

Autonomous UAV: More Secure Architecture

Autonomy System

((fiIter (fllter)[flight J(filter)

controller

|
[GCS [] 1non|tor) [sensors M camera]
o VM
fllght video web
planner SLAM]I stream 1[server]

£ ~ N/ N
FS [FS mission TCP/IP
[non crltlcal L d%&yptogmphy}\/smck)

[storage J [FS crypto]/ i WiFi driver)
| driver keys N /
selL4
. /)

| Storage j CPU ||RAM || Camera || GPS || WiFi | | GCS | | Serial || Sensors

24 | Building Trustworthy Systems on sel4 | Ihor Kuz

Threat Model: Example Attacks

* Steal Vehicle

exploit vulnerability in web server to run arbitrary code on web server,
exploit vulnerability in OS to run code in privileged mode,

modify code to cause the vehicle to fly to incorrect location,

wait for it there, then take vehicle.

* Steal collected data

exploit vulnerability in GCS component by sending malicious RF communication
causing it to run arbitrary code in the GCS component,

exploit vulnerability to elevate privilege to root,

run code to read collected mission data,

send it out over WiFi to third party

 Steal encryption keys

modify 3rd party library used in GPS component to include specific attack code,
exploit vulnerability to access storage at elevated privilege level,

read keys from storage,

insert them into web server content files,

monitor web server and read keys from web server when they appear.

25 | Building Trustworthy Systems on sel4 | Ihor Kuz

% | DATAI

Summary

* sel4 is not magic security fairy dust!

1. Requirements: Understand what you need
Architect: Take advantage of sel4’s isolation properties

3. Implement:
- Cyber Retrofit
- Harden critical components (verification!)

4. Verify and Validate: Make sure you got it right
5. Repeat

* Example: Autonomous UAV

e
G

N~

26 | Building Trustworthy Systems on sel4 | Ihor Kuz

