
Guarded Page Tables on Mips R4600 
Or 

An Exercise in Architecture-Dependent Micro Optimization 

Jochen Liedtke 

GMD - -  German National Research 
Center for Information Technology * 

jochen.liedtke@gmd.de 

K e v i n  E l p h i n s t o n e  

School of Computer  Science 
University of New South Wales t 

kevine@vast.unsw.edu.au 

A b s t r a c t  

Guarded Page Tables implement huge sparsely oc- 
cupied address spaces efficiently and have the ad- 
vantages of multi-level tables (tree structure, hier- 
archy, sharing). We present an implementation of 
guarded page tables on the R4600 processor. The 
paper describes both the architecture-dependent 
design process of the algorithms and the resulting 
tool box. 

1 R a t i o n a l e  

This work was originated as part of the Mungi [2] 
project at UNSW, which aims to build an object- 
oriented single address space operating system. 
Since it makes heavy use of a sparsely-occupied ad- 
dress space, the VM system must be targeted to 
support sparsity efficiently. We selected the Guar- 
ded Page Table mechanism (see section 2) which 
combines the advantages of multi-level and inver- 
ted page tables. 

The critical point was whether the G P T  mecha- 
nism could be implemented efficiently on the R4600 
processor. Therefore, we developed R4600-specific 
G P T  parsing algorithms (section 3) and comple- 
mented them with a second-level software TLB (sec- 
tion 5). How to best combine the elements, depends 
on both the concrete memory system (cache and 
memory timing) and the TLB-miss characteristics 
of the OS and applications. Therefore, we include a 
detailed performance discussion and make the soft- 
ware available as a tool box. 

*GMD SET-RS, 53754 Sankt Augustin, Germany 
tSydney 2052, NSW, Australia 

The 

1. 

. 

. 

purpose of this paper is threefold: 

It offers a tool box for experimenting with 
Guarded Page Tables on the R4600 processor. 

It can be used as a guide for implementing 
Guarded Page Tables on other processors that 
support software-controlled TLBs. 

Independent of the concrete problem, sec- 
tion 3 can serve as an example of architecture- 
dependent micro optimization. An interesting 
result is that  about 2/3 of the optimization pro- 
cess - though architecture-dependent - can be 
made in terms of a high-level language and are 
based on algorithmic and data structure opti- 
mizations. The example shows that  substantial 
performance gains (factors of 2.5 or more) are 
achievable by combining this method with spe- 
cific assembler-level optimizations where gene- 
ral automatic code optimization techniques do 
not help. 

2 G u a r d e d  P a g e  T a b l e s  

Guarded Page Tables have been described in [6, 7]. 
They combine the advantages of tree-structured 
multi-level page tables and hashed page tables: un- 
limited sparsity (2 page table entries per mapped 
page are always sufficient), tree structure (subtree 
sharing, hierarchical operations) and multiple page 
sizes. These properties are described more detailed 
in [5, 8]. Here we give only a short sketch of the 
basic mechanism. 

The main problem with multilevel page tables is 
sparsity: we need huge amounts of page table ent- 
ries for non-mapped pages. Look at the following 



example where the mapping of page 11 10 11 00 in a 
sparsely occupied address space is shown. (For de- 
monstrat ion purposes we use very small addresses 
and small page tables. Nil pointers are marked by 
".".) The second- and third-level page table are ex- 
tremely sparse page tables: each contains one single 
non-nil entry. Consequently, there is only one valid 
path  through these two tables: when the leftmost 
two bits are "11", the subsequent address bits must 
be "10 11"; all other addresses lead to page faults. 
As shown in figure 1, we can omit  the two page ta- 

v = 11 1 O l l 0 0 x x x  

.... --, 
10  11  ? 

, . , . ,  , . i  

. . . . . . . .  i . . . .  
['::1- i"::E :? 

r-T- '-]--~ 
/ 

I daJta paKe [ 

Figure 1: Guarded Page Tables. 

bles and skip the associated translation steps. Whe- 
never entry 3 of the top-level page table is reached, 
we have to check whether "10 11" is a prefix of the 
remaining address. If so, this prefix can be stripped 
off, and the translation process can directly conti- 
nue at the level-4 page table. 

Therefore, each entry is augmented with a bit 
string g of variable length, which is referred to as a 
guard. This is the key idea of guarded page tables. 

The translation process works as follows: first, a 
page table entry is selected by the highest part  of 
the virtual address upon each transformation step 
in the same way as in the conventional multi-level 
page table method. The selected entry however con- 
tains not only a pointer (and perhaps an access at- 
tribute) but also the guard g. If g is a prefix of 
the remaining virtual address, the translation pro- 
cess either continues with the remaining postfix or 
terminates with the postfix as page offset. As an 
example, figure 2 presents the transformation of 20 
address bits by 3 page tables. Note that  the length 
of the guards may vary from entry to entry. Further- 
more, page table sizes can be mixed; all powers of 2 
are admissible. The same holds for data  pages, i.e., 

v=011100101100101100111 I ° l l  1 I 

/ 
v=1ofo lo1100111  I oo I ol I 1~1 11 I 

\ 
~"=11oo111 I o I 1~1 

\ 
of f se t  = 0111 I 

9 =IIOUIOI 

9 =0101 

# = 0  

d a t a  p a g e  ] 

Figure 2: Guarded Page Table Tree 

a mixture of 2-, 4-, . . .  1024-, . . . en t ry  page tables 
and pages can be used. 

Guarded page tables contain conventional tables 
as a special case: if a guard has length zero, a 
translation step works exactly like in the conven- 
tional mechanism. However in all cases conventio- 
nally requiring a table with only one valid entry, 
a guard can be used instead. It  can even replace a 
sequence of such "single-entry" page tables. This 
saves both memory  capacity and transformation 
steps, i.e., guards act as a shortcut. 

3 G P T  P a r s e r  

At first, we describe a G P T  translation step in gene- 
ral, independent of concrete hardware (see figure 3). 
Here, v is the part  of the original virtual address 
that  is still subject to translation, and the pair (p, s) 
determines the page table (p: physical address, s: 
log 2 of table size) that  has to be used for the cur- 
rent translation step. The result of this step is either 
a new page table ( / ,  s') and a postfix v' of v, or the 
data page ( / ,  J )  and offset v '. 

The translations step starts by extracting u, the 
uppermost  s bits of v. u is used for indexing the 
page table. The addressed entry specifies a guard g 
of variable size, i.e. possibly empty, which is checked 
against the remaining bits of the virtual address 
(w = g). When equal, the remaining v ~ is either 
used for the next level translation, or as the offset 
part.  This operates as a shortcut, since not only u, 
but both u and w are stripped off the virtual address 
in one step; no table is necessary to decode w. 

5 



Note that the width of u, (determined by the page 
table size), may vary from step to step and that the 
size of w may differ from entry to entry. 

l 

P P I T  I ~ 

Figure 3: G u a r d e d  T r a n s l a t i o n  S t e p  

In the following parts, we use Ixl to denote the 
bit length of a flexible bit string x. For improved 
clarity, we always use x' for an item that belongs to 
next translation step (i.e., refers to the next lower 
level page table) and x for an item belonging to the 
current level. 

Assuming at first 32-byte page table entries (we 
hope to later reduce this to 16 bytes), one CIPT 
translation step is: 

u := v > (Ivl - s)  ; 
g := [p + 32u].guard ; 
i f g  = ( ( v > > ( i v l - s - i g l ) ) A N D ( 2  I g l - 1 )  

t h e n  v ' : = v A N D 2 M - " - M - 1  ; 
s '  := [p + 32u].sizd ; 
p' := [p + 32u].table' ; 

e lse  page_fault 
f t .  

This algorithm cannot be implemented 'as is', be- 
cause the R4600 processor does not support flexible 
bit strings as a basic data type. Therefore, we have 
to hold Ivl and Igl in additional variables Vlen and 

g l e n :  

u := v >> (vlen -- S) ; 
g := [p + 32u].guard ; 
gze~ := [P + 32u].guardAen ; 
i f g  = ( v > > ( v z e n - s - g l e , ~ ) )  AND (2 g ' ° " - l )  

t h e n  Vle n : =  V l e n  - -  S - -  g l e n  ; 

V ~ : = v A N D 2  " ' ° " - 1 ;  
s' := [p + 32u].size' ; 
pl := [p + 32u].table I ; 

else page_fault 
f t .  

After eliminating common subexpressions, this al- 
gorithm requires 17 arithmetic and load operations. 

3 . 1  F r o m  1 7  T o  1 0  O p e r a t i o n s  

Note that  although v is an input variable of the 
translation process, the length Iv1 is a constant 
which is determined by the depth of the table in 
the G P T  tree, Furthermore, the table size s and 
the guard length Igl are fixed per page table entry. 
So the values 

S 0 ~ V i e  n - -  S 

81 ~ Vle n - -  S - -  g l e n  

g r n a s k  : 2 gz=" -- 1 

meaning 

$O 
e% * 

i 

V I : 

V I 

i 
S O 

to'i ' I v,, i 
v 
! 

$ 1  

can be computed when constructing a G P T  entry 
and can be stored per entry. Note that  we have to 
store the actual level's sz but the n e x t  l e v e l ' s  s~o in 
a page table entry: 

],guard ] Sl I s~ I table' I 

Fortunately, s~ can be as easily determined as so, 
a s  Slo - -  Vle  n - s '  = V l e n  - -  S - -  g l e n  -- S' = Sl -- st. The 
improved algorithm 



u := v >> so ; 
g := [p + 32u] .guard ; 
gm~sk := ~v + 32u].grna,k ; 
sl := ~ +  32u].sl ; 
i f g  = (v >> sl) AND g,~a~: 

t h e n  v ' : - - v A N D  2 s ~ - l ;  
s~ := [iv + 32u].s'o ; 
p' :-- [p + 32u].table' ; 

e lse page_fault 
f t .  

requires only 14 ari thmetic/ load operations and no 
longer needs the variable vl~.  

The next optimization is based on the idea of ad- 
justing the guard bits in the G P T  entry variable 
and extending it by the number u of this entry 

[ 0 ] u l  ~ I 0 J 

so that XORing v by this field removes u and g in 
one step and avoids one shift and one add operation. 
More precisely, we store the ex tended  guard 

o = ( (u  << Igl) + g)  << (Ivl - ~ - Igl) 

in each page table entry instead of the guard g. The 
resulting algorithm 

u : = v > > s 0  ; 
G := [p + 32u].extended_guard ; 
sl := [p + 32u].sl ; 
i f  (v XOR G) >> Sl = 0 

t h e n  v ' : = v X O R G  ; 
4 := [; + 32~].4 ; 
p' := [iv + 32u].table ; 

else page_fault 
f t .  

requires only 10 ari thmetic/ load operations and 
avoids the per entry field grnask- 

Up to this point, we have looked at only one 
translation step. For a complete translation, a loop 
is required. To approximate an until-loop, we first 
move the then-part statements before the if state- 
ment. This is possible because these three state- 
ments do not destroy yet required data: 

u : = v  >>so ; 
G := [p + 32u].extended_guard ; 
4 := [p + a2u].s~ ; 
sl := [p + 32u].sl ; 
p' := [iv + 32u].table ; 
v' := v XOR G ; 
i f  v '  >> s l  ¢ 0 

t h e n  page_fault 
f t .  

Unifyingp' ,  v' and s~ wi thp ,  v and so we get a 
very simple loop: 

do  
u := v >> so ; 
G := ~v + 32u] .ex tended_guard  

so := [p + 32u] .s~ ; 
sl := [p + 32u].sl ; 
p := [iv + 32u].table ; 
v := v XOR G ; 

u n t i l v > > s l  :~ 0 o d ;  

The loop terminates when a page fault, i.e. a guard 
mismatch, is detected. Of course, the translation 
process must also terminate in the positive case, 
i.e. if the translation finishes without page fault. 
Adding a further termination condition to the loop 
would increase our costs per translation step. 

A better solution is to introduce a pseudo mis -  
ma tch  at leaf page table entries. We need an exten- 
ded guard G, which includes the matching guard 
g, which in all cases leads to a mismatch, i.e. 
(v XOR G) >> sl :~ 0. Now recall that the exten- 
ded guard of the u ~h entry of a page table always 
contains the index u. Therefore, we can achieve a 
pseudo mismatch by using an "incorrect" u for buil- 
ding the extended guard. G = ((fi << Ig[)+g) ~ sl 
with f i ¢  u always leads to a mismatch: 

v: I 0 l u l  ~ I v' I 

a : l  0 I ~ l  ~ I 0 J 

( . X O R a ) > s l : [  o I ¢ ° l  o I 

The loop terminates either due to detecting a page 
fault or a leaf entry. In the case of 

(v > sl)  << ( 6 4 -  Ig]) = 0 ,  



v':  I 

we have a pseudo mismatch, i.e. a successful trans- 
lation. For the mentioned check, we need a field 
holding the value 6 4 -  Igl. In leaf entries, the s~- 
field is free and can be used for this purpose. Then, 
(v >> sl)  << s~ differentiates between true mismatch 
and pseudo mismatch, if the current entry is a leaf 
entry. We have to check, whether a mismatch at 
an higher level entry (which does not hold 64 - Igl 
in its s~-field) is also classified as a true mismatch. 
Fortunately, (v >> sl)  << s~ evaluates always to non 
zero in this case, since s~ is always less than sl: 

81 

r 

v: I 0 I v, I 

0 I 'l I v" I 
! 

$0  

Concluding, the loop can be complemented by 

i f  (v >> sl) << so = 0 
t h e n  page_frame_addr : - -p  ; 

page_frame_size := sl 
else page_fault 

fi 

so that in the case of successful termination, s l  de- 
termines the size and p the physical address of the 
page. 

3.2 R4600 Implementation 

Before presenting a concrete implementation of 
G P T  parsing, a brief R4600 introduction is neces- 
sary. The R4600 is a member of the MIPS R4000 
family of processors which feature 64-bit integer and 
floating point operations. They have thirty-two ge- 
neral purpose 64-bit registers of which two are spe- 
cial. Register rO ignores writes and always returns 
zero when read. Register r31 is used to store the re- 
turn address of Jump And Link (JAL) instructions. 

The R4600 has a primary 16KB instruction cache 
and a 16KB data cache on chip. Both caches are 
two-way set associative, use a 32 byte line size, and 
FIFO replacement within a set. Secondary cache is 
external and optional. 

A four (64-bit) word write buffer is used to buf- 
fer writes to external memory arising from cache 
write-back, cache write-through, and uncached sto- 
res. This enables the processor to proceed in parallel 
while external memory is updated. 

The R4600 has a five stage pipeline which has 
a one cycle latency for computational instructions. 
Computational  instructions perform arithmetic, lo- 
gical, and shifting operations using register ope- 
rands or a register operand and a 16-bit signed im- 
mediate. 

Load instructions don't  allow the instruction im- 
mediately following, termed the load delay slot, to 
use the result of the load, thus giving a load la- 
tency of two cycles. Scheduling of instructions in 
the delay slot is desirable for increased throughput,  
though not strictly required, as the pipeline will slip 
one cycle in the case of a dependent instruction in 
the delay slot. 

All jump and branch instructions have a latency 
of 2 cycles. The instruction in the delay slot follo- 
wing the jump is executed while the target of the 
jump is being fetched. The exception being if a con- 
ditional branch likely instruction is not taken, in 
which case the delay slot instruction is nullified. 

3 . 3  F r o m  11 T o  8 I n s t r u c t i o n s  

For the R4600 implementation, four 64-bit registers 
are needed. We name them r l ,  r2, v and P. A first 
compilation of the algorithm leads to 11 instructions 
per translation step: 

do : 
srl 

sll 

add 

id 

Id 

xor 

ld 

ld 

srl 

bz 

rl,r2 sll 

bnz rl,pagelault 

r 2 , v , r 2  u :-- v>>s0 
r 2 . 5  32u 
P r2 p + 32u 
r l  [P] . ext_guard 
r2 [P] .sO 

v rl 

rl [P] .sl 

P [P] .table 

rl,v,rl v >> sl 
r l  ,do 

(v >> sl) << s~ 

v := v XOR G 

Note that  all load delay slots in this (and the follo- 
wing) versions are filled with useful operations, i.e. 
do not cost additional cycles. By using appropriate 
coding 1, the same holds for the branch delay slot. 

1 Use the bzl instructS.on which nullifies the immediately 
following instruction if the branch is not taken: 

8 



Further optimizating, we use the fact that  the 
R4600's minimal page size is 4K and the range of s~ 
and sl is always 0 . . .  63. Therefore 2 × 6 = 12 bits are 
sufficient for s~ and sl and since the 12 lowermost 
bits of G are never used, we combine these three 
fields in one 64-bit word: 

52 6 6 

The second 64-bit word is used for pointing to the 
next level table (or data  page). By this, we avoid 
load instructions and reduce the page table entry 
size to 16 bytes. The resulting code 

do: srl r2,v,r2 u := v>>s0  
sll r2,4 16u 
add P,r2 p + 16u 
l d  r l ,  [P] rl  := (C, s~, s l)  
Id p, [P] .table 
xor  2 v , r l  v := v XOR G 
srl r2,rl,6 r2:=s~ 

srl rl,v,rl v>>sl 
bz rl,do 

requires only 9 instructions per translation step. 
The instruction ' s l l  r 2 , 4 '  is somehow anoying, 

because it is only used for setting the 4 lowest bits 
to zero. Without  this requirement, we could have 
stored s~ - 4 instead of s~ in the s~-fields so that  
the previous s r l  instruction already includes the 
multiplication with 16. Indeed, it is not necessary 
that  the 4 lowest bits must be zero. It is sufficient 
that  the 4 lowest bits of p after the addition have a 
fixed value which does not depend on the value of 
the actual v. This can be achieved by 

xor p, r2 

instead of adding, provided that  the 4 lowest bits of 
p are always 1111. Therefore, we store p + 15 instead 

srl r2,v,r2 

do: sll r2,5 

bzl rl ,do 
s r l  r 2 , v , r 2  

2Note that  although 'xor v, r l '  destroys the 12 lowest bits 
of v (the 12 lowest bits of r l  contain s~ and sl) ,  it does not 
affect the algorithm, since these bits certainly belong to the 
o f f s e t  part of the virtual address and a r e  n o t  required for 
translation. 

o f p  in the table-fields and always use P - IS  instead 
of P for addressing a table or table entry. 

do : s r l  r 2 , v , r 2  r2 := v >> (so - 4) 
o r  P , r 2  p +  1 6 u +  15 

Id rl, [P-15] rl :=(G,s 'o-4,  sl) 
l d  P, [P-15] . t a b l e  
xor  v , r l  v : : v  XOR G 
srl r2,rl,6 r2 :----- s~ 
srl rl,v,rl v >>Sl 
bz rl, do 

The final code requires only 8 instructions per trans- 
lation step. 

3.4 Timing 

Since no instruction interlocks are effective in the al- 
gorithm, i.e. since all delay slots are filled with sen- 
seful instructions, for an n-step guarded page table 
walk, the single-issue R4600 processor needs 

8n . . .  ( 8 + p ) n  cycles, 

where p is the penalty of accessing a page table 
entry which actually is not in the pr imary data ca- 
che. If the table walking code is not in the instruc- 
tion cache, another 2p penalty cycles may occur. 

Since, within one address space, the R4600 sup- 
ports 40-bit addresses and the smallest page is 4K, 
no more than ( 4 0 -  12)/4 = 7 translation steps 
should be necessary [5] per translation. Recall that  
the required steps can vary from page to page. Less 
than 7 steps are required in very sparse or in conti- 
guous regions. It seems reasonable to expect 3 to / 
steps, depending on OS strategy and type of appli- 
cation. Assuming 4 cycles penalty for a cache miss, 
this corresponds to costs of [24. . .  36] (3 steps) up 
to [56. . .84] (7 steps) cycles per G P T  walk. 

4 R4600 Memory Manage- 
ment 

An introduction to R4600 memory  management  is 
needed before further presenting G P T  implementa- 
tion. The R4000 architecture has a 64-bit virtual 
address space, however the R4600 only implements 
a 1TB (40-bit) user mode virtual address space to- 
gether with a 64 GB physical address space. It  uses 



a joint translation lookaside buffer (JTLB) to trans- 
late instruction and data virtual memory references 
to physical memory references. 

The JTLB is a 48 entry fully associative memory. 
Each entry maps an even-odd pair of virtual pages 
to their corresponding physical addresses, giving a 
potential of 96 mapped virtual pages. Page size is 
per entry configurable from 4KB to 16MB in mul- 
tiples of 4. 

An 8 bit address space identifier (ASID) is as- 
sociated with each entry in the JTLB. The ASID 
is used together with the virtual address when 
checking for a match, thus allowing multiple ad- 
dress spaces in the JTLB simultaneously, which re- 
duces the need for JTLB flushing during context 
switching. 

The R4600 also contains a 2 entry instruction 
TLB (ITLB) and a 4 entry data TLB (DTLB), with 
each entry mapping a 4KB page. ITLB and DTLB 
misses are automatically refilled from the JTLB ma- 
king operation of the ITLB and DTLB transparent 
to users. 

The handling of JTLB misses is via a TLB Re- 
fill exception and a software routine to load a new 
entry into the JTLB. Other TLB related exceptions 
are handled by the processor general exception me- 
chanism, alleviating the TLB refill routine from de- 
termining the exception involved, allowing it to be 
optimized solely for refill. Refill software can over- 
write selected TLB entries or use a hardware pro- 
vided mechanism to overwrite a randomly selected 
entry. 

4 . 1  T L B  R e f i l l  i n  D e t a i l  

TLB refill has been measured contributing up to 
40% of total execution time[3] in some applications. 
While such high contributions are not normal, it is 
none the less important  to mininize TLB refill costs 
as much as possible. 

Before presenting or analyzing any TLB refill 
routines, the basic cost of taking a null exception 
(C~,¢p,) needs to be determined. This is the cost 
of taking an exception that  simply performs an ex- 
ception return ( e r e t )  instruction. An exception ge- 
nerating instruction causes execution to begin, at 
the appropriate exception vector, when it reaches 
the fifth stage of the pipeline[4]: cost 4 cycles. As- 
suming e r e t  has a delay slot similar to a branch or 

jump, it costs 2 cycles. Thus C~,cpt = 6 cycles. 

R e f i l l - - V i r t u a l  A r r a y  To serve as a reference, 
the best case TLB refill is presented. However be- 
fore presentation, four coprocessor 0 (CP0) registers 
need introducing. 

MIPS designers provide limited hardware support 
to speed up the software refill process via the Con- 
text or XContezt registers. The Context register is a 
32 bit version of the 64 bit XContext register, which 
is described below. 

The XContezt register illustrated in figure 4, con- 
tains an operating system setable Page Table Entry 
Base (PTEBase) field which is used to store the 
base of a page table array. Upon a TLB miss, the 
BadVPN2 field is set to the virtual page-pair num- 
ber that misses. For 4K pages, the register can sim- 
ply be used as the address of a page table entry pair 
to be loaded into the TLB. The format of page table 
entries are the same as EntryLo registers. 

[ PTEBase I R [ BadVPN2 [ 0 [ 
31 2 27 4 

Figure 4: XContext Register Format 

EntryLoO and EntryLol are identical registers 
used for reading and writing the physical page num- 
bers into and out of the TLB, including TLB mis- 
ses. EntryLo contains the physical frame number 
(PFN), cache coherency attributes (C), dirty bit 
(D), valid bit (V) and global bit (G) as illustrated 
in Figure 5. 

10 I IclDIvlol 
34 24 3 1 1 1 

Figure 5 :Ent ryLo0 and Ent ryLol  Register Format 

The best case TLB refill routine: 

10 



dmfcO kO, XContext 
nop 
ld kl, [kO] 
id kO,[kO+8] 
dmtcO k1,EntryLoO 
dmtcO kO,EntryLol 
nop 
tlbwr ; I cycle slip[~ 

Assuming the ideal situation: no cache misses and 
no second level TLB misses on the virtual array; the 
timing of the routine is 9 cycles. Hence the cost of 
the best case TLB refill (Cb~s~) is: 

Cbes¢ = Ce~cvt + 9 = 15 

Id P, [rl] .gpthase 

8 cycle G P T  loop 

srl rl, r2 
bnz rl, page_Tault 
ld rl, [P] 
id r2, [P+8] 

The timing of G P T  refill (Cgv,) where n is the num- 
ber of levels traversed in the page table is: 

R e f i l l - - S k e l e t o n  Before presenting more com- 
plicated refill routines, the following TLB refill ske- 
leton is factored out as it is common in all routines 
presented later. 

The skeleton loads the miss address from a CP0 
register and frees an extra register. After page ta- 
ble entries are loaded it: loads the page entries into 
EntryLo registers, writes the TLB, and restores the 
freed register. 

dmfcO kO, CPO_reg 

lui kl,Ox8000 
sd at, [kl]. save_offset 

dmtcO k1,EntryLoO 
dmtcO kO, EntryLol 
lui kl, Ox8000 
tlbwr ; 1 cycle slip 
id at, [kl] . save_offset 

The timing of the skeleton(Cskez) is 9 cycles. If extra 
registers are needed for page table lookup, it costs 
2 cycles per register (Cxreg). 

R e f i l l - - G P T  Firstly, G P T  translation is modi- 
fied slightly. Instead of translation terminating with 
P pointing to the physical address, it finishes with P 
pointing to and even-odd pair of page table entries 
suitable for direct loading into EntryLo. 

Using the skeleton above, with BadVAddr as the 
CP0_veg (which contains the address at which the 
TLB miss occured), the G P T  refill routine is: 

c p, = C~¢v, + C, kez + C~r~g + 5 + 8n 

= 6 + 9 + 2 + 5 + 8 n  

= 2 2 +  8n 

For the 3 level lookup Cgvt3 = 46 cycles, for a 7 
level lookup Cgpt7 = 78 cycles. 

Cach e  Effec ts  So far it has been assumed that all 
data and instructions are in cache. Instruction cache 
misses will have similar effects on all refill routines 
with the penalty being proportional to the length 
of the routine. However, data cache misses have the 
potential to show large differences between the two 
refill routines as the amount of data accessed vari¢~ 
markedly. 

Given a data cache penalty of: 6 cycles for the 
a single doubleword, plus 2 cycles for each extra 
double word, up to 12 cycles for an entire cache 
line3; data access can be expensive. 

The best case routine assuming cache misses is 
Cbest.,~ = Cb~,t + 8. For the G P T  routine Cgvt.~n = 
C g v t + 8 ( n + l ) + 6 .  Table 1 show the cost for the refill 
routines presented so far, assuming all data cache 
hits and then assuming all data cache misses. 

Refi l l  C o m p a r i s o n  Direct comparison between 
Cbe~ and Cgvt is fairly irrelevent as it does not take 

3 These numbers represent the pipeline cycles wasted while 
running minimum external bus cycles to a secondary cache. 
The actual miss penalty due to a cache refill my be lower 
due to parallelism between refill and instruction execution. 
or much higher if no second level cache exists. 

11 



Routine Cache Hit Cache Miss 
Cb,,t 15 23 
Cgp~3 46 84 
Cap,7 78 148 

Table 1: TLB refill routine cost (cycles). 

into account the frequency of TLB misses. In the 
extreme, it does not mat te r  how long refill takes 
if the TLB never misses. To facilitate a more reve- 
aling comparison, we use the metric of percentage of 
cycles due to tlb refill (%ttb) compared to total  cy- 
cles, which we aim to minimize. Assumming cycles 
due to TLB refill (Ctzb), and grouping other cycles 
(Co~h~) not related to TLB refill, 

Ctlb 
%tlb lOO cttb ~- Cother 

Given a miss rate per Coth~ (rmi~)  and TLB refill 
cost (C~,I~.): 

Ctlb : rrnissCotherCrefill 

%rib = 1 0 0  rmissCotherCrefill 
rmissCotherCre fill -47 Cother 

: i00 rrni~sCrefill 
rrniss(~'re/ill "q- i 

Figure 6 illustrates the TLB overhead associated 
with the six routines tabulated above, for various 
miss rates. 

For avoiding misunderstandings, we explicitly 
mention: 

• The miss rate we used is neither the TLB miss 
rate per memory  access nor per instruction. In- 
stead, we use the miss cost per cycle that  is not 
related to TLB miss. Cum grano salis, these 
are instruction execution and cache miss cycles. 
For illustration: assume an application with a 
TLB miss rate per L D / S T  instruction of 1% 
(which is high), on average one L D / S T  per 3 
instructions and 5% cache miss rate (8 cycles 
penalty).  Then one TLB miss occurs per 340 
cycles, i.e. our TLB miss rate r , ~ ,  is 0.003. 

100 

9O 

8O 

70  

6O 

5O 

40  

3O 

2 0  

10 

0 
0.0001 

' . . . . . . .  I . . . . . . . . . . . . . . .  ' [  

best  - -  . , .  j . ,  
bes t .m . . . .  ,. ,.:.- , 

gpt3 . . . . .  , ~:" " 
gpt7 ......... ,. .(.' , ,  

gpt3 .m 
. z." , 

/ ] : "  / / 

gp t7 .m . . . .  . ' .¢' , , "  , 
/ .(/ • / 

i Z.' , t 
/ Z:" / '  / 

• zY , t / z:"  ," s 
i v" , / 

. /  z:. ,z' / / 
/ z : "  / "  / 

.s #:d:'" o," ss/  

0.001 0.01 0.1 
TLB Miss Rate 

Figure 6: TLB overhead for TLB refill routines 

* We use the "best" mechanism for comparison 
only. Its TLB refill cost is a theoretical mini- 
mum.  In practice, higher-level page table mis- 
ses impose additional costs. Nagle et al. [10] 
report up to twofold increase even for tradi- 
tional (non-sparse) applications and operation 
systems. 

It  can be seen that  with miss rates less than 
0.0001, it is largely irrelevent which routine is cho- 
sen for TLB refill, as refill's contribution to overall 
runtime is negligible. 

In the case of high miss rates, for example 0.01, 
TLB overheads are significantly different. The best 
case routine overhead is expected to vary between 
13% and 19%, however G P T  overhead varies bet- 
ween 32% and 59%. Or to look at it differently, given 
a tolerable overhead of 10%, the best case routine 
can tolerate miss rates 2-10 times higher than G P T  
refill. 

Thus it appears G P T s  are unsuitable for TLB 
refill where it is expected that  TLB miss rates may 
be high, especially if cache miss costs are also high. 

5 T h e  S e c o n d  Leve l  T L B  

Ideally, a robust mechanism is needed that  supports 
address space sparsity, fast lookup, hiearchical opt.- 
rations, and graceful performance degradation when 
faced with increasing TLB miss rates. A second le- 
vel TLB (like described in [1]) in combination with 

12 



GPTs should be the answer. The second level TLB 
(TLB2) is a software cache of page table entries used 
to refill the hardware TLB. 

5 .1  T L B 2  D e s i g n  I s s u e s  

5.1.1 T a g g e d  or  P e r - P r o c e s s  

The first design decision to be made is whether 
TLB2 should be a per-process cache or a global, ad- 
dress space tagged, cache. A per-process cache slows 
the context switch time as the cache base address 
needs to be changed, though this may be insignifi- 
cant when compared to other switching overheads. 

A single tagged cache is more space efficient. A 
per-process cache takes n times the space for n 
processes for the same potential per-process cache 
capacity. A single tagged cache will adapt to the 
workload, caching only active TLB entries, whereas 
a per-process cache may itself be entirely inactive. 

A single tagged cache is small enough to use un- 
mapped physical memory. A per-process cache is 
more suited to implementation in virtual memory 
as the number of processes is unknown and potenti- 
ally large. Virtual memory implementation requires 
handling of complex nested TLB misses which are 
avoided in the physical implementation. 

Flushing all cache entries associated with a phy- 
sical frame is simpler and faster with a single tagged 
cache, than with n per-process caches of similar size. 

For these reasons, we choose to is a single tagged 
cache for TLB2. 

5.1.2 Size 

Required performance dictates the size of TLB2, 
however the following factors make it desirable to 
keep TLB2 small. TLB2 uses unmapped physical 
memory which is a limited resource, though it is 
expected that TLB2 will be small enough effectively 
ignore this limitation. 

TLB2 flushing grows more expensive as size incre- 
ases. Flushing can be on a per physical page frame 
basis, or on a per address space tag basis. These 
events occur, for example, on page frame swapout 
and address space destruction respectively. These 
are expected to be infrequent operations when com- 
pared to TLB2 lookup, though they should be kept 
in mind when sizing TLB2. 

The R4600 has 16-bit immediates. This gives a 
16-bit mask operation or a load operation from a 
64KB address space, in a single instruction. Larger 
masks or load offsets require multiple instructions. 
This needs to be kept in mind as TLB2 lookup is 
time critical. The performance gained by having a 
large cache may be offset by the extra time taken 
to access it. 

5.1.3 Associativity 

High associativity is desirable in a cache to decrease 
the likelyhood of conflict misses. In a hardware ca- 
che implementation, n associativity requires n com- 
parisons in parallel to determine a hit. In software, 
n associativity requires n comparisons in sequence. 
Sequential comparisons need to be minimized as 
TLB2 lookup is time critical. The tradeoff between 
increased lookup time due to sequential compari- 
sons and decreased miss rate due to associativity 
needs to be carefully balanced. 

5.2 A Direc t -Mapped  TLB2 

Before describing a direct mapped TLB2, another 
CP0 register needs introducing. The EntryHi regi- 
ster is used to set the hardware lookup tag in a TLB 
entry when adding a new TLB entry or probing for 
an existing one. It contains a virtual page number 
of a page-pair (VPN2) and an associated address 
space identifier (ASID) as illustrated in Figure 7. 
EntryHi is set on TLB miss to a value appropriate 
for adding a new entry into the TLB. It also be s e t  

by the operating system in the case when adding a 
TLB entry not associated with a TLB exception is 
required. 

I RI LI VPN2 101ASIDI 
2 22 27 5 8 

Figure 7: EntryHi Register Format 

The structure of a TLB2 cache entry needs to 
contain the tag for matching with the EntryHi re- 
gister, and an even-odd pair of page table entries 
for loading into EntryLoO and EntryLol. A naive 
implementation would use three 64-bit words which 
makes indexing awkward. 

13 



The optimisition of this is to recognise the upper 
34 bits of the page table entries are always zero. This 
allows two 32-bit page table entries to be stored in a 
single 64-bit word, giving a block size of two 64-bit 
words which is easily indexed in TLB2. 

This optimisation costs nothing in terms of speed. 
The two 64-bit page table entries would be loaded 
using two "load double" instructions. The optimisti- 
zed 32-bit entries are loaded using two "load word" 
instructions which sign extend the values to 64-bit 
once loaded for free. By having two TLB2 blocks 
within a single 32 byte data  cache line instead of 
one, the compact  structure may indeed be faster as 
it reduces the chance of a data  cache miss on load. 

The refill routine to implement  a direct mapped  
TLB2 is: 

miss: 

sd kO, [at+TLB2] 
dmfcO kO, BadVAddr 

lui kl, OxSO00 

sd P, [kl] .save_P 

id P, [kl] .gpt_base 

sd r2, [kl] . save_r2 

8 cycle G P T  loop 

srl kl, r2 

bnz kl, page_T ault 

lw kl, [P] 

lw r2, [P+4] 

sw kl, [at+8+TLB2] 

sw r2, [at+12+TLB2] 

id P, [kl] . save_P 

Id r2, [kl] . save_r2 

Timing for miss routine is 14 + 8n. Complete ti- 
ming for reload that  misses TLB2, 36 + 8n. The 
same t iming assuming a cache miss on every load is 
56 + 16n. 

srl 
and 

add 

id 

hop 

bne 

lw 

lw 

at ,kO, 9 
OxfffO 

at, kl 

kl, [at +TLB2] 

kl,kO,miss 

kl, [at+8+TLB2] 

kO, [aZ+I2+TLB2] 

The t iming for a hit is C~cpt+C~ket+8 = 23 cy- 
cles. A miss is a little more complicated as it inclu- 
des a G P T  lookup, and replacing the missed TLB2 
entry (Cr~pz) • The cost is C~,cpt+C,k~l+7+Cgp,+ 
Cr~ W. The TLB2 miss routine is: 

G P T  level Cache hits Cache misses 
hit miss hit miss 

3 23 60 31 104 
7 23 92 31 168 

Table 2: Direct mapped  TLB2 costs 

Now, assuming TLB2 is sized such that  it has, on 
average, a 10% miss rate. The average t iming for the 
case of 3 level G P T  translation assuming data  cache 
hits is 0.9 * 23 + 0.1 * 60 = 26.7. The worst case ave- 
rage t iming assuming 7 level translation with cache 
misses is 0.9 * 31 + 0.1 * 168 = 44.7. 

With the assumption of 10% TLB2 miss rate, fi-. 
gure 8 shows the TLB overhead for: best case refill, 
3 level G P T  refill, TLB2 best case refill, TLB2 worst 
case refill, and 7 level G P T  refill with cache misses. 
It  can be seen that,  at worst, TLB2 refill is slightly 
faster than a 3 level G P T  refill; at best it has signi- 
ficantly lower overheads. 

14 



q) 

"E 

O 
rn 
I -  

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
0.0001 

. . . . . . . .  I . . . . . . . .  I . . . . . . . .  

best 
best.m . . . .  ...'/"~ 

/ "  , ' /  

TLB2+gpt7m ... , /  
:" , t  

, , / /  

.." , J  
: , ]  

.. , /  ., , ' t  

...." , . J  

0.001 0.01 0.1 
TLB Miss Rate 

Figure 8: Direct mapped  TLB2 overhead 

6 Concluding Remarks  

The presented software is available through the 
Wor ldWideWeb under  

ht tp :Hwww.vast .unsw.edu.au/Mungi /Mungi .html .  

A more detailed version of this paper  ( including 
a discussion of page access right and n-way TLB2s) 
is available as UNSW Technical  Report  [9]. 

[6] J. Liedtke. Address space sparsity and fine granula- 
rity. In 6th SIGOPS European Workshop, pages 78- 
81, Schlof~ Dagstuhl, Germany, September 1994. also in 
Operating Systems Review 29, 1 (Jan. 1995), 87-90. 

[7] J. Liedtke. Page table structures for fine-grain virtual 
memory. IEEE Technical Committee on Computer Ar- 
chitecture Newsletter, pages xx-xx, xx 1994. also publis- 
hed as Arbeitspapier der GMD No. 872, German Na- 
tional Research Center for Computer Science (GMD), 
Sankt Augustin, 1993. 

[8] J. Liedtke. Some theorems about restricted guarded 
page tables. Arbeitspapiere der GMD No. 834, Ger- 
man National Research Center for Computer Science 
(GMD), Sankt Augustin, 1994. 

[9] Jochen Liedtke and Kevin Elphinstone. Gpt on mips 
r4600. Technical Report UNSW-CSE-TR-9503, School 
of Computer Science and Engineering, University of 
New South Wales, 1995. 

[10] D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, 
and R. Brown. Design tradeoffs for software mana- 
ged TLBs. In 20th Annual International Symposium 
on Computer Architecture (ISCA), pages 27-38, San 
Diego, CA, May 1993. 

References 
[1] K. Bala, F. F. Kaashoek, and W. E. Weihl. Software pre- 

fetching and caching for translation lookaside buffers. In 
1st USENIX Symposium on Operating Systems Design 
and Implementation (OSDI), pages 243-254, Monterey, 
CA, November 1994. 

[2] G. Heiser, K. Elphinstone, S. Russell, and G. R. Hel- 
lestrand. A distributed single address-space operating 
system supporting persistence. SCS&E Report 9302, 
Univ. of New South Wales, School of Computer Science, 
Kensington, Australia, March 1993. 

[3] Jerry Huck and Jim Hays. Architectural Support for 
Translation Table Management in Large Address Space 
Machines. In Proceedings of the 20th International 
Symposium on Computer Architecture, May 1993. 

[4] Integrated Device Technology, Inc. IDT79R4600 
ORION Hardware User's Manual, October 1993. 

[5] J. Liedtke. Some theorems about guarded page tables. 
Arbeitspapiere der GMD No. 792, German National Re- 
search Center for Computer Science (GMD), Sankt Au- 
gustin, 1993. 

15 


