
Mixed-Criticality Scheduling and
Resource Sharing for High-Assurance

Operating Systems

Anna Lyons

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

School of Computer Science and Engineering

University of New South Wales

Sydney, Australia

September 2018





Abstract

Criticality of a software system refers to the severity of the impact of a failure. In
a high-criticality system, failure risks significant loss of life or damage to the environ-
ment. In a low-criticality system, failure may risk a downgrade in user-experience. As
criticality of a software system increases, so too does the cost and time to develop that
software: raising the criticality also raises the assurance level, with the highest levels
requiring extensive, expensive, independent certification.

For modern cyber-physical systems, including autonomous aircraft and other
vehicles, the traditional approach of isolating systems of different criticality by using
completely separate physical hardware, is no longer practical, being both restrictive
and inefficient. The result is mixed-criticality systems, where software applications
with different criticalities execute on the same hardware. Sufficient mechanisms are
required to ascertain that software in mixed-criticality systems is sufficiently isolated,
otherwise, all software on that hardware is promoted to the highest criticality level,
driving up costs to impractical levels. For mixed-criticality systems to be viable, both
spatial and temporal isolation are required.

Current aviation standards allow for mixed-criticality systems where temporal
and spatial resources are strictly and statically partitioned in time and space, allowing
some improvement over fully isolated hardware. However, further improvements are
not only possible, but required for future innovation in cyber-physical systems.

This thesis explores further operating systems mechanisms to allow for mixed-
criticality software to share resources in far less restrictive ways, opening further
possibilities in cyber-physical system design without sacrificing assurance properties.
Two key properties are required: first, time must be managed as a central resource
of the system, while allowing for overbooking with asymmetric protection without
increasing certification burdens. Second, components of different criticalities should
be able to safely share resources without suffering undue utilisation penalties.

We present a model for capability-controlled access to processing time without
incurring over-head related capacity loss or restricting user policy, including pro-
cessing time in shared resources. This is achieved by combining the idea of resource
reservations, from resource kernels, with the concept of resource overbooking, which
is central to policy freedom. The result is the core mechanisms of scheduling contexts,
scheduling context donation over IPC, and timeout exceptions which allow system
designers to designate their own resource allocation policies.

We follow with an implementation of the model in the seL4 microkernel, a high-
assurance, high-performance platform. Our final contribution is a thorough evaluation,
including microbenchmarks, whole system benchmarks, and isolation benchmarks.
The micro- and system benchmarks show that our implementation is low overhead,
while the user-level scheduling benchmark demonstrates policy freedom in terms of
scheduling is retained. Finally, our isolation benchmarks show that our processor
temporal isolation mechanisms are effective, even in the case of shared resources.
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1 Introduction

Criticality of a software system refers to the severity of the impact of a failure. In a high-

criticality system, failure risks significant loss of life or damage to the environment. In a

low-criticality system, failure may risk a downgrade in user-experience. As criticality of a

software system increases, so too does the cost and time to develop that software: raising

the criticality also raises the assurance level, with the highest levels requiring extensive,

expensive, independent certification.

For modern cyber-physical systems, including autonomous aircraft and other vehicles,

the traditional approach of isolating systems of different criticality by using completely

separate physical hardware is no longer practical, being both restrictive and inefficient:

restrictive in that physical isolation prevents the construction of modern cyber-physical

systems; inefficient in terms of under-utilised hardware resources. The result is mixed-

criticality systems, where software applications with different criticalities execute on the

same hardware. Sufficient mechanisms are required to ascertain that software in mixed-

criticality systems is isolated. Otherwise, all software on shared hardware is promoted to

the highest criticality level, driving up costs to impractical levels. For mixed-criticality

systems to be viable, both spatial and temporal isolation are required.

However, mixed-criticality systems have conflicting requirements that challenge op-

erating systems (OS) design: they require distrusting components of different criticalities

to share resources and must degrade gracefully in the face of failure. For example, an

autonomous aerial vehicle (AAV) has multiple inputs to its flight-control algorithm: object

detection, to avoid flying into obstacles, and navigation, to get to the desired destination.

Clearly the object detection is more critical than navigation, as failure of the former can be

catastrophic, while the latter would only result in a non-ideal route. Yet the two subsystems

must cooperate; accessing and modifying shared data thus cannot be fully isolated.

The AAV is an example of a mixed-criticality system, a notion that originates in avionics

and its need to reduce size, weight and power (SWaP) by consolidating growing function-

ality onto a smaller number of physical processors. More recently the Mixed Criticality

Architecture Requirements (MCAR) [Barhorst et al., 2009] program was launched, which

recognises that in order to construct fully autonomous systems, critical and less critical
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systems must be able to share resources. However, resource sharing between components

of mixed criticality is heavily restricted by current standards.

While mixed-criticality systems are becoming the norm in avionics, this is presently in

a very restricted form: in the ARINC 632 standard [ARINC], the system is orthogonally

partitioned spatially and temporally, and partitions are scheduled with fixed time slices.

Shared resources are permitted but can only be accessed through fixed-time partitions; in

other words, a critical component must not trust a lower criticality one to behave correctly.

This limits integration and cross-partition communication, and implies long interrupt

latencies and poor resource utilisation. These challenges are not unique to avionics: top-end

cars exceeded 70 processors ten years ago [Broy et al., 2007]; with the robust packaging and

wiring required for vehicle electronics, the SWaP problem is obvious, and will be magnified

by the move to more autonomous operation. Other classes of cyber-physical systems, such

as smart factories, will experience similar challenges.

One could reduce the number of separate processors without mixing criticalities by

simply consolidating systems of the same criticality level, however, this is does not lead to

efficient use of resources. High-criticality systems that are subject to high levels of assurance

frequently have very pessimistic worst-case execution-time (WCET) estimates, which are

often orders of magnitude beyond the average execution time due to the limitations in

analysis, and the complexity of modern hardware [Wilhelm et al., 2008]. However, in

current systems the full WCET must be statically reserved for the high criticality tasks.

By building mixed-criticality systems, where low-criticality tasks—for which temporal

interference can lead only to degradation in service—we can leverage the unused capacity

from high-criticality tasks.

Fundamental to building mixed-criticality systems is the concept of asymmetric protec-

tion, which differs from strict temporal isolation in that only the highest criticality systems

are guaranteed top levels of service. Less-critical software is not completely isolated, and

can be affected by high-criticality software, but not vice versa.

Finally, mixed-criticality systems are about more than basic consolidation and lever-

aging excess resources; they can achieve more than traditional physically isolated systems

by allowing actual resource sharing. Consider the driving software of a self-driving car: it

may take inputs from various sensors which detect objects, and also input from a global

positioning system (GPS) navigation unit, and traffic data from an internet-connected ser-

vice providing alternate route information. All of these systems must provide input to the

shared driving software, which actually makes decisions about what commands to issue to

the car. Clearly, the object detection is more critical than the GPS, which in turn is more

critical than the route information service. In fact, the route information service—being

connected to the internet—is not even a trusted service: it is subject to attacks, such as

denial-of-service.

Allowing untrusted, less critical components to share hardware and communicate

with more critical components, far more sophisticated software can be introduced to the
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Level Impact

Catastrophic Failure may cause multiple fatalities, usually with loss of the
airplane.

Hazardous Failure has a large negative impact on safety or performance,
or reduces the ability of the crew to operate the aircraft due to
physical distress or a higher workload, or causes serious or fatal
injuries among the passengers.

Major Failure significantly reduces the safety margin or significantly
increases crew workload. May result in passenger discomfort (or
even minor injuries).

Minor Failure slightly reduces the safety margin or slightly increases
crew workload. Examples might include causing passenger incon-
venience or a routine flight plan change.

No Effect Failure has no impact on safety, aircraft operation or crew work-
load.

Table 1.1: Criticality levels from DO-178C, a safety standard for commercial aircraft.

system. Examples include heuristics that are common in artificial intelligence algorithms, or

internet-connected software which by its nature cannot be completely trusted. Both of these

use-cases are far too complex to certify to the highest criticality standard, but are essential

for emerging cyber-physical systems like self-driving cars. The solution is to co-locate

these services, and provide strong isolation and safety guarantees to assure correctness.

Our goal is to develop trustworthy, high-assurance OS mechanisms that provide for

the unique requirements of mixed-criticality systems, without requiring all systems to be

promoted to the highest criticality in the system. The implementation platform will be the

seL4 [Klein et al., 2009] microkernel, which is has been designed for the high-assurance,

safety-critical domain.

Concisely, the goals of this research are to provide:

G1 A principled approach to processor management, treating time as a fundamental

kernel resource, while providing mechanisms for asymmetric protection, a key re-

quirement of mixed-criticality systems;

G2 Safe resource sharing between applications of different criticalities, assurance levels

and temporal requirements.

1.1 Motivation

As noted in the introduction, the criticality of a system reflects the severity of failure, where

higher criticality implies higher severity. Table 1.1 shows criticality levels considered when

designing software for commercial aircraft in the United States.
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As the criticality level rises, so do the assurance levels: higher engineering and safety

standards are required for higher criticality levels, up to certification by independent

certification authorities (CAs) at the highest level, which is a time-consuming, expensive

and restrictive process. Additionally, requirements specified by CAs are highly cautious

and pessimistic, which, when combined with safety strategies such as redundant resources,

leads to large amounts of excess capacity in processing power.

Consequently, highly critical software is expensive to develop and tends to have low

complexity in order to minimise costs. Any software that is not fully isolated from a critical

component is promoted to that level of criticality, increasing the production cost, and

imposing strict requirements.

Traditionally, systems of different criticality levels were fully isolated with air gaps

between physical components. However, given the increased amount of computing in

every part of our daily lives, the practice of physical isolation has resulted in unscalable

growth in the amount of computing hardware in embedded systems, with some modern cars

containing over 100 processors [Hergenhan and Heiser, 2008]. The practice of physical

separation is no longer viable for three reasons: SWaP, efficiency, and resource sharing.

1.1.1 SWaP

First, systems with air-gaps require increased physical resources as each extra processor

comes with extra cabling and power requirements, increasing production costs and environ-

mental impact. For vehicles, especially aircraft, this goes further to reduce their function;

the heavier the system, the more fuel it requires, especially when considering the redund-

ancy built into these systems for safety purposes: often each component is double- or

triple-redundant.

1.1.2 E�iciency

However, SWaP alone could be reduced by consolidating systems of the same criticality.

Ignoring the fact that this also consolidates points of failure (redundant systems by definition,

cannot be consolidated), this alone is insufficient to completely address SWaP challenges.

The higher the assurance required of a system, the more over-provisioned the hardware is:

not only in redundancy but in excess capacity. As mentioned previously, WCET estimates

may be orders of magnitude larger than the typical execution time, and computation of

safe WCET bounds for non-trivial software tends to be highly pessimistic [Wilhelm et al.,

2008]. At the same time, the core integrity property of a high-criticality, real-time system

is that deadlines must always be met, meaning that there must always be time to let such

activities execute their full WCET. Consequently, consolidating high-criticality systems

only ameliorates the problem slightly: the pessimism inherent in high-assurance systems is

also consolidated, leaving unused, excess hardware resources.
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System Purpose Criticality

Obstacle detection Safety: failure can lead to collision, which could
lead to significant damage and loss of life.

Catastrophic

GPS Navigation Route planning: failure can lead to an incorrect turn
and further time travelling.

Minor

Traffic service Route planning: failure can lead to a slower trip, by
failing to avoid congested paths.

Minor

Table 1.2: Fictional example systems in a self-driving car.

High-utilisation of hardware to address SWaP challenges is therefore only possible with

the advent of mixed-criticality systems, which can leverage the excess capacity for less

critical, less time-sensitive software.

1.1.3 Resource Sharing

Mixed-criticality systems also bring opportunities for new types of systems, and are indeed

required for emerging cyber-physical systems like advanced driver assistance systems,

autonomous vehicles and aircraft.

Consider the systems required for a self-driving car to determine which commands to

issue the vehicle, as outlined in Table 1.2. The object-detection is the most critical, and

is generally comprised of a host of sensors: infra-red, LIDAR, cameras, and radar, which

themselves are subject to different criticality levels. Object-detection, especially from image

data, is a function of the amount and complexity of data available: when driving in desert,

compared to driving in a city, far less input is available. It is also the most critical system in

our example, with failure leading to potentially disastrous collisions.

However, a GPS navigation service is also required to determine the route to take, and

finally a traffic service which allows cars to avoid congestion. Although the same criticality,

the GPS service is likely more highly-assured than the traffic service: the traffic service is

connected to the internet, requiring complex network drivers, and subject to attacks from

remote attackers. In fact, the fastest way to integrate a traffic service is to run a large, open

source code base with existing network drivers like Linux, which has no assurance level.

All three systems are important to the car manufacturer: a bad review due to poor

navigation, or not avoiding a traffic jam, can have a marked impact on sales. The three

systems must access the same shared resource (the driving logic), which requires the system

to be mixed-criticality: the traffic service, and to a lesser extent the GPS, are not practical

to develop at high assurance levels. In order to gain high utilisation, the resources must be

overbooked: the traffic service may have a low-level guarantee to some hardware resources,

but the object-detection service may infringe on that resource occasionally. If the traffic

service is statically assigned its resource allocation, its utility may decrease, as it can run

more frequently when the object-detection does not require that time. Similarly, when stuck
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in traffic, the GPS service isn’t much use: the traffic service is of far more utility to find

alternate routes. Conversely, when on a highway at high speed, the GPS service requires

more processing time, and the traffic service can run less frequently.

Consequently, mixed-criticality shared resources are integral to future cyber-physical

systems, something that is not possible with traditional separation of physical hardware. At

the same time, for high system utilisation, asymmetric protection, and over-booking are

required to address SWaP challenges. Finally, without sufficient mechanisms, none of this

system is possible, as developing such a system to high assurance levels is not practical.

1.2 Definitions

Mixed-criticality In the real-time community, much work has been conducted around a

theoretical model introduced by Vestal [2007] which we discuss in Section 3.2. The

focus on this thesis is for the broader definition of mixed-criticality, such that software

of different levels of criticality can safely share hardware, and not specifically the

model presented by Vestal [2007] and beyond [Burns and Davis, 2017], although it is

discussed in Chapter 3.

Temporal isolation For a system A to be temporally isolated from system B, B cannot

cause temporal failures in A. This does not necessarily mean that B cannot affect A,

but that any temporal effect B can have on A is deterministic and bounded, such that

A is correct regardless of B.

Asymmetric Protection In order to leverage an overbooked system, high-criticality tasks

must be able to cause failures in low-criticality tasks but not vice-versa. Another way

to state this is that criticality inversion must be bounded, where a low-criticality task

must not cause failures in a high-criticality task.

1.3 Objectives

Given their improvements to SWaP, function and efficiency, mixed-criticality systems

offer great advantages over the traditional physical isolation approach. Ernst and Di Natale

[2016] identify two sets of mechanisms that need to be provided in order to support true

mixed-criticality systems:

1. operating system kernels and schedulers that guarantee resource management to

provide independence in the functional and time domain; separation kernels are the

most notable example;

2. mechanisms to detect timing faults and control them, including monitors, and the

scheduling provisions for guaranteeing controllability in the presence of faults.
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1.4 Approach

In this thesis we look to systems and real-time theory related to scheduling, resource

allocation and sharing, criticality and trust to develop a set of mechanisms required in an

OS to support mixed criticality systems. We implement those mechanisms in seL4 and

develop a set of microbenchmarks and case studies to evaluate the implementation.

Chapter 2 establishes the basic terminology required to present the remaining ideas,

including an introduction to real-time scheduling and resource-sharing theory. We also

introduce the concept of a resource kernel, an existing approach to providing principled

access to time as a first class resource.

In Chapter 3 we examine in detail the theoretical models and methods for achieving

temporal isolation and safe resource sharing in traditional, real-time systems and show that

sufficient theory exists for resource-overbooking and asymmetric protection.

Chapter 4 investigates systems support for the same concepts; by surveying existing

commercial, open-source and research operating systems we show that in the current state

of the art, support for resource overbooking and asymmetric protection is insufficient for

modern, cyber-physical systems

Chapter 5 presents the final piece of background, presenting the existing concepts which

make our implementation platform, seL4, an excellent target for high-assurance systems

with its existing spatial-resource isolation mechanisms. However, we also show that, like

the other operating systems considered in the chapter before it, current mechanisms are

insufficient for temporal isolation, asymmetric protection, and resource overbooking.

We then present in Chapter 6 a model for mechanisms required to build mixed-criticality

operating systems, including capability-based access control to processing time which

allows for overbooking and does not limit user-level policy. Additionally, we provide new

mechanisms for resources that can be shared safely between systems of different criticalities.

Our model is designed to integrate with seL4, however has wider applications to OS design

for mixed-criticality systems.

Chapter 7 delves deeply into the implementation details, presenting a full, mature

implementation of our model along with discussions of design trade-offs and limitations.

Finally, Chapter 8 presents a detailed set of benchmarks and case studies on a variety

of x86 and ARM platforms, showing the overheads of our implementation, demonstrating

temporal isolation in systems with and without shared resources, and showing how resource

overbooking and asymmetric protection can be achieved.

1.5 Contributions

We make the following specific contributions:
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• a design and model for fine-grained access control to processing time, without

imposing strict limitations on system policy or introducing performance overheads,

and without requiring sacrifices to integrity or confidentiality;

• an implementation of the model in the high-assurance, non-preemptible seL4 mi-

crokernel, and an exploration of the simplicity of the model and its integration with

the existing model, which provides strong isolation properties;

• an evaluation of the implementation, demonstrating low overheads and temporal

isolation between systems sharing a processor and other resources;

• user-level implementations of dynamic schedulers and resource sharing servers which

demonstrate that a variety of policies are not only possible to implement, but low

overhead.

1.6 Scope

We focus on uniprocessor and symmetric multiprocessor (SMP) systems with memory

management units (MMUs) for ARM and x86, where our focus is on safety, through

integrity and availability. We leave security concerns such as covert channels to future work.

Additionally, we assume a constant processor speed, and leave variable-speed processors

and energy-saving mechanisms to future work.
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2 Core concepts

In this section we provide the background required to motivate and understand our research.

We introduce real-time theory, including scheduling algorithms and resource sharing proto-

cols. In addition, we define operating systems, microkernels and introduce the concept of a

resource kernel. This thesis draws on all of these fields in order to support real-time and

mixed-criticality systems.

2.1 Real-time theory

Real-time systems have timing constraints, where the correctness of the system is de-

pendent not only on the results of computations, but on the time at which those results

arrive [Stankovic, 1988]. Essentially all software consumes time: if the software never gets

access to processing time, no results will ever be obtained. However, for a system to be

considered real-time it must be sensitive to timing behaviour—how much processing time

is allocated and when it is allocated. For most software, time is fungible: it does not matter

when the software is run, as long as it does get run. For real-time software this is not the

case. Consider the case of software that deploys the brakes on a train: the routine must run

in time for the train to stop at the platform. Or, in a more critical scenario, software that

deploys the landing gear on a plane: it must run and the gear must be fully down before the

plane hits the runway.

There are many ways to model real-time systems, which we touch on in the coming

chapters.

2.1.1 Types of real-time tasks

The term task in real-time theory is a high-level abstraction used to refer to a logical

sequence of events, which in operating systems terms can be realised as a single thread.

How tasks are realised by an operating system—with or without memory protection, for

example—is specific to the implementation. Computations by tasks in real-time systems

have deadlines which determine the correctness of the system. How those deadlines effect
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correctness depends on the category of the system, which is generally referred to as hard

real-time (HRT), soft real-time (SRT), or best-effort.

Hard Real-Time tasks have deadlines; if a deadline is missed, the task is considered

incorrect. HRT tasks are most common in safety-critical systems, where deadline misses can

lead to catastrophic results. Examples include airbag systems in cars and control systems

for autonomous vehicles. In the former, missing a deadline could cause an airbag to be

deployed too late. In the latter, the autonomous vehicle could crash. To guarantee that a

HRT task can meet deadlines, the code must be subject to WCET analysis. State of the

art WCET analysis is generally pessimistic by several orders of magnitude on modern

hardware platforms with deep pipelines, complex cache-hierarchies, branch predictors and

memory-management units [Wilhelm et al., 2008], which means that allocated time will

not generally be used completely, although it must be available. WCET is pessimistic for

multiple reasons: firstly, much behaviour like interrupt arrival times, cannot be predicted

but only bounded, so the schedulability analysis incorporated into the WCET includes the

worst possible execution case. Secondly, accurate models of modern hardware are few, so

often the WCET must assume caches are not primed and possibly conflicting. Further detail

about WCET analysis can be found in Lv et al. [2009].

Soft Real-Time tasks, as opposed to HRT, can be considered correct in the presence of

some defined level of deadline misses. Although WCET can be known for SRT tasks, less

precise but more optimistic time estimates are generally used for practicality. Examples of

SRT tasks can be found in multimedia and video game platforms, where deadline misses

may result in some non-critical effect such as performance degradation. SRT tasks can also

be found in safety-critical systems where the result degrades if not enough time has been

allocated by the deadline, but the result remains useful e.g. image recognition and object

detection in autonomous vehicles. In such tasks, a minimum allocation of time to the task

might be HRT, while further allocations are SRT.

Various models exist to quantify permissible deadline misses in SRT systems. One

measure is to consider the upper bound of how much the deadline is missed, referred to as

tardiness [Devi, 2006]. Another is to express an upper bound on the percentage of deadline

misses permitted for the system to be considered correct, which is easier to measure but

less meaningful. Some SRT systems allow deadlines to be skipped completely [Koren and

Shasha, 1995] while others allow deadlines to be postponed. Systems that allow deadlines

to be skipped are often referred to as firm real-time e.g. media processing, where some

frames can be dropped.

Best-effort tasks do not have temporal requirements, and generally execute in the back-

ground of a real-time system. Examples include logging services and standard applications,

but may be far more complicated. Of course, any task must be scheduled at some point for

system success, so there must be some non-starvation guarantee.
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1 for (;;) {
2 // job arrives
3 doJob();
4 // job completes before deadline
5 // sleep until an event triggers the next job
6 sleep();
7 }

Listing 2.1: Example of a basic sporadic real-time task.

2.1.2 Real-time models

A real-time system is a collection of tasks, and can be of different real-time models (SRT,

HRT, best-effort). For analysis, each task in a real-time system is modelled as an infinite

series of jobs. Each job represents a computation with a deadline. One practical model in

common use is the sporadic task model [Mok, 1983], which can model both periodic and

aperiodic tasks and maps well onto typical control systems.

The sporadic task model considers a real-time system as a set of tasks, τ1,τ2, . . . ,τn.

Each τi refers to a specific task in the task set, usually each for a different functionality. The

infinite series of jobs is per task, and represented by τi1,τi2, . . . ,τin. Each task has a WCET,

Ci, and period, Ti, which represents the minimum inter-arrival time between jobs. When a

Ti has passed and a job can run again, it is said to be released. When a job is ready to run, it

is said to have arrived and when a job finishes and blocks until the next arrival, it is said to

be completed.

For periodic tasks, which are commonly found in control systems, jobs release and

arrive at the same time; they are always ready to run once their period has passed subject to

jitter, where the release time is greater than the arrival time. Importantly, a late job-release

does not alter the deadline of the job, which remains relative to the arrival time. Sporadic

tasks are more useful in modelling interrupt driven tasks, where arrival times are unknown.

Jobs must complete before their period has passed (Ci ≤ Ti), as the model does not

support jobs that run simultaneously. Tasks with interleaving jobs must be modelled as

separate tasks which do not overlap. Listing 2.1 shows pseudocode for a sporadic task and

Table 2.1 summarises the notation which is used throughout this thesis.

Sporadic tasks have deadlines relative to their arrival time, which may be constrained

or implicit. An implicit deadline means the job must finish before the period elapses.

Constrained deadlines are relative to the release time, but before the period elapses. Finally

arbitrary deadlines can be after the period elapses. Multiple sporadic tasks may be released,

that is to say, ready to run, at the same time, but they must be processed sequentially.

2.2 Scheduling

Simply put, scheduling is deciding which task to run at a specific time. In operating systems

terms, this is deciding which thread, or process to run on the processor next, and in the
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Figure 2.1: Diagram of the sporadic task model notation described in Table 2.1, showing a task set
A with a single task A0 where T0 = 4 and C0 = 1.

case of multiprocessors, which processor to use. More formally, scheduling is the act of

assigning resources to activities or tasks [Baruah et al., 1996], generally discussed in the

context of processing time, but is also required for other resources such as communication

channels. A scheduling algorithm allocates time to tasks so that they all meet their deadlines,

subject to conditions such as utilisation bounds. Real-time scheduling algorithms differ

from their non-real-time equivalents in that they must guarantee that all tasks not only

receive sufficient access to the processor, but that all tasks meet their timing requirements,

i.e. deadlines.

Scheduling can be either static or dynamic. In a static or offline schedule, the set of tasks

is fixed and the schedule pre-calculated when the system is built, and does not change once

the system is running. Dynamic or online scheduling occurs while the system is running,

Notation Meaning

τ A task set.

τi A specific task in a task set

τi j A specific job of a specific task set.

Ti The minimum period of a task, the minimum time between job releases.

Ci The WCET of a task (Ci ≤ Ti).

Ui The maximum utilisation of task i, which is C
T

Di The relative deadline of task i

ti j The release time of the jth job of task i

di j The deadline for the jth job of task i.

ai j The arrival time of the jth job of task i, ai j ≥ ti j

n The number of tasks in a task set

Table 2.1: Parameters and notation for the sporadic task model.
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Ci Ti Ui

τ1 1 4 0.25

τ2 1 5 0.20

τ3 3 9 0.33

τ4 3 18 0.17

Usum(τ) 0.95

Table 2.2: A sample task set, adapted from [Brandenburg, 2011]

and the schedule is calculated whenever a scheduling decision is required. Most schedulers

in common-use operating systems like Linux, are dynamic, online schedulers.

All possible permutations of task parameters are not schedulable. Thus, we refer to

feasible and non-feasible task sets. A task set is feasible if it can be scheduled by at least one

scheduling algorithm such that all temporal requirements are satisfied, and non-feasible if

no scheduling algorithm can be found that satisfies the requirements. An optimal scheduling

algorithm can schedule every feasible task set. To test if a task set is schedulable by a

scheduling algorithm, a schedulability test is applied. The complexity of schedulability

tests is important for both dynamic and static schedulers. For static schedulers, the test is

conducted offline and not repeated, but the algorithm must complete in a reasonable time

for the number of tasks in the task set. Real-time, dynamic schedulers often conduct a test

each time a new task is submitted to the scheduler, or scheduling parameters are altered,

in order to check that the modified task set is schedulable. This test is referred to as an

admission test, and must be minimal in complexity to avoid undue overheads.

There is an absolute limit on task sets that are feasible which can be derived from the

total utilisation. The total utilisation of a task set is the sum of all the rates and must be less

than the total processing capacity of a system for all deadlines to be met. For each processor

in a system, this amounts to Equation (2.1).

n

∑
i=0

Ci

Ti
≤ 1 (2.1)

If the inequality does not hold, the system is considered overloaded. Overload can be

constant, in that it is all the time, or transient, where the overload may be temporary due to

exceptional circumstances.

Ideally, task sets are scheduled such that the total utilisation is equal to the number

of processors. In practice, scheduling algorithms are subject to two different types of

capacity loss which render 100% utilisation impossible—algorithmic and overhead-related.

Algorithmic capacity loss refers to processing time that is wasted due to the schedule

used, due to a non-optimal scheduling algorithm. Overhead-related capacity loss refers to

time spent due to hardware effects (such as cache misses, cache contention, and context
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switches) and computing scheduling decisions. Accurate schedulability tests should account

for overhead-related capacity loss in addition to algorithmic capacity loss.

Tasks often do not use all of their execution requirement, any execution time remaining

at job completion is referred to as slack. Slack can be a consequence of pessimistic WCET

values, or a result of varying job-lengths in general. Sporadic tasks, where the actual arrival

time varies from the minimum inter-arrival time, are also sources of slack, as is jitter. Many

scheduling algorithms attempt to gain performance by reclaiming or stealing slack.

Scheduling algorithms are classed as either dynamic or fixed priority. A scheduling

algorithm is fixed priority if all the jobs in each task run at the same priority, which never

changes. Dynamic priority scheduling algorithms assign priorities to jobs not tasked, based

on some criteria. There are two definitive dynamic scheduling algorithms: fixed-priority rate

monotonic (FPRM), which has fixed priorities, and earliest deadline first (EDF), which has

dynamic priorities. Each is optimal for its respective scheduling class, and both algorithms

are defined along with schedulability tests for the periodic task model in the seminal paper

by Liu and Layland [1973]. We describe them briefly here, after covering the dominant

static scheduling algorithm: cyclic executives.

2.2.1 Cyclic executives

A cyclic-executive is an offline, static scheduler that dispatches tasks according to a pre-

computed schedule, and is only suitable for closed systems. Each task has one or more

entries in the pre-computed schedule, referred to as frames, which specify a WCET. Frames

are never preempted while running, resulting in a completely deterministic schedule. The

cyclic executive completes in a hyperperiod, which is the least common multiplier of all

task periods. The minor cycle is the greatest common divisor of all the task periods.

Cyclic executives can, in theory, schedule task sets where the total utilisation is 100%,

as in Equation (2.1). However, this only holds in a task model where tasks can be split into

infinite chunks, as tasks that do not fit into the minor cycle must be split. This assumption

is unrealistic as many tasks cannot be split, and task switching is not without overheads.

Calculating a cyclic schedule is NP-hard, and must be done every time the task set changes.

Because cyclic executives are non-preemptible and deterministic, they cannot take

advantage of over-provisioned WCET estimates, therefore processor utilisation is low for

cyclic executives on modern hardware. One way to ameliorate the limitations of cyclic

executives is to use a two-level scheduler with a top level table that is static, and a second

level of preemptive scheduling. When a table entry is selected the 2nd level scheduler is

then activated.

2.2.2 Fixed priority scheduling

As the name implies, fixed priority (FP) scheduling involves assigning fixed priorities to

each task. The scheduler is invoked when a job is released or a job ends, and the job with the
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highest priority is always scheduled. Under real-time fixed-priority scheduling, priorities

must be assigned such that all deadlines are met. Two well-established priority-assignment

techniques are rate monotonic (RM) and deadline monotonic (DM).

RM priority assignment [Liu and Layland, 1973] allocates higher priorities to tasks

with higher rates—where rate is determined by the period, as shown in Equation (2.2).

1
Ti

(2.2)

While RM is only optimal for task sets with implicit deadlines, DM priority assign-

ment [Leung and Whitehead, 1982] allocates higher priorities to tasks with shorter deadlines

and is optimal for implicit and constrained deadlines. In both cases, ties are broken ar-

bitrarily. The FP scheduling technique itself is not optimal, as it results in algorithmic

capacity loss and may leave up to 31% of the processor idle. Equation (2.3) shows the

sufficient utilisation bound for task sets on a uniprocessor for FPRM, and Equation (2.4)

shows that the limit as the number of tasks in the task set (n) tends towards infinity. For

specific task sets, more accurate schedulability tests can be conducted via response time

analysis [Audsley et al., 1993]. Figure 2.2 shows an example FPRM schedule.

n

∑
i=0

Ci

Ti
≤ n(2

1
n −1) (2.3)

lim
n→∞

n( n
√

2−1) = ln 2≈ 0.693147 . . . (2.4)

2.2.3 Earliest Deadline First Scheduling

The EDF algorithm is theoretically optimal for preemptively scheduling a single resource,

with no algorithmic capacity loss; that is 100% of processing time can be scheduled. This

is because EDF uses dynamic priorities rather than fixed priorities. Priorities are assigned

by examining the deadlines of each ready job; jobs with more immediate deadlines have

higher priorities. Figure 2.3 illustrates how the task set in Table 2.2 is scheduled by EDF,

highlighting the places where tasks are scheduled differently from FPRM.

EDF is compatible with fixed-priority scheduling, as EDF can be mapped to priority

bands in a fixed-priority system. Whenever an EDF priority is selected, a second-level

EDF scheduler dispatches the next task. This “EDF in fixed-priority” approach has been

analysed in detail [Harbour and Palencia, 2003] and is deployed in the Ada programming

language [Burns and Wellings, 2007], often used to build real-time systems.

2.2.4 Earliest Deadline First versus Fixed Priority Scheduling

EDF is less popular in commercial practice than FP for a number of reasons, some which

are misconceptions, such as complexity of implementation and algorithmic capacity loss,

and others which represent concrete concerns, such as behaviour on overload.
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Figure 2.2: An example FPRM schedule using the task set from Table 2.2.

A₄

A₃

A₂

A₁

0
Time

5 10 15

Differs from 
FPRMTask release (tij) Task scheduledTask deadline (dij)

Figure 2.3: An example EDF schedule using the task set from Table 2.2.

In terms of misconceptions, EDF is considered more complex to implement and to have

higher overhead-related capacity loss. However, both of these points were debunked by

Buttazzo [2005]. Although EDF is difficult and inefficient to implement on top of existing,

priority-based OSes, both schedulers can be considered equally complex to implement from

scratch. FP scheduling has higher overhead-related capacity loss due to an increase in the

amount of preemption. This compounds the algorithmic capacity loss, rendering EDF a

clear winner in from-scratch implementations in terms of both properties.
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Both algorithms behave differently under constant overload. EDF allows progress for

all jobs but at a lower rate, while FP will continue to meet deadlines for jobs with higher

RM priorities, completely starving other jobs. Whether these behaviours are desirable is

subject to context, under transient overload conditions both algorithms can cause deadline

misses. FP overload behaviour is often preferred, as it will drop jobs from lower priority

tasks deterministically. In contrast, EDF will drop jobs from all tasks, with no prioritisation.

However, note that the deterministic overload behaviour of FP scheduling comes with a

price: optimal priority ordering is determined by the rate of jobs, not their importance to

the system.

Other comparisons between EDF and FP are the complexity of their schedulability

tests. EDF and FP scheduling both have pseudo-polynomial schedulability tests under the

sporadic task model [Abdelzaher et al.], although EDF, like FP, under the periodic task

model1 has an O(n) schedulability test [Barauh et al., 1990]. Like all pseudo-polynomial

problems, approximations can be made to reduce the complexity, although this comes with

an error factor which increases algorithmic capacity loss.

2.2.5 Multiprocessors

Both fixed and dynamic scheduling algorithms scheduling can be used on multiprocessor

machines, either globally or partitioned. Global schedulers share a single scheduling

data structure between all processors in the system, whereas partitioned schedulers have

a scheduler per processor. Neither is perfect: global approaches suffer from scalability

issues such as hardware contention, however partitioned schedulers require load balancing

across cores. Partitioning itself is known to be a NP-hard bin-packing problem. On modern

hardware, partitioned schedulers outperform global schedulers [Brandenburg, 2011]. For

clustered multiprocessors a combination of global and partitioned scheduling can be used;

global within a cluster, and partitioned across clusters.

2.3 Resource sharing

In the discussion so far we have assumed all real-time tasks are separate, and do not share

resources. Of course, any practical system involves shared resources. In this section we

introduce the basics of resource sharing, and the complexities of doing so in a real-time

system.

Access to shared resources requires mutual exclusion, where only one task is permitted

to access a resource at a time, to prevent system corruption. Code that must be accessed

in a mutually exclusive fashion is called a critical section. Generally speaking, tasks lock

access to resources, preventing other tasks from accessing that resource until it is unlocked.

However, many variants on locking protocols exist, and not all require mutual exclusion.

1The periodic task model is the same as the sporadic task model, with the restriction that deadlines must
be equal to periods (d = p), while periods themselves are considered absolute, not minimum.
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Some permit n tasks to access a section, or locks that behave differently for read and write

access.

Resource sharing in a real-time context is more complicated than standard resource

sharing and synchronisation, due to the problem of priority inversion, which threatens

the temporal correctness of a system. Priority inversion occurs when a low priority task

prevents a high priority task from running. Consider the following example: if a low priority

task locks a resource that a high priority task requires, then the low priority task can cause

the high priority task to miss its deadline. Consequently, all synchronised resource access

in a real-time system must be bounded, and analysis of a systems ability to meet deadlines

must account for those bounds.

Bounded critical sections alone are not sufficient to guarantee correctness in a real-time

system. Consider the scenario outlined earlier, where a low priority thread holds a lock that

a high priority thread is blocked on. If other, medium-priority tasks exist in the system,

then the low priority task will never run and unlock the lock, leaving the high priority task

blocked for an unbounded period. This exact scenario caused the Mars Pathfinder to fault,

causing unexpected system resets [Jones, 1997].

In this section we provide a brief overview of real-time synchronisation protocols

that avoid unbounded priority inversion, drawn from Sha et al. [1990]. First we consider

uniprocessor protocols before canvassing multiprocessor resource sharing.

2.3.1 Non-preemptive critical sections

Using the non-preemptive critical sections protocol (NCP), preemption is totally disabled

whilst in a critical section. This approach blocks all threads in the system while any client

accesses a critical section. Consequently, the bound on any single priority inversion is the

length of the longest critical section in the system. Although functional, this approach

results in a lot of unnecessary blocking of higher priority threads. The maximum bound on

priority inversion that a task can experience is the sum of the length of all critical sections

accessed by that task, as these are the only places that specific task can be blocked while

other tasks run.

2.3.2 Priority Inheritance Protocol

In the priority inheritance protocol (PIP), when a high priority task encounters a locked

resource, it donates its priority to the task holding the lock and when the lock is released the

priority is restored. This approach avoids blocking any higher priority threads that do not

access this resource, and works for both fixed and dynamic priority scheduling. However,

PIP results in large systems overheads due to nesting, implementation complexity and

additional preemptions, and as a result has poor schedulability analysis.

To understand the additional preemptions inherent in PIP, consider a task set with n

tasks, τ1, . . . ,τn, where each task’s priority corresponds to its index, such that the priority
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of τi = i. The highest priority is n and the lowest is 1 and all tasks access the same resource.

If τ1 holds the lock to that resource, then the worst preemption overhead occurs if τ2 wakes

up, elevating the priority of τ1 to 2. Subsequently, each task wakes up in increasing priority

order, each preempting τ1 until its priority reaches n resulting in n total preemptions.

Another disadvantage of PIP is that deadlock can occur if resource ordering is not used.

2.3.3 Immediate Priority Ceiling Protocol

Under immediate priority ceiling protocol (IPCP), also known as the highest lockers’

protocol, resources are assigned a ceiling priority: the highest priority of all tasks that

access that resource + 1. When tasks lock that resource, they run at the ceiling priority,

removing the preemption overhead of PIP.

The disadvantage of IPCP is that all priorities of task that access locked resources must

be known a priori. Additionally, if priority ceilings are all set to the highest priority, then

behaviour degrades to that of NCP. Finally, this protocol allows intermediate priority tasks

that do not need the resource to be blocked unnecessarily.

2.3.4 Original Priority Ceiling Protocol

The original priority ceiling protocol (OPCP) combines the previous two approaches, and

avoids deadlock, excessive blocking and excessive preemption. In addition to considering

the priorities of tasks, OPCP introduces a dynamic global state referred to as the system

ceiling, which is the highest priority ceiling of any currently locked resource. Like IPCP,

the OPCP requires that all priorities of tasks that lock resources be known a priority. Under

OPCP, when a task locks a resource, its priority is not changed until another task attempts to

acquire that resource, at which point the resource holder’s priority is boosted using priority

inheritance. By delaying the priority boost the excessive preemption of PIP is avoided.

Additionally, tasks can only lock resources when their priority is equal to the system ceiling,

otherwise they block until this condition is true, thus avoiding the risk of deadlock. OPCP

results in less blocking overall than IPCP, however requires global state (the system ceiling)

to be tracked across all tasks, increasing the complexity of an implementation.

2.3.5 Stack Resource Protocol

Ceiling-based protocols are only appropriate for FP schedulers, however the stack resource

policy (SRP) [Baker, 1991] is provides similar functionality for EDF. Under the SRP, all

tasks are assigned preemption levels and all resources are assigned ceilings, which are

derived from the maximum preemption-level of tasks accessing those resources. Similar to

OPCP, a system ceiling is also maintained, and is the maximum active preemption level of

all tasks currently executing in the system. SRP works by preventing preemption: a task

is only allowed to preempt the system when two conditions are met: that tasks absolute
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deadline must be less than the currently executing task, and its preemption level must be

higher than the current system ceiling.

2.3.6 Lock free algorithms

Lock-free data structures can be used to avoid locks and priority inversion altogether, on

a uniprocessor this is achieved with atomic operations like compare-and-swap, which are

either supported by hardware or provided by disabling preemption. Lock-free data structures

allow concurrent access to the same memory, however interleaved access can result in a

given operation being unbounded due to the failure of atomic retries. Although this seems

incompatible with real-time systems, Anderson et al. [1997] show that lock free approaches

can be bounded and occur less overhead than wait-free or lock-based schemes.

However, given our approach uses formal verification, we do not consider lock-free

options further, as interleaving of program execution results in a state-space explosion and

remains a challenge for verification on a large scale.

2.3.7 Summary
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Figure 2.4: Comparison of real-time locking protocols based on implementation complexity and
priority inversion bound.

Figure 2.4 compares the different uniprocessor locking protocols, showing that OPCP

provides the lowest bound on priority inversion; however is also the most complicated to

implement. NCP on the other hand, is the simplest to implement but exhibits the worst

priority inversion behaviour, with PIP and IPCP falling between the two. IPCP provides

minimal implementation complexity but requires a policy on priority assignment to be in

place in the system.

2.3.8 Multiprocessor locking protocols

Resource sharing on multiprocessors is far more complicated than the single processor

case and still a topic of active research [Davis and Burns, 2011]. Of course, uniprocessor

techniques can be used for resources that are local to a processor, but further protocols are

required for resources shared across cores (termed global resources).

Protocols for multiprocessor locking are either spinning- or suspension-based; spinning

protocols spin on shared memory; suspension protocols block the task until the resource is

available, such that other tasks can use the processor during that time. Spin-lock protocols
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are effective for short critical sections, but once the critical section exceeds the time taken to

switch to another task and back, semaphore protocols are more efficient. Brandenburg et al.

[2008] find that for small, simple objects, non-blocking algorithms are preferably, and that

wait-free or spin-based approaches are better for large or complex objects, in a real-time

context with few cores. However, for systems with many-cores, spin-lock approaches do

not scale beyond a small number (~10) cores [Clements et al., 2013]. Suspension-based

approaches suffer extra preemptions in the worst case, while spin-locks do not. With respect

to worst-case bounds, suspension based protocols do not fair any better than spin-lock

approaches in real-time systems.

Multiprocessor locking protocols differ depending on the scheduling policy across

cores; in partitioned approaches, priorities on different cores are not comparable, meaning

existing protocols do not work. While the protocols we have examined so far can be used

under global scheduling, Brandenburg [2011] showed that partitioned approaches suffer far

less cache overheads than global scheduling.

The multiprocessor priority ceiling protocol (MPCP) [Rajkumar, 1990] is a modified

version of OPCP for multiprocessors. It is a suspension-based protocol that works by

boosting task priorities. Tasks run at the highest priority of any task that may access a global

resource, and waiting tasks block in a priority queue. Nested access to global resources

is disallowed. The multiprocessor stack resource policy (MSRP) [Gai et al., 2003] is a

spin-lock based protocol, which can be used for FP and EDF scheduling. MSRP uses

the SRP locally, combined with first-in first-out (FIFO) spin-locks which guard global

resources.

Multiprocessor real-time locking protocols are an extensive field of research, and many

more sophisticated locking protocols exist, however we do not survey them here.

2.4 Operating systems

An OS is a software system that interfaces with hardware and devices in order to present

a common interface to applications. The kernel is the part of the operating system that

operates with privileged access to the processor(s) in order to safely perform tasks that

allow applications to run independently of each other.

Common OSes, such as Windows, MacOS and Linux, are monolithic operating systems,

which means that many services required to run applications are inside the kernel. A

microkernel attempts to minimise the amount of code running in the kernel in order to

reduce the amount of necessarily trusted code. Figure 2.5 illustrates the difference between

monolithic OSes and microkernels. Modern microkernel implementation is guided by the

minimality principle [Liedtke, 1995] which aims to provide minimal mechanisms to allow

resource servers to function, leaving the rest of the policy up to the software running outside

of the kernel. According to the minimality principle, if a service does not need to be in the

kernel to achieve its functionality, it should not be in the kernel.
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Figure 2.5: Structure of a microkernel versus monolithic operating system.

Monolithic operating systems provide scheduling, inter-process communication (IPC),

device drivers, memory allocation, file systems and other services in the kernel, resulting in

a large trusted computing base.

With respect to microkernels, interpretations of the minimality principle varies, con-

sequently which services and utilities are included in the privileged kernel varies. In larger

kernels thread scheduling, memory allocation and some device drivers are included in the

kernel. For example, seL4 [Klein et al., 2009] contains scheduling and IPC; COMPOS-

ITE [Parmer, 2009] does not provide a scheduler, or any blocking semantics, but does

provide IPC.

Microkernels are far more amenable for deployment in areas where security is a primary

concern, due to their small trusted computing base. Services on top of the microkernel can

be isolated and assigned different levels of trust, unlike the services in a monolithic OS

which all run at the same privilege level such that a fault in one service can compromise the

entire system.

Operating systems can run on each other in a process called virtualisation, where

the underlying OS presents an interface imitating hardware. A hypervisor is an operating

system that can run other operating systems on top of it, and operating systems running

on the hypervisor are referred to as guests. Guest operating systems can be para- or fully-

virtualised, where the former involves modifications to the source of the guest. Modern

hardware has virtualisation extensions which improve virtualisation performance and

reduce the need for para-virtualisation. Both microkernels and monolithic kernels can also

be hypervisors, although monolithic hypervisors are often smaller than full OS counterparts,

as they provide less functionality and rely on guest OSes to provide most subsystems.

2.4.1 IPC

IPC is the microkernel mechanism for synchronous transmission of data and capabilities

between processes. Because the microkernel model provides services encapsulated into user-

level servers, IPC is key to microkernel performance, as it is used more predominantly than
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in monolithic OSes. Originally, microkernels were criticised as impractical due to inefficient

IPC implementations of first-generation microkernels. However, this was demonstrated

to be false [Härtig et al., 1997] due to the high cache footprint and poor design of the

original microkernels. Second-generation microkernels were built much leaner, with fewer

services in the kernel and fast, optimised code paths for IPC, referred to as fastpaths. Third-

generation microkernels follow the pattern of minimality and speed, whilst also promoting

security as a first-class concern, which resulted in the incorporation of capability systems.

2.4.2 Capabilities

Third-generation microkernels make use of capabilities [Dennis and Van Horn, 1966], an

established mechanism for fine-grained access control to spatial resources which allow

for spatial isolation. A capability is a unique, unforgeable token that gives the possessor

permission to access an entity or object in system. Capabilities can have different levels of

access rights, e.g. read, write, execute etc.

By combining access rights with object identifiers capabilities avoid the confused

deputy problem, a form of privilege escalation where a deputy program acting on behalf of

a client is tricked into using its own rights to manipulate a resource that the client would

not normally have access to [Hardy, 1988].

2.4.3 Open vs. Closed Systems

Operating systems can be built for open or closed systems. An open system is any system

where code outside of the control of the system designers can be executed. For example,

modern smart phones are open systems, given that users can install third-party applications.

A closed system is the opposite; the system designers have complete control over

all code that will execute on the system. The majority of closed systems are embedded,

including those found in cars, spacecraft and aircraft.

In general, there is a trend toward systems becoming more open; initial mobile phones

were closed systems. This trend can be perceived from infotainment units in automobiles

to televisions, where the option to install third party applications is becoming more pre-

valent. Allowing third-party applications to run alongside critical applications on shared

hardware increases the security requirements of the system: critical applications must be

isolated from third-party applications and secure communications must be used between

distributed components. This is currently not the general case, which has led to researchers

demonstrating attacks on cars [Checkoway et al., 2011].

Open systems are generally dynamic—where resource allocations are configured at

run-time and can change—as opposed to closed systems which have fixed or static resource

allocation patterns.
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2.4.4 Real-Time Operating Systems

A real-time operating system (RTOS) is an OS that provides temporal guarantees, and can

be microkernel-based or monolithic. Whilst some real-time systems run without operating

systems at all, this approach is generally limited to small, closed systems and is both

inflexible and difficult to maintain [Sha et al., 2004].

In a general purpose OS, time is shared between applications with the aim of providing

fairness, where applications share the processor equally. This fairness is not divided into

equal share, but weighted, such that some applications are awarded more time than others in

order to tune overall system performance. The OS itself is not directly aware of the timing

needs of applications.

In an RTOS, fairness is replaced by the need to meet deadlines. As a result, time is

promoted to a first class resource [Stankovic, 1988].

Time being an integral part of the system affects every other part of the OS. For example,

in an RTOS, one application having exclusive access to a resource cannot be allowed to

cause a deadline miss. Similarly, the RTOS itself cannot cause a deadline miss. This means

that all operations in the RTOS must either be bounded with known WCET or the RTOS

must be fully preemptible, with very small, bounded critical sections. However, it must

be noted that a fully preemptible OS is completely non-deterministic, in that interrupts

can cause unpredictable interleaving of operations which lead to state-space explosions in

current verification techniques, making correctness impractical to guarantee [Blackham

et al., 2012b]. The overheads of RTOS operations like interrupt handling and context

switching must also be considered when determining whether deadlines can be met.

Traditional RTOSes, and the applications running on them, require extensive offline

analysis to guarantee that all temporal requirements are met. This is done by using schedul-

ing algorithms, schedulability and response time analysis, WCET analysis, and resource

sharing algorithms with known real-time properties.

2.4.5 Resource kernels

Resource kernels are a class of OS that treat time as a first class resource, by providing

timely, guaranteed access to system resources. In a resource kernel, a reservation represents

a portion of a shared resource, like processor, or disk bandwidth. Unlike traditional real-time

operating systems, resource kernels do not trust all applications to stay within their specified

resource bounds: resource kernels enforce them, preventing misbehaving applications from

interfering with other applications and thus providing temporal isolation.

In the seminal resource kernel paper, Rajkumar et al. [1998] outline four main goals

that are integral to resource kernels:

G1: Timeliness of resource usage Applications must be able to specify resource require-

ments that the kernel will guarantee. Requirements should be dynamic: applications

24



must be able to change them at run-time, however the kernel should ensure that the

set of all requirements can be admitted.

G2: Efficient resource utilisation The mechanisms used by the resource kernel utilise

available resources efficiently and must not impose high utilisation penalties.

G3: Enforcement and protection The kernel must enforce resource access such that

rogue applications cannot interrupt the resource use of other applications.

G4: Access to multiple resource types The kernel must provide access to multiple re-

source types, including processing cycles, disk bandwidth, network bandwidth and

virtual memory.

In another paper, de Niz et al. [2001] outline the four main mechanisms that a resource

kernel must provide, in order to implement the above concepts.

Admission check that all resource requests can be scheduled (G1).

Scheduling implements the dynamic allocation of resources according to reservations (G1,
G2).

Enforcement limit the consumption of the resources to that specified by the reservation

(G3).

Accounting of reservation use, to implement scheduling and enforcement (G1, G2, G3).

In order to share resources in a resource kernel, avoiding priority inversion becomes

a more complicated problem. de Niz et al. [2001] outline three key policies that must be

considered when handling resource sharing in reservation-based systems:

Prioritisation What (relative) priority is used by the task accessing the shared resource

(and under what conditions)?

Charging Which reservation(s), if any, gets charged, and when?

Enforcement What happens when the reservations being charged by the charging policy

expire?

Resource kernels of the past were implemented as monolithic operating systems, where

all system services and drivers are provided by the kernel. However, nothing prevents the

application of resource-kernel principles to microkernel-based systems, although not all the

mechanisms of a resource kernel are suitable for inclusion in the microkernel itself: some

can be provided by user-level middle-ware. This is because core resource kernel concepts

contain both policy and mechanism. We argue that the microkernel should provide resource

kernel mechanisms such that a resource kernel can be built with a microkernel, but policy

should be left up to the system designer, as long as it does not result in performance or

security concessions.
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2.5 Summary

In this chapter we have briefly covered the core real-time theory that this thesis draws upon.

We have defined operating systems, and introduced the concepts that inform the design of

resource kernels. In the next chapter we will survey how these can be combined to achieve

isolation and asymmetric protection for mixed-criticality systems.

26



3 Temporal Isolation &
Asymmetric Protection

Mixed-criticality systems at their core require isolation: isolation as strong as that provided

by physically isolated systems, meaning if one sub-system fails it cannot affect other sub-

systems. Isolation can be divided into two categories of resources: spatial and temporal.

Spatial resources include devices and memory, where isolation can be achieved using the

MMU and I/O MMUs. Temporal isolation of resources is more complicated, and forms the

focus of this chapter, where we survey the relevant literature. A system is said to provide

temporal isolation if temporal behaviour of one task cannot cause temporal faults in another,

independent task.

What does isolation mean in a fully- or over-committed system, where there is no slack

time to schedule? What if there simply is not enough time? One could argue that systems

should be over-provisioned to avoid such a scenario. However, in the presence of SRT and

best-effort tasks which may be low in criticality, this requirement is too strong. Instead, we

must explore mechanisms for asymmetric protection, where high criticality tasks can cause

a failure in low criticality tasks, but not vice versa.

Much of the background examined in the previous chapter (Section 2.1) made the

assumption that tasks would not exceed a declared WCET or critical section bound. Many

existing real-time systems run either one application, or multiple applications of the same

criticality, meaning each application that is running is certified to the same level. This

means that all applications are trusted: trusted to not crash, and trusted to not overrun their

deadlines. If one application does overrun its deadline or use more processing time than

specified by its WCET, guarantees are no longer met.

Tasks can be untrusted for many reasons including:

• sporadic tasks with inter-arrival times that are event driven will not necessarily have

device drivers which guarantee the inter-arrival time;

• the task may have an unknown or unreliable WCET;

• the system may be open and the task from an untrusted source;

• the task may be low criticality and therefore not certified to a high level.
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While large amounts of research have been devoted to addressing the challenges of

scheduling mixed-criticality systems, insufficient research has been conducted into OSes

that practically enable the construction of mixed-criticality systems. A major barrier is

the issue of trust: real-time tasks are often assumed to perform correctly and safely, an

assumption that no longer holds when tasks may have different levels of certification and

criticality. However, much research has looked into the scheduling of aperiodic tasks, which

by definition cannot be trusted to follow a specific schedule, or abide by their estimated

minimum inter-arrival time. Further applicable research examines the scheduling of SRT

and best-effort tasks along with HRT tasks. Consequently, we examine scheduling methods

for these types of systems.

Neither FP nor EDF scheduling approaches discussed so far provide temporal isolation,

although both can be adapted to do so. In this chapter we examine the techniques used by

the real-time community to achieve temporal isolation.

3.1 Scheduling

3.1.1 Proportional-share schedulers

Proportional share schedulers provide temporal isolation, as long as the system is not

overloaded, although this class of schedulers is based on achieving scheduling fairness

between tasks, rather than running untrusted tasks which may exceed their execution

requirement.

Recall that fairness is not a central property of scheduling in a real-time operating

system. However, one approach for real-time scheduling is to specify a set of constraints

that attempt to provide fairness and also satisfy temporal constraints. These are referred

to as proportional share algorithms, which allocate time to tasks in discrete sized quanta.

Tasks in proportional share schedulers are assigned weights according to their rate, and

those weights determine the share of time for which each task has access to a resource.

While proportional share algorithms are applied to many scheduling problems, they

apply well to real-time scheduling on one or more processors. Unlike other approaches to

real-time scheduling, proportional share schedulers have the explicit property of guarantee-

ing a rate of progress for all tasks in the system.

Baruah et al. [1996] introduced the property proportionate fairness or Pfair as a strong

fairness property for proportionate share scheduling algorithms. For a schedule to be Pfair,

then at every time t a task T with weight Tw must have been scheduled either dTw.te or

bTw.tc times. Early-Release fair or ERfair [Anderson and Srinivasan, 2004] is an extension

of the Pfair property that allows tasks to execute before their Pfair window, which can allow

for better response times.

Pfair scheduling algorithms break jobs into sub-jobs that match the length of a quantum,

which is a fixed, discrete length of time defined by the system. Real-time and non-real time

tasks are treated similarly. When overload conditions exist, the rate is slowed for all tasks.
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Pfair scheduling algorithms are good theoretically but do not perform well in practice;

they incur large overhead related capacity loss due to an increased number of context

switches [Abeni and Buttazzo, 2004]. Additionally, since scheduling decisions can only

be made at quantised intervals, scheduling precision is limited by the size of the quanta in

proportionate fair systems.1

One early uniprocessor Pfair scheduling algorithm is earliest-eligible deadline first,

presented in Stoica et al. [1996]. PD2 [Srinivasan and Anderson, 2006] is a more recent

Pfair/ERfair scheduling algorithm that is theoretically optimal for multiprocessors under

HRT constraints.

Recall that temporal isolation means that tasks should not be able to interfere with the

temporal behaviour of other tasks in the system. Proportionate fair systems provide temporal

isolation as part of their fairness property, but by definition do not support asymmetric

protection.

3.1.2 Robust earliest deadline scheduling

Temporal isolation in EDF scheduling has been explored thoroughly in the real-time

discipline. One early approach to temporal isolation with EDF scheduling attempts to

extend the algorithm to allow overload conditions to be handled with respect to a value.

Robust earliest deadline scheduling [Buttazzo and Stankovic, 1993] assigns a value to each

task set, and will drop jobs from low-value tasks under overload. If the system returns to

non-overload conditions, those tasks are scheduled again. This is a very early version of

asymmetric protection. The algorithm is optimal, however this is only the case if scheduler

overhead is excluded. Since the algorithm has O(n) complexity in the number of tasks, the

authors recommend using a dedicated scheduling processor such that overhead will not

affect the timing behaviour – but this is not suitable for embedded systems, where the goal

is to minimise the number of processors, not increase them.

3.1.3 Resource servers

Resource servers in this context provide a second, top-level of scheduling for non-HRT tasks,

and are not servers in a systems context but rather algorithms which limit the execution

time of SRT tasks in order to provide temporal isolation. Resource servers effectively

wrap the task, preserving specific execution parameters and feeding them to the lower-

level scheduler (EDF or FP). We now provide a brief overview of several different types

of servers, including their strengths and limitations. Approaches include polling servers,

deferrable servers, sporadic servers, priority exchange servers and constant bandwidth

servers.

1Note that this limitation applies to any system that uses a scheduling tick rather than specific timeouts for
scheduling.

29



Polling servers

Polling servers [Lehoczky et al., 1987] wake every period, to check if there are any pending

jobs, then allows jobs to run until their budget is exhausted, at most. If there is no task to

run, the polling server will go back to sleep. That is, at time ti, if there are no tasks ready to

execute, the server will sleep until ti+1. This has the limitation that task maximum latency is

just under the period T – if an event triggers a job just after the polling server wakes, finds

there is no work and returns to sleep, the pending job is delayed until the polling server

wakes again.

Deferrable Servers

Unlike polling servers, deferrable servers [Lehoczky et al., 1987; Strosnider et al., 1995]

preserve any unused budget throughout periods, although the budget can never be exceeded.

This removes latency problems with polling servers, as deferrable servers can wake any

time a job is available. Unfortunately, deferrable servers do not provide true temporal

isolation and can only guarantee that tasks will not exceed a maximum bandwidth under

periodic task constraints, where jobs arrive at the start of the period. Under sporadic task

constraints, where job arrival is only constrained by a minimum inter-arrival time, jobs can

execute back-to-back, thus exceeding their allocated scheduling bandwidth for any specific

occurrence of the period. This occurs as deferrable servers replenish the budget to full at

the start of each period, and the budget can be used at any point during a task’s execution.

We demonstrate the problem with deferrable servers using the notation introduced in

Table 2.1. Consider a sporadic task with implicit deadlines in a task set, A1, with jobs

A11,A12, . . . ,A1n. Each job in that task set has a deadline once the period has passed:

d1 j = t1 j +T1. The problem occurs if the first job arrives at a11 = d11−C1, such that it only

completes at exactly the implicit deadline. Then a second job may arrive at the release time

d11 such that it runs back-to-back with the first task, from a11 to d11 +C1, then the task has

exceeded the bandwidth (C1
T1
) over a small window of time.

Sporadic servers

Sporadic servers [Sprunt et al., 1989] address the problems of deferrable servers by schedul-

ing multiple replenishment times, in order to preserve the property that for all possible

points in time Ui ≤ Ci
Ti

, known as the sliding window constraint, which is the condition that

deferrable servers violate. Each time a task is preempted, or blocks, a replenishment is set

for the time of arrival + Ti, for the amount consumed. When no replenishments are available,

sporadic servers have their priority decreased below any real-time task. The priority is

restored once a replenishment is available. While this approach addresses the problems of

deferrable servers, the implementation is problematic as the number of times a thread is

preempted or blocked is potentially unbounded. It is also subject to capacity loss as tasks

that use very small chunks of budget at a time increase the interrupt load. Large numbers of
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replenishments result in more accurately tracked replenishments, however more memory is

used to track those replenishments, and fragmentation of the replenishments leads to more

frequent preemptions.

Priority exchange servers

Priority exchange servers [Sprunt et al., 1989; Spuri and Buttazzo, 1994] allow inactive,

high-priority tasks to swap their priorities with active, low-priority tasks, such that server

capacity is not lost but used at a lower priority. Implementations of priority exchange require

control and access to priorities across an entire system, rather than containing the server

logic to a single task.

Constant-bandwidth servers

In the real-time community, the term server is used to describe virtual time sources, where an

intermediate algorithm monitors task execution and, using that information, prevents task(s)

guarded by the server from exceeding specified temporal behaviour. These algorithms are

integrated into the scheduler.

Constant-bandwidth server (CBS) is a technique for scheduling HRT and SRT tasks

and providing temporal isolation [Abeni and Buttazzo, 2004]. Under CBS, HRT tasks

are scheduled using an EDF scheduler, but SRT tasks are treated differently in order to

allow HRT tasks to meet their deadlines. In the presence of processor contention CBS

guarantees tasks a constant bandwidth and prevents them from interfering with HRT tasks.

However, if no other tasks competing for the processor then tasks using CBS may use a

greater bandwidth. Instead, a CBS is assigned to each SRT task. Each CBS has a bandwidth

assigned to it, and breaks down SRT jobs into sub-jobs such that the utilisation rate of the

task does not exceed the assigned bandwidth. Any sub-job that will cause the bandwidth to

be exceeded is postponed, but still executed.

CBS stands out from previous server-based approaches like the total bandwidth

server[Spuri and Buttazzo, 1994] as it does not require a WCET or a minimum bound on

job inter-arrival time, making it much more suitable for SRT tasks. Implementation wise,

CBS has less system overheads than Pfair schedulers.

Many extensions exist for CBS to improve functionality. Kato et al. [2011] extend

CBS to implement slack donation, where any unused bandwidth is given to other jobs.

In [Craciunas et al., 2012], CBS is extended such that bandwidths are variable at run-

time. Lamastra et al. [2001] introduce bandwidth inheritance across CBS servers applied

to different resources, providing temporal isolation for additional resources other than

processing time.
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3.1.4 Resource server allocation

When using more than one resource server to temporally contain multiple non-HRT tasks,

the question arises as to how to allocate resources between those servers. The allocation

problem is separate to the scheduling processor, and is treated separately in order to provide

flexibility in timeliness requirements supported by the scheduler.

Rate-based EDF

Rate-based earliest deadline first (RBED) [Brandt et al., 2003] is an algorithm that imple-

ments such a scheduler. In RBED, tasks are considered as either HRT, SRT, best-effort or

rate-based. Tasks are modelled using an extension of the periodic task model, allowing any

job of a task to have a different period. If rate-based or HRT tasks cannot be scheduled at

their desired rate they are rejected. SRT tasks are given their rate if possible with the option

to provide a quality of service specification. Processor time reservations can be used to make

sure best-effort tasks are allowed some execution time. Otherwise, they are allocated slack

time unused by SRT and HRT tasks. Either way, best-effort tasks are scheduled by assigning

them a rate that reflects how they would be scheduled in a standard, fair, quantum-based

scheduler. Based on the rates used, RBED breaks tasks down and feeds them to an EDF

scheduler to manage processing time. Rates are enforced using a one-shot timer to stop

tasks that exceed their WCET. As tasks enter and leave the system, the rates of SRT tasks

will change. Slack time that occurs as a result of tasks completing before their deadlines is

only donated to best-effort tasks, although the authors note that extensions should be able

to donate slack to SRT tasks as well. RBED is similar to the concept of CBS, however it

deals with separate types of real-time tasks more explicitly.

CASH

Caccamo et al. [2000] provide another approach, termed capacity sharing (CASH), for

resource allocation between CBS servers when using an EDF scheduler, which allows

unused time from CBS servers to be reclaimed. Under CASH, a global queue of spare

capacities is maintained ordered by deadline which is used to schedule residual capacities.

Slack stealing

Slack stealing [Ramos-Thuel and Lehoczky, 1993] is an approach that runs a scheduling

task at the lowest priority and tracks the amount of slack per task in the system. As aperiodic

tasks arrive, the slack stealer calculates whether they can be scheduled or not based on

the slack in the system and current load of periodic tasks. This method does not provide

guarantees at all for the aperiodic tasks, unless a certain bound is placed on the execution

of periodic tasks.
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3.2 Mixed-criticality schedulers

In the real-time community, much work has been conducted around a theoretical mixed-

criticality task model introduced by Vestal [2007]. In this model, a system has a specific

range of criticality levels, Lmin− Lmax and a current criticality level Lnow. Each task in

the system is assigned a criticality level, Li, and has a vector of execution times of size

Li−Lmin. When the system undergoes a mode change, should Li ≥ Lnow the execution time

required by that task is set to the value in the vector corresponding to the new Lnow. If a

task’s criticality is less than Lnow, it may be dropped or scheduled with much lower priority

until a criticality mode-switch increases Lnow.

Vestal [2007]’s model can be interpreted in several ways; as a form of graceful de-

gradation; or as an optimisation in the case where a system designer and CA disagree

on WCET estimates for a system, which results in tasks with two WCET estimates, one

very pessimistic one from the CA and a less pessimistic one from the system designers or

automated tools. Theoretically, if the system designer could show that the higher estimates

of the CA can be met by such a mode change, they could schedule less criticality tasks

when in a low criticality mode.

None of the scheduling algorithms so far directly support mixed-criticality systems.

RBED is the closest, although it assumes a direct relationship between criticality and

real-time model, with the assumption that HRT tasks are more critical than SRT tasks which

are more critical than best-effort tasks.

As a result of this, a family of mixed-criticality schedulers exists that handle high

criticality tasks with two WCET estimates, and low-criticality tasks. The scheduling al-

gorithm will always schedule high-criticality tasks. If high-criticality tasks finish before the

lower WCET estimate, lower criticality tasks are also scheduled. Otherwise, tasks of lower

criticality may not be scheduled at all.

3.2.1 Static mixed-criticality

Static mixed-criticality schedulers are built for variants on Vestal [2007]’s model. Schedul-

ing algorithms in this class are distinguished by a criticality mode-switch between two

or more criticality levels, which may result in low criticality tasks being dropped or de-

prioritised in some way. Schedulers for this model of mixed-criticality have been developed

and extensively studied for FP [Pathan, 2012; Vestal, 2007] and EDF [Baruah et al., 2011a],

and further. As this has been a very active topic, we refer the reader to Burns and Davis

[2017] for an extensive background.

However, while this model, and many variations upon it have been subject to much

research in the real-time community, questions have been raised as to its practicality

in industry. Ernst and Di Natale [2016] claim that a CA would be unlikely to accept

multiple WCET definitions and state that the focus of mixed-criticality research should
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be on providing systems for error handling and proof of isolation in order to make mixed-

criticality systems practical.

3.2.2 MC2

MC2 [Herman et al., 2012] is a mixed-criticality two-level hierarchical scheduler for

multiprocessors with low core counts (2–8) which defines levels of task, which are scheduled

differently. Level-A tasks are high-criticality tasks which are scheduled with a cyclic

executive (recall Section 2.2.1), with parameters computed offline. If no level-A tasks are

eligible to run, including in slack left in cyclic, level-A frames, level-B tasks are considered.

Level-B tasks are trusted, HRT tasks scheduled with partitioned EDF, where one EDF

scheduler exists per processor. The authors note that the scheduler at level-B could be

swapped with FPRM. In the slack left by level-A and level-B tasks, level-C tasks can run.

Level-C tasks are globally scheduled with EDF, using one scheduler queue for all cores.

The intuition is that level-C tasks are SRT tasks which run in the slack time of the more

critical level-A and level-B tasks. Level-D tasks are considered to be best-effort tasks,

and are scheduled in the remaining slack from A,B and C. MC2 also has optional budget

enforcement that can be applied to all levels of task, which prevents tasks from exceeding a

specified bandwidth.

The MC2 scheduler is an example of a combination of policies, where criticality and

real-time model are aligned, in a way that may not be appropriate for all systems.

3.2.3 Zero Slack Scheduling

De Niz et al. [2009] propose a scheduling approach that can handle multiple levels of

criticality, called zero slack (ZS) scheduling. ZS scheduling is based on the fact that tasks

rarely use their WCET. This means that resource reservation techniques like CBS without

slack donation result in low effective utilisation. ZS scheduling takes the reverse approach:

high criticality tasks steal utilisation from lower criticality tasks. This involves calculating a

ZS instant —the last point at which a task can be scheduled without missing its deadline.

Under overload, the ZS scheduler makes sure that high criticality tasks are scheduled by

their ZS instant, such that they cannot be preempted by lower criticality tasks.

Implementations of ZS scheduling can be built using any priority-based scheduling

technique, however in the initial work, FP with RM priority assignment is used. The ZSRM

scheduler is proved to be able to schedule anything that standard RM scheduling can, whilst

maintaining the asymmetric protection property. ZS scheduling can be combined with

temporal isolation via bandwidth servers.

ZS scheduling has been adapted to use a quality of service (QoS) based resource

allocation model [de Niz et al., 2012], in the context of AAVs. Many models of real-time

systems assume that WCETs for real-time tasks are stable and can be calculated. However,

AAVs have complicated visual object tracking algorithms where WCET is difficult to
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calculate, and execution time varies with the number of objects to track. In practice, De Niz

et al. [2012] found that ZSRM scheduling resulted in utility inversion — where lower utility

tasks prevent the execution of higher utility tasks. Although assuring no criticality inversion

occurred with a criticality-based approach, under overload, some tasks offer more utility

than others with increased execution time. As a result, the authors replace criticality in the

algorithm with a utility function. Two execution time estimates are used for real-time tasks

— nominal-case execution time (NCET) and overloaded-case execution time (OCET), each

having their own utility. The goal of the scheduler is to maximise utility, under normal

operation and overload. In practice, utility and criticality are system specific values that

allow for further prioritisation than simply the rate of the task, required by FPRM.

3.3 Resource sharing

One of our goals is to allow tasks of different criticality to share resources. While the

resource itself must be at the highest criticality of any task using it, this relationship is

not necessarily symmetric; low criticality systems should be able to use high criticality

resources, as long as their resource access is bounded. In this section we explore how

resource reservations and real-time locking protocols interact, and assess their suitability

for mixed criticality systems.

So far in this chapter we have looked at real-time theory for providing temporal isolation:

usually in the form of isolation algorithms (termed servers in real-time theory) which ration

out execution time, guaranteeing a maximum bandwidth or allowing aperiodic tasks to

run in the slack time of other tasks. Similarly, the resource sharing locking protocols of

priority inheritance and ceiling priorities are not designed to work if tasks misbehave: in all

the protocols, if a task does not voluntarily release a resource, all other tasks sharing that

resource will be blocked. One cannot blindly apply a technique like polling servers directly

to resource sharing, as if the bandwidth expires while the resource is held no other task can

access that resource.

Resource kernels, as introduced in Section 2.4.5, outline the policy decisions that must

be made when combining locking protocols and reservations: prioritisation, charging and

enforcement.

Prioritisation, or what priority a task uses while accessing a resource, can be decided

by any of the existing protocols: OPCP, IPCP, PIP or SRP. Charging is more complex.

Notionally, when a thread is temporally contained by an isolation algorithm, that algorithm

corresponds to a reservation. Under normal execution, the reservation is charged when

that thread executes. However, if a several threads are vying for a resource, which thread’s

reservation should be charged for the time executed accessing that resource.

De Niz et al. [2001] describe the possible mappings between reservations and resources

consuming those reservations, which comes down to the following choices:
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Bandwidth inheritance Tasks using the resource run on their own reservation. If that

reservation expires and there are other pending tasks, the task runs on the reservations

of the pending tasks.

Reservation for the resource Shared resources have their own reservation, which tasks

use. This reservation must be enough for all tasks to complete their request. Once

again, if tasks are untrusted no temporal isolation is provided.

Multi-reserve resources Shared resources have multiple reservations, and the resource

actively switches between them depending on which task it is servicing.

Finally, the most relevant to mixed-criticality systems, is enforcement: if the reservation

being charged for a resource access is fully consumed, what should happen? Without an

enforcement mechanism, all tasks waiting to access that resource are blocked until more

execution bandwidth is rationed by the isolation algorithm. In the majority of cases, the

bandwidth inheritance is used, relying on the idea that any operations involving shared

resources in real-time systems are bounded. Then, depending on the prioritisation protocol,

tasks must have enough budget to account for that bound. This imposes a major restriction

on shared resources: even in the case where soft-real time access is required of those

resources, bounds must be known.

3.3.1 MC-IPC

Brandenburg [2014] implements a multiprocessor IPC-based protocol referred to as MC-

IPC, where shared resources are placed in resource servers accessed. In this scheme, the

resources themselves must be at the ceiling criticality of any task accessing those resources,

but all tasks do not have to be at that criticality level. The protocol works by channelling

all IPC requests through a three-level, multi-ended queue where high-criticality tasks are

prioritised over best-effort tasks. The protocol relies on bounded resource access if a task

exhausts its allocation while using the resource, combined with correct queue ordering such

that high-criticality tasks are not blocked by low-criticality ones.

3.4 Summary

In traditional scheduling algorithms (EDF and FPRM), temporal isolation only exists as

a convention: tasks are expected to specify their parameters a priori, and trusted to not

exceed those parameters, an approach which is not suitable for mixed-criticality systems,

where tasks of different levels of assurance need to share resources.

In this chapter we have covered theoretical techniques for temporal isolation, mostly

derived from theoretical approaches to contain aperiodic tasks, which are unpredictable

workloads. One approach is to specify a processor share, or bandwidth, and use an algorithm
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such as CBS or sporadic server (SS) to temporally contain a task. The majority of these

algorithms can be used to implement processor reservations.

We also examined several mixed-criticality schedulers, however all incorporated a great

deal of policy: schedulers that provide a criticality switch assume multiple WCET estimates,

and that low-criticality tasks can be de-prioritised or dropped. MC2 defines four levels of

scheduling and assumes that the highest criticality task are also hard real time, and that

best-effort tasks are less critical than SRT tasks, while ZS-scheduling is optimised for a

particular measure of utility.

The mixed-criticality schedulers studied all assume that the criticality of a task is

directly related to the real-time strictness: for example, MC2 prioritises HRT over SRT.

While in general critical tasks are HRT, it is possible to have critical tasks that are SRT,

for instance, object tracking algorithms whose WCET depends on factors external to the

software system. Therefore, although the scheduling policies discussed can solve a specific

problem, they are not appropriate for all systems, and should not be mandated.

Finally, we looked at resource sharing, and how this interacts with processor reserva-

tions, We saw that while there are existing policies for prioritisation and charging, and

enforcement mechanisms are based on bandwidth inheritance, where should a task exceed

its budget in a shared resource, the task then inherits pending bandwidth from other tasks

accessing that resource.

In the next chapter, we survey existing operating systems and systems techniques with

respect to temporal isolation capability, resource sharing, and asymmetric protection.
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4 Operating Systems

In this chapter we provide a survey of existing operating systems and mechanisms for

building mixed-criticality systems. We evaluate the scheduling and resource sharing policies

and mechanisms available, with a focus on temporal isolation, asymmetric protection, policy

freedom, and resource sharing.

First we present a number of industry standards, before examining Linux and other open-

source operating systems, in addition to commercial offerings, in order to establish current

industry standards for temporal isolation. Finally, we survey existing, relevant operating

systems from systems research, deeply examining techniques that can be leveraged to build

mixed-criticality systems, including isolation and resource sharing techniques.

4.1 Standards

In order to establish standard industry practices, we first present three standards industry

standards which provide real-time scheduling and resource sharing (POSIX, ARINC 653,

and AUTOSAR) and examine their mechanisms for temporal isolation and resource sharing.

4.1.1 POSIX

First, we look at the portable operating system interface (POSIX) standard which underlies

many commercial and open-source operating systems. POSIX is a family of standards,

which includes specifications of RTOS interfaces [Harbour, 1993] for scheduling and

resource sharing, which influence much OS design. Scheduling policies specified by POSIX

are shown in Table 4.1.

Faggioli [2008] provides an implementation of SCHED_SPORADIC, which Stanovic et al.

[2010] used to show that the POSIX definition of the sporadic server is incorrect and can

allow tasks to exceed their utilisation bound. The authors provide a modified algorithm for

merging and abandoning replenishments which fixes these problems, of which corrections

to the pseudo code were published by Danish et al. [2011]. In further work Stanovic

et al. [2011] show that while sporadic servers provide better response times than polling

servers under average load, under high load the overhead of preemptions due to fine-
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Policy Description

SCHED_FIFO Real-time tasks can run at a minimum of 32 fixed-priorities until
they are preempted or yield.

SCHED_RR As per SCHED_FIFO but with an added timeslice. If the timeslice
for a thread expires, it is added to the tail of the scheduling
queue for its priority.

SCHED_SPORADIC Specifies sporadic servers as described in Section 3.1.3 and
can be used for temporal isolation. For practical requirements,
the POSIX specification of SCHED_SPORADIC specifies a maximum
number of replenishments which is implementation defined.

Table 4.1: POSIX real-time scheduling policies.

Policy Description

NO_PRIO_INHERIT Standard mutexes that do not protect against priority inversion.

PRIO_INHERIT Mutexes with PIP to prevent priority inversion, recall Sec-
tion 2.3.2.

PRIO_PROTECT Mutexes with highest lockers protocol (HLP) to prevent priority
inversion, recall Section 2.3.3.

Table 4.2: POSIX real-time mutex policies for resource sharing.

grained replenishments causes worse response times when compared to polling servers.

Consequently, they evaluate an approach where servers alternate between sporadic and

polling servers depending on load, where the transition involves reducing the maximum

number of replenishments to one and merging available refills.

Resource sharing in the POSIX OS interface is permitted through mutexes, which can

be used to build higher synchronisation protocols. Table 4.2 shows the specified protocols.

Although POSIX provides SCHED_SPORADIC which can be used for temporal isolation

(however flawed), the intention of the policy is to contain aperiodic tasks. However, temporal

isolation of shared resources is not possible with POSIX. This is because SCHED_SPORADIC

allows threads to run at a lower priority if they have exhausted their sporadic allocation,

meaning those threads can still access resources even when running at lower priorities.

In fact, running at lower priorities ensures that threads contained by sporadic servers can

unlock locked resources: however, it also does not bound locking, or provide ways to

pre-empt locked resources. As a result, POSIX is insufficient for mixed-criticality systems

where tasks of different criticalities share resources.

POSIX is a family of standards, including core services, real-time extensions, and

threads-extensions, among others. Not all OSes implement the full POSIX standard, how-

ever many implement subsets or incorporate features of those subsets, including Linux.
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4.1.2 ARINC653

ARINC 653 (Avionics Application Standard Software Interface) is a software specification

for avionics which allows for the construction of a limited form of mixed-criticality systems.

Under ARINC 653, software of different criticality levels can share hardware under strict

temporal and spatial partitioning, where CPU, memory and I/O are all partitioned.

Software of different criticality levels are assigned to separate, non-preemptive parti-

tions, which are scheduled according to a fixed-time window, in the fashion of a cyclic

executive (recall Section 2.2.1). When a partition switch occurs, all CPU pipeline state and

cache state is flushed to avoid data leakage between partitions [VanderLeest, 2010]. Within

partitions, a second-level, preemptive, fixed-priority scheduler is used to dispatch threads,

with FIFO ordering for equal priorities. At the end of each partition, all CPU pipeline state

and cache state is flushed and a partition switch occurs. Temporal isolation under ARINC

is therefore completely fixed between partitions, and non-existent within partitions.

The ARINC 653 specification does not consider multiprocessor hardware, although it

is possible to schedule specific partitions on fixed processors.

The standard does permit resource sharing between partitions: resources are either

exclusive, and accessible to one partition only, or shared between two or more partitions.

Synchronisation mechanisms are specified both inter- and intra-partition.

Inter-partition sharing between partitions is provided by sending and receiving ports,

configured to be either sampling ports, or queuing ports, depending on the access re-

quired [Kinnan and Wlad, 2004]. Importantly, ports have no impact on the scheduling

order of partitions, all operations must complete in the duration of a partition’s fixed-time

window.

Intra-partition synchronisation is via the low-level events and semaphores, or high-level

blackboards and buffers. The latter are both uni-directional message passing interfaces,

buffers provide a statically-sized producer-consumer queue while blackboards provide

asynchronous multicast behaviour where multiple tasks can read the latest message until it

is cleared [Zuepke et al., 2015]. Finally, ARINC 653 specifies a health monitoring system,

which can detect deadline misses and run preconfigured exception handlers.

4.1.3 AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) is a set of specifications for develop-

ing real-time software in the automotive domain, which like ARINC653, has a focus on

safety. Unlike ARINC, AUTOSAR does not specifically provide for mixed-criticality.

Software in AUTOSAR is either trusted or untrusted, where trusted indicates it can

be run in privileged mode. This is effectively an all-or-nothing mechanism for spatial

isolation, derived from the fact that much of the hardware AUTOSAR runs on is embedded

without an MMU, which would allow for more fine-grained spatial isolation. In terms

of temporal isolation, AUTOSAR provides a mechanism referred to as timing protection,
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where tasks’ execution times, resource access durations and inter-arrival times are specified

and monitored, such that exceptions can be raised on temporal violations [Zuepke et al.,

2015].

Scheduling in AUTOSAR is partitioned per processor, with a fixed-priority, preemptive

scheduler per core, with FIFO for equal priorities. Unlike ARINC, AUTOSAR allows for

inter-processor synchronisation, facilitated by spinlocks.

For resource sharing, AUTOSAR specifies synchronisation through IPCP, supported

by allowing tasks to raise their priority to the resources’ configured priority. Additionally,

AUTOSAR supports nesting of resources. For synchronisation, events are provided, which

threads can block on.

4.1.4 Summary

We survey three representative software standards for developing real-time systems: POSIX,

ARINC and AUTOSAR. All mandate the use of fixed-priority schedulers and provide

protocols and mechanisms for resource sharing. Under POSIX, the focus of the resource

sharing mechanisms is synchronisation of critical sections for correctness, not temporal

isolation. AUTOSAR provides optional monitoring which can raise an exception if a task

holds a resource for too long, although this requires exact scheduling details to be provided

about the task and resource. ARINC alone provides real temporal isolation for tasks sharing

resources however, the support is limited to fixed, static partitions with no flexibility.

4.2 Existing operating systems

There is a significant gap between real-time theory, as surveyed in the last chapter, and

real-time practice, which we have partially highlighted in the previous section. Now we

survey existing open-source and commercial operating systems, which are used in practice,

to demonstrate the status quo, and the impact of the discussed specifications and standards

on their development.

4.2.1 Open source

Many open-source OSes are used in real-time settings, although generally not in high-

assurance, safety-critical systems. Regardless, temporal isolation and resource sharing

mechanisms remain important to guarantee the function of the software.

Linux

Due to its collaborative development and a massive code base, Linux is not amenable to

certification and cannot be considered an OS for high-criticality applications. However,

Linux is frequently used for low-criticality applications with SRT demands, and can be used

to provide low-criticality services in a mixed-criticality setting, as long as it is sufficiently
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isolated. Additionally, Linux is often used as a platform for conducting real-time systems

research.

Linux has a fixed-priority preemptive scheduler which is split into scheduling classes.

Real-time threads can be scheduled with POSIX SCHED_FIFO and SCHED_SPORADIC. Best-effort

threads are scheduled with the time-sharing completely-fair scheduler (CFS), and real-time

threads are scheduled either FIFO or round-robin, and are prioritised over the best-effort

tasks. Fixed priority threads in Linux are completely trusted: apart from a bound on total

execution time for real-time threads which guarantees that best-effort threads are scheduled

(referred to as real-time throttling [Corbet, 2008]), individual temporal isolation is not

possible.

Linux version 3.14 saw the introduction of an EDF scheduling class [Corbet, 2009],

which is between the fair and the fixed priority scheduling classes. The EDF implementation

allows threads to be temporally isolated using CBS.

Scheduling in Linux promotes the false correlation we see in many systems: real-time

tasks are automatically trusted (unless scheduled with EDF and CBS) and assumed to be

more important—or more critical—than best-effort tasks. In reality criticality and real-

time strictness are orthogonal. Linux does not provide any mechanisms for asymmetric

protection beyond priority.

On the resource sharing side Linux provides real-time locking via the POSIX API as

per Table 4.2, which is unsuitable for mixed-criticality shared resources.

Numerous projects attempt to retrofit more extensive real-time features onto Linux. We

briefly summarise major and relevant works here.

One of the original works [Yodaiken and Barabanov, 1997] runs Linux as a fully-

preemptable task via virtualisation and kernel modifications, and runs real-time threads in

privileged mode. Interrupts are virtualised and sent to real-time threads, and only directed

to Linux if required. Consequently, real-time tasks do not have to suffer from long interrupt

latencies, however it also means that devices drivers need to be rewritten from scratch

for real-time. This approach is clearly untenable in a mixed-criticality system, given all

real-time threads are trusted.

LITMUSRT [Calandrino et al., 2006] is an extension of Linux that allows for pluggable

real-time schedulers to be easily developed for testing multiprocessor schedulers which

schedule kernel threads. Real-time schedulers run at a higher priority than best-effort

threads, and schedulers can be dynamically switched at run time. LITMUSRT is not intended

for practical use, but for developing and benchmarking scheduling and resource sharing

algorithms. Implementations of global- and partitioned-, EDF and FP schedulers exist

for LITMUSRT, in addition to PFair schedulers. A SS implementation exists, as well as

various multicore, real-time locking protocols. Both MC2 (Section 3.2.2) and MC-IPC

(Section 3.3.1) are implemented and evaluated using LITMUSRT. As a core mechanism,

MC-IPC contains too much policy to be included as in a microkernel, however is a candidate

for implementation at user-level.
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Linux/RK [Oikawa and Rajkumar, 1998] is a resource kernel implementation of Linux

with scheduling, admission control, and enforcement in the kernel. Every resource, including

memory, CPU time and devices, is time-multiplexed using a recurrence period, processing

time and deadline. Reservations in Linux/RK can be hard, firm of soft, which alters resource

scheduling after exhaustion. Hard reservations are not scheduled again until replenishment,

firm are only scheduled if no other undepleted reserve or unreserved resource use is

scheduled, while soft allows resource usage to be scheduled at a background priority.

Linux/RK is additionally often used to implement and test other schedulers, such as ZS

scheduling [de Niz et al., 2009], which was presented in Section 3.2.3.

Whilst Linux implementations are suitable for implementing algorithms, being used

as test-beds and even being deployed for non-critical SRT applications, ultimately Linux

is not a suitable RTOS for running safety-critical HRT applications. The large amount of

source code results in a colossal trusted computing base, where it is impossible to guarantee

correctness through formal verification or timeliness through WCET analysis. Major reasons

for adapting Linux to real-time are the existing applications and wide array of device and

platform support. For mixed-criticality systems these advantages can be leveraged by

running Linux as a virtualised, guest OS to run SRT and best-effort applications.

RTEMS

RTEMS is an open-source RTOS that operates with or without memory protection, although

in either case it is statically configured. Although it is an open-source project, RTEMS

is used widely in industry and research. The main scheduling policy is FPRM, however

EDF is also available with temporal isolation an option using CBS. No temporal isolation

mechanisms are present for fixed-priority scheduling. RTEMS provides semaphores with

PIP or HLP for resource sharing, as well as higher level primitives for these. RTEMS does

not provide mechanisms for shared resources, as target threads are trusted to complete

critical sections within a determined WCET, and provides no mechanism for isolation

through shared resources.

FreeRTOS

FreeRTOS is another open-source RTOS, however it only supports systems with memory

protection units (MPUs), not MMUs. The scheduler is preemptive FP and PIP is provided

to avoid priority inversion.

XtratuM

Xtratum [Masmano et al., 2009] is a statically-configured, non-preemptive hypervisor

designed for safety critical requirements that also supports ARINC 653 and AUTOSAR.

Xtratum provides a fixed-priority, cyclic scheduler and uses para-virtualisation to host Linux

and other guests.
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4.2.2 Commercial RTOSes

Several widely deployed RTOSes are used commercially, the majority providing support

for part or all of POSIX.

QNX Neutrino

QNX [2010] was one of the first commercial microkernels, widely used in the transport

industry. QNX is a separation-based, first-generation microkernel that provides FP schedul-

ing and resource sharing with POSIX semantics. QNX satisfies many industry certification

standards, although these in practice do not require WCET analysis or formal verification

of correctness.

VxWorks

VxWorks [Win, 2008] is a monolithic RTOS deployed most notably in aircraft and space-

craft. It supports FP scheduling with a native POSIX-compliant scheduler, and implements

ARINC 653. VxWorks also has a pluggable scheduler framework, allowing developers to

implement their own, in-kernel scheduler.

PikeOS

PikeOS [SysGo, 2012] is a second-generation microkernel which implements ARINC 653

and runs RTOSes as paravirtualised guests in different partitions. Partitions are scheduled

statically in a cyclic fashion, and each partition has its own scheduling structure supporting

256 priorities. An alternative design has been implemented for PikeOS [Vanga et al., 2017],

where reservations are used to schedule low-latency, low-criticality tasks. This is achieved

by using “EDF within fixed priorities” [Harbour and Palencia, 2003], which schedules using

EDF at specific priority bands, combined with a pluggable interface for using a reservation

algorithm (e.g. CBS, SS, deferrable server (DS)) to temporally contain threads. In order

to achieve low-latency, these tasks are run in the special partition of PikeOS, known as

the system partition, which is scheduled at the same time as the currently active partition

and provides essential system services. These tasks are intended to run without sharing

resources or interfering with high-criticality tasks, which run in their own partitions.

Deos

Deos is another RTOS which provides fixed-priority scheduling, with the addition of slack

scheduling, where threads can register to receive slack and are scheduled according to their

priority when there is slack in the system. Like PikeOS, Deos also implements ARINC 653

and a defined subset of POSIX.
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4.2.3 Summary

There are many other RTOSes used commercially, but the general pattern is POSIX-

compliant, FP scheduling and resource sharing. This brief survey shows that FP scheduling

is dominant in industry due to its predictable behaviour on overload, specification in the

POSIX standard, and compatibility with existing, priority-based, best-effort systems. If

EDF is incorporated, it is provided at priority bands in the fixed-priority system. Without a

principled way to treat time as a first-class resource, the reliance on fixed-priority conflates

the importance of a task and its scheduling priority, often based on rate, resulting in low

utilisation in these systems.

OS Scheduler Temporal Isolation

Linux FP + EDF CBS

RTEMS FP + EDF CBS

FreeRTOS FP 7

QNX FP ARINC 653, SS

VxWorks FP ARINC 653

PikeOS FP ARINC 653

Deos FP ARINC 653

Table 4.3: Summary of scheduling and temporal isolation mechanisms in surveyed open-source and
commercial OSes.

Table 4.3 summarises the commercial and open-source OSes surveyed. Although

temporal isolation is sometimes provided with the possibility of bounded bandwidth via

CBS or SS, support for temporal isolation in shared resources is non-existent beyond

the strict partitioning of ARINC 653. Although many of these RTOSes are deployed in

safety critical systems, their support for mixed-criticality applications is limited to the

ARINC653 approach discussed in Section 4.1.2. Clearly, more flexible mechanisms for

temporal isolation and resource sharing are required.

4.3 Isolation mechanisms

We now look to systems research and explore mechanisms for temporal isolation and

resource sharing in research operating systems, exploring their history and the state of the

art. First, we briefly introduce each operating system that is surveyed, before exploring

in detail specific mechanisms that can be used to support mixed-criticality systems. We

investigate how different OSes address resource kernel concepts required to treat time as a

first class resource; scheduling, accounting, enforcement, admission. Additionally, we look

at how prioritisation, charging and enforcement are achieved, if at all, to achieve temporal

isolation across shared resources.
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The majority of kernels surveyed here are microkernels, as introduced in Section 2.4

and are as follows:

• KeyKOS [Bomberger et al., 1992], a persistent, capability based microkernel.

• Real-time Mach [Mercer et al., 1993, 1994], a first-generation microkernel.

• EROS [Shapiro et al., 1999], the first high-performance, capability-based kernel.

• Fiasco [Härtig et al., 1998; Hohmuth, 2002] is a second-generation L4 microkernel,

with fixed-priority scheduling.

• MINIX 3 [Herder et al., 2006], a traditional microkernel with a focus on reliability

rather than performance.

• Tiptoe [Craciunas et al., 2009] is a now-defunct research microkernel that also aims

at temporal isolation between user-level processes and the operating system.

• NOVA [Steinberg and Kauer, 2010] a third-generation microkernel and hypervisor.

• COMPOSITE [Parmer, 2009] is a component-based OS microkernel, with a dominant

focus on support for fine-grained components, and massive scalability.

• Barrelfish [Peter et al., 2010] is a capability-based multi-kernel OS, where a separate

kernel runs on each processing core and kernels themselves share no memory and

are essentially central processing unit (CPU)-drivers.

• Fiasco.OC [Lackorzyński et al., 2012], a third-generation iteration of Fiasco, both

microkernel and hypervisor.

• Quest-V [Danish et al., 2011] is a separation kernel / hypervisor.

• seL4 [Klein et al., 2014], the first third-generation microkernel with hypervisor

support, strong isolation properties and a proof of functional correctness. We present

seL4 and its mechanisms in more detail in Chapter 5.

• AUTOBEST [Zuepke et al., 2015] is a separation kernel where the authors demon-

strate implementations of AUTOSAR and ARINC653 in separate partitions.

We do not consider Nemesis [Leslie et al., 1996], as although it treated time as a

first-class resource, the focus was on multimedia performance. Nemesis was as single-

address-space operating system, an architecture designed for efficient sharing, as pointers

are valid beyond process boundaries, at the cost of much larger virtual address spaces.

4.3.1 Scheduling

As in commercial and open-source OSes, fixed-priority scheduling dominates in research,

with only Tiptoe and Barrelfish providing EDF schedulers, although MINIX 3 has been

adapted for real-time [Mancina et al., 2009], by allowing the kernel’s best-effort scheduling

to be set to EDF on a per-process basis, with kernel scheduler activations that allow for a

user-level CBS implementation.
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COMPOSITE stands out, as it does not provide a scheduler or blocking semantics in the

kernel at all, requiring user-level components to make scheduling decisions. HIRES [Parmer

and West, 2011] is a hierarchical scheduling framework built on top of COMPOSITE.

HIRES delivers timer interrupts to a root, user-level scheduling component, which are then

forwarded through the hierarchy to child schedulers. Consequently, scheduling overhead

increases as the hierarchy deepens. Child schedulers with adequate permissions use a

dedicated system call to tell the kernel to switch threads, while the kernel itself does not

provide blocking semantics, which are also provided by user-level schedulers. This design

offers total scheduling policy freedom, as user-level scheduling components can implement

all the goals of a resource kernel according to their own policy. COMPOSITE recently

added the concept of temporal capabilities [Gadepalli et al., 2017] which interact with the

user-level scheduling model, and are discussed further later in this chapter (Section 4.3.5).

4.3.2 Timeslices and meters

Meters were one of the first mechanisms used to treat time as a resource, originating in

KeyKOS. A meter represented a defined length of processing time, and threads required

meters to execute. Once a meter was depleted a higher authority was required to replenish

it, requiring another thread to run.

L4 kernels [Elphinstone and Heiser, 2013] extended this concept with timeslices, which

like meters are consumed as threads execute, but no authority is invoked to replenish the

meter: the timeslice simply represents an amount of time that a thread could execute at

a priority before preemption. On preemption, the thread is placed at the end of the FIFO

scheduling queue for the appropriate priority, with a refilled timeslice, in a round-robin

fashion.

Meters and timeslices provide a unit of time, but do not restrict when that time must

be consumed by. Although simpler, timeslices have insufficient policy freedom in that

they are recharged immediately, providing no mechanism for an upper bound on execution.

Although meters allowed a user-level policy to define replenishment, this proved expensive

on the systems and hardware at the time, as every preemption resulted in a switch to a

user-level scheduler and back. Neither concept provides anything resembling a bandwidth

or share of a CPU, and only threads at the highest priority level have any semblance of

temporal isolation as they cannot be preempted by other threads, sharing their time only

with threads at the same priority.

As a result, in a system where time is treated as a first-class resource, the timeslice/meter

is not an appropriate, policy-free mechanism alone for building mixed-criticality systems

with temporal isolation guarantees.
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4.3.3 Reservations

Many research OSes have provided mechanisms for processor reservations, a concept

with roots in resource kernels, as introduced in Section 2.4.5. Like meters and timeslices,

reservations are consumed when threads execute upon them, however, they represent a

bandwidth or share of a processor, and provide a mechanism for temporal isolation.

Reservation schemes differ in the algorithm used to ensure the specified bandwidth was

not exceeded: Mach and EROS used DS, Tiptoe CBS, while Barrelfish provides RBED.

SSs are provided by Quest-V [Li et al., 2014], which address the back-to-back problem

of DS however require a more complex implementation. Quest-V provides reservations

through SS, however I/O and normal processes are distinguished statically: I/O processes

use polling servers and normal processes use sporadic servers.

All the research OSes that implement reservations have an admission test in the kernel

which is run on new reservations, and checks that the set of reservations are schedulable.

Although admission testing is dynamic, providing the admission test in the kernel makes

the scheduler used, and the schedulability test, an inflexible policy mandated by the kernel.

Enforcement policy, which determines what occurs when a reserve is exhausted, varies

between two extremes: either threads cannot be scheduled until the reservation is replen-

ished, or it is scheduled in slack time. CBS approaches enforce an upper bound on execution,

not permitting threads to run until replenishment. Real-time Mach, with EROS to follow,

allowed threads with exhausted reservations to run in a second-level, time-sharing sched-

uler. For RBED-based approaches, enforcement is coded into the classification of the task:

rate-based tasks are not scheduled until replenishment, but best-effort and SRT tasks can

run in slack time. Fiasco allowed processes to reserve a higher priority for a certain amount

of cycles, before returning to a lower priority, essentially running expired reservations in

slack time.

The importance of reservations also varies. In the case of RBED, the highest criticality

threads are trusted, and their execution is not monitored at all, while threads with reserva-

tions are considered second tier and best-effort threads the least important. This allows for a

strict form of asymmetric protection where HRT threads can temporally affect SRT threads

and best-effort threads, but not vice-versa. The Mach approach, on the other hand, only

guarantees time to threads with reservations, which are scheduled ahead of any threads in

the time-sharing scheduler. We consider both models to be policy, as is the original resource

kernel concept where all threads must have a reservation in order to execute at all.

Some implementations allow for multiple threads to run on one reservation, which

effectively creates a hierarchical scheduler, but allows for convenient temporal isolation of

a set of tasks. In Quest-V, reservations are actually bound to virtual processors, not threads

scheduled by that processor.

Reservations are a mechanism that can be used to provide isolation, however, all the

kernels surveyed combine this mechanism with a good deal of policy for enforcement,

how important reservations are, and admission. To provide an small, trusted computing
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Figure 4.1: Thread execution during IPC between client and server.

based foundation for mixed-criticality systems, we need high-performance mechanisms

that support these various policies with minimal restrictions on what policy can be used. To

achieve this, systems must allow for overcommitting of processing resources: schedulability

is a system policy, not a mechanism.

4.3.4 Timeslice donation

Reservations alone can be used to provide temporal isolation, however are insufficient

without further mechanisms for resource sharing. Recall from Section 2.4.5 that prioritisa-

tion (the priority threads use when accessing resources), charging (which reservation to

charge during resource access) and enforcement (what action to take when a reservation

expires while accessing a resource) are key to avoiding priority inversion in a resource

kernel.

We first examine mechanisms for charging in the context of microkernels. Recall from

Section 2.4.1 that in a microkernel, OS services are implemented at user-level where clients

use IPC to communicate with servers, using remote procedure calls (RPCs), as illustrated

in Figure 4.1. These servers logically map to shared resources, where clients are the threads

accessing those resources.

Early implementations of IPC had clients send messages directly to servers by referen-

cing the thread ID. Later IPC message ports were introduced to provide isolation; clients

send messages and wait for replies on ports, and servers receive messages on ports and

reply to the client’s message on that port, removing the need for threads to know details

about each other. Servers effectively provide resources shared with multiple clients, via IPC

through ports.
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The heavy optimisation of second- and third-generation microkernels resulted in

timeslice donation, and optimisation which avoided the scheduler [Heiser and Elphin-

stone, 2016]. Timeslice donation works as follows: the client calls the server, if the server

is higher or equal priority it is switched to directly without invoking the scheduler at all,

effectively a yield. The intuition is that in a fast IPC system, the request should be finished

before the timeslice expires. In reality, longer requests do occur, so while the client’s

timeslice is used for the start of the request, the server’s timeslice is used beyond that. This

results in no proper accounting of the server’s execution, and no temporal isolation.

Other kernels, like Barrelfish, allowed the sender to set a flag on a message specifying

if timeslice donation should occur. However, this approach still suffers the problem of

undisciplined charging, rendering timeslice donation an inappropriate mechanism for

temporal isolation over shared resources.

Scheduling contexts

The mechanism of scheduling contexts is a more principled extension of timeslice donation.

Thread structures in the majority of kernels contain the execution context (registers) and

scheduling information, such as priority and accounting information, in a single structure

known as a TCB. Other kernels, including real-time Mach, NOVA, and Fiasco.OC, divide

the TCB into an execution context and scheduling context in order to allow the scheduling

context to transfer between threads over IPC for accounting and/or priority inheritance

purposes, and for performance. Steinberg et al. [2005] first introduced the term scheduling

context although the approach had been used previously in real-time Mach, as processor

capacity reserves.

The contents of a scheduling context vary per implementation. Real-time Mach’s

scheduling contexts contained parameters for the deferrable server, while NOVA’s contained

a timeslice. In Fiasco.OC, scheduling contexts are realised as reservations for virtual

processors, and contain a replenishment rule and a budget [Lackorzyński et al., 2012]. All

three implementations include a priority in the scheduling context. Further experiments on

Fiasco.OC added extra parameters, such as explicit deadlines, and bulk scheduling context

changes for explicitly supporting mixed-criticality schedulers [Völp et al., 2013].

Scheduling context donation refers to a scheduling context transferring between threads

over IPC, and is implemented in both Real-time Mach and NOVA, although the imple-

mentations are quite different. We look at both in terms of prioritisation, charging, and

enforcement.

In Real-time Mach, scheduling donation would always occur and the scheduling context

of the client always charged. In terms of prioritisation, a flag on the message port indicated

if the server should run at the priority of the scheduling context, or a statically set priority.

A further flag indicated if PIP should be implemented, where the server’s priority would be

increased to the priority of scheduling contexts from further pending requests [Kitayama

et al., 1993]. Although this approach provided a fair amount of policy freedom, it introduces
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performance costs on the critical IPC path, on a kernel already notorious for its poor IPC

performance [Härtig et al., 1997]. The enforcement policy of Real-time Mach derived

directly from its two-level scheduler, and if a scheduling context expired the server would

run in the second-level time-sharing scheduler, blocking any pending requests.

NOVA [Steinberg and Kauer, 2010] also provided scheduling contexts with donation

over IPC, although the prioritisation policy was strictly PIP, which has high preemption

overhead, as described in Section 2.3.2, and conflicts with the policy-freedom goal of a

microkernel. Enforcement and charging in NOVA are both provided through the mechanism

of helping [Steinberg et al., 2010]: a form of bandwidth inheritance, where pending clients

not only boost the priority of the server, but the server can charge the current clients request

to the pending client in order to finish the initial request.

In both implementations of scheduling context donation, the charging mechanism

becomes policy: the scheduling context of the client is always charged. Although Mach

provided a mechanism to allow for system-specific prioritisation, this came at a consid-

erable IPC cost. Finally, both provide different enforcement mechanisms but both are

hard-coded policy which rely on either charging the next client, or running in slack. While

scheduling contexts are a good mechanism for passing reservations across IPC, and thereby

implementing temporal isolation over shared resources, the state of the art is insufficient.

4.3.5 Capabilities to time

Recall from Section 2.4.2 that capabilities [Dennis and Van Horn, 1966] are an established

mechanism for fine-grained access control to system resources. Third-generation microker-

nels use capabilities for principled access to system resources, including KeyKOS, EROS,

Fiasco.OC, NOVA, seL4, COMPOSITE and Barrelfish. Of those, only KeyKOS, EROS and

COMPOSITE apply the capability system to processing time, we explore these systems after

differentiating temporal and spatial capabilities.

The major challenge of applying capabilities to time is the fact that time cannot be

treated as fungible. This is very different to spatial resources like memory, which is rendered

fungible by the flexibility of virtual memory systems: a page of memory can be swapped for

another page, as long as it has the correct contents. One window of time is not replaceable for

another window, even in the case of a best-effort task: a minor change in schedule can force

a deadline miss somewhere else. Consider real estate: like time, it is (arbitrarily) divisible

but not fungible: If a block is too small to build a house, then having a second, disconnected

block of the same size is of no help (unlike spatial resources in a kernel, which can be

mapped side-by-side). The implication is that capabilities for time have a different flavour

from those for spatial resources—they cannot support hierarchical delegation without loss,

and cannot be recursively virtualised. While delegation is an attractive property of spatial

capabilities, this delegation is not their defining characteristic, which is actually prima facie

evidence of access; in the case of time capabilities, the access is to processor time. Previous

implementations all have caveats and limitations, which we now detail.
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KeyKOS provided capabilities to meters, which granted the holder the right to execute

for the unit of time held by the meter, however as established in Section 4.3.2, meters are

not a suitable mechanism for temporal isolation.

EROS [Shapiro et al., 1999] combined processor capacity reserves with capabilities

rather than the meters of KeyKOS. Additionally, however, processor capacity reserves were

optional: a two level scheduler first scheduled the reserves with available capacity, then

threads without reserves, or with exhausted reserves, were scheduled. Like any hierarchical

scheduling model, this enforces a policy that reduces flexibility. Furthermore, hierarchical

delegation has the significant disadvantage of algorithmic utilisation loss [Lackorzyński

et al., 2012]; this is a direct result of the unfungible nature of time.

COMPOSITE recently introduced temporal capabilities [Gadepalli et al., 2017] reminis-

cent of the meters of KeyKOS in that they represent a scalar unit of time. Unlike KeyKOS,

temporal capabilities integrate with user-level scheduling, decoupling access control from

scheduling. An initial capability Chronos provides authority to all time, and is used to

provide an initial allocation of time and for further replenishment. The kernel activates

user-level schedulers which must then provide not only a thread to run, but a temporal

capability to drain time from. On expiry, the user-level scheduler is also invoked, however

this is a rare occasion as a well-built scheduler will ensure threads have sufficient capab-

ilities on each scheduling decision. A notion of time quality supports delegation across

hierarchically-scheduled subsystems without explicitly mapping all local priorities onto a

single, global priority space, although for performance reasons, the number of supported

delegations is statically limited. Additionally, time capabilities cannot be revoked unless

empty, although the time they represent is non-replenishing, so once a time capability

is drained it can be revoked. COMPOSITE’s mechanism of temporal capabilities is the

most promising, and decoupling access control from scheduling is surely key to providing

mechanisms for temporal isolation without heavily restricting policy freedom. However, the

static limit on delegations and lack of revoke makes the design incomplete for a production

system, especially as revoke is generally the hardest part to implement in a capability

system.

4.4 Summary

In this chapter we have reviewed standards and specifications for real-time operating

systems, commercial and open-source real-time operating systems, and finally, surveyed

the state-of-the-art research into mechanisms for temporal isolation, resource sharing, and

access control to processing time.

While real-time literature is divided between which real-time scheduling algorithm

should be deployed as the core of real-time systems (EDF or FP), no such divide exists in

industry where all OSes provide FP. Except in a pure research sense, kernels that provide

EDF do so in addition to FP. Resource reservations and EDF are more common in research
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OSes, whilst commercial and open-source products are heavily influenced by ARINC 653

and provide static partitioning.

As we have seen, many existing systems conflate criticality and time sensitivity in a

single value: priority. A further assumption is that high criticality, time-sensitive tasks are

always trusted, one that falls apart in the mixed-criticality context.

The criticality of a component reflects its importance to the overall system mission.

Criticality may reflect the impact of failure [ARINC] or the utility of a function. An

MCS should degrade gracefully, with components of lower criticality (which we will for

simplicity refer to as LOW components) suffering degradation before higher criticality

(HIGH) components.

Time sensitivity refers to how important it is to a thread to get access to the processor

at a particular time. For best-effort activities, time is fungible, in that only the amount of

time allocated is of relevance. In contrast, for a hard real-time component, time is largely

unfungible, in that the allocation has no value if it occurs after the deadline; soft real-time

components are in between.

Finally, trust refers to the degree of reliance in the correct behaviour of a component.

Untrusted components may fail completely without affecting the core system mission, while

a component which must be assumed to operate correctly for achieving the overall mission

is trusted. A component is trustworthy if it has undergone a process that establishes that it

can be trusted, the degree of trustworthiness being a reflection of the rigour of this process

(testing, certification, formal verification) [Veríssimo et al., 2003].

In practice, criticality and trust are closely aligned, as the most critical parts should

be the most trustworthy. However, criticality must be decoupled from time sensitivity in

MCS. Referring back to the example in the introduction, interrupts from networks or buses

have high time sensitivity, but low criticality (i.e. deadline misses are tolerable), while the

opposite is true for the flight control component. Similarly, threads (other than the most

critical ones which should have undergone extensive assurance) cannot be trusted to honour

their declared WCET.

Our claim is that how these attributes are conflated is policy that is specific to a system.

We need a mechanism that allows enforcing time limits, and thus isolate the timeliness of

critical threads from those of untrusted, less critical ones. Reservation-based kernels often

allow for a form of over-committing where best-effort threads are run in the slack-time

left by unused reservations or unreserved CPU. However, this also aligns criticality and

time-sensitivity, and enforces a two-level scheduling model.

If trustworthiness and real-time sensitivity are not conflated, many assumptions about

real-time scheduling fail. Much real-time analysis rely on threads having a known WCET,

which implies that those threads are predictable, which implies trust. If a real-time thread is

not expected to behave correctly, one cannot assume it will surrender access to the processor

voluntarily. Consequently, the PIP/bandwidth inheritance (BWI) based scheduling-context

donation mechanisms seen in this chapter are insufficient, and only form part of a solution,
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as they force a protocol which causes extensive preemption overhead, but and requires

shared servers to have known, bounded execution time on all requests.

55





5 seL4 Basics

So far we have provided a general background on real-time scheduling and resource sharing.

As the final piece of background we now present an overview of the concepts relevant to

the temporal behaviour of our implementation platform, seL4.

seL4 is a microkernel that is particularly suited to safety-critical, real-time systems with

one major caveat: time is not treated as a first-class resource, and as a result support for

temporal isolation is deficient. Three main features of seL4 support this claim: it has been

formally verified for correctness [Klein et al., 2009, 2014], integrity [Sewell et al., 2011],

confidentiality [Murray et al., 2013]. All memory management, including kernel memory, is

at user-level [Elkaduwe et al., 2006]; Finally it is the only general-purpose, protected-mode

OS to date with full WCET analysis [Sewell et al., 2016].

In this section we will present the current state of relevant seL4 features in order to

highlight deficiencies and motivate our changes. We present the capability system, resource

management, communication including IPC and the scheduler, followed by an analysis of

how the current mechanisms can be used in real-time systems.

First we introduce the powerful seL4 capability system, used to access all resources

managed by seL4—with the exception of time. The scheduler in seL4 has been left inten-

tionally underspecified [Petters et al., 2012] for later work. The current implementation

is a place holder, and follows the traditional L4 scheduling model [Ruocco, 2006]—a

fixed-priority, round-robin scheduler with 256 priorities.

5.1 Capabilities

As a capability-based OS, access to any resource in seL4 is via capabilities (recall Sec-

tion 4.3.5). Capabilities to all system resources are available to the initial task—the first

user-level thread started in the system—which can then allocate resources as appropriate.

Capabilities exist in a capability space that can be configured per thread or shared between

threads.

Capability spaces (cspaces) are analogous to address spaces for virtual memory: where

address spaces map virtual addresses to physical addresses, capability spaces map object

identifiers to access rights. cspaces are formed of capability nodes (cnodes) which contain
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capabilities, analogous to page tables in virtual memory, and can contain capabilities to

further cnodes, which allows for multi-level cspace structure. A cspace address refers to

an individual entry in some cnode in the capability space, and may be empty or contain a

capability to a specific kernel resource. For brevity, a cspace address is referred to as a slot.

Each capability has three potential access rights: read, write and grant. How those rights

affect the resource the capability provides access to depends on the type of resource, and is

explained in the next section.

Various operations can be done on capabilities, which are summarised in Table 5.1.

When a capability is copied or minted, it is said to be derived from the original capability.

All derived capabilities can be deleted by using seL4_CNode_Revoke. There are restrictions

on which capabilities can be derived and under what conditions, depending on what

the capability provides access to. Badging is a special type of derivation which allows

specific capability types to be copied with an unforgeable identifier. We discuss derivation

restrictions and the use of badges further in this chapter. Any individual capability can

be deleted, or revoked. The former simply removes a specific capability from a capability

space, the latter removes all child capabilities.

5.2 System calls and invocations

seL4 has a two-level system call structure, based on capabilities. The first level of system

calls, listed in Table 5.2, are distinguishable by system call number. The majority of sys-

tem calls are for communication; seL4_Send, seL4_NBSend, seL4_Call, seL4_Reply are sending

Operation Description

seL4_CNode_Copy Create a new capability in a specified cnode slot, which is an ex-
act copy of the other capability and refers to the same resource.

seL4_CNode_Mint Like copy, except the new capability may have diminished rights
and/or be badged.

seL4_CNode_Move Move a capability from one slot to another slot, leaving the
previous slot empty.

seL4_CNode_Mutate Like move, except the new capability may have diminished
rights and/or be badged.

seL4_CNode_Rotate Atomically move two capabilities between three specified slots.

seL4_CNode_Delete Remove a capability from a slot.

seL4_CNode_Revoke Delete any capabilities derived from this capability.

seL4_CNode_SaveCaller Saves the kernel generated resume capability into the designated
slot.

Table 5.1: Summary of operations on capabilities provided by baseline seL4 [Trustworthy Sys-
tems Team, 2017]

.
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System call Class Description

seL4_Send sending Invoke a capability.

seL4_NBSend sending As above, but the invocation cannot result in the
caller blocking.

seL4_Recv receiving Block on a capability.

seL4_NBRecv receiving Poll a capability.

seL4_Reply sending Invoke the capability in the current thread’s reply.
capability slot.

seL4_Call sending, receiving Invoke a capability and wait for a response, can
generate a reply capability.

seL4_ReplyRecv sending, receiving seL4_Reply, followed by seL4_Recv.

seL4_Yield scheduling Trigger the round-robin scheduler.

Table 5.2: seL4 system call summary. All system calls except seL4_Yield are based on sending
and/or receiving messages.

system calls for sending messages; seL4_Recv, seL4_NBRecv are receiving system calls, for

receiving messages. Finally seL4_Yield is a scheduling system call for interacting with the

scheduler. An NB prefix indicates that this system call will not block.

Second-level system calls are called invocations and are modelled as sending a message

to the kernel. All invocations are conducted by a sending system call. The kernel is modelled

as if it is waiting for a message and receives one every time a system call is made, and

sends a message as a reply. To determine the operation, the rest of the arguments to an

invocation are encoded as a message to the kernel. Each capability type has a different set

of invocations available, and on kernel entry the invoked capability is decoded to determine

the action the kernel should take.

All the operations on capabilities that are listed in Table 5.1 are invocations on cnode

capability addresses. For example, to copy a capability, one uses seL4_Call on a cnode, and

provides the invocation code for seL4_CNode_Copy, as well as the arguments. In the case of

seL4_CNode_Copy, one provides the slot of the capability being copied, in addition to the

destination cnode and slot.

5.3 Physical memory management

All kernel memory in seL4 is managed at user-level and accessed via capabilities, which

is key to seL4’s isolation and security properties, but also essential for understanding the

complexity and limitations of integrating new models into the kernel. Additionally, this

allows for the ultimate in policy freedom: all resource allocation is done from user-level by

those holding the appropriate capabilities. Capabilities to kernel memory contain a physical

address and a type which indicates what type of memory is at that physical address. Options

for different types are shown in Table 5.3.
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Object Description

Untyped Memory that can be retyped into other types of memory, including
untyped.

CNode A fixed size table of capabilities.

TCB A thread of execution in seL4.

Endpoint Ports which facilitate IPC.

Notification object Arrays of binary semaphores.

Page Directory Top level paging structure.

Page Table Intermediate paging structures.

Frame Mappable physical memory.

Table 5.3: Major memory object types in seL4, excluding platform specific objects. For further
detail consult the seL4 manual [Trustworthy Systems Team, 2017]

.

In the initial system state, capabilities to all resources are given to the first task started

by the system, the root task. Then according to system policy the root task can divide up

and delegate system resources. This includes capabilities to all memory, apart from the

small section of static state (e.g. a pointer to the current thread) used by the kernel. The

kernel itself has a large, static kernel window initialised at boot time, which consists of

memory mapped such that it is directly writeable by the kernel. The kernel window size is

platform specific, but is 500MiB on all 32-bit platforms.

5.3.1 Untyped

All memory starts as untyped memory, and capabilities to all available untyped memory

are placed in the cspace of the root task on boot. Each untyped consists of a start address, a

size, and a flag indicating whether the untyped is writeable by the kernel or not. Memory

reserved for devices and memory outside the kernel window is not readable or writeable by

the kernel: the rest is untyped memory, free for use by the system.

Untyped objects have only one invocation: retype, which allows for large untyped

objects to split into smaller objects of a different size and type, including frames, page

tables, cnodes, etc. While the majority of objects in seL4 have a platform-dependent size

fixed at compile time, some are sized dynamically at runtime, e.g. untyped and cnodes,

which can be any power of two size.

Any capability to memory—untyped or not—is a capability to a specific object in

memory, containing a pointer to that object. When retype is used to create sub-objects from

an untyped object, those subsets of memory will not become available for retyping again

until every capability to that object has been deleted, somewhat like reference counting

pointers.
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Start physical address End physical address Kernel virtual address

0x100000 0x2c00000 7

0x10000000 0x10010000 0xe0000000

0x105c3000 0x2f000000 0xe105c3000

0x2f106400 0x2fdfc200 0xff106400

Table 5.4: Initial memory ranges on at boot time on the SABRE platform.

Table 5.4 shows an example initial memory layout for the SABRE platform1, which has

a 500MiB kernel window. Physical memory on this platform starts at 0x10000000, which

is mapped into the kernel address space at 0xe0000000. Physical addresses outside of this

range are devices and are not writeable by the kernel. Capabilities to all available memory

and devices are set up as untyped in the initial root task’s cnode.

5.3.2 Virtual Memory

Page tables, intermediate paging structures and physical frames are all created by retyping

untyped objects. Page tables and frames have a set of architectural invocations including

mapping, unmapping, and cache flushing operations.

5.3.3 Thread control blocks

TCBs represent an execution context and manage processor time in seL4, and consist of a

base TCB structure and a cnode. The base TCB structure contains accounting information

for scheduling and IPC in addition to the register set and floating-point context. The cnode

contains capabilities that should not be deleted while a thread is running leveraging the

fact that an object cannot be truly deleted until all capabilities to it are removed. These

capabilities include the top-level cnode, top-level page directory, and three capabilities for

IPC. Table 5.5 shows the main invocations possible on TCB capabilities.

5.3.4 Endpoints

Endpoints are the general communication port used by seL4 for IPC. Any thread with a

capability to an endpoint can send and receive messages on that endpoint, subject to the

access rights. Endpoints are small, and consist of the endpoint badge, some state information

and a queue of threads blocked on the endpoint. We cover how endpoints interact with IPC

in the upcoming Section 5.5.1.

1SABRE a 32-bit ARM system-on-chip, and the verification platform for seL4. Further details are provided
in the evaluation.
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5.3.5 Notifications

Notification objects are an array of binary semaphores used to facilitate asynchronous com-

munication in seL4, either from other threads via seL4_Send or from interrupts. Notification

objects consist of a queue of blocked threads and a word of information, which contains the

semaphore state. Further information on notifications is presented in Section 5.5.4.

5.3.6 Consequences

User-level management of kernel memory provides true policy freedom, as there is no

policy required by the kernel on memory layout, but this design is not without trade-offs.

Ultimately, user-level management of kernel memory is key to seL4’s isolation guarantees

as system designers can fully partition systems by using specific memory layouts and avoid

shared structures determined by the kernel itself. However, there are two major impacts on

kernel design: back-pointers, and dynamic data structures.

The fact that any capability may be deleted at any time means that any pointer between

two memory objects must be doubled, with pointers from each object to each other, as

any object must be able to be traversed in order to reach any other linked object. This is

analogous to a doubly-linked list, where for O(1) deletion from any node in the list, the

list must have pointers in both directions. This increases performance of deletion but also

doubles the memory required for each list node.

Secondly, because of the policy freedom, the kernel has no limits on resources, meaning

no memory resource can be statically sized. Consequently, simple, static data structures,

like arrays, cannot be used in the kernel as no assumptions on memory layout can be

made, meaning dynamic data structures are mandated. Because the kernel cannot make

assumptions about the location of memory objects, specific optimisations are also not

Operation Description

seL4_TCB_Resume Place a thread in the scheduler.

seL4_TCB_Suspend Remove a thread from the scheduler.

seL4_TCB_WriteRegisters Configure a thread’s execution context.

seL4_TCB_ReadRegisters Read a thread’s execution context.

seL4_TCB_SetAffinity Set the CPU on which this thread should run.

seL4_TCB_SetIPCBuffer Set the page to use for the IPC buffer.

seL4_TCB_SetPriority Set the priority of this TCB.

seL4_TCB_BindNotification Bind this TCB with a notification object (see Section 5.5.4).

Table 5.5: Summary of operations on TCBs. Further operations are available that batch several
setters to reduce thread configuration overheads.

.

62



Slot(s) Contents Slot(s) Contents

0 empty 8 seL4_IOSpaceControl

1 initial thread’s TCB 9 initial thread start-up inform-
ation frame

2 this cnode 10 initial thread’s IPC buffer
frame

3 initial thread’s page direct-
ory

11 seL4_DomainControl

4 seL4_IRQControl 12—18 initial thread’s paging struc-
tures

5 seL4_ASIDControl 19—1431 initial thread’s frames

6 initial thread’s ASID pool 1431—1591 untyped

7 seL4_IOPortControl 1592—(216−1) empty

Table 5.6: Slot layout in the initial cnode set up by the kernel for the root task on the SABRE platform.

possible: it is up to the system designer to decide a trade-off between isolation and efficiency

in the memory layout of the system.

Both of these consequences make for restrictions on kernel design, which can be

demonstrated through the list of TCBs maintained by the kernel scheduler. Each priority

in the scheduler has a doubly-linked list of TCBs: although the scheduler itself only ever

removes the head of the list, which is O(1) on a singly-linked list, a doubly-linked list is

required as TCB objects can be deleted at any time. Memory placement of TCBs impacts

scheduler performance, as depending on allocation patterns, different list nodes may trigger

cache misses or worse, cache conflicts. As a result, the scheduler will perform far worse than

a static, array-based scheduler using a fixed maximum number of TCBs with known ids for

indexing. Even in other operating systems that use linked lists for scheduling, the source of

the memory is a fixed-pool of kernel memory which is, rather than all of memory. However,

such an approach provides no policy freedom, and is more suitable at a middle-ware level

in the OS implemented on top of the microkernel.

5.4 Control capabilities

Not all capabilities refer to memory-based resources, such as interrupts and I/O ports. In

order to obtain capabilities to specific interrupts or ranges of I/O ports, the root task is

provided with non-derivable control capabilities which can be invoked to place specific

hardware resource capabilities in empty slots.

Table 5.6 shows the root task’s initial cspace layout as set up by the kernel for the SABRE

platform. Apart from capabilities to memory objects for the root task and the remaining

untyped, the initial cnode contains five control capabilities for managing interrupts, address

space IDs (ASIDs), I/O Ports, I/O Spaces and domains.
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System call Action

seL4_Send Send a message, blocking until it is consumed.

seL4_NBSend Send a message, but only if it is consumed immediately (i.e. a thread is
already waiting on this endpoint for a message).

seL4_Recv Block until a message is available to be consumed from this endpoint.

seL4_NBRecv Poll for a message—consume a message from this endpoint, but only if
it is available immediately.

seL4_Call Send a message, and block until a reply message is received.

seL4_Reply Send a reply message to a seL4_Call.

seL4_ReplyRecv Send a reply message to a seL4_Call and then seL4_Recv.

Table 5.7: System calls and their effects when used on endpoint capabilities.

We take interrupts as an example to explain how control capabilities function. The

seL4_IRQControl capability is the control capability for obtaining capabilities to specific

interrupt numbers. By invoking the seL4_IRQControl capability, users can obtain IRQHandler

capabilities to specific interrupt numbers, thereby granting them authority to invoke that

handler. Once an IRQHandler capability is obtained, users can invoke it to manage that

specific interrupt. On x86, seL4_IRQControl is also used to provide capabilities to model

specific registers and I/O interrupts.

5.5 Communication

seL4 provides communication through synchronous IPC via endpoints, or asynchronous

notifications via notification objects. All the communication system calls introduced in

Table 5.2, when used on endpoints and notifications, are used to communicate between

TCBs. There are no invocations that can take place via endpoints or notification capabilities.

5.5.1 IPC

IPC in seL4 consists of threads sending and receiving messages in a blocking or non-

blocking fashion over endpoints, which act as message ports. Each thread has a buffer

(referred to as the IPC buffer), which contains the payload of the message, consisting of

data and capabilities. Senders specify a message length and the kernel copies this (bounded)

amount between the sender and receiver IPC buffer. Small messages are sent in registers

and do not require a copy operation. Along with the message the kernel additionally delivers

the badge of the endpoint capability that the sender invoked to send the message.

IPC can be one-way, where a single message is sent between a sender and receiver, or

two-way in an RPC fashion where the sender sends a message and expects a reply. IPC

rendezvous refers to when the IPC takes place, specifically when the kernel transfers data

and capabilities between two threads.
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blocked > 0? blocked > 0?
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 no

 no
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Figure 5.1: State diagram of a single endpoint, where blocked tracks the number of threads waiting
to send or receive. Note that only one list of threads is maintained by the endpoint:
senders and receivers cannot be queued at the same time.

Table 5.7 summarises seL4 system calls when used on endpoint capabilities. Essentially,

seL4_Send is used to send a message and seL4_Recv used to receive one, both having blocking

and non-blocking variants. seL4_Call is of particular interest as it represents the caller

side of an RPC operation critical to microkernel performance, distinguished from a basic

pair of seL4_Send and seL4_Recv by resume capabilities. Pioneered in KeyKOS [Bomberger

et al., 1992] and further appearing in EROS [Shapiro et al., 1999], resume capabilities are

single-use capabilities, generated when a message is sent by seL4_Call and consumed when

the reply message is received. Resume capabilities grant access to a blocked thread waiting

for a reply message, and allow holders to resume that thread. In seL4, the resume capability

is stored in the TCB cnode, and seL4_Reply is the operation used to invoke this capability

and send the reply message back.

Figure 5.3a demonstrates the rendezvous phase, where regardless of the order of

operations, when one thread blocks (seL4_Recv) on the endpoint and another thread sends on

that endpoint then the message is consumed by the receiver. This occurs for both one-way

and two-way IPC. Receivers can save the resume capability into their cspace to send a reply

to after receiving other messages that would override the resume slot, but otherwise the

resume capability is installed in the TCB cnode. The reply system call directly invokes the

resume capability in this slot.
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Figure 5.2: Legend for diagrams in this section.
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(a) Initial IPC rendezvous.
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reply()R

(b) Reply phase.

Figure 5.3: IPC phases: a TCB, A sends a message to endpoint E using seL4_Call. Another TCB, S,
blocks on E using seL4_Recv. At this point the message is transferred from A to S and A
is blocked on the reply capability. (b) shows the reply phase, where S uses seL4_Reply

to send a reply message to A, waking A. See Figure 5.2 for the legend.

rec
v()

A
N

send()

irq

(a) Notifications.

recv()

A
N

send()

irq
E

(b) Notification binding.

Figure 5.4: Example of a thread, TCB A, receiving notifications, by blocking on the notification and
by notification binding. In Figure 5.4a A blocks waiting on notification object N, and
wakes when any notifications or interrupts are sent to N. In Figure 5.4b, A blocks on
endpoint E, however since N is bound to A, if N receives an interrupt or notification, A
is woken and the data word delivered to A. See Figure 5.2 for the legend.
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Multiple senders and receivers can use the same endpoint, which act as FIFO queues.

In order to distinguish senders, receivers can use endpoint badges, which are unforgeable

as they are copied by the kernel directly.

5.5.2 Fastpath

Recall from Section 2.4.1 that IPC performance is critical to a microkernel, which is

achieved through optimised fastpaths. A fastpath is an optimised code path for the most

performance critical operations. seL4 contains two IPC fastpaths which are used when the

following, common-case conditions are satisfied:

1. the sender is using seL4_Call or the receiver is using seL4_ReplyRecv,

2. there are no threads of higher priority than the receiver in the scheduler,

3. the receiver has a valid address space and has not faulted,

4. and the message fits into registers, and thus does not require access to the IPC buffer.

5.5.3 Fault handling

Fault handling in seL4 is modelled as IPC messages between the kernel and receivers. TCBs

can have a specific fault endpoint registered, on which the kernel can send simulated IPC

messages containing information about the fault. Fault handling threads receive messages

on this endpoint as if the faulting thread had sent a message to that thread with seL4_Call.

Of course, this message is actually constructed by the kernel, and the message contains

information about the fault, generally the faulting thread’s registers. The faulting thread

is blocked on the resume capability, which is generated, just as if the faulting thread had

conducted a seL4_Call. The fault handling thread can subsequently reply to this message to

resume the thread, although the reply message is also special: it can be used to reply with

a new set of registers for the faulting thread to be resumed with, and tell the kernel if it

should restart the thread or leave it suspended after the reply message is processed. If no

fault endpoint is present, the thread is rendered inactive and no fault message is sent.

5.5.4 Notifications

Notification objects provide the mechanism for semaphores in seL4, and consist of a word of

data. Sending on a notification either sends the badge of the invoked notification capability

to a thread waiting on that notification object or—if no threads are waiting—stores the

badge in the data word of the notifications. Unlike IPC, where threads waiting to send

messages are queued, notifications accumulate messages in the data word.

The data word is set when the first notification arrives, and further invocations continue

to bitwise OR the badge and data word until a thread receives the signal and clears the word.

This is illustrated in the notification state diagram depicted in Figure 5.5, and in Figure 5.4a

which shows the notification object and TCB interaction.
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Figure 5.5: Notification object state transitions based on invocations. seL4_Send and seL4_NBSend

correspond to notify in the diagram, while wait corresponds to a seL4_Recv.

Table 5.8 shows the operations that occur when notification objects are invoked with

relevant system calls. Figure 5.5 depicts changes in the notification object state that occur

when threads notify and block on notifications.

Interrupts

In addition to providing a mechanism for threads to notify each other, notification objects

also allow threads to synchronise with devices via polling and/or blocking for interrupts.

IRQHandler capabilities can be associated with a single notification object, via the invoca-

tion seL4_IRQHandler_SetNotification, which results in the kernel issuing a notification when

System call Action

seL4_Send Send a notification, transmitting the badge; do not block.

seL4_NBSend As above.

seL4_Recv Wait until a notification is available then receive the data word.

seL4_NBRecv Poll for a notification, do not block, receive the data word if available.

Table 5.8: System calls and their effects when used on notification objects.
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an interrupt occurs. The badge of the notification capability provided to the invocation is

bitwise ORed with the data word when an interrupt is triggered. Further notifications are

not issued by the kernel until the interrupt is acknowledged, using the seL4_IRQHandler_Ack

invocation on IRQHandler capabilities.

Notification binding

Some systems require threads that can receive both notifications and IPC while blocked,

in order to prevent the requirement that services which receive both IPC messages and

notifications be multi-threaded. The mechanism for this is notification binding where

threads can register a specific notification capability to receive notifications from while

blocked on an endpoint waiting for IPC. This is done by invoking the TCB with the seL4_-

TCB_BindNotification invocation, which establishes a link between a TCB and notification

object. Subsequently, if a notification is sent on that notification object and the TCB

receives on any endpoint, that TCB will receive the notification. Without notification

binding, services require a thread for blocking on a notification and another thread for

blocking on an endpoint, both threads must then synchronise carefully on any shared data.

Notification binding is illustrated in Figure 5.4b.

5.6 Scheduling

The scheduler in seL4 is used to pick which runnable thread should run next on a specific

processing core, and is a priority-based round-robin scheduler with 256 priorities (0—255).

At a scheduling decision, the kernel chooses the head of the highest-priority, non-empty

list.

Implementation wise, the scheduler is fairly standard and consists of an array of lists:

one list of ready threads for each priority level. A two-level bit field is used to track which

priority lists contain threads, in order to achieve a scheduling decision complexity of O(1).

In fact, the O(1) scheduler is a recent addition to seL4: scheduling used to be far more

expensive before the bit field was introduced, for the benefit of simplicity for the initial

proofs.

The bit field data structure works as follows: the top-level consists of one word, each bit

representing N priorities, where N is 32 or 64 depending on the word size. Bit 0 in the top

level bit field, on a 32-bit system, represents the first 0–31 priorities, bit 1 the next 32-63,

etc.: if a bit in the top level is set, it indicates that at least one priority in that range is active.

The second level distinguishes which priorities in the range indicated by the first level are

set, and consists of 256/N words, which are indexed by the first bit set in the top-level bit

field. To construct a priority we use the hardware instruction count leading zeros (CLZ) to

find the highest bit set in the top-level index. We take that index and use CLZ on the bottom

level bit field corresponding to that index, then construct the priority from these two values,

allowing the highest priority to be found by reading only two words. For example, on a
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1 uint32_t top_level_bitmap = 0;
2 uint32_t bottom_level_bitmap[256 / (1u << 5u)];
3
4 void addToBitmap(word_t prio) {
5 uint32_t l1index = prio >> 5u;
6 top_level_bitmap |= (1u << l1index);
7 bottom_level_bitmap[l1index] |= (prio & ((1u << 5) - 1u));
8 }
9

10 word_t getHighestPrio(void) {
11 uint32_t l1index = 31 - CLZ(top_level_bitmap);
12 l2index = 31 - CLZ(bottom_level_bitmap[l1index]));
13 return (l1index << 5 | l2index);
14 }

Listing 5.1: Example algorithms for adding a priority to the scheduler bitmap and extracting the
highest active priority, on a 32-bit system. Both operations are O(1) and involve two
memory accesses. CLZ is the hardware instruction for count leading zeros.

32-bit system if bit 1 is the highest bit set in the top-level bit field, we index entry 1 in the

bottom level. If bit 5 is the highest bit set in the first entry of the bottom level, we then

obtain 1∗32+5 = 37 as the highest priority. Listing 5.1 shows the logic for the scheduler

bit field on 32-bit systems.

5.6.1 Scheduler optimisations

A scheduling decision needs to be made whenever a thread transitions from or to a run-

nable state. The majority of thread state transitions occur on IPC, which is critical for

performance, as can be seen in the simplified thread state diagram shown in Figure 5.6.

The BlockedOnObject state in the diagram maps to blockedOn<N> in the following thread state

definitions:

• Running: This thread is eligible to be picked by the scheduler, and should be in the

scheduling queues or be the currently running thread.

• Inactive This thread is not runnable, and is not in the scheduler. It has been suspended,

or possibly never resumed.

• BlockedOnRecv: This thread is waiting to receive an IPC (or bound notification).

• BlockedOnSend: This thread is waiting to send an IPC.

• BlockedOnReply: This thread is blocked on a resume capability, waiting for a reply

from a seL4_Call or fault.

• BlockedOnNotification: This thread is waiting to receive a notification.

Several optimisations to the scheduler exist in the kernel for performance, including

lazy and benno scheduling. Lazy scheduling is used whenever a thread blocks and wakes

another thread at the same time, for example, in the seL4_Call system call where the sender

is blocked on the resume capability and the receiver is woken. Lazy scheduling observes
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Figure 5.6: Thread state transitions in seL4.

that the current thread must be the highest-priority, runnable thread, and checks if the woken

thread is higher than any other runnable thread by querying the scheduler bit field. If so,

the receiver is directly switched to and the scheduler is avoided all together. Otherwise, the

receiver is moved from the endpoint queue into the scheduling queue and the scheduler

called.

Benno scheduling, named for its inventor Ben Leslie, removes the current thread from

the scheduler, changing the invariant that all runnable threads are in the scheduler, so all

runnable threads except the current thread are in the scheduler [Blackham et al., 2012a].

The current thread is only added back to the scheduler when it is preempted. On IPC, the

current thread does not need to be added to the scheduler it is immediately blocked on the

endpoint. Consequently, we avoid manipulating the scheduling queues when doing a direct

switch, reducing the cache footprint and resulting in a performance improvement.

The result of these optimisations is that seL4, like L4 kernels before it, has very fast

IPC, compared to non-microkernels e.g. at least a factor of four compared to CertiKOS [Gu

et al., 2016].

Round-robin

Kernel time is accounted for in fixed-time quanta referred to as ticks, and each TCB has

a timeslice field which represents the number of ticks that TCB is eligible to execute

until preempted. The kernel timer driver is configured to fire a periodic interrupt which

marks each tick, and when the timeslice is exhausted the thread is appended to the relevant

scheduler queue, with a replenished timeslice. Threads can surrender their current tick using
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the seL4_Yield system call, which simulates timeslice exhaustion. This served as a simple

scheduler for the initial verification of seL4.

seL4 implements timeslice donation, as discussed in Section 4.3.4. When threads

communicate with a service over IPC, the TCB of the thread providing the service is

charged for any ticks incurred while that service is active. As a result isolation in shared

servers is not possible: clients are not charged for their execution time.

Priorities

Like any priority-based kernel without temporal isolation mechanisms, time is only guaran-

teed to the highest priority threads. Priorities in seL4 act as informal capabilities: threads

cannot create threads at priorities higher than their current priority, but can create threads at

the same or lower priorities. If threads at higher priority levels never block, lower priority

threads in the system will not run. As a result, a single thread running at the highest priority

has access to 100% of processing time.

5.6.2 Domain scheduler

In order to provide confidentiality [Murray et al., 2013] seL4 provides a top-level hierarch-

ical scheduler which provides static, cyclical scheduling of scheduling partitions known

as domains. This is a classical approach from avionics [Lee et al., 1998] which was later

analysed for schedulability under both EDF and FP [Mok et al., 2001]. Domains are static-

ally configured at compile time with a cyclic schedule, and are non-preemptible resulting in

completely deterministic scheduling of domains. Each domain has its own priority sched-

uler, with lists per priority and a bit field structure, which is switched deterministically when

a domain’s ticks expire. Threads are assigned to domains, and threads are only scheduled

when their domain is active. Cross-domain IPC is delayed until a domain switch, and

seL4_Yield between domains is not possible. When there are no threads to run while a

domain is scheduled, a domain-specific idle thread will run until a switch occurs.

The domain scheduler is consistent with that specified by the ARINC standard, and can

be leveraged to achieve temporal isolation. However, since domains cannot be preempted, it

is only useful for cyclic, non-preemptive scheduling with scheduling order and parameters

computed-offline. In such a scenario each real-time task could be mapped to its own domain,

and each task would run for its specified time before the domain scheduler switched to the

next thread. Any unused time in a domain would be wasted, and spent in the idle thread.

Such a scheduler is only suitable for closed systems and only efficient in terms of

utilisation for systems with periodic tasks. Dynamic real-time applications with shared

resources, sporadic tasks and high utilisation requirements are not compatible with the

domain scheduler, as they require preemption.
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Temporal Sporadic Low kernel Dynamic

isolation utilisation overheads

Domain scheduler X 7 X 7

Priority scheduler 7 X X X

Scheduling component X X 7 X

Table 5.9: Comparison of existing seL4 scheduling options.

5.6.3 Real-time support

We introduced basic seL4 concepts and terminology, and investigated mechanisms that

affect timing behaviour in the kernel: the scheduler, domains, priorities, seL4_Yield and IPC.

In this section we will look at how real-time scheduling could be implemented with those

mechanisms.

There are several options for implementing a real-time scheduler in the current version

of seL4: leveraging the domain scheduler, using the priority scheduler or implementing a

scheduling component to run at user-level. We explore these by explaining how a fixed-

priority scheduler can be implemented with each technique, and explore the limitations.

A basic cyclic executive, as introduced in Section 2.2.1 can be implemented using the

domain scheduler by mapping domains directly to task frames. This approach only works

for closed systems with offline scheduling. An high utilisation scheduler for sporadic tasks

is not possible to implement with domains as they are not preemptible.

The priority scheduler can be leveraged to implement FPRM, by mapping seL4 priorities

to rate-monotonic priorities. However, this requires complete trust in every thread in the

system, as there is no mechanism for temporal isolation: if one thread executes for too long,

other threads will miss their deadlines. Essentially the only thread with a guaranteed CPU

allocation is the highest priority thread, which under rate-monotonic priority assignment is

not the most critical thread in the system, but the thread with the highest rate. Additionally,

periodic threads driven by timer interrupts rather than events would need to share a user-level

timer, as the kernel does not provide a source of time.

To build a dynamic system with temporal isolation and high CPU utilisation, one could

provide a high-priority scheduling component which implements FPRM at user-level. This

task would manage a time-service for timeouts and monitor task execution, preempting

tasks before they exceed their declared WCET. On task completion, tasks would RPC the

scheduler in order to dispatch a new task. However, since the timer component would need

to maintain accounting information and track the currently running thread, it would need

to be invoked for every single scheduling operation. This is prohibitively expensive, as it

results in doubled context switching time and increased number of system calls for thread

management.
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Table 5.9 shows a comparison of all the available scheduling options in the current

version of seL4—no option provides all the qualities we require.

5.7 Summary

In this chapter we have provided an overview of seL4 concepts, including capabilities,

system calls, resource management, communication and scheduling. We conclude that

current real-time scheduling support is deficient, and temporal isolation is not possible over

shared server IPC.

In the next section we will outline our model for a more principled approach to managing

time by extending the baseline seL4 model presented in this chapter. We appeal to resource

kernel principles where time is treated as a first-class resource, with the aim of supporting

diverse task sets, including those for mixed-criticality systems.
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6 Design & Model

We now present our design and model for mixed-criticality scheduling support in a high-

assurance system such as seL4.

Our goal is to provide support in the kernel for mixed-criticality workloads. This

involves supporting tasks of different time sensitivities, (HRT, SRT, best-effort), different

criticalities, and different levels of trust. Such tasks should not be forced into total isolation,

but be permitted to share resources without violating their temporal correctness properties

through mechanisms provided by the kernel.

To achieve this we require temporal isolation: a feature of resource kernels, the mechan-

isms of which we apply to general-purpose, high-assurance microkernels, and specifically

our research platform, seL4, notable for its strong and provable spatial isolation. However,

temporal isolation alone is insufficient: mixed-criticality systems require asymmetric pro-

tection rather than temporal isolation. As a result we leverage traditional resource kernel

reservations but decouple them from priority, allowing the processor to be overcommitted

while providing guarantees for the highest priority tasks.

In this chapter we first address how we integrate resource kernel concepts with the

seL4 model, in order to provide principled access control to CPU processing time. We then

describe our mechanisms for temporal isolation and asymmetric protection of resources

shared between clients of different levels of criticality, time sensitivity, and trust. Finally,

we show how our mechanisms can be used to build several existing user-level policies.

Our design goals are as follows:

Capability-controlled enforcement of time limits: In general, capabilities help to reason

about access rights. Furthermore, they allow a seamless integration with the existing

capability-based spatial access control of security-oriented systems such as seL4.

Policy freedom: In line with microkernel philosophy [Heiser and Elphinstone, 2016],

the model should not force systems into a particular resource-management policy

unnecessarily. In particular, it should support a wide range of scheduling policies and

resource-sharing models, such as locking protocols.

75



Efficient: The model should add minimal overhead to the best existing implementations. In

particular, it should be compatible with fast IPC implementations in high-performance

microkernels.

Temporal isolation: The model must allow system designers to create systems in which

a failure in one component cannot cause a temporal failure in another part of the

system.

Overcommitment: The model must allow systems to be specified that are not necessarily

schedulable, as the degree and nature of overcommitment is a core policy of a

particular system, as established in Section 4.3.3. Overcommitment is also key

to providing asymmetric protection, where high criticality tasks can disrupt low

criticality tasks, and policy freedom, as schedulability is system-specific policy.

Safe resource sharing: Temporal isolation should persist even in the case of shared re-

sources, to provide mechanisms for sharing between applications with different levels

of time-sensitivity, criticality and trust.

The model provides temporal isolation mechanisms from the kernel, while allowing for

more complex scheduling policies to be implemented at user level.

6.1 Scheduling

In Section 2.4.5, we outlined four core resource kernel mechanisms—admission, scheduling,

enforcement and accounting—that are essential to resource kernels for implementing

temporal isolation. However, such kernels are monolithic, where all policy, drivers and

mechanisms are provided by the kernel.

Microkernels like seL4 offer a different design philosophy, based on the principle of

minimality [Liedtke, 1995], where mechanisms are only included in the kernel if they would

otherwise prevent the implementation of required functionality. Previous resource kernels

are all monolithic, meaning that all resource policies are implemented in the kernel itself.

The goals of resource kernels do not directly align with that of microkernels in general.

This is because microkernels do not directly manage all resources in the system, but provide

mechanisms for the system designer to implement custom resource management policies.

In seL4, mechanisms for physical memory, device memory, interrupt and I/O port

management are exposed to the user via the capability system, as outlined in Chapter 5. As

a result, the only resource that the kernel needs to provide reservations for is processing

time. We now present our mechanisms, and discuss how each of the four resource kernel

policies can be implemented within our model.

6.1.1 Scheduling

There are two design choices relevant to scheduling:
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• Should a scheduler be provided in the kernel at all?

• Should the scheduling algorithm be fixed (FP) or dynamic (EDF) priority?

Kernel scheduling

We retain the scheduler in the kernel, as per previous iterations of L4 microkernels, unlike

COMPOSITE, for two reasons: to maintain a small trusted computing base, and for perform-

ance. Any system with multiple threads of execution, a requirement of mixed-criticality

systems, must have a scheduler, which for the purposes of temporal isolation is part of

the trusted computing base. Mixed-criticality systems require non-cooperative scheduling

where the kernel preempts and interrupts components which may be of different assurance

levels. The scheduler itself is trusted, and must be at the highest assurance level, in a separ-

ate protection domain to components of lower criticality. As a result, a user-level scheduling

decision will require at least two context switches for any component that is not at the

highest criticality level: from the preempted thread to the scheduler, and from the scheduler

to the dispatched thread. Although COMPOSITE has demonstrated this overhead to be small,

by providing a very fast context switches and avoiding schedulers on the device interrupt

handling path, it is an overhead that is not mandatory if using our in-kernel scheduler.

Given a mixed-criticality system requires a trusted scheduler, providing a basic scheduler

in the kernel obviates this overhead as a requirement, and forms part of a complete trusted

computing base.

Additionally, as the scheduler is a core component of the system, it must be verified:

by keeping the scheduler in the kernel we maintain the current verification. Verification

of a user-level scheduler and its interaction with the kernel is a far more complex task,

especially as verification of concurrent systems is very much an open research challenge.

Fixed priorities

Our model uses FP scheduling as a core part of the kernel, with the addition of mechanisms

that allow for the efficient implementation of user-level schedulers. We choose FP over

EDF for three reasons: fixed-priority is dominant in industry as shown in Section 4.2.3;

dynamic scheduling policies such as EDF can be implemented at user level; and FP has

desirable, easy to reason about, behaviour on overcommitted systems.

EDF scheduling can be implemented by using a single priority for the dynamic priorities

of EDF, as we will demonstrate in Section 8.4.2. However, the opposite is not true: mapping

the dynamic priorities of EDF to a fixed-priority is non-trivial and would come with high

overheads. Our approach is consistent with existing designs in Linux and ADA [Burns and

Wellings, 2007], which support both scheduling algorithms, usually with EDF at a specific

priority.1 Schedulability analysis of EDF-within-priorities is well understood [Harbour and

Palencia, 2003].

1In Linux, EDF is a scheduling class placed about the SCHED_FIFO class in priority.
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We do not consider Pfair scheduling (recall Section 3.1.1) an option within the kernel,

as its high interrupt overheads are not suitable for hard real-time systems. Again however,

it should be possible to implement a Pfair scheduler at user level.

The final reason to base the approach on fixed priorities is the ability to reason about

the behaviour of an overcommitted system. Overcommitting is important for achieving high

actual system utilisation, given the large time buffers required by critical hard real-time

threads. It is also essential to keeping the kernel policy-free: the degree and nature of

overcommitment is a core policy of a particular system. For example, the policy might

require that the total utilisation of all HIGH threads is below the FPRM schedulability

limit of 69%, while LOW threads can overcommit, and the degree of overcommitment

may depend on the mix of hard RT, soft RT and best-effort threads. Such policy should be

defined and implemented at user level rather than in the kernel.

As discussed in Section 2.2.4, the result of overload in an EDF-based system is hard to

predict, and such a system is hard to analyse. In contrast, overloading under fixed-priority

scheduling is easy to understand, as low-priority jobs miss deadlines in the case of overload.

6.1.2 Scheduling contexts

At the core of the model is the scheduling context (SC) as the fundamental abstraction for

time allocation, and the basis of the enforcement and accounting mechanisms in our model.

An SC is a representation of a reservation in the object-capability system, which means that

they are first-class objects, like threads, address spaces, or IPC endpoints.

In order to run, a thread needs an SC, which represents the maximum CPU bandwidth

the thread can consume. Threads obtain SCs through binding, and only one thread can be

bound to an SC at a time. In a multicore system, an SC represents the right to access a

particular core. Core migration, e.g. for load balancing, is policy that should not be imposed

by the kernel but implemented at user level. A thread is migrated by replacing its SC with

one tied to a different core. This renders the kernel scheduler a partitioned scheduler, as

opposed to a global scheduler, which aligns with our efficiency goal, since partitioned

schedulers outperform global schedulers [Brandenburg, 2011].

The unfungible nature of time in real-time systems requires that the bandwidth limit

must be enforced within a certain time window. We achieve this by representing an SC by

sporadic task parameters, period, T , and a budget, C, where C ≤ T is the maximum amount

of time the SC allows to be consumed in the period. U = C
T represents the maximum CPU

utilisation the SC allows. The SC can be viewed as a generalisation of the concept of a time

slice, discussed in Section 4.3.2.

In order to support mixed-criticality systems, we do not change the meaning of priority,

but what it means for a thread to be runnable: We associate each thread with an SC, and

make it non-runnable if it has exhausted its budget.

SCs can be gracefully integrated into the existing model used in seL4 by replacing the

time slice attribute with the scheduling context.
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We retain thread priorities as attributes of the TCB, rather than the scheduling context.

The advantage of keeping the two orthogonal allows us to avoid mandating a specific

prioritisation protocol for resource-sharing, which we expand on in Section 6.2.

Unlike prior approaches, where a reservation forms part of a two-level scheduler in

the kernel, our model only allows one thread to use a scheduling context as a time. Prior

implementations of reservation-based kernels allow for multiple threads per reservation,

such that the kernel first picks a reservation to schedule, then picks a thread from that

reservation. We depart from this model for simplicity and performance reasons, and to abide

by the microkernel minimality principle: user level can build cooperative or preemptive

schedulers using a single scheduling context, via IPC, therefore this feature is not permitted

in the kernel. Additionally, for use-cases where multiple real-time threads share a scheduling

context, user-level threads can be used to multiplex multiple execution contexts onto one

scheduling context.

6.1.3 Accounting

Accounting must be a mechanism implemented by the kernel, as the kernel is the only entity

in the system that can monitor all threads—regardless of preemption in the system—since

the kernel facilitates all preemption. The accounting mechanism is provided by a new

system invariant, that the currently running thread must have a scheduling context with

available budget, as all time consumed is billed to the current scheduling context. That

includes time spent executing in the kernel, including preemptions. The rule for accounting

kernel time is that all time, from kernel entry, is billed to the scheduling context active on

kernel exit. This means that if a thread is preempted and that preemption does not trigger

a switch to a different scheduling context, all time is accounted to the current scheduling

context. Otherwise, time from kernel entry is accounted to the next scheduling context.

In order to facilitate user-level schedulers, the kernel tracks the amount of time con-

sumed by a scheduling context, which can be retrieved by an invocation on that specific

scheduling context object. We specifically do not cater for dynamic frequency scaling and

ensure that it is turned off during testing—this is out of scope and a topic for future work.

6.1.4 Admission control

Unlike any previous kernel that supports reservations, our model delegates admission

control to user level, as it is deeply tied to policy, which a microkernel should not limit. A

consequence of this choice is that the design naturally supports over-commitment, as this is

part of the admission test.

The mechanisms for admission control consist of two parts: scheduling contexts are

created without any budget at all, and a new control capability must be invoked to populate

scheduling context parameters. seL4_SchedControl is the new control capability, one of

which is provided per processing core. It grants authority to 100% of time on that core, thus
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providing the admission-control privilege. This is analogous to how seL4 controls the right

to receive interrupts, which is controlled by the IRQ_control capability as introduced in

Section 5.4. Like time, IRQ sources are non-fungible.

Unlike the reservations in resource kernels, the scheduling context does not act as a

lower bound on CPU bandwidth that a thread can consume. This, combined with user-level

admission control, is also key to allowing system designers to over-commit the system.

By designating admission tests as user-level policy, we allow system designers complete

freedom in determining which admission test to use, if at all, and when that test should be

done. Consequently, they can be run dynamically at run-time, or offline, as per user-level

policy.

Thus, the kernel places no restriction on the creation of reservations apart from minor

integrity checks (i.e. C ≤ T ). For example, some high-assurance systems may sacrifice

utilisation for safety with a very basic but easily verifiable, online, admission test. Other

implementations may conduct complex admission tests offline in order to obtain the highest

possible utilisation, using algorithms that are not feasible at run time. Some systems may

require dynamic admission tests that sacrifice utilisation or have increased risk. Basic

systems may require a simple break up of the processing time into rate-limited reservations.

By taking the admission test out of the kernel, all of these extremes (and hybrids of) are

optional policy for the user.

A consequence of this design is that more reservations can be made than processing

time available. This is a desirable feature: it allows system designers to overcommit the

system, while features of the scheduling mechanisms provided by the kernel guarantee that

the most important tasks get their allocations, if the priorities of the system are set correctly.

However, allowing any thread in the system to create reservations could result in

overload behaviour and violation of temporal isolation. To prevent this, admission control

is restricted to the task(s) that holds the scheduling control capability for each processing

core.

6.1.5 Replenishment

Scheduling contexts can be full or partial. A thread with a full SC, where C = T , may

monopolise whatever CPU bandwidth is left over from higher-priority threads, while high-

priority threads with full SCs may monopolise the entire system. Partial SCs, where C < T ,

are not runnable once they have used up their budget, until it is replenished, and form our

mechanism for temporal isolation.

Full SCs are key to maintaining policy freedom and performance; while systems must

be able to use our mechanisms to enforce upper bounds on execution, the usage of those

mechanisms is policy. If a task is truly trusted, no enforcement is required, as in standard

HRT systems. They can also be used for best-effort threads which run in slack time. The C

of a full SC represents the timeslice, which once expired, results in round-robin scheduling
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at that priority. Additionally, full SCs provide legacy compatibility: setting C = T to the

previous timeslice value results in the same behaviour as the master kernel.

From a performance perspective, full SCs prevent mandatory preemption overheads

that derive from forcing all threads in a system to have a reservation. Threads with a full

budget incur no inherent overhead other than the preemption rate 1/T .

Threads with partial SCs have a limited budget, which forms an upper bound on

their execution. For replenishment, we use the sporadic-servers model, as described in

Section 3.1.3, with an implementation based on the algorithms presented by Stanovic et al.

[2010].

The combination of full and partial SCs and the ability to overcommit distinguishes our

model from that of resource kernels.

Sporadic servers

We use sporadic servers, as they provide a mechanism for isolation without requiring the

kernel to have access to all threads in the system. This is unlike other approaches discussed

in Section 3.1.3, such as priority exchange servers and slack stealing. Deferrable servers do

not require global state but are ruled out due to the back-to-back problem, which prevents

the kernel from imposing a maximum execution bandwidth, as discussed in Section 3.1.3.

Avoiding global shared state is required for confidentiality, because access to shared state

has cache effects, which leak information via cache-based timing-channels. In order to

maintain these isolation properties, timing channels must be mitigated through separate

partitions on the same processor. It must be possible to partition a system completely, such

that operations in one partition do not alter the cache state in the other partitions.

Recall that sporadic servers work by preserving the sliding window constraint, meaning

that during any time interval not exceeding the period, no more than C can be consumed.

This stops a thread from saving budget until near the end of its period, and then running

uninterrupted for more than C. It is achieved by tracking any consumed budget when a

thread is resumed at time ta and preempted at time tp, and scheduling a replenishment for

time ta +T .

In practice, we cannot track an infinite number of replenishments, so in a real imple-

mentation, once the number of queued replenishments exceeds a threshold, any excess

budget is discarded. If the threshold is one, the behaviour degrades to polling servers [Sprunt

et al., 1989] where any unused budget is lost and the thread cannot run until the start of the

next period.

Replenishment fragmentation resulting from preemptions has an obvious cost and an

arbitrarily high threshold makes little sense. Additionally, polling servers polling servers

are more efficient in the case of frequent preemption [Li et al., 2014]. The optimal value

depends on implementation details of the system, as well as the characteristics of the

underlying hardware. We therefore make the threshold an attribute of the SC. SCs are

variably sized, such that system designers can set this bound per SC. This is a generalisation
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of the approach used in Quest-V [Danish et al., 2011], where I/O reservations are polling

servers and other reservations are sporadic servers. This policy can easily be implemented

at user-level with variably-sized SCs.

The choice of sporadic servers is a concession to our goal of policy freedom, as

ultimately temporal isolation is a more important requirement for mixed-criticality systems

which overrules the policy freedom requirement. While our model does not prevent other

policies to be implemented at user-level, these do come with a performance overhead as

they require full user-level scheduling, with context switches to and from the user-level

scheduler.

6.1.6 Enforcement

Threads may exhaust their budgets for different reasons. A budget may be used to rate-limit

a best-effort thread, in which case budget overrun is not different to normal time-slice

preemption of best-effort systems. A budget can be used to force an untrusted thread to

adhere to its declared WCET. Such an overrun is a contract violation, which may be reason

to suspend the thread or restart its subsystem. Finally, an overrun by a critical thread can

indicate an emergency situation; for example, critical threads may be scheduled with an

optimistic budget to provide better service to less critical threads, and overrun may require

provision of an emergency budget or specific exception handler.

Clearly, the handling of overrun is a system-specific policy, and the kernel should

only provide appropriate mechanisms for implementing the desired policy. Unlike the

replenishment policy, which must be part of the kernel in order to ensure a maximum

bandwidth on execution, the replenishment policy has not requirement to be in the kernel.

Our core mechanism is the timeout exception, which is raised when a thread is preempted

due to budget expiry. To allow the system to handle the exceptions, each thread is optionally

associated with a timeout-exception handler, which is the temporal equivalent to a handler

for a (spatial) protection exception. When a thread is preempted, the kernel notifies its

handler via an IPC message. The exception is ignored when the thread has no timeout

exception handler, and the thread can continue to run once its budget is replenished.

The timeout-fault endpoint is separate from the existing thread fault endpoint, as the

semantics are different: non-timeout faults are not recoverable without the action of another

thread. While threads are not required to have a fault endpoint, when a fault occurs a thread

is always blocked, as it is no longer in a runnable state. Timeout faults on the other hand

are recoverable: the thread must simply wait until budget replenishment.

Timeout-fault handling threads should have their own SC to run on, with enough budget

to handle the fault, otherwise they will not be eligible for selection by the kernel scheduler.

Similar to a page-fault handler, timeout-fault handlers can be used to adjust thread

parameters dynamically as may be required for an SRT system, or raise an error. The

handler has a choice of a range of overrun policies, including:
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• providing a one-off (emergency) budget to the thread and letting it continue,

• permanently increasing the budget in the thread’s SC, and

• killing/suspending the thread.

Obviously, these are all subject to the handler having sufficient authority (e.g.seL4_-

SchedControl).

If a replenishment is ready at the time the budget expires, the thread is immediately

runnable. It is inserted at the end of the ready queue for its priority, meaning that within a

priority, scheduling of runnable threads is round-robin.

The timeout-fault handler is similar to the original KeyKOS concept of meters [Bomber-

ger et al., 1992], which was carried through to earlier L4 microkernels as a preempter.

The preempter was invoked every time the timeslice/meter expired to make a scheduling

decision. This was abandoned due to performance reasons. Our approach differs in that

timeout fault handlers are optional, so that their use can be restricted to exceptional scen-

arios. However, timeout fault handlers can also be used to facilitate user-level scheduling,

which is feasible now that modern hardware has much faster context switch times.

6.1.7 Priority assignment

Assignment of priorities to threads is user-level policy. One approach is to simply use

rate-monotonic scheduling, where priorities are assigned to threads based on their period,

and threads use scheduling contexts that match their sporadic task parameters. Each thread

in the system will be temporally isolated, as the kernel will not permit it to exceed the

processing time reservation that the scheduling context represents.

However, the system we have designed offers far more options than simple rate-

monotonic fixed-priority scheduling. Policy freedom is retained since reservations simply

grant a potential right to processing time, at a particular priority. What reservations actually

represent is an upper bound on processing time for a particular thread. Low priority threads

are not guaranteed to run if reservations at higher priorities use all available CPU. However,

threads with reservations at low priorities will run in the system slack time, which occurs

when threads do not use their entire reservation.

The implication is that a system could use a high range of priorities for rate-monotonic

threads, while best-effort and rate-limited threads run at lower priorities. Another alternative

is to map user-lever schedulers to specific priorities, for instance an EDF scheduler.

6.1.8 Asymmetric Protection

Recall that in a mixed-criticality system, asymmetric protection means that tasks with

higher criticality can cause deadline misses in lower criticality tasks. Two approaches to

mixed-criticality scheduling that support asymmetric-protection are slack scheduling and

Vestal-style mixed-criticality scheduling [Burns and Davis, 2017; Vestal, 2007].
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Under slack scheduling, low-criticality tasks run in slack time of high-criticality tasks.

Our model supports this easily: high-criticality tasks are given reservations to all processing

time at high priorities, and low-criticality tasks are given reservations at a lower priority

band. Note that without intervention from a user-level scheduler, more sophisticated slack-

scheduling schemes, where slack time is used before running a high-criticality task, cannot

be conducted by the kernel.

Vestal’s model relies on suspending or de-prioritising low-criticality tasks if a high-

criticality task runs for longer than expected. Such simple schemes involve two system

modes: a HI mode and a LO mode, although they have been generalised to more [Fleming

and Burns, 2013]. In LO mode, high-criticality tasks run with smaller reservations, and

the remaining CPU time is used for low-criticality tasks. If a high-criticality task does not

complete before its LO-mode reservation is exhausted, the system switches to HI mode:

all low-criticality tasks are suspended. Such a criticality switch is also supported by our

model, at user-level: a high-priority scheduling thread can be set up to receive temporal

faults when a task does not complete before its budget expires. On a temporal fault, the

scheduling thread can modify the scheduling parameters of tasks appropriately, for example

by boosting the high-criticality task’s priority and budget.

6.1.9 Summary

The scheduling, accounting and enforcement mechanisms presented are sufficient to sup-

port temporally isolated, fixed-priority or EDF scheduled real-time threads. By keeping

admission control out of the kernel we preserve policy freedom, except in the case of

replenishment policy which must be in the kernel to allow the enforcement of an upper

bound on execution. While the mechanisms provided allow for a full resource kernel to

be built, or other types of system which require the ability to over-commit. Additionally,

we have maintained support for best-effort threads, and have added the ability to provide

asymmetric protection for mixed-criticality workloads. In the next section, we show how

our model provides mechanisms for resource sharing.

6.2 Resource sharing

Reservations through the mechanism of scheduling contexts are not sufficient alone to

provide resource sharing between tasks of different time-sensitivity, criticality, and trust. We

now present how the scheduling-context mechanism facilitates resource sharing policies in

terms of the three core mechanisms—prioritisation, charging and enforcement—presented

in Section 2.4.5.

In this section we consider only resources shared by resource servers in an RPC style,

in which servers are scheduled directly as a result of the RPC. Other forms of resource

sharing, such as the asynchronous multicast provided by ARINC 653 (Section 4.1.2), are
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possible but not relevant, as these exist within partitions without altering timing behaviour,

and we have already shown how temporal partitioning is possible with reservations.

RPC-style shared servers are fundamentally a trusted entity: the client does not resume

until the server replies to a request, and the server may not reply. Additionally, the client

requires the server to carry out the operation requested. Consequently, the server takes

on the ceiling of the requirements of the clients. If a server is shared between trusted and

untrusted clients, the server must be trusted as much as the most trusted client. If a server is

shared between HRT and best-effort clients, the server must have the same time sensitivity

as the HRT clients: a defined WCET and bounded blocking behaviour. Finally, the server

must be at the highest criticality level of all clients, however the opposite is not true. If

a server has sufficient isolation properties, then all the clients of that server are not also

promoted to the highest criticality level, which as we know would greatly increases the

certification burden.

This asymmetry also holds for trust: a trusted server need not trust its clients, and the

clients need not trust each other. Trusted scenarios do not require this level of encapsula-

tion: user-level threads packages can implement locking protocols with libraries such as

pthreads. Therefore, our focus is on temporal isolation in shared servers beyond strict

partitioning, where clients do not trust each other, and the server does not trust the client.

The proposed model supports shared servers, including scheduler bypass, through

scheduling context donation: a client invoking a server can pass its SC along, so the

server executes on the client’s SC, until it replies to the request. This ensures that the time

consumed by the server is billed to the client on whose behalf the server’s work is done. If

the scheduling context expires, the enforcement mechanism of timeout exceptions can be

used to recover the server according to server specific policy.

6.2.1 Prioritisation

We indicated in Section 6.1.2 that scheduling contexts are separate from thread control

blocks in order to support resource sharing. Additionally, unlike previous microkernel

designs for SCs, priority remains an attribute of the execution context. Decoupling priority

and scheduling context avoids prior patterns where priority-inheritance is enforced by the

kernel.

The IPCP (introduced in Section 2.3.3) maps neatly to this model: if server threads

are assigned the ceiling protocol of all of their clients, then when the IPC rendezvous

occurs and we switch from client to server, the server’s priority is used, a consequence of

decoupling priority from the scheduling context. IPCP is also practical: it is mandated by

the AUTOSAR standard (recall Section 4.1.3) and is therefore well understood by parts of

the industry.

The main drawback of the IPCP, namely the requirement that all lockers’ priorities are

known a priori, is easy to enforce in a capability-based system: The server can only be

accessed through an appropriate invocation capability, and it is up to the system designer to

85



ensure that such a capability can only go to a thread whose priority is known or appropriately

controlled.

The choice of the IPCP over other fixed-priority protocols, the PIP and the OPCP, is

intentional, and we now present the case against both protocols.

In order to properly support real-time systems, our model orders endpoint queues by

priority, rather than the traditional FIFO of L4 kernels. Threads of the same priority remain

FIFO.

PIP

The major factor in ruling the PIP (recall Section 2.3.2) out as a mechanism provided by

the microkernel is performance. Introducing PIP would complicate scheduler operations

on the critical IPC fastpath, as priorities would need to be returned on the reply path. One

could take after Real-time Mach, and provide PIP as an optional flag on a message port,

thereby retaining policy freedom, but at a performance cost due to the increased branching

required on IPC, and tracking required to restore inherited priorities. Mandating the PIP,

which incurs a high-preemption overhead compared to other protocols, would violate both

our performance and policy freedom requirements.

There is an additional, practical concern, in that the PIP does not map well to the

existing capability system. Recall from Section 5.5.1 that endpoints have minimal state,2

and once an IPC rendezvous has occurred, the caller is blocked on the resume capability.

Consequently, there is no way to reach the caller after an IPC message has been sent.

Significant changes would be required to the seL4 IPC model to ensure threads blocked on

resume capabilities could be tracked from the endpoint that facilitated the IPC rendezvous.

Prior kernels which implement efficient PIP over IPC, including Fiasco and Nova (recall

Section 4.3.4), did not use endpoints but sent IPC directly between threads, which could

then be used to track inheritance chains. A key design feature of seL4 endpoints is that they

are stateless, enables strong isolation properties between threads that communicate, but

prevent their use for tracking priority inheritance.

6.2.2 OPCP

Although the OPCP (Section 2.3.4) offers greater processor utilisation than the IPCP, it

would require the kernel to track a system ceiling and also boost priorities when threads

access resources. This is because in the OPCP a tasks priority is only raised when another

task attempts to lock the same resource. Additionally, tasks can only lock resources if their

dynamic priority is higher than the ceilings of all other resources, requiring the kernel

to identify and track resources and their states. Both of these mechanisms are required

to implement the OPCP, and both would violate confidentiality by altering state across

2Which again contributes to high performance.
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Figure 6.1: Legend for diagrams in this chapter, an expanded version of Figure 5.2

E
A S

call() rec
v()

SCA

(a) Phase 1

A S

SCA

E

reply()R

(b) Phase 2

Figure 6.2: IPC phases between an active client and passive server: (a) shows the initial IPC rendez-
vous, (b) shows the reply phase. The client’s SCA is donated between client and server.
See Figure 6.1 for the legend.

partitioned resources. This is the same reason we exclude priority-exchange and slack-

stealing servers, as discussed in Section 6.1.5.

Although not provided by the kernel, PIP and OPCP can be implemented at user-level

if required, by proxying requests to shared resources via an endpoint and thread. The proxy

then which manipulates the priorities appropriately, before forwarding on the request. For

PIP, only one extra thread per resource would be required and could exist in the same

address space as the resource. Since OPCP requires global state, an implementation would

require a shared service for all threads sharing a set of resources. We describe such an

implementation in Section 6.4 after introducing further mechanisms in Section 6.3.

6.2.3 Charging

Charging for time executed in a server is simple in our model: the scheduling context that

the resource server is running on is charged. The question is, which scheduling context

should be used by the resource server? Unlike previous implementations of donation-like

semantics, our model does not mandate scheduling context donation. Resource servers are

free to run on their own scheduling context, according to the policy of the system.
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Figure 6.3: IPC phases between an active client and active server: (a) shows the initial IPC rendez-
vous, (b) shows the reply phase. Both client and server have their own SC. See Figure 6.1
for the legend.

Whether donation occurs or not is inferred at the time of the IPC rendezvous: we test if

the server is passive or active. Passive servers do not have a scheduling context and receive

them over IPC whereas active servers have their own scheduling context. Passive servers, as

illustrated in Figure 6.2, provide a model similar to the migrating-thread model [Ford and

Lepreau, 1994; Gabber et al., 1999], although revocation can decouple clients and servers

mid-IPC. Figure 6.3 shows active servers, which allow system designers to build systems

without temporal isolation, which is not suitable for all servers.

6.2.4 Enforcement

If scheduling context is exhausted while in use by a passive server, the server and any

waiting clients are blocked until replenishment. On its own, this means that a client not only

has to trust its server, but all the server’s other clients. This would rule out sharing a server

between clients of different criticality.

In a mutually trusting HRT system, we can assume that a client’s reservations are

sufficient to complete requests to servers. However, in systems with untrusted HRT, best-

effort and soft real-time tasks, no such assumption can be made and client budgets may

expire during a server request. This leaves the server in a state where it cannot take new

requests as it is stuck without an active reservation to complete the previous request. Without

a mechanism to handle this event the server, and any potential clients, would be blocked

until the client’s budget is replenished.

Timeout exceptions can be used to remove this need for trust, and allow a server to be

shared across criticalities, as depicted in Figure 6.4. Timeout fault endpoints are specific

to the execution context of a thread, not the scheduling context, and threads servicing

timeout faults must have a scheduling context of their own (in order to service the request).

Consequently, servers may have timeout fault handlers while clients may not. The server’s

timeout handler can, for example, provide an emergency budget to continue the operation

(useful for HI clients) or abort the operation and reset or roll back the server. The latter
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Figure 6.4: Example of a timeout exception handler. The passive server S performs a request on
client A’s scheduling context, SCA. A timeout fault is generated when SCA is exhausted
and sent to the server’s timeout fault endpoint E2, and the timeout handler receives it.
See legend Figure 6.1

option is attractive for minimising the amount of budget that must be reserved for such

cases.

A server running out of budget constitutes a protocol violation by the client, and it

makes sense to penalise that client by aborting. Helping schemes that complete the clients

request, as per PIP, make the waiting client pay for another client’s contract violation. This

not only weakens temporal isolation, it also implies that the size of the required reserve

budget must be a server’s full WCET. This places a restriction on the server that no client

request exceed a blocking time that can be tolerated by all clients, or that all clients must

budget for the full server WCET in addition to the time the server needs for serving their

own request. Our model provides more flexibility: a server can use a timeout exception to

finish a request early (e.g. by aborting), meaning that clients can only be blocked by the

server’s WCET (plus the short clean up time).

6.2.5 Multiprocessors

The mechanism of scheduling-context donation can also be used across processing cores,

and allows users to easily specify if servers should migrate to the core of the client, or

process the request on a remote core. The mechanism is simple: if a server is passive, it

migrates to the core for which the donated scheduling context provides time. This allows

for both remote and local bandwidth inheritance to be used for IPC at user-level, as defined

in Hohmuth and Peter [2001], which discusses in-kernel synchronisation primitives for the

SMP Fiasco kernel.

6.3 Mechanisms

Before exploring how various user-level policies can be implemented at user-level using our

model, we describe four new mechanisms introduced for high-performance implementation

of those policies.
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6.3.1 Directed yield

The first is simple: in order to implement user-level schedulers, the kernel’s scheduling

queues must be able to be manipulated. For this, we add an operation on scheduling contexts:

a directed yield to a specified scheduling context. By using the seL4_SchedContext_YieldTo

invocation on a specific scheduling context, the thread running on that scheduling context

is placed at the head of the scheduler queue for its priority. This may change the currently

running thread if it is at the same priority, and only effects the scheduler if there is a

runnable thread bound to the invoked scheduling context. The invocation does not have any

effect if the thread bound to the scheduling context is blocked, either due to budget expiry

or blocked waiting for an event. Thus threads cannot yield to threads of higher priorities

than their own maximum control priority.

6.3.2 IPC Forwarding

We introduce another concept called forwarding, which allows callers to invoke one cap-

ability and block on another capability in the same system call, via a new system call

seL4_NBSendRecv. This is required to facilitate a forwarding IPC, which allows a message,

capability and scheduling context to be sent to another thread without requiring it be

returned via the same pathway (similar to a forwarded email, where the receiver of the

forwarded email can reply directly to the original sender). IPC forwarding is illustrated in

Figure 6.5.

6.3.3 Flexible Resume Capabilities

The final mechanism we introduce is the ability to transfer resume capabilities between

servers. This means that a blocked thread can be forwarded to other threads, thus allowing

the resume capability to be moved. Note that this is explicitly not delegation: resume

capabilities cannot be copied.

6.3.4 Notification Binding

Recall from Section 5.5.4 that notification objects can be bound to threads such that single-

threaded servers can be constructed which receive IPC messages and signals. We extend

this mechanism with passive-server support, by allowing scheduling contexts to be bound

to notifications, such that the passive server executes using the notification’s scheduling

context when processing interrupts or signals from other threads.

6.4 Policies

We now describe how different policies can be implemented by user-level systems using

the existing mechanisms in seL4, combined with the new mechanisms of scheduling
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Figure 6.5: IPC forwarding: client A sends a request to passive server S2 via a passive proxy S1, and
the scheduling context passes from A→ S1→ S2→ A. See Figure 6.1 for the legend.

91



contexts, scheduling context donation, directed yield, IPC forwarding, and flexible resume

capabilities. First, we explain how different best-effort, rate-based and real-time tasks are

compatible with our model and describe their implementation. We subsequently explain

how various different resource sharing policies and servers, with and without temporal

isolation, can be constructed.

6.4.1 Scheduling policies

Best-e�ort threads

Best-effort threads, scheduled round-robin, are compatible with our model, which maintains

compatibility with the previous, baseline seL4 scheduler. Full scheduling contexts are the

mechanism to support best-effort threads, and by setting the budget equal to the period,

system designers can set a timeslice, which determines how long a specific scheduling

context can be executed upon before preemption.

More complicated, time-sharing schedulers can be built by a user level scheduler, using

the directed yield and consumed mechanisms, which allow user-level to reorder the kernel’s

priority queues and request the amount of time consumed by a specific scheduling context.

Rate-limited threads

Rate-limited threads simply have their scheduling contexts configured with parameters

that express the desired upper-bound on rate. No other work is required by the user: if

there are no higher-priority threads and the rate-limited thread does not block, it will be

runnable at the rate expressed in the scheduling context. Otherwise, the thread will be

capped at the rate specified, but cannot be guaranteed to get the entire rate allocation if

there are higher-priority threads in the system, or if the priority of the rate-limited thread is

overloaded.

Periodic, polling threads

Threads that need to wake, poll for an event, and sleep again can be implemented using the

sporadic server mechanism, by setting threads’ scheduling parameters appropriately. As

long as the budget is not full (C 6= T ), the seL4_Yield system call can be used to block until

the next replenishment is available, as shown in Listing 6.1. However, this approach will

only work if the amount of thread preemptions is known and the amount of extra sporadic

replenishments is set correctly, as seL4_Yield sleeps until the next available replenishment. If

fragmentation occurs due to unpredicted preemptions or suspensions and incorrect sporadic

replenishments, the polling thread will not wake at the start of every period. This could

be ameliorated by checking the time on wakeup, or by using a timer to and a notification

object, where the notification object is configured to receive periodic notifications from a

timer service. This approach can also be used to set up time-triggered threads, in order to

wake at exactly the right time.
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1 for (;;) {
2 seL4_Word badge;
3 seL4_Poll(notification_object, &badge);
4 doJob();
5 // sleep until next job is ready
6 seL4_Yield();
7 }

Listing 6.1: Example of a polling task on seL4.

1 for (;;) {
2 doJob();
3 // sleep until next job is ready
4 seL4_Word badge;
5 seL4_Wait(notification_object, &badge);
6 }

Listing 6.2: Example of a basic sporadic task on seL4.
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Figure 6.6: Example of proxying requests via a server that manipulates priorities before resource
access, see Figure 6.1 for the Legend.

Sporadic threads

Recall that sporadic threads wake due to events such as an interrupts, then process the

event and go back to sleep. To constrain sporadic thread’s execution times, they are given

a minimum inter-arrival time. To build sporadic threads notifications can be used with

scheduling contexts, as displayed in Listing 6.2. In this case, if the number of sporadic

replenishments is not sufficient, the processing bandwidth may be artificially limited by

excessive preemptions, otherwise it will be C
T .
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6.4.2 Resource sharing policies

PIP/BWI

Figure 6.6 shows an example of a resource server (S2) which proxies IPC messages via

another server (S1) to manipulate priorities according to some protocol before and after

requests. The policy works as follows: clients are given a badged capability to an endpoint,

E1, on which to make requests on the resource server. S1 receives requests, identifies the

client via the badge, and manipulates S2’s priority to match the caller. S1 has multiple

responsibilities: it caches pending messages for S2, and manipulates priorities. While S2 is

processing requests, S1 continues to receive messages over E1, and stores them in a buffer,

and bumps S2’s priority each time a pending request arrives.3 Once S2 is finished with a

request, it uses IPC forwarding to send a message on E1 that it is ready for more work, and

returns to wait on E2. S1 then invokes the resume capability, which returns the scheduling

context to the client, and sends the reply. Finally S1 can then forward another pending

request to the client, or itself wait for further requests on E1. Note that for this method

to work, S1 must be the highest priority, and acts as a critical section for manipulating

priorities in the system.

Our description so far can be used to implement the PIP or the OPCP, depending on

the logic used by the proxy-server S1. This also determines whether S1 and S2 are active

or not. In order to extend this protocol to bandwidth inheritance, S1 could also act as a

timeout-fault handler would and could also bind the pending client’s scheduling context to

the server to finish the requests.

In order to handle nested requests, which are the most complex part of any PIP im-

plementation, the same server thread S1 would need to be used for all locking operations,

essentially becoming a locking server.

Best-e�ort Shared Server

Best-effort systems have no timing requirements, so each thread in the system has a full SC

with a budget and period the length of the timeslice. Threads are scheduled round-robin. To

implement such a system with our mechanisms, all server threads would be configured as

active, and set to the ceiling priority of the clients.

This policy does not provide temporal isolation, as the server executes on its own budget.

If one client launches a denial-of-service attack on the server, depleting the server’s budget,

then other clients are starved.

While our resource sharing mechanisms do not rule out this policy, it is only suitable

for systems where all clients are trusted and the amount of requests each client makes is

known a priori, or systems that have low temporal sensitivity.

3We assume a uniprocessor in this example, so pending requests are always the highest priority.
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Migrating threads

COMPOSITE [Parmer, 2010] solves the resource sharing model by using migrating threads

(also termed stack-migrating IPC). On every IPC, client execution contexts (and CPU

reservation) transfer to a new stack running in the server’s protection domain. In this section

we explain how a migrating thread policy could be implemented with the model introduced

in this chapter.

To implement migrating threads, COMPOSITE requires that every server have a mech-

anism for allocating stacks. If no memory is available to allocate stacks, then the request

is blocked. This solution forces servers to be multi-threaded, which is problematic for

verification of server code due to state-space explosions created by interleaving.

A stack-spawning policy can be implemented using the mechanisms we have provided,

similar to the PIP implementation described above (Section 6.4.2), except the proxy server

spawns new worker threads instead of manipulating priorities. The stack-spawning proxy

would also be at a lower priority than the worker threads, such that it would only be activated

when all worker threads are blocked.

An alternative policy is to build systems with a fixed-size pool of worker threads, all

waiting on the same endpoint. Like the best-effort policy, our model supports this approach

but it is not required.

Blocking Servers

Some servers need to block in order to function: for example, servers providing I/O may

need to wait until an operation completes before replying to the client. Consider a disk

server, where clients make requests to the server to write data to the disk. The server makes

the request to the disk, but does not reply to the client until the device has signalled that

I/O is complete. Rather than blocking until the driver responds, preventing the server from

taking on further requests, the server can block on the endpoint and wait for the interrupt

or further RPC requests. If an interrupt comes in, the server runs the bound notification

object’s scheduling context to complete the request.

Another option is to use multiple threads, with a passive thread for handling requests

and an active thread servicing interrupts, however this requires synchronisation between

the threads within the server.

Server isolation

We now describe how timeout handlers can be used to implement server isolation and other

policies, as previously introduced in Section 6.1.6.

For our example consider a server shared between clients of different criticality, time

sensitivity, and trust, which provides an encryption service via AES. Such a server processes

data in blocks, and the WCET of a request is a function of the amount of data to be encrypted.

Such a server can be constructed transactionally in order to render it preemptable: each
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block processed is considered a transaction. The server atomically switches between two

states each time it completes a block, effectively finishing one transaction and starting

another. Each block specifies the block in the memory buffer which is being processed

by the server. The state the server is working on is always dirty, the previous one is clean,

where the dirty state indicate the incomplete block, and the clean state indicates the last

processed block.

By constructing the server in this way, a timeout handler can reset the server to the last

clean state if the passive server raises a timeout exception due to the client’s SC expiring.

When the server is initialised, the timeout handler saves the server at a known checkpoint,

and on exception, restores the server back to this checkpoint to receive further requests.

The handler can then reply to the client on the server’s behalf, and return how far through

the request the server completed by reading it out of the last clean state. Invoking the reply

returns the scheduling context to the client, and the timeout handler blocks waiting for the

next request.

Other options are also available to the timeout handler, which is important as not all

server operations can be reset midway. The timeout handler can reply with an error to the

client or not reply to the client at all, thereby preventing the client from making further

requests. Alternatively, the timeout handler could bind a temporary scheduling context to

the server to complete the request.

6.4.3 Example MCS

Figure 6.7 shows a simplified AAV architecture, which we use as an example mixed-

criticality system using both passive and active components of different criticality levels.

Each rectangle represents a component executing in a separate address space. Solid frames

indicate active components, while dashed frames indicate passive components. Solid arrows
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Figure 6.7: Simplified AAV design.
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indicate RPC-style server invocation and dashed arrows are completion signals. For clarity

we do not show most invocations of the logging service which would add a solid arrow

from each component to the “Logging” box. High-criticality components are shown in

red, medium-criticality in orange, and least-critical ones in white. Most communication

is by RPC-type message-passing, with the exception of device drivers which signal I/O

completion via notifications (dashed arrows) and shared memory buffers.

6.5 Summary

In this chapter we have outlined our model for providing temporal isolation via scheduling

and resource sharing mechanisms. We introduce support for user-level admission tests

via a new control capability, and add processor reservations to the kernel in the form of

scheduling contexts. Scheduling contexts differ from prior work in that they are decoupled

from priority, thereby avoiding priority inheritance on scheduling context donation. In

addition, by providing the active versus passive server definition, we also maintain policy

freedom.

Finally, we outlined existing models for integrating real-time resource policies over

IPC and show how scheduling-context donation combined with passive servers can be used

to create trusted servers with untrusted clients. Our model supports best-effort, migrating

threads, or temporal isolation policies for resource sharing.

Timeout exceptions are provided which allow for user-defined enforcement policies,

while the default mechanism maintains isolation by preventing threads from executing for

more than the share of processing time represented by the scheduling contexts.

In the next section we will outline the implementation of our model in seL4.
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7 Implementation in seL4

In the previous chapter we presented our mechanisms for temporal isolation and safe

resource sharing in a high-assurance microkernel. Now we delve into the implementation

details of scheduling contexts, scheduling context donation, passive servers, timeout fault

handlers, and IPC forwarding in seL4. First we explore new kernel objects, followed by

new and altered API system calls and invocations, and finally look at structural changes.

7.1 Objects

We add two new objects to the kernel, scheduling context objects (SCOs) and resume objects.

Additionally, we modify the TCB object, although do not increase its total size. Finally, we

modify the notification object to allow single-threaded, passive servers to receive signals in

addition to IPC messages.

7.1.1 Resume objects

Resume objects, modelled after KeyKOS [Bomberger et al., 1992], are a new object type

that generalises the “reply capabilities” of baseline seL4 introduced in Section 5.5.1, in

order to track the donation of scheduling contexts over IPC. Recall that in baseline seL4,

the receiver of the message (i.e. the server) receives the reply capability in a magic “reply

slot” in its capability space. The server replies by invoking that capability. Resume objects

remove the magic by explicitly representing the reply channel, and servers with multiple

clients can dedicate a resume object per client. Instead of generating a one-shot reply

capability in a reply slot on a seL4_Call, the operation populates a resume object, while

seL4_Recv de-populates the resume object. Additionally, resume objects also provide more

efficient support for stateful servers that handle concurrent client sessions, which we expand

on further when we introduce the changed system-call application programming interface

(API) in Section 7.2.

A resume object can be in the following three states:

• idle meaning it is not currently being used,

• waiting meaning it is being used by a thread blocked and waiting for a message,
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Figure 7.1: State diagram of resume objects.

• or active, which means the resume object currently has a thread blocked waiting for

a reply associated with it.

Valid state transitions are shown in Figure 7.1. Resume objects are now required as argu-

ments to receiving system calls along with endpoint capabilities, which transitions them

from idle to waiting. If the endpoint is invoked with seL4_Call, the caller is blocked on

the resume capability, and it transitions to active. If a resume object is directly invoked,

using a sending system call (recall from Section 5.2 that sending system calls are seL4_Send,

seL4_NBSend, seL4_Call, seL4_Reply) then a reply message is delivered to the thread blocked

on the object. Finally, if a resume object is in an active state, and provided to seL4_Recv, the

object is first invoked, and removed from the call stack, which we now examine in detail.

The call stack

Active resume objects track the call stack that is built as nested seL4_Call operations take

place. seL4_Call triggers a push operation, adding to the top of the stack, while a reply

message triggers a pop, removing the top of the stack. The call stack allows us to track

the path of a donated scheduling context, from caller to callee, so that it can be returned

to the previous caller, regardless of which thread sends the reply message. This is a direct

consequence of flexible resume capabilities: a resume capability can be moved between

threads, and any thread can execute the reply: usually the server, but occasionally a timeout

fault handler, or a nested server which received the resume capability via IPC forwarding.

It is therefore impossible to derive the original callee from the thread which sent the reply

message. When a reply message is sent via an active resume object at the head of the call
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Figure 7.2: The state of the reply stack when a nested server S2 is performing a request on behalf of
an initial server S1 for client A.

stack, that resume object is popped, and the SCO is linked to the thread that the resume

object pointed to, overriding the previous SCO to TCB link.

The call stack is structured as a doubly-linked list, with one minor difference: the head

of the call stack is the scheduling context that was donated along the stack, which itself

contains a pointer to the thread currently executing on it. Each resume object then forms a

node in the stack, going back to the original caller at the base. The SCO remains the head of

the stack until the SCO returns to the initial caller and the stack is fully dismantled. When a

reply message is sent, the scheduling context travels back along the call stack and the head

resume object is popped. Reply objects also point to the thread which donated the SCO

along the stack, allowing the SCO to be returned to that thread when a reply message is

sent. This process is illustrated in Figure 7.2, where A has called S1 which has called S2.

In a capability system, one of the biggest challenges is that capabilities can be revoked,

and the object they grant access to deleted, at any time, regardless of the state of the system.

Therefore we provide the following deletion semantics for resume objects:

• If the SCO is deleted, the head of the call stack becomes the first resume object. To

avoid a long-running operation, the call stack of resume objects remains linked, and

is dismantled as each resume object is deleted.

• If the head resume object (the object that points to the SCO) is deleted, the SCO is

returned along the stack to the caller.

• If a resume object in the middle of the stack is deleted, we use the standard operation

for removing a node from a doubly-linked list: the previous node is connected to the

next node, and the deleted object is no longer pointed to by any member of the stack.

• If the resume object is at the start of the stack, i.e. the node corresponding to the

initial caller, it is simply removed. The SCO cannot return to the initial caller by

means of a reply message.

Resume objects are small (16 bytes on 32-bit platforms, and 32 bytes on 64-bit plat-

forms), and contain the fields shown in Table 7.1.
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Field Type Description

tcb uintptr_t The calling or waiting thread that is blocked on this reply object.

prev uintptr_t 0 if this is the start of the call stack, otherwise points to the previous
reply object in the call stack.

next uintptr_t Either a pointer to the scheduling context that was last donated using
this reply object, if this reply object is the head of a call stack (the
last caller before the server) or a pointer to the next reply object in
the stack. 0 if no scheduling context was passed along the stack.

Table 7.1: Fields in a resume object.

7.1.2 Scheduling context objects

We introduce a new kernel object type, SCOs, which all processing time is accounted

against, and a new scheduler invariant: any thread in the scheduler queues must have an

SCO. SCOs are variable-sized objects that represent access to a certain amount of time and

consist of a core amount of fields, and a circular buffer to track the consumption of time.

Scheduling contexts encapsulate processor time reservations, derived from sporadic task

parameters: minimum inter-arrival time (T ) and a set of replenishments which is populated

from an original execution budget (C), representing the reserved rate (U = C
T ). Fields in an

SCO are shown in Table 7.2.

Field Type Description

Period uint64_t The replenishment period, T .

Consumed uint64_t The amount of cycles consumed since the last reset.

Core word_t The ID of the processor this scheduling context grants time
on.

TCB uintptr_t A pointer to the thread (if any) that this scheduling context is
currently providing time to.

Reply uintptr_t A pointer to the head resume object (if any) in a call stack.

Notification uintptr_t A pointer to the notification object (if any) to which this SCO
is bound.

Badge word_t An unforgeable identifier for this scheduling context, which
is delivered as part of a timeout fault message to identify the
faulting client.

YieldFrom uintptr_t Pointer to a TCB that has performed a directed yield to this
SCO.

Head,Tail word_t Indexes to the circular buffer of sporadic replenishments.

Max word_t Size of the circular buffer of replenishments for this schedul-
ing context.

Table 7.2: Fields of a scheduling context object.
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0x00 period consumed

0x10 core TCB reply ntfn

0x20 badge yieldFrom head tail

0x30 max

0x40 replenishment0

0x50 replenishment1

. . . . . .

0xF0 replenishmentn

Table 7.3: Layout of a scheduling context object on a 32-bit system.

Replenishments

In addition to the core fields, SCOs contain a variable amount of replenishments, which

consist of a timestamp and amount. These are used for both round-robin and sporadic threads.

For round-robin threads we simply use the head replenishment to track how much time is

left in that SCO’s timeslice.

Sporadic threads are more complex; the replenishments form a circular buffer used

to track how much time a thread can execute for (amount) and when that time can be

used (timestamp). The size of the circular buffer is limited by both a variable provided on

configuration of the SCO, and the size of the SCO (where the former must be ≤ the latter).

This allows system designers to control the preemption and fragmentation of sporadic

replenishments as discussed in Section 6.1.5.

Each SCO is minimum 28 bytes in size, which can hold eight or ten replenishments

for 32 and 64-bit processors respectively. This is sufficient for most uses, but more replen-

ishments can be supported by larger sizes, allowing system designers to trade-off latency

for fragmentation overhead in the sporadic server implementation. SCOs can be created

as larger objects, 2n bytes, then the rest of the object can be filled with replenishments, as

shown in Table 7.3. System designers can then use the max replenishment field to specify

the exact number of replenishment to use, up to the object size.

Admission

Like any seL4 object, scheduling contexts are created from zeroed, untyped memory.

Consequently, new scheduling objects do not grant authority to any processing time at

all, as the parameters are all set to zero. To configure a scheduling context, the new

seL4_SchedControl capability must be invoked, which allows the period, initial sporadic

replenishment, maximum number of refills, and badge fields to be set. The processing core

is derived from the seL4_SchedControl capability that is invoked: only one exists per core.

The seL4_SchedControl_Configure operation behaves differently depending on the state of the

target scheduling context, and can be used not only to configure SCOs but also to migrate

threads across cores, and change the available bandwidth of a currently runnable thread.
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1 sc->period = period;
2 sc->head = 0;
3 sc->tail = 0;
4 sc->max = max_refills;
5 HEAD(sc).amount = budget;
6 HEAD(sc).time = current_time;

Listing 7.1: refill_new routine to initialise a scheduling context that is not active or is migrating
cores. HEAD is short-hand for access the head of the circular buffer of replenishments.

1 /* truncate to size 1 */
2 INDEX(sc, 0) = HEAD(sc);
3 sc->head = 0;
4 sc->tail = sc->head;
5 sc->max = new_max_refills;
6 sc->period = new_period;
7
8 if (HEAD(sc).time <= (current_time + kernel_wcet))
9 HEAD(sc).time = current_time;

10
11 if (HEAD(sc).amount >= new_budget) {
12 HEAD(sc).amount = new_budget;
13 } else {
14 /* schedule excess amount */
15 sc->tail = NEXT(sc, new);
16 TAIL(sc).amount = (new_budget - HEAD(sc).amount);
17 TAIL(sc).time = HEAD(sc).rTime + new_period;
18 }

Listing 7.2: refill_update routine to change the parameters of an active scheduling context. INDEX,
TAIL, and NEXT are operations on the circular buffer.

Semantics are as follows:

• If the scheduling context is not bound to a currently runnable thread, or is empty—in

that the parameters are set to 0—the operation is a basic configure: the fields are

simply set and the first replenishment is configured with the budget provided and the

timestamp of the kernel entry (see Listing 7.1).

• If the scheduling context is bound to a currently runnable thread, but that scheduling

context is for a different processing core than the seL4_SchedControl capability, the

fields are set and the thread is migrated to the new core.

• Finally, if the scheduling context is bound to a currently running thread and the

seL4_SchedControl capability is for the same core, we update the replenishment list

without allowing the sliding window constraint to be violated. Listing 7.2 shows the

algorithm used.

Sporadic Servers

Recall that polling servers (Section 3.1.3) provide a specified bandwidth to a thread,

but once a thread wakes, if it blocks or is preempted, the budget is abandoned until the
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1 if (new.amount < MIN_BUDGET && sc->head != sc->tail) {
2 /* used amount is too small - merge with last and delay */
3 TAIL(sc).amount += new.amount;
4 TAIL(sc).time = MAX(new.time, TAIL(sc).time);
5 } else if (new.time <= TAIL(sc).time) {
6 TAIL(sc).amount += new.amount;
7 } else {
8 sc->tail = NEXT(sc, sc->tail);
9 TAIL(sc) = new;

10 }

Listing 7.3: schedule_used routine, used below.

1 if (capacity == 0) {
2 while (HEAD(sc).amount <= usage) {
3 /* exhaust and schedule replenishment */
4 usage -= HEAD(sc).amount;
5 if (sc->head == sc->tail) {
6 /* update in place */
7 HEAD(sc).time += sc->period;
8 } else {
9 refill_t old_head = POP(sc);

10 old_head.time = old_head.time + sc->period;
11 schedule_used(sc, old_head);
12 }
13 }
14
15 /* budget overrun */
16 if (usage > 0) {
17 /* budget reduced when calculating capacity */
18 /* due to overrun delay next replenishment */
19 HEAD(sc).time += usage;
20 /* merge front two replenishments if times overlap */
21 if (sc->head != sc->tail &&
22 HEAD(sc).time + HEAD(sc).amount >=
23 INDEX(sc, NEXT(sc, sc->head)).time) {
24 refill_t refill = POP(sc);
25 HEAD(sc).amount += refill.amount;
26 HEAD(sc).time = refill.time;
27 }
28 }
29 }
30 capacity = MAX(HEAD.amount - usage, 0);
31 if (capacity > 0 && refill_ready(sc))
32 split_check(sc, usage);
33 /* ensure the refill head is sufficient to run */
34 while (HEAD(sc).amount < MIN_BUDGET || sc.head == sc.tail) {
35 HEAD(sc).amount += POP(sc).amount;
36 }

Listing 7.4: check_budget routine used to implement sporadic servers.
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1 /* first deal with the remaining budget of the current replenishment */
2 ticks_t remnant = HEAD(sc).amount - usage;
3 refill_t new = (refill_t) {
4 .amount = usage, .time = HEAD(sc).time + sc->scPeriod
5 };
6 if (SIZE(sc) == sc->max || remnant < MIN_BUDGET) {
7 /* merge remnant with next replenishment - either it's too small
8 * or we're out of space */
9 if (sc->head == sc->tail) {

10 /* update inplace */
11 new.amount += remnant;
12 HEAD(sc) = new;
13 } else {
14 POP(sc);
15 HEAD(sc).amount += remnant;
16 schedule_used(sc, new);
17 }
18 } else {
19 /* split the head refill */
20 HEAD(sc).amount = remnant;
21 schedule_used(sc, new);
22 }

Listing 7.5: split_check routine used to implement sporadic servers.

next period. Sporadic servers (Section 3.1.3) also limit threads to a specified execution

bandwidth, but do so by tracking a buffer of replenishments, which is appended to each

time a thread is preempted or blocks. Sporadic servers with only one replenishment act like

polling servers. As a result, configured scheduling contexts with zero extra replenishments

behave like polling servers, otherwise they behave as sporadic servers, allowing application

developers to tune the behaviour of threads depending on their preemption levels and

execution durations.

The algorithms for managing replenishments are taken from Danish et al. [2011], with

adjustments to support periods of 0 (for round robin threads) and to implement a minimum

budget. Whenever the current scheduling context is changed, check_budget (Listing 7.4) is

called to bill the amount of time consumed since the last scheduling context change. If the

budget is not completely consumed by check_budget, split_budget (Listing 7.5) is called to

schedule the subsequent refill for the chunk of time just consumed. If the replenishment

buffer is full, or the amount consumed is less than the minimum budget, the amount used

is merged into the next replenishment. When a new scheduling context is switched to,

unblock_check (Listing 7.6) is used, which merges any replenishments that are already

available, avoiding unnecessary preemptions.

The full code for sporadic servers, with less brevity than the simplified samples included

here, is available in Appendix B.1.

7.1.3 Thread control blocks

Recall from Section 5.3.3 that TCBs are the abstraction of an execution context in seL4,

which are formed from a TCB data structure and a special cnode containing capabilities
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1 if (HEAD(sc).time < current_time + kernel_wcet) {
2 /* advance earliest activation time to now */
3 HEAD(sc).time = NODE_STATE(ksCurTime);
4
5 /* merge available replenishments */
6 while (sc.head != sc.tail) {
7 ticks_t amount = HEAD(sc).amount;
8 if (INDEX(sc, NEXT(sc, sc->head)).time <= current_time + amount) {
9 POP(sc);

10 HEAD(sc).amount += amount;
11 HEAD(sc).time = NODE_STATE(ksCurTime);
12 } else {
13 break;
14 }
15 }
16 }

Listing 7.6: unblock_check routine used to implement sporadic servers.

Field Type Description

timeslice word_t Used to track the timeslice, replaced by the scheduling
context.

scheduling context uintptr_t The scheduling context this TCB consumes time from,
0 if this is a passive TCB.

MCP word_t The MCP of this TCB.

reply uintptr_t A pointer to the resume object this TCB is blocked on,
if the TCB is BlockedOnReply or BlockedOnRecv.

yieldTo uintptr_t Pointer to the SCO this TCB has performed a directed
yield to, if any.

faultEndpoint word_t Moved to the TCB cnode.

Table 7.4: Added and removed fields in a TCB object.

specific to that thread, which is only accessible to the kernel. We make several alterations

to this structure, but do not impact the TCB size, as there was enough space available. The

altered fields are shown in Table 7.4.

Fault endpoints

We also change the contents of the TCB cnode, removing two slots previously required

by the reply capability implementation, as resume objects are now provided to receiving

system calls, and no slot in the TCB cnode is required. In addition, we add two new slots by

installing fault handler capabilities, for faults and timeouts, into the TCB cnode. This is an

optimisation for fault handling capabilities: in baseline seL4, the fault-handling capability

is looked up on every single fault, increasing the overhead of fault handling. To minimise

this overhead, we look up the fault endpoint when it is configured, and copy the capability

into the TCB cnode. Note that capabilities in the TCB cnode cannot be changed by user-level:
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the TCB itself must be deleted for the endpoint capability to be fully revoked and the object

deleted, which avoids a time-of-check time-of-use vulnerability.

Maximum controlled priorities

The MCP, or maximum controlled priority, resurrects a concept from early L4 ker-

nels [Liedtke, 1996]. It supports lightweight, limited manipulation of thread priorities,

useful e.g. for implementing user-level thread packages. When setting the priority or MCP

of a TCB, A, the caller must provide the capability to a TCB, B, (which could be the caller’s

TCB). The caller is allowed to set the priority or MCP of A up to the value of B’s MCP.1 In

a typical system, most threads will run with an MCP of zero and have no access to TCB

capabilities with a higher MCP, meaning they cannot raise any thread’s priority. The MCP

is taken from an explicitly-provided TCB, rather than the caller’s, to avoid the confused

deputy problem [Hardy, 1988].

7.1.4 Notification objects

A scheduling context object can be associated with a notification object, which allows

a passive server with bound notifications to receive signals and run on the notification’s

scheduling context to process those signals. We add a pointer to the scheduling context

from the notification context, as well as vice-versa, to facilitate this mechanism, which

increases the size of the notification object from 24 to 25 on 32-bit, and 25 to 26 on 64-bit.

7.2 MCS API

We now present the new mixed criticality system (MCS) API for seL4, which alters the core

system call API, as well as adding new invocations and modifying existing ones. In this

section we also present the semantics of scheduling context donation, which are directly

linked to the new API.

7.2.1 Waiting system calls

In Section 5.2 we divided the seL4 system call API into two classes: sending system calls

(seL4_Send, seL4_NBSend, seL4_Call, seL4_Reply), receiving system calls (seL4_Recv, seL4_-

NBRecv), plus combinations of both for fast RPC (seL4_Call, seL4_ReplyRecv).

Our implementation alters the meaning of a receiving system call, and adds a new

class of system call: waiting system calls. The difference is simple: receiving system calls

are expected to provide a capability to a resume object, which can be used if a seL4_Call

is received over the endpoint being blocked on. Waiting system calls do not, and cannot

be paired with a seL4_Call successfully. Only receiving system calls can be used with

1Obviously, this operation also requires a capability to A’s TCB.
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scheduling context donation, as the reply object is used to track the call stack. Such a

distinction existed in the original L4 model, and were referred to as open and closed receive.

Additionally, because the TCB reply capability slot is dropped from the TCB cnode,

we remove the seL4_Reply system call, as its only purpose was to invoke the capability

in the reply slot, which no longer exists. seL4_ReplyRecv remains, and invokes the resume

capability, sending the reply, before using the reply in the seL4_Recv phase.

By making the reply channel explicit, we significantly increase the practicality of

the IPC fastpath, at the cost of an extra capability look-up on the fastpath. In baseline

seL4, any server that served multiple clients and did not reply immediately—because it

needed to block on I/O, for example—would save the reply capability, moving it from the

special TCB slot to a standard slot in the cspace. Later, when the server replied to the client,

it would invoke the saved reply capability with seL4_Send, then block for new messages

with seL4_Recv, avoiding the IPC fastpath for seL4_ReplyRecv. No system call to move the

resume capability back to the TCB cnode was provided. Resume objects avoid the save

slowpath, and increase the probability of using the fastpath, should the conditions detailed

in Section 5.5.2 be satisfied.

7.2.2 IPC Forwarding

For sending system calls, only the system calls that combine a send- and receive-phase can

donate a scheduling context, as a thread must be blocked in order to receive a scheduling

context. Both seL4_Call and seL4_ReplyRecv combine a seL4_Send and seL4_Recv phase, al-

though with slightly different semantics with respect to resume objects. However, seL4_Call

conducts both phases on the same capability, while the send phase of seL4_ReplyRecv can

only act on a resume object. We introduce a new combined system call, seL4_NBSendRecv,

which is the mechanism for IPC forwarding (Section 6.3.2). Both seL4_NBSendRecv and seL4_-

ReplyRecv combine a non-blocking send with a normal (blocking) receive. The non-blocking

send will simply discard the message and progress to the receive phase atomically if the

send cannot deliver its message without blocking.

IPC forwarding allows a seL4_NBSend followed by a seL4_Recv on two distinct capabilities,

without the restriction that the send-phase must act on a resume capability. Additionally,

we provide a variant which combines a send- and a waiting-phase, seL4_NBSendWait. Both

variants allow for IPC forwarding, and can donate a scheduling context along with the IPC,

by-passing the call chain.

The first phase of seL4_NBSendRecv and seL4_NBSendWait must use an seL4_NBSend rather

than a seL4_Send to avoid introducing a long-running operation in the kernel in the form of a

chain reaction triggered by a single thread blocking. We demonstrate by example why the

send-phase must be non-blocking.

To illustrate the problem, we refer to Figure 7.3, which shows five threads, Tz and

T1, . . . ,T4 and four endpoints, E1, . . . ,E4. Black arrows have already occurred, blocking

each thread on an endpoint, and grey are pending once each. T1 has used seL4_SendRecv on
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T1 T2
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E3 E4Tz

Receive phase Send phase

Figure 7.3: The problem with seL4_SendRecv.

E1 and E2, T2 has used seL4_SendRecv on E2 and E3, T3 has used seL4_SendRecv on E3 and E4.

T4 is blocked sending on E4, however the chain could continue without bound. Because the

send-phase is blocking, each thread Tn is blocked waiting for the send to proceed on En. Tz

then uses seL4_Recv on E1 (the red arrow), which triggers an unbounded chain of message

sending: T1 finishes its send phase and begins the receive phase on E2, which allows T2 to

finish its send phase and begin the receive phase on E3, which allows T3 to finish its send

phase and start the receive phase on E4. This chain reaction is an unbounded, long-running

operation. By making the send-phase non-blocking such a chain reaction is not possible:

the send-phase is aborted as the endpoint has no threads waiting for a message on it, and

the receive phase then proceeds.

Yield

In baseline seL4, seL4_Yield triggers a reschedule, and appends the calling thread to the

end of the appropriate scheduling queue. We retain these semantics for full scheduling

contexts, however for partial, sporadic scheduling contexts seL4_Yield depletes the head

sporadic replenishment immediately. The caller is then blocked until the next replenishment

becomes available, and then placed at the end of the appropriate scheduling queue.

We also provide a new invocation on scheduling context capabilities, seL4_-

SchedContext_YieldTo, which allows for a directed yield to a specific SCO. When called on

a SCO with a TCB running at the same priority as the caller, seL4_SchedContext_YieldTo

results in that thread being switched to by the kernel scheduler. Otherwise the TCB is

moved to the head of the scheduling queue for its priority.

Table 7.5 summarises the new MCS system call API, while more detailed descriptions

of each system call can be found in Appendix A.
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System Call Class Donation? New? Definition

seL4_Call sending, receiving X 7 Appendix A.1.1

seL4_Send sending 7 7 Appendix A.1.2

seL4_NBSend sending 7 7 Appendix A.1.3

seL4_Recv receiving X 7 Appendix A.1.4

seL4_NBRecv receiving X 7 Appendix A.1.5

seL4_Wait waiting 7 X Appendix A.1.6

seL4_NBWait waiting 7 X Appendix A.1.7

seL4_ReplyRecv sending, receiving X 7 Appendix A.1.8

seL4_NBSendRecv sending, receiving X X Appendix A.1.9

seL4_NBSendWait sending, waiting 7 X Appendix A.1.10

seL4_Yield scheduling 7 7 Appendix A.1.11

seL4_Reply sending - - Removed

Table 7.5: New seL4 system call summary, indicating which system calls can trigger donation and/or
receiving messages.

7.2.3 Invocations

Scheduling contexts have five invocations, listed in Table 7.6. Three of those invocations

are for binding SCOs to TCB and notification objects, while seL4_SchedContext_YieldTo and

seL4_SchedContext_Consumed facilitate user-level scheduling, allowing the user to manipulate

the kernel scheduling queues and to query the amount of time consumed by a specific SCO.

Both functions return the amount of CPU time the scheduling context has consumed since

it was last cleared: reading the consumed value by either system call clears it, as does a

timeout exception.

The new control capability, seL4_SchedControl, has only one invocation, seL4_-

SchedControl_Configure, for setting the parameters of a scheduling context (the function

definition can be found in Appendix A.2.8).

As baseline seL4 only supports sending three capabilities in a single message (including

to the kernel), we add a second method for configuring multiple fields on a TCB in

one system call (seL4_TCB_SetSchedParams), in addition to the existing method (seL4_TCB_-

Configure). We avoid altering the existing limit to avoid extensive re-verification of a

non-critical path. Full configuration of a TCB requires up to six capabilities to be set, not

including timeout handlers, which are not included in a combined configuration call as this

is a less common operation. In total, we alter two invocations on TCB objects and add three

new invocations, shown in Table 7.7.

Finally, we remove the seL4_CNode_SaveCaller invocation, which was previously used to

move a reply capability from the TCB cnode to a slot in the TCB cspace, and is no longer

required as the resume object capability is now provided to the receiving system call.
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Invocation Description Definition

seL4_SchedContext_Bind Bind an object (TCB or Notifica-
tion) to an SCO.

Appendix A.2.2

seL4_SchedContext_Unbind Unbind all objects from an SCO. Appendix A.2.3

seL4_SchedContext_UnbindObject Unbind a specific object from an
SCO.

Appendix A.2.4

seL4_SchedContext_Consumed Return the amount of time
since the last timeout fault,
seL4_SchedContext_Consumed or
seL4_SchedContext_YieldTo was
called.

Appendix A.2.5

seL4_SchedContext_YieldTo Place the thread bound to this SCO
at the front of its priority queue and
return any time consumed.

Appendix A.2.6

Table 7.6: Scheduling context capability invocations.

Invocation Description New? Definition

seL4_TCB_Configure Set the cnode, vspace, and IPC
buffer.

7 Appendix A.2.10

seL4_TCB_SetMCPriority Set the MCP. X Appendix A.2.11

seL4_TCB_SetPriority Set the priority. 7 Appendix A.2.12

seL4_TCB_SetSchedParams Set SCO, MCP, priority and fault
endpoint.

X Appendix A.2.13

seL4_TCB_SetTimeoutEP Set the timeout endpoint. X Appendix A.2.14

seL4_TCB_SetAffinity Removed, now derived from
SCO.

7 N/A

Table 7.7: New and altered TCB capability invocations.

7.2.4 Scheduling context donation

Conceptually there are three types of scheduling context donation: lending, returning, and

forwarding a scheduling context. The type of donation that occurs, and if it can occur,

depends on the system call used.

Lending a scheduling context occurs between caller and callee on a seL4_Call, and

the semantics are simple: if a thread blocked on an endpoint does not have a scheduling

context, the scheduling context is transferred from sender (caller) to receiver (the callee),

and the resume object is pushed onto the call-stack, such that the SCO can be returned. If

the callee already has a scheduling context, scheduling context donation does not occur.

Note that lending also works for handling faults, so thread fault handlers can be passive.

Unlike previous versions of timeslice donation in L4 kernels, there is no explicit flag for
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permitting donation: if the callee does not have a scheduling context, the caller would

block indefinitely, as the callee has no other way to access processing time. As discussed

in Section 6.2, the caller in an RPC-style operation must trust the callee: regardless of the

scheduling context being executed upon, the callee can always choose to not reply, blocking

the caller indefinitely.

Lent scheduling contexts are returned when the resume object is invoked, or the head

resume object is deleted. Resume objects can be invoked directly by the send phase of a

system call, or indirectly, by using the resume object in the receive phase of a system call,

thereby clearing it for another client to block on, or deleting the resume object. Regardless

of the state of the callee, the SCO is returned, which if done incorrectly (via a seL4_Send),

can leave the callee not blocked on an endpoint, and consequently unable to receive further

scheduling contexts via donation or lending. Correct usage by a passive thread is with

seL4_ReplyRecv, seL4_NBSendRecv, blocking the passive thread such that it is ready to receive

another scheduling context. Like lending, scheduling contexts can also be returned by a

fault handler replying to a fault message.

Forwarding a scheduling context does not establish a call-chain relationship, and

allows for scheduling contexts to be transferred between threads in non-RPC patterns. The

semantics are as follows: if IPC forwarding is used via seL4_NBSendRecv (Section 7.2.2)

is used, and the receiver does not have a scheduling context, the scheduling context is

forwarded.

Scheduling contexts can only be donated and received on specific system calls, indicated

in Table 7.5.

Passive servers

Passive servers do not have scheduling contexts, yet they must be waiting on an endpoint

in order to receive SCOs over IPC, and possibly initialise some server-specific state first.

The protocol for initialising passive servers is to start them as active, then wait for the

server to signal to the initialising thread that they are ready to be converted to passive. IPC

forwarding can be used to do this, so the passive server can send a message on one endpoint

or notification object, then wait on another to receive SCOs over IPC. Example user-level

code for this process is provided in Listing 7.7.

Notification Binding

Passive servers can receive scheduling contexts from their bound notification object, allow-

ing for the construction of single-threaded servers which receive both notifications and IPC

messages. The semantics are as follows: if a TCB receives a notification from its bound

notification object, and that TCB does not have a scheduling context, the TCB receives the

scheduling context. If a TCB blocks on an endpoint, and is running on its bound notification

object, the TCB is rendered passive again.
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1 void initialiser(seL4_CPtr server_tcb, seL4_CPtr init_sc, seL4_CPtr init_endpoint) {
2 /* start server */
3 seL4_TCB_Resume(server_tcb);
4 /* wait for the server to tell us it is initialised */
5 seL4_Wait(init_endpoint, NULL);
6 /* convert the server to passive */
7 seL4_SchedContext_Unbind(init_sc);
8 }
9

10 void passive_server(seL4_CPtr init_endpoint, seL4_CPtr endpoint, seL4_CPtr reply) {
11 seL4_MessageInfo_t info = init_server_state();
12 seL4_Word badge;
13
14 /* signal to the initialiser that this server is ready to be converted to passive, and

block on the endpoint with resume object reply */↪→
15 info = seL4_NBSendRecv(init_endpoint, info, endpoint, &badge, reply);
16 while (true) {
17 /* when the server wakes, it is running on a client scheduling context */
18 info = process_request(badge);
19 /* reply to the client and block on endpoint, with resume object reply */
20 seL4_ReplyRecv(endpoint, info, &badge, reply);
21 }
22 }
23
24 void client(seL4_CPtr endpoint, seL4_MessageInfo_t message) {
25 /* send a message to the passive server */
26 seL4_Call(endpoint, message);
27 }

Listing 7.7: Example initialiser, passive server, and client.

7.3 Data Structures and Algorithms

Now we discuss changes to the data structures and algorithms added and changed in

the kernel to provide accounting, which charges CPU time to the correct SCO, and the

enforcement mechanisms, which requires a new scheduling data structure and fault type.

7.3.1 Accounting

All processing time is accounted to the scheduling context of the currently running TCB. In

this section we first establish how that time is accounted, and then when it is accounted.

There are two ways to account for time in an OS kernel:

• in fixed time quanta, referred to as ticks,

• in actual time passed between events, referred to as tickless.

Using ticks, timer interrupts are set for a periodic tick and are handled even if no kernel

operation is required, incurring a preemption overhead. This approach has the advantage of

simplicity: the timer implementation in the kernel is stateless and the timer driver can be set

once, periodically, never requiring reprogramming. In older-generation hardware, especially

x86, reprogramming the timer device incurred a significant cost, enough to ameliorate the

preemption overhead. However, this design is not without limitations: the precision of the
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scheduler is reduced to the length of the tick. Precision must be traded for preemption

overhead: reducing the tick length increases precision, but also increases preemption

overhead. Preemption overhead is particularly problematic for real-time systems, as the

WCET each real-time task is inflated by the WCET of the kernel for every preemption.

Tickless kernels remove this trade-off by setting timer interrupts for the exact time

of the next event. As we will show in Section 8.2.1, the cost of reprogramming the timer

device on modern hardware is smaller, rendering the tickless design feasible. Consequently,

we convert seL4 to a tickless kernel, a non-trivial change due to the fact that the kernel

is non-preemptible2, which means timer interrupts for the scheduler can only be serviced

when the kernel is not running. Allowing a thread to complete an operation in the kernel

when it does not have sufficient time to do so would violate temporal isolation, as the

bandwidth allocated to the scheduling context could then be exceeded. As a result, on

kernel entry, the calling thread must have sufficient budget to complete the operation.

Without further decoding a pending system call, the kernel cannot tell which operation a

thread is attempting, so sufficient budget becomes the WCET of the kernel.

Threads are not permitted in the scheduler if they have insufficient budget, as if the

scheduling algorithm must iterate until a thread with sufficient budget is discovered, the

complexity of the algorithm becomes O(n) in the number of threads. The same condition

holds for IPC endpoint queues: we take the time on kernel entry in order to charge a

preempting thread, and any time from kernel entry is accounted to the scheduling context

active at kernel exit. Because a passive scheduling context then must be able to be charged

not only for the entry path into the kernel, but the exit path, the sufficient budget is actually

twice the WCET of the kernel.

We check budget sufficiency on kernel entry, by reading the current timestamp and

storing the amount of time consumed since the last kernel entry, allowing us to detect

budget expiry in a single point, and carry on other kernel operations with this assumption

intact. This means that timeout faults can only be raised at one point in the kernel, greatly

simplifying the implementation by avoiding excessive checks in other paths.

Fastpath

We alter the IPC fastpath conditions introduced in Section 5.5.2 to include one more

condition to have a very low overhead on fastpath performance:

• The receiver must be passive. For seL4_Call, this means the callee must be passive,

and for seL4_ReplyRecv, the TCB blocked on the resume object must be passive.

This is because although timer device access is cheaper on modern hardware, it is not free.

It also allows us to avoid checking budgets and modifying sporadic replenishments on the

fastpath, operations which have many conditional branches, which would also increase

overheads. Note that we expect most servers in real systems to use passive servers for RPC,
2Save for explicit preemption points in a few long-running operations.
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Enter kernel

Fastpath?

Update kernel time

 no

Exit kernel

 do fastpath

Budget sufficient?

Pretend tick

 no

Do kernel operation

 yes

Change SCO?

Commit time, charge SC

 yes

Rollback kernel time

 no

Figure 7.4: New tickless kernel structure.

even for non real-time systems, to assure fairness of resource access between round-robin

threads.

Even on the slowpath, we avoid reprogramming the timer unless it is required. Like

reading the time, reprogramming the timer is cheaper, but not free. Consequently although

we update the current time on every entry, we only charge threads at specific points:

• when the timer interrupt has fired, so clearly the timer needs reprogramming,

• when the current scheduling context changes, so a different interrupt is required,

• when the kernel timestamp has been acted upon: for instance, used to schedule a

replenishment.

If the recorded timestamp is not acted upon, the time is rolled back to the previously

recorded value, thus avoiding reprogramming the timer unnecessarily.
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Figure 7.4 illustrates the new control flow of the tickless kernel, and shows how and

when processing time is charged to scheduling contexts. On kernel entry, if the available

budget is insufficient, the kernel pretends the timer has already fired, resets the budget and

adds the thread to the release queue. If the entry was due to a system call, the thread will

retry that call once it wakes with further budget. Once the thread is awoken, it will retry the

system call.

Domain scheduler

We retain the domain scheduler which, as discussed in Section 5.6.2, is required for the

proof of confidentiality [Murray et al., 2013]. However, we convert the implementation to

tickless, such that domains are configured with CPU cycles to execute, rather than fixed

ticks, which no longer exist.

7.3.2 Enforcement

The enforcement mechanisms require the most significant changes to the kernel, which we

now detail. The main change required to the existing scheduler is the addition of a release

queue per processing core which contains all runnable threads waiting for a replenishment.

If a preempted thread does not have any available replenishments, the kernel removes the

thread from the ready queue.

Priority queues

In addition to the release queue, we also change endpoint- and notification-object queues to

priority queues, ordered by TCB priority. All queues are implemented as ordered, doubly-

linked lists, where all operations complete in O(1) except for insertion, which is O(n),

where n is the number of threads in the queue. We chose the list data structure over a heap

for increased performance and reduced verification burden.

A list-based priority queue out-performs a heap-based priority queue for small n (in

our implementation up to around n = 100). This n is larger than one would expect in a

traditional OS, where heap implementations are array-based in contiguous memory with

layouts optimised for cache usage. However, because seL4 kernel memory is managed

at user-level (as discussed in Section 5.3), data structures must be dynamic, resulting in

much higher code complexity, and poorer performance than a static heap. For endpoint

queues, it is reasonable to expect a low number of threads, as in well-designed systems the

amount of kernel threads should be minimal to maintain a low memory profile (note that

for systems requiring many threads, user-level or green threads can easily be deployed as

a light-weight solution). For the release queue, the restriction becomes a function of the

user-level admission test: only scheduling contexts with partial budgets are placed into the

release queue, which limits the size of the queue. Consequently we do not expect any of

the priority queues to contain large numbers of threads, however if scalability becomes a
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problem in practice this implementation could be reconsidered. Brandenburg [2011] used

binomial heaps for schedulers in LITMUSRT in order to reduce the cost of releasing many

tasks at the same time, however Linux does not provide the guarantees, or implementation

requirements of seL4.

The list-based queues are non-preemptible, such that the WCET of the kernel is a

function of the number of threads that can wait on an endpoint. This is an unavoidable

increase in the WCET of the kernel in order to allow for prioritised IPC required by real-

time prioritisation. One security concern is sub-systems with access to a single scheduling

context and a large amount of memory can increase the kernel’s run-time by queuing up a

large amount of passive threads on an endpoint. To prevent this, system designers must not

hand out large untyped capabilities to untrusted sub-systems.

Timeout Exception Handlers

Timeout exceptions are only triggered for threads with non-empty timeout handling slots

in the TCB cnode, configured with seL4_TCB_SetTimeoutEP. The implementation is the same

as for fault handlers, with one exception: while fault IPC messages can trigger scheduling

context donation, allowing fault-handling threads to be passive, timeout messages cannot.

The timeout message contains the badge of the scheduling context which triggered the fault,

and the amount of time consumed by that scheduling context since the last reset.

7.4 Summary

In this chapter we have presented the new kernel objects, system call API, invocations and

structural changes made to provide mechanisms for temporal isolation. The implementation

adds roughly 2,000 lines of code to seL4 (14% increase), as measured by source lines

of code (SLOC) [Wheeler, 2001] on the pre-processed code for the SABRE, which is the

verified platform for seL4. In the next chapter, we evaluate our implementation with a series

of microbenchmarks, system benchmarks and case studies.
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8 Evaluation

We now evaluate our model through a series of microbenchmarks, system benchmarks and

case studies. First, we present the ARM and x86 hardware platforms used in addition to

the cost of timer operations on those platforms. Then we demonstrate the low performance

overhead of our mechanisms using a set of microbenchmarks that measure the overheads of

the MCS kernel versus a baseline. The baseline kernel is seL4, at development version 7.0.0

with some added experimental fastpaths for interrupt and signal handling. Both kernels

are branches of seL4 with the same merge-base, i.e. both branches divert from the master

branch at the same point. The exact revisions used are available online at:

Baseline: h�ps://github.com/pingerino/seL4/releases/tag/phd-baseline,

MCS: h�ps://github.com/pingerino/seL4/releases/tag/phd-MCS.

We then run several system benchmarks, first comparing a Redis [RedisLabs, 2009]

implementation to baseline seL4, Linux and NetBSD to show that our kernel is competitive.

We then demonstrate temporal isolation between threads sharing the same CPU in two

scenarios, using Redis again, followed by ipbench [Wienand and Macpherson, 2004]. We

then show isolation in a shared encryption server, and measure the cost of various timeout

fault-handling policies.

In addition, we evaluate two user-level scheduler implementations: one which imple-

ments a static criticality switch, and a user-level EDF implementation which we show is

competitive with an in-kernel EDF scheduling from LITMUSRT. Lastly, we use an IPC

throughput benchmark to demonstrate low multicore-scalability overhead, and we show

how resource server threads can migrate between processing cores.

8.1 Hardware

We run microbenchmarks on a variety of hardware to show the overheads of the model

compared to baseline seL4. Table 8.1 summarises the hardware platforms. SABRE is the

verified platform for seL4 and, at the time of writing, verification of the x64 platform is

in progress. Currently, the only platforms with support for more than one core in seL4 are

SABRE, and X64.
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Platform CPU Clock L1 L2 L3 TLB

Arch SoC/Family GHz (KiB) (KiB) (MiB) (entries)

KZM (32-bit) ARM1136JF-S 1.0 16+16 128 7 32

ARMv6 NXP i.MX31 4× 8× 7 2×
SABRE (32-bit) Cortex-A9 1.0 32+32 1024 7 64

ARMv7 NXP i.MX6 4× 16 × 7 2×
HIKEY (64-bit) Cortex-A53 1.2 32+32 512 7 128

ARMv8 Kirin 620 4×+2× 16× 7 4×
TX1 (64-bit) Cortex-A57 1.9 32+48 2,048 7 256

ARMv8 Jetson TX1 2×+3× 16× 7 4×
X64 (64-bit) i7-4770 3.1 32+32 256 8 128,8

x86 Haswell 8× 8× 16× 8×

Table 8.1: Hardware platform details, “×“ is associativity, and + indicates I-cache+D-cache.

Our ARM development boards for each system on chip (SoC) are as follows:

• KZM: NXP i.MX31 Lite development kit.

• SABRE: NXP Sabre Lite development board.

• HIKEY: LeMaker HiKey.

• TX1: NVIDIA Jetson TX1 development kit.

Two of our platforms, X64 and HIKEY support both 32- and 64-bit execution modes.

We use both, referring to them as IA32 and HIKEY32 when in 32-bit mode and X64 and

HIKEY64 otherwise. All platforms have out-of-order execution, except HIKEY, which is

in-order, and KZM, which has in-order execution and out-of-order from some operations

(e.g. stores). TX1 currently only has 64-bit support on seL4.

Additionally, we use several load generators running Linux on an isolated network for

benchmarks that require a network.

8.2 Overheads

We first present a suite of microbenchmarks to evaluate any performance overheads against

baseline seL4. Because the kernel uses lazy switching for the floating point unit (FPU),

meaning that the FPU context is only switched if it is actively being used, we ensure that

FPU context switching is off. This is achieved by performing the required number of system

calls without activating the FPU. We present overheads on IPC operations, signalling and

interrupts, and finally scheduling.
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Platform Timer Read time Set timeout Sum

KZM General purpose timer 83 (0) 203(0) 286

SABRE ARM MPCore global timer 23 (0) 36 (0) 59

HIKEY32/64 ARM generic timers 6 (0) 6 (0) 12

TX1 ARM generic timers 8 (0) 1 (0) 9

IA32 TSC deadline mode 12 (2.2) 220 (1.0) 232

X64 TSC deadline mode 11 (2.3) 217 (2.0) 228

Table 8.2: Latency of timer operations per platform in cycles. Standard deviations shown in paren-
theses.

For each of the benchmarks in this section, we measure the cost of measurement, which

is the cost of reading the cycle counter on ARM platforms, and the timestamp counter

(TSC) on x86, and subtract the value obtained from the final result.

8.2.1 Timer

Two of the main sources of overhead introduced by our model are related to the need to read

and reprogram the timer on non-fastpath kernel entries, and when performing a scheduling

context switch. We show the results of microbenchmarks of both of these operations in

Table 8.2, and note the timer hardware used on the specific platform.

For both microbenchmarks, we read the timestamp before and after the operation, and

do this 102 times, discarding the first two results to prime the cache. We take the difference

of the cycle counts, and subtract the cost of measuring the cycle counter itself. The results

show the cost of both operations separately, and then their sum, which is the total measured

overhead introduced by timers on scheduling context switch.

All platforms excluding KZM have a 64-bit timer available, making KZM the only plat-

form requiring timer overflow interrupts. These are not measured as KZM is a deprecated

platform provided for comparison with modern ARM versions.

KZM and SABRE both use memory-mapped timers, the 32-bit general purpose timer

for the former and 64-bit ARM global timer for the latter. SABRE has four cores and while

the timer device is shared, the timer registers are per-core, making access fast. Timer access

on SABRE is significantly faster than the KZM.

For all other ARM platforms, the ARM generic timers are available, which are accessed

via the coprocessor. The majority of new ARM platforms support the ARM generic timers.

On X64 we use the TSC with TSC-deadline mode [Intel 64 & IA-32 ASDM], an

architectural model-specific register (MSR) available since Intel SandyBridge. A local-

APIC timer interrupt is triggered when the TSC matches the value written to the MSR.

In practice, especially for X64, timer operations are subject to pipeline parallelism and

out-of-order execution, which reduces the overhead.
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Results on both architectures show that the overhead of a tickless kernel, which requires

the timers to be frequently read and reprogrammed, is tolerable on modern hardware. On

ARM, timer costs have reduced by an order of magnitude from ARMv6 through to ARMv8.
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Platform Baseline MCS Overhead

KZM 263 (0) 290 (0) 27 10%

SABRE 288 (0) 371 (58) 83 28%

HIKEY32 235 (2) 251 (3) 16 6%

HIKEY64 251 (3) 277 (4) 26 10%

TX1 398 (7) 424 (1) 26 6%

IA32 440 (2) 422 (2) -18 -4%

X64 448 (1) 456 (2) 8 1%

Table 8.3: Time in cycles for the seL4_Call fastpath. Standard deviations shown in parentheses.

8.2.2 IPC performance

IPC performance is a critical measure of the practicality and efficiency of a microker-

nel [Liedtke, 1995]. We benchmark our IPC operations against baseline seL4, which has an

established efficient IPC fastpath [Elphinstone and Heiser, 2013].

Fastpath

To evaluate IPC fastpath performance, we set up a client (the caller) and server (the callee)

in different address spaces. We take timestamps on either side of the IPC operation being

benchmarked and record the difference. This is done 16 times for each result value to prime

the cache, then record the next value. Results presented are for performing this a total of

16 times. Additionally, we measure the overhead of system call stubs in the same way and

subtract this from the measurement, to obtain only the kernel cost of the operation1. The

message sent is zero length, so neither the caller nor callee’s IPC buffer is accessed.

As discussed in Section 7.3.1, timer operations are avoided on the fastpath. However,

we do add significantly to the seL4_Call fastpath, by accessing two further objects (the

scheduling context and resume object) and two validation checks. In detail, the seL4_Call

fastpath is altered as follows:

• We remove the reply capability lookup, so the sending TCB’s cnode is no longer

accessed.

• We read the resume object pointer from the thread state, however the thread state is

already accessed by the seL4_Call fastpath.

• We check that the resume object is valid.

• We read from and write to the resume object to push it onto the call stack.

• We check the destination TCB is passive.

1The IPC benchmarks already existed for seL4, but we modify them to support the MCS kernel as part of
this thesis.
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Platform Baseline MCS Overhead

KZM 304 (0) 350 (1) 46 15%

SABRE 312 (1) 334 (2) 22 7%

HIKEY32 252 (4) 275 (0) 23 9%

HIKEY64 266 (5) 303 (5) 37 13%

TX1 392 (2) 424 (6) 32 8%

IA32 412 (1) 447 (2) 35 8%

X64 432 (1) 449 (2) 17 3%

Table 8.4: Time in cycles for the seL4_ReplyRecv fastpath. Standard deviations shown in parentheses.

• We write scheduling context that is lent over the seL4_Call to link it to the receiver,

and update the back pointer to the resume object.

Table 8.3 shows the results. Overheads on the seL4_Call fastpath are low, with the worst

affected platform being KZM with a 10% overhead, which is the oldest platform with the

smallest caches. On call, KZM shows L1 data cache miss and 1 memory access, which is

likely an unlucky cache-conflict. SABRE suffers a 28% overhead with high variance, due

to a translation lookaside buffer (TLB) miss likely due to the relatively low associativity

on Cortex-A9 TLBs. In general, as hardware becomes newer the overhead is lower, with

the exception of the HIKEY, which is the only platform we use that has in-order execution.

Additionally HIKEY has a smaller L2 cache than the older SABRE, but a larger TLB with

higher associativity. We posit that for the HiKey, further hand optimisation of the fastpath

would result in better performance. The newest ARM hardware is the TX1, which only

shows a 5% overhead. x86 with its large caches and highly optimised pipeline only incurs a

1% overhead. For further detail on the numbers read from the performance counters cited

here, please see Appendix C. On IA32 we see a minor reduction in the time for seL4_Call,

although the instructions executed increases: this is most likely due to the long pipeline,

and increased instructions reducing data dependencies. Overall for x86 fastpath overheads

are low.

The fastpath for seL4_ReplyRecv has a higher impact, for two reasons: first, we add a

new capability lookup, being the resume object provided to receive, which must be looked

up by the seL4_ReplyRecv fastpath. Although we remove the reply capability from the TCB

cnode, that cnode is still accessed to validate the caller’s root cnode capability and top-level

page directory capability, so the cache-foot print is not reduced. Additionally, because IPC

is now priority ordered, the fastpath must check if the callee’s TCB will be appended to the

endpoint queue. Otherwise, the fastpath is aborted for an ordered insert.

As a result, the overheads shown in Table 8.4 for seL4_ReplyRecv are generally higher

than seL4_Call, except for SABRE, which already suffered some TLB misses on the baseline

kernel, again due to low TLB associativity.
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KZM SABRE HIKEY32 HIKEY64 TX1 IA32 X64

Baseline 2908 1808 1938 1645 1554 910 769

Overhead (%) 81% 41% 61% 43% 17% 31% 31%

Cycle count +2346 +745 +1186 +705 +257 +283 +240

L1 I-miss -10 +0 +15 +11 +0 +0 +0

L1 D-miss +10 +0 +0 -3 -4 +0 +0

TLB I-miss +0 +1 +0 +0 +0 +0 +0

TLB D-miss +0 +11 +0 +0 +0 +0 +0

Instructions +1193 +688 +1122 +719 +726 +809 +721

Branch mispredict +43 +5 -1 +1 +0 +0 +0

Memory access +14 +0 +462 +307 +312 +0 +0

Table 8.5: Passive slowpath round-trip IPC overhead.

Slowpath

Now we evaluate the IPC slowpath, for both active and passive threads in the same address

space. Unlike the fastpath, the slowpath generally does not fit into the cache. Consequently,

precise measurements like those done for the fastpath show erratic results with high standard

deviations on our hardware. Instead, we run average benchmarks for the slowpath, where

for 110 runs, we measure the time taken for 10,000 IPC pairs (seL4_Call, seL4_ReplyRecv)

and divide by 10,000 to get a result, abandoning the first 10 results. In order to hit the

slowpath we make the message length 10 words, which exceeds the fastpath condition that

the message should fit into registers.

We run the benchmark for both active and passive threads, which shows the overhead

of changing a scheduling context versus not. Table 8.5 shows the results for the passive

slowpath and Table 8.6 for active, where the top row in the table is the baseline number, the

second row is the overhead when comparing the number of cycles taken for the benchmark.

Every other row shows the difference in value of the listed performance counter between

baseline and MCS. We do not show standard deviations, however they are measured and

are very small (either 0 or a few percent of the mean).

Passive slowpath overhead, as shown in Table 8.5 is not small; this is due to the fact

that the seL4 scheduler has far more functionality than previously, increasing the code size,

and the cache foot print is higher, given that the resume object and scheduling context must

be accessed in addition to the TCBs of the caller and callee. Looking at ARM platforms,

the overhead reduces drastically as hardware becomes more modern: for the most part,

this means that the caches are bigger, and timer access costs are smaller. Except for the

HIKEY platform, with has an in-order execution pipeline and a smaller L2 cache than the

SABRE. We suspect that the overheads could be reduced on HiKey with more careful hand

optimisation. 64-bit HiKey has nearly half the excess instructions when compared to 32-bit,
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KZM SABRE HIKEY32 HIKEY64 TX1 IA32 X64

Baseline 2908 1808 1938 1644 1553 910 769

Overhead (%) 92% 80% 53% 36% 8% 75% 83%

Cycle count +2689 +1455 +1030 +597 +122 +678 +639

L1 I-miss +0 +0 +9 +10 +0 +0 +0

L1 D-miss +11 +0 +0 -3 -4 +0 +0

TLB I-miss +0 +0 +0 +0 +1 +0 +0

TLB D-miss +0 +9 +0 +0 +0 +0 +0

Instructions +1112 +599 +1022 +586 +593 +670 +593

Branch mispredict +48 +7 -2 +0 -1 +0 +0

Memory access +26 +0 +400 +268 +270 +0 +0

Table 8.6: Active slowpath round-trip IPC overhead.

and 50% less memory accesses, resulting in far less overhead on HIKEY64 than HIKEY32.

SABRE suffers from the low-associativity of its TLB with misses in both the instruction

and data TLBs. On the x86 platform, both IA32 and X64 show the same overhead in terms

of ratio, both due to the increase in instructions.

Another factor that complicates the slowpath is the compiler. We use GCC version

5.5.0 with optimisation level O2 for all benchmarks, with the mtune parameter set as

appropriate. All kernel code is pre-processed and concatenated into to single file with the

whole-program attribute set which allows for greater compiler optimisations. However, the

level of optimisation for a specific platform, especially ARM platforms, is not known and

contributes to the variance between platforms, and between arm versions.

Additionally, it should be noted that the slowpath is avoided in most cases, as long

IPC is discouraged in favour of establishing shared memory protocols to transfer large

amounts of data. The majority of fastpath checks make sure the thread being switched to

is valid and runnable. Only two cases hit the slowpath frequently: if a medium priority

thread has woken, and is higher priority than the IPC target, and if the target is active, not

passive. Additionally, many improvements can be made to the IPC slowpath to improve

performance, but it has not been examined extensively.

Table 8.6 shows results for the active slowpath, and has higher overheads again. In this

case, we change scheduling contexts, so not only does another object (the second SCO)

need to be accessed, but the timer needs to be reprogrammed, and sporadic replenishment

logic applied. TX1 and HIKEY64 have the lowest overhead, although the overhead looks

to be ameliorated by lucky data placement with a reduction in L1 D-cache misses on both

platforms. The vast majority of overhead comes from timer access and reprogramming, far

more instructions executed, and on platforms with small caches or low-associativity, the

increase in cache footprint.
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SABRE HIKEY32 HIKEY64 TX1 IA32 X64

Baseline 1545 1603 1323 1338 1221 1226

Overhead (%) 52% 67% 44% 21% 25% 24%

Cycle count +798 +1078 +575 +288 +303 +290

L1 I-miss +0 +15 +2 +0 +0 +0

L1 D-miss +0 +0 -1 -4 +0 +0

TLB I-miss +0 +0 +0 +0 +0 +0

TLB D-miss +13 +0 +0 +0 +0 +0

Instructions +696 +1045 +651 +652 +704 +643

Branch mispredict +8 -3 -1 +0 +0 +0

Memory access +0 +394 +238 +252 +0 +0

Table 8.7: Passive fault round-trip IPC overhead.

8.2.3 Faults

Recall that fault handling in seL4 occurs via an IPC, simulated by the kernel, to a fault

endpoint, which a fault handling-thread can wait upon for messages (Section 5.5.3). To

measure the fault-handling cost, we run two threads in the same address space: a fault

handler and a faulting thread, with the same priority. We trigger a fault by executing an un-

defined instruction in a loop on the faulting thread’s side. The fault handler then increments

the instruction pointer past the undefined instruction, and the benchmark continues. As this

is also a slowpath, we use the same method as above, and measure the amount of time it

takes for 10,000 faults then divide the result. We do this for 110 runs, abandoning the first

10, to calculate the standard deviation and average.

SABRE HIKEY32 HIKEY64 TX1 IA32 X64

Baseline 1544 1604 1322 1339 1221 1226

Overhead (%) 70% 59% 34% 11% 57% 55%

Cycle count +1085 +941 +451 +150 +693 +674

L1 I-miss +0 +7 +2 +0 +0 +0

L1 D-miss +0 +0 -1 -4 +0 +0

TLB I-miss +0 +0 +0 -1 +0 +0

TLB D-miss +11 +0 +0 +0 +0 +0

Instructions +603 +942 +513 +516 +561 +513

Branch mispredict +8 -1 -2 -1 +0 +0

Memory access +0 +331 +196 +203 +0 +0

Table 8.8: Active fault round-trip IPC overhead.
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We measure both active and passive fault handling, and the results, shown in Table 8.7,

are similar to slowpath IPC, being slower for active, and improving as cache-size and timer

operation cost reduces. Note that although there is currently no fastpath for fault handling,

it is merely a matter of engineering effort to add one should this become a performance

issue.

We do not show results for the KZM platform, as it is ARMv6 and the performance

monitor unit, including the cycle counter, cannot be read from user mode. As a result we

use the undefined instruction to read the cycle counter efficiently on this platform, so the

fault benchmark does not work.
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Platform (faspath?) Baseline MCS Overhead

KZM X 485 (13) 1251 (24) 766 157%

KZM 7 753 (15) 1573 (23) 820 108%

SABRE X 1616 (99) 1794 (82) 178 11%

SABRE 7 1912 (104) 2073 (109) 161 8%

HIKEY32 X 528 (6) 763 (2) 235 44%

HIKEY32 7 701 (4) 956 (1) 255 36%

HIKEY64 X 509 (30) 657 (21) 148 29%

HIKEY64 7 653 (8) 803 (21) 150 22%

TX1 X 767 (8) 815 (12) 48 6%

TX1 7 862 (19) 864 (14) 2 0%

IA32 X 1062 (53) 1147 (55) 85 8%

IA32 7 1190 (54) 1483 (53) 293 24%

X64 X 1108 (55) 1239 (53) 131 11%

X64 7 1328 (54) 1533 (53) 205 15%

Table 8.9: Fastpath and non-fastpath IRQ overhead in cycles, baseline seL4 versus MCS. Standard
deviations shown in parentheses.

8.2.4 Experimental fastpaths

As noted in the previous section, mainly engineering effort is required to add new fastpaths.

For this reason, we add two new (non-verified) experimental fastpaths to both kernels:

one for interrupt delivery, and the other for signalling a low-priority thread. We measure

baseline versus MCS results for both operations, with and without the fastpaths.

Interrupt fastpath

We measure interrupt latency using two threads, one spinning in a loop updating a volatile

cycle counter, the other, higher priority thread waiting for an interrupt. On delivery, the

handler thread determines the interrupt latency by subtracting the looped timestamp from

the current time. We repeat this loop 110 times, discarding the first 10 results.

For the interrupt path, the experimental fastpath covers the case where either the

interrupt does not result in a context switch, or the interrupt results in a switch to a higher-

priority runnable thread. Note that this would be faster if we picked one of the cases,

however without workload specifics, it is not clear whether one of these operations should

be prioritised over the other. Additionally, as interrupts are by their nature preemptive, we

must switch scheduling contexts, which incurs the time to reprogram the timer and charge

the previous thread. In both cases, the scheduler itself is avoided.

Table 8.9 shows the results. On most platforms, the overhead remains the same regard-

less of the fastpath or not, except on x86 platforms. In the case of the ARM platforms,
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the IRQ fastpath yields a performance improvement of a few hundred cycles, which can

ameliorate somewhat the overheads of the MCS model, but not completely. In this case we

see the majority of the MCS overhead is due to the operations required to switch scheduling

contexts. KZM shows the highest overhead, where once again we exceed the small cache.

The HIKEY pays for its in-order execution pipeline, which could be improved with further

profiling of the fastpath. The TX1 shows the least impact, with only a 6% increase on the

interrupt fastpath.

Signal

In this benchmark, a high priority thread signals a low priority thread, a common operation

for interrupt service routines. The experimental signal fastpath optimises this exact case:

where no thread switch is triggered by the signal, and execution returns to the high priority

thread.

Table 8.10 shows the results. The first thing to note is that this fastpath offers a several

hundred cycle performance improvement over the slowpath for this specific case, due to

the reduction in branching and cache-friendly, local code provided by the fastpath. The

non-fastpath cases show a high overhead when comparing MCS to baseline, although again

the impact decreases on newer hardware. However, because the fastpath barely differs on

baseline vs. MCS, we see a massive reduction in overhead when comparing fastpaths to

slowpaths. If the signal operation were to become a bottle-neck, merging this fastpath to

the master kernel is an option.

Platform (fastpath?) Baseline MCS Overhead

KZM X 150 (0) 149 (0) -1 0%

KZM 7 664 (104) 1397 (91) 733 110%

SABRE X 134 (10) 140 (13) 6 4%

SABRE 7 427 (63) 800 (67) 373 87%

HIKEY32 X 118 (0) 118 (0) 0 0%

HIKEY32 7 452 (66) 869 (75) 417 92%

HIKEY64 X 198 (14) 197 (14) -1 0%

HIKEY64 7 464 (57) 638 (103) 174 37%

TX1 X 267 (20) 269 (14) 2 0%

TX1 7 456 (38) 534 (59) 78 17%

IA32 X 176 (1) 175 (6) -1 0%

IA32 7 317 (43) 452 (74) 135 42%

X64 X 129 (2) 132 (2) 3 2%

X64 7 265 (3) 334 (63) 69 26%

Table 8.10: Fastpath signal overhead in cycles, baseline seL4 versus MCS. Standard deviations
shown in parentheses.
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KZM SABRE HIKEY32 HIKEY64 TX1 IA32 X64

Baseline 628 473 435 421 481 254 182

Overhead (%) 187% 95% 89% 30% 9% 113% 145%

Cycle count +1172 +451 +385 +128 +44 +286 +266

L1 I-miss +1 +0 +0 +1 +0 +0 +0

L1 D-miss +0 +0 +0 +0 +0 +0 +0

TLB I-miss +0 +0 +0 +0 +0 +0 +0

TLB D-miss +0 +5 +0 +0 +0 +0 +0

Instructions +580 +215 +426 +129 +132 +207 +134

Branch mispre-
dict

+25 +5 +1 -2 -1 +0 +0

Memory access +7 +0 +121 +61 +61 +0 +0

Table 8.11: Yield to self costs. Baseline seL4 versus MCS. Standard deviations shown in parentheses.

8.2.5 Scheduling

In our final microbenchmark we look at the cost of the scheduler, and the seL4_Yield system

call, both of which are slowpaths.

Table 8.11 shows the results of measuring the average cost for the current thread to

seL4_Yield to itself, which in the current kernel code always triggers a reschedule. The

overhead is large as seL4_Yield is nearly a completely different system call: previously

seL4_Yield was incomplete, and would simply dequeue and enqueue the current thread

from the scheduling queues, before returning to user level. seL4_Yield in the new model

charges the remaining budget in the head replenishment to the thread, and triggers a timer

reprogram. Although semantically similar for round robin threads, seL4_Yield does a lot

more, hence the drastic overheads. ARM platforms show an large increase in instructions

executed, and older ARM platforms experience some cache-misses. x86 platforms show a

smaller increase in instructions executed, but recall from Table 8.2 that when run in a tight

loop, the overhead of reading and reprogramming the timer is over 200 cycles.

The schedule benchmark measures the cost of two threads in different address spaces

switching to each other in a loop by changing each other’s priority. A high-priority thread

increases the priority of a low-priority thread, subsequently the low-priority thread then

sets its own priority back down, resulting in a reschedule to the high-priority thread. Both

threads do this 50,000 times, and we run the benchmark for 110 runs, abandoning the

first 10, so the caches are primed. This results in 10,000 invocations of the scheduler per

benchmark run, as both threads do the switching. Of course, setting the priority of a thread

higher does not need to invoke the scheduler: but this is the current state of the source code2,

and allows us to run this benchmark.

2We have a patch to fix this which is waiting in the queue for verification.
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KZM SABRE HIKEY32 HIKEY64 TX1 IA32 X64

Baseline 1056 703 707 653 637 406 349

Overhead (%) 91% 66% 58% 46% 27% 127% 155%

Cycle count +957 +466 +409 +302 +169 +518 +543

L1 I-miss +5 +0 +0 +6 +0 +0 +0

L1 D-miss +1 +0 +0 +0 +0 +0 +0

TLB I-miss +0 +2 +0 +0 +0 +0 +0

TLB D-miss +0 +10 +0 +0 +0 +0 +0

Instructions +340 +208 +317 +179 +184 +234 +168

Branch mispre-
dict

+24 -3 +4 +2 +1 +0 -1

Memory access +8 +0 +132 +88 +105 +0 +0

Table 8.12: Scheduler costs in cycles, baseline seL4 versus MCS. Standard deviations shown in
parentheses.

Table 8.12 shows the results. On x86, the overhead can be attributed half to the increase

in instructions and the rest to reading and reprogramming the timer. The overhead looks

large on both IA32 and X64, however note the very small initial value. On ARM, we see a

larger overhead that decreases in newer platforms.

The scheduler is by definition a slowpath activity, as it is completely avoided on the

fastpath, and much of the slowpath, by the lazy scheduling mechanism (Section 5.6.1).

Table 8.12 shows that scheduling cost increases noticeably, however note that seL4 IPC,

particularly scheduler-context donation (and its predecessor, the undisciplined timeslice

donation), is designed to minimise the need for invoking the scheduler, therefore this

increase is unlikely to have a noticeable effect in practice.

8.2.6 Full system benchmark

To demonstrate the impact of the overheads in a real system scenario, we measure the

performance of the Redis key value store [RedisLabs, 2009] using Yahoo! Cloud Serving

Benchmark (YCSB) [Cooper et al., 2010] on baseline and MCS seL4, and compare this

against Linux, the Rump unikernel [Kantee and Cormack, 2014] and NetBSD [The NetBSD

Foundation, 2018] all on the X64 machine. Note that the Rump unikernel only currently

supports x86 platforms, consequently experiments requiring Rump are only carried out on

the X64 platform.

For seL4, we use a single-core Rump library OS [Kantee and Cormack, 2014] to provide

NetBSD network drivers at user level, by leveraging an existing port of this infrastructure

to seL4 [McLeod, 2016]. The system consists of Redis/Rump running on three active

seL4 threads: two for servicing interrupts (network, timer) and one for Rump, as shown in

Figure 8.1. Interrupt threads run at the highest priority, followed by Redis and a low-priority
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idle thread (not shown) for measuring CPU utilisation; this setup forces frequent invocations

of the scheduler and interrupt path.

seL4

• Serial 
• Timer 

Redis 

User 
mode 

Kernel
mode 

• Rump
• Network

Initial 
task 

• Serial 
• Timer
• Network

Linux / NetBSD

Redis 

+

• Serial 
• Timer
• Network
• Rump

Redis 

Figure 8.1: System architecture of the Redis / YCSB benchmark on seL4, Linux, NetBSD and Rump
unikernel.

Table 8.13 shows the achieved throughput of Redis+Rump running bare metal kernel

(BMK), and Redis on the seL4 baseline and as well as the MCS branch, plus Linux and

NetBSD (7.0.2) for comparison. Figure 8.1 shows the seL4 set up, compared with the

architecture of Redis on Linux, NetBSD and BMK.

Table 8.13 indicates the interrupt handling method used, as there is no single method

supported across all four scenarios. BMK only supports the legacy programmable interrupt

controller (PIC), while NetBSD only supports message-signalled interruptss (MSIs). Linux

and seL4 both support the advanced PIC (APIC).

The utilisation figures show that the system is fully loaded, except in the Linux case,

where there is a small amount of idle time. The cost per operation (utilisation over through-

put) is best on Linux, a result of its highly optimised drivers and network stack. Our

bare-metal and seL4-based setups use Rump’s NetBSD drivers, and performance is within a

few percent of native NetBSD. This indicates that the MCS model comes with low overhead.

8.3 Temporal Isolation

We have demonstrated our model has little overhead and is competitive with existing

monolithic kernels. Now we evaluate temporal isolation properties, between processes and

in a shared-server scenario. In addition, we evaluate and demonstrate different techniques

to restore server state after a timeout exception.
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System IRQ Throughput Utilisation Cost per op. Latency

(k ops/s) (%) (ms) (ms)

seL4-base APIC 138.7 (0.4) 100 0.72 1.4

seL4-MCS APIC 138.5 (0.3) 100 0.72 1.4

seL4-MCS MSI 127.3 (0.6) 100 0.79 1.6

NetBSD MSI 134.0 (0.2) 99 0.74 1.5

Linux MSI 179.4 (0.4) 95 0.52 1.1

Linux APIC 111.9 (0.4) 100 0.89 1.8

BMK PIC 144.1 (0.2) 100 0.69 1.4

Table 8.13: Throughput (k ops/s) achieved by Redis using the YCSB workload A with 2 clients.
Latency is the average Read and Update, standard deviations in parentheses and omitted
where less than the least significant digit shown.

8.3.1 Process isolation

We evaluate process isolation, where processes do not share resources, indirectly via

network throughput and network latency in two separate benchmarks.

Network throughput

First, we demonstrate our isolation properties with the Redis architecture described in

Section 8.2.6, with an additional, high-priority active CPU-hog thread competing for CPU

time. All scheduling contexts in the system are configured with a 5 ms period. We use the

budget of the CPU-hog to control the amount of time left over for the server configuration.

Figure 8.2 shows the throughput achieved by the YCSB-A workload as a function of the

available CPU bandwidth (i.e the complement of the bandwidth granted to the CPU-hog

thread). All data points are the average of three benchmark runs.
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Figure 8.2: Throughput of Redis YCSB workload A and idle time versus available bandwidth.
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The graph shows that the server is CPU limited (as indicated by very low idle time) and

consequently throughput scales linearly with available CPU bandwidth.

Network latency

Second, we evaluate process isolation via network latency in a system shown in Figure 8.3.

The system consists of a single-core of a Linux virtual machine (VM) which runs at a

high priority with a constrained budget and a User Datagram Protocol (UDP) echo server

running at a lower priority, representing a lower-rate HIGH thread. We measure the average

and maximum UDP latency reported by the ipbench [Wienand and Macpherson, 2004]

latency test.

seL4

Linux 
User  

Hyp

Time 
server

Kernel VMM

Serial 
server

UDP
echo

Figure 8.3: System architecture of ipbench benchmark.

Specifically, the Linux VM interacts with timer (PIT) and serial device drivers imple-

mented as passive servers outside the VM; all three components are at a high priority. In

the Linux server we run a program (yes > /dev/null) which consumes all available CPU

bandwidth. The UDP echo server, completely isolated from the Linux instance during the

benchmark, but sharing the serial driver, runs at a low priority with its own HPET timer

driver.

Two client machines run ipbench daemons to send packets to the UDP-echo server on

the target machine (X64). The control machine, one of the load generators, runs ipbench

with a UDP socket at 10 Mbps over a 1 Gb/s Ethernet connection with 100-byte packets.

The Linux VM has a 10 ms period and we vary the budget between 1 ms and 9 ms. We

represent the zero-budget case by an unconstrained Linux that is not running any user code.

Any time not consumed by Linux is available to UDP echo for processing 10,000 packets

per second, or 100 packets in the time left over from each of Linux’s 10 ms period.

Figure 8.4 shows the average and maximum UDP latencies for ten runs at each budget

setting. We can see that the maximum latencies follow exactly the budget of the Linux

server (black line) up to 9 ms. Only when Linux has a full budget (10 ms), and thus able to

monopolise the processor, does the UDP server miss its deadlines, resulting in a latency

spike. This result shows that our sporadic server implementation is effective in bounding

interference of a high-priority process.
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Figure 8.4: Average and maximum latency of UDP packets with a CPU-hog VM running a high
priority with a 10 ms budget.
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Figure 8.5: Architecture of the AES case study. Client A and B make IPC requests over endpoint E1
of passive AES which has an active timeout fault handling thread waiting for fault IPC
messages on endpoint E2.

8.3.2 Server isolation

To demonstrate temporal isolation in a shared server, we use a case study of an encryption

service using advanced encryption standard (AES) to encrypt client data. We measure

both the overhead of different recovery techniques, and the throughput achieved when two

clients constantly run out of budget in the server. We port an existing, open-source AES

implementation to a shared server running on seL4, and run benchmarks on both X86 and

SABRE.

Figure 8.5 shows the architecture of the case study. Both clients A and B are single

threaded and exist in separate address spaces to the server. The server has two threads, a

passive thread for serving requests on the client’s scheduling context and an active thread

which handles timeout exceptions for the server. The server and timeout exception handler

share the same virtual memory and capability spaces.
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The server itself runs the AES-256 algorithm with a block size of 16 bytes. The server

alternates between two buffers, using an atomic swap, of which one always contains

consistent state, the other is dirty during processing. When a timeout fault occurs, only the

dirty buffer is lost due to inconsistency. Both clients request 4 MiB of data to be encrypted,

provided by a shared buffer between client and server, and have a budget insufficient to

complete the request. When the server is running on the client’s scheduling context and

the budget expires, a timeout exception, which is a fault IPC message from the kernel, is

delivered to the timeout handler.

8.3.3 Timeout handling techniques

If a client’s scheduling context is depleted while the server is servicing the request, a timeout

fault is raised and sent to the timeout handler. The appropriate protocol for handling such

faults depends ultimately on the requirements of the system. Consequently, we implement

and evaluate four different timeout fault handling techniques: rollback, error, emergency

and extend.

While each technique is evaluated separately, combinations of such techniques could

be used for different clients, depending on their requirements. For example, trusted clients

may get special treatment. Note that in all cases of blocking IPC, clients must trust the

server as discussed in Section 6.2. Additionally, although our experiment places the timeout

fault handler in the server’s address space, this is not necessary: for approaches that require

access to scheduling contexts and scheduling control capabilities, the timeout handler may

be placed in a scheduling server’s address space, separate from the server itself.

Rollback

Rollback restores the server to the last known consistent state recorded. In the case of non-

thread safe servers, this may require rolling back an entire request. However, algorithms

like AES which can easily be batched can make progress. The process for rollback is as

follows:

1. A timeout fault is received by timeout handler, T over E2.

2. T constructs a reply message to the client from the last clean state, and sends this

message to the client by invoking the resume capability that the server has used for

that client. Because the resume object tracks the donation, the client’s scheduling

context is returned.

3. T then restores the server, S, to a known state (restoring registers, stack frames and

any global state). S is restored to the point before it made its last system call, usually

an seL4_NBSendRecv, which it used to indicate to the initialiser that S should be made

passive, as part of the passive server initialisation protocol presented in Section 7.2.4.
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4. Now the server must return to blocking on the IPC endpoint, E1. T binds a scheduling

context to S and waits for a message.

5. Now the S runs from its checkpoint, repeating the seL4_NBSendRecv, signalling to T

that it can now be converted to passive once more and blocking on E1.

6. T wakes and converts the server back to passive.

7. Finally, T blocks on E2, ready for further timeout faults.

The rollback technique requires the server and timeout handler to both have access to

the reply object that the server is using, and the server’s TCB, meaning the timeout handler

must be trusted by the server. In our example the server and timeout handler run at the same

priority, in all cases both must run at higher priorities than the clients, to allow the timeout

handler to reinitialise the server in the correct order, and to implement the IPCP.

Once the budget of the faulting client is replenished, it can then continue the request

based on the content of the reply message sent by the timeout handler. Clients are guaranteed

progress as long as their budget is sufficient to complete a single batch of data.

If rollback is not suitable, the server can be similarly reset to the initial state and an error

returned to the client. However, this does not guarantee progress for clients with insufficient

budgets.

Kill

In cases of non-preemptible servers, potentially due to a lack of thread safety, one option

is to kill client threads. Such a scenario would stop untrusted misbehaving clients from

constantly monopolising server time. We implement an example where the timeout handler

has access to client TCB capabilities and simply calls suspend, however the server could

also switch to a new reply object and leave the client blocked forever, without access to any

of the clients capabilities.

The process for suspending the client is the same as that for Section 8.3.3 but for two

aspects; the server state does not need to be altered by the timeout handler as the server

always restores to the same place, instead of replying to the client it is suspended.

Emergency

Another technique gives the server a one-off emergency budget to finish the client request,

after which the exception handler resets the server to being passive. This could be used in

low criticality SRT scenarios where isolation is desired but transient overruns are expected.

An example emergency protocol follows:

1. A timeout fault is received by timeout handler, T over E2.

2. T unbinds the client scheduling context from S.

3. T binds a new scheduling context to S, which acts as an emergency budget.
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4. T then replies to the timeout fault, resuming S.

5. Now T enqueues itself on E1, such that when the server finishes the blocked request,

T , being a higher priority, is served next.

6. S completes the request and replies to the client.

7. S receives the request from T , and replies immediate as it is an empty request.

8. T wakes, and converts the server back to passive.

9. Finally T blocks on E2, ready for further timeout faults.

This case requires the timeout handler to have access to clients’ scheduling contexts, in

order to unbind them from the server.

Extend

The final technique is to simply increase the client’s budget on each timeout, which requires

the timeout fault handler to have access to the client’s scheduling contexts. This could be

deployed in SRT systems or for specific threads with unknown budgets up to a limit.

1. A timeout fault is received by timeout handler, T over E2.

2. T extends the client’s budget by configuring scheduling context.

3. T replies to the fault message, which resumes S.

8.3.4 Results

We measure the pure handling overhead in each case, from when the timeout handler wakes

up to when it blocks again. Given the small amount of rollback state, this measures the

baseline overhead. For schedulability analysis, the actual cost of the rollback would have to

be added, in addition to the duration of the timeout fault IPC.

We run each benchmark with hot caches (primed by some warm-up iterations) as well

as cold (flushed) caches and measure the latency of timeout handling, from the time the

handler wakes up until it replies to the server.

Table 8.14 shows the results. The maximum cold-cache cost, which is relevant for

schedulability analysis, differs by a factor of 3–4 between the different recovery scenarios,

indicating that all are about equally feasible. Approaches that restart the server and send

IPCs messages on its behalf (rollback, reply) are the most expensive as they must restore the

server state from a checkpoint and follow the passive server initialisation protocol (recall

Section 7.2.4).
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Platform Operation Cache Min Max Mean σ

X64

Rollback
hot 4.16 8.23 5.54 1.15

cold 11.90 14.64 13.26 0.52

Emergency
hot 2.69 4.97 3.39 0.41

cold 6.62 8.36 7.06 0.31

Extend
hot 0.46 2.26 0.81 0.38

cold 2.59 4.02 2.98 0.24

Kill
hot 3.86 4.12 3.94 0.03

cold 11.59 13.42 12.25 0.49

SABRE

Rollback
hot 11.2 13.3 12.1 0.5

cold 19.1 25.2 23.8 1.4

Emergency
hot 4.4 5.6 4.9 0.2

cold 13.1 14.5 13.9 0.3

Extend
hot 0.7 2.9 1.9 0.4

cold 6.9 8.0 7.3 0.3

Kill
hot 10.0 12.5 11.1 0.5

cold 21.9 23.2 22.6 0.3

HIKEY64

Rollback
hot 5.15 6.91 5.77 0.39

cold 31.75 38.20 36.69 0.71

Emergency
hot 4.45 7.53 5.55 0.56

cold 19.31 21.02 20.22 0.35

Extend
hot 0.65 1.63 0.90 0.21

cold 10.69 11.90 11.28 0.28

Kill
hot 5.17 7.07 6.07 0.44

cold 32.24 34.43 33.14 0.43

TX1

Rollback
hot 2.24 2.66 2.38 0.10

cold 7.04 8.36 8.07 0.14

Emergency
hot 1.09 1.36 1.22 0.07

cold 4.58 4.92 4.75 0.07

Extend
hot 0.28 0.52 0.31 0.04

cold 2.50 2.72 2.64 0.05

Kill
hot 2.20 2.45 2.22 0.03

cold 7.31 7.64 7.50 0.07

Table 8.14: Cost of timeout handler operations in µs, as measured by timeout exception handler. σ

is the standard deviation.

8.3.5 Rollback isolation

We next demonstrate temporal isolation in the server by using the rollback technique and

measuring the time taken to encrypt 10 requests of 4 MiB of data. Figure 8.6 shows the
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Figure 8.6: Throughput for clients A and B of a passive AES server processing 10 requests of 4 MiB
of data with limited budgets on the X64 (top row) and SABRE (bottom row) platforms.
The two clients’ budgets add up to the period, which is varied between graphs (10, 100,
1000 ms). Clients sleep when they process each 4 MiB, until the next period, except
when their budgets are full. Each data point is the average of 10 runs, error bars show
the standard deviation.

result with both clients having the same period, which we vary between 10 ms and 1000 ms.

In each graph we vary the clients’ budgets between 0 and the period. The extreme ends

are special, as one of the clients has a full budget and keeps invoking the server without

ever getting rolled back, thus monopolising the processor. In all other cases, each client

processes at most 4 MiB of data per period, and either succeeds (if the budget is sufficient)

or is rolled back after processing less than 4 MiB.

The results show that in the CPU-limited cases (left graphs) we have the expected

near perfect proportionality between throughput and budget (with slight wiggles due to the

rollbacks), showing isolation between clients. In the cases where there is headspace (centre

of the right graphs), both clients achieve their desired throughput.

8.4 Practicality

Fundamental to the microkernel philosophy is keeping policy out of the kernel as much

as possible, and instead providing general mechanisms that allow the implementation of

arbitrary policies [Heiser and Elphinstone, 2016]. On the face of it, our fixed-priority-based
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right). All data points are the average of 100 runs, with very small standard deviations.

model seems to violate this principle, but we demonstrate that the model is general enough

to support the efficient implementation of alternate policies at user level. Specifically, we

implement two user-level schedulers: first, a static mixed criticality scheduler [Baruah et al.,

2011b], which we also compare to an in-kernel implementation, and an EDF scheduler,

which we compare to LITMUSRT.

8.4.1 Criticality

Static, mixed-criticality, fixed-priority schedulers are based on mode switches, which

effectively mean altering the priority of threads in bulk: critical threads that may be of low

rate are bumped to higher than their low-criticality counter parts, to ensure deadlines are

met in exceptional circumstances.

We implement a kernel mechanism for changing thread priorities in bulk, and compare

with a user-level approach which simply changes the priority of threads one at a time. In our

prototype implementation, the kernel tracks all threads of specific criticalities and boosts

their priority on a criticality switch. However, given threads are kept in per-priority queues,
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Platform Kernel cold (µs) User-level cold (µs) Diff µs

X64 ≤ 2 ≤ 4 ~2

TX1 ≤ 4 ≤ 8 ~4

HIKEY64 ≤ 18 ≤ 30 ~12

SABRE ≤ 12 ≤ 22 ~10

Table 8.15: Comparison of cold, in-kernel priority switch to cold, user-level priority switch.

each thread must be removed and reinserted into a new queue, so either way the complexity

of the mode-switch is O(n).

Figure 8.7 shows the results measured with a primed cache (hot) and flushed cache

(cold). As the graph shows, switching is linear in the number of threads being boosted,

in both kernel and user-level implementations. Table 8.15 compares the results of cold,

in-kernel switching to user-level in roughly absolute terms. HIKEY64 is the slowest at

30 µs with eight threads to switch, due to the smaller L2 cache and in-order execution,

however all platforms show roughly the same factor of two increase when comparing kernel

and user-level cold-cache results. However, most systems will not have more than a few

high-criticality threads, and deadlines for critical control loops in cyber-physical systems

tend to be in the tens of milliseconds, we conclude that criticality can be implemented at

user-level, in line with standard microkernel philosophy.

The higher cost from user-level operation results from multiple switches between kernel

and user mode, and the repeated thread-capability look-ups. It could be significantly reduced

if seL4 had a way to batch system calls, but to date we have seen no compelling use cases

for this.

As a second criticality-switch benchmark, we ported three processor intensive bench-

marks from the MiBench [Guthaus et al., 2001] to act as workloads. We use SUSAN, which

performs image recognition, JPEG, which does image encoding/decoding, and MAD, which

plays an MP3 file. Each benchmark runs in its own Rump process with an in-memory file

system, and shares a timer and serial server. We chose these specific benchmarks as they

were the easiest to adapt as described below, and use them as workloads, rather than for

comparing systems, so there is no issue of bias from sub-setting.

We alter the benchmarks to run periodically in multiple stages. To obtain execution times

long enough, some benchmarks iterate a fixed number of times per stage. Each benchmark

process executes its workload and then waits for the next period to start. Deadlines are

implicit: if a periodic job finishes before the start of the next period, it is considered

successful, otherwise the deadline is missed.

We run the benchmarks on both the user-level and in-kernel implementations of static

mixed criticality, with 10 runs of each.

Results are shown in Table 8.16. For both schedulers (kernel versus user-level), the

results are nearly exactly the same. Bold numbers indicate a difference between the kernel
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Application T L LS C U j m

susan 190 2 0 25 0.13 111 (0.0) 0 (0.0)

Image recognition 2 1 51 0.27 111 (0.0) 0 (0.0)

2 2 127 0.67 111 (0.0) 0 (0.0)

jpeg 100 1 0 15 0.15 200 (0.0) 0 (0.0)

JPEG encode/decode 1 1 41 0.41 200 (0.0) 0 (0.0)

1 2 41 0.41 155 (0.0 0.3 ) 89 (0.9 -0.2 )

madplay 112 0 0 28 0.25 179 (0.0) 0 (0.0)

MP3 player 0 1 28 0.25 178 (0.0) 48 (0.0)

0 2 28 0.25 5 1 (0.3 0.2 ) 5 1 (0.3 0.2 )

Table 8.16: Results of criticality switch benchmark for each stage, where the criticality LS is raised
each stage. T = period, C = worst observed execution time (ms), U = allowed utilisation
(budget/period), m = deadline misses, j = jobs completed. We record 52 (0.1), 86 (15.2)
and 100 (0.0)% CPU utilisation for each stage respectively. Standard deviations are
shown in parentheses. Bold values show the difference between the user-level scheduler
and kernel.

and user-level scheduler, with only the lowest-criticality thread affected by the criticality

switch, with an additional missed deadline due to perturbations in run time due to the slightly

slower user-level scheduler. For stage one, the entire workload is schedulable and there

are no deadline misses. For stage two, the workload is not schedulable, and the criticality

switch boosts the priorities of SUSAN and JPEG, such that they meet their deadlines, but

MAD does not. In the final stage, only the most critical task meets all deadlines. This shows

that it is sufficient to implement criticality at user-level, and our mechanisms operate as

intended.

8.4.2 User-level EDF

We implement the EDF scheduler as an active server with active clients which run at an

seL4 priority below the user-level scheduler. The scheduler waits on an endpoint on which

it receives messages from its clients and the timer, as shown in Listing 8.1.

Each client has a period, representing its relative deadline, and a full reservation (equal

to the period). Clients either notify the scheduler of completion by an IPC message, or else

create a timeout exception on preemption, which is also received by the scheduler. Either is

an indication that the next thread should be scheduled.

We use the randfixedsum [Emberson et al., 2010] algorithm with periods ranging from

10-1000ms (log-uniform distribution) and implicit deadlines. A set of threads runs until

100 scheduling decisions have been recorded. We repeat this 10 times, resulting in 1,000

scheduler runs for each data point.
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1 while(true) {
2 uint64_t time = get_time();
3
4 /* release any threads */
5 release_top = NULL;
6 while (!empty(release_queue) && head(release_queue)->weight < time) {
7 /* implict deadlines */
8 head->weight = time + head->period;
9 push(deadline_queue, release_top);

10 release_top = pop(release_queue);
11 }
12
13 if (release_top != NULL) {
14 /* set preemption timeout */
15 set_timeout(release_top->weight);
16 }
17
18 /* pick a thread */
19 current_thread = head(deadline_queue);
20 if (current_thread != NULL) {
21 if (!current_thread->resume_cap_set) {
22 /* current was preempted - put it at the head of its scheduling queue */
23 seL4_SchedContext_YieldTo(current->sc);
24 info = seL4_Recv(endpoint, &badge, current->resume_cap);
25 } else {
26 /* current is waiting for us to reply - it either timeout faulted, or called us to
27 * cooperatively schedule */
28 current_thread->resume_cap_set = false;
29 info = seL4_ReplyRecv(endpoint, info, &badge, current->resume_cap);
30 }
31 } else {
32 /* noone to schedule */
33 info = seL4_Wait(data->endpoint, &badge);
34 }
35
36 /* here we wake from an IPC or interrupt */
37 if (badge >= top_thread_id) {
38 /* it's a preemption interrupt */
39 handle_interrupt();
40 } else {
41 /* it's an IPC - must be from current */
42 pop(deadline_tree);
43 push(release_tree, current);
44 prev_thread = current;
45 prev_thread->resume_cap_set = true;
46 }
47 }

Listing 8.1: Pseudocode for the EDF scheduler.
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Figure 8.8: Execution time of seL4 user-mode EDF scheduler compared to kernel scheduler in X64
LITMUSRT.

We measure the scheduler latency by recording the timestamp when each client thread,

and an idle thread, detects a context switch and processing the difference in timestamp pairs

offline. We run two schedulers: pre-empt where threads never yield and must incur a timeout

exception, and coop, where threads use IPC to yield to the scheduler. The latter invokes the

user-level timer driver more often as the release queue is nearly always full, which involves

more kernel invocations to acknowledge the IRQ, in addition to reprogramming the timer.

We compare our latencies to those of LITMUSRT [Calandrino et al., 2006], a widely-

used real-time scheduling framework for developing real-time schedulers and locking

protocols. As it is embedded in Linux, LITMUSRT is not aimed at high-assurance systems.

We use Feather-Trace [Brandenburg and Anderson, 2007] to gather data. We use the

C-EDF scheduler, which is a partitioned (per-core) EDF scheduler, on a single core. We

use the same parameters and thread sets, running each set for 10 s. The measured overhead

considers the in-kernel scheduler, context-switch and user-level code to return to the user.

Figure 8.8 shows that our preemptive user-level EDF scheduler implementation is

comparable with the in-kernel EDF scheduler from LITMUSRT , and that the cost of

implementing scheduling policy at user level of time-triggered systems is of the same order

as the in-kernel default scheduler. In other words, implementing different policies on top of

the base scheduler is quite feasible.

The benchmark is by no means a worst-case overhead. For LITMUSRT tasks exercise a

single page of the cache and on seL4 only the instruction cache is effected. This favours seL4
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as the scheduler runs with less cache evictions. However, due to seL4’s much smaller cache

footprint than Linux, it is likely seL4 would be more competitive if tasks had a significant

cache footprint. Also note that as the C-EDF scheduler contains locking primitives for

managing multiple cores, the LITMUS overheads are higher than they would be if a

uniprocessor scheduler (PSN-EDF) was used for the benchmark.

8.5 Multiprocessor benchmarks

We run two multicore benchmarks, the first evaluating multicore throughput of the MCS

kernel versus the baseline kernel, the second based on our shared server AES case study to

demonstrate the multicore model.

We run multiprocessor benchmarks on two of our platforms, SABRE and X64. Both are

symmetric multiprocessors with four cores.

8.5.1 Throughput

We run a multicore throughput benchmark to show that our MCS model avoids introducing

scalability problems on multiple cores compared to the baseline kernel. We modify the

existing multicore IPC throughput benchmark for seL4 to run on the MCS kernel. At time
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of writing, only X64 and SABRE have seL4 multiprocessor support, consequently these are

the platforms used for the benchmark.

The existing multicore benchmark measures IPC throughput of a client and server, both

pinned to the same processor, sending fastpath, 0-length IPC messages via seL4_Call and

seL4_ReplyRecv. One pair of client and server is set up per core. Both threads are the same

priority and the messages are 0 length. Each thread spins for a random amount with an

upper bound N between each subsequent IPC. As N increases so does IPC throughput, as

fewer calls are made.

We modify the benchmark such that each server thread is passive on the MCS kernel.

Results are displayed in Figure 8.9 and show a minor impact on IPC throughput for low

values of N. Scalability is not impacted on SABRE, but is on X64, with the curve flattening

slightly more aggressively on the MCS kernel due to the fastpath overhead. The low

overhead is expected as the MCS model only introduces extra per-core state, with no extra

shared state between cores. The slight scalability impact is due to a higher cache-footprint

of the IPC fastpath.

148



Single Multiple

 0

 100

 200

 300

 400

 500

 600

 1  2  3  4

T
h

ro
u

g
h

p
u

t 
M

iB
/

s

Cores

x64

 1  2  3  4

Cores

Sabre

Figure 8.10: Results of the AES shared server multicore case study. Single shows results for a
passive server thread migrating between cores to service clients, while Multiple has
one passive server thread per core. For both series, the number of clients is equal to the
number of cores and each client requests 1MiB of data encrypted.

8.5.2 Shared server

We adapt our AES case study (Section 8.3.2) to demonstrate how our MCS model applies

to multiprocessors. The AES server is configured without a timeout fault handler, and we

run two variants.

Single: the AES server has a single passive thread, which waits on a single endpoint and

migrates to the core of the active client over IPC, effectively serialising access to the

server. Consequently, Figure 8.10 shows there is no gain in throughput when further

cores are added.

Multiple: the AES server has one passive thread per core, and an endpoint is set up for

each core, demonstrating a parallel server. Due to the absence of bottlenecks in the

stateless AES server, this results in near perfect scalability.

8.6 Summary

All in all, we have demonstrated via micro- and macro- benchmarks that our overheads are

reasonable given the speed of the baseline kernel and the extent of the provided functionality.

Through two system benchmarks and one shared-server benchmark, we have shown

that our approach guarantees processor isolation and that threads cannot exceed their budget

allocation via their scheduling context. Additionally, we have shown that isolation can be
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achieved in a shared server via a timeout-fault handler, and implemented several alternatives

for handling such faults, demonstrating the feasibility of the model.

Policy freedom is maintained despite providing fixed-priority scheduling in the kernel,

as the mechanisms are sufficient to implement low-overhead, user-level schedulers, as

demonstrated through the static, mixed-criticality and EDF scheduler implementations.

Finally, we have demonstrated that the model works for multiprocessors, incurring no

great scalability penalty over baseline seL4, and show how passive servers migrate across

cores on IPC.
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9 Conclusion

Emerging cyber-physical systems represent an opportunity for greater safety, security and

automation, as they can replace systems where human errors prevail. While humans are

excellent at innovation and creativity, they cannot compete with machines that do not get

tired, drunk or distracted when completing monotonous, repetitive tasks. Car accidents

are overwhelmingly caused by human error, measured at 94% in the US [Singh, 2015],

something that self-driving cars can overcome. Autonomous aircraft and other fleet vehicles,

smart cities and smart factories hold similar promise.

As established in Section 1.1, in order to practically develop such systems, they must

be mixed-criticality, as certification of all parts of such a system to high-assurance levels is

not feasible. Consequently, mixed-criticality systems require strong temporal isolation and

asymmetric protection between sub-systems of different criticality levels, which must also

be able to safely share resources.

This thesis has drawn on real-time theory and systems practice to develop core mech-

anisms required in a high-assurance, trusted computing base for mixed criticality systems.

Importantly, the mechanisms we have developed do not violate other requirements, like

policy-freedom, integrity, confidentiality, spatial isolation, and security.

In Chapter 6, we introduced our model for treating time as a first-class resource, and

defined a minimal set of mechanisms that can be leveraged to implement temporal isolation

between threads, even within shared servers. Our primitives also allow for more complex,

application-specific user-level schedulers to be constructed efficiently, as we demonstrated

in the evaluation. Significantly, we provide a new model for L4 kernels to manage time as a

first-class resource, without restricting policy options including overbooking, or requiring

specific correlations between the priority of a task and the scheduling model, or importance

of that task. We integrate a capability system with the non-fungible resource that is time,

without violating our existing isolation and confidentiality properties, or requiring a heavy

performance overhead. Our mechanisms provide a basic scheduler, which is a critical part of

the trusted computing base, and allow for more system-specific schedulers to be constructed

at user-level. Additionally, we do not force specific resource-sharing prioritisation policies,

but provide mechanisms to allow for their implementation at user-level.

151



9.1 Contributions

Specifically, we make the following contributions:

• Mechanisms for principled management of time through capabilities to scheduling

contexts, which are compatible with the fast IPC implementations traditionally used

in high-performance microkernels, and also compatible with established real-time

resource-sharing policies;

• an implementation of those mechanisms in the non-preemptible seL4 microkernel,

and an exploration of how the implementation interacts with the existing kernel

model;

• an evaluation of the overheads and isolation properties of the implementation, includ-

ing a demonstration of isolation in a shared server through timeout-fault handling;

• a design and implementation of many different, user-level timeout-fault handling

policies;

• and an implementation of a user-level EDF scheduler which is as fast as the LITMUSRT

in-kernel EDF scheduler, which shows that despite the fixed-priority scheduler present

in the kernel, other schedulers remain practical;

• and a design and implementation of a criticality switch at user-level, which shows

that criticality is not required to be a kernel-provided property.

The implementation is complete, and the verification of this implementation is currently

in progress. Specifications have already been developed by the verification engineering

team at Data61, CSIRO, who are now completing the first-level refinement of the functional

correctness proof. The maximum controlled priority feature has already been verified and

merged to the master kernel. Verification is beyond the scope of this PhD, although we

continue to work closely with the team to assist in verification.

This work is part of the Side-Channel Causal Analysis for Design of Cyber-Physical

Security project for the U.S Department of Homeland Security.

Additionally, during the development of this thesis we have made extensive contribu-

tions to the seL4 benchmarking suite, testing suite and user-level libraries, all of which

provide better support for running experiments and building systems on seL4.

9.2 Future work

Modern CPUs have dynamic frequency scaling and low-power modes in order to reduce

energy usage, which is of high concern in many embedded systems. The implementation

as it stands assumes a constant CPU frequency, and all kernel operations are calculated

in CPU cycles. Frequency scaling can have undesirable effects on real-time processes: if

the period is specified in microseconds, then converted to cycles and the CPU frequency
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changes, does the period remain correct? This is a limitation of our model and promising

area for future work.

Although we provide a mechanism for cross-core IPC, where passive threads migrate

between processing cores and active threads remain fixed, there is much more to consider in

terms of multicore scheduling and resource sharing. Our model provides a partitioned, fixed

priority scheduler, and load balancing can be managed by user level. Further experiments

to evaluate the mechanisms for higher-level multicore scheduling and resource sharing

protocols is required.

Finally, this work does not consider counter-measures for timing-related covert and side

channels, security risks which arise from shared hardware [Ge et al., 2018]. Covert channels

are unintentional, explicit communication channels which may be used by a malicious

sender in a trusted component to leak sensitive data to a receiver in an untrusted component.

Providing a time-source can open a covert channel, where the sender manipulates timing

behaviour through shared architectural structures like caches, and the receiver uses the time

source to observe the behaviour. Shared hardware also presents the risk of side channels,

where an attacker in an untrusted component can learn secret information about a trusted

component by observing timing behaviour. Both attack vectors are risks in mixed-criticality

systems, which we do not consider in this thesis, and merit extensive future work.

9.3 Concluding Remarks

Original automobiles did not have seat belts, as safety was never a concern. Perhaps one

day we will reflect on human-piloted, high-speed vehicles in the same way. For this future

to eventuate, cyber-physical systems which combine components of different criticality

on shared hardware are essential. Our work has focused on principled mechanisms for

managing time in such systems, making one significant step towards a future of trustworthy,

safe and secure autonomous systems.

This material is based on research sponsored by the Department of Homeland Security
(DHS) Science and Technology Directorate, Cyber Security Division (DHS S&T/CSD)
BAA HSHQDC-14-R-B00016, and the Government of United Kingdom of Great Britain
and the Government of Canada via contract number D15PC00223.
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A MCS API

A.1 System calls

For convenience, in this section we present all of the system calls in the MCS api.

A.1.1 Call

seL4_MessageInfo_t seL4_Call(seL4_CPtr cap, seL4_MessageInfo_t info)

Invoke the capability provided and block waiting on a reply. Used to communicate with the
kernel to invoke objects, or for IPC when used on an endpoint capability. When used for
IPC, the scheduling context of the caller may be lent to the receiver. The caller is blocked
on a resume object, and wakes once that resume object has been invoked, thus sending a
reply and returning a lent scheduling context.

Type Parameter Description

seL4_CPtr dest Capability to invoke

seL4_CPtr info A seL4_MessageInfo_t structure encoding details about the mes-
sage

Return value: an seL4_MessageInfo_t structure encoding details about the reply message.

A.1.2 Send

void seL4_Send(seL4_CPtr cap, seL4_MessageInfo_t info)

Invoke the capability provided. If used on an endpoint capability, block until the message
has been sent.

Type Parameter Description

seL4_CPtr dest Capability to invoke

seL4_CPtr info A seL4_MessageInfo_t structure encoding details about the mes-
sage

Return value: none.
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A.1.3 NBSend

void seL4_NBSend(seL4_CPtr cap, seL4_MessageInfo_t info)

Invoke the capability provided. If used on an endpoint capability and no receiver is present,
do not send the message and return immediately.

Type Parameter Description

seL4_CPtr dest Capability to invoke

seL4_CPtr info A seL4_MessageInfo_t structure encoding details about the mes-
sage

Return value: none

A.1.4 Recv

seL4_MessageInfo_t seL4_Recv(seL4_CPtr cap, seL4_Word *badge, seL4_CPtr reply)

Wait for a message on the provided capability. If the provided capability is not an endpoint
or notification, raise a capability fault. Passive threads may receive scheduling contexts
from this system call.

Type Parameter Description

seL4_CPtr src Capability to wait for a message on.

seL4_Word* badge address for the kernel to write the badge value of the sender to.

seL4_CPtr reply Capability to the resume object to block callers on.

Return value: An seL4_MessageInfo_t structure encoding details about the message received.

A.1.5 NBRecv

seL4_MessageInfo_t seL4_NBRecv(seL4_CPtr cap, seL4_Word *badge, seL4_CPtr reply)

Poll for a message on the provided capability. If the provided capability is not an endpoint
or notification, raise a capability fault. Passive threads may receive scheduling contexts
from this system call.

Type Parameter Description

seL4_CPtr src Capability to wait for a message on.

seL4_Word* badge address for the kernel to write the badge value of the sender to.

seL4_CPtr reply Capability to the resume object to block callers on.

Return value: An seL4_MessageInfo_t structure encoding details about the message received.
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A.1.6 Wait

seL4_MessageInfo_t seL4_Wait(seL4_CPtr cap, seL4_Word *badge)

Wait for a message on the provided capability. If the provided capability is not an endpoint
or notification, raise a capability fault.

Type Parameter Description

seL4_CPtr src Capability to wait for a message on.

seL4_Word* badge address for the kernel to write the badge value of the sender to.

Return value: An seL4_MessageInfo_t structure encoding details about the message received.

A.1.7 NBWait

seL4_MessageInfo_t seL4_NBWait(seL4_CPtr cap, seL4_Word *badge)

Poll for a message on the provided capability. If the provided capability is not an endpoint
or notification, raise a capability fault.

Type Parameter Description

seL4_CPtr src Capability to wait for a message on.

seL4_Word* badge address for the kernel to write the badge value of the sender to.

Return value: An seL4_MessageInfo_t structure encoding details about the message received.

A.1.8 ReplyRecv

seL4_MessageInfo_t seL4_ReplyRecv(seL4_CPtr cap, seL4_MessageInfo_t info, seL4_Word

*badge, seL4_CPtr reply)

Invoke a resume object, sending a reply message, then block on the provided capability,
waiting for a message on the provided capability, with the now cleared resume object.
Passive threads may receive scheduling contexts from this system call.

Type Parameter Description

seL4_CPtr src Capability to wait for a message on.

seL4_CPtr info A seL4_MessageInfo_t structure encoding details about the mes-
sage

seL4_Word* badge address for the kernel to write the badge value of the sender to.

seL4_CPtr reply Capability to the resume object to block callers on.

Return value: An seL4_MessageInfo_t structure encoding details about the message received.
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A.1.9 NBSendRecv

seL4_MessageInfo_t seL4_NBSendRecv(seL4_CPtr dest, seL4_MessageInfo_t info, seL4_CPtr

src, seL4_Word *badge, seL4_CPtr reply)

Perform a non-blocking send on a capability, then block on the provided capability, waiting
for a message on the provided capability, with the resume object. Passive threads may
receive scheduling contexts from this system call.

Type Parameter Description

seL4_CPtr dest Capability to invoke

seL4_CPtr info A seL4_MessageInfo_t structure encoding details about the mes-
sage

seL4_CPtr src Capability to wait for a message on.

seL4_Word* badge address for the kernel to write the badge value of the sender to.

seL4_CPtr reply Capability to the resume object to block callers on.

Return value: An seL4_MessageInfo_t structure encoding details about the message received.

A.1.10 NBSendWait

seL4_MessageInfo_t seL4_NBSendWait(seL4_CPtr dest, seL4_MessageInfo_t info, seL4_CPtr

src, seL4_Word *badge)

Perform a non-blocking send on a capability, then block on the provided capability, waiting
for a message on the provided capability.

Type Parameter Description

seL4_CPtr dest Capability to invoke

seL4_CPtr info A seL4_MessageInfo_t structure encoding details about the mes-
sage

seL4_CPtr src Capability to wait for a message on.

seL4_Word* badge address for the kernel to write the badge value of the sender to.

Return value: An seL4_MessageInfo_t structure encoding details about the message received.

A.1.11 Yield

void seL4_Yield(void)

Exhaust the head replenishment of the current thread and place the thread at the end of the
scheduling queue, or into the release queue if the next replenishment is not yet available.
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Type Parameter Description

void

Return value: none

A.2 Invocations

In this section, we only present invocations added or changed by the MCS scheduling API,
the rest can be found in the seL4 manual [Trustworthy Systems Team, 2017].

A.2.1 Scheduling context invocations

A.2.2 SchedContext - Bind

seL4_Error seL4_SchedContext_Bind(seL4_CPtr sc, seL4_CPtr cap)

Bind a scheduling context to a provided TCB or Notification object. None of the objects
(SC, TCB or Notification) can be already bound to other objects. If the TCB is in a runnable
state and the scheduling context has available budget, this operation will place the TCB in
the scheduler at the TCB’s priority.

Type Parameter Description

seL4_CPtr sc Capability to the SC to bind an object to.

seL4_CPtr cap Capability to a TCB or Notification object to bind to this SC.

Return value: 0 on success, seL4_Error code on error.

A.2.3 SchedContext - Unbind

seL4_Error seL4_SchedContext_Unbind(seL4_CPtr sc)

Remove any objects bound to a specific scheduling context.

Type Parameter Description

seL4_CPtr sc Capability to the SC to unbind an object to.

Return value: 0 on success, seL4_Error code on error.

A.2.4 SchedContext - UnbindObject

seL4_Error seL4_SchedContext_UnbindObject(seL4_CPtr sc, seL4_CPtr cap)

Remove a specific object bound to a specific scheduling context.
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Type Parameter Description

seL4_CPtr sc Capability to the SC to unbind an object to.

seL4_CPtr cap Capability to a TCB or Notification object to unbind from this
SC.

Return value: 0 on success, seL4_Error code on error.

A.2.5 SchedContext - Consumed

seL4_Error seL4_SchedContext_Consumed(seL4_CPtr sc)

Return the amount of time used by this scheduling context since this function was last
called or a timeout fault triggered.

Type Parameter Description

seL4_CPtr sc Capability to the SC to act on.

Return value: An error code and a uint64_t consumed value.

A.2.6 SchedContext - YieldTo

seL4_Error seL4_SchedContext_YieldTo(seL4_CPtr sc)

If a thread is currently runnable and running on this scheduling context and the scheduling
context has available budget, place it at the head of the scheduling queue. If the caller is at
an equal priority to the thread this will result in the thread being scheduled. If the caller is
at a higher priority the thread will not run until the threads priority is the highest priority in
the system. The caller must have a maximum control priority greater than or equal to the
threads priority.

Type Parameter Description

seL4_CPtr sc Capability to the SC to act on.

Return value: An error code and a uint64_t consumed value.

A.2.7 Sched_control Invocations

A.2.8 SchedControl - Configure

seL4_Error seL4_SchedControl_Configure(seL4_CPtr sched_control, seL4_CPtr sc, uint64_t

budget, uint64_t period, seL4_Word extra_refills, seL4_Word badge)

Configure a scheduling context by invoking a sched_control capability. The scheduling
context will inherit the affinity of the provided sched_control.
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Type Parameter Description

seL4_CPtr sched_control sched_control capability to invoke to configure the SC.

seL4_CPtr sc Capability to the SC to configure.

uint64_t budget Timeslice in microseconds.

uint64_t period Period in microseconds, if equal to budget, this thread will be
treated as a round-robin thread. Otherwise, sporadic servers will
be used to assure the scheduling context does not exceed the
budget over the specified period.

seL4_Word extra_refills Number of extra sporadic replenishments this scheduling context
should use. Ignored for round-robin threads. The maximum
value is determined by the size of the SC that is being configured.

seL4_Word badge Badge value that is delivered to timeout fault handlers

Return value: 0 on success, seL4_Error code on error.

A.2.9 TCB Invocations

A.2.10 TCB - Configure

seL4_Error seL4_TCB_Configure(seL4_CPtr tcb, seL4_CPtr cnode, seL4_Word guard, seL4_CPtr

vspace, seL4_Word vspace_data, seL4_Word buffer, seL4_CPtr buffer_cap)

Set the parameters of a TCB.

Type Parameter Description

seL4_CPtr tcb Capability to the TCB to configure.

seL4_CPtr cnode Root cnode for this TCB.

seL4_Word guard Optionally set the guard and guard size of the new root CNode.
If set to zero, this parameter has no effect.

seL4_CPtr vspace Top level paging structure for this TCB.

seL4_Word vspace_data Has no effect on x86 or ARM processors.

seL4_Word buffer Location of the thread’s IPC buffer.

seL4_CPtr buffer_cap Capability to the frame containing the thread’s IPC buffer.

Return value: 0 on success, seL4_Error code on error.

A.2.11 TCB - SetMCPriority

seL4_Error seL4_TCB_SetMCPriority(seL4_CPtr tcb, seL4_CPtr auth, seL4_Word mcp)

Set the maximum control priority of a TCB.
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Type Parameter Description

seL4_CPtr tcb Capability to the TCB to configure.

seL4_CPtr auth Capability to the TCB to use the MCP from when setting the
new MCP.

seL4_Word mcp Value for the new MCP.

Return value: 0 on success, seL4_Error code on error.

A.2.12 TCB - SetPriority

seL4_Error seL4_TCB_SetPriority(seL4_CPtr tcb, seL4_CPtr auth, seL4_Word prio)

Set the priority of a TCB.

Type Parameter Description

seL4_CPtr tcb Capability to the TCB to configure.

seL4_CPtr auth Capability to the TCB to use the MCP from when setting the
new MCP.

seL4_Word prio Value for the new priority.

Return value: 0 on success, seL4_Error code on error.

A.2.13 TCB - SetSchedParams

seL4_Error seL4_TCB_SetSchedParams(seL4_CPtr tcb, seL4_CPtr auth, seL4_Word mcp,

seL4_Word prio, seL4_CPtr sc, seL4_CPtr fault_ep)

Set the scheduling parameters of a TCB.

Type Parameter Description

seL4_CPtr tcb Capability to the TCB to configure.

seL4_CPtr auth Capability to the TCB to use the MCP from when setting the
new MCP.

seL4_Word mcp Value for the new MCP.

seL4_Word prio Value for the new priority.

seL4_CPtr sc Capability of the sc to bind to this TCB.

seL4_CPtr fault_ep Capability to the endpoint to set as the fault endpoint for this
TCB.

Return value: 0 on success, seL4_Error code on error.

176



A.2.14 TCB - SetTimeoutEndpoint

seL4_Error seL4_TCB_SetTimeoutEndpoint(seL4_CPtr tcb, seL4_CPtr ep)

Set the timeout endpoint of a TCB.

Type Parameter Description

seL4_CPtr tcb Capability to the TCB to configure.

seL4_CPtr ep Capability to the endpoint to set as the timeout endpoint for this
TCB.

Return value: 0 on success, seL4_Error code on error.
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B Code

B.1 Sporadic servers

This is the sporadic server implementation, scrubbed of assertions and debugging code for
(some) brevity.

1 /* This header presents the interface for sporadic servers,
2 * implemented according to Stankcovich et. al in
3 * "Defects of the POSIX Spoardic Server and How to correct them",
4 * although without the priority management and enforcing a minimum budget.
5 */
6 /* functions to manage the circular buffer of
7 * sporadic budget replenishments (refills for short).
8 *
9 * The circular buffer always has at least one item in it.

10 *
11 * Items are appended at the tail (the back) and
12 * removed from the head (the front). Below is
13 * an example of a queue with 4 items (h = head, t = tail, x = item, [] = slot)
14 * and max size 8.
15 *
16 * [][h][x][x][t][][][]
17 *
18 * and another example of a queue with 5 items
19 *
20 * [x][t][][][][h][x][x]
21 *
22 * The queue has a minimum size of 1, so it is possible that h == t.
23 *
24 * The queue is implemented as head + tail rather than head + size as
25 * we cannot use the mod operator on all architectures without accessing
26 * the fpu or implementing divide.
27 */
28
29 /* To do an operation in the kernel, the thread must have
30 * at least this much budget - see comment on refill_sufficient */
31 #define MIN_BUDGET_US (2u * getKernelWcetUs())
32 #define MIN_BUDGET (2u * getKernelWcetTicks())
33
34 /* Short hand for accessing refill queue items */
35 #define REFILL_INDEX(sc, index) (((refill_t *) ((sched_context_t *)(sc) +

sizeof(sched_context_t)))[index])↪→
36 #define REFILL_HEAD(sc) REFILL_INDEX((sc), (sc)->scRefillHead)
37 #define REFILL_TAIL(sc) REFILL_INDEX((sc), (sc)->scRefillTail)
38
39 /* return the amount of refills we can fit in this scheduling context */
40 static inline word_t
41 refill_absolute_max(cap_t sc_cap)
42 {
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43 return (BIT(cap_sched_context_cap_get_capSCSizeBits(sc_cap)) -
sizeof(sched_context_t)) / sizeof(refill_t);↪→

44 }
45
46 /* Return the amount of items currently in the refill queue */
47 static inline word_t
48 refill_size(sched_context_t *sc)
49 {
50 if (sc->scRefillHead <= sc->scRefillTail) {
51 return (sc->scRefillTail - sc->scRefillHead + 1u);
52 }
53 return sc->scRefillTail + 1u + (sc->scRefillMax - sc->scRefillHead);
54 }
55
56 static inline bool_t
57 refill_full(sched_context_t *sc)
58 {
59 return refill_size(sc) == sc->scRefillMax;
60 }
61
62 static inline bool_t
63 refill_single(sched_context_t *sc)
64 {
65 return sc->scRefillHead == sc->scRefillTail;
66 }
67
68 /* Return the amount of budget this scheduling context
69 * has available if usage is charged to it. */
70 static inline ticks_t
71 refill_capacity(sched_context_t *sc, ticks_t usage)
72 {
73 if (unlikely(usage > REFILL_HEAD(sc).rAmount)) {
74 return 0;
75 }
76
77 return REFILL_HEAD(sc).rAmount - usage;
78 }
79
80 /*
81 * Return true if the head refill has sufficient capacity
82 * to enter and exit the kernel after usage is charged to it.
83 */
84 static inline bool_t
85 refill_sufficient(sched_context_t *sc, ticks_t usage)
86 {
87 return refill_capacity(sc, usage) >= MIN_BUDGET;
88 }
89
90 /*
91 * Return true if the refill is eligible to be used.
92 * This indicates if the thread bound to the sc can be placed
93 * into the scheduler, otherwise it needs to go into the release queue
94 * to wait.
95 */
96 static inline bool_t
97 refill_ready(sched_context_t *sc)
98 {
99 return REFILL_HEAD(sc).rTime <= (NODE_STATE(ksCurTime) + getKernelWcetTicks());

100 }
101
102 /* return the index of the next item in the refill queue */
103 static inline word_t
104 refill_next(sched_context_t *sc, word_t index)
105 {
106 return (index == sc->scRefillMax - 1u) ? (0) : index + 1u;
107 }
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108
109 /* pop head of refill queue */
110 static inline refill_t
111 refill_pop_head(sched_context_t *sc)
112 {
113 UNUSED word_t prev_size = refill_size(sc);
114 refill_t refill = REFILL_HEAD(sc);
115 sc->scRefillHead = refill_next(sc, sc->scRefillHead);
116 return refill;
117 }
118
119 /* add item to tail of refill queue */
120 static inline void
121 refill_add_tail(sched_context_t *sc, refill_t refill)
122 {
123 word_t new_tail = refill_next(sc, sc->scRefillTail);
124 sc->scRefillTail = new_tail;
125 REFILL_TAIL(sc) = refill;
126 }
127
128 static inline void
129 maybe_add_empty_tail(sched_context_t *sc)
130 {
131 if (isRoundRobin(sc)) {
132 /* add an empty refill - we track the used up time here */
133 refill_t empty_tail = { .rTime = NODE_STATE(ksCurTime)};
134 refill_add_tail(sc, empty_tail);
135 }
136 }
137
138 /* Create a new refill in a non-active sc */
139 void
140 refill_new(sched_context_t *sc, word_t max_refills, ticks_t budget, ticks_t period)
141 {
142 sc->scPeriod = period;
143 sc->scRefillHead = 0;
144 sc->scRefillTail = 0;
145 sc->scRefillMax = max_refills;
146 /* full budget available */
147 REFILL_HEAD(sc).rAmount = budget;
148 /* budget can be used from now */
149 REFILL_HEAD(sc).rTime = NODE_STATE(ksCurTime);
150 maybe_add_empty_tail(sc);
151 }
152
153 /* Update refills in an active sc without violating bandwidth constraints */
154 void
155 refill_update(sched_context_t *sc, ticks_t new_period, ticks_t new_budget, word_t

new_max_refills)↪→
156 {
157
158 /* this is called on an active thread. We want to preserve the sliding window

constraint -↪→
159 * so over new_period, new_budget should not be exceeded even temporarily */
160
161 /* move the head refill to the start of the list - it's ok as we're going to

truncate the↪→
162 * list to size 1 - and this way we can't be in an invalid list position once

new_max_refills↪→
163 * is updated */
164 REFILL_INDEX(sc, 0) = REFILL_HEAD(sc);
165 sc->scRefillHead = 0;
166 /* truncate refill list to size 1 */
167 sc->scRefillTail = sc->scRefillHead;
168 /* update max refills */
169 sc->scRefillMax = new_max_refills;

181



170 /* update period */
171 sc->scPeriod = new_period;
172
173 if (refill_ready(sc)) {
174 REFILL_HEAD(sc).rTime = NODE_STATE(ksCurTime);
175 }
176
177 if (REFILL_HEAD(sc).rAmount >= new_budget) {
178 /* if the heads budget exceeds the new budget just trim it */
179 REFILL_HEAD(sc).rAmount = new_budget;
180 maybe_add_empty_tail(sc);
181 } else {
182 /* otherwise schedule the rest for the next period */
183 refill_t new = { .rAmount = (new_budget - REFILL_HEAD(sc).rAmount),
184 .rTime = REFILL_HEAD(sc).rTime + new_period
185 };
186 refill_add_tail(sc, new);
187 }
188 }
189
190 static inline void
191 schedule_used(sched_context_t *sc, refill_t new)
192 {
193 /* schedule the used amount */
194 if (new.rAmount < MIN_BUDGET && !refill_single(sc)) {
195 /* used amount is to small - merge with last and delay */
196 REFILL_TAIL(sc).rAmount += new.rAmount;
197 REFILL_TAIL(sc).rTime = MAX(new.rTime, REFILL_TAIL(sc).rTime);
198 } else if (new.rTime <= REFILL_TAIL(sc).rTime) {
199 REFILL_TAIL(sc).rAmount += new.rAmount;
200 } else {
201 refill_add_tail(sc, new);
202 }
203 }
204
205 /* Charge the head refill its entire amount.
206 *
207 * `used` amount from its current replenishment without
208 * depleting the budget, i.e refill_expired returns false.
209 */
210 void
211 refill_budget_check(sched_context_t *sc, ticks_t usage, ticks_t capacity)
212 {
213 if (capacity == 0) {
214 while (REFILL_HEAD(sc).rAmount <= usage) {
215 /* exhaust and schedule replenishment */
216 usage -= REFILL_HEAD(sc).rAmount;
217 if (refill_single(sc)) {
218 /* update in place */
219 REFILL_HEAD(sc).rTime += sc->scPeriod;
220 } else {
221 refill_t old_head = refill_pop_head(sc);
222 old_head.rTime = old_head.rTime + sc->scPeriod;
223 schedule_used(sc, old_head);
224 }
225 }
226
227 /* budget overrun */
228 if (usage > 0) {
229 /* budget reduced when calculating capacity */
230 /* due to overrun delay next replenishment */
231 REFILL_HEAD(sc).rTime += usage;
232 /* merge front two replenishments if times overlap */
233 if (!refill_single(sc) &&
234 REFILL_HEAD(sc).rTime + REFILL_HEAD(sc).rAmount >=
235 REFILL_INDEX(sc, refill_next(sc, sc->scRefillHead)).rTime) {
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236
237 refill_t refill = refill_pop_head(sc);
238 REFILL_HEAD(sc).rAmount += refill.rAmount;
239 REFILL_HEAD(sc).rTime = refill.rTime;
240 }
241 }
242 }
243
244 capacity = refill_capacity(sc, usage);
245 if (capacity > 0 && refill_ready(sc)) {
246 refill_split_check(sc, usage);
247 }
248
249 /* ensure the refill head is sufficient, such that when we wake in awaken,
250 * there is enough budget to run */
251 while (REFILL_HEAD(sc).rAmount < MIN_BUDGET || refill_full(sc)) {
252 refill_t refill = refill_pop_head(sc);
253 REFILL_HEAD(sc).rAmount += refill.rAmount;
254 /* this loop is guaranteed to terminate as the sum of
255 * rAmount in a refill must be >= MIN_BUDGET */
256 }
257 }
258
259 /*
260 * Charge a scheduling context `used` amount from its
261 * current refill. This will split the refill, leaving whatever is
262 * left over at the head of the refill.
263 */
264 void
265 refill_split_check(sched_context_t *sc, ticks_t usage)
266 {
267 /* first deal with the remaining budget of the current replenishment */
268 ticks_t remnant = REFILL_HEAD(sc).rAmount - usage;
269
270 /* set up a new replenishment structure */
271 refill_t new = (refill_t) {
272 .rAmount = usage, .rTime = REFILL_HEAD(sc).rTime + sc->scPeriod
273 };
274
275 if (refill_size(sc) == sc->scRefillMax || remnant < MIN_BUDGET) {
276 /* merge remnant with next replenishment - either it's too small
277 * or we're out of space */
278 if (refill_single(sc)) {
279 /* update inplace */
280 new.rAmount += remnant;
281 REFILL_HEAD(sc) = new;
282 } else {
283 refill_pop_head(sc);
284 REFILL_HEAD(sc).rAmount += remnant;
285 schedule_used(sc, new);
286 }
287 } else {
288 /* split the head refill */
289 REFILL_HEAD(sc).rAmount = remnant;
290 schedule_used(sc, new);
291 }
292 }
293
294 /*
295 * This is called when a thread is eligible to start running: it
296 * iterates through the refills queue and merges any
297 * refills that overlap.
298 */
299 void
300 refill_unblock_check(sched_context_t *sc)
301 {
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302 if (isRoundRobin(sc)) {
303 /* nothing to do */
304 return;
305 }
306
307 /* advance earliest activation time to now */
308 if (refill_ready(sc)) {
309 REFILL_HEAD(sc).rTime = NODE_STATE(ksCurTime);
310 NODE_STATE(ksReprogram) = true;
311
312 /* merge available replenishments */
313 while (!refill_single(sc)) {
314 ticks_t amount = REFILL_HEAD(sc).rAmount;
315 if (REFILL_INDEX(sc, refill_next(sc, sc->scRefillHead)).rTime <=

NODE_STATE(ksCurTime) + amount) {↪→
316 refill_pop_head(sc);
317 REFILL_HEAD(sc).rAmount += amount;
318 REFILL_HEAD(sc).rTime = NODE_STATE(ksCurTime);
319 } else {
320 break;
321 }
322 }
323 }
324 }
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C Fastpath Performance

C.1 ARM

C.1.1 KZM

Counter Baseline MCS Diff Overhead

cycles 263 (0) 290 (0) 27 10.3 %

Cache L1I miss 3.0 (0.6) 5.0 (1.1) 2.0 66.7 %

Cache L1D miss 0 (0) 2.0 (1.3) 2.0 ∞

TLB L1I miss 0 (0) 0 (0) 0 0 %

TLB L1D miss 0 (0) 0 (0) 0 0 %

Instruction exec. 132 (0) 149 (0) 17 12.9 %

Branch misspredict 5 (0) 5 (0) 0 0.0 %

memory access 0 (0) 1.0 (1.0) 1.0 ∞

Table C.1: KZM seL4_Call fastpath.
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Counter Baseline MCS Diff Overhead

cycles 304.0 (0.5) 350.0 (1.1) 46.0 15.1 %

Cache
L1I miss

3.0 (0.7) 4.0 (0.6) 1.0 33.3 %

Cache
L1D miss

0 (0) 2952790016.0 (2056059057.1) 2952790016.0 ∞

TLB L1I
miss

0 (0) 0 (0) 0 0 %

TLB L1D
miss

0 (0) 0 (0) 0 0 %

Instruction
exec.

154 (0) 191 (0) 37 24.0 %

Branch
misspre-
dict

6 (0) 6 (0) 0 0.0 %

memory
access

0 (0) 0.0 (0.9) 0.0 0 %

Table C.2: KZM seL4_ReplyRecv fastpath.
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C.1.2 Sabre

Counter Baseline MCS Diff Overhead

cycles 288 (0) 372.0 (58.3) 84.0 29.2 %

Cache L1I miss 0 (0) 0 (0) 0 0 %

Cache L1D miss 0 (0) 0 (0) 0 0 %

TLB L1I miss 4 (0) 4 (0) 0 0.0 %

TLB L1D miss 3 (0) 4 (0) 1 33.3 %

Instruction exec. 143 (0) 160 (0) 17 11.9 %

Branch misspredict 0 (0) 0 (0) 0 0 %

memory access 0 (0) 0 (0) 0 0 %

Table C.3: SABRE seL4_Call fastpath.

Counter Baseline MCS Diff Overhead

cycles 313.0 (1.0) 334.0 (2.1) 21.0 6.7 %

Cache L1I miss 0 (0) 0 (0) 0 0 %

Cache L1D miss 0 (0) 0 (0) 0 0 %

TLB L1I miss 4 (0) 5 (0) 1 25.0 %

TLB L1D miss 4 (0) 3 (0) -1 -25.0 %

Instruction exec. 165 (0) 201 (0) 36 21.8 %

Branch misspredict 0 (0) 0 (0) 0 0 %

memory access 0 (0) 0 (0) 0 0 %

Table C.4: SABRE seL4_ReplyRecv fastpath.
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C.1.3 Hikey32

Counter Baseline MCS Diff Overhead

cycles 236.0 (2.8) 251.0 (3.4) 15.0 6.4 %

Cache L1I miss 0 (0) 0 (0) 0 0 %

Cache L1D miss 0 (0) 0 (0) 0 0 %

TLB L1I miss 0 (0) 0 (0) 0 0 %

TLB L1D miss 0 (0) 0 (0) 0 0 %

Instruction exec. 144 (0) 161 (0) 17 11.8 %

Branch misspredict 4 (0) 4.0 (0.4) 0.0 0.0 %

memory access 50 (0) 60 (0) 10 20.0 %

Table C.5: HIKEY32 seL4_Call fastpath.

Counter Baseline MCS Diff Overhead

cycles 252.0 (4.1) 275 (0) 23.0 9.1 %

Cache L1I miss 0 (0) 0 (0) 0 0 %

Cache L1D miss 0 (0) 0 (0) 0 0 %

TLB L1I miss 0 (0) 0 (0) 0 0 %

TLB L1D miss 0 (0) 0 (0) 0 0 %

Instruction exec. 166 (0) 202 (0) 36 21.7 %

Branch misspredict 4.0 (0.4) 4.0 (0.3) 0.0 0.0 %

memory access 59 (0) 67 (0) 8 13.6 %

Table C.6: HIKEY32 seL4_ReplyRecv fastpath.
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C.1.4 Hikey64

Counter Baseline MCS Diff Overhead

cycles 251.0 (3.1) 278.0 (4.1) 27.0 10.8 %

Cache L1I miss 0 (0) 1.0 (1) 1.0 ∞

Cache L1D miss 0 (0) 0 (0) 0 0 %

TLB L1I miss 0 (0) 0 (0) 0 0 %

TLB L1D miss 0 (0) 0 (0) 0 0 %

Instruction exec. 183 (0) 209 (0) 26 14.2 %

Branch misspredict 2.0 (0.4) 3.0 (0.9) 1.0 50.0 %

memory access 81 (0) 93 (0) 12 14.8 %

Table C.7: HIKEY64 seL4_Call fastpath.

Counter Baseline MCS Diff Overhead

cycles 267.0 (5.2) 303 (5.4) 36.0 13.5 %

Cache L1I miss 0 (0) 2.0 (0.8) 2.0 ∞

Cache L1D miss 0 (0) 0 (0) 0 0 %

TLB L1I miss 0 (0) 0 (0) 0 0 %

TLB L1D miss 0 (0) 0 (0) 0 0 %

Instruction exec. 201 (0) 254 (0) 53 26.4 %

Branch misspredict 2.0 (0.6) 2.0 (0.4) 0.0 0.0 %

memory access 87 (0) 97 (0) 10 11.5 %

Table C.8: HIKEY64 seL4_ReplyRecv fastpath.
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C.1.5 TX1

Counter Baseline MCS Diff Overhead

cycles 398.0 (7.6) 424.0 (1.6) 26.0 6.5 %

Cache L1I miss 0 (0) 0 (0) 0 0 %

Cache L1D miss 0 (0) 0 (0) 0 0 %

TLB L1I miss 0 (0) 0 (0) 0 0 %

TLB L1D miss 0 (0) 0 (0) 0 0 %

Instruction exec. 183 (0) 208 (0) 25 13.7 %

Branch misspredict 0 (0) 0 (0) 0 0 %

memory access 94 (0) 106 (0) 12 12.8 %

Table C.9: TX1 seL4_Call fastpath.

Counter Baseline MCS Diff Overhead

cycles 393.0 (2.8) 424.0 (6.4) 31.0 7.9 %

Cache L1I miss 0 (0) 0 (0) 0 0 %

Cache L1D miss 0 (0) 0 (0) 0 0 %

TLB L1I miss 0.0 (0.3) 0 (0) 0.0 0 %

TLB L1D miss 0 (0) 0 (0) 0 0 %

Instruction exec. 201 (0) 253 (0) 52 25.9 %

Branch misspredict 0 (0) 0 (0) 0 0 %

memory access 102 (0) 112 (0) 10 9.8 %

Table C.10: TX1 seL4_ReplyRecv fastpath.
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C.2 x86

C.2.1 ia32

Counter Baseline MCS Diff Overhead

cycles 440 (2.9) 422 (2.1) -18 -4.1 %

Cache L1I miss 0 (0) 0 (0) 0 0 %

Cache L1D miss 0 (0) 0 (0) 0 0 %

TLB L1I miss 0 (0) 0 (0) 0 0 %

TLB L1D miss 0 (0) 0 (0) 0 0 %

Instruction exec. 202 (0) 213 (0) 11 5.4 %

Branch misspredict 0 (0) 0 (0) 0 0 %

memory access 0 (0) 0 (0) 0 0 %

Table C.11: IA32 seL4_Call fastpath.

Counter Baseline MCS Diff Overhead

cycles 412.0 (1.5) 448.0 (2.1) 36.0 8.7 %

Cache L1I miss 0 (0) 0 (0) 0 0 %

Cache L1D miss 0 (0) 0 (0) 0 0 %

TLB L1I miss 0 (0) 0 (0) 0 0 %

TLB L1D miss 0 (0) 0 (0) 0 0 %

Instruction exec. 208 (0) 264 (0) 56 26.9 %

Branch misspredict 0 (0) 0 (0) 0 0 %

memory access 0 (0) 0 (0) 0 0 %

Table C.12: IA32 seL4_ReplyRecv fastpath.
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C.2.2 x64

Counter Baseline MCS Diff Overhead

cycles 449.0 (1.8) 456.0 (2.3) 7.0 1.6 %

Cache L1I miss 0 (0) 0 (0) 0 0 %

Cache L1D miss 0 (0) 0 (0) 0 0 %

TLB L1I miss 0 (0) 0 (0) 0 0 %

TLB L1D miss 0 (0) 0 (0) 0 0 %

Instruction exec. 187 (0) 220 (0) 33 17.6 %

Branch misspredict 0 (0) 0 (0) 0 0 %

memory access 0 (0) 0 (0) 0 0 %

Table C.13: X64 seL4_Call fastpath.

Counter Baseline MCS Diff Overhead

cycles 432 (1.5) 450.0 (2.1) 18.0 4.2 %

Cache L1I miss 0 (0) 0 (0) 0 0 %

Cache L1D miss 0.0 (0.5) 0 (0) 0.0 0 %

TLB L1I miss 0 (0) 0 (0) 0 0 %

TLB L1D miss 0 (0) 0 (0) 0 0 %

Instruction exec. 203 (0) 279 (0) 76 37.4 %

Branch misspredict 0 (0) 0 (0) 0 0 %

memory access 0 (0) 0 (0) 0 0 %

Table C.14: X64 seL4_ReplyRecv fastpath.
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