
Performing Under Overload

Luke Macpherson

Doctor of Philosophy

School of Computer Science and Engineering
The University of New South Wales

2007

Dissertation Sheet
Surname: Macpherson

Given Names: Luke David
Abbreviation for Degree: PhD

School: Computer Science and Engineering
Title: Performing Under Overload

Abstract

This dissertation argues that admission control should be applied as early as possible
within a system. To that end, this dissertation examines the benefits and trade-offs
involved in applying admission control to a networked computer system at the level
of the network interface hardware.
Admission control has traditionally been applied in software, after significant re-
sources have already been expended on processing a request. This design decision
leads to systems whose algorithmic cost is a function of the load applied to the
system, rather than the load admitted to the system.
By performing admission control at the network interface, it is possible to develop
systems whose algorithmic cost is a function of load admitted to the system, rather
than load applied to the system. Such systems are able to deal with excessive applied
loads without exhibiting performance degradation.
This dissertation first examines existing admission control approaches, focussing on
the cost of admission control within those systems. It then goes on to develop a
model of system behaviour under overload, and the impact of admission control
on that behaviour. A new class of admission control mechanisms which are able
to perform load rejection using the network interface hardware are then described,
along with a prototype implementation using commodity hardware.
A prototype implementation in the FreeBSD operating system is evaluated for a
variety of network protocols and performance is compared to the standard FreeBSD
implementation. Performance and scalability under overload is significantly im-
proved.

i

Declaration

I hereby grant to the University of New South Wales or its agents the right to archive
and to make available my thesis or dissertation in whole or in part in the University
libraries in all forms of media, now or here after known, subject to the provisions of
the Copyright Act 1968. I retain all property rights, such as patent rights. I also
retain the right to use in future works (such as articles or books) all or part of this
thesis or dissertation.

Signature Witness Date

Date of completion of requirements for award:

ii

Abstract

This dissertation argues that admission control should be applied as early as possible
within a system. To that end, this dissertation examines the benefits and trade-offs
involved in applying admission control to a networked computer system at the level
of the network interface hardware.

Admission control has traditionally been applied in software, after significant
resources have already been expended on processing a request. This design decision
leads to systems whose algorithmic cost is a function of the load applied to the
system, rather than the load admitted to the system.

By performing admission control at the network interface, it is possible to
develop systems whose algorithmic cost is a function of load admitted to the system,
rather than load applied to the system. Such systems are able to deal with excessive
applied loads without exhibiting performance degradation.

This dissertation first examines existing admission control approaches, fo-
cussing on the cost of admission control within those systems. It then goes on
to develop a model of system behaviour under overload, and the impact of admis-
sion control on that behaviour. A new class of admission control mechanisms which
are able to perform load rejection using the network interface hardware are then
described, along with a prototype implementation using commodity hardware.

A prototype implementation in the FreeBSD operating system is evaluated
for a variety of network protocols and performance is compared to the standard
FreeBSD implementation. Performance and scalability under overload is signifi-
cantly improved.

Originality Statement

I hereby declare that this submission is my own work and to the best of my knowl-
edge it contains no materials previously published or written by another person,
or substantial proportions of material which have been accepted for the award of
any other degree or diploma at UNSW or any other educational institution, except
where due acknowledgement is made in the thesis. Any contribution made to the
research by others, with whom I have worked at UNSW or elsewhere, is explicitly
acknowledged in the thesis. I also declare that the intellectual content of this thesis
is the product of my own work, except to the extent that assistance from others in
the project’s design and conception or in style, presentation and linguistic expression
is acknowledged.

v

Publications

Portions of this work have been published in the following articles:

• Overload protection for commodity network appliances

Luke Macpherson
Asia-Pacific Computer Systems Architecture Conference,
Lecture Notes in Computer Science, Volume 4186, Pages 203–218, 2006

• Ipbench: a framework for distributed network benchmarking

Ian Wienand and Luke Macpherson
AUUG Winter Conference, Melbourne, Australia, September, 2004

• Maintaining end-system performance under network overload

Luke Macpherson and Gernot Heiser
Technical Report UNSW-CSE-TR-0412, School of Computer Science and En-
gineering, March, 2004

vi

Acknowledgements

Thanks to all those who have provided valuable feedback on
this work at various times over the last few years. To my su-
pervisors, Gernot Heiser and Kevin Elphinstone, and to my
assessors, Felix Rauch Valenti, Thomas Stricker and Timothy
Roscoe.

I would also like to thank the fellow members of the kernel en-
gineering group who have freely given assistance when needed.
Andrew Baumann, Daniel Potts, Harvey Tuch, Ian Wienand,
Ihor Kuz and Peter Chubb. Your help has been invaluable.

Finally, thanks to my family for your unfailing support. Your
faithfulness and consistency continue to have the greatest im-
pact on me.

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Problem statement . 1

1.1.1 Overload . 1

1.1.2 Problem uniqueness . 2

1.1.3 Admission control . 3

1.2 Scope . 4

1.3 Contributions . 5

1.4 Synopsis . 6

2 Related Work 7
2.1 Admission control . 7

2.1.1 Admission control cost . 9

2.2 Performance under overload . 10

2.3 Differentiation . 11

2.4 Feedback . 12

2.5 Effect on system structure . 13

2.6 Data-path separation . 13

2.7 Loosely related issues . 13

2.7.1 TCP flow control and overload 14

2.7.2 Impact of optimisations on performance under overload . . . 14

2.7.3 Event notification mechanisms 15

2.7.4 Load balancers and multi-server systems 16

3 Modelling Overload 19
3.1 Background . 19

3.2 Resource types . 19

3.3 Sources of system load . 20

3.4 Modelling overload . 20

3.5 Modelling independent resources . 22

ix

Contents

3.6 Modelling independent data-paths 23

3.7 Modelling shared resources . 25

3.7.1 Shared prefix . 25

3.7.2 Shared suffix . 27

3.8 Summary . 27

4 The Edge-Limiting Approach 29
4.1 Rate control mechanisms . 29

4.1.1 Introduction to network interfaces 30

4.1.2 Generalised rate limiting . 30

4.1.3 Controlled dequeue rate . 32

4.1.4 Controlled free rate . 34

4.1.5 DMA-ring length modulation 34

4.1.6 Interrupt frequency modulation 34

4.1.7 A hybrid approach . 36

4.2 Queueing behaviour . 36

4.3 Limitations . 37

5 Rate Selection 39
5.1 Overload detection . 39

5.2 Traffic monitoring . 40

5.3 Control approaches . 41

5.4 Rate selection algorithm . 41

5.4.1 Maximum power-point tracking problem 42

5.4.2 Maximum power-point tracking solution 42

5.4.3 Application to rate selection 44

5.4.4 Algorithm tradeoffs . 44

6 Implementation 47
6.1 Rate limiting . 47

6.2 Rate selection . 47

7 Experimental Evaluation 49
7.1 Kernel configuration . 49

7.2 Hardware description . 50

7.3 Firewall benchmark . 50

7.3.1 Firewall configuration . 50

7.3.2 Firewall measurements . 52

7.4 NFS benchmark . 55

7.4.1 NFS configuration . 55

7.4.2 NFS measurements . 57

x

Contents

7.4.3 Pause frames . 58
7.5 HTTP performance . 60

7.5.1 HTTP benchmark configuration 60
7.5.2 Realistic expectations . 61
7.5.3 Large-file workload . 61
7.5.4 Small file workload . 62
7.5.5 Effect of control algorithm frequency 68

7.6 Results for alternative hardware . 68
7.7 Summary of results . 73

7.7.1 Behaviour under normal operating conditions 73
7.7.2 Behaviour under overload . 73

8 Conclusions 75
8.1 Summary . 75
8.2 Further work . 76

8.2.1 Hardware packet demux . 76
8.2.2 Control approaches . 76
8.2.3 Integration with other admission control approaches 77

8.3 Contributions . 77
8.4 Real world applications . 78
8.5 Closing remarks . 78

A Measuring Overload 79
A.1 Distribution . 79

A.1.1 Measurement synchronisation 79
A.1.2 Result aggregation . 80
A.1.3 Network effects . 81

A.2 Measurement . 81
A.2.1 Packet generation . 81
A.2.2 CPU . 82

Bibliography 85

xi

List of Figures

3.1 Example graph of resources for a simple system. 21
3.2 Characterisation of rate-limiting resource frate(x), non-degradable

resource fn(x) and degradable resource fd(x). 23
3.3 A rate-limiting resource preceding a degradable resource 24
3.4 A rate-limiting resource preceding a degradable resource, with rate

set too low. 24
3.5 A rate-limiting resource preceding a degradable resource with rate set

too high. 25
3.6 Two data-paths sharing a common prefix 26
3.7 Two data-paths sharing a common suffix 27

4.1 Model of rate-limiting mechanism . 31
4.2 Latency incurred by the controlled-dequeue-rate approach 33
4.3 Latency incurred in the DMA ring (8kHz interrupts) 35

5.1 Example photovoltaic Power vs. Voltage function 43

7.1 Firewall configuration. 51
7.2 Firewall rule-set . 52
7.3 Firewall: achieved throughput vs. applied load 53
7.4 Firewall: CPU utilisation vs. applied load 53
7.5 Firewall: Cycles per delivered packet vs. applied load 54
7.6 Firewall: Round-trip latency vs. applied load 55
7.7 NFS configuration . 56
7.8 NFS: replies vs. requests . 56
7.9 Effect of pause frames on load generation 60
7.10 Apache Large-file HTTP load . 62
7.11 Apache Large-file HTTP throughput 63
7.12 THTTP Large-file HTTP load . 63
7.13 THTTP Large-file HTTP throughput 64
7.14 Large-file HTTP response time . 64
7.15 Apache Small-file HTTP load . 65
7.16 Apache Small-file HTTP throughput 65
7.17 THTTP Small-file HTTP load . 66

xiii

List of Figures

7.18 Small-file HTTP throughput . 66
7.19 Small-file HTTP response time . 67
7.20 Small-file HTTP benchmark using apache with varying control algo-

rithm frequencies. 69
7.21 UDP echo: achieved throughput vs. applied load 70
7.22 UDP echo: CPU utilisation vs. applied load 71
7.23 UDP echo: cycles per delivered packet 71
7.24 UDP echo: average round-trip latency 72

A.1 Synchronisation error mitigation for multiple hosts. 80
A.2 Source code for idle-time measurement. 83

xiv

List of Tables

2.1 Existing admission-control approaches. 8

7.1 Total size and breakdown of NFS request fields. 58

xv

1 Introduction

This dissertation considers the behaviour of overloaded systems. A new approach
called edge limiting is proposed, which prevents performance degradation under
overload.

1.1 Problem statement

1.1.1 Overload

It is evident that all systems have finite performance bounds, since all systems are
subject to physical constraints, such as processor speed, memory capacity, band-
width and latency, peripheral interconnect bandwidth and latency, power consump-
tion etc. Because all systems are subject to physical resource constraints, it is
generally possible to demand more of a system than it can physically provide. It is
merely a matter of applying enough load to a system that it no longer has enough
resources to process all of the applied load; a situation known as overload.

The observation that it is possible to overload any system based on real physi-
cal hardware is not merely hypothetical. Overload has been the subject of operating
systems research for more than a decade [19], over which time the performance of
computer hardware has changed dramatically.

Despite continuing improvements in hardware performance, the occurrence of
overload is not decreasing in current systems. Gigabit-per-second networking has
been available for more than ten years, and is now commonly integrated with new
computers; yet a single Gigabit Ethernet link is still capable of overloading many
current systems. This problem is only likely to worsen given the recent introduction
of 10 Gigabit-per-second Ethernet interfaces.

Since the possibility of overloading a system always exists, and is also com-
monly observed in real systems, it is important that the behaviour of overloaded
systems be well understood, and taken into account when making system design
decisions. While it is desirable that a system maintain maximum throughput when
overloaded, performance degradation under overload is a common characteristic of
many systems. The extreme case of such performance degradation is livelock, where
given a suitably high load, the throughput of the system drops to zero.

1

1 Introduction

This thesis aims to identify the modifications to existing systems which are
necessary to eliminate performance degradation under overload. Such modifications
should aim to endow a system with the ability to maintain maximum performance
even when overloaded.

1.1.2 Problem uniqueness

Given the description of overload in the preceding section, a reasonable person would
naturally expect computer systems to be overflowing with real-world examples of
overload. In reality, there are very few ways in which overload may be induced in a
typical computer system.

One reason for the scarcity of examples of overload in real systems is that
overload requires that the load generator and load recipient operate independently,
without feedback or flow control. This situation rarely occurs in systems, since
communication primitives and system structures prevent it from occurring. For
example, the Unix pipe communications primitive provides both limitations on the
number of outstanding requests which may be generated and the ability to block the
load generating process. Even systems which use asynchronous IPC typically limit
the number of messages which can be queued. So while it is theoretically possible
to produce overload in any asynchronous system, there are usually mechanisms in
place which prevent this from occuring.

Similarly, hardware subsystems and drivers do not usually induce overload
because the load is generated internally to the system. For example, in a disk
subsystem, the driver issues a request to the disk, and the disk generates a response
at some later point. The rate of responses is proportional to the rate of requests,
and the rate of requests is naturally limited by resource availability.

It is possible to hypothesise about scenarios which could generate overload on
multi-processor systems. For example, in the disk subsystem scenario, if requests
were generated on one processor, and responses handled on a different processor, it
may be possible to overload the processor handling responses. We are not aware of
any such examples occurring in practice.

There are a few well-known exceptions to the above generalisation which are
known to impact existing operating systems. For example, operating systems us-
ing virtual memory may overcommit memory, leading to excessive swapping and
degraded performance, or processes may perform excessive forking, such as in a
fork-bomb, leading to degraded performance. These are examples where some feed-
back exists, however that feedback is inadequate to prevent overload from occuring.
In these examples, the load generator will see decreased performance due to the load
they generate, however the cost of load generation to the process is much lower than
the cost of handling the load, such that loads may be generated which cannot be

2

1.1 Problem statement

processed by the system. Such situations can be handled by artificially limiting the
ability of a process to generate load.

There is another class of systems in which overload is a known issue; networked
systems. Networked systems are unique because load generation is not under the
direct control of the system, since it is externally generated. This class of systems
presents a unique challenge, since it may be impossible to limit the ability of a load
generator to generate load.

This thesis is strongly focussed on preventing performance degradation under
overload for networked systems. While the problem of overload in networked systems
shares some similarities to the problem of overload in other situations, because of the
inherent inability to limit load generation, networked systems are likely to require
a significantly different approach to the problem of performance degradation due to
overload.

1.1.3 Admission control

The general solution to the problem of performance degradation under overload in
networked systems is to prevent a system from receiving loads high enough to induce
performance degradation. Ultimately this can be achieved in two ways: reducing
the number of requests being generated by clients, or discarding excess requests
after they have been generated. In both cases, the aim is to reduce the incoming
request rate such that it does not exceed the maximum request rate supported by
the system.

Reducing the number of requests generated by clients is in the realm of network
flow control and congestion control, and requires protocols which support feedback
to limit the rate of request generation. Internet protocols such as TCP provide
flow control to individual connections, however there is no guarantee of global flow
control.

Some networks standards such as ATM attempt to provide solutions to the
congestion control problem at the data-link layer, however because the wider Internet
is made up of many different network standards, their effectiveness as a solution
to the problem of overload in the wider internet is limited. Practically, it seems
reasonable to expect that we will be stuck with Ethernet for some time to come,
which means that solutions which do not require congestion control are likely to
remain necessary.

In situations where network flow control is unavailable or inadequate to pre-
vent overload, admission control is typically implemented on the server. Admission
control works by rejecting units of work when resource availability is inadequate to
meet all requests.

3

1 Introduction

Admission control systems typically consist of solutions to two orthogonal
problems; firstly, they must provide a way to prevent excess load from being pro-
cessed by the system, and secondly, they must determine how much load can be
admitted to a system without inducing overload. There are many existing combina-
tions of solutions to these two problems, and these are discussed in Chapter 2.

1.2 Scope

Our search for solutions to the problem of performance degradation under overload
has been constrained by a number of requirements which were designed to maximise
the real-world applicability of any solutions found.

Common Internet protocols (TCP/UDP/IP) We are interested in solutions which ap-
ply to common Internet protocols, such as IP, TCP and UDP. While the IP
protocol does not provide any flow control, higher level protocols may provide
some degree of flow control. For example, TCP provides flow control on a per-
connection basis, such that for small connection establishment rates and long
lived connections, TCP-based applications are unlikely to cause overload. Un-
fortunately there are also many situations where IP-based protocols can cause
overload in a connected host. These are widely known for services such as HTTP
and DNS, where both malicious and legitimate traffic can cause spikes in server
load resulting in service interruption.

Commodity network hardware (Ethernet) We are primarily interested in solutions
that work with commodity network hardware. We want our solution to work with
the majority of existing hardware in the world, rather than produce a proprietary
system which is not compatible with existing systems. In essence, this leads us
to looking at solutions which work with commodity Ethernet hardware such as
switches and network interface cards (NICs). Such solutions reduce the cost
and adoption difficulty of a solution, since they may be readily integrated with
existing systems.

Existing Gigabit Ethernet hardware usually supports the 802.3x standard, which
does allow some control over the incoming data rate of the NIC. Unfortunately,
the design of the operating system driver usually prevents useful flow control
information from being propagated into the network, since the driver generally
runs at a high priority and dequeues all available packets even if the system
cannot process them.

Finally, a significant limitation of commodity hardware is that it does not allow
differentiation between packets based on their protocol headers. All packets are
treated equivalently by the NIC. This makes it impossible to intelligently choose

4

1.3 Contributions

which packets to accept or reject without consuming additional resources on the
server.

Applicable to existing commodity operating systems We are looking for a solution
that is simple to implement in current operating systems without major restruc-
turing or reimplementation of those systems. Solving performance degradation
under overload would undoubtedly be easier if it had been a consideration in the
initial design of a system, however we do not have the luxury of reimplementing
systems from scratch in order to solve the problem.

Not limited to specific protocols Finally, we are not merely interested in fixing over-
load of the HTTP protocol. While significant research has been done into pro-
viding admission control for such systems, other essential services such as DNS,
which is primarily UDP based, have not received adequate attention. We are
interested in finding a solution which may be applicable to HTTP, but is general
enough to provide admission control for a wide range of Internet applications and
protocols.

1.3 Contributions

The thesis of this work is that the cost of admission control must be bounded in
order to guarantee scalability under increasing overload. Several contributions are
made to the field:

i) The cost of admission control in existing systems is examined. Focus is given
to the relationship between the location of the admission controller within the
system, and the overall scalability of that system under overload.

ii) A model of system behaviour under overload is provided, and this model is
used to demonstrate that providing rate-limiting at the edge of the system is
adequate to prevent overload from occurring.

iii) Bounded-cost admission-control mechanisms which may be implemented on
commodity hardware are introduced. These mechanisms are able to scale to
any level of applied load.

iv) A new mechanism for detecting overload based on measuring system through-
put is described. This new mechanism has much lower implementation and
run-time costs than existing approaches to overload detection.

v) An experimental evaluation of our approach is provided, which demonstrates
the feasibility of implementing bounded-cost admission control on commodity

5

1 Introduction

hardware. The difficulties and tradeoffs encountered in this approach are also
discussed.

1.4 Synopsis

Related work Chapter 2 surveys existing approaches to admission control, providing
comparisons of their strengths and weaknesses. Other related issues are also
discussed.

Model of overload Chapter 3 provides a model of system behaviour under overload.
The behaviour of individual components of a system under overload is first ad-
dressed, then used as a basis for modelling the behaviour of systems composed of
these components. The model is then used to motivate placement of admission
control as early as possible in the processing of incoming network packets.

The edge limiting approach Chapter 4 introduces a number of rate-limiting mech-
anisms which may be implemented in the driver, and used to implement admis-
sion control at the level of the Network Interface Card (NIC) using commodity
network hardware. These implementations are compared in terms of expected
performance and implementation difficulty.

Rate selection Chapter 5 introduces a new method of determining the maximum rate
at which load may be admitted to the system based on throughput monitoring.

Experimental evaluation Chapter 7 examines the behaviour of NIC-based rate limit-
ing and throughput-based rate selection for workloads varying from simple UDP
echo through to HTTP workloads. The performance impact of the approach is
examined in detail, with both positive and negative results shown.

Conclusions Chapter 8 provides a summary of this dissertation and its contributions,
followed by critical assessment and a discussion of future work.

6

2 Related Work

This chapter examines a number of existing systems based on criteria which are
relevant to system behaviour under overload. Specifically, we are interested in the
cost of admission control in the system, whether it is possible to cause performance
degradation even with that admission control in place, the level at which session
differentiation is performed, and the feedback mechanism used to decide how much
load to admit into the system. Finally, we consider how intrusive the approach is
on the structure of the system, and how readily the approach may be applied to
current systems. Table 2 gives a summary of these features for a number of existing
systems.

2.1 Admission control

In order for a system to provide acceptable behaviour under overload, it must imple-
ment some form of admission control. This section examines the admission control
mechanisms used in a number of existing systems.

One early instance of kernel-level admission control can be seen in Mogul and
Ramakrishnan’s work on eliminating receive livelock (ERL) in an interrupt-driven
kernel [19]. This solution uses a polling thread to service network interfaces in a
round-robin fashion and limits the number of packets which may be handled each
time a queue is serviced.

While the main intent of this work was to curtail excessive interrupt rates and
poor prioritisation of packet processing, their solution also implemented a simplistic
form of admission control by temporarily disabling input from the network interface
when queues become full. This method of admission control is too coarse to work
well on modern network interfaces, which tend to support very high packet rates,
and transfer many packets per interrupt.

Lazy receiver processing (LRP) [8] uses early packet demultiplexing to indi-
vidual queues to separate individual data-paths within the system. There were
two implementations, a hardware-based solution which demultiplexes based upon
ATM virtual-circuit identifiers (VCIs), and a software implementation which demul-
tiplexes based upon fields in the IP protocol header. Admission control is performed

7

2
R

el
a
te

d
W

o
rk

Admission Performance Session Feedback OS
System control cost degrades differentiation mechanism restructure Ref.

ERL O(admitted) N Packet Full queue Y [19]

Hardware LRP O(admitted) N Socket Full queue Y [8]

Software LRP O(total) Y Socket Full queue Y [8]

SRP O(total) Y Socket Full queue Y [5]

SYN Policing O(total) Y TCP Resource monitor N [29,26,27,28]

WebQoS O(total) Y HTTP Request Queue length N [2]

Yaksha O(total) Y HTTP Request Response time N [15]

Quorum Independent N HTTP Request Response time N [4]

SEDA O(total) Y Multiple Multiple N [30]

Table 2.1: Existing admission-control approaches.

8

2.1 Admission control

by dropping packets which are destined for a socket whose queue is full.

TCP SYN policing [29] is an admission control system which operates by
rejecting the connection setup packets of a TCP connection, in order to limit the
rate at which TCP connections can be established. It has been used particularly in
the context of web servers, whose network behaviour is typically characterised by
large numbers of short-lived TCP connections. Admission control occurs by only
allowing TCP SYN packets to enter the system at a controlled rate. This approach
is only effective for loads which are responsive to such negative feedback, rather than
performing load shedding at the overloaded host.

The staged event-driven architecture (SEDA) [30] is a comprehensive solution
to the problem of overload. SEDA wraps every stage in a data-path with its own ad-
mission controller and feedback loop. This results in the possibility of load shedding
occurring at many points in the system, depending on which stage of the data-
path is overloaded. Non-admittance to a stage allows upstream stages to respond
by altering their behaviour in order to reduce the load applied to the downstream
stage.

While SEDA provides an excellent framework for the propagation of informa-
tion on overload within the system, it does not proagate admission control all the
way to the edge of the system, and hence cannot achieve O(admitted) scalability.
Moreover, SEDA’s approach is difficult to retrofit to existing operating systems, as
it necessarily impacts all levels of network processing.

2.1.1 Admission control cost

Those systems which do perform admission control may be divided into two groups
based upon the cost of admission control in the system. Specifically, we are inter-
ested in whether the cost of performing admission control scales with the number of
admitted requests, O(admitted), or with the total number of requests, O(total).

This is an important question when considering admission control. If the
admission control mechanism itself scales according to the total number of requests,
then it is reasonable to say that the admission control mechanism may itself be
subject to overload, for large enough input loads. If an admission control mechanism
scales with the number of accepted requests, on the other hand, we may be sure that
it will not contribute to performance degradation under overload.

The ERL approach of disabling input from the network interface is inherently
O(admitted), since the system only performs processing on data once it has already
passed the admission control mechanism. This mechanism results in short bursts
of traffic being admitted to the system during overload, rather than applying a
consistent load to the host.

9

2 Related Work

The hardware-based LRP approach is able to discard traffic at the network
interface when a socket’s queue is full, and hence achieves O(admitted) performance.
The software LRP approach, on the other hand, must perform packet processing on
every packet entering the system prior to performing admission control. Therefore,
the LRP approach is only able to achieve O(total) performance, and given suitably
high loads will exhibit performance degradation.

In a similar manner to software LRP, signaled receiver processing (SRP) [5]
also performs work on all packets entering the system prior to admission control.
SRP is therefore also subject to performance degradation under overload, due to the
expenditure of resources on packets which are later discarded.

The case of SYN policing is interesting, because the performance of admission
control is strongly dependent on the behaviour of the clients which are generating
the load. Fundamentally, the performance is O(total), since all packets are examined
for the SYN flag when admission control is occurring, however the extent to which
performance degradation actually occurs is determined by the ratio of SYN packets
to other network traffic. For traffic which consists of short-lived connections, we still
expect this admission control to have significant overheads, however for traffic which
consists mostly of long-lived connections, it is reasonable to expect that performance
degradation will be minimal. Unfortunately traffic which consists of many short-
lived connections is most likely to generate overload, since such flows are too short-
lived for TCP flow control to reduce the load on the system.

2.2 Performance under overload

System behaviour under overload is the primary focus of this thesis, and is therefore
the ultimate property by which we judge existing systems. The behaviour of a
system under overload falls into two general categories; those whose performance
becomes degraded under overload, and those who maintain peak performance even
when exposed to excessive request rates.

Systems whose admission control cost is O(total) exhibit degraded throughput
under overload. The rate at which degradation occurs in such systems is dependent
on resource consumption which occurs prior to admission control. The less work
performed prior to admission control, the slower a system’s degradation will be. For
this reason, late admission control is still better than no admission control, even
though some performance degradation will still be present in the system.

Meanwhile, those systems whose admission control cost is O(admitted) or bet-
ter will not experience degraded throughput under overload. Of those systems whose
performance does not degrade under overload, we recognise two sub-categories; those
whose peak performance is comparable with that of a standard system, and those

10

2.3 Differentiation

whose peak performance is significantly lower.

Some papers in this area have produced results which obscure the degrada-
tion inherent in their approaches. For example in [27,28,29], by presenting results in
terms of connections per second, reduced throughput under overload can be obscured
by preferentially dropping longer connections or connections which would consume
more resources. Such presentations can make systems with O(total) admission con-
trol cost appear to eliminate performance degradation, or even provide significant
improvements in peak throughput. It is clear that in these situations a reduction
in useful work is occurring, and that the chosen performance metric of connections
per second is inadequate to characterise systems which exhibit this behaviour.

2.3 Differentiation

Admission control may be performed at different granularities depending on the
requirements of the system. Most systems perform admission control on either a
per-packet, per-TCP-connection, or per-user basis.

Performing admission control on a per-packet basis is primarily used because
it does not require specific knowledge about the contents of a packet in order for
admission control to take place. This approach has the advantage that admission
control cost can be made independent of the load applied to the admission controller,
allowing the approach to scale to very high applied loads. The disadvantage is that
it is not possible to preferentially treat packets based on their contents.

Admission control on a per-TCP-connection basis has been proposed as a
solution for protocols such as HTTP, which typically generate large numbers of
short-lived TCP connections. The advantage of such approaches is that existing
connections can be prioritised over new connections, such that once a connection
is established, that connection can be given enough bandwidth for the connection
to complete within a well defined time. The disadvantage of this approach is that
it requires that the admission controller be able to process the IP and TCP packet
protocol fields, in order to differentiate between incoming packets. Such process-
ing implicitly consumes resources for each additional packet received, even if it is
not admitted. If those resources are also used for further processing of requests,
performance degradation under overload can be expected.

Admission control can also be performed at higher levels, according to infor-
mation available to the application-level protocol. Such information could allow for
per-user service differentiation, for example [29].

While the granularity at which admission control is performed is conceptually
orthogonal to the cost of admission control, the cost of admission control is closely
related to the implementation details of session differentiation.

11

2 Related Work

There are two basic classes of admission control implementations; those which
perform admission control at the network interface, and those which perform ad-
mission control during protocol processing on the host CPU. Typically, performing
admission control at the network interface is necessary to achieve O(admitted) scal-
ability, however performing session differentiation at greater granularities requires
increased processing capacity on the network interface itself.

For commodity IP over Ethernet, performing admission control at the net-
work interface on a per-packet basis is simply a matter of accepting packets at the
appropriate rate. Performing admission control at higher levels requires the exami-
nation of higher level protocol fields in order to differentiate between packets. Such
functionality is not typically available in commodity Ethernet interfaces, however
in other research contexts, such as user-level network protocol implementations,
programmable Ethernet interfaces have been modified to provide hardware packet
filtering into multiple input queues [23].

For TCP/IP over ATM, performing admission control at the network interface
on a per-connection basis is feasible, since TCP connections are mapped to individual
ATM virtual circuits, of which the network interface may be aware [17, 3]. This is
the approach taken by the hardware-based implementation of LRP [8].

2.4 Feedback

We now examine feedback mechanisms which are used to control the acceptance rate
of the admission controller. There are three fundamental approaches which are taken
in the literature, explicit flow control, resource-based feedback, and performance
monitoring.

Explicit flow control is used in systems which are structured with queues be-
tween connected components. Such systems allow upstream components to signal
downstream components that they are overloaded, by allowing their incoming queues
to become full. Upon encountering a full receive queue, the downstream component
can presume that the upstream component is unable to process the incoming data-
stream at the required rate, and is overloaded.

Resource-based feedback is implemented by monitoring key system resources,
such as CPU time and memory consumption, in an attempt to determine when a
system has become overloaded. The main problem with resource-based feedback is
that resource usage is not always an accurate indicator of overload.

The third feedback mechanism which is commonly used is performance moni-
toring. Most systems use some variation of response time measurement, where the
feedback mechanism uses a control loop to maintain response time guarantees. For
example, SEDA, Yaksha and Quorum aim to maintain a well-defined percentage of

12

2.5 Effect on system structure

traffic below a maximum response time.

2.5 Effect on system structure

The choice of control mechanism and feedback source may dictate the structure of the
system. In many cases (ERL, LRP, SRP), the system was significantly restructured
in order to support queueing models which allowed for explicit flow control.

Systems such as SYN policing, which have more loosely coupled feedback and
control, are somewhat simpler to insert into an existing system without requiring
major system restructuring. In this case, the admission controller may simply be
inserted on the incoming data-path, and the feedback mechanism simply performs
measurements on the system.

2.6 Data-path separation

One of the significant problems encountered on commodity Ethernet network in-
terfaces is that it is not possible to differentiate between different data streams at
the network interface. Unlike asynchronous transfer mode (ATM) networks, which
can utilise a virtual circuit identifier (VCI) to differentiate between individual data
streams, Ethernet interfaces have no concept of virtual circuits. Therefore, a solu-
tion supporting Ethernet would require that the network interface have the ability to
demultiplex packets based on fields located in the headers of higher level protocols.

The initial implementation of Nemesis [17] used ATM VCIs for packet demulti-
plexing, however later implementation on Ethernet hardware used a software-based
packet demultiplexor [3]. More recent work on the Arsenic project [23] has focussed
on providing hardware packet demultiplexing to user-level protocol stacks in Linux.
Such hardware would enable data-paths to be rate-controlled individually.

Both Scout [20] and Nemesis operating systems share the approach of explicitly
separating data-paths within the system. They also have the desirable property that
it is simple to monitor the input and output of individual data-paths, which may
assist in detecting overload. Our solution naturally lends itself to implementation
in such systems, as they avoid data-path entanglement and its inherent problems,
as discussed in Section 3.7.

2.7 Loosely related issues

This section provides a quick overview of related work which is loosely related to
the problem of overload. While not essential in understanding this dissertation, it

13

2 Related Work

is useful to clarify their impact on the behaviour of systems under overload.

2.7.1 TCP flow control and overload

In some instances, high-level protocols such as TCP are able to prevent the occurence
of overload when the majority of network traffic belongs to a relatively small number
of long-lived TCP connections. This is achieved by relying on the sender to decrease
its transmit rate in response to network and receiver feedback.

TCP also assumes packet loss indicates network congestion. When packet
loss is detected, the sender decreases its transmit rate. This has implications for
instances of overload whose behaviour is to drop packets in the receive path. When
such packet loss is observed, the sender will reduce its transmit rate, and therefore
the load applied to the overloaded host is reduced1.

There are a number of practical limitations which prevent this being a general
approach to solving the problem of overload. Firstly, it requires that protocols
respond to congestion feedback by reducing their transmit rates. Many protocols
do not provide such behaviour, and reimplementing every protocol is not a viable
option.

Moreover, overload need not result in packet loss or congestion at or below the
network protocol level. In such cases, network protocols will be unable to limit the
sender’s transmit rate without explicit feedback from the application. Such feedback
may be available as a side effect of the IP stack’s application programming interface,
however such feedback is dependent on application behaviour.

Finally, a problem which is frequently encountered in real systems such as
web servers is that protocol-based flow control is only really effective for long-lived
protocol sessions. This means that for protocols such as HTTP, which typically
have high connection rates and short lived connections, protocol-based flow control
is ineffective in preventing overload from occuring.

2.7.2 Impact of optimisations on performance under overloa d

Many optimisations which improve performance when a system is not overloaded
result in reduced throughput when a system is overloaded. Optimisations which
result in performing work on packets which were later discarded tend to produce
reduced throughput under overload.

1In many circumstances, reducing throughput when packets are lost is not a desirable behaviour.

For example, on a wireless network which experiences packet loss due to interference rather than

congestion or overload, the network protocol should not respond to packet loss by reducing the

transmit rate.

14

2.7 Loosely related issues

A common approach to network driver and protocol stack implementation is to
process batches of packets at a time, rather than processing an individual packet to
completion before beginning processing on the next packet. For example, a network
interface will typically queue a number of packets prior to raising an interrupt, the
network driver will dequeue all of those packets and add them to the IP stack’s
input queue, the IP stack will process all of those packets and add them to the
application’s input queue.

The advantage of this approach is that it provides good instruction-cache lo-
cality, and tends to minimise the number of context switches which are performed
while processing packets. When a system is not overloaded, there is only the slight
disadvantage that jitter may be increased slightly, while average latency is reduced.

When a system becomes overloaded, such optimisations can have a pronounced
negative effect on the overall performance of the system. Under overload, it is
inevitable that some requests must be discarded, since there are not enough resources
in the system to process all requests. In this case, processing batches of packets tends
to cause partial processing of many packets which are later discarded. Such partial
processing further reduces the resources which are available for processing requests
to completion. Such behaviour inevitably leads to system performance which will
progressively degrade as applied loads increase beyond the maximum capacity of the
system.

It is desirable that a solution to the problem of performance degradation under
overload not significantly impact the performance of the system when it is not over-
loaded. This means that optimisations which may cause degradation under overload
may need to be retained, and any additional overheads must be minimal.

Ultimately, the solution to this dilemma is to perform admission control as
early as possible, such that performance optimisations are always performed on
packets which will be processed to completion. In this way, the performance op-
timisations can remain in place without introducing undesirable behaviour when
overloaded.

2.7.3 Event notification mechanisms

There are two general classes of event notification used in modern systems; interrupts
and polling. In interrupt-driven systems, the maximum rate of event notifications
is determined by the entity which generates events (for example, the network inter-
face). In systems which use polling, on the other hand, the maximum rate of event
notifications is determined by the entity which is receiving event notifications (for
example, the device driver).

Because interrupt-driven systems allow the event generator to determine the

15

2 Related Work

notification rate, it is possible for the event generator to produce event notifications
at an excessively high rate, causing performance degradation under overload. On
early hardware there were few mechanisms for controlling the event notification rate,
other than disabling interrupts. This has lead to the widespread belief that overload
is usually the result of an excessively high interrupt rate. While this was indeed
an issue on early network hardware [19], modern hardware does not suffer the same
problems.

Modern network interfaces provide a variety of mechanisms for controlling the
interrupt generation rate, and typically provide a reasonable upper bound on the
event notification rate. This means that on modern hardware event notification is
largely orthogonal to the problem of overload — both polling and interrupt driven
systems provide control of the event notification rate, such that it is reasonable to
build systems which are not susceptible to performance degradation under overload
due to excessive event notification rates.

2.7.4 Load balancers and multi-server systems

Many large-scale internet services are distributed over multiple servers, in order
to increase peak serving capacity. Such systems typically utilise a front-end load
balancer, that is responsible for distributing incoming requests over a pool of back-
end servers. This approach minimises the work done by the load balancer, such that
it is able to handle a greater volume of traffic than a single general-purpose server.
On the other hand, it is simply a matter of adding enough back-end servers for
the front-end load balancer itself to become the limiting factor in increasing service
capacity. In this case, the load balancer itself is likely to be subjected to overload.

Front-end load balancers form a natural point for the protection of back-end
services from excessive load. In order to perform admission control, front-end load
balancers need to solve similar problems to those addressed in this dissertation.
Firstly, they need to implement some mechanism for rejecting excess load, and
secondly, they need to detect when the back-end servers are overloaded.

The front-end load balancer is in essence an extension of the edge-limiting
approach described in this dissertation. The difference being that the edge of the
system has been pushed one step beyond the boundary of the back-end server. In
this case the front-end load balancer may be able to afford to dedicate CPU time
to differentiating between incoming packets prior to performing load rejection, since
processing power is not needed for performing other functions.

Despite the increased resources which can be devoted to admission control in
a front-end load balancer, our rate limiting approach may still be useful in such
systems for protection of the load balancer itself, since it is still conceivable that the
load balancer may be subjected to more load than it has resources to handle. In this

16

2.7 Loosely related issues

case, our approach may be useful to protect the load balancer itself from overload.

17

3 Modelling Overload

In order to understand the overall behaviour of an overloaded system, it is useful
to develop a model of the way individual components of that system behave and
interact. This chapter presents a model of the behaviour and interaction of network
communications components.

The purpose of this model is to develop an understanding of the impact and
tradeoffs of the application of admission control at different points within a system.
Ultimately, it will show that limiting at the edge of the system is adequate to prevent
performance degradation under overload, with the limitation that the throughput
of other applications whose load also passes through the admission controller will
be impacted.

3.1 Background

Overload occurs when the load applied to a system exceeds the system’s maximum
capacity. A carefully designed system should continue to provide maximum capacity
even as the load applied increases beyond the system’s maximum capacity.

Most systems exhibit gradual performance degradation as the applied load in-
creases beyond the maximum capacity of the system. This performance degradation
typically continues until the applied load is capped by the exhaustion of a required
resource, such as PCI bus bandwidth, or until the system becomes live-locked, at
which point it ceases to perform any useful work.

3.2 Resource types

There are many resources in a computer system which may become overloaded,
thereby limiting maximum system capacity. We divide these resources into two
categories; physical resources and logical resources.

Physical resources are those which correspond to various aspects of the system
hardware, such as processor time, memory bandwidth, data bus bandwidth and
network interconnect bandwidth. They are present and inherent in all systems.

Logical system resources may also become overloaded. Examples of logical

19

3 Modelling Overload

resources which can become overloaded in a real system include queues, buffer allo-
cators and DMA rings that utilise fixed memory areas or a fixed number of entries.
Any logical resource which is allocated from a finite set may become overloaded
when all elements in the set are in use. Any further allocations will fail until exist-
ing allocations are rescinded, causing a rate-limiting effect to occur.

3.3 Sources of system load

Any operation performed by a system which consumes resources contributes to sys-
tem load. While not an exhaustive list of load sources, the following examples
describe common sources of load on a typical system.

User-level applications directly generate load on the CPU and memory bus.
The operating system can control this load by adjusting the time allocated to the
application by the operating system’s scheduler.

Secondary storage devices generate load on the device bus, the system bus, and
the memory bus. This load can be controlled by the operating system by adjusting
the rate at which read and write requests are issued to the device controller.

Network interface devices generate load on the system bus and the memory
bus by performing DMA. Network interfaces are also capable of placing significant
load on the CPU, by generating a high rate of interrupts.

Unlike other types of devices, the operating system cannot control the packet
arrival rate of the network interface. There is no implicit feedback mechanism to
prevent the network load applied to a system exceeding the maximum capacity of
that system. This means that network interfaces are considerably more likely to
be sources of overload than other devices, since the rate of incoming packets is not
under the control of the operating system, and may exceed the total capacity of the
system.

3.4 Modelling overload

We model real systems as a graph of logical resources traversed by data passing
through the system. Logical resources may map to one or more physical resources,
and multiple logical resources may share an underlying physical resource, such that
placing load on one logical resource may reduce the capacity of another logical
resource.

Figure 3.1 is an example resource graph for a simple system with a single data-
path that is performing packet echo. Circular nodes represent logical resources,
rectangular nodes represent physical resources, super-nodes (indicated by dashed

20

3.4 Modelling overload

Figure 3.1: Example graph of resources for a simple system.

lines) show shared physical resources. In Figure 3.1, a packet begins at the network
interface. The network interface then consumes an entry in the DMA ring (which is
a logical resource), and uses DMA to copy the packet into memory, consuming both
PCI and memory bandwidth, but not CPU time. The driver’s receive routine is
triggered by an interrupt, consuming CPU time and freeing an entry in the receive
ring. The driver then causes the packet to become enqueued using a copy operation,
consuming both CPU time and memory bandwidth. The driver’s transmit routine
then adds the packet to the transmit ring, consuming a transmit ring entry and
some CPU time.1 The network interface then uses DMA to copy the packet into its
local memory for transmission, consuming both memory and PCI bandwidth.

Resources in real systems fall into two categories; those that exhibit degraded
performance under overload, and those that do not. We refer to these as degradable
and non-degradable resources, respectively. Degradable resources occur when two or
more resources on the same data path share the same underlying physical resource,
and those resources do not receive a fixed share of the underlying resource.

Consider the following scenario: a network interface is connected via a pe-
ripheral bus to main memory. The maximum throughput of the peripheral bus is
lower than the maximum throughput of the network interface. In order to avoid

1In reality most software operations use some memory bandwidth.

21

3 Modelling Overload

receive-buffer overruns, the network interface prioritises the DMA of receive packets
over the DMA of packets ready for transmission. The host application is a simple
UDP packet echo.

When the peripheral bus becomes saturated, half of the bus bandwidth will be
used for the DMA of incoming packets, and half for the DMA of outgoing packets. As
the rate of incoming packets is increased beyond the point at which the bus becomes
saturated, the bus bandwidth used by incoming packets reduces the bus bandwidth
available for outgoing packets by a corresponding amount. In the extreme case,
incoming packets will consume all available bus bandwidth, and no useful work will
be done by the echo server.

Mogul and Ramakrishnan [19] observe a similar phenomenon. In the case
they examine, the shared system resource is time on the CPU, and processing of
incoming packets by the interrupt handler occurs at a higher priority than other
packet processing. This causes a reduction in CPU time allotted to processing
packets for transmission, leading to the operating system transmit path (and user
application) behaving as a degradable resource.

3.5 Modelling independent resources

We model independent resources using output throughput as a function of input
throughput. Non-degradable resources are characterised by functions that have non-
negative derivatives for all input throughputs.

We also define a special type of non-degradable resource, which we call a rate-
limiting resource, frate(x) whose behaviour is characterised by output throughput
which equals input throughput for input throughputs which are less than a de-
termined rate-limit, and equal to the rate-limit for input throughputs above the
rate-limit.

frate(x) =

{

x, for 0 ≤ x ≤ rate,

rate, for x > rate.
(3.1)

Figure 3.2 shows characterisations of three resources. The rate-limiting re-
source frate(x), is an example of a rate-limiting resource with rate-limit of 600.2

The non-degradable resource fn(x) is an example of a simple non-degradable re-
source, with throughput which increases until the resource becomes saturated, then
continues to perform at that level. The degradable resource fd(x) is an example

2Figures 3.2 and 3.3 do not specify units. Packets per second or bytes per second are typical

metrics which could be used.

22

3.6 Modelling independent data-paths

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

A
ch

ie
ve

d
th

ro
ug

hp
ut

Applied load

frate(x)
fn(x)
fd(x)

Figure 3.2: Characterisation of rate-limiting resource frate(x), non-degradable re-
source fn(x) and degradable resource fd(x).

of a simple degradable resource, with throughput which increases linearly until the
resource becomes saturated, and throughput which decreases linearly once the sat-
uration throughput is exceeded.

3.6 Modelling independent data-paths

Given a model of the behaviour of individual resources under load, it is possible to
model the behaviour of an individual data-path within the resource graph. When
resources are connected in series, the input throughput seen by a resource is the
output of the previous resource in the data-path. Therefore, the characterisation of
resources fa(x) and fb(x) connected in series is fb(fa(x)).

Figure 3.3 is an example of a data-path where a rate-limiting resource precedes
a degradable resource. We see that when a rate-limiting resource frate(x) precedes a
degradable resource fd(x), throughput does not degrade below fd(rate). Therefore,
if a rate of f−1

d
(max(fd)), overall throughput is maintained once peak throughput

is reached.

Figure 3.4 shows the effect of selecting a rate limit which is lower than the
maximum of fd. Rate limiting occurs before peak throughput is reached, however
the overall behaviour of the system is still non-degradable.

23

3 Modelling Overload

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

A
ch

ie
ve

d
th

ro
ug

hp
ut

Applied load

fd(frate(x))
fd(x)

Figure 3.3: A rate-limiting resource preceding a degradable resource

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

A
ch

ie
ve

d
th

ro
ug

hp
ut

Applied load

fd(flow(x))
fd(x)

Figure 3.4: A rate-limiting resource preceding a degradable resource, with rate set
too low.

24

3.7 Modelling shared resources

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

A
ch

ie
ve

d
th

ro
ug

hp
ut

Applied load

fd(fhigh(x))
fd(x)

Figure 3.5: A rate-limiting resource preceding a degradable resource with rate set
too high.

Figure 3.5 shows the effect of selecting a rate limit which is higher than the
maximum of fd. Rate limiting occurs after the system has begun to exhibit degra-
dation, however once the rate limit is reached, further degradation is prevented.

3.7 Modelling shared resources

The previous section models the behaviour of data-paths in isolation, however in
many systems individual resources may be shared between many data-paths. This
section will propose a model for the effect of shared resources on the throughput of
individual data-paths.

3.7.1 Shared prefix

Consider the scenario shown in Figure 3.6, where two data-paths, y and z are prefixed
by path x. Assuming an ideal demultiplexor, the sum of the resource’s inputs should
equal the sum of the resource’s outputs. Non-ideal demultiplexors can be modelled
using an ideal demultiplexor and independent resources in series. An example of
this situation in a real system is a network protocol stack which demultiplexes data

25

3 Modelling Overload

Figure 3.6: Two data-paths sharing a common prefix

between multiple applications.

x = y + z (3.2)

For some proportion, c in [0, 1], of x destined for y, the data rates y and z are
proportional to x:

y = cx (3.3)

z = (1 − c)x (3.4)

If the proportion c is beyond the control of the system (as is the case for packets
generated externally to the system), there are two ways in which rate limiting can
be applied to y. The first option is to simply drop packets between x and y. Doing
this will mean that the path x consumes resources handling packets which are later
discarded. The second option is to propagate the rate limiting to x, however this
necessarily also causes a reduction in the throughput of z.

This means that when two or more data-paths share a common resource, reduc-
ing the throughput to one of those data-paths by reducing the throughput applied
to the common resource will necessarily reduce the throughput to the remaining
data-paths.

The solution to this dilemma is to structure systems such that data-paths
avoid sharing a common prefix. Such an approach is reminiscent of systems such as
LRP [8] and Nemesis [3], which perform early packet demultiplexing.

26

3.8 Summary

Figure 3.7: Two data-paths sharing a common suffix

3.7.2 Shared suffix

Consider the scenario shown in Figure 3.7, where two data-paths, x and y are suffixed
by path z. Assuming the resource itself is not overloaded, the sum of the resource’s
inputs should equal the sum of the resource’s outputs. An example of such a resource
in a real system is on the transmit path of a network protocol stack, where multiple
senders are multiplexed onto an underlying protocol. For example, when merging
TCP and UDP packets into the network interface’s output queue.

x + y = z (3.5)

Unlike the shared prefix case, there is nothing to be gained by performing
rate limiting at the point where data paths merge. Instead, the output z should be
rate-limited by controlling the rates of x and y. In this case, the proportion of z’s
throughput assigned to x and y is at the discretion of the resource.

3.8 Summary

This chapter has presented a model of the behaviour of a system comprised of
connected resources, and the effects of overload have been explained in terms of
that model.

The model makes two important points very clear: that a rate limiting resource
may be used to provide peak throughput for a particular data path, and that systems
in which data-paths have a shared prefix (or late demultiplexing) make it difficult
to prevent the overload of one data path without reducing the performance of other

27

3 Modelling Overload

data paths.

28

4 The Edge-Limiting Approach

This chapter introduces mechanisms which my be used to provide a rate-limiting
resource at the edge of the system. In particular this chapter will focus on mech-
anisms which can be implemented using unmodified commodity Gigabit Ethernet
network interface cards. The principles used in this chapter may be applicable to
other devices, however they do depend heavily on the nuances of network interface
hardware design.

As discussed in the previous chapter, in order to prevent degradation due to
overload, it is necessary to implement admission control wherein the rate at which
data enters a system is limited to the maximum capacity of that system. This allows
the system to provide peak throughput even when the applied load is beyond that
peak.

In Chapter 2, we introduced the concept of admission control cost. In order
to guarantee that degradation does not occur under overload, an admission control
system must have an admission control cost of O(admitted) or better. In order to
achieve this, the network interface itself may be used as a non-degradable resource,
since it has separate processing resources to the main CPU, and has enough capacity
to process a saturated link. Chapter 3 also argued that by performing admission
control at the start of the data path all resources along that path could be prevented
from exposure to excessive loads.

For these reasons, we propose the use of the network interface card itself as
a rate-limiting resource which may be used to perform admission control for the
entire system. This chapter will focus on admission control mechanisms which can
be implemented in off-the-shelf network interface cards.

Determining the maximum capacity of the system is an orthogonal but equally
important problem, and will be dealt with in the next chapter.

4.1 Rate control mechanisms

Since we require the use of commodity hardware, we will examine rate-limiting
mechanisms which can be implemented in the driver, and which cause packets to be
dropped by the network interface before they can be copied to main memory using
DMA.

29

4 The Edge-Limiting Approach

4.1.1 Introduction to network interfaces

Early Ethernet network interfaces and some modern embedded network interfaces
operate by receiving an incoming packet into a local buffer before interrupting the
host CPU. The operating system’s interrupt handler then invokes the driver, which
reads the packet from the NIC into a buffer in main memory before enqueueing it
for higher level processing.

This simple design is cheaper and easier to build due to reduced hardware
complexity, but is unable to scale to the high packet rates seen in modern Ethernet
networks. Polling schemes can be used to increase the number of packets received
per interrupt, however the design is fundamentally limited by buffering constraints.

Some optimisations are possible with such interfaces, such as using the host
CPU to look at the packet headers in the network interface’s packet buffer prior
to copying the packet. This could allow cheaper demultiplexing of packets between
recipients, or intelligent admission control with reduced loading on the host CPU
and memory bus.

Modern Ethernet interfaces use an entirely different scheme for packet recep-
tion. Received packets are automatically copied into pre-defined locations in main
memory by the network interface. These memory locations are defined by descrip-
tors in the DMA ring, a data structure usually maintained in main-memory and
used to communicate between the driver and network interface. Conceptually, the
DMA ring is a circular list, implemented as a circularly-linked list or simple array,
with the specific structure dictated by the network interface itself. Each entry in the
DMA ring is a descriptor containing a pointer and meta data describing a location
in memory which may be used by the network interface to store an incoming packet.
Minimally, the meta data includes the size of the buffer and whether it is owned by
the network interface or the host. In general, the buffers pointed to by the DMA
ring are large enough to store one incoming packet, such that one DMA ring entry
will contain one received packet.

Interrupt generation on modern network interfaces is generally programmable,
with different interrupt mitigation schemes used by different manufacturers. Inter-
rupt mitigation typically allows the maximum interrupt rate generated by the net-
work interface to be specified, but may also include various thresholds to prevent
the delay of packet processing under low load [14,25].

4.1.2 Generalised rate limiting

The following rate-limiting mechanisms rely on the behaviour of the network inter-
face when all receive buffers in the DMA descriptor ring have been used, which is
to drop any subsequent incoming packets. This approach gives the behaviour of a

30

4.1 Rate control mechanisms

 0 1 2 3 4 5 6 7 8 0
 50

 100
 150

 200
 250

 0

 500000

 1e+06

 1.5e+06

 2e+06

Packets/Second

Interrupt Rate (kHz)

Packets/Interrupt

Packets/Second

Figure 4.1: Model of rate-limiting mechanism

non-degradable resource, because packets which are discarded do not consume any
additional system resources. Resource consumption of the discarded packet is lim-
ited to processing on the network interface, which is capable of handling the full
load of the network link.

If n packets are dequeued per interrupt, and interrupts occur at frequency f ,
the data rate d can be calculated:

d = n × f (4.1)

Figure 4.1 shows the relationship between the achieved packet rate d, the
number of packets dequeued per interrupt n, and the interrupt frequency f for
Equation 4.1. Given this model, we can choose to control the incoming packet rate
by adjusting the number of packets dequeued per interrupt, or by adjusting the
interrupt frequency.

All of the following rate-limiting mechanisms operate on the same principle.
This means that under most circumstances there is little performance difference be-
tween the approaches. On the other hand, there may be significant non-performance

31

4 The Edge-Limiting Approach

reasons to choose one mechanism over the other. The choice of rate control mech-
anism should be made primarily on the basis of how well the approach suits the
existing hardware design and driver framework.

4.1.3 Controlled dequeue rate

This rate-limiting mechanism is implemented by controlling the rate at which packets
are dequeued from the DMA ring by the driver.

Traditional driver implementations aim to dequeue as many packets from the
DMA ring as possible before returning from the interrupt handler. We modify this
behaviour by dequeuing only the number of packets required to maintain the desired
data rate. Excess packets are left in the DMA ring, while consumed packets are freed
in the DMA ring. If the incoming data rate exceeds the packet dequeue rate, the
DMA ring becomes full, and the network interface begins dropping packets. If the
network supports flow control, the rate limit will be propagated through the network,
causing the sender to be blocked.

The main advantage of this approach is that it is extremely simple to imple-
ment, requiring only a few lines of code in the driver’s interrupt service routine.

The disadvantage of this approach is that it incurs additional per-packet la-
tency if the applied load is greater than the admitted load, as packets must sit
in the DMA ring until the driver is ready to process them. According to Little’s
law [18], the incurred latency T is dependent on the size of the DMA ring N , and
the admission control rate λ, as shown in Equation 4.2.

N = λT (4.2)

Figure 4.2 shows the latency incurred while a packet waits to be dequeued by
the driver, as modeled by Equation 4.2. If the admission control rate is low relative
to the number of DMA buffers in use, the latency incurred can be significant.

The impact of added latency depends on the network protocol and application
being used. In the case of protocols which do not retransmit in the event of packet
loss (for example, a time synchronisation protocol), minimising the time packets
spend waiting in the DMA ring can be useful. On the other hand, for protocols such
as TCP, the fact that some packets must be dropped under overload means that
end-to-end latency is determined by retransmission timeouts, and latency added to
the delivery of an individual packet has little impact on overall performance.

32

4.1 Rate control mechanisms

20k
60k

100k
140k

180k
 50

 100
 150

 200
 250

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

Latency (µS)

Admitted Packets/Second

DMA Buffers

Latency (µS)

Figure 4.2: Latency incurred by the controlled-dequeue-rate approach

33

4 The Edge-Limiting Approach

4.1.4 Controlled free rate

An alternative to the controlled dequeue rate approach is to dequeue packets as soon
as they are available, but delay notification of packet consumption to the network
interface. In this solution packets are freed in the DMA ring at the desired packet
rate.

Because network interfaces typically consider a slot in the DMA ring to be
either full or empty, the driver must introduce a third state to keep track of slots
which are no longer in use, but which have not yet been returned to the network
interface for reception of additional packets. How cleanly this can be implemented
is somewhat dependent on the structure of the DMA ring, whose design is dictated
by the network interface.

The primary advantage of controlling the free rate is that it does not incur any
additional latency, since packets may be dequeued as soon as the interrupt is raised,
rather than waiting in the DMA ring, as is the case for the controlled dequeue rate
approach.

4.1.5 DMA-ring length modulation

A variant of these approaches is to control the number of DMA buffers which are
available in the receive ring. At each interrupt, the entire DMA ring is dequeued
and freed. This approach is suitable when receive processing interrupts occur at well
known intervals, as is the case for many Gigabit Ethernet interfaces which support
interrupt moderation.

As in the controlled free rate approach, the difficulty of implementing DMA-
ring length modulation is largely dependent on the interface provided by the network
interface.

Figure 4.3 shows the time packets spend waiting in the DMA ring before being
dequeued for the DMA-ring length modulation approach. The worst case latency
added by rate limiting is equal to the interrupt period. This occurs when a packet
must wait the entire interrupt period before being dequeued, and is no worse than
that incurred by normal interrupt moderation.

4.1.6 Interrupt frequency modulation

Equation 4.1 shows how the data rate can also be controlled by modulating the
frequency of interrupts, while maintaining a fixed number of entries in the DMA
ring.

The advantage of this approach is that on most Gigabit Ethernet network
interfaces, controlling the interrupt rate is simply a matter of setting a value in a

34

4.1 Rate control mechanisms

Applied Packets/Second

DMA Buffers

 60
 70
 80
 90

 100
 110
 120
 130

Latency (µS)

50k
100k

150k
200k

 5
 10

 15
 20

 25
 30

Latency (µS)

Figure 4.3: Latency incurred in the DMA ring (8kHz interrupts)

35

4 The Edge-Limiting Approach

device register. This means that the only change necessary in the device driver’s
interrupt service routine (ISR) is to prevent more than one iteration over the DMA
ring from occurring. This is necessary to limit the number of packets dequeued per
interrupt, since most driver implementations attempt to reduce the interrupt rate
by not returning from the interrupt handler until the input queue is empty.

There are several disadvantages to this approach. It results in an interrupt
frequency which increases as the admitted data rate increases. It therefore tends to
increase load on the system as overload is approached (although it still maintains
O(admitted) performance).

This approach also has the disadvantage of increasing latency at low admission
control rates, as the interrupt frequency may need to be very low for low packet rates.

4.1.7 A hybrid approach

It is also possible to implement rate control by modulating both the interrupt fre-
quency and DMA ring length simultaneously. Such an approach can have the advan-
tage of allowing increased interrupt frequency under low load in order to minimise
latency, while reducing interrupt overheads at high loads.

This approach goes beyond simply eliminating overload and has become an
exercise in performance optimisation. The performance of this approach is evalu-
ated in Section 7.6 using a controlled-free-rate admission controller and interrupt
frequency modulation.

4.2 Queueing behaviour

It is worth noting that the rate limiting mechanisms presented in this system all
provide “tail drop” queueing semantics, where the most recently arrived packet is
dropped. These semantics are typical of those used by default in many internet
routers.

While tail drop is extremely popular in existing internet routers, there are a
few well known disadvantages to this approach [1]. The first disadvantage is that
the phenomenon of lock-out, where a small number of traffic flows may be able to
monopolise space in the queue. The second problem is that tail drop results in full
queues, which means that bursty traffic tends to be dropped.

Proposed solutions to these problems include active queue management ap-
proaches such as Random Early Detection [11] (RED), and congestion notification
mechanisms such as Explicit Congestion Notification [10,24] (ECN). The implemen-
tation of such approaches is not possible using the edge limiting approach without
explicit queue management on behalf of the network interface.

36

4.3 Limitations

4.3 Limitations

Commodity Ethernet interfaces typically only support a single DMA ring, and as
such that resource must be shared by all data paths used by that interface. We
are not aware of any commodity Ethernet cards which support hardware packet
demultiplexing based on high level network protocol fields, however some interfaces
do support demultiplexing packets into individual DMA rings based on the Ethernet
packet’s virtual local area network (VLAN) tag.

There has been research into providing hardware packet demultiplexing [23]
by replacing the firmware of certain programmable Ethernet cards. This work has
been done in order to support user-level network protocol implementations in ex-
perimental operating systems, where such packet demultiplexing allows packets to
be delivered to different user-level protection domains for processing.

In Section 3.7 we discussed the effects of having shared resources along a data
path. Because the hardware shares a single DMA ring between multiple data paths,
it is not possible to apply separate rate limits to individual data paths. Therefore,
when rate limiting is implemented using the network interface’s DMA ring, the
throughput of all data paths which are prefixed by that DMA ring is limited. This
situation could be resolved by having hardware that supports packet demultiplexing
into multiple queues, or by limiting each network interface to a single data path.

In practice many applications, such as those typically used in network servers,
put the majority of traffic through a single data path. Therefore despite this limi-
tation, this approach achieves useful results.

37

5 Rate Selection

While a rate-limiting mechanism makes it possible to prevent excess traffic from
entering the system, it is also necessary to determine exactly how much traffic should
be allowed into the system in order to prevent overload and maximise throughput,
as discussed in Section 3.6. This chapter will briefly discuss existing methods of
detecting overload. It will then look at a new approach which uses throughput
based traffic analysis to determine when a system has become overloaded.

5.1 Overload detection

There are many possible ways to detect overload within a system. One is to have
each stage along the data path detect when it is overloaded.1 When a stage becomes
overloaded, that information could be propagated backwards along the data path to
the data source. This is the approach taken by the staged event driven architecture
(SEDA) [30]. Although detection of overload within an individual stage may be
simpler than detecting overload in the system as a whole, retrofitting such detection
to an existing system is difficult, as it necessarily requires modifying the interfaces
and behaviour of all components in a data path.

One proposed approach to solving this problem is to use resource monitoring to
detect when a system has become overloaded [26,27,28,29]. These systems typically
monitor resources such as CPU usage as an indicator of system load. Unfortunately,
resource monitoring is often a poor indicator of overload, since many optimisations
take advantage of any spare resources which are available. Additionally, resource
consumption may not be a function of network load if resources are being consumed
by some independent process.

An alternative approach is to use traffic monitoring to detect overload. Such a
monitor observes the response of the system to incoming traffic in order to determine
when the system is performing sub-optimally. If overload is detected, the monitor
can reduce the data rate entering the system by directly controlling data source(s)
in the system.

The advantage of this approach is that it is relatively simple to retrofit to an
existing system, and it is more accurately able to detect the occurrence of overload

1This ignores the issue of how overload is detected within an individual stage.

39

5 Rate Selection

than simple resource monitoring schemes.

5.2 Traffic monitoring

The goal of the rate selection algorithm is to determine the maximum throughput
of the system at runtime. A rate-limiting mechanism may then be used to limit the
input rate to the maximum throughput of the system.

There are a number of properties which may be useful to monitor in order
to detect overload. Such properties include throughput, latency, request rate vs.
response rate, and other properties depending on the nature of the network traffic
being monitored. Traffic analysis may be performed passively, using traffic already
entering the system, or actively, by injecting additional probe traffic into the system.

Once a given property can be monitored, the rate selection algorithm needs
to know what behaviour is indicative of overload. In the case of throughput, the
characteristic behaviour of an overloaded resource is throughput which decreases
with increased load. In the case of latency, a significant jump in latency typically
occurs as the system becomes overloaded. We expect that other properties will
provide additional behaviours which can be used to detect overload.

Our system uses throughput monitoring to detect overload, rather than the
latency monitoring approach which has been used in some existing systems. The
primary advantage of throughput monitoring is that it has extremely low overheads
when compared to latency monitoring. In order to monitor latency, it is necessary
to track request-response pairs. Such tracking incurs high overheads due to the
detailed analysis of traffic passing through the system which must occur.

A worst case scenario of such latency monitoring would be tracking the re-
sponse time of a HTTP/1.1 compliant web server. In this case, a complete im-
plementation would require full TCP stream reconstruction in order to search for
individual requests and responses within the stream. For a simpler protocol such as
HTTP/1.0, which performs only a single request per TCP connection still requires
decoding the IP and TCP headers, maintaining the state of all active TCP connec-
tions, and measuring the time between TCP connection establishment (SYN) and
connection close (FIN) packets.

In contrast to latency measurement, throughput monitoring can be accom-
plished cheaply, requiring only a few cycles per packet to increment packet counters,
greatly reducing the amount of state information which must be maintained.

40

5.3 Control approaches

5.3 Control approaches

Throughput monitoring is a control problem which requires finding the input through-
put which produces the maximum output throughput for the system. This is actu-
ally a difficult problem from a control theory perspective, since the behaviour of the
system is not well defined. There are a number of reasons for this:

• The system’s response to load is affected by the particular hardware configura-
tion being used. Adding physical resources will usually increase the maximum
throughput which may be sustained.

• The system’s response is affected by the particular software configuration of
the machine. Changing the application software and services will change the
response of the system. This means the response function will change as a
result of changes to the system configuration by the system administrator.

• The system’s response is affected by the current workload. Different network
requests will produce very different behaviours within the system.

These factors combine to make it infeasible to provide a static definition of the
response of the system to input load, such that offline analysis approaches cannot
be applied in the development of a control approach.

This leaves us with several potential approaches to the problem which do not
require offline analysis:

1. Learn (and relearn) a model of system behaviour at runtime, which may then
be used to calculate the optimal input rate [16].

2. Use a fuzzy-logic approach to emulate a human decision making process [7,22].

3. Develop a domain-specific control approach, taking advantage of properties
specific to this domain.

Since we have useful domain-specific knowledge about the behaviour of our
system which is largely independent of the configuration of the system, we have
focussed on the implementation of a domain-specific control approach. The imple-
mentation and testing of other control approaches is left as future work.

5.4 Rate selection algorithm

Our rate selection algorithm seeks to solve the problem of maximising the output
throughput of a system by controlling the input throughput seen by the system.

41

5 Rate Selection

The previous section described the difficulties associated with solving this problem
for traditional control approaches, and has outlined the need for a domain-specific
control approach to solving this problem.

Fortunately our domain has certain properties which may be used to assist in
the development of a domain-specific control approach. Significantly, Chapter 3 has
already given characterisations of degradable and non-degradable resources which
may be used by a domain-specific control approach. Specifically, we know that the
throughput based characterisations of degradable resources have positive derivatives
when not overloaded, but negative derivatives when overloaded.

5.4.1 Maximum power-point tracking problem

As it turns out, a very similar control problem exists in the power electronics domain.
Maximum power-point trackers (MPPTs) are a special class of DC-DC converters
which are used to interface a photovoltaic array with batteries or other electronics.
The control problem which MPPTs aim to solve is the maximisation of output power
of a photovoltaic array based on the control of array terminal voltage.

Figure 5.1 shows array power as a function of array terminal voltage with
constant insolation and temperature for a simulated photovoltaic array. The most
important features from a control algorithm perspective are that dP

dV
is zero at the

maximum power point, and that power decreases at an increasing rate as the termi-
nal voltage moves away from the maximum power point.

5.4.2 Maximum power-point tracking solution

The perturb and observe (PO) control algorithm [13,9] is used by photovoltaic max-
imum power-point trackers (MPPTs) to match a photovoltaic array to an electrical
load under varying insolation and temperature conditions, in order to maximise the
power output of the photovoltaic array.

In MPPTs, the perturb and observe algorithm operates by perturbing the ar-
ray terminal voltage and observing the corresponding change in array power. If the
perturbation produces an increase in output power, then the direction of pertur-
bation is maintained. If the perturbation results in a decrease in array power, it
is concluded that the perturbation has moved away from the photovoltaic array’s
maximum power point, and the direction of perturbation is reversed. Because the
PO algorithm works by selecting values above and below the maximum, the average
power output is necessarily slightly lower than the theoretical maximum.

42

5.4 Rate selection algorithm

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
rr

ay
 o

ut
pu

t p
ow

er
 (

W
)

Array terminal voltage (V)

Figure 5.1: Example photovoltaic Power vs. Voltage function

43

5 Rate Selection

5.4.3 Application to rate selection

Our control problem shares some similarities to the MPPT problem. Where the
MPPT aims to maximise output power, we aim to maximise output throughput.
Where the MPPT is able to control array terminal voltage, we are able to control
input throughput. Where the maximum power point varies with insolation and
atmospheric conditions, the maximum throughput point varies with the behaviour
of the application and the requests contained in the incoming network traffic. In
both applications, the control algorithm attempts to find the peak output over a
family of related functions whose derivative is positive to the left of the peak, and
whose derivative is negative to the right of the peak.

Our scenario, however, is slightly different to that of the photovoltaic appli-
cation; the response time of our system is longer and may be variable, since there
is considerable buffering of requests and results within a system. This means that
changing the input request rate will not have an immediate effect on the system’s
output.

While the MPPT has complete control of the array terminal voltage, we can
only control the maximum input throughput. Therefore, if the applied throughput
is greater than the maximum throughput being allowed by the rate limiter, the
throughput seen by the operating system is exactly the maximum throughput al-
lowed by the rate limiter. On the other hand, if the applied throughput is lower than
the maximum throughput allowed by the rate limiter we can measure the throughput
seen by the operating system, but we are not controlling it directly.

Fortunately, this situation can be used to our advantage. A drop in input
throughput, whether it is caused intentionally or by as a result of deliberate per-
turbation, can be used to detect a corresponding change in output throughput. In
some situations this allows us to determine that the maximum throughput point has
changed without needing to discard any additional packets.

5.4.4 Algorithm tradeoffs

Changes of workload have the effect of changing the maximum throughput slightly.
The time taken by the perturb and observe approach to adjust to changes in workload
is proportional to the size and frequency of the perturbations. This gives a tradeoff
between speed and accuracy, with larger perturbations being less accurate but more
responsive to changes in input load.

Clearly, the PO approach will respond best to gradual changes in workload
which occur over several seconds, while adjustment to large instantaneous changes
of workload will be slower. Such gradual changes are more likely to occur in In-
ternet services where load is determined by changing user demands, however there

44

5.4 Rate selection algorithm

are probably other scenarios where workloads do change more rapidly, such as in
compute clusters.

45

6 Implementation

A prototype implementation was completed by modifying the FreeBSD operating
system. The modifications consisted of implementation of a rate limiting mechanism
in the device-driver’s packet receive path, and a control thread implementing our
rate selection algorithm.

6.1 Rate limiting

The rate limiting mechanism is implemented using the controlled-dequeue-rate ap-
proach, by fixing the interrupt rate using the interrupt rate control registers on the
network interface, and by modulating the number of packets which may be dequeued
per interrupt.

In our driver this is done in the receive interrupt processing function, which
normally iterates over the receive DMA ring, dequeueing all available packets from
the DMA ring, and enqueueing them for further processing by the network protocol
stack. This function was modified to stop iteration once a pre-determined number
of packets had been dequeued, leaving any remaining packets in place in the DMA
ring.

The number of packets to dequeue is stored in a per-adapter data structure,
which is shared with the rate selection thread. This data structure is also used
to store related statistics such as the number of packets received and transmitted,
and the number of interrupts that have occurred since the last iteration of the rate
selection algorithm.

6.2 Rate selection

The rate selection algorithm runs in a single thread that monitors the behaviour
of the entire system. The control algorithm is invoked at 100Hz using the kernel’s
thread sleep mechanism. At each invocation, the control thread first iterates over
the adapters, locking, accumulating and unlocking the statistics data structure. The
number of packets transmitted since the last iteration of the rate selection algorithm
is then calculated, and used to determine whether the derivative with respect to time
is positive or negative.

47

6 Implementation

The control thread maintains a current direction of perturbation, either in-
creasing or decreasing. If the derivative is positive, the direction of perturbation is
unchanged, while if the derivative is negative the direction is reversed. In the case
that the derivative is zero, the direction of perturbation is set to decreasing.

The number of buffers to dequeue per interrupt is then incremented or decre-
mented based on the newly calculated direction of perturbation. In the event that
this results in exceeding a defined minimum or maximum number of buffers to de-
queue per interrupt the value is capped, and the direction of perturbation is reversed.

Finally, the adapter list is again iterated over, and the number of packets to
dequeue per interrupt is stored in the per-adapter data structure, where it is later
used by the rate-limiting mechanism.

48

7 Experimental Evaluation

In order to evaluate the ability of our admission-control approach to scale to very
high levels of applied load, we have implemented it in the FreeBSD kernel by modi-
fying the Intel Gigabit Ethernet adapter device-driver.

Ideally, we would like our admission control approach to cause the overall
system to scale with admitted traffic rather than the load applied to the system.
Results which show that performance degrades in the absence of the admission
controller, but does not degrade in the presence of the admission controller will
demonstrate the effectiveness of our approach.

Our evaluation will focus on establishing the effectiveness of our approach in
preventing overload, the genericity of the approach to a number of existing proto-
cols, and on measuring the performance impact of admission control under normal
operating conditions. Comparisons will be made between the behaviour of a stan-
dard FreeBSD kernel and a FreeBSD kernel which has been modified by the addition
of edge-limiting admission control in the network interface device driver.

7.1 Kernel configuration

For the purpose of evaluating our system, we will be comparing two different con-
figurations of the FreeBSD kernel, which we refer to as the standard and dynamic
configurations. All benchmarks are run using the same kernel configurations, and no
hand-tuning of the control algorithm has been done for specific applications. This
section will summarise the similarities and differences between these configurations.

The standard configuration has minimal changes when compared to the generic
kernel configuration1. The primary change is that the timer interrupt rate was in-
creased from 100Hz to 1000Hz. This change is recommended by FreeBSD developers
to improve performance of network servers, especially if polling is being used. More
recent FreeBSD kernel revisions have used 1000Hz as a default setting.

The interrupt moderation setting of the Ethernet driver was left at the default
8000 interrupts per second. Reducing this value could be expected to improve peak
performance by decreasing interrupt overheads.

1The generic kernel is the GENERIC kernel and corresponding kernel configuration file distributed

with FreeBSD 5.3-RELEASE.

49

7 Experimental Evaluation

The dynamic configuration implements our proposed solution, and consists
of the standard configuration, with the addition of a controlled-dequeue-rate based
rate-limiting mechanism in the driver, a control thread to determine the appropriate
receive rate based on throughput monitoring, and some statistics collection required
by the control loop. The interrupt moderation settings remain the same as for the
standard configuration.

These configurations have been selected to be a fair and reasonable repre-
sentation of typical server configurations. The standard configuration is a typical
FreeBSD install that might be found on an Internet server. The dynamic configu-
ration is modified only by the addition of device driver modifications to implement
admission control. By keeping our modifications to a bare minimum, a fair evalua-
tion of the performance impact of our admission control approach can be made.

7.2 Hardware description

The FreeBSD machine being tested was based on an Intel Xeon 2.66GHz processor
with hyper-threading disabled, 1GB RAM, and an Intel PRO/1000 Gigabit Ethernet
adapter2 connected via PCI-X. A D-Link DGS-1216T managed Gigabit Ethernet
switch was used, and was configured with pause frames disabled on all ports. This
was done to prevent flow control information from propagating within the network,
which was necessary to ensure that the full range of loads could be applied to the
machine being tested.

7.3 Firewall benchmark

The firewall benchmark is designed to simulate an overloaded network firewall. The
benchmark utilises ipbench3 [31] to generate a prescribed load on the firewall, then
measures the throughput and CPU utilisation at that load.

7.3.1 Firewall configuration

Figure 7.1 shows how our hardware was configured for benchmarking. The config-
uration consists of two VLANs, each containing four hosts connected via a Gigabit
Ethernet switch. The two VLANs are connected via a single FreeBSD machine
acting as router and simple firewall. The hosts on the first VLAN run the ipbench

2Both ports of a dual-port card were used for the firewall benchmark, two ports of a quad-port

card were used for the NFS benchmarks.
3More information on ipbench can be found in Appendix A.

50

7.3 Firewall benchmark

Figure 7.1: Firewall configuration.

distributed network benchmark’s UDP load generator, while the hosts on the second
VLAN run UDP echo servers.

The FreeBSD firewall is configured to use the pf packet filter, with a simple
rule set which checks that all packets have reasonable and valid protocol headers,
and that the source and destination addresses are valid before forwarding. The
specific rule-set used is shown in Figure 7.2.

The ipbench distributed benchmark was run on the hosts in VLAN0. These
hosts generate 512-byte UDP packets at a specified data rate, which we refer to as
the applied load. The UDP packets traverse the switch and firewall, to the hosts on
VLAN1, which are running UDP echo servers. The UDP echo servers simply send
an identical copy of the UDP payload back to the ipbench host, which again must
travel via the switch and firewall. The ipbench host then records the rate of echo
replies, which we refer to as the achieved throughput.

We note that packets must traverse the firewall twice before they are measured
as achieved throughput. It is also worth noting that the firewall’s input packet rate
on VLAN0 will be higher than the firewall’s input packet rate on VLAN1 when the
firewall is overloaded. This is because some packets from VLAN0 will be dropped
before they are seen by VLAN1. Therefore, those packets which are dropped before
reaching VLAN1 will never be echoed, and hence cannot generate additional load
on the firewall. This advantages the standard configuartion, since as it becomes
overloaded and drops more packets, it receives a reduced load from VLAN1.

51

7 Experimental Evaluation

#normalize incoming packets

scrub in all

#block everything by default

block all

#pass all on loopback and management port

pass on {lo0 fxp0} all

#only allow 192.168.0.0/24 on em0’s network

pass in on em0 from 192.168.0.0/24 to any

pass out on em0 from any to 192.168.0.0/24

#only allow 192.168.1.0/24 on em1’s network

pass in on em1 from 192.168.1.0/24 to any

pass out on em1 from any to 192.168.1.0/24

Figure 7.2: Firewall rule-set

7.3.2 Firewall measurements

This section will discuss measurements taken to evaluate our implementation. We
begin by establishing a performance baseline for the standard configuration, by
comparing applied load with achieved throughput. We then compare our dynamic
configuration to the standard configuration on the basis of achieved throughput,
CPU utilisation and cycles per delivered packet, under a variety of applied loads.

Figure 7.3 shows achieved throughput as a function of applied load in the
firewall benchmark, for both the standard and dynamic configurations. The standard
line establishes the baseline throughput of the firewall benchmark. The results for
the standard configuration show that the system does indeed exhibit significant
performance degradation under overload.

The dynamic line in Figure 7.3 shows the effect of introducing our rate-limiting
to the system. The dynamic line shows that limiting the receive rate by controlling
the number of packets dequeued per interrupt causes the receive DMA ring to behave
as a non-degradable resource, preventing performance degradation under overload.

Our approach achieves 97.3% of the ideal result of matching the peak through-
put of the standard configuration, while avoiding the effects of performance degra-
dation under overload. The slight decrease in peak throughput when compared with
the standard configuration can be attributed to our rate selection algorithm needing
to occasionally select throughputs above and below the maximum rate achieved by
the standard configuration in order to detect overload.

We measure CPU utilisation by counting the percentage of cycles spent in a

52

7.3 Firewall benchmark

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200

A
ch

ie
ve

d
th

ro
ug

hp
ut

 (
k

pa
ck

et
s/

s)

Applied load (k packets/s)

standard
dynamic

Figure 7.3: Firewall: achieved throughput vs. applied load

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 U

til
is

at
io

n
(%

)

Applied load (k packets/s)

standard
dynamic

Figure 7.4: Firewall: CPU utilisation vs. applied load

53

7 Experimental Evaluation

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60 80 100 120 140 160 180 200

C
yc

le
s

pe
r

de
liv

er
ed

 p
ac

ke
t

Applied load (k packets/s)

standard
dynamic

Figure 7.5: Firewall: Cycles per delivered packet vs. applied load

low-priority user process. This lets us accurately determine the number of cycles
left for other user processes for a given load. In Figure 7.4, we see that the dy-
namic configuration incurs slight (on average 2.1% additional CPU time) overheads
when compared to the standard configuration, however once overload is reached,
the dynamic configuration does not increase its CPU utilisation with applied load,
showing that our rate-limiting mechanism is effective in preventing the system from
exposure to excessive network loads.

Once the system becomes overloaded, the standard configuration begins wast-
ing cycles on packets which are later discarded. This can be seen in Figure 7.5, where
cycles per delivered packet increases considerably with applied load. Meanwhile the
dynamic configuration maintains consistent overheads even when overloaded, since
it does not waste resources handling packets which are not processed to completion.

Figure 7.6 shows the effect of overload on latency. The admission control
implementation used in this case was controlled-dequeue-rate, as described in Sec-
tion 4.1.3. As predicted, this rate limiting approach causes additional latency due
to packets waiting in the DMA ring to be processed.

The measurements shown in Figure 7.6 are for packets which are traversing
the firewall twice. For those two traversals the additional latency is around 3.25ms.
This is in line with the 2.85ms additional latency predicted by Equation 4.2, since
the return path’s rate data-rate is close to the rate limit, such that additional latency

54

7.4 NFS benchmark

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120 140 160 180 200

La
te

nc
y

(u
s)

Applied load (k packets/s)

standard
dynamic

Figure 7.6: Firewall: Round-trip latency vs. applied load

is not incurred by rate-limiting on the return path.

It is worth noting that latency only increases under overload, where the dy-
namic configuration is returning more traffic than the standard configuration. The
infinite latency of unreturned packets is omitted.

7.4 NFS benchmark

The NFS benchmark is designed to test the behaviour of an NFS server under
overload. We utilise ipbench to generate very high NFS request rates, and monitor
the corresponding response rate.

7.4.1 NFS configuration

The NFS benchmark configuration consists of nine load generators running ipbench,
a Gigabit Ethernet switch, and a FreeBSD NFS server, as shown in Figure 7.7. The
load generators are connected to the Gigabit Ethernet switch, which is in turn
connected to the NFS server via two Gigabit Ethernet links, which are trunked
using FreeBSD’s Fast EtherChannel (FEC) netgraph module.

It is important to note that rate-limiting is performed in the network driver,
which is not aware of the existence of FEC. We could have instead configured the

55

7 Experimental Evaluation

Figure 7.7: NFS configuration

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

R
ep

ly
 R

at
e

(k
 r

eq
/s

)

Request Rate (k req/s)

nfs_standard
nfs_dynamic

Figure 7.8: NFS: replies vs. requests

56

7.4 NFS benchmark

NFS server with multiple independent Internet addresses, however we chose to use
port trunking because it allowed us to generate loads exceeding one Gigabit-per-
second while maintaining a simple benchmark configuration.

The NFS server is configured to serve data from an MFS RAM-backed filesys-
tem. This configuration was chosen primarily because we did not have access to a
high-performance RAID array for benchmarking purposes.

Load was generated using ipbench, which was configured to generate read
and write requests with equal probability. Individual request sizes were randomly
selected between 16 and 1024 bytes. All NFS operations were performed on a single
400 megabyte file.

7.4.2 NFS measurements

The results of the NFS benchmark are shown in Figure 7.8. We see that the results of
the NFS benchmark have similar characteristics to the results of the firewall bench-
mark. For both the standard and dynamic configurations, response rate matches
the request rate for request rates which are less than the maximum capacity of the
system (in this case, seventy thousand requests per second). Once the system be-
comes overloaded, the standard configuration experiences gradual and continuous
performance degradation as the applied load increases.

The rate of performance degradation of the standard configuration is consid-
erably less than that seen in the firewall benchmark. This tells us that the kernel
is doing less work on incoming requests before discarding them than is the case for
the firewall benchmark. While the rate of performance degradation has improved,
it is clear that performance degradation under overload is significant. Changing the
amount of work done by enabling additional packet processing features (such as a
packet filter) would increase the rate of degradation observed.

We observe that the dynamic configuration still displays a small amount of
performance degradation under overload. Because all measurements are performed
by ipbench, results indicate the behaviour of the entire benchmark configuration.
Therefore the observed decrease may be the result of packet loss which occurs ex-
ternally to the NFS server.

Table 7.1 shows a breakdown of the fields in an NFS request generated by
the benchmark. The average size of the randomly generated requests is 370 bytes.
Assuming Gigabit Ethernet can carry 1 × 109 bits per second, or 1.25 × 108 bytes
per second, this gives an upper bound of 1.25× 108/370 = 337837 NFS requests per
second per Ethernet link for our workload.

Moreover, the FEC trunking being used to bond the two Ethernet channels
uses source and destination MAC addresses to determine which channel a given

57

7 Experimental Evaluation

Component Read Size Write Size

Ethernet header 14B 14B
IP header 20B 20B
UDP header 8B 8B
RPC header (approx) 32B 32B
NFS header (approx) 32B 32B
Expected payload size 0B 520B
Ethernet CRC 4B 4B

Total 110B 630B

Average 370B

Table 7.1: Total size and breakdown of NFS request fields.

packet should traverse. Given that we have an odd number of load generators, one
of our two Ethernet links must become saturated before the other.

The observation that we are operating near the saturation point of Ethernet
is important in understanding these results, since under these conditions, we expect
very high contention and hence packet loss within the switch. This is certainly the
case for request traffic, since it is generated by multiple unsynchronised senders.

7.4.3 Pause frames

Pause frames are a special type of Ethernet frame which tells the receiver to stop
sending packets for a small period of time, so that the sender of the pause frame
may have adequate time to process incoming packets.

Pause frames can have a significant impact on the behaviour of benchmarks
which are aimed at measuring system behaviour under overload. Unfortunately, it is
difficult to make generalisations about behaviour of Ethernet networks when pause
frames are enabled.

Pause frame support is not required by IEEE 802.3x for standards compliance,
so many implementations lack the ability to generate or receive pause frames. Ven-
dor support for IEEE 802.3x pause frames varies between different manufacturers
and models of switches [6]. Systems may ignore pause frames entirely, generate pause
frames only when incapable of processing incoming packets at link speed, not gen-
erate pause frames at all but comply with pause frames by suspending transmission
temporarily if requested, or provide complete support for pause frames.

Pause frames were originally intended to prevent packet loss on high speed
Ethernet links where the receiver is unable to keep up with the sender. It is intended
as a single-link solution, rather than an end-to-end flow control solution. That is, it

58

7.4 NFS benchmark

is only intended to operate between devices connected directly via Ethernet cable,
such as a host and a switch, rather than between hosts on a switched network.

If pause frames are propagated within the switch, “External Head of Line
Blocking” can occur. This is caused by pause frames preventing the receiver from
transmitting any traffic, not just from transmitting traffic to the blocking port.
Doing so can degrade performance of an entire LAN when only a single port is
actually overloaded. These issues have been addressed by researchers [21], however
alternatives to pause frames have not yet appeared in the ethernet standards, and
are therefore not supported by commodity hardware.

Our relatively low-end switch does generate pause frames when it experiences
internal congestion on a given port. This has the effect of propagating the flow
control afforded by pause frames through the switch once the switch runs out of
transmit buffers for the port connected to the overloaded host.

Because the standard configuration dequeues packets as quickly as they arrive,
the network interface rarely sends pause frames to the switch, so that there is no
limit to how much load can be placed on the interface. By enabling pause frames,
this switch allows us to limit the amount of traffic which can be sent by the load
generation hosts in our benchmark.

Because our rate-limiting approach allows the incoming DMA ring to fill, the
network interface generates pause frames which effectively limit the data rate which
may be applied to the system. This flow control information is propagated through
the switch to the load generation hosts, preventing them from generating additional
load.

It should be noted that while pause frames reduce packet loss on individual
Ethernet links, they do not provide any guarantees of lossless transmission within
an Ethernet network, especially in the case of multiple hosts transmitting to a single
switch port.

Figure 7.9 shows the effects of enabling Ethernet pause frames on the NFS
benchmark. Once the dynamic configuration begins rate-limiting its input, pause
frames are generated by the network interface, causing queues within the switch to
fill, and the switch to generate pause frames on the load-generating switch ports.
Eventually, ipbench is no longer able to generate increasing loads, as the network
interfaces themselves cannot transmit the packets generated by ipbench fast enough.

While in this particular example pause frames were able to prevent excessive
load from being generated, this result would not occur in LANs using switches which
did not propagate pause frames, or on the wider Internet. On the other hand, there
may be some cases where if carefully used, pause frames can be used to move packet
admission further upstream of the overloaded host within a network; for example by
moving packet admission to a front-end load balancer in a server cluster.

59

7 Experimental Evaluation

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

R
ep

ly
 R

at
e

(k
 r

eq
/s

)

Request Rate (k req/s)

dynamic

Figure 7.9: Effect of pause frames on load generation

7.5 HTTP performance

Although the admission control mechanism is intended to control non-responsive
network loads, it is useful to know how the system behaves in the case of a web server.
In particular it is interesting to see whether useful admission control can be achieved
for TCP-stream based protocols which have significant inter-packet dependencies.

It is important to note that this is a completely different problem to an over-
loaded router or firewall which is carrying HTTP traffic, and hence the results pre-
sented in this section are not useful in understanding the router case.

7.5.1 HTTP benchmark configuration

In this section we consider HTTP performance for four system configurations, based
on two independent variables. The first variable is the web server, for which we have
tested both Apache and THTTP. The second variable is the kernel, for which we
have used a FreeBSD kernel with and without our admission control mechanism.

The primary difference between these web server applications is in their con-
nection handling architecture. Apache uses a large number of threads to handle the
applied workload, while THTTP uses a single-threaded event-driven model. This
difference in web server architecture gives THTTP a large performance advantage

60

7.5 HTTP performance

when serving static content.

We perform our tests for two different workloads. The first workload consists
of transferring small files which fit within a single Ethernet packet. The second
workload transfers a 1MB file, increasing the number of packets per request and the
impact of TCP flow control.

In both kernels, the maximum interrupt rate generated by the network inter-
face has been reduced from 8000 to 1000 interrupts per second, by changing the
network interface’s interrupt-moderation registers. This was done to allow the ad-
mission control mechanism to work more effectively at low throughputs, since the
minimum granularity of admission control in the implementation tested is one packet
per interrupt. In some of the following benchmarks we will see that the incoming
data rate is still too low for NIC based rate limiting to be useful.

7.5.2 Realistic expectations

In the vast majority of HTTP benchmarks, the standard system configuration does
not exhibit significant degradation under overload. In these cases, there is little
hope of admission control itself providing any benefit. Rather than seeking a per-
formance improvement, in these cases we are primarily interested in minimising the
performance impact of admission control.

7.5.3 Large-file workload

Figures 7.10 and 7.11 show the behaviour of a system with a single Gigabit Ethernet
NIC running apache and serving a 1MB file. In Figure 7.10, the horizontal axis
shows HTTPerf’s attempted connection rate, while the vertical axis shows the rate
at which successful HTTP transactions occur. In Figure 7.11, the horizontal axis
shows the HTTP request rate and the vertical axis shows the HTTP response rate.

Figures 7.10 and 7.11 show little performance difference between the standard
and dynamic configurations. In this benchmark the network interface’s transmit
bandwidth becomes saturated, limiting the maximum transmit rate that can be
achieved.

Figures 7.12 and 7.13 show the behaviour of the same benchmarks when us-
ing the THTTP web server instead of apache. In this case, THTTP’s event-driven
model results in the system continuing to accept additional connections when the
network interface has reached peak transmit throughput. This behaviour causes
the standard configuration to exhibit degraded throughput once the peak trans-
mit throughput has been reached. The dynamic configuration successfully limits
performance degradation in this scenario.

61

7 Experimental Evaluation

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

apache_standard_large requests
apache_standard_large replies

apache_dynamic_large requests
apache_dynamic_large replies

Figure 7.10: Apache Large-file HTTP load

Figure 7.14 shows the response times of all configurations. The response times
of the standard and dynamic systems are very similar for both the Apache and
THTTP servers. It is interesting to note that Apache’s behaviour of rejecting addi-
tional connections once the maximum transmit throughput has been reached causes
a significant increase in response time, since connections must wait for a free server
thread before being served.

7.5.4 Small file workload

Figures 7.15–7.19 utilise the same benchmark configurations as the large-file work-
load shown in Figures 7.10–7.14, with the exception that a 93-byte HTML document
is used.

Changing from the large-file to small-file workload has a significant impact
on the behaviour of the network protocol. Firstly, it means TCP connections are
very short-lived, since the HTTP request and response may each be contained in a
single packet. This means that the protocol overheads are higher, and that TCP
flow control is less likely to impact the behaviour of the system. It also shifts
the performance bottle-neck to connection establishment rather than outright data-
transfer rate.

Comparing Figures 7.15 and 7.17, we see that Apache’s performance is much

62

7.5 HTTP performance

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 20 40 60 80 100 120 140

R
es

po
ns

es
 /

S
ec

on
d

Requests / Second

apache_standard_large replies
apache_dynamic_large replies

Figure 7.11: Apache Large-file HTTP throughput

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

thttp_standard_large requests
thttp_standard_large replies

thttp_dynamic_large requests
thttp_dynamic_large replies

Figure 7.12: THTTP Large-file HTTP load

63

7 Experimental Evaluation

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 20 40 60 80 100 120 140

R
es

po
ns

es
 /

S
ec

on
d

Requests / Second

thttp_standard_large replies
thttp_dynamic_large replies

Figure 7.13: THTTP Large-file HTTP throughput

 0

 500

 1000

 1500

 2000

 50 100 150 200 250

R
es

po
ns

e
tim

e
(m

s)

Connections / Second

apache_standard_large response time
apache_dynamic_large response time

thttp_standard_large response time
thttp_dynamic_large response time

Figure 7.14: Large-file HTTP response time

64

7.5 HTTP performance

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

apache_standard_small requests
apache_standard_small replies

apache_dynamic_small requests
apache_dynamic_small replies

Figure 7.15: Apache Small-file HTTP load

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
es

po
ns

es
 /

S
ec

on
d

Requests / Second

apache_standard_small replies
apache_dynamic_small replies

Figure 7.16: Apache Small-file HTTP throughput

65

7 Experimental Evaluation

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

thttp_standard_small requests
thttp_standard_small replies

thttp_dynamic_small requests
thttp_dynamic_small replies

Figure 7.17: THTTP Small-file HTTP load

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
es

po
ns

es
 /

S
ec

on
d

Requests / Second

thttp_standard_small replies
thttp_dynamic_small replies

Figure 7.18: Small-file HTTP throughput

66

7.5 HTTP performance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2000 4000 6000 8000 10000 12000 14000 16000

R
es

po
ns

e
tim

e
(m

s)

Connections / Second

apache_standard_small response time
apache_dynamic_small response time

thttp_standard_small response time
thttp_dynamic_small response time

Figure 7.19: Small-file HTTP response time

worse than THTTP’s. This is caused by a significant difference in the per-connection
overheads of Apache’s multi-threaded design when compared to THTTP’s event
driven design.

In Figure 7.15, the dynamic algorithm produces undesirable results with signif-
icant variation in achieved throughput once overload is reached, while in Figure 7.17,
the dynamic algorithm achieves consistent throughput under overload. This differ-
ence occurs due to the extremely low peak throughput which is achieved by Apache
for the small-file workload. Since in this benchmark we have fixed the maximum in-
terrupt rate at 1000 interrupts per second, varying the number of entries in the DMA
ring by one gives a change of 1000 packets per second. This granularity means the
control algorithm must choose between allowing either too many packets-per-second
or too few. A partial solution to this problem is discussed in Section 7.5.5.

The response times for the small-file workload are shown in Figure 7.19. In
this case the dynamic approach does have a significant increase in response-time.
This was predicted in Figure 4.2, where latency increases significantly for very low
packet rates.

The amount of latency added would be different for other rate-limiting mech-
anisms, however the small added response-time delay (up to 100ms) is insignificant
when compared to other factors influencing a user’s perception of web-site perfor-
mance [12].

67

7 Experimental Evaluation

7.5.5 Effect of control algorithm frequency

As mentioned in the previous section, at low rate-limits small changes to the number
of packets received per interrupt have a significant impact on the number of packets
admitted to the system. This problem can be alleviated by decreasing the interrupt
frequency, however a side effect of decreasing interrupt frequency is that the average
time a packet spends waiting in the DMA ring is increased.

An alternative solution to decreasing interrupt frequency is to rapidly switch
between rate-limits that are close to the optimal rate-limit. Figure 7.20 shows the
effect of increasing the frequency of the perturb and observe algorithm on the ability
to track the maximum throughput point in the face of inadequate rate-limit granu-
larity. As the control frequency increases from 10Hz to 100Hz, the average admitted
throughput approaches that of the correct rate-limit for this workload. In effect
the perturb and observe algorithm is being used to approximate the correct input
throughput by rapidly switching between rate-limits which are above and below the
ideal limit.

7.6 Results for alternative hardware

In order to demonstrate that our admission control approach can be generalised to
other hardware, we have implemented our approach on a much slower machine, based
on a 550MHz Intel Pentium-III processor and a National Semiconductor DP83820
based Ethernet interface connected via a 32-bit, 33MHz PCI bus.

The implementation in this case consists of modifications to the nge network
interface device driver. In this case we have implemented a hybrid control approach,
using a controlled-free-rate admission controller (Section 4.1.4) while simultaneously
controlling the interrupt rate in order to minimise interrupt overheads under over-
load. This control approach was selected primarily because it was easy to implement
using the DP83820 hardware-level interface — its DMA rings separate driver and
hardware state, and it supports an easily programmable interrupt delay timer. In
comparison, the standard FreeBSD device driver uses 100µS interrupt holdoff delay
with a fixed number of DMA ring entries.

This particular benchmark uses UDP packet echo from user-level, and is some-
what simpler than the NFS and routing benchmarks presented earlier. Load is gen-
erated against a user-level UDP packet echo server. The echo server simply switches
the sender and receiver addresses of the packet, then retransmits.

Figure 7.21 shows achieved throughput versus applied load for 1024 byte UDP
payloads. The ‘100µS’ line shows that without admission control, throughput
rapidly declines under overload, while the ‘variable’ line shows that with admis-

68

7.6 Results for alternative hardware

 500

 1000

 1500

 2000

 2500

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

10hz requests 10hz replies

 500

 1000

 1500

 2000

 2500

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

20hz requests 20hz replies

 500

 1000

 1500

 2000

 2500

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

30hz requests 30hz replies

 500

 1000

 1500

 2000

 2500

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

40hz requests 40hz replies

 500

 1000

 1500

 2000

 2500

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

50hz requests 50hz replies

 500

 1000

 1500

 2000

 2500

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

60hz requests 60hz replies

 500

 1000

 1500

 2000

 2500

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

70hz requests 70hz replies

 500

 1000

 1500

 2000

 2500

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

80hz requests 80hz replies

 500

 1000

 1500

 2000

 2500

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

90hz requests 90hz replies

 500

 1000

 1500

 2000

 2500

 2000 4000 6000 8000 10000 12000 14000

T
ra

ns
ac

tio
ns

 /
S

ec
on

d

Connections / Second

100hz requests 100hz replies

Figure 7.20: Small-file HTTP benchmark using apache with varying control algo-
rithm frequencies. 69

7 Experimental Evaluation

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120

A
ch

ie
ve

d
th

ro
ug

hp
ut

 (
k

pa
ck

et
s/

s)

Applied load (k packets/s)

100us
variable

Figure 7.21: UDP echo: achieved throughput vs. applied load

sion control in place, throughput under overload remains constant. Moreover, due
to the reduction of interrupts by our hybrid control scheme, we also see increased
peak throughput compared to the standard case.

Figures 7.22 and 7.23 show the CPU utilisation and cycles-per-delivered-packet
for a range of applied loads. Below eight thousand packets per second, both the mod-
ified and unmodified systems are operating below their maximum loss free receive
rates. In this region the systems are not overloaded, and the cycles per deliv-
ered packet is reduced with applied load. The modified system continues this trend
through to around eleven thousand packets per second, as the hybrid control scheme
is able to reduce interrupt overheads by controlling the interrupt frequency.

The unmodified system then experiences a gradual increase in CPU utilisation
as applied load is increased from ten thousand to seventy thousand packets per
second, at which point the CPU becomes completely saturated, and no further
increase is possible. This behaviour is reflected in the Figure 7.23 as a rapid increase
in cycles per delivered packet, as during this period the rate of successful packet
return also decreases.

The modified system, on the other hand, does not see any increase in CPU
utilisation or cycles-per-delivered-packet once the admission controller has come into
effect at around eleven thousand packets per second.

Interestingly, the behaviour of the unmodified system becomes constant (albeit

70

7.6 Results for alternative hardware

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

C
P

U
 U

til
is

at
io

n
(%

)

Applied load (k packets/s)

100us
variable

Figure 7.22: UDP echo: CPU utilisation vs. applied load

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100 120

C
yc

le
s

pe
r

de
liv

er
ed

 p
ac

ke
t

Applied load (k packets/s)

100us
variable

Figure 7.23: UDP echo: cycles per delivered packet

71

7 Experimental Evaluation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120

La
te

nc
y

(u
s)

Applied load (k packets/s)

100us
variable

Figure 7.24: UDP echo: average round-trip latency

poor) once the CPU has become fully saturated, at a much higher applied load
than is required to overload the system. By contrast, the modified system provides
consistent performance under overload regardless of the additional load applied to
the system.

Figure 7.24 shows the round-trip latency versus applied load for the UDP echo
benchmark. We see that the unmodified system sees a large jump in latency when
overloaded, followed by a fairly linear increase in latency until the point at which
the CPU utilisation reaches 100%.

Like the unmodified system, the modified system also sees a significant jump
in latency at applied loads which are high enough to cause overload. The reason for
this is that the control algorithm used was aiming to maximise throughput rather
than bound latency, and peak throughput is achieved by keeping the system slightly
overloaded, without allowing it to see enough load to degrade throughput. This
slight overload is enough to keep queues within the system saturated, but has the
negative effect of causing increased latency.

It bears mentioning that the increased latency is not due to the admission
controller itself, but by the behaviour of the rest of the system when operating at
peak throughput. This is reflected in the equivalent jump in latency shown by the
unmodified system.

72

7.7 Summary of results

7.7 Summary of results

7.7.1 Behaviour under normal operating conditions

A desirable feature of our admission control approach is that it has minimal perfor-
mance impact under normal operating conditions. If this were not the case it would
have been necessary to enable admission control only under high loads, however
because our results indicate that performance is minimally effected under normal
operating conditions, this is unnecessary.

7.7.2 Behaviour under overload

Our results show that in the majority of cases the dynamic configuration performs
as expected; it prevents performance degradation under overload, and is able to
sustain peak performance even under heavy overload. It does this without needing to
know the specific cause of performance degradation within the system, and without
requiring any application-specific tuning.

The small-file HTTP benchmarks did highlight some shortcomings of the pro-
posed mechanisms when dealing with situations where the system becomes over-
loaded at very low packet rates. In these situations it seems clear that higher-level
admission control approaches are more appropriate, since the increased cost of ad-
mission control for such low input data rates would be acceptable.

73

8 Conclusions

8.1 Summary

Chapter 2 compared the behaviour of a number of existing systems on the basis
of the algorithmic cost of admission control within the system, the potential
for performance degradation, the granularity of admission control, the feedback
mechanism used, and the impact of the admission control scheme on overall
system structure.

Of particular importance in Chapter 2 was the observation that many existing
admission control approaches have an algorithmic cost which increases with the
load applied to the system. In such systems it is reasonable to expect some perfor-
mance degradation under overload, since the admission controller itself consumes
additional resources under overload, reducing resource availability for processing
incoming requests.

Chapter 3 provided a model of system behaviour under overload. The behaviour of
individual components of a system under overload was addressed, then used to
model the behaviour of a system comprised of connected resources.

The model was then used to argue that a rate-limiting resource placed at the be-
ginning of a data path may be used to provide peak throughput for that data path.
This conclusion is important because it demonstrates that admission controllers
placed at the beginning of a data path (and which scale with traffic admitted to
the system) are adequate to prevent performance degradation under overload.

Chapter 4 proposed a number of rate-limiting mechanisms that used the network
interface itself to perform admission control. These rate-limiting mechanisms
were designed to be implemented in the driver, and to be applicable to modern
commodity network interface hardware.

Chapter 5 introduced the idea of monitoring the response of the system to changes
in input throughput as a means of detecting that a system had become over-
loaded. The problem of using throughput monitoring to control input throughput
was compared with a similar problem encountered in the design of photovoltaic
maximum power point trackers (MPPTs), and solutions to that problem were

75

8 Conclusions

evaluated as possible solutions in this case. An algorithm similar to the perturb-
and-observe MPPT control algorithm was shown to satisfy the requirements of
throughput control.

Chapter 7 evaluated the behaviour of the proposed NIC-based rate limiting and
throughput-based rate selection for workloads varying from simple UDP echo
through to HTTP workloads. The performance impact of the approach was
examined in detail, with both positive and negative results shown.

8.2 Further work

8.2.1 Hardware packet demux

In order to provide overload elimination for a system consisting of a large number
of data paths, it is necessary to provide separate rate control for individual data
paths. In order to do this, it is necessary to utilise hardware which has the ability
to demultiplex incoming packets into multiple queues, such that rate limiting may
be applied to a queue without impacting the throughput of other queues.

Hardware packet demultiplexing has already been developed for some pro-
grammable network interfaces, and a vast amount of work on packet classification
and packet filtering has been published. The issue is simply that such functionality
has not been available in commodity network interface cards. Such functionality is
beginning to become available in high-end network interfaces, since it is becoming
necessary to support demultiplexing packets to per-processor-core DMA rings as the
number of processor cores per system increases.

8.2.2 Control approaches

While the benchmark results show that a perturb-and-observe approach is feasible in
detecting overload for a range of network protocols, it is also clear that there is room
for improvement. Much of the disadvantage of the perturb-and-observe approach
stems from the fact that in order to detect the maximum throughput of the system,
it is necessary to discard some packets which might otherwise be processed.

This situation could be improved by using traffic injection to measure the effect
of an increased load, rather than rate limiting to measure the effect of a reduced
load. This approach is more complicated, as it requires generation and injection of
valid packets, however it has the advantage of never causing packet loss when the
system is not overloaded.

Another approach would be to discard the perturb-and-observe approach com-
pletely, and instead attempt to learn and periodically update a model of system

76

8.3 Contributions

behaviour at run-time. Once such a model had been learned, a rate-limit which pro-
duced optimal performance for the model could be selected. This system would have
the advantage that if an accurate model had been learned, the rate limit selected
would not cause unnecessary packet loss.

The model-learning approach is not without significant challenges; the model
of behaviour would need to take into account the present workload of the machine, or
the model would need to be adjusted whenever the workload changed. This results
in either a very complicated model, or a very frequently changing model. This means
that in practice, such a system may not provide better performance than the simpler
perturb-and-observe approach.

8.2.3 Integration with other admission control approaches

A common approach to admission control seen in existing systems is to take a
layered approach, wherein multiple admission control schemes are used at different
points within the system [29, 30]. By adding edge limiting as the lowest layer of
admission control within these approaches, it may be possible to achieve the best
of both worlds; admission control which scales with admitted load, and admission
control which chooses what to admit intelligently. Such an approach could bound
the resource consumption of the software-level admission controller using the edge-
limiting approach.

8.3 Contributions

i) The cost of admission control in existing systems was examined. Focus was
given to the relationship between the location of the admission controller
within the system, and the overall scalability of that system under overload.

ii) A model of system behaviour under overload was provided, and that model
was used to demonstrate that providing rate limiting at the edge of the system
is adequate to prevent overload from occurring.

iii) Bounded-cost admission-control mechanisms which may be implemented on
commodity hardware were introduced. The mechanisms are able to scale to
any level of applied load.

iv) A new approach to detecting overload based on measuring system throughput
was described. The new approach has much lower implementation and run-
time costs than existing approaches to overload detection.

v) An experimental evaluation of our approach was provided, which demonstrated
the feasibility of implementing bounded-cost admission control on commodity

77

8 Conclusions

hardware. The difficulties and tradeoffs encountered in this approach were
also discussed.

8.4 Real world applications

The approach presented in this thesis, and especially the mechanisms for performing
rate-limiting at the edge of the system, are highly applicable to current systems.
Edge limiting is particularly suited to applications such as DNS servers and host-
based routers, firewalls and load balancers for which traditional tail-drop semantics
provide good results.

Because of the ease of implementation of the edge-limiting approach, there
are few barriers to its implementation in existing operating systems. A practical
approach would be to allow the system administrator to enable or disable edge
limiting depending on the purpose and expected workload of the machine.

8.5 Closing remarks

In a perfect world, admission control would be unnecessary, since networks would
support end-to-end flow control, and resource constraints would never come into
play. To that end, all admission control can be viewed as an exercise in making the
best out of a bad situation.

At times this dissertation has suggested approaches which appear counter-
intuitive. To an idealist, the concept of detecting overload by selecting the wrong
rate limit seems undesirable, and the idea that that network packets should be
discarded indiscriminately appears strange. Yet by revelling in such pragmatism,
we have arrived at an approach which is elegant in its simplicity, and demonstrably
successful in eliminating performance degradation under overload.

78

A Measuring Overload

Measuring the behaviour of systems under overload is a particularly difficult task,
because of the high loads that are often required. In order to generate such loads
accurately and consistently, it is necessary to use a large number of load generators.
Measuring overload therefore requires solutions to distributed system issues such as
measurement synchronisation.

This appendix describes the experimental tools developed to perform the anal-
ysis of system behaviour under overload found in this thesis.

A.1 Distribution

The first problem encountered when trying to measure behaviour under overload is
generating enough load to saturate the device or network being tested. Typically,
the capacity of the device or network being tested is greater than the load that
can be generated by a single host, necessitating the use of multiple hosts for load
generation.

As a load generating host approaches saturation, it is normal for that host
to experience increased latency and jitter effects, which can adversely impact per-
formance measurements. It is therefore desirable to use more than the minimum
number of load generating hosts required to generate a given load, in order to min-
imise the impact of the performance of the load generating hosts on the measured
results.

The use of multiple hosts for load generation introduces a number of problems
which are not seen in non-distributed benchmarks, and must be solved in order to
obtain reliable and repeatable results. These problems include synchronisation of
load generators, aggregation of results and increased sensitivity to network configu-
ration.

A.1.1 Measurement synchronisation

Synchronisation of measurements is an issue which must be tackled in any distributed
benchmark. If results from multiple hosts are to be aggregated, all hosts must run
the test concurrently. There are two approaches to this problem; one is to ensure that

79

A Measuring Overload

Measurement Period

CooldownValid Samples

Time

H
os

t

Warmup

Load Generation Period

Figure A.1: Synchronisation error mitigation for multiple hosts.

all tests start simultaneously, the other is to mitigate the effect of non-simultaneous
startup.

The startup delay between hosts is minimised by using a protocol where all
hosts notify the benchmark controller that they are ready to start before the bench-
mark controller issues a start message to the load generating hosts.

The effects of non-simultaneous execution can also be minimised by elimi-
nating measurements taken when not all load generators are executing. In prac-
tice we achieve this by discarding measurements taken during the warmup and
cooldown periods. Figure A.1 shows how this approach can reduce the impact of
non-simultaneous startup. All measurements occur while all hosts are generating
load, however the results from each host are not guaranteed to have been measured
at the same time. Therefore, this approach is only viable if load generation by all
hosts occurs at a consistent rate.

The effects of non-simultaneous startup can also be minimised by taking mea-
surements over a longer time period. This increases the degree of measurement
concurrency between the hosts. When the measurement time is much greater than
the synchronisation error, the number of non-concurrent samples becomes insignifi-
cant.

A.1.2 Result aggregation

There are limitations to what can be achieved when combining measurements taken
by multiple hosts. Time-stamps from the same host are correct relative to each other,
however because of the synchronisation problem, time-stamps taken by different
hosts can only be compared with limited accuracy. The limit of that accuracy is the

80

A.2 Measurement

maximum synchronisation error.

Many useful measurements do not depend on the accurate synchronisation
of results. Such measurements include statistical latency information, such as mini-
mum, maximum, median, average and standard deviation of latency, average applied
load and average achieved throughput.

Because of the synchronisation limits, the way we handle benchmark data is to
simply have each host return a set of untimestamped latency measurements, which
we combine into a single large dataset. It is not possible to make any conclusions
about the correlation of individual samples from that dataset.

A.1.3 Network effects

When link throughputs are approaching saturation, switch configuration can have
a large effect on the reliability of results. In particular, we have found that when
pause frames are enabled, some switches will assign unequal priorities to individual
load generators, such that it is difficult to get consistent load generation from a large
number of machines.

One of the challenges of network benchmarking is that measurements reflect
not only the performance of the host being tested, but also the network which it
is connected to. This can make it very difficult to distinguish between poor switch
performance and poor host performance. Without additional network analysis hard-
ware it is impossible to separate the two components.

A.2 Measurement

The goal of ipbench [31] is to generate an accurate and complete characterisation of
the performance of a system for a given workload. We control the packet size and
packet rate applied to the system, and measure the packet return rate, the packet
return latency, and the CPU utilisation of the target host. In order to measure
latency, we measure the latency of responses to requests.

A.2.1 Packet generation 1

Packets are generated by a normal user-level program using either TCP, UDP or
raw sockets. This approach can generate a very high rate of system calls on the
load generation host, such that reducing the system call overheads greatly improves
the maximum rate at which packets are generated. Our initial implementation used

1The optimisations described in section A.2.1 were implemented by Peter Chubb and Ian Wienand.

81

A Measuring Overload

the gettimeofday system call to generate time-stamps, however doing so effec-
tively doubles the number of system calls required. We therefore removed calls to
gettimeofday, and replaced them with reads of the CPU’s cycle counter, in order
to reduce the number of system calls and improve the peak packet generation rate
of an individual load generation machine.

At low to moderate loads we keep the packet generation routine in a busy loop
between sending packets, since sleeping the process was found to be unreliable. In an
overload situation (i.e. the next packet is due to be sent at a time before the current
time) the loop will be sending as fast as the system allows. This overload situation
will appear in results as discrepancy between requested and sent throughput; in this
case the test is considered invalid.

A.2.2 CPU

Accurate measurement of CPU time is critical in understanding the behaviour of
a system under network overload. The usual method of measuring CPU time is to
count the iterations of a loop running at the lowest possible priority. While this
approach can in theory give accurate results, there are many pitfalls which can be
seen in common implementations.

The first problem with counting iterations in a low-priority thread is that
calibration is required. Accurate loop calibration requires the system to guarantee
that no other code executes while the loop is being calibrated, and that an accurate
timing mechanism available.

Even a quiescent system has some level of background interrupt processing
occurring. This makes it difficult to guarantee that no other code executes during
the calibration period. Therefore calibrated loops typically over-estimate the amount
of CPU time available.

When running on development systems, an accurate timer may not be readily
available. On such systems it is difficult to perform accurate calibration, and hence
gain accurate results from a calibrated idle loop.

After calibration, some implementations also require timer signals during the
measurement phase. We have found such implementations particularly problematic
when measuring overload, because they produce invalid results if the system fails to
deliver a signal. Because overloaded systems may fail to deliver signals on-time, or at
all, implementations using signals have been known to report falling CPU utilisation
under overload.

Because of these problems, a new method for measuring idle time was de-
veloped. The new method relies on the cycle-count register found on most modern
CPUs. The cycle-count register is typically implemented as a monotonically increas-

82

A.2 Measurement

void idle_thread(cycle_t *idle){

cycle_t x0, x1, delta;

x0 = get_cycles();

while(1){

x1 = x0;

x0 = get_cycles();

delta = x0 - x1;

if(delta < THRESHOLD)

*idle += delta;

else

*idle += CORRECTION;

}

}

Figure A.2: Source code for idle-time measurement.

ing counter, modulo the maximum value of the cycle-count register.

The code for this new idle-time measurement technique can be seen in Fig-
ure A.2. Like the calibrated idle loop, we use an infinite loop running in a low
priority thread. The body of the loop samples the cycle count register and com-
pares the result to the previous iteration’s sample. If the difference between the two
samples is greater than the maximum number of cycles required to complete the
loop in the absence of a context switch, it can be deduced that a context switch
occurred during that iteration. Otherwise, the difference is added to a counter of
cycles spent in the idle loop. The proportion of idle time can then be calculated
by dividing the idle cycle counter by the total number of cycles executed in a given
time period.

While this approach may miss a few cycles for each context switch, the number
of cycles missed per switch is very small compared to the total cycles per context
switch, such that the lost cycles are insignificant when compared to the total cycles.
This error can be further minimised by calculating the number of cycles required per
iteration assuming a cold cache, and adding this number to the idle counter when
a context switch occurs. In practice we have found the approach accurate enough
without performing this adjustment.

This method of idle time calculation does not require calibration, is very ac-
curate, and is simpler to implement than existing approaches.

83

Bibliography

[1] Bob Baden, David Clark, Jon Crowcroft, Bruce Davie, Steve Deering,
Deborah Estrin, Sally Floyd, Van Jacobson, Greg Minshall, Craig Partridge,
Larry Peterson, K. K. Ramakrishnan, Scott Shenker, John Wroclawski, and
Lixia Zhang. Recommendations on queue management and congestion
avoidance in the internet. RFC 2309, Internet Engineering Task Force., 1998.

[2] Nina Bhatti and Rich Friedrich. Web server support for tiered services. IEEE
Network, 13(5):64–71, 1999.

[3] Richard Black, Paul T. Barham, Austin Donnelly, and Neil Stratford.
Protocol implementation in a vertically structured operating system. In
Proceedings of the 22nd Annual IEEE Conference on Local Computer
Networks, pages 179–188. IEEE Computer Society, 1997.

[4] Josep M. Blanquer, Antoni Batchelli, Klaus Schauser, and Rich Wolski.
Quorum: Flexible quality of service for internet services. In 2nd Symposium
on Networked Systems Design and Implementation, Boston, MA, USA, May
2005.

[5] Jose Brustoloni, Eran Gabber, Abraham Silberschatz, and Amit Singh.
Signaled receiver processing. In Proceedings of the 2000 USENIX Annual
Technical Conference, pages 211–223, San Diego, CA, USA, 2000.

[6] Cabletron, Cisco, Foundry, Hewlett-Packard, and Nortel. Vendors on flow
control. Network World Fusion, 1999.

[7] D. Driankov, H. Hellendoorn, and M. Reinfrank. An introduction to fuzzy
control. Springer-Verlag New York, Inc., New York, NY, USA, 1993.

[8] Peter Druschel and Gaurav Banga. Lazy receiver processing (LRP): A
network subsystem architecture for server systems. In Proceedings of the 2nd
USENIX Symposium on Operating Systems Design and Implementation, pages
261–275, Seattle, WA, USA, October 1996.

[9] Nicola Femia, Giovanni Petrone, Giovanni Spagnuolo, and Massimo Vitelli.
Optimization of perturb and observe maximum power point tracking method.
IEEE Transactions on Power Electronics, 20(4):963–973, 2005.

85

Bibliography

[10] Sally Floyd. Tcp and explicit congestion notification. ACM Computer
Communications Review, 24, 1994.

[11] Sally Floyd and Van Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413,
1993.

[12] Md Ahsan Habib and Marc Abrams. Analysis of sources of latency in
downloading web pages. In World conference on the WWW and Internet
(WebNet), San Antonio, TX, USA, 2000.

[13] K. H. Hussein, I. Muta, T. Hshino, and M. Osakada. Maximum photo-voltaic
power tracking: an algorithm for rapidly changing atmospheric conditions. In
Generation, Transmission and Distribution, IEE Proceedings, volume 142,
pages 59–64, 1995.

[14] Intel. PCI/PCI-X family of gigabit ethernet controllers software developer’s
manual. http://download.intel.com/design/network/manuals/8254x GBe SDM.pdf.

[15] Abhinav Kamra, Vishal Misra, and Erich M. Nahum. Yaksha: a self-tuning
controller for managing the performance of 3-tiered web sites. In Quality of
Service — IWQoS 2004, 12th International Workshop, pages 47–56, Montreal,
Canada, 2004.

[16] P. R. Kumar. Convergence of adaptive control schemes using least-squares
parameter estimates. IEEE Transactions on Automatic Control,
AC-35:416–424, 1990.

[17] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul Barham,
David Evers, Robin Fairbairns, and Eoin Hyden. The design and
implementation of an operating system to support distributed multimedia
applications. IEEE Journal on Selected Areas in Communications, 17(7),
1996.

[18] J.D.C. Little. A proof for the queueing formula L = λW . Operations
Research, 9:383–387, 1961.

[19] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. In Proceedings of the 1996 Annual USENIX Technical
Conference, pages 99–111, San Diego, CA, USA, January 1996.

[20] David Mosberger and Larry L. Peterson. Making paths explicit in the Scout
operating system. In Proceedings of the 2nd USENIX Symposium on
Operating Systems Design and Implementation, pages 153–167, Seattle, WA,
USA, October 1996.

86

http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf

Bibliography

[21] W. Noureddine and F. Tobagi. Selective back-pressure in switched Ethernet
LANs. In Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM), pages 1256–1263, Rio de Janeiro, Brazil, 1999.

[22] Rainer Palm. Fuzzy signals in control loops. In SAC ’95: Proceedings of the
1995 ACM Symposium on Applied Computing, pages 455–460, New York, NY,
USA, 1995. ACM Press.

[23] Ian Pratt and Keir Fraser. Arsenic: A user-accessible Gigabit Ethernet
interface. In Proceedings of the 20th IEEE INFOCOM, April 2001.

[24] K. K. Ramakrishnan and Sally Floyd. A proposal to add explicit congestion
notification (ecn) to ip. RFC 2481, Internet Engineering Task Force., 1999.

[25] National Semiconductor. DP83820 datasheet.
http://www.national.com/ds.cgi/DP/DP83820.pdf, 2001.

[26] Thiemo Voigt. Overload behaviour and protection of event-driven web servers.
In Proceedings of the International Workshop on Web Engineering, Pisa, Italy,
May 2002.

[27] Thiemo Voigt and Per Gunningberg. Adaptive resource-based web server
admission control. In 7th IEEE Symposium on Computers and
Communication, Taormina/Giardini Naxos, Italy, 2002.

[28] Thiemo Voigt and Per Gunningberg. Handling multiple bottlenecks in web
servers using adaptive inbound controls. In Seventh International Workshop
on Protocols for High-Speed Networks, Berlin, Germany, 2002.

[29] Thiemo Voigt, Renu Tewari, Douglas Freimuth, and Ashish Mehra. Kernel
mechanisms for service differentiation in overloaded web servers. In
Proceedings of the 2001 USENIX Annual Technical Conference, pages
189–202, Boston, MA, USA, 2001.

[30] Matt Welsh and David Culler. Adaptive overload control for busy internet
servers. In Proceedings of the USENIX Symposium on Internet Technologies
and Systems, Seattle, WA, USA, 2003.

[31] Ian Wienand and Luke Macpherson. ipbench: A framework for distributed
network benchmarking. In AUUG Winter Conference, Melbourne, Australia,
September 2004.

87

http://www.national.com/ds.cgi/DP/DP83820.pdf

	Title Page - Performing Under Overload
	Thesis/Dissertation Sheet
	Abstract
	Publications
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables

	1. Introduction
	Problem statement
	Overload
	Problem uniqueness
	Admission control

	Scope
	Contributions
	Synopsis

	2. Related Work
	Admission control
	Admission control cost

	Performance under overload
	Differentiation
	Feedback
	Effect on system structure
	Data-path separation
	Loosely related issues
	TCP flow control and overload
	Impact of optimisations on performance under overload
	Event notification mechanisms
	Load balancers and multi-server systems

	3. Modelling Overload
	Background
	Resource types
	Sources of system load
	Modelling overload
	Modelling independent resources
	Modelling independent data-paths
	Modelling shared resources
	Shared prefix
	Shared suffix

	Summary

	4. The Edge-Limiting Approach
	Rate control mechanisms
	Introduction to network interfaces
	Generalised rate limiting
	Controlled dequeue rate
	Controlled free rate
	DMA-ring length modulation
	Interrupt frequency modulation
	A hybrid approach

	Queueing behaviour
	Limitations

	5. Rate Selection
	Overload detection
	Traffic monitoring
	Control approaches
	Rate selection algorithm
	Maximum power-point tracking problem
	Maximum power-point tracking solution
	Application to rate selection
	Algorithm tradeoffs

	6. Implementation
	Rate limiting
	Rate selection

	7. Experimental Evaluation
	Kernel configuration
	Hardware description
	Firewall benchmark
	Firewall configuration
	Firewall measurements

	NFS benchmark
	NFS configuration
	NFS measurements
	Pause frames

	HTTP performance
	HTTP benchmark configuration
	Realistic expectations
	Large-file workload
	Small file workload
	Effect of control algorithm frequency

	Results for alternative hardware
	Summary of results
	Behaviour under normal operating conditions
	Behaviour under overload

	8. Conclusions
	Summary
	Further work
	Hardware packet demux
	Control approaches
	Integration with other admission control approaches

	Contributions
	Real world applications
	Closing remarks

	A. Measuring Overload
	Distribution
	Measurement synchronisation
	Result aggregation
	Network effects

	Measurement
	Packet generation
	CPU

	Bibliography

