Hibernator™ - Checkpoint/Restart for Unixt

Chris Maltby
Peter Chubb

Softway Pty Ltd.
ABSTRACT

The emergence of Unix based workstation meks has rekindled the need for a
comprehense dceckpoint/restart system as a means for balancing loads oworketw
component machines. Making ali checkpoint on a Unix system has a lot of
challenges for the deloper, as $ate information is scattered in nyaplaces, including
the inside of pipes. Even defining what constitutes a ‘job’ is problematic.

This talk will describe some of the more interesting challenges we encountered in
developing Softway’s Hibernator technologyand gve an overview of the related
standards and alternaas. Thetalk will also discuss some possible ways Hibernator can
interact with existing application environments and system management tools.

1. Whats the problem

Those of us old enough to remember the batch oriented mainframe systems of older days will remember
that these systems usually pidied a means to “checkpoint” or suspend a running job, and élto be

restarted latemperhaps after some system downtime, \@nemore than once if delyging. fr big long-

running programs, or when CPUs arenastr unreliable, this facility is very useful.

Unix, with its minicomputer heritage haswvee provided much in the way of checkpoint/restaifthis
leaves the application desloper with the task of building in the required capability to each application with
a resultant increase in code size and loss of portabilihere are some library based tools such as Condor
which hare sme limited ability to checkpoint processes, butytben't work if your process has done
anything too hard for the checkpoint facility to understand.

The requirement for a generic checkpoint and restart for Unix hagednanov that Unix systems are
replacing old-style mainframes. The need is fundamentally the same; the user or administrator needs more
options tharkill when faced with very long running or resource hungry jobs.

Also, the growth of netarks of high-performance systems has seen system administrators and accountants
seek ways to get more work out of them. It would be nice to be able to shifbad around the netwk

from busy machines to more lightly loaded ones, assuming that tiremment is homogeneous enough

to male this work.

Finally, it would be nice for jobs to be checkpointable byad#f rather than by building or linking in some
special waywithout imposing a big performance penalty for the privilege.

By comparison with batch operating systeme lR/S, Unix doesrt’' make checkpointing easy.

2. Whatis a checkpoint?

Before it is possible to perform a checkpoint and restart, it is important to define the full nature of the

t Unix is a trademark of X/Open

1. CPU type, mounted filesystems, shared library versions etc etc.

problem. Simplyput, a checkpoint is a dump of enough of thiatile state information of a “job” to allo
that “job” to be reconstructed.

Already we hge mn into a problem: what is a Unix “job"A single process is clearly not $igfent. Users
might want to checkpoint a job &khe one in Exhibit 1 which is (at least) 4 processes.

$ grep name billrecords/* | sort +2n | awk -f process_script | pr -3
Exhibit 1. A possible long running Unix job

Not only is it hard to identify all the components of such a job (considerbao might Kill it), but there is
also a lot of hidden state information that must hveds# the job is to be restarted. Besides theviols)
memory images of each of the processey, ey also hee qen temporary fil€sas vell as devices such
as the controlling terminal — and what about the pipes between tamr? more difficult is when the
processes hold file locks, ondeaactive wnnections to the network or to a DBMS.

3. Addessing the problems
3.1 Specifying “job”

If your shell is co-operate, it might place all the components of a pipeline into a single process dgroup.
example, shells that support job control when running in inteactode put each command line into a
separate process grouplternatively, they may all be descended from one process (for some shells, that
process is the last in the pipeline). Someviogs implementations of Checkpoint (e.g., Cray’s)wallo
processdmilies (with a common ancestor) to be checkpointed as well as processes. An early draft of the
POSIX standard for Checkpoint/Restart mandated process-family checkpoint; the current one mentions
only sessions and process groups.

For the state information to be consistent, the processes must be quiescent bgfae beecheckpointed.
However, if the processes are made not all made quiescent simultaneously then a deadlock or some possible
user errors may result. Of course, some processes migho likow that a checkpoint is imminent so the

can discard temporary resources or shut down network connections etc.

3.2 Whats a file?

The old mainframes originally stored permanent information on tapes. Disks (or drums) were used for
temporary storage while the job was runnirgven when disks became predominant, the mainframe
operating system guld distinguish between permanent and temporary fifesheckpoint need only sa

the contents of the temporary files.

For Unix, this becomes much more problematic. All files are permatientigh it is clearly unwise to
hope thg will all be the same next time the job runs. It seems sensible to tio user (perhaps when
checkpointing the job) to specify templates which match the files tovbg. sa

This decision eposes yet another problem, which has bothered system administrators for a lorithéne.
is, hav do you determine the file name of an open filR@member that the process (or something else)
may well hae wnlinked the file or renamed it after it was opened. Three approaches could be taken:

1. Replacdhe shared librafwith one that captures the file nameopentime. Thisdoesnt help for
file descriptors inherited or obtained through IPC.

2. Malke the user specify a list of directories to search for the file. There is\vaouskperformance
penalty for this.

2. which may also be mapped into memory
3. even the ones itmp (unlesstmpis on a RAM-disk)

4. But then what about statically linked processes?

3. Modify the kernel to makit easier to find the namewvgn an gen file descriptor.

The next problem is selecting some sort of default checkpoint action for files in case the useoffleesn’
one. Perhapthe file's contents should only be sl if the file is open for writing.If the O_APPEND
attribute is set, then maybestinly necessary to sa the file position so that log files can be truncated to
the right place on restart.

But what of a file which is mapped into memor?writable map can h& ether aMAP_SHAREDor a
MAP_PRNMNATE attribute. If it's the latter then it becomes necessary to work out which parts of the
memory image ha been changed from the fitetriginal contents so that thean be seed ssparately.

Some implementationyaid this by only supporting sequentially accessed files.
3.3 Whera file is not a file.

A Unix processs gpen files can also be thingsdikkvices, fifos, sockets and pipes. Most processes da
least one device special file opevereif it is only the standard error stream.

The general device case is too hard to implement, but particularedeare possibleThe controlling
terminal device is one that should be recognised and redirected on ressaptpliably standard error as
well. With help from device dvers it may be possible to deal with non-streamdods such as tapes or
frame buffers, but this problem rapidly becomes too difficult (as well as exponential in size!)

Pipes may look simple but alsoveahidden complgities. Clearly unless all the participants in a pipe are
included in the checkpoint it will be impossible to raakconsistent. Een given that we can identify all
the pipe endpoints and determine that all anserenl, we must still extract the data in those pipes (and
possibly a record structure as well, for SVr4 pipes) and then re-insert it at restart.

But it gets vorse. Supposi the example in Exhibit 1 that thgrepandsort commands hee finished, it
that thepr, the awk and its possible children are still running. The pipe between the dead)sort and
theawkmay has only one end, and it may also contain data followed by an end-of-file marker).

If the system runs SVR4then its pipes will be implemented using strearttss even possible to push
streams modules or multipdadrivers onto these stream pipe$she general case is again too difficult to
handle; therds probably sufficient dynamic state information toverg successful restart in this case
anyway.

A fifo file is a special case of a pipe, and should present no special problems, provided you can identify all
the possible endpoints. One extra difficulty is that a fifo may be in a ‘waiting to open’ state as well as
partially closed.

3.4 Hle Locks

The POSIX standard, and somgiséing checkpoint/restart implementationsyesdfile locks in the
checkpoint image, and reestablish all locks at restart tithe. implementations that do this are generally

used in a ‘system checkpoint’ mode, where all processes that can be checkpointed are checkpointed just
before a shutdown, and restart is valid only immediately after a reboot.

In ary other circumstance, a process holding a file lock is not a good candidate for checkpoint, because the
act of taking a checkpoint breaks the lock semantics.

The eight cases to consider are when a process holds a read or a write lock, when it is checkpointed and
continued, or checkpointed and killed, and whether the filevesisd restored or just reopened at restart
time. ldo not propose to do a full case analysis here, but adf@mples will gve the idea.

Consider a process holding a file or record lock for writing, ghgpihg to be checkpointed and killett's
typically holding the lock so that other processestcaa® the file in an inconsistent state, and to lock out
other writers while it is doing its update.

At checkpoint time, because it is killed, its lock is lost, possibly leaving the file in an inconsistent internal

5. and some other recentMtairs of Unix

state for later file users.

If it is not killed, but continued, and the file is novedhat theckpoint time and restored at restart time, then
when the restart happens, the file lock is reestablisiiethd record that the target process was working on
will not be in the state that it remembered.

Any implementation could support lock restoration if it can bewknthat the locks need only protect
between processes in the checkpointed set but without detailedekige of the process’internal
behaviour there seems to be no way to ensure this is true or to police it.

Our implementation refuses to checkpoint processes holding file locks.
3.5 Signalsaand PIDs

Each Unix process has itsvn unique process ID, as well as sharing a process group ID and session ID.
Process group and session IDs are not returned to the system until all the mernesgdta Whena
checkpointed process or group is restarted, it may need to retain its original PID and group IDs. This is
because it may be usingved copies of these IDs for sending signals to other processes both within the
checkpoint and outside iOf course, if processes outside the checkpoint lesited or been restarted this

may be a problem.

Unfortunately theres no way to guarantee that those PIDsvédmat been already reassigned towne
processes. Onlghe application desloper knavs whether this will cause a problem foyajiven program.

At first glance you might consider aliasing processes inside the checkpoint in some spesiathat the

can assume mereal PIDs, but this could become arbitrarily complicated if the processes are checkpointed
again.

A 32 bit PID would at least reduce the chance of a collision, especially if part of it contained a ager tok
As it was, we needed to add a nafork() system call to makHAD restarts feasible.

Signals and their use present other problems. Signal handling in a modern UNIX systeyncsnvple.
Signals can be queued, blocked, held temporarily (durisiggausg hase exra information associated
with them, etc. All this has to besal and restored.

3.6 Miscellaneouprocess things

There are other process attributes that need special care. When a process exits (perhaps when it is
checkpointed) a record may be written to the process accounting file containing information about CPU
usage etcTo avoid massie poblems of the kind which triggered Gtifd Stoll on his search for hazie,

when the process is restarted it must record only the accounting information relating to that instance from
restart to git/re-checkpoint. Hwever, if the process itself asks for its CPU usage, it must be told the
cumulatve anount, including all previous periods ofeeution.

Also, the process may ¥®a @PU time resource limitThe limit must be transparently adjusted tovle
for CPU time already useddnd these are just avieof the little bits of state information that must beesha
and restored to maka deckpoint work.

As well, the process may be in the middle xdécaiting a “slow” system call (sagad() from a pipe). It
should transparently resume that system call when it is restarted.is a hard problem, as for nyan
modern Unices the information as toahfar a slev system call has got is held on the kernel stack (rather
than in the u area), so it cannot be obtained.

Processes that use floating point are also a prokiéamy modern unices optimise use of the floating point
unit by not saving its state at context switch time, and by attempting to reschedule a process on the same
processor as before. This means that the FP state may not be accessible to the checkpoint process.

3.7 Therestart object

Assuming that it is possible towaasufficient state information about the processes we care about, the
restarting of those processes is also naatri First, the checkpoint itself needs to be protectedirss)

6. a frivial discrepang in an acount

malicious fiddling, especially if it contains setuid processesen a small amount of change (or
corruption) could result in unpleasant consequences. The checkpoint needs to be stomereosade,

and protected ajnst change with both file permissions and secure checksums. Checksums (or at least
datestamps) may also be required on some of the data filesvedtasamrt of the checkpoint such as
shared libraries.

Another issue is whether it is possible to madhke various process checkpoint imagascatable, or
otherwise yet another kernel change is required to load and restartEemso, the restart program must
do as least as much as the checkpoint program to reconstruct the state froredtird@anation.

4. Doest work?

In spite of the difficulties mentioned al®) it is possible to mad a pwerful checkpoint and restart for
Unix. Betweenl1990 and 1994 Sofamy worked on a multi-stage process tovelep this capability for
Fujitsu's SYR4 based mainframe systems. Since then we lwantinued to deelop it for other more
generic targets and to minimise its impact on the Umimél. Asit stands, Hibernator is capable of
checkpointing and restarting processes and process groups with only a small set of restrictions.

It supports multiple options for dealing with open files, which can be specified at checkpoint time as well as
when the job bgins. Itwill attempt to reassign the old process IDs when possible and either abort the
restart or warn if thecannot be assignedt handles mapped files, pipes and the controlling TTcde

A job may be checkpointed and killed, or allowed to contirAred finally, the job can ask to be notified of

an imminent checkpoint so that it can clean up uncheckpointableutgtriand resources such as roekw
connections etc., before indicating it is ready for the checkpoint to proceed.

5. Whats rext?

There is still plenty of wrk to be done to establish Hibernator and the concept of Unix checkpoint and
restart. Onlywhen the checkpoint/restart capability becomes widespread will it attract the support of the
various database endors. Vithout this, the DBMS (batch) application needs twehapecial case
disconnect/reconnect code to support checkpointing.

The load balancing problem is easier to work on: it just needs a multi-cpu job scheduler along the lines of
NQS. Theextension of signal actions to support checkpoint instead of kilildvalso ma& the load
balancers task easier If a job is causing problems or if itxeeeds some resource limits, it could be
checkpointed by just signalling it.

Graphical user interface environments such asiXd@is are also capable of checkpoint,\ypded the X
sener can be persuaded toeal all the information it holds on behalf of its clients. You could walk up to
your desktop displayog in and receer your exact working state from when you were last there — minus a
few telnets.

6. Aknowledgements

Thanks to Grg James, Jeremy Fitzhardinge and the whole Hibernator team for endless lunchtime sessions
on ways to extract kernel state information and also to re-insert it.

