Automation for Proof Engineering
Machine-Checked Proofs At Scale

Daniel Matichuk

=

School of Computer Science and Engineering

University of New South Wales
Sydney, Australia

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

July 20, 2018

THE UNIVERSITY OF NEW SOUTH WALES
Thesis/Dissertation Sheet

Surname or Family name: Matichuk

First name: Daniel Other name/s: Stephen
Abbreviation for degree as given in the University calendar: PHD

School: Computer Science Faculty: Engineering

Title: Automation for Proof Engineering: Machine-Checked
Proofs At Scale

Abstract 350 words maximum:

Formal proofs, interactively deveIoPed and machine-checked, are a means to achieve the highest level of
assurance in the correctnéss of software. In larger verification projects, with multi-year timelines and hundreds of
thousands of lines of proof text, the emerging discipline of proof englneergngi plays a critical role in minimizing
both the cost and effort of developing formal proofs. The work presented inthis thesis targets the scalability
challenges present in such projects. 1n a systematic analysis of several large software verification projects’in the
interactive Proof assistant Isabelle, we demonstrate that in these projects, as the size of a formal specification
increases, the required effort for its_corresponding proof grows quadratically. Proof engineering encompasses
both authoring proofs, and developing the necessary infrastructure to make those proofs tractable, scalable and
robust against specification changes. Proof automation plays a key role here. However, in the context of Isabelle
many advanced features, such as developing custom automated reasoning procedures, are outside the standard
repertoire of the majority of proof authors. To address this problem, we present Eisbach: an extension to,
Isabelle's formal proof document language Isar. Eisbach allows proof authors to write automated reasongng)
procedures, known as proof methods, at'the familiar level of abstraction provided by Isar. Additionally, Eisbach is
extensible through specialized methods that act as general language constructs, providing high-level access to
advanced features of Isabelle, such as subgoal matching. We show how Eisbach provides a framework for
extending Isar with more automation than was previously possible, by allowing proof methods to be treated as
first-classS language elements. Today, Eisbach Is already used in many Isabelle proof developments. We further
demonstrate its effectiveness by implementing several language extensions, together with a collection of proof
methods for performing program refinement proofs. By applying these to proofs from the L4.verified project, the
one of the largest formal proof _prcd)jects in history, we Show that effective use of Eisbach results in a reduction in
the overall proof size and required effort for a given specification.

Declaration relating to disposition of project thesis/dissertation

| hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part
in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. | retain all property rights,
such as patent rights. | also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

| also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral
theses only).

Signature Witness Signature Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for
restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional
circumstances and require the approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award:

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom | have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. | also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.’

COPYRIGHT STATEMENT

‘I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. | retain all proprietary rights, such as patent
rights. | also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.

| also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).

| have either used no substantial portions of copyright material in my thesis or |
have obtained permission to use copyright material; where permission has not
been granted | have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.'

Signed

Date

AUTHENTICITY STATEMENT
‘| certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred

and if there are any minor variations in formatting, they are the result of the
conversion to digital format.’

Signed

Date

ii

Abstract

Formal proofs, interactively developed and machine-checked, are a means to achieve the
highest level of assurance in the correctness of software. In larger verification projects,
with multi-year timelines and hundreds of thousands of lines of proof text, the emerging
discipline of proof engineering plays a critical role in minimizing both the cost and effort
of developing formal proofs.

The work presented in this thesis targets the scalability challenges present in such
projects. In a systematic analysis of several large software verification projects in the
interactive proof assistant Isabelle, we demonstrate that in these projects, as the size
of a formal specification increases, the required effort for its corresponding proof grows
quadratically.

Proof engineering encompasses both authoring proofs, and developing the necessary
infrastructure to make those proofs tractable, scalable and robust against specification
changes. Proof automation plays a key role here. However, in the context of Isabelle,
many advanced features, such as developing custom automated reasoning procedures,
are outside the standard repertoire of the majority of proof authors. To address this
problem, we present Fisbach: an extension to Isabelle’s formal proof document language
Isar. Eisbach allows proof authors to write automated reasoning procedures, known as
proof methods, at the familiar level of abstraction provided by Isar.

Additionally, Eisbach is extensible through specialized methods that act as general
language constructs, providing high-level access to advanced features of Isabelle, such as
subgoal matching. We show how Eisbach provides a framework for extending Isar with
more automation than was previously possible, by allowing proof methods to be treated
as first-class language elements. Today, Eisbach is already used in many Isabelle proof
developments. We further demonstrate its effectiveness by implementing several language
extensions, together with a collection of proof methods for performing program refinement
proofs. By applying these to proofs from the L4.verified project [41], the one of the largest
formal proof projects in history, we show that effective use of Eisbach results in a reduction
in the overall proof size and required effort for a given specification.

Acknowledgements

I would like to thank Gerwin Klein and Toby Murray for their wisdom, encouragement
and feedback graciously provided at every stage of this work. I also owe a special thanks
to June Andronick, for introducing me to the Trustworthy Systems group and forever
changing my career path.

I would also like to thank Makarius Wenzel, for hosting our Eisbach summer sessions
and patiently providing me with a bountiful source of Isabelle knowledge and experience.
Many additional thanks to Gerwin, Toby, and June, as well as Mark Staples, and Ross
Jeffrey, for their invaluable contributions to interpreting the heaps of proof data that we
collected.

I am grateful to all of my friends and colleagues at the Trustworthy Systems group,
whose dedication to coffee, beer and board games made every day worthwhile. In particu-
lar: Anna Lyons, for timely rescues on multiple occasions; Matthew Brecknell; for eagerly
trying every new Eisbach feature; Christine Rizkallah, for stress testing earlier implemen-
tations of Eisbach; Joel Beeren, for always letting me know when something didn’t work;
Aaron Carroll, Adrian Danis, Alex Legg, Corey Lewis, Rafal Kolanski, Thomas Sewell,
and Qian Ge, for countless discussions, both technical and absurd; and many others who
immeasurably shaped my PhD.

I would like to thank Nathan and Cassandra Matichuk, as well as my parents, Allison
and Bruce Matichuk, for opening their homes and providing desk space when I needed it
most. I would also like to thank Josh Crocker for reminding me to take the occasional
break, and Spencer McTavish for engaging in many constructive conversations as well as
giving valuable feedback on this thesis.

Finally, I am forever indebted to Sara Pierce for her endless love, patience and support
during every step of my PhD.

iii

v

Contents

1 Introduction
1.1 Thesis objectives and contributions
1.1.1 Summary of thesis contributions
1.2 Document Overview e
2 Related Work
2.1 Proof Systems
2.1.1 Mizar e e e e e e e e e e e e e e e
2.1.2 Ngthm and ACL2
2.1.3 LCF e
2.1.4 HOL
2.1.5 Coq .. e e e
2.1.6 The Lean Theorem Prover
2.1.7 Isabelle
2.2 Relationship to Isabelle/Eisbach,
2.3 Proof Engineering
2.3.1 Proof Maintenance
2.3.2 Proof Generalizationo
2.3.3 Empirical Evaluation of Proof Artefacts
2.4 Conclusion e
3 Background
3.1 Introduction tolIsar
3.1.1 A Simple Proof
3.1.2 The Languages of Isabelle
3.2 Isabelle/Pure
3.2.1 Meta-logic Connectives
3.2.2 Terms e e e e e e e e e e e e e e
3.2.3 Proof Kernel
3.24 Isabelle/HOL
3.3 Proof Methods
3.3.1 Basic Proof Methods
3.3.2 Automated Proof Methods
3.3.3 Method Combinators and Backtracking

3.4 Isar Revisited e 26
3.4.1 Facts and Theorems, 26
3.4.2 Definitions e 26
3.4.3 Records 27
3.4.4 Proof Context 27
3.4.5 Rule Attributes 28
3.4.6 Isabelle/ML 29

3.5 Ldwverified L e 30
3.5.1 Ld.verified specifications 31
3.5.2 Ld.verified refinement stack 31
3.5.3 Additional L4.verified proofs 32

3.6 The Archive of Formal Proofs 32

3.7 Formatting Remarks L o 33
3.7.1 Fonts 33
3.7.2 Interactive Proof State 33

Empirical Analysis of Proof Effort Scalability 35

4.1 Motivation and Summary 36
4.1.1 Limitations e 37

4.2 Approach and Measures 38
4.2.1 Proofs and Specifications Lo oL L 38
4.2.2 Proof Size 40
4.2.3 Raw Statement Size 40
4.2.4 Idealised Statement Size 41

4.3 Measures in Isabelleo 42
4.3.1 Measuring Proof Size. o oo 42
4.3.2 Measuring Raw Statement Size 43
4.3.3 Approximating Idealised Statement Size 43

4.4 Data Collected 44
4.4.1 Ld.verified Proofs 44
4.4.2 Proofs from the AFP 45

4.5 Results and Discussion 45
4.5.1 Results using the Raw Measure 48
4.5.2 Effectiveness of the Idealised Measure 48

4.6 Conclusion 49

Eisbach 50

5.1 Motivation 51

5.2 Eisbach 53
5.2.1 Fact Abstraction 53
5.2.2 Term Abstraction e 54
5.2.3 Custom Combinators. 55
5.2.4 Matching L 56
5.2.5 Premises within a Subgoal Focus 60
52,6 Example. 61

vi

5.2.7 Imtegration with ML
5.3 Design and Implementationo oo
5.3.1 Readable Proof Methods
5.3.2 Design Goals and Comparison to Ltac
5.3.3 Method Correctness and Types
5.3.4 Static Closure of Concrete Syntax
5.3.5 Subgoal Focusing oL o
54 Conclusion e
6 Advanced Eisbach
6.1 Method Expression Debugging
6.1.1 Example Debugging Session
6.1.2 The apply debug command
6.1.3 Proof state interaction
6.1.4 Document-based debugging
6.2 Rule Attributes from Methods
6.3 Advanced Methods and Combinators
6.3.1 A Hoare Logic Combinator
6.3.2 Subgoal Folding 0.
6.4 Conclusion
7 Case Study: L4.verified
7.1 L4.verified, VCGs, and Refinement
7.1.1 Refinement
7.1.2 The State Monad
7.1.3 Monadic Hoare Logic
7.2 COITES . . . v v o e e e
721 Example.
7.3 The Corres Proof Method
7.3.1 First Steps and Limitations of Corres
7.3.2 CorresK
7.3.3 Mismatched Functions oo
7.3.4 Automating Corres rv Lo
7.3.5 Integration with Corres
7.3.6 Corressimp e
7.4 Application to L4.verified
7.4.1 Proof Example
7.5 Conclusion e

8 Conclusion

vii

70
70
71
72
75
78
80
86
88
91
94

95

96

97

98

99
102
104
109
110
113
117
122
123
125
125
126
129

131

Chapter 1

Introduction

A proof is a justification for the truth of a given statement. In most applications these
justifications are a mix of natural language and mathematical symbols, with the ultimate
purpose of convincing a reader that the argument is sound. Such proofs are usually con-
sidered to be informal, as they rely on the intuition and intelligence of the reader. Errors
or omissions in informal proofs are therefore only caught once inspected by a sufficiently
diligent reviewer. Occasionally these oversights are shown to be more interesting than
originally thought, either requiring additional proof or invalidating the entire result.

In contrast, formal logic requires that proofs are given in a precise, unambiguous syntax
which can be checked algorithmically. This rigorous treatment of every detail is both
the greatest benefit and most significant hurdle of formal logic. Proofs are trustworthy
and robust, but the required level of precision quickly becomes intractable for real-world
applications without assistance from a computer.

Computer-based reasoning tools have recently sparked a resurgence in the practical
scope of formal logic, with the hope of automated theorem provers eventually abolishing
the tedium of writing formal proofs. The role of automated reasoning in these systems
varies widely, from simple proof checkers to fully automatic proof discovery. Interactive
theorem provers (ITPs) have emerged as a bridge between these two extremes: high level
proof strategies are given by human authors, while formal details and mechanical search
are handled by the computer system. This admits the ability to develop formal proofs
that would otherwise be too long or detailed for a human to produce, but too intricate
for a computer to discover unaided. The result has been a rich ecosystem of formalized
results in mathematics, philosophy and computer science [43] [4] [2].

Demand for formal software verification has been steadily increasing [28|, as tradi-
tional software development techniques continue to leave systems vulnerable to attack or
unexpected failure. In mission-critical software, such as in cars [20] or pacemakers [35],
these vulnerabilities can result in significant loss of life or property. With formal verifi-
cation, the security, safety or reliability of software is instead proven correct using formal
logic, requiring only that the proof’s assumptions are validated through testing. In I'TPs,
these proofs dwarf the size and complexity of the programs they verify, creating significant
upfront cost to developing formally verified and trustworthy systems.

Large formal proofs quickly become difficult to develop and maintain, requiring dili-

gence in order to avoid duplication or wasted effort. Comparable to software engineering,
the emerging field of proof engineering is the practice of writing machine-checked proofs
at scale. Every proof development exists in an ecosystem including: the theorem prover
itself; other developments that the proof depends on; external tools for automating proofs
or generating specifications; potentially a real-world artefact that the proof discusses, such
as verified code or hardware. Changes to a proof’s ecosystem will incur a corresponding
change to the proof itself. A completed proof may also need to be generalised or extended
in order for its results to be used in other projects. Proofs therefore exist in a life-cycle,
whereby they are continuously updated, re-checked, and improved. A well-engineered
proof acknowledges this in its design, minimising the required effort for both up-front and
on-going development.

Despite recent successes in large-scale proof development, there has been relatively
little research into proof engineering itself. With few projects to draw data from, and
a wide range of proof systems used, it has so far been difficult to establish best prac-
tices or cost estimation techniques. One of the largest verification projects to date is
L4.verified [42] [41], which proves that the C implementation of the seL4 micokernel cor-
rectly adheres to its functional specification. In a retrospective analysis of the proofs from
this project [64], Staples et al. were able to draw a linear correlation between proof size
(measured in source lines) and required effort (measured in person-weeks). Although this
result is hardly definitive for proofs in all domains, it indicates that longer proofs are more
difficult and costly to produce.

In ITPs, the source text of a proof development is a combination of specification
and proof. Authors first define constants, functions and types, followed by hypothetical
statements about them, and finally give formal proofs of those statements. Many ITPs
support tactic-style reasoning: tools are invoked in a read-eval-print loop to transform a
proof state. These tools, known as tactics or proof methods, justify these transformations
internally by appealing to axioms of the underlying logic. Tactics range from extremely
primitive (e.g. applying a single rule), to general purpose (e.g. invoking a first-order solver),
to domain-specific (e.g. calculating a verification condition for a program specification).

The set of available tactics applicable to a given proof state imposes an upper bound
on the expressive power of a single line of proof. Most ITPs have a facility for adding
user-defined tactics, either through a specialized tactic language or in the implementation
language of the prover itself. However, this presents a significant barrier-to-entry for many
proof engineers, as either approach is most likely a jarring divergence from the language
of simply writing proofs. This can result in excessively verbose proofs; authors hit the
edge of the available automation, resorting instead to long sequences of tedious primitive
proof operations rather than diving into the unfamiliar territory of writing custom tactics.
Such proofs are costly to develop and are likely to be the first to break during subsequent
proof maintenance iterations.

1.1 Thesis objectives and contributions

In this thesis, we provide a foundation for understanding some of the basic scalability issues
in proof engineering through empirical analysis. By systematically analysing several large

verification projects, we identify a key relationship between proofs and specifications,
motivating improvements that can be made to the state-of-the-art in order to develop
proofs at scale.

There have been few empirical studies of formal proofs to date, and even fewer which
alm to provide insight into the scalability issues present in formal verification. As a result,
it remains difficult today to answer even basic project management questions for both new
and existing verification endeavours. Questions such as: “How long will it take to finish
this proof?” or “What will be the verification impact of adding this feature?” currently
cannot be answered without significant guesswork.

Through an analysis of both the L4.verified proofs and several proofs from Isabelle’s
AFP [43], we show that proof size grows quadratically with respect to the complexity
of a given formal statement. Expanding on previous work by Staples et al. [64], which
establishes a linear relationship between proof size and effort, this suggests that required
proof effort will scale quadratically with specification size.

We hypothesize that this relationship is heavily influenced by the level of automation
available to proof authors. Traditionally, the manual effort spent to write a particular proof
is difficult to effectively re-use. If that effort could instead be used to write an automated
proof procedure that solves a class of problems, subsequent instances of similar problems
would instead become trivial applications of an existing strategy.

Motivated by this hypothesis, we designed and developed Fisbach, a language exten-
sion for Isar, the primary proof language of Isabelle. In Isar, proof methods are a syntactic
interface into Isabelle’s tactics and are traditionally written in Isabelle’s implementation
language of Standard ML. Eisbach’s signature feature is a new command: method, which
allows authors to write general-purpose proof methods without the need for ML. Instead,
new methods are written by combining existing proof methods with Isar’s method combi-
nators, along with facilities for abstracting over arguments to be supplied at run-time.

Eisbach can be naturally extended by writing new proof methods in ML, which serve
as general language constructs to be used in defining Eisbach methods. Chief among these
is the included match method, which allows users to explicitly bind elements of a proof
goal and provide control flow.

These form the basis of a proof method language, and have been included in the Isabelle
distribution since the release of Isabelle-2015. Eisbach has since been widely adopted by
Isabelle users as a means to express both simple and non-trivial proof methods.

We then present a comprehensive evaluation of Eisbach, both in its extensibility and
efficacy. Our aim is to establish Eisbach as a platform for developing automated reasoning
tools that are easily accessible to proof authors, and ultimately allow proof development
to scale more effectively with larger and more complex problems. This evaluation includes
a suite of tools built with the Eisbach framework, and an analysis of their efficacy when
applied to a large proof development from the open source L4.verified project [41].

1.1.1 Summary of thesis contributions

The primary contributions of this thesis are as follows:

e We perform an empirical analysis of several large formal verification developments
in Isabelle. In this study we precisely define metrics for the size of a particular proof,
as well as the size of its statement, and show that the former grows quadratically
with the latter. Building on previous work, this suggests that proof effort will grow
quadratically with the size of the source code of a program.

e We present the core of Eisbach, an extension to Isabelle/Isar that provides a frame-
work for writing proof automation at a high level of abstraction. With the included
method command and match method, users can easily write expressive, custom
proof methods.

e We present a debugging environment for writing automation, both for authoring
proofs in Isar and proof methods with Eisbach.

e We extend the use of Eisbach beyond writing proof methods to additionally support
automatically generating new facts.

e We show how KEisbach can be easily utilised to provide high-level access to function-
ality previously only available from Isabelle/ML.

e Finally, we evaluate the above by implementing several tools to automate refinement
proofs from L4.verified. We refactor several existing proofs to use these tools, result-
ing in a reduction in both their size and complexity, demonstrating the capabilities
and benefits of Eisbach.

1.2 Document Overview

Related Work In Chapter 2 we describe existing work on expressing domain-specific
automated reasoning in interactive theorem provers, as well as existing proof engineering
tools and empirical studies.

Background In Chapter 3 we explain general Isabelle concepts: the basic elements of
an Isar proof, foundations of the meta-logic and term language, and proof methods with
method combinators. We also introduce L4.verified in more detail, including several of its
sub-projects.

Empirical Analysis of Proof Effort Scalability In Chapter 4 we motivate the need
for domain-specific automated reasoning by investigating the relationship between a formal
statement and the size of its corresponding proof. In a large-scale analysis of several
proofs from both L4.verified and Isabelle’s AFP, we demonstrate that proof size grows
quadratically with the complexity of its corresponding statement. Building on previous
work, this suggests that, in the context of formal software verification, proof effort grows
quadratically with source code size.

Eisbach In Chapter 5 we present the core features of Eisbach: the method command
and match proof method. We demonstrate how the method command can combine
multiple existing proof methods into a new domain-specific method. The match method
is presented as a way to manage control flow during method evaluation, as well as provide
structure and document the method’s intent.

Advanced Eisbach In Chapter 6 we demonstrate the use of Eisbach beyond its core
features to establish it as an automation framework. We present a proof method debug-
ging framework, that can be used for both writing proofs and developing proof methods.
Additionally we demonstrate how a proof method can be lifted into an Isar attribute, al-
lowing users to easily write automated tools that transform existing theorems. Finally, we
show how proof methods can be written as language elements for Eisbach, easily extending
what can be expressed in both method definitions and proof steps.

Case Study: L4.verified In Chapter 7 we evaluate Eisbach by applying it to an ex-
isting proof from L4.verified. We show how multiple proof methods can be rapidly proto-
typed, tested, and iterated in order to significantly reduce the size of proofs.

Chapter 2

Related Work

In the past few decades a large space of interactive theorem provers has emerged, each
with its own flavour of logical foundations, proof presentation, and ideology. Differing
cultural traditions of what is a “good” proof, or even what is a proof, have resulted in
many approaches to proof development and engineering. In this chapter, we will present
some of the important theorem provers that are in use today, with a focus on the end-
user experience of constructing a formal proof. In particular, we consider their scalability
of proof effort and the accessibility of developing domain-specific automated reasoning
procedures. We then discuss some of the existing work on proof engineering, covering
both systematic approaches to developing scalable proofs and previous empirical studies
on large proof artefacts.

Chapter Outline

e Proof Systems. Section 2.1 gives a brief summary of some major proof systems
and their approaches to proof automation.

e Proof Engineering. Section 2.3 provides some background on proof engineering.

e Conclusion. Section 2.4 summarizes the given related work.

Acknowledgements

Some content in Section 2.1 is based on the related work sections of previous publica-
tions [50][48] which were originally written in collaboration with Makarius Wenzel and
Toby Murray. Additionally, some content in Section 2.3 is based on the related work
section of a previous publication [47], originally written collaboration with Toby Murray,
June Andronick, Ross Jeffery, Gerwin Klein and Mark Staples.

2.1 Proof Systems

2.1.1 Mizar

The Mizar system [58](75, §2| was introduced in 1978, comprising both the Mizar Language
and the Mizar Checker. The intent was to stay close to standard mathematical vernacular,
so that the translation from textbook proofs would be straightforward. Still active today,
it boasts one of the largest collections of formalized mathematics in its Mizar Mathematical
Library (MML) [12]. Figure 2.1 gives a typical Mizar proof. Here we can see the verbose-
declarative style of Mizar scripts, as each individual proof step is explicitly stated, as well
as a syntax which mimics a natural language pen-and-paper proof.

Proof Automation

Mizar closely resembles Isabelle’s proof document language, Isar [73]|, with the notable
exception that there are no proof tools explicitly referenced in the proof text. Indeed, the
only two tools available to a Mizar proof author are justifications via by (simple automated
reasoning) or from (consequence of rule application). If a reasoning step fails, the only
recourse is to expand that step into sufficiently “obvious” steps for the Mizar system.

The rationale of this design choice is to ensure that Mizar proofs can be understood
independently of the Mizar Checker. The disadvantage of this approach is that there is no
capacity for the author to provide proof strategies in order to extend the scope of obvious
proof steps. The resulting proofs are therefore extremely verbose and require significant
manual effort to complete. The MML demonstrates that this is not a insurmountable
hurdle for formalized mathematics, however it is unlikely to be effective in large-scale
software verification.

2.1.2 Nqgthm and ACL2

Nqgthm [18] originates in 1973 with a focus on having a high level of automation at the cost
of limited expressivity: formulas often need to be rewritten or "encoded" in the system [75].
It distinguishes itself from fully automatic theorem provers by allowing users to guide the
automation with intermediate lemma suggestions. It is succeeded by ACL2 [40] which
currently supports an impressive range of formalizations from hardware verification to the
fundamental theorem of calculus.

One criticism of ACL2 is that it fails to satisfy the ‘de Bruijn criterion’: there is
no small trusted checker that independently validates proofs. Although Mizar fails this
criterion as well, the extensive use of automated decision procedures in ACL2 places much
more trust in the correctness of the system.

Proof Automation

ACL2 and Ngthm are both implemented as variants of Common Lisp, where a first-order
logic is embedded as a term-rewriting system. The semantics of the language are encoded
as axioms in its logic, identifying the process of both writing and verifying programs. All
logical formulas and definitions are encoded as Lisp functions, with the intention that

theorem
sqrt 2 is irrational
proof
assume sqrt 2 is rational;
then consider i being Integer, n being Nat such that
W1l: n<>0 and
W2: sqrt 2=i/n and
W3: for il being Integer, nl being Nat st nl<>0 & sqrt 2=il/nl
holds n<=nl
by RAT_1:25;
A5: i=sqgrt 2*n by W1,XCMPLX_1:88,W2;
C: sqrt 2>=0 & n>0 by W1,NAT_1:19,SQUARE_1:93;
then i>=0 by A5,REAL_2:121;
then reconsider m = i as Nat by INT_1:16;
A6: m*m = n*n*(sqrt 2*sqrt 2) by A5
.= n*n*(sqrt 2)~2 by SQUARE_1l:def 3
.= 2x(n*n) by SQUARE_1:def 4;
then 2 divides m*m by NAT_1:def 3;
then 2 divides m by INT_2:44,NEWTON:98;
then consider ml being Nat such that
W4: m=2*ml by NAT_1l:def 3;
ml*m1*2%2 = ml*(ml1*2)*2
.= 2*%(n*n) by W4,A6,XCMPLX_1:4;
then 2*(ml*ml) = n*n by XCMPLX_1:5;
then 2 divides n*n by NAT_1l:def 3;
then 2 divides n by INT_2:44,NEWTON:98;
then consider nl being Nat such that
W5: n=2*nl by NAT_1l:def 3;
A10: m1/n1 = sqrt 2 by W4,W5,XCMPLX_1:92,W2;
A11: n1>0 by W5,C,REAL_2:123;
then 2*n1>1*nl by REAL_2:199;
hence contradiction by A10,W5,A11,W3;
end;

Figure 2.1: Mizar proof that v/2 is irrational. Credit to Freek Wiedijk|75].

the proof of a given statement can be automatically discovered by the proof system. A
failed proof attempt requires the user to modify the set of available lemmas, to guide the
automated proof search to a valid proof.

New automated reasoning procedures are given as transformation functions to the
simplifier, requiring that they produce a proof of equivalence to maintain logical soundness.
These procedures can be arbitrarily complex, as they are simply Lisp functions, and are
automatically applied during the proof search.

2.1.3 LCF

The so-called ‘de Bruijn criterion’ for theorem provers [13] requires that the soundness of
the system only depend on a small, trusted core. Often this is referred to as the proof kernel
of the system: a module that is solely responsible for performing logical justifications.

The original LCF (Logic of Computable Functions) proof assistant 32| was one of
the earliest provers that satisfies this criterion, while simultaneously providing the ability
to use automated reasoning procedures. LCF pioneered the notion of proof tactics and
tacticals (i.e. operators on tactics) that can be still seen in its descendants today. A tactic
can perform arbitrarily complex computations on the proof state. A tactical proof is
generally more interactive than either Mizar or ACL2: each tactic manipulates the proof
state, transforming it and presenting the result to the user. The proof is complete once
the given series of tactic invocations successfully reduces the state to zero open proof
obligations.

ML was invented for LCF as the Meta Language to implement tactics and other tools
around the core logical engine. It is a fully-featured functional programming language,
serving as both the implementation and proof language of LCF, with no formal distinc-
tion between proofs, tool implementations or theory specifications. LCF inspired many
of the proof systems in use today. These LCF-style provers maintain logical soundness
with a small, trusted kernel, while providing facilities for using and developing tactics for
automated reasoning.

2.1.4 HOL

The HOL (higher-order logic) family [75, §1] continues the LCF tradition with ML as the
main integrating platform for all activities of theory and proof tool development (using
Standard ML or OCaml), however it replaces LCF’s Logic of Computable Functions with
simply-typed classical set theory. HOL provers provide only a bare-bones interface to
the ML top level by default, although different interface languages have been developed.
This has been done as various “Mizar modes” to imitate the mathematical proof language
of Mizar (see Section 2.1.1), or as “SSReflect for HOL Light” that has emerged in the
Flyspeck project, inspired by SSReflect for Coq [30].

Proof Automation

As in LCF, HOL tactics and tacticals are implemented in ML, which transform a given
subgoal state to build up a series of justifications for an initial formal hypothesis. The

full power of ML is always available to build advanced automated proof procedures as
re-usable tools. HOL tactics work in the opposite direction to inferences in the core logic,
which only allow deriving new facts from old ones.

This duality of backward reasoning from goals versus forward reasoning from facts is
reconciled by tactic justifications: a tactic both performs the goal reduction and records
an inference for the inverse direction. At the end of a tactical proof, all justifications are
composed with the proof kernel to produce the final theorem. Programming errors in the
tactic implementations could cause this final step to fail, i.e. if a proof step was taken that
could not be logically justified.

Users of HOL are nearly always operating directly in ML, making the transition from
only writing proofs to also developing proof tactics a natural progression. However this
could also be seen as a disadvantage of the system: users are always exposed to its imple-
mentation details, with few abstractions or conveniences when simply writing proofs.

2.1.5 Coq

Coq |75, §4] started as another branch of the LCF family in 1985, but with different
answers to old questions regarding the relationship between proofs and programs. Coq
implements the Calculus of Inductive Constructions type theory as its core logic, where
a logical statement is a type and its corresponding proof is some term of that type. A
statement is therefore known to be true if its type is inhabited.

Similar to HOL, Coq provides a rich library of built-in proof tactics and tacticals for
developing proofs. A series of tactics in a Coq proof ultimately construct a final proof
term, which is formally justified by type checking. This type checking algorithm therefore
also serves as Coq’s proof kernel.

In contrast to HOL, the OCaml environment of Coq is not readily accessible for regular
users. Implementing a new Coq plug-in in OCaml requires that it be compiled and linked
separately. If using the bytecode compiler, users may drop into an adhoc interactive
OCaml shell during a Coq session, however this is not accessible when using the default
native compiler. Coq users are therefore generally limited to its high level specification
and proof language. Custom proof automation is made available through several tactic
languages, each designed for different applications and styles of proof development.

Proof Automation

Ltac is the untyped tactic scripting language for Coq [25], and has been successfully ap-
plied in large Coq theory developments [21]. It has familiar functional language elements,
such as higher-order functions and let-bindings. However, it contains imperative elements
as well, namely the implicit passing of the proof goal as global state. The main function-
ality of Ltac is provided by a match construct for performing both goal and term analysis.
Matching performs proof search through implicit backtracking across matches, attempting
multiple unifications and falling through to other patterns upon failure. Although syn-
tactically similar to the match keyword in the term language of Coq, Ltac tactics have
a different formal status than Coq functions. Although this serves to distinguish logical

10

function application from on-line computation, it can result in obscure type errors that
happen dynamically at run-time.

Mtac is a recently developed typed tactic language for Coq [76]. It follows an approach
of dependently-typed functional programming: the behaviour of Mtactics may be charac-
terized within the logical language of the prover. Mtac is notable by taking the existing
language and type-system of Coq (including type-inference), and merely adds a minimal
collection of monadic operations to represent impure aspects of tactical programming as
first-class citizens: unbounded search, exceptions, and matching against logical syntax.
Thus the formerly separate aspect of tactical programming in Ltac is incorporated into
the logical language of Coq, which is made even more expressive to provide a uniform
basis for all developments of theories, proofs, and proof tools. Thanks to strong static
typing, Mtac avoids the dynamic type errors of Ltac. More recent work combines Mtac
with SSReflect [31], to internalize a generic proof programming language into Coq, in
analogy to the well-known type-class approach of Haskell.

This uniform proof language approach is quite elegant for Coq, but it relies on the
inherent qualities of the Coq logic and its built-in computational approach. In contrast, the
greater LCF family has always embraced multiple languages that serve different purposes:
classic LCF-style systems are more relaxed about separating logical foundations from
computation outside of it; potentially with access to external programs or network services.

SSReflect [30] is the common label for various tools and techniques for proof engineering
in Coq that have emerged from large verification projects by Gonthier. This includes a
sophisticated proof scripting language that provides fine-grained control over operations
within the logical subgoal structure, and nested contexts for single-step equational rea-
soning. Actual small-scale reflection refers to implementation techniques within Coq, for
propositional manipulations that could be done in HOL-based systems by more elementary
means; the experimental SSReflect for HOL-Light re-uses the proof scripting language and
its name, but without doing any reflection (this is neither possible nor required in HOL).
SSReflect emphasizes concrete proof scripts for particular problems, not general proof
automation. Scripts written by an expert of SSReflect can be understood by the same,
without stepping through the sequence of goal states in the proof assistant. General tools
may be implemented nonetheless, by going into the Coq logic. The SSReflect toolbox
includes specific support for generic theory development based on canonical structures.

Canonical Structures were later introduced by Gonthier [31] as a method of instrument-
ing automation within the logic while avoiding the use of explicit tactic invocations. He
notes that tactics, being essentially untyped, operate as arbitrary proof state transformers.
This makes it difficult to determine when a change will affect the execution of a tactic.
There is no possibility to specify the intended behaviour of a tactic, let alone verify it. By
using canonical structures, the unification/type inference algorithm of Coq is coerced into
executing decision procedures while generating types, effectively lifting the automation
as a first class object. The “execution” of the procedure, however, is intrinsically linked
with the implementation of the unification algorithm, which is not specified formally and
performs poorly when used for this application. Moreover, the automation is constrained
to logic-style programming, which limits its utility.

11

2.1.6 The Lean Theorem Prover

Lean is a more recent entry into the space, with a strong focus on automation and
interoperability with other systems [24]. Similar to Coq, Lean implements the dependent
type theory of Calculus of Inductive Constructions to unify both proof and type checking.
Proofs can be constructed as a mix of both tactics and declarative Mizar-style keywords.

Lean offers the ability to specify a trust level when invoked, allowing for relaxed cor-
rectness checking by invoking macros that sidestep the proof kernel. A high trust level
may use heavily optimized macros in order to support rapid prototyping and proof devel-
opment, while a trust level of zero forces macro expansion to ensure that all proofs are
sound.

2.1.7 Isabelle

Isabelle was originally introduced as another Logical Framework by Paulson [56], to allow
rapid prototyping of implementations of inference systems, especially versions of Martin-
Lof type theory. This was provided by establishing a minimal meta-logic, known as
Isabelle/Pure, and allowing end-users to establish their own object-logics. Many have
emerged since: e.g. ZF set theory, FOL and HOLCF, however most applications today are
done in the object-logic Isabelle/HOL.

Isabelle is written in Standard ML, descended from ML which was originally developed
for use in LCF. Isabelle’s Pure logic descends from the LCF-style of interactive theorem
proving, limiting logical inferences to a small trusted core. Before Isar, proofs in Isabelle
were simply ML programs, whose type signature guaranteed that they were limited to
performing valid logical inferences according to Isabelle /Pure.

Isar was first seen in 1999 [70] and was introduced as a “declarative” language for
proof text. Its design was heavily influenced by Mizar, with an aim to overcome its lack of
extensibility and scalability. Isar’s support for unstructured proofs (proof scripts) provided
a convenient launching point for porting existing proofs from ML. Today nearly all Isabelle
proofs are written in Isar, while ML is used to add functionality by defining new keywords
or proof methods.

Proof Automation

As in other LCF-style systems, proofs in Isabelle can be represented a series of tactics that
reduce a proof state to having zero open proof obligations. Similar to HOL, the soundness
of these proofs is guaranteed by representing theorems as an abstract datatype that can
only be transformed by a small proof kernel. In contrast to HOL, however, the proof state
itself is represented as a theorem, avoiding the need for tactic justifications after the proof
is completed.

Isar introduced the concept of proof methods (see Section 3.3) as an interface for
invoking Isabelle’s tactics in structured proofs. Each method defines its own syntax,
which may be arbitrarily complex, for controlling the underlying tactics and dynamically
extending Isabelle’s proof context (see Section 3.4.4) to implicitly provide hints and facts.

12

Proof Automation

Tactics in Lean can be used both in proof blocks or invoked by the elaborator in order to
compute missing subterms required to make a term type-correct. Asin other LCF systems,
Lean tactics are arbitrarily complex programs that ultimately appeal to the underlying
proof kernel to guarantee soundness.

Lean supports defining meta-programs outside the axiomatic foundations of the sys-
tem. Specifically a meta-definition may recurse infinitely, and have access to a set of
meta-constants for interacting with Lean itself. Similar to Coq’s Mtac, meta-programs in
Lean can be used to define new proof tactics by representing a tactic as a state monad
over proof subgoals.

2.2 Relationship to Isabelle/Eisbach

Tactics in Isabelle are written in ML, and proof methods have also historically been ex-
clusively written in ML. In this thesis, we present Fisbach (see Chapter 5): a high level
proof method language for Isabelle/Isar. Of the languages presented in this chapter, Eis-
bach most closely resembles Coq’s Ltac: it is a untyped scripting language for writing
automated reasoning procedures by combining existing tools and providing control flow
through matching. This is no accident, as the accessibility and flexibility of Ltac has made
it a popular choice for many Coq proof authors and thus serves as a good reference point
for a successful tactic language.

Eisbach distinguishes itself from Ltac in two important ways: convenient access to
advanced functionality via ML and ad-hoc extensibility through context data. Eisbach
benefits greatly from Isar’s ML integration, allowing for language extensions to be im-
plemented as needed without requiring modifications to Eisbach or Isar. In contrast to
Ltac, Eisbach’s match (see Section 5.2.4) enjoys no special status in the language: it is
implemented in ML as a standalone proof method. Although it is considered a core part
of Eisbach as it provides critical functionality, match also demonstrates what is possible
for end-users to implement in their own proofs. Additionally, in Section 5.2.7 we give an
example of ad-hoc integration with ML, where a fact-producing ML function is used as a
match target to expose previously-inaccessible functionality to Eisbach methods. Similar
functionality is not readily available in Coq, as interfacing with OCaml directly requires
separately compiling custom Coq plug-ins.

In Coq, the Hint command allows users to define sets of hint databases to be auto-
matically applied by the auto tactic. Eisbach’s integration with Isar’s named theorems
makes similar functionality easily available to any custom proof method, allowing post-
hoc method extensions through managed collections of facts in the proof context. This is
motivated by the knowledge management issues that become apparent in large scale proof
engineering, where multiple extensive databases of theorems need to be effectively used by
proof authors. Eisbach allows custom proof methods to easily provide structured access
to user-defined named theorems, automatically using them where applicable rather than
requiring users to manually search through thousands of irrelevant theorems. In Chapter 7
we show how this functionality can be used to define a core algorithm for a non-trivial

13

proof method, while allowing large numbers of additional calculational and terminal rules
to be incrementally proven and provided later.

2.3 Proof Engineering

In the previous sections, we saw how different proof systems approached both their logical
foundations and availability of custom proof automation. Using these systems effectively to
build scalable and maintainable proofs is the core challenge of proof engineering. Proof en-
gineering requires both having effective tools that minimize the cost and effort of building
proofs, while also collecting data on these proof artefacts to better predict and understand
how effort will scale to further proofs.

Differences between proof systems, and differences in proof styles within those systems,
have made it difficult to establish best practices in this field. Although there are many
analogous problems in software engineering, they have their own unique challenges in the
context of proof engineering.

2.3.1 Proof Maintenance

Proofs in a machine-checked system must be consistently maintained, where maintenance
cycle can be triggered in response to changes to the proof system itself (e.g. the semantics
or syntax of a command), a dependant proof or definition, or some external artefact (e.g.
verified source code).

Bourke et al. report [17] on challenges faced in the maintenance of large scale proofs in
the L4.Verified (see Section 3.5) and Verisoft [7] projects. They note the proof activity for a
single module in L4. Verified, showing bursts of proof development followed by long periods
of maintenance. A large portion of this maintenance is performing manual refactoring tasks
on existing proofs, most frequently necessitated as a result of failing to avoid duplication
during the initial proof development. The Levity tool was developed during the scope of
the project to automatically reorganize lemmas.

Proof Refactoring

Restructuring proof is similar in many ways to code refactoring. However, in cases where
untyped automated reasoning methods are applied as part of a proof script, it becomes
nearly impossible to assign static semantics to the proof. Additionally in systems such as
Isabelle, proofs are processed with respect to some context which implicitly affects the be-
haviour of automated methods without being represented syntactically (see Section 3.4.4).

Tain Whiteside gives a rigorous treatment of proof refactorings with respect to the
formal proof language HiProofs and tactic language HiTac [74]. A small set of refactorings
are considered, with a focus on reorganizing lemmas and unfolding automatic procedures
within proofs. The significant drawback with this approach is that the semantics of existing
proof systems need to be applied to HiProofs/HiTac for the proposed refactorings to have
any use.

Alma et al. present two methods for dependency extraction in Coq and Mizar (6]
with the motivation of fast refactoring of large mathematical libraries and instrumenting

14

automated reasoning techniques. The significant difficulty cited is removing unnecessary
dependencies, where the theorem prover has used more than is necessary to complete a
given proof.

Ringer et al. use automation to compute reusable patches to proofs and specifica-
tions [57]. They note the inherent brittleness of formal proofs, as seemingly minor changes
often have wide-reaching effects, and advocate for increased tool support to shift the bur-
den of change away from proof authors.

Eisbach can be effectively used to reduce the maintenance overhead of proofs by pro-
viding a convenient interface for expressing duplicated reasoning. A significant aspect of
proof maintenance is repairing proofs after a small specification or proof change has caused
a particular manual proof step to fail that is repeated in multiple separate proofs. With
Eisbach, this step can be easily factored into a re-usable proof method.

2.3.2 Proof Generalization

Modularization of code is a significant part of proper software engineering, grouping con-
cerns into consistent sub-components and managing their interaction through abstract
interfaces. The motivation is clear from a development and maintenance perspective: a
distinct logical module can easily be re-used when its functionality is needed by another
component, reducing duplication and maintenance overhead. Often this is supported by a
generalizing refactoring, in which a piece of code is parametrized to make it more globally
useful [29].

Similarly, large proof developments must be organized to reduce duplicated reasoning
and lemmas are generalized to support more uses. Isabelle’s locales [10] allow for defini-
tions, proofs and other tools to be generalized over terms and assumptions. The module
system in Coq [22] provides similar functionality to produced parametrized theories.

Felty and Howe implemented a prototype proof system designed to generalize tactic-
based proofs to instrument proof-by-analogy [27]. Their approach operates on the explicit
proof trees generated by the system, rather than the proof text given by the user. Grov
and Maclean [34], in a more recent work, propose a generalization technique based on
Proof Strategies, which leverages techniques from artificial intelligence. They develop a
notion of goal types which capture goal features, matching against them to apply relevant
tactics.

Eisbach is a natural extension to Grov and Maclean’s proof strategies, as they ulti-
mately require some native proof tool in order to manipulate the goal state of the under-
lying prover. Providing a suite of specialized Eisbach methods can therefore enhance the
granularity of these strategies.

2.3.3 Empirical Evaluation of Proof Artefacts

Although the space of large-scale proof development and engineering is growing, there
have been correspondingly few empirical investigations. In formal verification, research to
date has concentrated on measuring formal specification of programs and the relationship
between these measures and system implementations.

15

Formal Specifications

In Olszewska and Sere [55] the authors report on their use of Halstead’s software science
model [36] for the measurement of Event-B specifications. They used this framework to
measure the “size of a specification, the difficulty of modelling it, as well as the effort”.
The specification metrics developed were seen as useful descriptors of the specifications
studied when applied in the DEPLOY project [3].

Some research has also been carried out on other specification metrics. In 1987 Samson
et al. [59] investigated metrics that might aid in cost prediction for software developed.
They use McCabe’s cyclomatic complexity metric [51] and lines of code to measure the
implementation of a small system and measures of operators and equations to measure
the HOPE formal specification. Although their sample size was small, they found a re-
lationship between their measures of the specification and implementation. Tabareh’s
masters thesis [67] contained an investigation of relationships between specification and
implementation measures. A number of specification metrics were defined for Z specifi-
cations. These were size-based metrics such as lines of code and conceptual complexity;
structure based metrics such as logical complexity; and semantic based metrics such as
slice-based coupling, cohesion and overlap. In a more recent paper Bollin [16] evaluated
the use of specification metrics of complexity and quality in a case study comprising more
than 65,000 lines of Z specification text. Staples et al. [65] analysed the relationship be-
tween the specification and implementation sizes for API functions in L4.verified, finding
that the formal specification sizes correlated much more strongly than COSMIC Function
Point count [38].

In Chapter 4 we define a general metric for measuring the size of a formal statement by
analysing its dependency graph, and present a novel idealisation of this metric, useful in
the presence of over-specified statements, by considering the content of its proof to prune
the graph of unnecessary dependencies. We find that this idealised size correlates much
more strongly with the size of the eventual proof of the statement, and therefore is likely
a better estimation of its complexity.

Proofs and Formal Verification

Andronick et al. [8] provide a comprehensive retrospective analysis of the L4.verified
project, citing the “middle-out” development process as a key factor in its success. A
descriptive process model is given, highlighting the major phases of the project and the
iterative nature of its development, along with the evolution of the size of each major
artefact. Despite the data collected, the authors admit that “ We do not yet have a good
understanding of what to measure in formal verification projects.” They note that the
lessons learned from this analysis were qualitative and not immediately useful for devel-
oping “decision-making models to inform project management judgments”.

Later, Staples et al. [64] extracted size and effort data from L4.verified to understand
their relationship. They found a “strong linear relationship” between the effort spent on
a given proof (in person-weeks) and its eventual proof size (in lines of proof script), for
both projects and individuals.

Jeffery et al. [39] propose a research agenda for “empirical study of productivity in

16

software projects using formal methods”. With support from prior literature, they identify
over thirty research questions that require additional data. They note that although
high-level concepts are shared between software engineering and formal methods, such as
“size, effort” and “rework”, the nature of their measurement in proof engineering will be
significantly different. In this agenda, they identify following question:

How are characteristics of formal specifications, properties, or code related to
effort in formal proofs?

The study in Chapter 4 attempts to address this by investigating several verification
projects to establish the relationship between the size of a formal statement and its formal
proof. Finding a quadratic relationship between statement and proof size, we hypothesize
that the effort required to verify software with current techniques will increase quadrati-
cally with the size of its code.

This study, and another question identified by Jeffery et al. motivates the development
of Eisbach:

How can we best combine interactive proof and proof automation to achieve
high proof productivity during initial proof development and subsequent proof
maintenance?

In Chapter 7 we address this question in the context of Eisbach by implementing a set
of proof methods to automate previously-manual proofs in L4.verified.

2.4 Conclusion

In this chapter, we gave a brief overview of different proof systems and their approaches
to proof automation. Some systems, like Mizar, expose very little or no functionality
for providing additional automated reasoning procedures. Proofs are therefore extremely
verbose and manual, but can be independently understood by a human reader. Other
systems, like ACL2, are almost entirely automated. Users may extend the space of au-
tomated strategies available, but their application occurs as an extension to its standard
proof search rather than as an interactive process. Neither Mizar nor ACL2 satisfy the ‘de
Bruijn criteron’: they lack a small, trusted proof checker. In ACL2 this is of particular
concern, given its high reliance on automated reasoning.

LCF-style provers like Coq, HOL and Isabelle provide a small proof kernel that all
manual and automated proofs must use. This allows for powerful automated proof tools,
called tactics, to be developed without compromising trust in the proofs that use them. In
HOL, most tactics are developed in its implementation language ML, while Coq provides
several high-level tactic languages. These languages have different advantages with respect
to usability, expressibility and static guarantees, however the majority of custom Coq
tactics use Ltac, its untyped scripting language. Eisbach provides similar functionality to
Isabelle/Isar, focusing on large scale proof engineering and extensibility.

Proof engineering is the discipline of developing proofs in these systems to be scalable
and maintainable, while also providing empirical analysis of the artefacts and processes

17

involved. We showed existing work on tools for maintaining, refactoring and generalizing
proofs. We also presented several studies on the relationship between formal specifications
and code size, as well as some larger retrospective studies on the successful L4.verified
project. We find, as Jeffery et al. [39] note in their research agenda, that a lack of
empirical analysis in proof engineering has made it difficult to build good models for proof
effort.

In the next chapter we focus on Isabelle, its high-level proof language, Isar, and the
structure of the L4.verified project. These form the basis for the later chapters, where
we investigate the L4.verified proofs in an empirical analysis of proof size vs. specification
size in Chapter 4, design Eisbach as an extension to Isar in Chapter 5, and ultimately
use Eisbach in Chapter 7 to implement a set of proof methods that automate previously-
manual proofs from L4.verified.

18

Chapter 3

Background

In the previous chapter we have seen a wide array of interactive proof systems, each with
a different emphasis on the accessibility of writing custom proof tools. In this chapter we
shift our focus to Isabelle, discussing foundations and the state of the art in automating its
proofs. Isabelle is implemented in Standard ML, along with a rich ecosystem of powerful
automation tools. Isar, Isabelle’s proof document language, provides access to this proof
automation at a high level of abstraction, allowing end users to focus on the logic of
proofs rather than implementation details of the system. However, it is also designed
to be extensible: users may define their own Isar commands in ML for both generating
specifications and automating proof procedures. The result has been an ever-growing suite
of Isabelle functionality that is easily accessible via Isar.

Readers familiar with Isabelle/Isar can skip to Section 3.5, which introduces the
L4.verified project.

Chapter Outline

e Introduction to Isar. Section 3.1 gives a brief overview of the core concepts of
Isabelle/Isar.

e Isabelle/Pure. Section 3.2 covers Isabelle’s meta logic and proof kernel

e Proof Methods. Section 3.3 is an overview of Isabelle’s existing proof methods and
method combinators

e Isar Revisited. Section 3.4 presents a more in-depth discussion on relevant Isar
concepts for this thesis.

e L4.verified. Section 3.5 provides an introduction to the L4.verified project

e The Archive of Formal Proofs. Section 3.6 briefly introduces Isabelle’s Archive
of Formal Proofs

e Formatting Remarks. Section 3.7 discusses the formatting of Isar input and out-
put in this thesis

19

3.1 Introduction to Isar

Isar stands for Intelligible, semi-automated reasoning |71|. It provides a high-level interface
to Isabelle’s proof engine with a suite of commands for driving the proof process while
simultaneously documenting the intuition of the proof author. As Isar itself is devoid of
computation, proof methods (see Section 3.3) are used to interact with Isabelle’s proof state
in order to formally discharge proof obligations. Internally, proof methods use Isabelle’s
proof kernel (see Section 3.2.3) to ensure soundness, and most built-in methods simply
provide a syntactic interface to some Isabelle tactic.

3.1.1 A Simple Proof

In Isar, a proof begins when some command (i.e. lemma) initiates a proof block, stating
the assumptions and conclusion of a desired fact.
lemma IsarSimpleExample:

assumes asml: A =— B
and asm2: A

shows B
In this example, A and B are arbitrary boolean terms that are fixed for the duration of the
proof. The assumptions are given with the assumes keyword asm! (A = B) and asm2
(A). These are local facts that can be used in the scope of this proof. The conclusion,
given with shows, is the goal of the proof.

The proof then proceeds as a series of interactive commands to show that the conclusion
is true under the stated assumptions. The apply command can be given to evaluate proof
method expression on the current proof state. This transforms the goal, either discharging
it or introducing new subgoals. One of the simplest methods is rule that resolves the
conclusion of the current goal against the conclusion of a given rule.

In this case, we can use rule twice to apply both of our assumptions to the goal and
complete the proof.

apply (rule asm1)
apply (rule asm2)

Once the proof is complete and no proof obligations (subgoals) remain, we can use the
done command to conclude.

done
Upon successful completion of the proof, the fixed terms in the lemma are generalized into
schematics (see Section 3.2.2) and the stated assumptions are inserted as antecedents to
the conclusion. In this case the resulting IsarSimpleExample lemma is (A — YB) —
YA = ?B and is now generally available in further proofs.

3.1.2 The Languages of Isabelle

The previous example showed the modus-ponens rule of Isabelle’s meta-logic, demonstrat-
ing the three main sub-languages of Isabelle/Isar:

20

e The Isar command language. Proof commands, such as apply, drive the proof
state and interactively present the user with information about it.

e The term language of Isabelle/Pure. Terms are parsed as arguments to Isar
commands as the formal basis of the lemma statement and proof. Here A and B
are free variables in the term language, and = is a constant, representing meta-
implication from the meta-logic of Isabelle/Pure.

e Isar’s proof method expressions. Proof methods discharge the formal obliga-
tions of the proofs, appealing to the meta-logic of Isabelle/Pure.

In the next section, we present the core concepts of Isabelle/Pure as they relate to proof
and proof method development in Isabelle, and in Section 3.3 we present a more compre-
hensive overview of proof methods.

3.2 Isabelle/Pure

3.2.1 Meta-logic Connectives

Isabelle/Pure is a higher-order logic, serving as a framework for performing Natural De-
duction. Pure is based on simply-typed A-calculus (modulo a/fn-conversions), with a
special type prop defined as the type of propositions. Every logical statement in Pure is a
prop and is constructed with the two meta-logical connectives, A (universal quantification)
and = (implication). Additional meta-connectives are derived from these primitives,
such as = (meta-equivalence) and &&& meta-conjunction. Pure connectives have a low
syntactic precedence, compared to connectives from object logics, such as V or A from
HOL (see Section 3.2.4). The Pure connectives outline inference rules declaratively, for
example:

A
e conjunction introduction, traditionally T B iss A=— B=— AAB
e well-founded induction is: wf r = (Az. (Ay. (y,z) € r = Py) = Pz) = Pa

3.2.2 Terms

A term in Isabelle/Pure is constructed from the following primitives:

Bound Variables in Lambda Abstractions. A lambda-abstraction represents a func-
tion in Isabelle, where bound variables refer to function arguments that are provided
postfix, e.g. (Az y. £ = y) A B evaluates to A = B. Universal quantification A is syn-
tactic sugar for the higher-order function Pure.all, where Az. P z is equivalent to Pure.all
(Az. P z).

Constants. A constant is a term with a globally-fixed (potentially polymorphic) type,
usually provided with one or more definitional axioms (i.e. my equiv = (Az y. (AP.
P x = P y))). Object-logics may define their own interfaces for ensuring introduced

21

definitional axioms are sound, and provide advanced functionality for constructing non-
trivial definitions (e.g. for recursive functions).

Schematic Variables. A schematic variable is logically equivalent to a variable that is
outermost meta-universally quantified, and is represented with a ¢ prefix. Isabelle/Pure
provides lifting functions to convert between these equivalent forms, for example the stan-
dard form of Az. (Ay. Pz y) = Qzis (A\y. P %z y) = Q ?x.

When a given rule is resolved against the current goal, Isabelle’s unifier is used to first
calculate valid instantiations for schematics appearing in both the rule and the goal in
order for them to match.

Free Variables. A free variable is arbitrary-but-fixed within a given context (see Sec-
tion 3.4.4), with optional type restrictions. Outside the context (e.g. when a proof is
completed), a free variable can be generalized into a schematic. By default, most Isar
commands will interpret any unknown terms (i.e. not constant or bound) as free vari-
ables, and proof commands (i.e lemma) will declare them as fixed for the duration of the
proof.

Types

Terms in Isabelle/Pure have an associated type, where an explicit type constraint is rep-
resented with infix notation: term :: type. The syntax of functions is infix, i.e. = =
_ . Logical statements have the special type prop, with meta-connectives used as prop-
producing functions (i.e. = :: prop = prop = prop). Types are constructed from the
following primitives:

Type Constructor. Similar to a constant term, a type constructor is globally defined
and takes zero or more type arguments. For example, the function type (_ =) takes
two type arguments: the domain and range types, while prop takes zero arguments.

Schematic Type Variable. Similar to a schematic term variable, a schematic type
variable represents a polymorphic type that can be instantiated. It is syntactically repre-
sented with a ?’ prefix. For example, meta-universal quantification is polymorphic in the
quantified variable, and has the type (?’a = prop) = prop.

Free Type Variable. Similar to a free term variable, a free type variable represents
an arbitrary-but-fixed type for some context, syntactically represented with a ’ prefix.
Outside this context, free type variables can be generalized into schematics. For example,
if we start a proof with lemma Az. P x = P z, the bound variable z is assigned the
fresh, free type ‘a. Once the proof is complete, z is generalized into a schematic term (i.e.
P %z — P ?z) and a is generalized into a schematic type (i.e. ?a).

Type variables (free and schematic) can be additionally declared as a particular sort, which
restricts how they may be instantiated.

3.2.3 Proof Kernel

Isabelle’s inference kernel follows the LCF tradition of providing an abstract ML type
(thm) that represents the type of “true” statements, with respect to the underlying meta-

22

logic, object-logic and any axioms used. A thm can only be created by ultimately appealing
to the primitive interface of the kernel, although powerful tools can be built using this
interface. The core internal data member of a thm is its underlying cterm: another abstract
ML type representing a term that has been type-checked by the kernel. A thm can therefore
be thought of as a term with an implicit certificate that it is a type-correct prop which has
been derived from the primitive inference rules of Pure.

Rather than maintain an auxiliary data structure for the proof goal state in ML, as
in the original LCF system, in Isabelle it is simply represented as a single thm. A proof
of some hypothetical statement C begins with the trivial fact ¢ = C, provided as a
primitive from Pure. This proof proceeds by manipulating the subgoal structure of this
thm (i.e. its antecedents) and eventually reducing it to having zero subgoals, i.e. = C, or
simply C. Administrative goal operations, e.g. shuffling of subgoals or restricted subgoal
views, work by elementary inferences involving = in Isabelle/Pure.

An intermediate goal state with n open subgoals has the form H, = ... H, = C,
each with its own substructure H = (Az. A © = B z), for zero or more goal parameters
(here just z) and goal premises (here just A x). Following [56], this local context is implic-
itly taken into account when natural deduction rules are composed by lifting, higher-order
unification, and backward chaining. Often, long chains of meta-implication (as usually
seen when pretty-printing subgoals) will be presented with a condensed syntax: (A = B
— C = D) = ([4; B; C] = D).

Isabelle tactics due to [56] follow the idea behind LCF tactics, but implement the
backwards refinement more directly in the logical framework, without the replay tactic
justifications (which is still seen in HOL or Coq today). A tactic is therefore simply an
ML function from thm = thm list, which transforms an intermediate proof state thm into
an unbounded lazy list of results. Tactic failure returns an empty set of results, while mul-
tiple results represents different backtracking options. Simple tactics include: backwards
reasoning by applying a rule to the conclusion of a subgoal, forwards reasoning from a
premise of a subgoal, and solving a subgoal by matching its conclusion with one of its
premises. LCF-style tacticals combine and transform tactics, some common tacticals are:
sequential composition, alternative composition, repeated application, optional applica-
tion, and applying a given tactic to all subgoals. A traditional tactic-style proof script
chains together a series of tactics to reduce a proof state to having no open subgoals.

Although the framework of Isabelle has changed significantly over the past few decades,
the proof kernel has remained largely undisturbed. The Isar proof document language pro-
vides an alternative view on these primitive concepts, managing most of the administrative
details behind-the-scenes while ultimately appealing to this small trusted core.

3.2.4 Isabelle/HOL

Isabelle’s Pure logic is designed as a minimal implementation of an inference system,
allowing users to establish their own object logics within it. Among the many logics
that have emerged, Isabelle/HOL hosts the majority of the current Isabelle applications.
Although Eisbach (see Chapter 5) and most of the tools implemented in Chapter 6 are
compatible with other object logics, we present them in this thesis only in the context of
Isabelle/HOL.

23

Table 3.1: Comparison of Isabelle’s Pure and HOL connectives.

Connective Name Pure Syntax | HOL Syntax
Universal Quantification Nz. Pz Vz. Pz
Implication P = Q P— Q
Equivalence P=qQ P=aqQ
Conjunction P &&& Q PAQ
Disjunction - PvQ
Existential Quantification - Jz. Pz
Negation - - P

HOL formulas are of type bool, where the special purpose function Trueprop :: bool
= prop is used to embed them into the Pure logic. This is known as an object-logic
Judgement, and is implicitly inserted /hidden by the term parser/pretty printer when op-
erating within HOL. Each Pure connective has an equivalent HOL interpretation (shown
in Table 3.1), however HOL additionally defines existential quantification, disjunction and
negation. Furthermore, HOL defines the constants True and False and axiomatizes the law
of excluded middle (i.e. VP. P = True V P = False).

3.3 Proof Methods

As seen in Section 3.1.1, proof methods can be invoked during an Isar proof with the
apply keyword to transform the goal state. An apply does not insist that the proof be
completed, and outputs the resulting proof state to the user after successfully evaluating
the given method. Further apply commands may follow to continue the proof, until it is
eventually concluded by the command done. This chain of method invocations is often
referred to as a proof script, where determining its logical content requires inspecting each
intermediate goal state.

Isar additionally supports producing and presenting, human-readable formal proofs.
These structured proofs explicitly state the assumptions and intermediate conclusions of
each step, referring to proof methods to discharge intermediate proof obligations. Con-
cluding a structured proof block a method is usually done with the by command, which
evaluates one or two given proof methods, requiring that they successfully solve the goal.

The majority of the proofs presented in this thesis are largely unstructured, with some
structured Isar elements (e.g. explicit lemma assumes or proofs concluding with by).

We can consider two rough classifications of methods: basic methods that perform a
single reasoning step or technical adjustment, and automated methods that use heuristics
and search to both simplify and solve goals. Here we present a small selection of proof
methods, seen in the later chapters of this thesis.

3.3.1 Basic Proof Methods

e rule facty ... fact, Backward reasoning from the conclusion. Resolves the conclu-
sion of the current subgoal with the conclusion of each theorem in the given facts,

24

backtracking over each result. The assumptions of the applied theorem are then
introduced as subgoals. Example: use with conjl ([?P; Q] = 7P A ?Q))

e erule facty ... fact, Forward reasoning by eliminating an assumption. Resolves the
conclusion of the current subgoal with the conclusion of each theorem in the given
facts, as well as resolving the first assumption of the theorem with an assumption
in the current subgoal, backtracking over each result. The remaining assumptions
of the applied theorem are then introduced as subgoals. Example: use with conjE
([?P A 2Q; [?P; ?Q] = ?R] = ?R)

e drule facty ... fact, Forward reasoning from an assumption. Resolves an assumption
of the current subgoal with the first assumption of each theorem in the given facts,
backtracking over each result. The remaining assumptions of the applied theorem
are then introduced as subgoals. Example: use with conjunctl (P A ?Q = ?P)

e assumption Discharge the current subgoal by resolving it with one of its assumptions,
backtracking over each result.

3.3.2 Automated Proof Methods

e simp add: facty ... fact, Simplify the current subgoal through rewriting, poten-
tially solving it. A large database of facts and processes are implicitly retrieved
from the context, which can be managed through various declaration attributes
(e.g. rule[simp]) or optionally provided in-place after add:.

e auto simp: facty ... fact, intro: fact; ... fact, elim: facty ... fact, Simplify all
subgoals, additionally applying known introduction (backwards) and elimination
(forward) rules from the context and attempting classical reasoning solvers.

3.3.3 Method Combinators and Backtracking

In general, apply and by accept proof method expressions, basic proof methods combined
using method combinators. Unlike tacticals, there are only a minimal set of combinators
provided. These support backtracking over method results, where the end of each ap-
ply is the first successful result of all combined methods. The standard proof method
combinators are as follows:

1. Sequential composition of two methods with implicit backtracking: the expression
“methody, methods” applies method;, which may produce a set of possible results
(new proof goals), before applying methods to all possible goal states produced by
methody. Effectively this produces all results in which the application of method
followed by methods is successful.

2. Alternative composition: “method; | methody” tries method; and falls through to
methoda when method; fails (yields no results).

3. Suppression of failure: “method?” turns failure of method into an identity step on
the goal state.

25

4. Repeated method application: “method+” repeatedly applies method (at least once)
until it fails.

5. Goal restriction: “method[n]” restricts the view of method to the first n subgoals.

The subsequent example illustrates a proof method expression with combinators:

lemma PA Q@ — P

by ((rule impl, (erule conjE)?) | assumption)+

Informally, this says: “Apply the implication introduction rule, followed by optionally
eliminating any conjunctions in the assumptions. If this fails, solve the goal with an
assumption. Repeat this action until it fails.”

This method expression is applicable to more than one proof, and indeed will solve a
class of propositional logic problems involving implication and conjunction. In Chapter 5
we will see how Eisbach can be used to define a new method using this method expression,
and how it can be refined into a general-purpose propositional logic solver.

3.4 Isar Revisited

In this section we present a small selection of additional Isar functionality, relevant to the
following chapters of this thesis.

3.4.1 Facts and Theorems

Although Isabelle’s proof kernel operates on theorems (i.e. a thm), Isar operates on lists of
theorems called facts. Individual members of a fact may be selected by an explicit index
(i.e. my_fact(n) for selecting the nth theorem of my_fact).

For example, a lemma may prove multiple theorems and store them in a single fact:

lemma my_theorems: A B C
thm my theorems — A, B, C

thm my theorems(1) — A
thm my theorems(2) — B

thm my_theorems(3) — C

3.4.2 Definitions

In Isabelle, new constants can be declared with optional type restrictions, and then defi-
nitional axioms can be added to allow the constant to be rewritten as its body. Isabelle’s
primitive definition package enforces the logical consistency of any declared definition (i.e.
avoiding cyclical dependencies).

The most straightforward access to this functionality is via the definition Isar com-
mand, which simultaneously declares a new constant and its definitional axiom. e.g.:

definition is_nonzero :: int = bool
where is_nonzero z =z # 0

26

This declares a new constant is_nonzero with the type restriction int = bool and simul-
taneously produces a new fact named is_nonzero def (is_nonzero %z = %z # 0).

3.4.3 Records

The record command, provided by Isabelle/HOL, allows for defining record types, with
automatically generated field-update syntax and corresponding lemmas. e.g.:
record machine state =

program__counter :: int
memory :: int = int

lemma
((program _counter = 1, memory = X|) :: machine_state)(program _counter := 0]) =
(program _counter = 0, memory = X
by simp

3.4.4 Proof Context

The structured proof context provides general administrative structure to complement
primitive thm values from the kernel. The context tracks the scope of fixed terms, fixed
types, and structured assumptions.

Revisiting our first example from Section 3.1.1, at the start of the proof, the context
is locally augmented with the assumptions asm! and asm2 as well as the fixed variables

A and B.

lemma IsarSimpleExample:
assumes asml: A =— B
and asm2: A

shows B

Once this proof concludes, proving B, the inner (proof) context is compared to the outer
context to determine how to properly finalize the result. Since asm! and asm2 are only
declared in the inner context, they are added as antecedents to the conclusion (i.e. [A =
B; A] = B). Additionally, since A and B are only fixed in the inner context, they can
be generalized into schematics to produce the final theorem: [?A — ?B; ?A] — ¢B).
The inner context is then discarded, and the resulting rule is added to the set of known
facts in the current (outer) context with the name IsarSimpleExample.

thm IsarSimpleExample — [?4 = ?B; ?A] = 7B

Declaration Attributes

The proof context may also be augmented with arbitrary tool data, providing both global
and local information. This is generally managed through declaration attributes, which
add or remove rules from tool-specific collections (i.e. rule[simp| to add Simplifier rules to
the context).

For example, we can declare local assumptions as simp so they are picked up by the
simp method during a proof.

27

lemma
assumes A: A
and B: B
shows A A B by (simp add: A B)

lemma
assumes A[simp]: A
and B[simp]: B
shows A A B by simp
Once a proof concludes, the effects of any locally-applied declaration attributes are dis-
carded.

Named collections of dynamic facts can be declared with the named theorems com-
mand, with corresponding attributes to add or delete entries (see Section 5.2.1 for more
details.)

named_theorems my_simps

lemma
assumes A[my_simps]: A
and B[my_simps|: B
shows A A B by (simp add: my_simps)

So far these attributes have all had local effects, persisting only for the duration of a single
proof. A declaration can instead be made global (with respect to the outer context) by
appending it to the name of a lemma.

lemma my AB[my simps]: A = B = A A B by simp
Additionally, the declare command allows for applying declaration attributes to existing

facts.
declare my AB[my simps]

Alternatively, the lemmas can declare multiple lemmas simultaneously.

lemmas [my_simps] = my_AB Truel

3.4.5 Rule Attributes

Previously (see Section 3.4.4) we saw declaration attributes used to modify Isabelle’s
proof context. In this section we will cover rule atiributes, which have the same syntax as
declaration attributes, but instead perform in-place rule transformations.

The where and of attributes

These attributes are used to instantiate schematic variables in existing rules. With where
each variable instantiation is named, while of takes an list of terms and instantiates
schematics by order of their appearance in the given rule.

28

lemma [4; Bl = A A B
thm conjl — [?P; ?Q] = 9P A 2Q)

thm conjljwhere P=A4 and Q=B] — [4; B] = A A B
thm conjljof A B] —[4; Bl = A A B

apply (rule conjljof A B])
apply assumption

apply assumption

done

The THEN and OF attributes

These attributes are used to perform in-place composition of existing rules. With OF
the given facts are unified against the assumptions of the source rule. Conversely, THEN
unifies the source rule against the first assumption of the given rule.
lemma
assumes A: A
and B: B
shows A A B
thm conjl — [?P; 2Q] = ?P A ?2Q

thm conjl[OF A] — ?2Q = A A ?Q
thm A[THEN conjl] — ?2Q = A A 2Q

thm conjl[OF A B] — A A B

apply (rule conjl[OF A B])
done

3.4.6 Isabelle/ML

Isar supports embedding ML as a sub-language, where logical entities (i.e. terms and
theorems) can be referred to via antiquotations [72]. The ML command can be used to
execute arbitrary ML, optionally defining new variables or functions.

For example, we can define an ML tactic that attempts to solve the goal by resolving
it with Truel (i.e. the goal is trivially True).

ML wal trivial_tac = resolve0 _tac [@Q{thm Truel}] 1)

Here the thm antiquotation has retrieved the fact Truel from the current context and
embedded it in the tactic. We can then use this directly with the special-purpose tactic
proof method, to invoke an ML tactic as a proof method.

lemma True by (tactic «trivial _tac))

Additionally, various Isar “setup” commands take an ML function as an argument in order
to define new Isar tools (e.g. attributes or methods, see Section 3.4.5 and Section 3.3). We
can use method setup to define a new proof method from this tactic.

29

method _setup trivially _True = (Scan.succeed (fn ctat => SIMPLE METHOD trivial_ tac))

lemma True by trivially True

This natural integration with ML allows Isar to enjoy a significant amount of ad-hoc ex-
tensibility. However it also allows for many more opportunities for unexpected behaviour.

lemma False
apply (tactic (fn _ => Seq.single @Q{thm Truel})

No subgoals!

In this example it appears that we’ve successfully proven False. Fortunately an error is
raised when we try to finish the proof.

done

Lost goal structure:
True

In this example we’ve destroyed the internal subgoal structure (see Section 3.2.3) of the
proof by replacing it with simply True. Although this now appears to be a completed
proof, with zero open subgoals, it does not prove the intended goal of False. Isar therefore
throws an error when attempting to finalise the proof. This particular pitfall can be
avoided by using only built-in tactics that maintain Isabelle’s subgoal structure; however
this demonstrates that, with ML, much more care must be taken to manage concepts that
are otherwise abstracted away by Isar.

3.5 LA4.verified

The L4.verified project [42] produced a formal, machine checked proof of the full functional
correctness of the selL.4 microkernel, down to the binary level, followed by proofs of security
properties about the kernel. sel.4 is a small operating system kernel, designed with explicit
goals of high performance, formal verification, and secure access control. The kernel itself
comprises 10, 000 lines of C code, while its corresponding proofs have grown to over 500, 000
lines of Isabelle.

The L4.verified proofs feature heavily in this thesis, as they are to-date among the
largest proofs in both Isabelle and interactive theorem proving at large. In Chapter 4 we
use several of its sub-projects in an empirical analysis analysing proof effort scalability,
and in Chapter 7 we present case study where Eisbach is used to build proof methods that
automate previous-manual proofs from L4.verified.

In L4.verified, the primary original result was refinement between the C implemen-
tation and its abstract specification of seL.4. Roughly, a specification A is said to refine
specification C' if all possible observable behaviours of C are subsumed by the possible
behaviours of A, given the same inputs (see Chapter 7 for more details). For sel4, this
implies that the C implementation will always adhere to the abstract specification (under
some assumptions). Desirable properties of the abstract specification, such as avoiding

30

invalid memory accesses and maintaining invariant properties, are then easily shown to
hold of the C implementation via refinement.

More recent work has extended this refinement stack in both directions; from showing
that the final compiled binary is a faithful representation of its C source [62], to building
more abstract specifications for reasoning about initialized systems on top of sel.4 [19].
This allows for both greater trust in the verification result, and extends the scope of what
kinds of properties can be proven about the kernel.

3.5.1 LA4.verified specifications

Rather than directly prove refinement between the C and abstract specification, the project
was instead divided into three sub-specifications:

The Abstract Specification (ASpec) The abstract specification is manually written
in Isabelle/HOL as a functional specification for the seL.4 microkernel. It is formalized
as a non-deterministic state monad (see Section 7.1.2) in order to abstract away imple-
mentation details. For example, the concrete scheduling algorithm is abstracted into non-
deterministically choosing a runnable thread. Additionally some kernel data structures,
such as the capability derivation tree, are abstracted into pure Isabelle/HOL functions.

The Executable Specification (ExecSpec) In the early design phases of L4.verified,
an initial prototype for sel.4 was built in Haskell. This prototype was designed to be binary
compatible with the C implementation by modelling hardware interactions as stateful
transformations of a state monad(see Section 7.1.2). The model is sufficiently accurate
such that it can be executed on the QEMU emulator [14], which allowed for design decisions
to be rapidly tested in the early days of development. This Haskell kernel serves as a
natural intermediate specification between the C and abstract. Rather than formalize the
semantics of Haskell in Isabelle/HOL, however, it was more straightforward to generate
monadic functions directly from the Haskell source. This resulted in a shallow embedding
of the specification, which is better supported by the automation in Isabelle/HOL and is
significantly easier to reason about.

The C Implementation and Specification (CSpec) The sel.4 microkernel is written
in a slightly restricted subset of C in order to facilitate translation into Isabelle/HOL and
verification. To provide this C source with a formal semantics, it is preprocessed and given
to Norrish’s C-to-Isabelle parser [69]. This parser performs a conservative translation of C
semantics into SIMPL [60], a minimalistic imperative language defined in Isabelle/HOL.
The resulting SIMPL program (often referred to as the C specification) then serves as the
primary verification artefact for L4.verified within Isabelle.

3.5.2 L4.verified refinement stack

Abstract invariants (AInvs) This proof contains the definition and proof of a collec-
tion of invariant properties about the abstract specification (ASpec). These were initially
developed to ultimately support the executable-to-abstract (Refine) proof, and later used

31

during the Access and InfoFlow proofs. It is supported by the wp method, developed to
perform weakest-precondition style reasoning over monadic specifications (see Section 7.1).

Executable-to-abstract refinement (Refine) This proves that the executable spec-
ification (ExecSpec) is a refinement of the abstract specification (ASpec). It is combined
with the result of CRefine to ultimately prove that the C implementation (CSpec) satisfies
the abstract specification. Its refinement calculus previously lacked an automated proof
method, prompting the case study presented in Chapter 7.

C-to-executable refinement (CRefine) This proves that the embedded C implemen-
tation (CSpec) is a refinement of the executable specification (ExecSpec). It is supported
by the semi-automated ctac method, used for transforming proof states in the refinement
calculus and optionally generating verification conditions for refinement.

3.5.3 Additional L4.verified proofs

Access Control (Access) The proof of functional correctness was followed by a proof
that sel.4 enforces integrity [63]. Phrased as an invariant property, integrity places an
upper bound on the possible effects of each kernel invocation across security domains.

Information Flow (InfoFlow) Building on the Access proof, InfoFlow proves that
seL4 enforces confidentiality [52]. This is proven by reasoning about multiple program
traces, placing an upper bound on what information is read during a kernel invocation
and ensuring that security domains can avoid leaking confidential information.

3.6 The Archive of Formal Proofs

The Archive of Formal Proofs (AFP) [43] is a collection of proofs in Isabelle, aimed at
fostering the development of formal proofs and providing a place for archiving proof de-
velopments to be referred to in publications. The AFP counts over 400 entries. Two
of the largest software verification proofs from the AFP are JinjaThreads [44] and SAT-
Solver Verification [45], used in the empirical study presented in the following chapter.

JinjaThreads Jinja is a Java-like programming language formalised in Isabelle, with
a formal semantics designed to exhibit core features of the Java language architecture,
and formal proof of properties such as type safety and compiler correctness. JinjaThreads
extends this development with Java-style arrays and threads, and shows preservation of
the core properties.

SATSolverVerification This is a proof of correctness of several modern SAT solvers,

including termination proofs as well as a large number of lemmas about propositional logic
and CNF-formulae.

32

3.7 Formatting Remarks

3.7.1 Fonts

When presenting Isar input and Isabelle’s output in this thesis, we use three fonts to
indicate the status of the given text.

e For Isar commands and minor keywords we use bold serif. Example commands
are lemma, term and done. Example minor keywords are assumes, shows and
uses.

e When formatting both terms and inner Isar syntax, we use italics to indicate that
content is either locally scoped (e.g. a bound or arbitrary-but-fixed variable) or that
it is some other minor content (e.g. a flag or text argument).

e We use sans serif to indicate that content is some fixed constant, e.g a proven lemma,
or a defined term or method.

In the example from Section 3.1.1, the formatting of the line apply (rule asm1) indicates
that apply is an Isar command, rule is a defined method (as opposed to a method parameter
as in Section 5.2.3), and that asm! is a locally-scoped assumption.

For readability (seen primarily in Chapter 7), Isar keywords will occasionally be omit-
ted from the text when the meaning is clear.

3.7.2 Interactive Proof State

The proof of IsarSimpleExample in Section 3.1.1 does not show Isabelle’s output during
the proof process. Each command (i.e. lemma, apply, and done) produces interactive
feedback to inform the author of Isabelle’s proof state. Additionally, diagnostic commands
(i.e. term and thm) allow the user to inspect logical elements of the current state.

To show Isabelle’s output interactively in this thesis, we present the output from a
given command between two horizontal lines. Revisiting our previous example, we may
choose to show the proof state at each step.

lemma IsarSimpleExample:
assumes asml: A = B

and asm2: A
shows B

1.B

Here we see that the current proof state has a single subgoal, to prove B. We apply asm1
with rule to perform backwards reasoning on this goal.

apply (rule asmI)

1. A

33

This has resolved the conclusion asm! with the current goal conclusion B, and now requires
that we show A. At any point, we can use the diagnostic command thm to inspect the
content of facts.

thm asm1

A— B

thm asm?2

A

We can apply asm2 to solve the current goal and finish the proof.

apply (rule asm?2)

No subgoals!

At this point the proof is complete and we conclude with done.

done

For the sake of brevity, we may instead give Isabelle’s output as inline comments in the
Isar text (prefixed by —).

lemma IsarSimpleExample:
assumes asml: A =— B
and asm2: A
shows B— 1. B
apply (rule asmi1) — 1. A

thm asml — A = B
thm asm2 — A

apply (rule asm2) — No subgoals!
done

34

Chapter 4

Empirical Analysis of Proof Effort
Scalability

In this chapter, we investigate the relationship between the formal specification of a soft-
ware verification proof development and the size of its eventual formal proof. We present an
empirical analysis of proofs from both L4.verified (see Section 3.5) and Isabelle’s Archive
of Formal Proofs (see Section 3.6), finding a consistent quadratic relationship in these
proof developments, between the size of the formal statement of a property, and the final
size of its formal proof.

Combined with previous work by Staples et al. [64], which shows a linear relationship
between the effort required to complete a proof and its final size, this suggests a quadratic
relationship between the formal specification of a program and the effort required for its
proof.

Informally this quadratic relationship can be justified by a common structure seen in
software verification proofs: where a desired set of n properties must be verified over k
lines of code, requiring nxk lines of proof. This presents a clear scalability challenge for
verifying larger systems: as the number of lines grows, reducing the required effort of
verifying each line becomes critical.

Later, in Chapter 5 we present Eisbach, a high-level extensible proof method language
for Isabelle/Isar that allows proof authors to reduce duplicated reasoning and manual proof
effort. In Chapter 7 we use Eisbach in a case study to develop a set of proof methods for
performing automated reasoning in the refinement calculus of L4.verified [23]. We demon-
strate the effectiveness of these methods by applying them to several existing L4.verified
proofs to drastically reduce their size and complexity. By eliminating a significant manual
component of these proofs, the resulting infrastructure becomes much more capable of
scaling to both new, larger programs and subsequent iterations of L4.verified.

Acknowledgements

This chapter is based on work that previously appeared at the International Conference
on Software Engineering, 2015 [47], in collaboration with Toby Murray, June Andronick,
Ross Jeffery, Gerwin Klein and Mark Staples. The author was the primary contributor

35

to this paper. Specifically, his contributions were: the development of a proof metric
collection framework for Isabelle, the collection of all the presented proof data, and the
idealised metric detailed in Section 4.3.

Chapter Outline

e Motivation and Summary. Section 4.1 presents the need for empirical analysis
of proof artefacts for proof engineering.

e Approach and Measures. Section 4.2 describes the precise measures used in this
investigation.

e Measures in Isabelle. Section 4.3 specializes the measures from Section 4.2 to
Isabelle.

e Data Collected. Section 4.4 presents the raw data from the investigation and its
analysis.

e Results and Discussion. Section 4.5 reflects on the data and the metrics used.

e Conclusion. Section 4.6 summarizes and puts the discovered quadratic relationship
of specification size and proof size into the context of this thesis.

4.1 Motivation and Summary

Despite a number of recent successes in software verification, a major hurdle has been a
general lack of experience in large scale proof development. This makes it difficult to draw
general conclusions about how proof effort scales, a critical question in proof engineering.

This suggests that empirical analysis of successful verification projects is needed in or-
der to understand the scalability of existing approaches. Earlier work [65] has showed the
need for a better understanding of how to measure artefacts in formal methods, to inform
costs and estimation models. An analysis of the existing literature [39] revealed a short-
age of empirical studies to provide industry with validated measures and models for the
management and estimation of formal methods projects. As Stidolph and Whitehead [66]
state:

experienced formal methodologists insist that cost and schedule estimation tech-
niques are unsatisfactory and will remain so until a large body of experience
becomes available.

In other words, the absence of many successful large-scale verification projects makes
it impossible to build a generally-applicable predictive model for required effort. We
can, however, build explanatory models from the few existing suitable projects in order
to understand existing scalability challenges. This paves the way for building predictive
models as more experience becomes available, while informing the development of new
proof techniques and technologies.

36

Previously [64], Staples et al. analysed proof productivity, and revealed a strong linear
relationship between effort (in person-weeks) and proof size (in lines of proof script), for
projects and for individuals. In this investigation we examine the inputs to software
verification projects: formal statements of the properties to be proved about programs,
and formal specifications of the programs. Our goal is to identify measures of these formal
statements and specifications that relate to the final size of their interactive proofs.

We present results of an empirical analysis of a large number of proofs written in
Isabelle. We measure the size of each lemma, in terms of the total number of concepts
needed to state it, and compare that to the total number of lines used to prove it. We
analysed four large sub-projects from L4.verified (see Section 3.5) as well as two proofs
from the Archive of Formal Proofs (AFP) (see Section 3.6). From these 6 projects, we
analysed a total of 15,018 lemma statements and associated proofs, covering a total of
more than 215,000 lines of proof.

We find a consistent quadratic relationship between statement size and proof size, with
the coefficient of determination (R?) for the quadratic regressions varying from 0.154 to
0.845. One of the four sub-projects from L4.verified stands out with a lower R? and a sig-
nificant collection of outliers, with proof sizes much smaller than would be expected given
the statement size. Investigation revealed that these outliers were caused by over-specified
lemma statements (see Section 4.2.4), with large constants mentioned unnecessarily, ef-
fectively inflating their statement size. To test this hypothesis, we defined an idealised
measure for statement size that is an approximation of its minimum size. Using this mea-
sure greatly strengthens the relationship between statement size and proof size across all
the projects, with R? between 0.73 and 0.937. This implies that there is a very strong
quadratic relationship between statement size and proof size, when statements are not
unnecessarily over-specified.

This supports a hypothesis made by Cock et al. regarding the scalability of their
approach in L4.verified, stating “We hypothesise that the effort for the whole verification
so far was quadratic in the size of the kernel.” [23| Microkernel code is highly non-modular
by nature, and so verification is dominated by proving invariants. Each invariant needs
to be preserved by each feature, which in turn relies on and modifies data structures used
by other features. Our current work provides empirical evidence for this hypothesis, by
correlating proof size to statement size.

4.1.1 Limitations

In general, it is not possible to create a universally applicable model that relates a formal
statement to its proof size or required proof effort. For example, Fermat’s Last Theorem
can be trivially stated, and yet over 350 years passed after its initial conjecture before a
proof was found!.

A universal model limited to only software verification is impossible as well. We
could encode Fermat’s last theorem as a verification problem (i.e. a program that asserts
a™ 4+ b" # ¢" for any inputs where n > 2). If the integer sizes are unbounded, verifying
this program would be at least as difficult as proving the original theorem.

! Aside from Fermat’s hypothetical proof, of course.

37

Conversely, we could construct a degenerate 100,000 line program with extremely com-
plex source code, but where the main entry point immediately returns without calling any
other functions. This would be trivial to verify (assuming this is the intended behaviour),
but would likely appear to require significant effort by any metric.

With that said, we posit that most software to be verified will not contain such edge
cases, and indeed must be well-formed in order for a human to be intuitively convinced of
its correctness. The bulk of the work will therefore not be in solving any hard problems,
but rather iterating each desired property over the entire program’s structure. From this,
we hypothesize that by gathering data on existing, successful verification projects, we can
gain insight into how real-world proof effort will scale.

4.2 Approach and Measures

We can consider two primary artefacts when discussing a proof development in an inter-
active theorem prover: a specification S and its corresponding proof P. For example, in
formal verification S comprises the formalized program code (with corresponding seman-
tics) along with desired correctness properties for the software. To prove S in an ITP, we
must provide a proof P in the proof language of the ITP, most likely appealing to results
from existing libraries or intermediate lemmas. The set of all definitions, intermediate
lemmas, and the final proof P of S form the proof development that ultimately establishes
the property expressed in S. This S is then referred to as the top-level statement or
property of the proof development.

In order to successfully develop a proof of S it must be decomposed into sub-
components that can be stated and proven as independent lemmas. Each of these lemmas
therefore contains a fragment of the overall specification as its formal statement. The
final proof P is the culmination of these lemmas, which ultimately describe all of the
components of S.

In this section we describe a general measure for the size of a formal statement of a
lemma, as well as the size of its formal proof.

4.2.1 Proofs and Specifications

A proof development in an ITP is comprised of definitions, lemma statements and proofs of
those lemmas. Definitions are used to introduce new constants and give them semantics,
such as function specifications, program invariants or data structures. These definitions
are given in the term language of the theorem prover, which has a precise syntax and se-
mantics. Lemma statements relate constants, positing a fact that is then proved. Similar
to definitions, lemma statements are written in the term language. Term and proof lan-
guages vary significantly between theorem provers, however they all share similar traits.
A term can express logical statements, with connectives (e.g. conjunction, implication)
and quantifiers (e.g. universal, existential). Proof languages have syntax for appealing to
automated reasoning tools and previously proven results. A proof, in this context, is a
sequence of appeals which eventually demonstrate that a lemma statement is true.

As a running example, consider the following definitions of two new constants C and

38

E, which mention some propositions A and B from a previous proof development. They
also depend on the exclusive-OR operator ¢ and the usual logical connectives.

C=(-A) Vv (-B)
E=BacC

The constants implicitly form a dependency graph. A constant ¢ directly depends on
another constant ¢ if ¢’ appears in the definition of ¢. This represents an edge in the
constant dependency graph from node ¢ to node ¢’. In our example, E directly depends
on B, C, and the & connective. We say that ¢ depends on ¢” if ¢’ is reachable from c
in the constant dependency graph. In other words, ¢” must be defined at some point in
order to define c¢. In our example E depends on all of A, B, C, and the three connectives
@, V and —.

Similarly lemmas also implicitly form a dependency graph: a lemma [directly depends
on another lemma !’ if I’ is used to justify some step in the proof of I. Lemma [is then
said to depend on [I” if at any point [” had to be proved for the proof of I to hold. In
our example, one can state the following lemmas to be proved (where the — operator is
logical implication).

E — (AV-B) (4.1)
EAB — A (4.2)

The truth of Formula 4.1 and Formula 4.2 simply relies on the definitions of E and C and
standard propositional logic. Their Isabelle proofs might look like the following:
lemma Eql: E — (A vV —B)
unfolding E def C_def
apply (rule HOL.impl)
apply (elim xorE HOL.disjE HOL.conjE)
apply (subst (asm) HOL.de Morgan _ disj)
apply (subst (asm) HOL.not not)
apply (rule HOL.disjl1)
apply (elim HOL.conjE)
apply assumption
apply (rule HOL.disjl2,assumption)+
done

lemma Eq2: EA B — A
apply (metis Eql)

done
It is not necessary to understand these proofs. We observe, however, that the proof of the
lemma Eql refers only to facts from the HOL proof development, which defines the Higher
Order Logic of Isabelle (see Section 3.2.4), as well as the facts that capture the definitions
of C and E, C_def and E def respectively, plus the fact xorE that in this example has
already been proved in an existing proof development on which it builds.

39

4.2.2 Proof Size

In our analysis we consider a given lemma and relate its statement size to its proof size.
Formally we define the size of the proof of a lemma [to be:

Proof size of lemma [: the total number of source lines used to state and
prove [, excluding definitions.

Note that this includes the proofs of all lemmas that [depends on. We exclude definition
declarations (such as C_def) because, although they are part of the proof source, we are
interested in the total number of new source lines written to complete stages (2) and (3)
of a proof development; definition declarations are all written in stage (1).

We refine this notion of size slightly by only counting source lines from a particular
proof development D. We call this the proof size of [with respect to D, defined as follows.

Proof size of lemma [with respect to proof development D: the total
number of source lines required to state and prove [, excluding definitions, as
well as lemmas and proofs outside of D.

The reason that we contextualise proof size this way is because proof development is
cumulative, and new proofs often build on old ones. For example, a proof development D,
proving the correctness of Dijkstra’s algorithm, would appeal to lemmas and definitions
from an existing proof development G, a formalisation of graph theory. G would provide
a definition of a graph, edges, paths, and would have lemmas proved about reachability.
When measuring the size of the proof of a lemma from D in order to gauge its effort, one
would consider the lemmas in G to have come at zero cost, and not take their size into
account. More precisely, in general we measure the size of any proof of a lemma from a
proof development D with respect to D, in order to exclude from its size any pre-existing
lemmas on which it depends.

In our example, all the facts used in the proof of Eql come from an pre-existing proof
development except C_def and D_def that are the definitions of C and D respectively.
Thus none of the direct dependencies of the proof of Eql are counted when computing
its size. The size of the proof of Formula 4.1 therefore is just its immediate size (i.e. 11
lines), while the proof of Formula 4.2 would be measured as its immediate size summed
with the size of Formula 4.1 (i.e. 3+ 11 = 14 lines).

4.2.3 Raw Statement Size

Here we define a measure for the statement of [that we found correlates well with the
proof size of [as defined above:

Raw statement size for lemma [: the total number of unique constants
required to write the statement for [, including all of its dependencies, recur-
sively.

“Unique” specifies that each constant is counted at most once per statement. This measure,
importantly, is computable after stage (1) in the proof development as it only requires
definitions to have been written, and does not depend on proofs. We refer to this as a

40

statement’s raw size. This is distinguished from the statement’s idealised size, introduced
later.

Similarly to proof size, it often makes sense to measure statement size with respect
to some proof development D. Doing so excludes all constants that fall outside of D.
However, while we measure the size of a proof in proof development D with respect to D
itself, it often makes more sense to measure statements in D with respect to a larger proof
development D’ that includes D. In the example of the previous section, when measuring
the size of Formula 4.1, we might choose to count the sizes of A and B, even though these
constants have been defined in a pre-existing proof development, and even though proofs
about A and B in this pre-existing development will not be counted in the size of the proof
of Formula 4.1. The reason is that the effort of proving a new fact about a constant ¢
(here e.g. A) might be highly impacted by the size of ¢ even though it has been defined
in a pre-existing development. In the context of the sel.4 proofs we observed this effect
to be extremely strong, where most statements referring to selL.4’s abstract specification
(defined in a separate proof development)would have proofs which follow the structure of
the abstract specification and carry the complexity of reasoning about it.

In the example of the previous section, assume we choose to measure the size of For-
mula 4.1 and Formula 4.2 with respect to the entire proof development down to the axioms
of the logic, i.e. including the definitions of A and B and all the operators. Assume that A
and B are complex constants with sizes 100 and 200 respectively. For simplicity we assume
their dependencies are disjoint, so C would have a size of 1 + 100 + 200 + 1 + 1 = 303,
where we add 1 for C itself, the size of A, the size of B and then the size of = and V (we
assume for simplicity that they are defined axiomatically). We can then calculate the size
of E as 1 4+ 1+ 303 = 305, by adding 1 for E itself, 1 for & (also assumed to be defined
axiomatically) and then the size of C. Note that we do not add the size of B, as it has
been considered already when calculating the size of C, and we are only counting unique
constant dependencies. Then Formula 4.1 would have a size of 305 + 1 = 306, where we
count the size of E and the size of — (the other constants being already considered in
the size of E). Similarly Formula 4.2 would have a size of 306.

Note that both proof size and statement size are inherently recursive; the proof size
of [includes the size of its dependent lemmas, and the statement size of [is based on
its dependent definitions. No attempt is made to measure the immediate size of any
lemma, as this is far too susceptible to fluctuations in individual proof style. In our
example, Formula 4.2 has a small immediate proof size (3 lines), but would be given the
same statement size as Formula 4.1. By considering each in terms of all of its dependencies
we get a much more robust measure.

4.2.4 Idealised Statement Size

Most lemmas make stronger assumptions than are actually necessary. In particular, a
lemma might have a concrete term where an abstract one will suffice: the statement “1
is odd” is less general than the statement “2n + 1 is odd”, which has an abstract term
“2n 4+ 1” in place of the concrete term “1”. It is the job of the proof engineer to decide the
appropriate level of generality for a lemma, based on its intended use. In cases where a
constant with a large definition is included unnecessarily, we observe a large discrepancy

41

between statement and proof size.

In our example, consider the statement —C Vv C. Suppose it was proved in one step by
appealing directly to the law of excluded middle, an axiom of HOL in Isabelle. The raw
size of this statement is 303 + 1 + 1 = 305. This is an over-estimation of the statement’s
complexity because the statement mentions C unnecessarily — C could be abstracted
without affecting the proof. Doing so (by replacing the constant C by a variable x) would
yield a statement with size of just 2 (1 for each logical connective), a much better indication
of its proof complexity.

In practice, over-specificity can save effort in provers like Isabelle, as it can aid auto-
mated reasoning by simplifying higher order unification, a primitive procedure in Isabelle.
Additionally it is not often worth the effort to generalise a lemma that will only be used
once. As a result, it is common to see many over-specific lemmas in large proof develop-
ments.

To address this, we introduce idealised statement size. The idealised size for the state-
ment of some lemma, [is the size it would have been given had it been stated in its most
general terms. More precisely, it is defined as follows.

Idealised statement size for lemma [: the raw size of the statement of [
had it been abstracted over all possible constants such that I’s proof remains
valid.

Note that we apply this recursively, conceptually removing mentions of redundant con-
stants in all dependant constants of [’s statement. The idealised statement size of [is
always smaller or equal to the raw size of [, as it may only remove unnecessary constants
from measurement. Unfortunately, computing this size is undecidable as it would require
a precise analysis of why [is true. We show how it can be approximated in Section 4.3.3.

4.3 Measures in Isabelle

The definitions given in the previous section abstracted away from any specific theorem
prover. Here we explain how we compute these measures for Isabelle.

4.3.1 Measuring Proof Size

Previously, in Section 3.1 we covered the structure of a proof in Isabelle/Isar. Each Isar
proof begins with a proof command (e.g. lemma) and ends with a terminal command (e.g.
done) once the proof is complete. The lemma statement as described in Section 4.2.2 is
both the stated conclusion and any assumptions.

To measure proof size, we distinguish Isabelle fact (see Section 3.4.1) from the more
specific Isabelle lemmas. Although Isabelle makes no formal distinction between these two,
we consider a lemma to be a fact which has been explicitly stated by a proof engineer,
with a provided Isabelle/Isar proof. A fact is more general: it is a statement that has been
proved by any means. This includes lemmas, but also all the statements automatically
generated and internally proved by Isabelle. For example, defining a recursive function
f requires a proof of its termination. In many cases this termination proof can be done

42

automatically with no manual invocations of tools. This fact is implicitly used in any
lemma [that reasons about f, but it does not have a proof size that can be measured in
such a way that would correspond to the effort required to prove it (since it is automatic).
Therefore, when computing the size of the proof of a lemma [, we will only count the proof
sizes of used lemmas. Lemmas are the only facts whose proofs require substantial human
effort, therefore they are the only ones relevant to our investigation.

For a given lemma [in Isabelle we say that the lines between the beginning and
ending keywords (inclusive) constitute the proof of {. The immediate size of [is therefore
simply its line count. Then we compute all the lemmas which [recursively depends on
and add their sizes to get I’s total size. Here we only count unique lemmas: if multiple
dependencies of [depend on some I’, we only count the size of I’ once. We compute lemma,
dependencies by examining proof terms produced by Isabelle [15], where a proof term is
the internal formal representation of a proof. The total size of [with respect to some proof
development D considers all lemmas outside of D to have size 0. Simply put, for each
proof development, lemmas not from that development (e.g. pre-existing library lemmas),
do not contribute to the measured size of proofs.

This measure approximates the proof size of [as described in Section 4.2.2. It is
incomplete, however, as it does not include source lines which must exist for [to be valid,
but for which this dependency relationship is not easily found. For example, the proof
of [may depend on certain syntax existing, declared with one line using the notation
keyword. This is not factored into the total size of [. The impact of this on the validity of
the measured proof size is assumed to be minimal, as the size of Isabelle proof developments
is dominated by proof text.

4.3.2 Measuring Raw Statement Size

In Section 3.4.2 we saw how new constants could be introduced to Isabelle with Isar. Inter-
nally these definitional commands create simple definitions based on the user specification,
proving canonical facts for interpreting them. In our running example, the definition of
C introduces the new name C with body (-A) V (—B), and a new fact C_def for the
statement C = (-A) V (—-B).

To measure the size of a given lemma statement S as described in Section 4.2.2 we
recursively inspect all definitions mentioned in S. The number of unique definitions tra-
versed will be the size of S according to this measure.

4.3.3 Approximating Idealised Statement Size

In Section 4.2.4 we introduced idealised statement size as a refinement of raw statement
size. Although computing the idealised size of S is, in general, undecidable, it can be
approximated by examining the finished proof of S.

Intuitively, if S refers to C but the defining fact C_def of the constant C does not
appear in the dependency graph of the proof of .S, this means that the truth of S does not
depend on the definition of C, and that S could be rewritten by replacing the constant
C by a variable . We therefore exclude the size of C when computing the approximate
idealised size of S. For instance, the approximate idealised statement size of the statement

43

—C Vv C, proved by appealing directly to the law of excluded middle without using C _def,
is 2.

More generally, for each constant ¢, we have a set of defining equations. These are
Isabelle facts which are the canonical interpretation of ¢. In the case of simple definitions,
this is just the equation that was given when ¢ was defined (such as C_def). To compute
the idealised size of a statement .S, we exclude all the constants whose defining equations
are never used in the proof of S. This will always be an over-approximation of the idealised
size of S, but is at worst the original statement size.

This approximation of idealised statement size cannot be a leading predictor of proof
size, as it requires stage (3) of the proof to be complete. However, it is useful when trying
to build an explanatory model for understanding the relationship between statement size
and proof size. The implications of using this measure are discussed in Section 4.5

4.4 Data Collected

We applied our exploratory analysis to six projects: (1) four top-level statements from
L4.verified, and (2) two proof developments in the Archive of Formal Proofs.

4.4.1 LA4.verified Proofs

Previously (see Section 3.5) we outlined the structure of L4.verified. We applied these
measures to the Alnvs, Refine, Access and Infoflow proof developments, taken from the
public release of the sel4 proofs [68]. The statements measured for each proof develop-
ment are all the dependencies of its top-level statement, computed with respect to that
development. The statement sizes for these proofs are computed with respect to the whole
selL.4 verification development, where the large kernel specifications are defined.

Alnvs: The top-level statement in this proof depends on both the abstract specifica-
tion for seL4 (ASpec) and the abstract invariants (invs). We measured 2,790 lemmas from
Alnvs, including the top-level statement with a raw size of 1,292, ideal size of 949 and
proof size of 32,214 lines (measured as described in Section 4.3).

Refine: The top-level statement depends on the abstract specification (ASpec) and
the executable specification (FEzecSpec), as well as a corresponding global invariant for
each of them. Refine builds on Alnvs, but we compute the proof sizes for Refine with
respect to itself. That is, proofs from AInvs do not contribute to the size of proofs from
Refine. We measured 4,143 lemmas from Refine, including the top-level statement with a
raw size of 2,398, ideal size of 1,746 and proof size of 67,856 lines.

Access: The top-level statement depends on ASpec, the definition of integrity (see Sec-
tion 3.5.3), as well as invs. Similar to Refine, we only measure Access proofs with respect
to itself, taking proofs from Refine and AInvs for granted. We measured 724 lemmas from
Access, including the top-level statement with a raw size of 1,395, ideal size of 1,083 and
proof size of 8,116 lines.

InfoFlow: The top-level statement depends on ASpec, the definition of integrity, and
invs. Additionally it includes a more involved discussion of program execution traces.
As previously done, proof sizes from InfoFlow are measured with respect to itself. We

44

Table 4.1: R? and equations for Figure 4.1 and Figure 4.2

Proof Name | Size Used R? Equa(‘iion flw) = Z @+ b i te
Alnvs raw 0.845 0.02579 | -8.181 394.9
idealised | 0.937 0.04325 -4.399 100.4
Refine raw 0.724 0.01198 | -5.355 519.1
idealised | 0.799 0.01737 2.865 | <2.2E-16
Access raw 0.735 0.0032 -1.112 86.45
idealised | 0.889 0.006059 -0.915 57.36
InfoFlow raw 0.154 | -0.0003736 | 1.743 | <2.2E-16
idealised | 0.73 0.007893 -3.652 260.4
JinjaThreads raw 0.457 | 0.05631 -16.46 472.9
idealised | 0.694 0.1166 -16.04 281
SATSolver raw 0.798 1.711 -65.43 375.7
Verification| idealised | 0.802 4.128 -77.52 223.7

measured 1,665 lemmas from InfoFlow, including the top-level statement with a raw size
of 2,029, ideal size of 1,323 and proof size of 19,579 lines.

4.4.2 Proofs from the AFP

The Archive of Formal Proofs (see Section 3.6) is a public collection of proofs in Isabelle.
We applied these measures to two of its largest software verification proof developments.

JinjaThreads: We measured 5,215 lemmas from Jinja Threads, including the top-level
statement with a raw size of 579, ideal size of 453 and proof size of 39,821 lines.

SATSolverVerification: We measure the proof with respect to the Functionallmple-
mentation theory, an implementation of a SAT solver within Isabelle’s HOL. We measured
481 lemmas from SATSolverVerification, including the top-level statement with a raw size
of 99, ideal size of 57 and proof size of 21,788 lines.

4.5 Results and Discussion

For each of the six projects analysed, we computed the statement size and proof size of
all of its lemmas, using the measures described in Section 4.3. As explained, we used two
variants for the statement size: a raw measure and an idealised measure, where the latter
represents what the size of the statement would be if stated in its most general form.

The results are given in Figure 4.1 for the raw measure and in Figure 4.2 for the
idealised measure. The analysis demonstrates a consistent quadratic relationship between
statement size and proof size across all the projects, with a stronger relationship when
using the idealised measure. The respective R? and equations of the regression lines are
given in Table 4.1. We now discuss the results in detail.

45

Proof Size

Proof Size

Proof Size

5000 10000 15000 20000 25000 30000

0

4000 6000 8000

2000

20000 30000 40000

10000

Alnvs
Statement Size vs. Proof Size

Refine
Statement Size vs. Proof Size

R?=0.845

70000
L

60000
I

R?=0.724

50000
I

o 8
N 87
o <
8 &
T 8
8
g4
8
g -
o4
T T T T T T T T T T T T
200 400 600 800 1000 1200 0 500 1000 1500 2000 2500
Statement Size Statement Size
Access InfoFlow
Statement Size vs. Proof Size Statement Size vs. Proof Size
g
. 8
R?=0.735 ° s R2=0.154
g4
[
N e
o 8
e 87 o
8 -
a
B
.
g | B B
3 4
P
o ° 0 2%
o 4 ° wo ° 8 o0
T T T T T T T T T T T
200 400 600 800 1000 1200 1400 0 500 1000 1500 2000
Statement Size Statement Size
JinjaThreads SATSolverVerification
Statement Size vs. Proof Size Statement Size vs. Proof Size
s
8
g7 °a
. B
R?=0.457 R?=0.798
e om0 s
o 8 4
2
@
N
7}
B = g
M o
S &1
a

Statement Size

5000
I

Statement Size

Figure 4.1: Relation between raw statement size and proof size (measured as described

in Section 4.3) for the six projects analysed.

46

Proof Size

Proof Size

Proof Size

5000 10000 15000 20000 25000 30000

0

4000 6000 8000

2000

20000 30000 40000

10000

Alnvs
Idealised Statement Size vs. Proof Size

Refine
Idealised Statement Size vs. Proof Size

R?=0.937

60000 70000

50000

Idealised Statement Size

5000

o 8
N 8
o <
S g
a 8
8
8
8
g
°
T T T T T T T T T T T
0 200 400 600 800 1000 1200 500 1000 1500 2000 2500
Idealised Statement Size Idealised Statement Size
Access InfoFlow
Idealised Statement Size vs. Proof Size Idealised Statement Size vs. Proof Size
g
B4
= ° S
I 2
[
| N
o 8
e 8
8 -
a
s
° * s
u.“% o 2
% -
- °
T T T T T T T T T T T
0 200 400 600 800 1000 1200 1400 500 1000 1500 2000
Idealised Statement Size Idealised Statement Size
JinjaThreads SATSolverVerification
Idealised Statement Size vs. Proof Size Idealised Statement Size vs. Proof Size
s
8
g
. B
R*=0.694
s
8
2
Q
N
7}
- 9
o
g £
a

20 40 60 80 100
Idealised Statement Size

120

Figure 4.2: Relation between idealised statement size and proof size (measured as de-
scribed in Section 4.3) for the six projects analysed.

47

4.5.1 Results using the Raw Measure

For the first three results the regression for the raw size fits the data nicely, as we can see
in the plots and confirmed by the R? results. However, even in Access some outliers can
be seen in the lower right corner of the graph. In InfoFlow this effect is even stronger: a
cluster of points with a large statement size (~ 2,000) and a negligible proof size. This
has the effect of flattening the regression line and obfuscating the relationship. After
a thorough examination we determined that these are statements that have been over-
specified (see Section 4.2.4), resulting in a larger statement size than expected.

There likely exist many other over-specified lemmas, but they have a less apparent
effect on the overall shape of the graph. The lemmas identified in this case were patholog-
ical: they mentioned the entire abstract specification but were stating a general property.
The abstract specification is one of the largest constants in this development, so including
it in a statement makes its size completely dominated by the size of the abstract spec-
ification. All of the lemmas in Alnwvs are similarly over-specified, but more subtly so.
Indeed the presence of this over-specification was only made clear after performing the
idealised size analysis. This over-specification is a result of abstract specification being
extensible [46], embedding an optional deterministic implementation of certain operations,
which can be used in place of non-deterministic ones when necessary. However, no proof
in Alnvs appeals to this deterministic implementation. This is simply because, by design,
the standard invariants do not discuss the program state required to resolve this deter-
minism. As a result, these deterministic operations unnecessarily inflate the statement
size as measured in AlInwvs.

4.5.2 Effectiveness of the Idealised Measure

The idealised size, introduced in Section 4.2.4, is meant to capture the idea that redundant
constants do not contribute to the difficulty of a proof. Analysis using the idealised
size (shown in Figure 4.2 and Table 4.1) show improved results across all projects. In
particular, the InfoFlow results are now much more aligned and consistent with the others.
R? now varies from 0.694 to 0.937. We can also see from the graphs that all of the statement
sizes shrunk, reflecting the fact that the idealised size is always smaller or equal to the
raw size.

We made no attempt to investigate the outliers in the proofs from the AFP, simply
because we do not know their proofs well enough to perform the same level of analysis.
Despite this, applying the idealised size measure had significant improvement on the clarity
of the data in JinjaThreads, with a lesser effect in SATSolverVerification, which was
already quite clear.

Previous work [65] showed a linear relationship between the size of formal specifications
(as measured in source lines of Isabelle) and the number of lines of source code. Although
not measured, we argue that the specification size (as described in Section 4.2.3) will scale
linearly with source lines. Combined with the result above, this indicates a quadratic
relationship between code size, property size, and eventual proof size. This confirms our
intuition based on our experience working with the sel.4 proofs: the correctness of each
property depends on its interaction with the entire program, resulting in the observed

48

quadratic relationship. Despite this intuition, and the apparent shape of the data, we
investigated other regressions in the course of this study. Specifically we performed linear,
cubic and exponential regressions against the measured proof size and ideal/raw specifi-
cation sizes. Linear and exponential regressions were less compelling than quadratic, with
extremely low R? values and clearly not fitting the data. A cubic regression yielded a
marginal increase in R?, but with an extremely small leading coefficient, indicating that
the relationship is indeed quadratic.

4.6 Conclusion

The goal of this investigation was to gain insight into how the complexity of the inputs to
large-scale verification projects (i.e. the program source and specification) ultimately affect
their required proof effort. The relatively low number of successful large-scale applications
of formal verification, and corresponding lack of empirical studies, have made it difficult
to understand how proof effort will scale when verifying even larger programs. Earlier
work by Staples et al. [64] established a linear relationship between proof size and proof
effort. Expanding on this, we investigated the relationship between the size of a formal
statement and its corresponding formal proof.

We have established two measures for statement size, raw and idealised, and use them
in an analysis of six Isabelle proof developments. Raw size is the number of unique
constants required to write a statement, recursively including all dependencies. This
measure was shown to be highly susceptible to over-specified statements having inflated
sizes. This prompted the introduction of idealised size, a refinement of raw size, which
removes redundant constants in order to reduce the impact of over-specified statements.
In total we examined the size of 15,018 statements and compared them against their proof
size.

Our analysis shows a quadratic relationship between statement and proof size, and
that our idealised measure strengthens this correlation. Combined with previous work
from Staples et al. [65], this result suggests a quadratic relationship between verified
code and its corresponding proof size. We speculate that this relationship will hold most
consistently when verifying invariant properties over non-modular code.

This poses a significant scaling challenge for formal verification. The source of sel.4
is only on the order of 10,000 lines of code, and yet has resulted in over 500,000 lines
of formal proof across all of its related developments. For the next grand verification
challenges, with 100,000 lines of code, a quadratic scaling factor would likely bring the
corresponding lines of proof into the tens of millions.

Motivated by this, in the following chapters we will see how Eisbach provides high-level
access to the automated reasoning infrastructure of Isabelle. In Chapter 7 we use Eisbach
to develop a collection of proof methods for automating refinement proofs. We apply these
methods to existing proofs from Refine in L4.verified, achieving a significant reduction in
proof size and complexity. This demonstrates that by empowering proof engineers to
easily develop domain-specific automated reasoning tools, we can increase the efficiency
of manual proof effort and reduce the work required to verify each line of code.

49

Chapter 5

Eisbach

Motivated by the proof effort scalability issues presented in the previous chapter, in this
chapter we present Fisbach, a proof method language for Isabelle. Isabelle’s primary
proof language, Isar (see Section 3.1), has previously lacked a means to write automated
proof procedures. In many proofs, the result has been a significant duplication of effort,
exacerbating both the initial development and ongoing maintenance costs in large proof
developments.

Isar is a convenient and effective interface for new Isabelle users, as it abstracts away
many of Isabelle’s technical and formal details. It also provides advanced features for
experts, including the ability to embed ML functions in order to interact with Isabelle
directly (see Section 3.4.6). The vast majority of Isabelle proof developments today,
however, almost exclusively use Isar, with little to no ML source. In particular, very
few custom proof methods are developed!, instead relying exclusively on Isabelle’s built-
in automated methods.

Eisbach incorporates language elements from Isar to allow users to write proof methods
at a familiar level of abstraction, while supporting more advanced behaviour through the
included match method. In this chapter we describe the language itself and the design
principles on which it was developed.

Later, in Chapter 6, we will see how this core functionality can be extended to increase
the scope of developing proof methods with Eisbach.

Acknowledgements

FEisbach first appeared at the International Conference on Interactive Theorem Prov-
ing [50], and later in the Journal of Automated Reasoning [48], in collaboration with
Makarius Wenzel and Toby Murray. It has been included in the main Isabelle release
since Isabelle-2015, with a system manual [49] since Isabelle-2016-1. The content in this
chapter is based on these publications.

The initial design and prototype implementation of Eisbach was completed indepen-
dently by the author. Subsequent versions were designed in collaboration with Makarius

"With the exception of proof developments that now take advantage of Eisbach since its inclusion in
Isabelle.

50

Wenzel, although the majority of the implementation was by the author. Makarius Wenzel,
however, has continued to update the Eisbach sources since its initial release in conjunc-
tion with improvements to Isar. Some functionality has since been moved from FEisbach’s
module to Isar’s proof method module.

Thanks to Thomas Sewell for suggesting the name “Eisbach”, referring to the tributary
of the Isar river in Munich.

Chapter Outline

e Motivation. Section 5.1 motivates Eisbach as a natural extension of Isar.

e Eisbach. Section 5.2 demonstrates the functionality of Eisbach by incrementally
building a simple first-order logic solver.

e Design and Implementation. Section 5.3 presents the design principles of Eisbach
and some implementation details.

e Conclusion. Section 5.4 summarizes the primary benefits of Eisbach.

5.1 Motivation

In the previous chapter, we investigated the relationship between the size of a formal
specification and the size of its eventual proof. We found that, for the software verification
projects considered, as the size of a formal statement increases, the size of its corresponding
proof grows quadratically. Building on previous work by Staples et al. [64][65], this suggests
that a quadratic increase in proof effort will be required when applying existing techniques
to verify larger programs.

Machine-checked proofs in many domains have been steadily growing in size, with
verification projects accounting for the largest among these. Isabelle’s Archive of Formal
Proofs (see Section 3.6) now comprises over 1.8 million lines, having over doubled in size
in the past 5 years [1| and continuing to grow. As ever-larger proof developments are
attempted, the scalability of proof effort becomes paramount, as does the maintainability
of the produced artefacts.

In Section 3.1 we gave a brief overview of Isar, Isabelle’s primary proof language.
Isar provides a suite of keywords and commands for structuring proofs, but does not
perform any computation or reasoning directly. Arbitrarily complex proof tools called
proof methods (see Section 3.3) operate on the proof state. Proof methods are traditionally
written in Isabelle/ML: Standard ML that is embedded into the logical context of Isar
(see Section 3.4.6). With Isabelle/ML, the full power of ML is always available in proofs
and proof methods, however the vast majority of Isabelle theories are written solely in
Isar.

In this chapter, we present a proof method language for Isabelle, called Fisbach, that
allows writing proof procedures by appealing to existing proof tools with their usual syn-
tax. The new Isar command method allows proof methods to be combined, named,

o1

and abstracted over terms, facts and other methods. Eisbach is inspired by Coq’s Ltac
(see Section 2.1.5), and includes similar features such as matching on facts and the cur-
rent goal. However, Eisbach’s matching behaves differently from Ltac’s, especially with
respect to backtracking (see Section 5.2.4). Eisbach continues the Isabelle philosophy of
exposing carefully designed features to the user while leaving more sophisticated function-
ality to Isabelle/ML. Eisbach benefits from general Isabelle concepts, while easing their
exposure to users: pervasive backtracking (see Section 3.3), the structured proof context
with named facts, and attributes to declare hints for proof tools (see Section 3.4.4).

As a quick motivating example, consider the following lemma which proves a simple
property of lists, by induction on the argument list xs, and application of the auto proof
method with an explicit simplification rule passed as its argument.

lemma length (zs @ ys) = length xs + length ys
by (induct zs ; auto simp: append_Nil)

Indeed, as anyone who has worked through the first examples in the Isabelle/HOL tu-
torial [54] can attest, many simple properties of lists are proved using exactly this same
procedure, perhaps varying only on the extra simplification rules to be applied by auto.
The following simple usage of Eisbach defines a new proof method which generalises
this procedure. The method defined identifies a list in the conclusion of the current
subgoal and applies induction to it; all newly emerging subgoals are solved with auto,
with additional simplification rules given as argument.
method induct_ list uses simps =
(match conclusion in ?P (z :: ‘a list) for z =
(induct z ; auto simp: simps))
Now induct_list can be called as a proof method to prove simple properties about lists
such as the one above.
lemma length (zs @ ys) = length xs + length ys
by (induct_list simps: append _Nil)
The term zs @ ys is now selected from the goal implicitly via match, and the proof succeeds
as before.
The primary goal of Eisbach is to make writing proofs more productive, increasing the
scalability of proof effort by avoiding duplication. Its design principles are:

e To be easy to use for beginners and experts.

e To expose limited functionality, leaving complex functionality to Isabelle/ML.

To be extensible by end-users.

Seamless integration with other Isabelle languages.

To continue Isar’s principle of readable proofs, creating readable proof procedures.

02

5.2 Eisbach

The core functionality of Eisbach is exposed via the method command. This allows
compound proof methods, combined with method combinators (see Section 3.3.3), to
be named and re-used. Method definitions may abstract over parameters: terms, facts
or other methods. The provided match method exposes expressive matching facilities
when defining new methods, used to manage control flow and perform goal analysis via
unification.

Recall the following example from Section 3.3:

lemma PA Q@ — P
by ((rule impl, (erule conjE)?) | assumption)+
In this example, the rules impl and conjE are repeatedly applied to the goal until the proof
is complete. As well as the above lemma, this invocation will prove the correctness of a
small class of propositional logic tautologies. With the method command we can define
a proof method that makes the above functionality available generally.

method prop solver; =
((rule impl, (erule conjE)?) | assumption)+

lemma PN QANR — P
by prop_solver;

5.2.1 Fact Abstraction

We can generalize prop solver; by abstracting it over the introduction and elimination
rules it currently applies. In the previous example, the facts impl and conjE are static.
They are evaluated once when the method is defined and cannot be changed later. This
makes the method stable in the sense of static scoping: naming another fact impl in
a later context won’t affect the behaviour of prop solver;. To instead pass these facts
to the method when it is invoked, we can declare some fact-parameters with the uses
keyword.

method prop _solvery uses intros elims =
((rule intros, (erule elims)?) | assumption)+

lemma PA QAR — PA(Q — R)
by (prop_solvery intros: impl conjl elims: conjE)

In this particular example, however, providing these rules on each invocation of
prop _solvers is cumbersome. In the following section we will see how we can create an
Eisbach method that is extensible, but also has a database of fact hints that are implicitly
used.

Named Theorems

A named theorem is a fact whose contents are produced dynamically within the current
proof context. The Isar command named theorems provides simple access to this

93

concept: it declares a dynamic fact with corresponding attribute (see Section 3.4.4) for
managing this particular data slot in the context.

named theorems intros

So far intros refers to the empty fact. Using the Isar command declare we may apply
declaration attributes to the context. Below we declare both conjl and impl as intros,
adding them to the named theorem slot.

declare conjl [intros] and impl [intros|

We can refer to named theorems as dynamic facts within a particular proof context,
which are evaluated whenever the method is invoked. Instead of explicitly providing
these arguments to prop solvery on each invocation, we can instead refer to these named
theorems.

named theorems elims
declare conjE [elims]

method prop_solvers =
((rule intros, (erule elims)?) | assumption)+

lemma PA Q@ — P
by prop_solvers

Often these named theorems need to be augmented on the spot, when a method is invoked.
The declares keyword in the signature of method adds the common method syntax
method decl: facts for each named theorem decl.

method prop solver, declares intros elims =
((rule intros, (erule elims)?) | assumption)+

lemma PA (P — Q) — QAP
by (prop_solvery elims: impE intros: conjl)

5.2.2 Term Abstraction

Methods can also abstract over terms using the for keyword, optionally providing type
constraints. For instance, the following proof method intro _ex takes a term y of any type,
which it uses to instantiate the z-variable of exl (existential introduction) before applying
the result as a rule. The instantiation is performed here by Isar’s where attribute. If the
current subgoal is to find a witness for the given predicate @), then this has the effect of
committing to y.
method intro_ex for @ :: ‘a = bool and y :: 'a =
(rule exl [where P = @ and = = y))

The term parameters y and () can be used arbitrarily inside the method body, as part of
attribute applications or arguments to other methods. The expression is type-checked as
far as possible when the method is defined, however dynamic type errors can still occur
when it is invoked (e.g. when terms are instantiated in a parameterized fact). Actual term
arguments are supplied positionally, in the same order as in the method definition.

o4

lemma Pag — dz. Pz
by (intro_ex P a)

5.2.3 Custom Combinators

The original proof method combinators (see Section 3.3.3) were chosen as a minimal subset
of Isabelle’s standard tacticals. Additionally, methods intentionally do not have subgoal
addressing, as they are either implicitly applied to the first subgoal or apply to all subgoals
simultaneously. This quickly proves to be too restrictive when writing proof methods in
Eisbach.

The new method combinator for structured concatenation was introduced to Isar with
initial release of Eisbach. Structured concatenation (method; ; methods) is similar to
sequential composition (method;, methods), except that methods is invoked on all subgoals
that have newly emerged from method. This is useful to handle cases where the number of
subgoals produced by a method is determined dynamically at run-time (e.g. when defining
an Eisbach method). This is analogous to the THEN_ALL_NEW tactical available in ML.

method conj_with uses my_rule =
(intro conjl ; intro my_ rule)

lemma
assumes A: P
shows P AN P A P

by (conj with my_rule: A)
Moreover, Eisbach method definitions may take other methods as arguments, and thus
implement method combinators with prefix syntax. For example, to more usefully exploit
Isabelle’s backtracking, it can often be useful to require a method to solve all produced
subgoals. This can easily be written as a higher-order method using “;”. The methods
keyword denotes method parameters that are other proof methods to be invoked by the
method being defined.

method solves methods m = (m ; fail)

Given some method-argument m, solve ¢(m) applies the method m and then fails whenever
m produces any new unsolved subgoals — i.e. when m fails to completely discharge the
goal it was applied to.

With these simple features we are ready to write our first non-trivial proof method.
Returning to the first-order logic example, the following method definition applies various
rules with their canonical methods.

named_theorems su bst

method prop_solver declares intros elims subst =
(assumption |
rule intros | erule elims |
subst subst | subst (asm) subst |

(erule notE ; solves (prop solven))+

The only non-trivial part above is the final alternative (erule notE ; solve (prop solven).

95

Here, in the case that all other alternatives fail, the method takes one of the assumptions
— P of the current goal and eliminates it with the rule notE, causing the goal to be proved
to become P. The method then recursively invokes itself on the remaining goals. The
job of the recursive call is to demonstrate that there is a contradiction in the original
assumptions (i.e. that P can be derived from them). Note that this recursive invocation is
applied with the solves method combinator to ensure that a contradiction will indeed be
shown. In the case where a contradiction cannot be found, backtracking will occur and a
different assumption — ¢ will be chosen for elimination.

Note that the recursive call to prop solver does not have any parameters passed to it.
Recall that fact parameters, e.g. intros, elims, and subst, are managed by declarations in the
current proof context. They will therefore be passed to any recursive call to prop solver
and, more generally, any invocation of a method which declares these named theorems.

After declaring some standard rules to the context, the prop solver becomes capable

of solving non-trivial propositional tautologies.
lemmas [intros] =

conjl — [?P; ?Q] = ?P A ?Q

impl — (2P = ?2Q) = %P — ?Q

disiCl — (= 2Q => ?P) => ?P V 2Q

iffl — [?P = ?Q; ?Q = ?P] = 7P = ?7Q

notl — (?P = False) = — %P

lemmas [elims] =
impCE — [P — ?Q); - 9P = ?R; ?() = YR] = ‘R
conjE — [?P A 2Q; [?P; ?Q] = YR] = ?R
disife — [?P Vv 2Q; 9P = ?R; ?Q = YR] = 7R

lemma (AVB)A(A— C)AN(B— C) — C
by prop _solver

5.2.4 Matching

So far we have seen methods defined as simple combinations of other methods. Some
familiar programming language concepts have been introduced (i.e. abstraction and re-
cursion). The only control flow has been implicitly the result of backtracking. When
designing more sophisticated proof methods this proves too restrictive and too difficult to
manage conceptually.

We therefore introduce the match method, which provides more direct access to the
higher-order matching facility at the core of Isabelle. It is implemented as a separate proof
method (in Isabelle/ML), and thus can be directly applied to proofs. However, it is most
useful when applied in the context of writing Eisbach method definitions.

Matching allows methods to introspect the goal state, and to implement more explicit
control flow. In the basic case, a term or fact ts is given to match against as a match
target, along with a collection of pattern-method pairs (p, m): roughly speaking, when
the pattern p matches any member of ts, the inner method m will be executed.

Consider the following example:

96

lemma
fixes P
assumes X:
Q — P
Q

shows P
by (match X in I: Q — P and I Q = «rule mp [OF I I"])

Here we have a structured Isar proof, with the named assumption X and a conclusion P.
With the match method we can find the local facts @ — P and @, binding them sepa-
rately as I and I’. We then specialize the modus-ponens rule Q — P =— @Q = P to
these facts to solve the goal.

Here we were able to match against an assumption out of the Isar proof state. In
general, however, proof subgoals can be unstructured, with goal parameters and premises
arising from rule application. For example, an unstructured version of the previous proof
state would be the Pure implication AP. — P = (= P. Here the premises @
— P and @ are unnamed and P is a quantified variable (or goal parameter) rather than
a fixed term.

To handle unstructured subgoals, match uses subgoal focusing (see also Section 5.3.5)
to produce structured goals out of unstructured ones.

In place of fact or term, we may give the keyword premises as the match target. This
causes a subgoal focus on the first subgoal, lifting local goal parameters to fixed term
variables and premises into hypothetical theorems. The match is performed against these
theorems, naming them and binding them as appropriate. Similarly giving the keyword
conclusion matches against the conclusion of the first subgoal.

An unstructured version of the previous example can then be similarly solved through
focusing.

lemma AP.Q — P —= @ = P
by (match premises in I: Q — ?A and I": Q = (rule mp [OF I I'))

In this example the goal parameter P is first fixed as an anonymous internal term (e.g.
P, where an underscore suffix indicates that the term cannot be referenced directly),
and then the premises) — P__ and () are assumed as hypothetical theorems. In the
first pattern, the schematic variable ?A acts as a wildcard, and thus the pattern Q — %4
matches the first premise by matching ?A to the newly-fixed P . The second pattern
then matches the second premise @, binding it to I’. Finally the inner method is executed,
similar to the previous example, and successfully solves the goal.

Match variables may be specified by giving a list of for-fixes after the pattern descrip-
tion. These variables are then considered wildcards, similar to schematics. In contrast to
schematic variables, however, for-fixed terms are bound to the result of the match, and
may be referred to inside of the inner method body. In the previous example we could not
give Q — P as a match pattern, because P__ cannot be referred to directly. If we
want to refer to P directly we must first bind it with a for-fix in a pattern.

lemma AP. Q — P — Q = P
by (match premises in I: — A and I Q for A =

(match conclusion in A = <rule mp [OF I I']»)

o7

In this example A is a match variable which is effectively bound to the goal parameter P
upon a successful match. The inner match then matches the now-bound A (bound to P)
against the conclusion (also P), finally applying the specialized rule to solve the goal.

In the following example we extract the predicate of an existentially quantified conclu-
sion in the current subgoal and search the current premises for a matching fact. If both
matches are successful, we then instantiate the existential introduction rule with both the
witness and predicate, solving with the matched premise.

method solve ex =

(match conclusion in 3z. @ z for Q =
(match premises in U: @ y for y =

(rule exl [where P = @ and z = y, OF U]»)

The first match matches the pattern 3z. @ = against the current conclusion, binding the
term () in the inner match. Next the pattern @ y is matched against all premises of the
current subgoal. In this case @ is fixed and y may be instantiated. Once a match is
found, the local fact U is bound to the matching premise and the variable y is bound
to the matching witness. The existential introduction rule exl: P x = dz. P z is then
instantiated with y as the witness and () as the predicate, with its proof obligation solved
by the local fact U (using the Isar attribute OF). The following example is a trivial use of
this method.
lemma halts p = Jz. halts z
by solve ex

Within a match pattern for a fact, each outermost meta-universally quantified variable
specifies the requirement that a matching fact must have a schematic variable at that
point. This gives a corresponding name to this “slot” for the purposes of forming a static
closure, allowing the where attribute to perform an instantiation at run-time.
lemma
assumes A: () = False

shows — @
by (match intros in X: AR. (R = False) = = R =

rule X [where R = @, OF A))

In this example, the match expression successfully matches notl ((P = False) = —
?P) from intros and renames its schematic ?P to ?R in the local fact X, which can then be
instantiated with where. This pattern statically guarantees that, given a successful match,
such an instantiation will be possible.

Subgoal focusing (see Section 5.3.5) converts the outermost meta-universally quantified
variables of premises into schematics when lifting them to hypothetical facts. This allows
us to instantiate them with where when using an appropriate match pattern.

lemma (Az :: 'a. Az = Bz) = Ay= By
by (match premises in I: Az :: ‘a. P z = ?Q z =
rule I [where z = y])
Here, the first premise of the goal has been lifted into the local fact A 2z = B %z, and
matched successfully against the given pattern. This produces a named local fact I, where
?x has been renamed to ?z, allowing the inner where instantiation to successfully produce

98

the fact A y = B y.

Match Backtracking

Multiple pattern-method pairs can be given to match, separated by a “|”. These patterns
are considered top-down, executing the inner method m of the first pattern which is sat-
isfied by the current match target. By default, matching performs extensive backtracking
by attempting all valid variable and fact bindings according to the given pattern. In par-
ticular, all unifiers for a given pattern will be explored, as well as each matching fact.
The inner method m will be re-executed for each different variable/fact binding during
backtracking. A successful match is considered a cut-point for backtracking. Specifically,
once a match is made no other pattern-method pairs will be considered.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern P A ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method foo =
(match conclusion in ?P A ?Q = (ail | R = (prop_solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac |25], which
will attempt all patterns in a match before failing. This means that the failure of an
inner method that is executed after a successful match does not, in Ltac, cause the entire
match to fail, whereas it does in Eisbach. In Eisbach the distinction is important due to
the pervasive use of backtracking. When a method is used in a combinator chain, its fail-
ure becomes significant because it signals previously applied methods to move to the next
result. Therefore, it is necessary for match to not mask such failure. In contrast to supply-
ing multiple pattern-method pairs to a single match, we can combine multiple invocations
of match with the “| combinator. This allows inner methods to instead “fall through” upon
failure. The following proof method, for example, always invokes prop _solver for all goals
because its first alternative either never matches or (if it does match) always fails.

method foo; =

(match conclusion in ?P A 7Q) = aib)
| (match conclusion in ?R = (prop_solven)

Backtracking may be controlled more precisely by marking individual patterns as cut.
This causes backtracking to not progress beyond this pattern: once a match is found no
others will be considered.
method fooy =
(match premises in I: P A @ (cut) and I": P — ?U for P Q =
(rule mp [OF I’ I [THEN conjunctl]))

In this example, once a conjunction is found (P A @), all possible implications of P in
the premises are considered, evaluating the inner rule with each consequent. No other
conjunctions will be considered, with method failure occurring once all implications of the
form P — ?U have been explored. Here the left-right processing of individual patterns is
important, as all patterns after of the cut will maintain their usual backtracking behaviour.

99

lemma [AANB;A— D;A— C] = C
by foo,

lemma [C A D; ANB; A— C] = C
apply (fooq)?
oops
In this example, the first lemma is solved by foos, by first picking A — D for I’, then
backtracking and ultimately succeeding after picking A — C. In the second lemma,
however, C A D is matched first, the second pattern in the match cannot be found and
so the method fails?.

5.2.5 Premises within a Subgoal Focus

Subgoal focusing provides a structured form of a subgoal, allowing for more expressive
introspection of the goal state. This requires some consideration in order to be used
effectively. When the keyword premises is given as the match target, the premises of
the subgoal are lifted into hypothetical theorems, which can be found and named via
match patterns. Additionally these premises are stripped from the subgoal, leaving only
the conclusion. This renders them inaccessible to standard proof methods which oper-
ate on the premises, such as frule (forward reasoning from premises) or erule (eliminat-
ing /decomposing premises). Naive usage of these methods within a match will most likely
not function as the method author intended.
method my allE_bad for y :: 'a =
(match premises in I: Vz :: ‘a. 2Q = =
cerule allE [where z = y)))

Here we take a single parameter y and specialize the universal elimination rule (Vz. P
r = (P = R) = R) to it, then attempt to apply this specialized rule with erule.
The method erule will attempt to unify with a universal quantifier in the premises that
matches the type of y. Suppose we tried to use my allE_bad to prove a trivial lemma the
following:
lemma Vz. Pz — Pa

apply (my_ allE_bad a)?

oops
When my allE bad is invoked, since premises causes a focus, the premise Vz. P z is
nowhere to be found, and thus my allE _bad will always fail. If focusing instead left the
premises in place, using methods like erule would lead to unintended behaviour, specifi-
cally during backtracking. In my allE_bad, erule could choose an alternate premise while
backtracking, while leaving I bound to the original match. In the case of more complex
inner methods, where either I or bound terms are used, this would almost certainly not
be the intended behaviour.

An alternative implementation would be to specialize the elimination rule to the bound
term and apply it with rule instead of erule.

2This is why we need to use the ? combinator in this example and the oops keyword to terminate an
unfinished proof.

60

method my_allE_almost for y :: 'a =
(match premises in I: Vz :: ‘a. ?Q = =
rule allE [where z = y, OF I]»)

This method will insert a specialized duplicate of a universally quantified premise. Al-
though this will successfully apply in the presence of such a premise, it is not likely the
intended behaviour. To understand why, consider the following example:

lemmaVz. Px = Pa

apply (my_allE_almost a)

apply (my_allE_almost a)

by assumption

Here, after applying my allE _almost, the goal state is: [Vz. P z; P a] = P a. Observe
that the premise P a has been inserted as intended, but that the original premise Vz. P x
still remains. A second application of my allE almost therefore succeeds, yielding a goal
state of [Vz. P z; P a; P a] = P a. Repeated application of my allE almost would
thus produce an infinite stream of duplicate specialized premises, due to the original
premise never being removed. To address this, matched premises may be declared with
the thin attribute. This will hide the premise from subsequent inner matches, and remove
it from the list of premises after the inner method has finished. It can be considered
analogous to the old-style thin tac, used for removing goal premises that match a given
pattern.

To complete our example, the correct implementation of the method will thin the
premise from the match and then apply it to the specialized elimination rule.

method my allE for y :: 'a =
(match premises in I [thin]: Vz :: /a. 7Q z =
(rule allE [where z = y, OF I])

lemmaVz Pr=Vz. Qz = PyANQy
by (my_allE y)+ (rule conjl)
Other attributes may also be applied to matched facts. This is most applicable when
focusing, in order to inform methods which would otherwise use premises implicitly.
lemma A =B = (A — B) AN (B — A)
by (match premises in [[subst]: ?P +— ?@Q) = (prop_solven)
In this example, the pattern 7P +— ?(@) matches against the premise A +— B and binds
it to the local fact I. Additionally it declares this fact as a subst rule, adding it to the subst
named theorem for the duration of the match. This is then implicitly used by prop solver
to solve the goal.

5.2.6 Example

We complete our tour of the features of Eisbach by extending the propositional logic
solver presented earlier to first-order logic. The following method instantiates universally
quantified assumptions by simple guessing, relying on backtracking to find the correct
instantiation. Specifically, it instantiates assumptions of the form V z. 2P z by finding some
type-correct term y by matching other assumptions against ?H y, using type annotations

61

to ensure that the types match correctly. The matched universal quantifier is marked
as thin to remove it from the premises, while using the universal elimination rule allE to
specialize U to y. The same matching is also performed against the conclusion to find
possible instantiations there as well.
method guess_all =
(match premises in U [thin]: Vz. P (z :: ‘a) for P =
((match premises in ?H (y :: 'a) for y =
trule allE [where z = y, OF U]))?,
(match conclusion in ?H (y :: 'a) for y =

trule allE [where z = y, OF U])?)

The pattern ?H y is used to find arbitrary subterms y within the premises or conclusion
of the current goal. It makes use of Isabelle/Pure’s workhorse of higher-order unification
(although matching involves pattern-matching only). While such a pattern-match need
not bind all variables to be valid, to avoid trivial matches, match considers only those
matches that bind all for-fixed variables mentioned in the pattern.

The inner match must be duplicated over both the premises and conclusion because
they are logically different entities: the premises are facts, in that they are (assumed)
true; the conclusion is not and must be proved, and so is a term. This might look strange
to users of Coq’s Ltac, where these notions are identified; however, it does not limit the
expressivity of Eisbach.

The thin attribute is necessary here in order to guarantee termination (see Sec-
tion 5.2.4). However, since the premise is “consumed”, care must be taken to ensure
that this does not render the goal unsolvable (i.e. in the case where the premise needs to
be specialized multiple times). Here we assume that this is handled by a previous applica-
tion of prop solver, which decomposes the goal into sufficiently small subgoals such that
only a single instantiation is required.

Similar to our previous solve ex method, we introduce a method which attempts to
guess at an appropriate witness for an existential proof. In this case, however, the method
simply guesses the witness based on terms found in the current premises, again using
higher-order matching as in the guess all method above.

method guess ex =
(match conclusion in
Jz. P (z = 'a) for P =
(match premises in ?H (z :: 'a) for z =
(rule ex| [where z = z and P = P»)
These methods can now be combined into a surprisingly powerful first-order solver.
method fol solver =

((prop_solver | guess ex | guess_all) ; solves (fol solven)

The use of solves above ensures that the recursive subgoals are solved. Without it, the
recursive call could terminate prematurely and leave the goal in an unsolvable state (due
to an incorrect guess for a quantifier instantiation).

After declaring some standard rules in the context, this method is capable of solving
various example problems.

62

declare
alll fintros] — (Az. P z) = Vz. ?Px
exE [elims] — [Fz. ?P z; Az. Pz = ?7Q] = ?Q
ex_simps [subst]
all_simps [subst]

lemma (Vz. P2) A (Vz. Q) = (Vz. Pz A Q x)
and Jz. Pz — (Vz. Px)
and (3z.Vy. Rzy) — (Vy. Jz. Rz y)

by fol solver+

5.2.7 Integration with ML

Although Isar’s built-in methods and attributes are sufficient for most purposes, often
proof methods will require functionality that is simply not accessible from Isar. In many
cases this can be isolated into a reusable piece of functionality, to be implemented as a
generally-available attribute or proof method.

For example, consider the following proof of a simple case analysis statement on lists:

lemma (case [of (z # xs) = length | = length zs + 1 | [] = length [= 0)
by (rule list.split[THEN iffD2, of], simp)

This proof has applied the split rule for lists to decompose the goal into a form that simp
can solve. The split rule for lists is as follows:

P (case list of [| = f1 | z - za = f2x xa) =

((list =[] — P f1) N (V221 222. list = 221 - 222 — P (f2 221 222)))
This shows how a predicate P of a case statement over some list [can be rewritten into
a set of conjuncts over P. Specializing this rule with THEN iffD2 ([P = Q; Q] = P)
rewrites it into a backwards reasoning rule.

(list =[] — P f1) A (V221 222. list = 221 - 222 — P (f2 221 222)) =

P (case list of [| = f1 | z - za = f2 x za)
Once this rule is specialized to the given [and applied to the goal, the case statement no
longer appears and simp can solve it.

If we want to generalize this pattern to perform case analysis on arbitrary datatypes,
we need to be able to retrieve the split rule for a given term at run-time. As there is no
facility in Isar to do this directly, we need to use ML. We can write a simple function that
retrieves the split rule for a given term based on the name of its type.

ML «
fun get_split_rule ctxt term =
let
val typ = Term.fastype_ of term;
val typeNm = fst (dest_ Type typ);
in Proof Context.get_thm ctzt (typeNm

~

.split) end;

With this function, we can then define a rule attribute.

63

attribute setup split_rule_of =
(Args.term >> (fn t =>
Thm.rule_attribute || (fn context => fn _ =>
(case try (get_split_rule (Context.proof of context)) t of
SOME thm => thm

| NONE => Drule.dummy_thm)))

This attribute evaluates to the split rule for the given term ¢, if possible, otherwise resulting
in a dummy theorem. We use try to wrap get split rule as a partial function, where any
raised errors will result in NONF, and a successful result will be wrapped in SOME. We can
then use this attribute as the target of a match in the definition of an Eisbach method. The
double square bracket syntax in this method is standard Isar notation, used to evaluate
the given rule attribute against a dummy fact (which is ignored by split _rule of).
method apply _split for ¢ :: 'a =
(match [[split_rule_of ¢]] in U: (?z :: bool) = %y =
(match U[THEN iffD2] in U" At’. YA = 2P (t':: 'c) =
(match (¢) in ¢’ :: ¢ for ¢’ =
rule U’'lwhere t'=t»)
This method first retrieves the split rule for the given term t and ensures it is in the
expected form 7z = ?y. If the attribute produces a dummy theorem (i.e. due to ¢ not
being a datatype) then this pattern fails to match and the method evaluation fails. We
then transform the split rule with THEN iffD2 as before, and match on the resulting rule.
Here we identify some schematic subterm of the rule’s conclusion and bind its type to ’c.
In the final match, we require that ¢ match some term ¢’ of type ‘c. This ensures that
'c can be unified to ‘a (backtracking the previous match if this is not the case) before
instantiating the rule with the given term.
Our original proof can then be solved as before, but with our new method abstracting
away the splitting logic.
lemma (case [of (z # xs) = length | = length zs + 1 | [] = length [= 0)
by (apply_split I, simp)
Additionally, since this method fails gracefully on an invalid term, we could write a method
to speculatively apply it to different subterms in the goal.
method guess_split =
(match conclusion in ?P z for z = (apply_split)

This method guesses which subterm may be applicable for splitting, backtracking on
choices that cause apply split to fail.
lemma (case n of (Suck) =n=%k+1][0=VEk k>n)
by (guess split, simp)

In general, there will always exist functionality that is inaccessible directly to Eisbach,
requiring a bridge to some ML interface. However, as more bridges are developed, and as
Isabelle package developers begin to include more method-level programmatic interfaces,
the extent of automation expressible in pure Eisbach will continue to expand.

64

5.3 Design and Implementation

A core design goal of Eisbach is a seamless integration with other Isabelle languages,
notably Isar, ML, and object-logics. The primary motivation clearly being to make it
accessible to existing Isabelle/Isar users, with a secondary objective of both forward and
backward compatibility.

5.3.1 Readable Proof Methods

In Isar there is a clear distinction between a structured and an unstructured proof. The
former makes use of the rich reasoning framework provided by Isar, while the latter relies
more heavily on the implicit behaviour of proof methods. An unstructured proof cannot
be understood without checking the proof in Isabelle and inspecting the subgoal state
at each stage of the proof. This can create significant issues during proof maintenance
phases, where a proof needs to be updated in response to an update to a specification or
to Isabelle itself. The original intention of a proof cannot be easily extracted from the
unstructured proof script, and a now-failing proof may require significant time and effort
to perform the necessary archaeological exploration of its history to recover some insight.

One of the aims of Eisbach is to address this by providing a means to describe reasoning
procedures. A proof method designed to solve a particular class of problems serves as a
better record of the author’s intent than an ad-hoc series of general tools. Arguably this
simply shifts the problem of proof maintenance to that of proof method maintenance, and
indeed this is a well-known concern in Ltac today. This indicates the necessity for writing
proof methods that are readable and thus also maintainable.

In Eisbach, match can be considered as a structured language element, and is meant to
serve both as implementation and documentation. Many methods shown here could have
been implemented without using match, but would have been significantly more difficult to
understand, and may happen to work in unintended cases. In practice, a match pattern
is a much more explicit description of the expected goal state than, for example, the
expectation that erule successfully finds an appropriate premise for the given rule. As
with Isar, Eisbach method authors are free to use as much structure as they consider
necessary for their specific application.

5.3.2 Design Goals and Comparison to Ltac
Here we explicitly revisit the design goals presented in Section 5.1, discussing each in the

context of both Eisbach and Ltac.

To be easy to use for beginners and experts. Both Eisbach and Ltac meth-
ods/tactics can be constructed from tools that users naturally become familiar with when
writing proofs, thus providing a low barrier-to-entry. In both languages, matching allows
experts to explicitly introspect the goal state when writing complex tools.

To expose limited functionality, leaving complex functionality to Isabelle/ML.
At its core, Eisbach provides the ability to name a method expression and abstract

65

it over parameters. Many Eisbach methods can then be written by simply combining
Isabelle/Isar’s built-in methods. This is similar to the functionality provided by Ltac,
however, as opposed to Ltac’s match keyword, Eisbach’s match method is implemented as
a stand-alone tool.

Isar’s integration with ML (see Section 5.2.7) makes this a natural design choice, and
demonstrates how similar language extensions can be written by end-users. In contrast,
Coq discourages ad-hoc use of OCaml by requiring separate compilation of custom plug-
ins.

To be extensible by end-users. In addition to providing new language features by
writing custom ML methods, Eisbach methods can be made extensible through Isar’s
named theorems (see Section 5.2.1), allowing databases of facts to be managed as context
data. This can be seen as a generalization of the hint databases used by Coq’s auto tactic.

Seamless integration with other Isabelle languages. By forming static closures
of Isar’s existing method syntax (see Section 5.3.4), Eisbach immediately benefits from
existing methods and Isabelle languages. This underlying functionality can be used to
easily include method expressions as arguments to both (higher-order) methods and other
tools. For example, later in Section 6.2 we use this functionality to implement a pair of
rule attributes for transforming proven facts with method expressions.

Although Coq tools can similarly be implemented to take tactics as arguments, this
functionality is more immediately expressive in Isabelle/Isar, as methods can be defined
to have arbitrarily complex syntax (e.g. match).

To continue Isar’s principle of readable proofs, creating readable proof proce-
dures In an Isar proof, authors are free to choose the extent of structured proof elements
to use. Highly structured proofs are generally more easily understood, at the cost of being
more verbose. Similarly, Eisbach’s match can be used as documentation for the intent of
a particular method.

5.3.3 Method Correctness and Types

In contrast to Coq’s Mtac (see Section 2.1.5), Eisbach and Ltac are untyped languages. For
Eisbach, this was a necessary design choice in order to integrate with Isabelle’s existing
untyped tactics and methods. This may seem ironic, given that both ML and Isabelle’s
Pure logic are strongly typed. Indeed this discussion dates back to the tactical proofs that
first appeared in the original LCF proof assistant (see Section 2.1.3).

It is important to clarify that both Ltac and Eisbach are subject to the correctness
constraints of their respective proof systems. In the case of Eisbach, each defined method
eventually appeals to the primitive inferences of Isabelle’s Pure logic using the proof kernel
(see Section 3.2.3). Eisbach methods, like all Isabelle proof tools, can therefore at most
fail to produce a valid proof, without concerns that programming errors will allow for
unsound reasoning.

In tactical proving there is therefore less of an immediate need for the static guarantees
that would be provided by a type system. Instead, we can focus on providing run-time

66

checks, meaningful error messages and interactive debugging facilities (see Section 6.1). In
Eisbach, intermediate match clauses could explicitly check that the subgoal state has some
expected form before invoking a tool that makes this assumption implicitly. In general,
method semantics can be encoded as run-time pre and postcondition checks. For example,
a verification-condition generator (see Section 7.1) might have a precondition check that
the initial subgoal is an annotated program, and a postcondition check that no produced
subgoals discuss the semantics of the original program.

5.3.4 Static Closure of Concrete Syntax

Isabelle provides a rich selection of powerful proof methods, each with its own concrete
syntax, which is implemented by parser combinators in ML. Additionally, Isabelle’s theo-
rem attributes, which perform context and fact transformations, have their own parsers.
Rather than re-write all tools from the libraries to support Eisbach, we build on existing
features of the Isabelle parsing framework whereby tokens have values (types, terms, facts
etc.) assigned to them implicitly during parsing.

This syntax/value assignment mechanism was originally introduced to support locale
expressions in the sense of [10]. Thus expressions over facts and attributes became trans-
formable by morphisms, to move them from an abstract locale context to a concrete
application context.3

The same principle of syntax closure and interpretation is now the main workhorse
of Eisbach. After some modifications, it works for method expressions as well, including
their embedded facts and attribute expressions. For example, the basic method “(simp
add: foo [OF bar])” is wrapped up as static closure, where the embedded fact expression
“foo [OF bar]” is treated like a pre-evaluated constant.

Eisbach then simply serves as an interpretation environment for the carefully prepared
method syntax tokens. When a proof method is applied, Eisbach instantiates these to-
ken values appropriately (via some morphism), based on the supplied arguments to the
method or results of matching, and then executes the resulting method body. Although
this presents some technical challenges and required various modifications of the Isar im-
plementation itself, this proves to be a very effective solution to performing this kind of
language extension.

As a result of this, the inner methods that appear in Eisbach method definitions may
have arbitrarily complex internal syntax. For example, Eisbach’s match is implemented as
a standard proof method, rather than requiring any special status in the language. This
opens the door for users to develop their own advanced proof methods to serve as language
extensions for method development in Eisbach.

5.3.5 Subgoal Focusing

In Isabelle/Pure there is a logical distinction between universally quantified parameters
(like z in Az. P z) and arbitrary-but-fixed terms (like ¢ in P a). A subgoal in the
former form does not allow the z to be explicitly referenced, because it is hidden within

3See also [11] for a recent exposition of the possibilities of locales and locale interpretations via mor-
phisms in Isabelle.

67

a closed formula; for example, my fact [where y = z| does not produce a valid theorem.
Historically, some special tactics were provided to descend into the sub-goal structure
and provide ad-hoc access to its local parameters: these are available in Isar via so-called
improper methods (like rule tac).

Likewise, premises within a subgoal are not yet local facts. In a structured Isar proof,
assumptions are stated explicitly in the text via assumes or assume and are accessible
to attributes etc. In contrast, the local prefix A = X of a subgoal is not accessible to
structured reasoning and cannot be provided to standard methods as explicit arguments.

Isabelle/ ML provides systematic support for subgoal focusing, and Isar provides access
to it via the subgoal command. Focusing creates a new goal out of a given subgoal, but
with its parameters turned into fixed variables (actual terms), and premises into local
assumptions (actual facts). For example:

lemma AABC.[(Az. Az = B); B= C; Ay] = C
subgoal premises prems for A B C

1. C

At this point the goal has been focused, where the goal parameters (A, B and C) are
converted into fixed terms, and the subgoal becomes focused on the conclusion (C'). The
goal premises have been lifted into proper assumptions, lifting meta-universally quantified
variables into schematics, and then stored in the local fact prems.

thm prems — A %2 = B, B = C, Ay
We can then complete this proof by referring to prems directly. As prems contains three
individual theorems (one for each premise in the original goal), we can refer to each directly
with the standard syntax prems(n) for selecting the nth theorem of prems.
apply (rule prems(2))
apply (rule prems(1)[where z = y])

apply (rule prems(3))
done

done
Here the first done ends the subgoal focus, having successfully discharged the subgoal
and the second done concludes the proof.

For Eisbach, we incorporated this into the language with some concrete syntax, to allow
the user to write methods that can operate within the local subgoal structure as required.
This allows for uniform treatment of the goal state when matching and parameter passing.
In Eisbach’s match method, focusing is accessed by specifying the keyword conclusion or
premises as the match target (see Section 5.2.4).

5.4 Conclusion

In this chapter we have presented Eisbach, a high-level language for writing proof methods
in Isabelle/Isar. It supports familiar Isar language elements, such as method combinators
and rule attributes, as well as being compatible with existing Isabelle proof methods.

68

An expressive match method enables the use of higher-order matching against facts and
subgoals to provide control flow.

One of Eisbach’s greatest virtues is that it provides a framework for thinking of proof
methods like programming language elements. This applies to methods written in Eisbach,
like solves, but also to those written in Isabelle/ML. A good example of the latter is the
match method which, while its implementation is entirely independent of the method
command, became necessary to implement only in the presence of Eisbach. The method
language of Isar was already arbitrarily expressive, as methods define their own syntax.
Eisbach now opens up this space allowing users to write methods that serve as elements of
a high-level method programming language, rather than one-off proof tools. Thus methods
that may have had little use in proof scripts now become useful and, in the case of match,
powerful, as elements of Eisbach-defined proof methods.

In the next chapter, we will see how Isar and Eisbach can be extended into a rich
ecosystem for proof method development. Later, in Chapter 7, we show how Eisbach can
be used to implement a set of real-world proof methods in L4.verified, and demonstrate
their impact on existing proofs.

69

Chapter 6

Advanced Eisbach

With Eisbach we can rapidly prototype and develop new proof methods by using Isar’s
familiar method expressions, use named theorems to manage and implicitly use collections
of facts as proof context data, and perform matching on proof states to manage the control
flow of methods. Although this is sufficient for many use cases, the core infastructure of
Eisbach can be used for many advanced applications that were previously not immediately
possible in Isar.

In particular, Eisbach provides a facility for forming a static closure from a method
expression (see Section 5.3.4). From this, methods can be treated as first class language
elements, to be easily provided to existing tools as standalone arguments.

In this chapter, we explore both the consequences of this new ability, and demonstrate
some of the advanced capabilities of Eisbach. Implementations of the tools presented here
are available in the L4.verified repository [5].

Chapter Outline

e Method Expression Debugging. In Section 6.1 we present a new Isar command,
apply debug, and specialized proof method, #break, that allow for interactively
stepping through the execution of a method expression.

e Rule Attributes from Methods. In Section 6.2 we present a pair of new rule
attributes that allow proof methods to be used as fact transformers.

e Advanced Methods and Combinators. In Section 6.3 we present a suite of
specialized methods for performing technical operations in proof methods.

6.1 Method Expression Debugging

Although Isabelle’s proof kernel precludes writing proof methods which produce logically
unsound results, while under development they will often have unexpected or unintended
behaviour. When a method loops indefinitely, or fails to make progress on a goal, a proof
engineer requires tools to discover the source of the problem.

70

General method debugging capabilities in Isabelle/Isar are limited. Usually a proof
author is forced to experimentally remove or add rules from different rulesets to determine
their effect on various automated methods (e.g. removing a rule from the simpset to see if it
is causing the simp method to loop). This process is time-consuming and often frustrating,
as it requires a deep knowledge of both the particular proof domain (to know what rules
may be causing issues), and of how the rules are used by the proof method.

Some methods have built-in facilities for tracing their internal behaviour (e.g. simplifier
tracing [37]). However, when debugging a general method expression, either in-place or in
the body of an Eisbach method, users are often concerned with understanding its control
flow and backtracking behaviour.

In this section we introduce the method debugging command apply debug and its
corresponding special-purpose #break method. This command allows the evaluation of a
method expression to be interactively inspected and manipulated at set breakpoints, so
that users may trace the execution of proof methods and experiment with alternate proof
strategies.

6.1.1 Example Debugging Session

Consider the following example, where a method expression fails to solve the goal.

lemma A = (AAB)V A
apply ((rule conjl disjl1 disjl2)+, assumption)

1.A— B

In this example, the author may have expected the following semantics: “apply conjunction
and disjunction introduction rules, backtracking on the chosen disjunct until the goal is
solved by assumption.” However, the resulting subgoal is instead A = B, which is
unsolvable. To debug a method expression, the most common strategy is to dismantle the
it, copy-pasting its components as a proof script in order to step through its execution.

To debug our example, we would take the expression fragment under the + combinator
and apply it as single proof step.

lemma A = (A A B)V A
apply (rule conjl disjl1 disjl2)

1.A= ANANB

Now we can see that the first disjunct has been introducted with disjll. Applying this
fragment again, we see that conjl is used and introduces two subgoals.

apply (rule conjl disjl1 disjl2)

1. A= A
2. A— B

Our first subgoal can be solved trivially by assumption.

71

apply assumption

1.A=— B

Now we see the final proof state that was encountered after evaluating the original expres-
sion.

The issue in this example is that the first subgoal produced by applying conjl is indeed
solvable by assumption, which terminates the method evaluation and leaves A — B
to be solved. Since the method has successfully evaluated, no backtracking results are
attempted, and the intended strategy of initially applying disjl2 is not explored.

Without additional tool support, debugging Eisbach methods requires a similar strat-
egy: copy-pasting sections of method definitions into Isar proofs in order to interactively
trace their execution.

Consider the following modification of the previous example, where the method expres-
sion has been generalized into an Eisbach method. The proof fails as expected, however
isolating the cause of the error is now much more involved.

named theorems my_solver_rules
method my_solver declares my_solver rules =
((rule my _solver _rules)+, assumption)

lemma A = (AAB)V A
apply (my_solver my_solver rules: conjl disjll disjl2)
oops
This attempt fails, as in our initial example. However re-creating the original trace requires
first populating the my solver rules with Isar’s supply command.

lemma A — (AAB)V A

supply [my_solver rules] = conjl disjl1 disjl2

apply (rule my solver rules)

apply (rule my_solver rules)

apply assumption

oops
This style of method expression tracing proves to be time-consuming, error-prone, and
extremely difficult in non-trivial proofs and method expressions. In larger projects, with
many inter-dependent proof methods, manually constructing a proof trace with this strat-
egy becomes nearly impossible.

6.1.2 The apply debug command

When debugging a proof method we are often faced with two important questions: “What
is the execution path that lead to the resulting proof state?” and “What alternate strate-
gies could be applied in order to make progress?”. Answering the former question allows
us to identify when a method may have made an unexpected or incorrect reasoning step,
and the latter gives insight into how a method could be modified in order to resolve the
issue.

In this section, we introduce the new Isar command apply debug. This command

72

takes a method expression and evaluates it against the current proof state, identical to
how the apply command functions. However, it is aware of a special-purpose method
#break, which acts as a breakpoint for method evaluation. When a #break is encountered
during the invocation of apply debug, the method evaluation halts and the resulting
proof state is the intermediate proof state that was seen by the breakpoint. The continue
command resumes execution, until either the next #break is encountered or the method
expression terminates.

Returning to our previous example, we can debug our method expression by placing a
#break inside the loop.

lemma A = (A A B)V A
apply debug ((rule conjl disjl1 disjl2, #break)+, assumption)

1.A= AAB

Here we see the goal state after apply debug is not the final state, but rather the goal
after only applying disjl1 (i.e. the method has committed to solving the first disjunct). If
we execute continue we can see the result after applying conjl.

continue

1.A=— A
2. A= B

Finally, if we continue again, method evaluation terminates without encountering any
additional breakpoints and we are presented with the expected goal.

continue

1.A—=— B

Final Result.

The output “Final Result.” indicates that the apply debug evaluation has finished and
it is not possible to continue any more. If the expression is evaluated with apply instead,
as part of a proof rather than a debugging session, the #break is ignored and the proof
continues as usual, resulting in the same final proof state.

The same functionality is available when #break is used in the definition of an Eisbach
method.

method my_solver declares my_solver rules =
((rule my solver rules, #break)+, assumption)

lemma A = (AAB)V A
apply debug (my_solver my_solver rules: conjl disjll disjl2)
continue — 1. A = A 2. A=— B
continue — 1. A = B

oops

In this example, the breakpoint inside of my _solver is hit twice, as in the previous example.
In both cases, we were readily able to trace the execution of the expression without needing

73

to copy-paste portions of it into the proof script.

Tagging

Without any additional arguments, a #break will be triggered unconditionally, where it
will halt execution during any invocation of apply debug. In general, however, this
can result in hitting many breakpoints that are unrelated to the current debugging task.
Indeed if a user is investigating a complex method expression in a proof script, they likely
are not interested in the intermediate states of each of its constituent methods.

It is important, therefore, that the debugging detail level be configurable, so users
can inspect and interact with proof states that are relevant to solving a particular issue
without becoming overwhelmed with irrelevant technical details.

Revisiting our example, we may want to debug a method expression containing
my solver, but not my_solver itself. Its implementation, however, contains an uncon-
ditional breakpoint, and so we encounter it unintentionally.

lemma A — (AANB)V A
apply debug (rule impl, #break,
my_solver my _solver _rules: conjl disjl1 disjl2, #break)

1.A= AANBVA

As expected, our first breakpoint is hit after impl is applied and the implication has been
introduced. However, subsequent invocations of continue see the trace of my solver as
well.

continue — 1. A — AA B
continue — 1. A — A 2. A— B
continue — 1. A — B

continue — 1. A =— B Final Result.

oops

If we were only interested in seeing the proof state before and after the execution of
my _solver then this is much more detail than is needed, indeed likely obscuring the error
being investigated.

To address this, we can use tagged breakpoints: the #break method takes a single
optional string argument which, when present, tags it to instead be conditionally active.
When apply debug is invoked, a comma-delimited list of active tags can be given, such
that any breakpoints with matching tags will be hit (in addition to unconditional break-
points). In the absence of a matching tag for a breakpoint during a given apply debug
invocation, the #break is skipped.

method my_solver declares my_solver rules =
((rule my solver rules, #break my_solver tag)+, assumption)

This modified my solver now conditionally breaks on the presence of “my solver tag”,
given as an argument to apply debug.

74

lemma A = (AANB)V A
apply debug (tags my_solver_tag)
(my_solver my_solver_rules: conjl disjl1 disjl2) — 1. A = A A B
continue — 1. A= A 2. A— B
continue — 1. A = B Final Result.
We can now debug a method expression that contains my solver without tracing its exe-
cution. By giving no tags to apply debug, only unconditional breakpoints are encoun-
tered.
lemma A — (AAB)V A
apply debug (rule impl, #break,
my _solver my_solver rules: conjl disjl1 disjl2,
#break) — 1. A= AANDBV A
continue — 1. A — B

continue — 1. A = B Final Result.

6.1.3 Proof state interaction

So far we have only used apply debug to observe the goal state during the execution of a
method expression evaluation. Importantly, however, it also grants the ability to interact
directly with the run-time proof state: the proof context can be examined with standard
Isar diagnostic commands (e.g. thm and term), and the goal state can be modified ad-hoc
with proof methods. Each #break provides an opportunity for the user to interact with
the intermediate state in a proof method evaluation as if it were an intermediate state in
a proof script.

Returning to our example, we can use thm to examine the contents of the
named theorem my_solver rules during the execution of my_ solver.

lemma A = (AAB)V A
apply debug (tags my_ solver_tag)
(my_solver my_solver_rules: conjl disjl1 disjl2)
continue

1.A=— A
2. A= B

thm my_solver rules

[7P; 2Q] = ?P A 2Q
9P — 2PV 2Q
2Q = 7P V 2Q

Additionally, we may apply methods to modify the run-time state. In this state, for exam-
ple, if we manually apply assumption, we can trigger the desired backtracking behaviour
from the expression.

75

apply assumption

1.A=— B

Since the first subgoal is now solved, the assumption from the body of my solver will fail
on the new head subgoal, causing the method to explore other backtracking branches.

continue

1.4A= A

The method has backtracked and applied disjl2 instead, breaking afterwards. Now if we
continue, the assumption from my solver successfully solves the goal and the method
execution finishes.

continue

No subgoals!

Final Result.

Our debugging session has now altered the outcome of the method evaluation, resulting
in a successful proof.

With this, we have both identified the source of the error, and a potential solution: by
requiring that all emerging subgoals be solvable by assumption, we force the backtracking
behaviour of the method to explore all possible combinations of the given rules. This can
be accomplished by replacing sequential composition (,) with structured concatenation (;).
Implementing this change in an updated my _solver successfully solves the original goal.

method my_solver fixed declares my_solver rules =
((rule my _solver rules)+; assumption)

lemma A = (AAB)V A
apply (my_solver fixed my solver rules: conjl disjll disjl2)

done

Methods as Breakpoint Filters

In addition to using tagged breakpoints, we can further control the breakpoints that are
encountered by providing continue with a method as an optional argument. This method
acts as a filter against the proof state at each breakpoint, and only halts the evaluation
of the debugged method expression if the given method successfully applies to the proof
state.

Consider the following example, where structured concatenation has been used to break
on each subgoal produced by intro conjl.

76

lemma A A (Vz. Pz) ANBAC
apply debug (#break, (intro conjl; #break)) — 1. A A (Vz. Pz) NB AN C
continue — 1. C
continue — 1. B
continue — 1. Vz. Px
continue — 1. A

continue — 1. A 2.Vz. Pz 8. B 4. C

The second #break is executed on a restricted view of the subgoal multiple times, once
per conjunct. Now, consider the case where we are interested in investigating the proof
state prior to encountering a particular conjunct, e.g. V. P z. If there are a large number
of subgoals, it is impractical to manually continue over each one. One option to address
this is to conditionally break by using Eisbach’s match method.
lemma A A (Vz. Pz) ABAC
apply debug (#break,
(intro conjl; match conclusion in Vz. = #break) | = —)))
continue — 1. Vz. Pz

continue — 1. A 2.Vz. Pz 8. B 4. C Final Result.

Although this strategy is effective in isolating the desired subgoal, it requires modifying
the method expression itself to do so. To address this, the continue command can
instead be given a single method as an argument, to be used as filter on the proof states
encountered by each break point. The breakpoint is hit if the evaluation of the given
method is successful. If the method fails to apply, the breakpoint is skipped.

In our example, we can provide a match as a filter to continue which succeeds only
when the conclusion of the goal is a universal quantifier.

lemma A A (Vz. Pz) ANBAC

apply debug (#break, (intro conjl; #break))
continue (match conclusion in Vz. = (—)

1.Vz. Px

In this session, the first two encounters of #break are skipped since the match fails, and
the continue halts on the intended subgoal V. P x. Further uses of continue, however,
will hit the remaining breakpoints as expected.

continue — 1. A
continue — 1. A 2.Vz. Pz 3. B . C Final Result.

Rather than using match, we could instead apply a rule that distinguishes the target
breakpoint. Note, however, that the effect of the given method is preserved in the resulting
proof state. In our example, we could use alll ((Az. ?P) = Vz. 7P z) to halt on Vz.
P z and introduce its variable.
lemma A A (Vz. Pz) ANBAC

apply debug (#break, (intro conjl; #break))

continue (rule alll) — 1. Az. Pz

continue — 7. A

continue — 1. A 2. Az. Pz 3. B 4. C Final Result.

77

The command finish is an alias for continue fail, which will simply skip over all remaining
breakpoints to finish the evaluation of the method and end the debugging session.

6.1.4 Document-based debugging

Isabelle’s PIDE (Prover IDE) approach to interactive theorem proving advances the
command-line interfaces of early IDEs by providing a document-centric approach to the
formal proof text. The philosophy is to allow users to edit and develop the text of a given
formalization without much consideration for the state of the underlying prover. As the
document evolves, the system continuously checks it and provides markup to the given
commands, identifying any errors or outputting the proof state. This is in contrast to the
traditional approach of a read-eval-print loop in I'TPs, where users explicitly step forwards
or backwards over each proof command.

Since apply debug is implemented as an Isar command, and not as a separate
user interface tool (i.e. as a panel in Isabelle/jEdit), it must support this PIDE model
of interaction. A method debugging session therefore behaves as a proof, where users
are free to arbitrarily modify any part of the debugging script and expect the entire
session to update accordingly. The user should not be concerned with the state of the
thread executing the debugged proof method, therefore apply debug performs sufficient
bookkeeping to manage this automatically.

Method Traces and Threads

In the following example, assume that the debugging session is a checked as a PIDE

document. Each command has received markup according to the output produced by

Isabelle, and finish has successfully evaluated to the final result of the method expression.
lemma assumes A B C D E shows (AA B) A (C AND A E)

apply debug (rule conjl, #break)+ — 1. AANB 2. CADAE
continue — 1.4 2.B 3. CANDAE

finish — 1. A 2. B 3. C AN D A E Final Result.
If we change a line of this document, PIDE re-executes any following lines in order to
produce updated markup. For example, if we add a new method after apply debug,
the following two commands must be re-evaluated. B

apply debug (rule conjl, #break)+ — 1. AANB 2. CANDANE

apply (rule conjl; fact) — 1. CAD A E
continue

finish =

We use = to show the current state of the thread managing the evaluation of the method:
it points to the command corresponding to the breakpoint that the thread is currently
blocked on. Commands which still need to be processed are shown in grey. Here we see
that immediately after adding the apply, the remaining commands become unprocessed
and lose their markup. The thread that was executing the method is currently terminated
(represented by = after finish), therefore it will be automatically restarted and re-played
up to this breakpoint in order to produce the new state after continue.

78

= apply debug (rule conjl, #break)+ — 1. AANB 2. CANDAE
apply (rule conjl; fact) — 1. CA DA E
continue

finish
When evaluated in the updated document, the continue command detects that the ex-
ecuting thread has passed it. This thread is therefore restarted, and the method is re-
evaluated, starting with the the initial proof state.

apply debug (rule conjl, #break)+ — 1. AANB 2. CANDANE

apply (rule conjl; fact) — 1. C AD AN E

= continue

finish
Once the first breakpoint is hit, the current proof state (just after having applied (rule
conjl; fact)) is given as its result state. The method execution then continues from this
modified state, and continue evaluates to state of the next breakpoint.

apply debug (rule conjl, #break)+ — 1. AANB 2. CANDAE

apply (rule conjl; fact) — 1. C AD A E
continue — 1. C 2. DANE

= finish

At this point the executing thread has caught up to the current document state, so the
finish proceeds as normal: completing the evaluation of the method and terminating the
thread.

apply debug (rule conjl, #break)+ — 1. AANB 2. CANDANE

apply (rule conjl; fact) — 1. CADAE

continue — 1. C 2. D AN E

finish = — 1. C 2. D A E Final Result.

In this example, restarting the executing thread was relatively straightforward since we
had only modified the result of the first breakpoint. In general, modifying the document
after several debugging commands will require skipping over each of their corresponding
breakpoints. Additionally, any ad-hoc changes to the proof state that were made in the
debugging script will need to be preserved.

To accomplish this, each debug command records its initial proof state and the order
that it appeared during the method’s execution. When the executing thread is restarted,
the resulting proof state after each skipped #break is its corresponding previously-stored
proof state, preserving the effect of any ad-hoc changes that were made in the document.

For example, if we now add an apply after the continue, the restarted thread needs
to recreate the result of (rule conjl; fact) in order to match the document state.

= apply debug (rule conjl, #break)+ — 1. ANB 2. CAND A E
apply (rule conjl; fact) — 1. C ADANE
continue — 1. C 2. DA E
apply fact — 1. D A E

finish
As before, the executing thread is restarted and the method is evaluated starting with
the initial proof state. When the first breakpoint is encountered, its starting state is 1.
ANB 2 CANDA E. The document source that produced the resulting state of this

79

#break, however, has already been processed (i.e. apply (rule conjl; fact)). Rather than
attempting to re-evaluate this Isar source, its resulting state from the previous execution
(i.e. 1. C A D A E) is retrieved from the trace and provided as the result of #break. The
method evaluation then continues from there.
apply debug (rule conjl, #break)+ — 1. AANB 2. CADANE
apply (rule conjl; fact) — 1. C AD A E
= continue — 1. C 2. DANE
apply fact — 1. D A FE
finish
After skipping the first breakpoint, the method evaluation continues until the second
breakpoint, where the current proof state (after applying fact) is given as its result.

apply debug (rule conjl, #break)+ — 1. AANB 2. CADANE
apply (rule conjl; fact)— 1. C AD A E
continue — 1. C 2. D AN E
apply fact — 1. D A F
= finish
At this point, the thread has caught up to the document state and finish can be success-
fully evaluated by resuming the method evaluation as usual.
apply debug (rule conjl, #break)+ — 1. AANB 2. CANDANE
apply (rule conjl; fact) — 1. C ADAE
continue — 1. C 2. DA E
apply fact — 1. D A FE
finish= —1.D 2. FE

6.2 Rule Attributes from Methods

Isar’s rule attributes (see Section 3.4.5) allow for in-place transformations of facts. For
example, the built-in attributes where and of are used to instantiate schematic variables of
a fact with given arguments, while OF and THEN compose facts together. These attributes
perform precise technical adjustments, in contrast to, for example, the simplified attribute,
which rewrites all sub-terms in the fact according to the current simpset (or any provided
rules). This enables some automation in fact transformations, but is not sufficient for
many applications.

Similar to proof methods, it is often desirable to have domain-specific rule attributes for
automating common rule transformations. However, in comparison to method expressions,
Isar’s attribute language is relatively primitive.

For example, an existing lemma may be proven in its uncurried form (i.e. A A B
— (') while a further proof may require it to be in its curried form (i.e. A — B —
C). Rather than explicitly stating the curried form and proving it as a consequence of
the existing lemma, it is more robust and convenient to instead convert a lemma in-place
using a rule attribute.

Using the built-in THEN attribute and sequential composition of attributes (i.e.
[attributey,attributes]), we can explicitly apply the curry rule (P A 2Q — ?R — 7P
— ?Q) — ?R) a number of times to curry a given fact.

80

lemma ABCD: (AAB)AC) — D

thm ABCD[THEN curry] — AA B — C — D

After applying curry once to ABCD, C is pulled out of the conjunction and into the
implication. Applying curry again yields the desired rule in its fully uncurried form.

thm ABCD[THEN curry, THEN curry] — A — B — C — D

In this example, the transformation from the uncurried to curried form of a specific rule
was straightforward. In general, however, these transformations can quickly become non-
trivial as lemmas grow larger and more complex. Similar to proof methods, rule attributes
are traditionally written in Isabelle/ML, thus presenting a significant barrier-to-entry for
many proof authors.

The simplified rule attribute is an existing example of exposing the functionality of
proof methods to rule attributes. Both the attribute and simp method utilize the same
underlying functionality, however each requires a separate Isabelle/ML implementation,
parser and syntax.

lemma ABB: A A B A B
thm ABB[simplified] — A A B

lemma A AN BA B = A A B by simp

In this example, both simplified and simp implicitly apply the rule conj absborb ((?4 A
7A4) = ?7A).

Generalizing this concept, we present a pair of rule attributes that allow proof method
expressions to be used for performing rule transformations. This exposes the power of
Isabelle’s built-in proof automation to rule attributes, and effectively allows Eisbach to be
used as a rule attribute language, as well as a proof method language.

Using methods to transform facts

We can define a specialized rule attribute @ that takes a single method expression as a
parameter and evaluates it against the provided rule. With this we can, for example,
replicate the functionality of simplified by instead invoking the simp method.

thm ABB[Q simp)] — A A B

Internally (see Section 6.2) this is accomplished by inserting the given fact as the lone
premise of a dummy proof state. The given method expression then performs forward
reasoning on this proof state, taking the final resulting premise as the produced fact. The
drule method, which replaces a goal premise by resolving it with the first assumption of a
given fact, is therefore equivalent to the THEN attribute.

In our conjunction currying example we needed to apply the THEN attribute a fixed
number of times in order to convert the lemma into its fully curried form. In contrast, the
drule method can be combined with + to apply the given rule as many times as possible.

81

lemma dummy _conclusion
apply (insert ABCD)

1.(AANB)ANC — D = dummy_ conclusion

apply (drule curry)+

1.A— B — C — D = dummy_ conclusion

In this dummy proof, we can see that the given method expression has transformed the
inserted fact as desired. However this goal is not solvable, thus this transformation cannot
be exported in a usable form. With the @ attribute we can retain this transformation, so
the resulting fact can be used.

thm ABCD[@ «(drule curry)+)] —A — B — C — D
Although already an improvement over manually applying THEN, this simple method ex-
pression is not sufficient if we wish to have a general-purpose attribute for rule currying. If
the antecedent is not left-associated, or if the implication is partially curried, the resulting
rule will not be in the desired form.

lemma ABCDEFG: (AN B) A (C AD) — EAF— G

thm ABCDEFG|Q@ «(drule curry)t)] —4 —B — CAD —EANF — G
In this example, the method expression successfully curries the first conjunct, but then
the evaluation terminates since curry is no longer directly applicable via drule. To address
this, we can use a combination of the uncurry rule (P — ?Q — ?R = ?P N\ ?Q —
?R) and imp__conj_assoc to re-associate conjunctions in antecedents.

lemma imp_conj assoc: PA QAR — S = (PANQ)AR)— S

To complete our transformation, we want to first fully uncurry the rule so we have a single
implication. After this, we repeatedly re-associate the antecedent until it exposes a single
conjunct and then pull out this conjunct with curry.
thm ABCDEFG[@ «((drule uncurry)+)?, (drule imp_conj assoc curry)+]
—A—>B—C—D—FE—F—G
Since this method expression performs a general purpose transformation, we may decide
to wrap it up in an Eisbach method for easy re-use.

method curry rule = ((drule uncurry)+)?, (drule imp_conj assoc curry)+

thm ABCDEFG|Q «curry rule] —A4 —B —C—D —F —F —G

Transforming assumptions in facts

Previously, we have seen the @ attribute used to transform the conclusion of a given
fact, by inserting it as a premise to a dummy goal and performing forward reasoning to
transform it. Instead, if we wish to transform a fact assumption, we have to perform
backwards reasoning.

82

For example, if we instead wanted to curry the implication in the assumption of a rule,
we need reverse our reasoning with the OF attribute.

lemma ABCD E: ((AAB)AC)— D= F

thm ABCD E[OF uncurry,OF uncurry) — A — B — C — D = E

This transformation is not possible with the @ attribute. Instead, the # attribute takes
multiple method expressions and applies them in order to the assumptions of the given
fact. In contrast to the @ attribute, the dummy proof state used by # has the assumption
inserted as the conclusion, and thus can be manipulated through backwards reasoning
(e.g. the rule method).

thm ABCD_E[# ((rule uncurry)+)] —4 — B — C — D = F

Similar to the previous example, additional consideration would be required to handle
non-trivial implications. We can simply reverse all of the rules to achieve the same trans-
formation for rule assumptions.

lemma imp_conj assoc_rev: (PAQ)AR) —S=PANQAR— S

method curry rule _asm = ((rule curry)+)?, (rule imp_conj assoc_rev uncurry)+

This new method curry rule asm can now be used to transform rule. assumptions with
#.
lemma ABCDEFG_H: (AAB)A(CAD) — EANF— G = H

thm ABCDEFG_H[# (curry rule asm]
—A—B—C—D—F—F—G=H
If a rule contains multiple assumptions, each method given to # is evaluated against each
assumption in the order given.

lemma ABC_DD E: [AABAC — D; DA D] = E

thm ABC DD _E[# («curry_rule_asm) (simp)]
—[A—B—C—D;D]=FE

Of course it is not always straightforward or even possible to perform a given transforma-
tion on both the assumptions and conclusion of a given fact. Specifically, the @ attribute
may only weaken its conclusion, while # must strengthen its assumptions.

lemma AB CD: AV B= CAD

thm AB_ CD[# «rule disjll), @ «drule conjunctl)] — A = C
thm AB_CDI[# (rule disjl2), @ «drule conjunct2)] — B = D

Internal Subgoal Structure

Internally, a rule attribute is already very similar to a proof method: both take a thm
(see Section 3.2.3) to another thm and are therefore guaranteed by Isabelle’s proof kernel.
Isabelle’s LCF tradition embraces the identification of proofs and fact transformations,

83

where a proof is simply a series of fact transformations, with conventions to maintain its
subgoal structure.

In @ and #, the provided method is evaluated against a specially-constructed inter-
nal subgoal, such that the result of the evaluation can be used as a new fact. Using
apply debug we can inspect this subgoal during the method’s evaluation.

Beginning with a dummy proof state, we can trace the evaluation of curry rule in @
by evaluating it as part of a method expression given to apply debug.

lemma True

thm ABCD —(AAB)AC — D
apply debug (insert ABCD[Q (#break, curry_rule, #break)])

1. (AN B)ANC — D = thesis

When evaluating insert, apply debug encounters the #break inside of the method given
to @ and halts on its internal goal state. To establish this state, @ first introduces a fixed
variable thesis and creates a trivial thm: thesis = thesis. Treated as a proof state, this
has a single subgoal thesis and overall conclusion thesis.

In this state, the original fact ABCD is inserted into the head subgoal as a goal premise,
resulting in internal state ((A A B) A C — D = thesis) = (thesis). The given method
is then evaluated on this subgoal, as seen at this breakpoint. We can then continue to
evaluate curry rule.

continue

1.A— B — C — D = thesis

The internal state is now (A — B — C — D = thesis) = (thesis), which @
will convert into the resulting fact. After the method is completely evaluated, thesis is
generalized into a schematic ?thesis and then the first subgoal is solved by assumption,
instantiating ?thesis to our desired fact. The resulting thm is then simply A — B —
¢ — D.

continue

1.A— B — C — D = True

Final Result.

The initial insert has inserted the final result from @ into the outer proof state. We can
trace the evaluation of the # attribute similarly.
lemma True

thm ABCD E— (AAB)AC — D = E
apply debug (insert ABCD _E[# (#break, curry rule asm, #break])

1.(ANB)ANC — D

To establish this subgoal state, similar to as in @, a fixed variable thesis is introduced
and initialized in the trivial proof state thesis => thesis. The original fact ABCD is then

84

inserted as a premise to the head subgoal, so the internal state is (((A A B) A C —
D = FE) = thesis) = thesis. This thm is then re-associated to produce the desired
subgoal structure (A A B) A C — D = ((E = thesis) = thesis). The head subgoal
can now be transformed with curry rule asm.

continue

1.A—B—C—D

After the method has been evaluated, the internal thm is re-associated to (A — B — C
— D = FE) = thesis) = thesis. The fixed thesis is then generalized to a schematic
variable, and the resulting head subgoal is solved by assumption as before. The resulting
underlying thm is the final fact A — B — C — D — E.

continue

1.(A— B — C — D= E) = True

Final Result.

Additional Arguments

By default, the schematic variables in the given fact are fixed in the internal goal state
to prevent the given method from performing unintended instantiations. To leave them
schematic, and able to be instantiated, the flag (schematic) can be given.

thm conjl — [?P; ?Q] = 9P A 2Q)

thm alll — (Az. P 2) = V2. Pz

thm conjl[# crule allb] — Error: Failed to apply method to rule assumption.
thm conjl[# (schematic) <rule alllh] — [Az. ?P z; ?Q] = (Vz. 7P x) A 7Q

However care must be taken when using this feature, since many methods will aggressively
instantiate schematic variables in order to “solve” the internal subgoal.

thm conjl[# (schematic) simp)] — ?Q = True A 2Q)

Additionally, by default, the internal thesis is an object-level judgement (i.e. bool in HOL)
in order to maintain compatibility with most methods and rules. This necessitates an
extra step performed by these attributes that was not previously discussed, where the rule
must be converted to an object-level judgement (e.g. Vx. P x — @ z) prior to the final
instantiation of thesis, and then have its meta-connectives restored in the final fact (e.g.
Nz. Pz = Q x).

Since converting a given fact into an object logic judgement is not always possible (i.e.
if the rule contains meta-logic judgements), the flag (raw_prop) can be given to instead
have thesis be of type prop.

thm conjunctionD1 — PROP %A &&& PROP ?B = PROP ?A

thm conjunctionD1[@ (—)] — Error: Failed to fully atomize result.
thm conjunctionD1[@ (raw_prop) (—] — PROP ?A &&& PROP ?B =—> PROP ?A

85

This, however, can cause incompatibilities with existing rules and methods (e.g. elimina-
tion rules with erule, where the conclusion is a object logic judgement). In this example,
the schematic ?R in allE is a bool, so it cannot be applied when the conclusion of the goal
is a prop.

thm allE — [Vz. 9P z; 9P %2 = YR] = ¥“R

thm alll[@ cerule allE)] — (Az. P z) = ?P %x
thm alll[@ (raw_prop) <erule allEy] — Error: Failed to apply method to rule assumption.

Most often these flags are not necessary, but exist to support specific use cases.

In Chapter 7 we show a nontrivial application of these attributes, where a large library
of lemmas, stated in the original refinement calculus of L4.verified |23], can be automati-
cally transformed into the calculus of a new proof method.

6.3 Advanced Methods and Combinators

With Eisbach it is straightforward to lift existing tacticals into method combinators, since
methods can be easily taken as arguments to new (higher-order) methods. For example,
the common tactical ALLGOALS can be made available to methods with a few lines of
ML. This takes a method and repeatedly evaluates it against the goal, once with each
subgoal rotated to be the head goal.

ML

(fun method_ evaluate text ctxt facts =

Method.NO CONTEXT TACTIC ctat
(Method.evaluate _runtime text ctxt facts)

method _setup all =
(Method.text_closure >> (fn m => fn ctat => fn facts =>
let
fun tac i st’ =
Goal.restrict i 1 st’
|> method _evaluate m ctzt facts
|> Seq.map (Goal.unrestrict i)

in SIMPLE METHOD (ALLGOALS tac) facts end)

This method takes a method as an argument with the Method.text closure parser. This
forms a static closure of the method syntax (see Section 5.3.4) which is then re-evaluated
by Method.evaluate runtime on each subgoal. These functions were introduced to Isar’s
Method module as of Isabelle-2016 in an effort to standardize this aspect of Eisbach.
lemma [4; B; C] = AABAC
apply (intro conjl)

1. [4; B-C]]:>A
2. [4; B; C] =
3. [4; B'C]]:>C

Each of these three subgoals is now solvable by assumption.

86

apply (all assumption))
done
Some new methods which have no analogous tactical can be extremely useful for writing
methods in Eisbach. For example, we can define a succeeds method combinator which
leaves the goal unchanged, but fails if the method would not have applied.
method setup succeeds =
(Method.text_closure >> (fn m => fn ctat => fn facts =>
let
fun can_tac st =
(case SINGLE (method_ evaluate m ctzt facts) st of
SOME _ => Seq.single st
| NONE => Seq.empty)
in SIMPLE METHOD can_ tac facts end))
This allows for writing methods that function as tests, when more complex control flow is
required.
Many general-purpose combinators can be written without requiring ML. For example,
we can write a combinator to hide the conclusion of a subgoal from a given method by
using only Eisbach’s match.

lemma ANA—=— BAB
apply (only asm (simp))

1.A— BAB

This new method only asm (defined below) wraps the subgoal such that simp can only
see the premise A A A, thus leaving the conclusion untouched.

To implement only asm, first we establish a new context in order to write private
wrapper definitions and lemmas. This allows us to assume that the method passed to
only asm will be unable to unfold these definitions, or otherwise inadvertently make use
of them, since they will necessarily be out of scope.

context
begin

private definition protect concl z = — z
private definition protect false = False

private lemma protect start: (protect concl P = protect false) = P
private lemma protect end: protect concl P = P = protect_false

Here we are simply wrapping negation and False, in order to carefully move the conclusion
of a subgoal as a negated premise, as in the rule ccontr ((—= ?P = False) = ?P). This
allows us to use the subgoal focusing provided by match to hide it.

87

method only asm methods m =
(match premises in H[thin]: _ (multi) =
(rule protect _start,
match premises in H [thin]:protect concl =
(insert H, #break, (m, #break);rule protect end[OF H']»)

end

In this method match is used to control the goal premises that m can see. The bound fact
H holds the goal’s initial premises (binding to all premises due to the multi flag), while
H’ holds the newly-introduced protect concl premise after applying protect start. By
removing protect concl from the subgoal state with thin (see Section 5.2.5) and binding
it to H’, we ensure that m cannot inadvertently remove or manipulate it, and that the
original goal can therefore be restored with protect end. Additionally, since we are in a
local context, our private lemmas and definitions are inaccessible after the end.

With apply debug, we can inspect the goal state just before the given method is
evaluated.

lemma ANA = B AB
apply debug (only _asm simp)

1. AN A = protect_false

Here we can see that B A B has been replaced with protect false, and that H’ contains
the wrapped conclusion.

thm H’'— protect concl (B A B)

continue

1. A = protect_false

After simp is evaluated, the resulting state has is premise simplified but leaves protect false
untouched.

continue

1. A— BAB

Final Result.

Finally, protect false has been replaced with B A B, the original conclusion.

This pattern of window reasoning turns out to be extremely powerful when combined
with Eisbach, where a combinator focuses the effect of a given method on a sub-component
of the subgoal. In the next section, we’ll see how this can be generalized to write window
reasoning combinators for different proof calculi.

6.3.1 A Hoare Logic Combinator

We have seen how Eisbach can be used to write a general-purpose method combinator
only asm that controls the perspective the provided method has on the goal state. This

88

suggests a general strategy for extending this technique to other domains: wrap a subgoal
to focus on a particular sub-component, execute the provided method, then unwrap to
recover the original structure.

As an example, we can consider the monadic Hoare logic framework used in
L4.verified [23]. In this framework, a Hoare triple {P} f {Q] states that given the
precondition P, the postcondition) will hold after executing f.

{P} f{Q} =Vs. Ps — (V(r, s)efst (fs). Qrs’)
A Hoare triple is usually encountered as the conclusion to a subgoal, where the precon-
dition is a schematic variable, and the postcondition is a (potentially large) conjunction
resulting from using a verification condition generator. These conjuncts need to be prop-
agated into the precondition by applying appropriate rules from the calculus.

Often it is the case that a given Hoare triple requires a very specific or technical
adjustment in order for a proof to proceed. If this cannot be accomplished with existing
calculus rules, the user must resort to manually specifying the desired postcondition, then
prove that it implies the target one. In large proofs, with dozens of individual conjuncts
in a postcondition, this can result in excessively verbose and brittle proof scripts.

For example, consider the following scenario:

lemma assumes AA" A\rs. Ars= A'rs

shows {PJ} f {Ars. Ars — Brs}
apply (rule hoare strengthen postjwhere Q=Ars. A’ rs — B r s])

1.{P} f{ rs. A’rs — Brs}
2.Nrs.A'rs —Brs= Ars— Brs

By manually applying hoare strengthen post ([{?P} %a {?Q}; Ar s. 7Q r s = 7R
r s] = {?P} %a {?R}) and instantiating ¢@) to our desired postcondition, we have
introduced two new subgoals: we now must show that we can establish A’ rs — B rs
as the postcondition for f, and that it implies the original condition. The second goal is a
trivial consequence of the assumption.

defer
apply (simp add: AA’)

1.{P} f{rrs. A’rs — Brs}

The problem, as stated earlier, is that quoting the postcondition in the proof script is
often impractical. Instead, we would like to be able to use the assumption AA’ directly to
strengthen the subgoal. To accomplish this, we can write a specialized method combinator
that allows us to treat the postcondition as if it were the conclusion of a subgoal.

Similar to as we did with the only asm method, we start by opening a new context to
create private definitions specific to our method implementation.

89

context begin
private definition packed triple P fr s = 3si. Psi A (r, s) € fst (f si)

private lemma packed triple start:
(Ar s. packed triple P frs = Qrs) = {P} f {\rs. Qrs}

private lemma packed _tripleE:
packed triple P frs = {P} f {\rs. Qrs} = Qrs

Here the new constant packed triple wraps the first half of a Hoare triple, assuming the
existence of an initial state si that satisfies the precondition P and f gives the return
value/result state r and s after si. This allows a Hoare triple to be packed by applying
packed triple start, leaving the postcondition as the conclusion. After the goal has been
modified, it can be unpacked back into a Hoare triple with packed tripleE. With Eisbach,
this is a simple method to define.

method post simple methods m =

(rule packed triple start,
match premises in H|[thin]: packed triple = =

(#break, m, #break, (atomize (full))?, rule packed tripleE[OF HJ))

Note the use of atomize after m is invoked. This is a built-in method that rewrites the
subgoal into the current object logic (HOL in this case). Any assumptions are turned into
HOL implications, and goal parameters are turned into universally quantified variables.
Here this is necessary to ensure that the goal has been completely collapsed into a single
term that can be packed with packed tripleE.
With this method, we can easily modify the postcondition of our subgoal in-place.
lemma assumes AA A\rs. Ars = A'rs

shows {P} f {A\rs. Ars — Brs|}
apply debug (post_simple (rule impl, drule AA")

1.Ars— Brs

The first breakpoint from post simple shows the goal just before the method is invoked.
We can see that the postcondition has indeed been lifted to the conclusion of the head
subgoal. The local fact H contains the introduced packed _triple assumption.

thm H — packed triple P frs
Our second breakpoint, hit after the method has executed, shows the resulting goal just
before it is atomized and packed.

continue

1.A'rs= Brs

The resulting Hoare triple is now in the expected form.

90

continue

1. N\rs. AP} f{ rs. A'rs — Brs}

Final Result.

Note that the introduced goal parameters r and s are not present in the subgoal itself,
and will be ignored (or removed) by most methods.

A key issue with this implementation is the implicit assumption that the given method
will produce a single subgoal. Indeed if multiple goals are produced, then our combinator
will not behave as expected.

lemma assumes DA: Ars. Drs = Ars
shows {P} f {Ars. C — A rs A Brs|

apply debug (post_simple (rule impl, rule conjl, rule DA))
continue

1.C = Drs
2.C = Brs

After introducing the conjunct in the postcondition with conjl, the resulting proof state
has one subgoal per conjunct. This additional subgoal causes the method to behave
unexpectedly, since atomize and rule only affect the head subgoal.

continue

1.Ars. {P} f{ rs. C — D r s}
2.Nrs.C = Brs

Final Result.

Although the first subgoal has been correctly packed into the postcondition, the second
has resulted an unsolvable subgoal.

Addressing this issue turns out to be non-trivial, and a common issue with method
development in Eisbach, since there are no built-in methods that allow direct control over
the subgoal structure. The solution is a new fold subgoals method that will wrap all
current subgoals into a single meta-conjunction (&&&).

6.3.2 Subgoal Folding

With a few exceptions, the majority of proof methods operate solely on the first (head)
subgoal, where the only possible global effects are the instantiation of schematic variables.
We can use method combinators, such as structured concatenation (;) or the custom all
combinator, to lift the effect of a given method to multiple subgoals. However, precise
control over the subgoal structure is still not immediately accessible.

When using Isabelle’s built-in methods, subgoals are either introduced by applying
a rule with multiple assumptions or discharged by applying a rule with no assumptions.
Introducing a new subgoal is therefore a non-reversible effect.

91

For example, once we apply conjl to a subgoal, we now are obligated to solve each
conjunct independently.

lemmaVvz Az — Vy. Byz) AN (Cxz — D)
apply (intro alll conjl impl)

I.Nzy. Az = Byz
2.Nz.[Az; Cz] = Dz

At this point there is no built-in method that can return the proof state into its original
form. Although this is logically sound (i.e. no information has been lost), it can pose an
issue when writing methods in Eisbach.

The new method fold subgoals, collapses the entire subgoal state into a single meta-
conjunct.

apply fold subgoals

1. Axy. Az = Buyuz) &&& (Nz. [A z; C 2] = D x)

We can then use atomize to convert this into a HOL formula, rewriting meta-connectives
to their HOL equivalents.

apply (atomize (full))

1.Vzy. Az — Byzx) A
Vz. Az — Cz — D x)

The resulting single subgoal is now logically equivalent to the initial one, although with
the antecedent A z duplicated in each conjunct.

As seen in this example, the subgoals of a given proof state are likely to share a common
prefir of goal parameters and assumptions. In our example, the initial assumption A z
was duplicated in each subgoal, and thus appeared in each resulting conjunct. To capture
this common case, an optional argument (prefiz) can be given to fold subgoals to lift the
longest common prefix of parameters and assumptions out of the meta-conjunction.

lemmaVvVz. Az — (Vy. Byz) A(Cx — D x)
apply (intro alll conjl impl)

apply (fold subgoals (prefiz))

1. Ne. Az = (A\y. Byz) &&& (C 2 = D 1)

Although this is still logically equivalent to the original use of fold subgoals, the common
assumption A z now only appears once and the goal parameter x is common to both
meta-conjuncts. Applying atomize to this subgoal now returns it to its original form.

apply (atomize (full))

1.Ve. Az — (Vy. Byz) AN (Cz — D x)

92

Focusing while Folding

The effect of fold subgoals is global to the proof state: all currently visible subgoals are
folded into the resulting meta-conjunct. When performing a subgoal focus (as in a match),
only the focused subgoal is visible to the inner method. Applying fold subgoals in a match
will therefore only fold subgoals visible in the current focus.
lemma assumes DA: D — A
shows (A A B) A C
apply (rule conjl)

1.ANB
2. C

In a proof state with multiple subgoals, match conclusion will focus on the first one as
the match target. The inner method therefore can only see this goal.
apply debug
(match conclusion in _ A =
(rule conjl, rule DA, #break, fold subgoals, atomize (full), #break)

1.D
2. B

After applying conjl and DA, in the focused goal, we can fold and atomize to recover a
single subgoal. Note that the third subgoal C' from the outer proof state is not visible.

continue

1.DANB

continue

1.DANB
2. C

Final Result.

After the match been evaluated, the focus ends and we see that the effect of fold subgoals
was restricted to the head goal, leaving the second subgoal untouched.
Hoare Logic Combinator Revisited

Returning to the Hoare logic example from the previous section, armed with fold _subgoals,
it is straightforward to modify our method to simply fold all the resulting subgoals after
applying m before atomizing.

93

method post methods m =
(rule packed triple start,
match premises in H|[thin]: packed triple = =
(#break, m, #break,
fold subgoals (prefiz),(atomize (full))?, #break,
rule packed tripleE[OF H)))

This will now have the intended effect when m produces multiple subgoals.

lemma assumes DA: Ars. Drs = Ars
shows {P} f {Ars. C — A rs A Brs|
apply debug (post rule impl, rule conjl, rule DA))
continue

1.C = Drs
2.C = Brs

After the given method is applied, there are multiple remaining open subgoals. They are
then folded by fold subgoals into a single goal and atomized.

continue

1.C — DrsANBrs

This can now be packed into a single postcondition with packed _tripleE.

continue

1.Ars. AP} f{ rs.C — Drs A Brs|

Final Result.

Finally, the resulting state is as expected, where the assumption DA has been used to
transform one conjunct of the consequent in the postcondition.

6.4 Conclusion

In this chapter we have seen a variety of tools implemented directly in Eisbach (only asm
and post methods), implemented using Eisbach’s method evaluation framework (@ and
attributes), and designed to support proof method development in Eisbach (ap-
ply debug and the fold subgoals method). These tools both demonstrate the capa-
bilities of Eisbach and expand the scope of what is possible with it. In the next chapter,
we evaluate this infrastructure in the context of large scale proof engineering by developing
a collection of proof methods for real-world use in L4.verified.

94

Chapter 7

Case Study: L4.verified

In the previous chapters we have seen the features provided by the basic Eisbach frame-
work and shown how it can be easily extended into a rich ecosystem for developing proof
automation. In this chapter we outline the development of a non-trivial proof method
using Eisbach. This proof method, corres, is actively being used in the L4.verified project
to aid in its refinement proofs. We show how Eisbach simplifies much of the standard
boilerplate for developing proof methods, and how it facilitates rapid prototyping. We
apply the corres method to refactor several existing proofs from L4.verified, resulting in
smaller, simpler and more maintainable proofs.

This chapter contains a large amount of technical detail that is not crucial to under-
standing the main result, but nonetheless is included for completeness and reproducibility.
It assumes a greater degree of familiarity with Isabelle than previous chapters and con-
tains many examples with non-trivial proof states. The casual reader can safely read the
beginning of Section 7.1, followed by Section 7.4 and after.

Chapter Outline

e L4.verified, VCGs, and Refinement. Section 7.1 motivates the need for a new
proof method in L4.verified for refinement proofs.

e Corres. Section 7.2 introduces the corres refinement calculus from L4.verified.

e The Corres Proof Method. Section 7.3 follows the process of incrementally build-
ing a proof method for automating corres proofs

e Application to L4.verified. Section 7.4 presents the results of applying this new
method to L4.verified.

e Conclusion. Section 7.5 summarizes and puts this case study in the context of this
thesis.

95

7.1 L4.verified, VCGs, and Refinement

The Hoare logic and refinement calculus used in L4.verified [23] were instrumental to its
success. Importantly, the VCG (verification-condition generator) for solving Hoare triples
is extensively used in the L4.verified proofs. This VCG, implemented in Isabelle/ML as
the wp method, performs weakest-precondition® style reasoning [26] to prove invariant
properties about the sel.4 microkernel. These invariants are then used as a stepping stone
for the major verification result: proving refinement between sell4’s abstract functional
specification and its C implementation. This proof provides guarantees about the imple-
mentation, such as the absence of invalid memory accesses, but also allows for additional
properties to be proven against the abstract specification (such as integrity [61] and con-
fidentiality [53]) and have them carried down to the implementation without significant
additional effort.

The refinement calculus used in L4.verified is substantially more complicated than the
Hoare logic. It is contextual refinement under preconditions, and therefore incorporates
Hoare logic in order to solve and propagate additional refinement conditions. Rather
than pay the initial cost of developing a VCG for refinement proofs, however, the original
L4.verified authors instead chose to perform these proofs manually. This decision was
made for a number of reasons:

e There was no previous work (in contrast to Hoare logic) in developing refinement
VCGs.

e Early attempts at developing a refinement VCG were unsuccessful due to frequent
changes to the refinement calculus.

e [t was not clear that the initial effort to build a and maintain proof method in
Isabelle/ML could be justified given the project’s time-frame.

In the years since the completion of the original proof, these refinement proofs have un-
dergone numerous maintenance iterations, and have grown in complexity as sel.4 evolved.
These highly manual proofs have proven to be among the most brittle in the L4.verified
project, as even minor changes to specifications or lemma statements would then require
manual intervention by a proof engineer.

We therefore decided to develop a new VCG for automating refinement proofs in
L4.verified. The goal was to design a VCG that could accelerate the tediously manual
process of locating and applying rules from the refinement calculus, while also automati-
cally attempting some of the advanced proof techniques that had emerged over time. This
VCG would need to be applicable for refactoring existing refinement proofs to make them
more robust, lowering the cost of proof maintenance, and for accelerating the development
of new refinement proofs.

The result was the corres proof method, which borrows heavily from weakest-
precondition style reasoning for Hoare logic. This method is not necessarily specific to the
L4.verified refinement proofs, and indeed is applicable in any refinement proof formalised in

!The preconditions calculated by wp are not necessarily the weakest possible. Occasionally these are
referred to as the weakest reasonable preconditions.

96

the monadic refinement calculus from Cock, et al. [23] (e.g. an abstract specification built
on the output of AutoCorres [33]). However, the L4.verified proofs remain the canonical
application of this calculus to date.

7.1.1 Refinement

Here we present refinement as defined by Cock et al. in their previous work [23] on for-
malizing the Hoare logic and refinement calculus used in L4.verified. Refinement is a
relationship between two processes: an abstract (A) and a concrete (C). We say that A
is refined by C if all possible observable behaviours of C' are subsumed by the possible
behaviours of A, given the same set of inputs. Formally, we can define a process as having
three functions: an initialization function (Init) which takes an external state into a set
of internal states, a step function (Step) which takes an external event and gives a set of
internal state transitions, and a finalize function (Fin), which takes an internal state and
gives a corresponding external state.
record process =

Init :: ‘external = ’state set
Step :: 'event = ('state x ’state) set

Fin :: ‘state = 'external
From this we can define an execution function, which evaluates a given process A on some
list of events.
steps 0 s events = foldl (Astates event. (§ event) *‘ states) s events
execution A s events = (Fin A) * (steps (Step A) (Init A s) events)

We can then say that A is refined by C' if the execution result of C' for some given list of
the events is a subset of the execution of A.
A C C = Vs events. execution C s events C execution A s events

Importantly, refinement is transitive, which allows for multiple formal specifications at
different levels of abstraction.
VABC.ACB—BLCL(C—ALCC

To prove refinement, it is often more convenient to instead show the equivalent property of
forward simulation. To prove forward simulation between two processes, we first establish
an explicit state relation () between the internal states of each one. We then show that
each of the functions that the process comprises establish and maintain this relation.
A Cs C =

(Vs. Init Cs €S “Init As)A

(V event. (S ;; Step C event) C (Step A event ;; S)) A

(Vs s’ (s,8) €8S — Fin Cs’"=Fin A s)
Roughly, the definition of A Cg C says: given a state relation S, a concrete process C
and an abstract process A, A is a forward simulation of C given the following conditions:

e For any external state, the set of initial states for C is a subset of those for A,
modulo the state relation S.

e For any single event, the result of stepping C is a subset of stepping A, modulo the
state relation S.

97

e For any two internal states satisfying S, their external final states are equivalent for
both C' and A.

It is straightforward to prove that forward simulation implies refinement.
VAC.35. ACs C — ACC

Recall from Section 3.5 that L4.verified is divided into two separate refinement proofs,
linked by transitivity: C-to-executable (CRefine) and executable-to-abstract (Refine). The
focus of our case study is the latter proof, which comprises over 80,000 lines of Isabelle /Isar
source to date. Our aim is to increase level of proof automation in the existing executable-
to-abstract refinement proof, and to expedite similar proofs in the future.

7.1.2 The State Monad

Both the abstract and executable specifications of L4.verified are formalized as a non-
deterministic state monad [23|. The monad state models the entire state of the hardware,
including physical memory and machine registers, as well as abstract data structures such
as the kernel heap or capability derivation tree [41]. Each function returns a set of result
states (and return values), where multiple results represent non-deterministic choice (to
abstract away implementation details). To indicate catastropic failure of a function (e.g.
invalid memory access), a flag is added to the state which is tripped if any possible
computation branch would fail.

(’s,’a) nondet monad = 's = (‘a x ’s) set x bool
The basic monad constructors are return and bind (>>=)). The return constructor takes
a single argument and immediately returns it, leaving the state unmodified and always
succeeding (leaving the failure flag False).

return :: ‘/a = ‘s = ’‘a x 's set x bool
return a = As. ({(a, s)}, False)

Monadic bind takes two functions, f and g, and composes them in sequence. The input
state s is evaluated on f, and the set of resulting state-return value pairs (s’ and r) are
given to ¢g. The final result is the union of all the possible results of g.

>>=:: ('s,’a) nondet_monad = (‘a = (’s, 'b) nondet_monad)
= (’s, 'b) nondet_monad

f>>=g=Xs. (U(fst “ (A(s',r). gs'r) “fst (fs)),
True € snd “ (A(s',r). gs) “fst (fs) Vsnd (fs))
The failure flag is set to True if any branch of ¢ or f failed. Failure is therefore prolific,
and a non-failure result of some function guarantees that none of its non-deterministic
branches will result in failure. The do syntax from Haskell is supported, to make longer
chains of computations more concise and readable:

doz+ figrod=f>>=9g

98

The three canonical monadic laws for return are as follows:

return © >>= f= fux
m >>= return = m
(m >>=f)>>=g=m >>= (\z. fz >>=g)

To interact with the state we require two primitives: gets and modify, which allow for
retrieving and modifying respectively.
gets :: ('s = 'a) = (’s, 'a) nondet_monad

gets f = (As. ({(f s, s)}, False))

modify :: (‘s = 's) = (s, unit) nondet monad
modify f = As. ({((), [s)}, False)

The monadic laws for gets and modify are similar to those for return.

7.1.3 Monadic Hoare Logic

In L4.verified, Hoare logic is used extensively to prove invariant properties about the
abstract and executable specifications. These invariants are necessary conditions for re-
finement, and are used to discharge intermediate subgoals arising from the corres calculus
(see Section 7.2).

The Hoare triple {P[} f {Q[(briefly introduced previously in Section 6.3.1) states
that given the precondition P, the postcondition @) will hold after executing f.

{P} f{Q} =Vs. Ps — (V(r, s)efst (fs). Qrs')

Note that () takes two parameters: the return value of f and the resulting state. The rule
for return is straightforward:

return_wp: {{P z|} return z {P}
Since return leaves the state unmodified, any predicate P will be preserved by it. Similar
rules for gets and modify can be easily proven.

gets_wp: {As. P (fs) s} gets f {P]}

modify _wp: {\s. P () (f s)}} modify f {P]}
The rule for bind however is complicated by the need for a fresh predicate.

seq: [A\z. {B zfy g {C}; {A} f {B} = {A} f >>= g {C}
In seq the intermediate predicate B serves as both the precondition for ¢ and postcondition
for f. Since B does not appear in the conclusion of the goal, we are free to choose any
suitable condition, provided it is sufficient for g to establish C' and can be established
by f. Determining these intermediate conditions (and proving they satisfy the conditions
of seq) is the main challenge in automating Hoare logic proofs. A verification-condition
generator takes a Hoare triple and applies seq and similar rules from the Hoare logic
calculus, calculating and connecting the intermediate conditions in order to produce a
final verification condition, whose proof ultimately entails the validity of the Hoare triple.

99

Weakest Preconditions and Verification Conditions

The seq rule is used in Hoare logic in order to decompose triples over composite functions
into smaller proof obligations. Further rules are required to handle more complex control
flow (i.e. conditionals, loops, exceptions), with the goal of eventually decomposing the
main goal into a sequence of Hoare triples over atomic functions. Ideally these atomic
triples are trivially solved with previously proven results.

In practice, there are two strategies to calculate the intermediate condition (B) required
by seq: strongest postcondition or weakest precondition. In strongest postcondition style
reasoning, the second precondition is solved first ({A} f {B]}) and thus B is calculated
as the strongest postcondition that can be established after f assuming A. Conversely, in
weakest precondition style reasoning, the other precondition is solved first (Az. {B z} ¢
z {C}), and B is calculated as the weakest precondition required to establish C after g.

In L4.verified, proofs are done in weakest-precondition style, supported by the wp
method which acts as a verification condition generator. The goal of the wp method is to
convert a Hoare triple (precondition, function, and postcondition) into a single verification
condition, which implies that the Hoare triple is valid. Effectively this translates the
proof obligation from Hoare logic into Isabelle’s HOL logic, where Isabelle’s built-in proof
methods such as simp and auto can be effectively used.

Although the actual wp method is written in ML, we can give a simplified implemen-
tation with a few lines of Eisbach.

named theorems wp and wp_comb and wp_ split

method wp declares wp wp _comb wp_split =
((rule wp | (rule wp__comb, rule wp)) | rule wp _split)+

Example wp Proof

As a simple example, consider the following function:

record my_state =
my int ::int

definition my add :: int = (my_ state, unit) nondet monad
where my add i =
do i’ «+ gets my_int;
modify (As. (s (my_int := i + i')))

od
We can phrase the behaviour of this function as a simple Hoare triple, and prove it with
wp. Using apply debug (see Section 6.1) we can trace the execution of wp by supplying
the tag wp (the implementation of wp contains a single tagged breakpoint before every
rule application).

lemma my add adds:
{As. z=my int s + y} my add y {_ s. my int s = 2z}
unfolding my add def
apply debug (tags wp) wp

100

The first step in a wp proof to apply the following weakening rule hoare pre.

hoare_pre: [{P'} f {Q}; N\s. Ps = P's] = {P} f {Q}

This replaces the concrete precondition in the current subgoal with a schematic one,
ultimately to be established as the consequent in the verification condition.

1. {?Q} do i’ + gets my_int;
modify (As. s(my_int := y + ')
od
{A_ s.my_ints =z}
2.Ns.z=my_ints+y—=— ?Q s

Then seq is applied to introduce an intermediate condition and decompose the function
body into two Hoare triples.

continue

1. A\i’. {?B3 i’} modify (As. s(my_int :== y + i)
{rA_ s.my _ints =z}

2. {?Q} gets my_int {?B3|}

3. N\s.z=my_ints+y= ?Q s

The first Hoare triple is solved with modify wp.

continue

1. {?2Q} gets my_int {\i’ s. my_int (s(my_int:=y + i) = z|}
2.Ns.z=my_ints+y= ?Qs

The second is solved by gets wp.
finish

1. \s. z=my_int s + y = my_int (s(my_int :== y + my_int s))) = 2

Final Result.

At this point the method terminates, as the verification condition has been successfully
generated. This goal is a trivial consequence of Isabelle’s records, and can be solved by
simp.

by simp

The wp attribute

The wp declaration attribute (see Section 3.4.4) can be used to manage a database of Hoare
triples, to be automatically applied by the wp method. Each conjunct in a composite
postcondition is matched against this database using Isabelle’s usual rule resolution. The
wp rule set also contains calculational rules for handling control flow, exception handling,

101

etc. For example, if we declare my add adds as a wp rule we can then solve Hoare triples
containing my add with wp:

declare my add adds[wp]

lemma
{As. my_int s = O}
do
my add 1;
my add 1
od
{A_ s. my_int s =2}
by (wp | simp)+
In the ideal case, solving a Hoare triple simply requires a single invocation of wp, followed
by a manual proof of the calculated verification condition. If this fails, however, proof
authors must then determine either what rules need to be marked with the wp attribute
in order for the wp method to succeed, or if manual intervention is required (e.g. a loop
invariant must be explicitly provided).
As more rules are added to this wp database, the wp method becomes capable of
generating verification conditions with minimal manual intervention.

7.2 Corres

To prove forward simulation between the abstract and executable specifications of
L4.verified, we need to decompose the problem in to manageable sub-problems. Here
we present the corres calculus used in L4.verified, originally given by Cock et al. [23] and
updated here. This calculus was designed to prove forward simulation for functions defined
over a non-deterministic state monad.

Informally, corres underlying srel nf nf’ rrel P P’ a c states: for any two states s and
s’ satisfying the state relation srel, if P s and P’ s’ hold, then every result state of ¢ s’
has a corresponding result state in a s which satisfies srel and the return-value relation
rrel. The flags nf and nf’ control how failure is treated: if nf is True then a s must not
fail (assuming P s), and if nf’is True then ¢ s’ must not fail (assuming P’ s’).

corres__underlying srel nf nf’ rrel P P’ a ¢ =
Y (s, s’)esrel.
PsANP s —
(nf — —snd (a s)) —
(V(r', t'efst (¢ s7).
A(r, t)efst (a s).
(t, t") € srel A rrel rr’) A
(nf’ — = snd (¢ 7))
The name corres_underlying is historical: originally this framework was only used for the
abstract-to-executable refinement proof for L4.verified, so parameters srel, nf and nf’
were concretely instantiated in the definition of the corres constant. The corres framework
has since been abstracted for use in other projects (e.g. Greenaway’s AutoCorres [33]).

102

To avoid rewriting the existing L4.verified proofs, the base constant was renamed to cor-
res underlying and corres was defined as a special case of it.

corres rrel P P’ a ¢ = corres__underlying state relation a_nofail ¢_nofail rrel P P’ a ¢

For the sake of brevity, and without loss of generality, in this chapter we will use corres to
refer to corres underlying srel nf nf’ with some arbitrary-but-fixed instantiation for srel
(state_relation), nf (a_nofail) and nf’ (c_ nofail).
Similar to the seq rule for Hoare logic, we can prove a rule that can be used to distribute
a corres obligation across bind.
corres _ split:
[corres R’ P P’ a ¢;
Arvrv’. R ro rv’ = corres R (S rv) (8" rv’) (b rv) (d rv’);
{QF a Sk {Q} c {5 =
corres R (P and Q) (P’ and Q) (a >>= (Arv. b rv)) (¢ >>= (Arv’. d ')

As in seq, the intermediate predicates S and S’ serve as both preconditions and post-
conditions. They are calculated as the required preconditions in order to establish corres
between b and d. The two Hoare triples then show that these conditions are established
by a and ¢ assuming @ and Q' respectively. The relation R’ is required to hold between
all return values of @ and ¢ by assumption A, therefore it can be assumed to hold between
the quantified 7 and r’ in assumption B.

Similar to the hoare pre rule in the previous section, the start of a corres proof requires
that the provided preconditions be replaced with schematic ones. The most straightfor-
ward rule simply weakens both preconditions.

corres__guard _imp:
[corres R Q Q' a c; As s’ [P s; P's’; (s, s') € state_relation] = Q@ s A Q' s'] =
corres R P P'ac
For elementary functions, we can prove general rules which reduce a corres goal to one or
more HOL obligations, which can be solved with standard proof methods.

corres_return: R a b => corres R T T (return a) (return b)

Where T is the universal predicate (i.e. T = (As. True)). With this rule we can show
corres between a pair of abstract and concrete return functions if we can prove that the
given return value relation R is satisfied by the returned values.
Similarly, we can prove corres rules for get and put.
corres_ gets:
(As s’. [P s; P's'; (s, s') € state_relation] = rrel (f s) (f' s')) =
corres rrel P P’ (gets f) (gets f)
Since gets leaves the state unmodified the resulting states will always correspond. The
proof obligation is to therefore show that the return relation rrel is satisfied by the given
state projections f and f’, assuming the preconditions and state relation hold.
corres_modify:
(As s". [P s; P’ s’ (s, s’) € state_relation] = (f s, f' s’) € state_relation) =
corres dc P P’ (modify f) (modify f)

Here we see that two modify functions will correspond if the modified states that are

103

being stored (i.e. fs and f’ s') satisfy the state relation. The return-value relation is the
universal relation (dc = A . True) since put always returns a unit.

To introduce nondeterminism into monadic specifications (as shown later in Sec-
tion 7.2.1) we can use the select primitive, which nondeterministically returns a single
element from a set and leaves the state unmodified.

select A = As. (4 x {s}, False)

This can be seen as a generalization of return (i.e. return a = select {a}). The most
straightforward corres rule for select mirrors the definition of corres.
corres _ select:
(Ass"b.[Ps; P's;be B] = JacA. Rabd) =
corres R P P’ (select A) (select B)

This can then be specialized to return.

corres _select return:
(As s [Ps; P's'] = JacA. R ab) = corres R P P’ (select A) (return b)

Note that corres return, corres select and corres select return do not mention
state relation as select and return do not read or modify the monadic state.

Using these and similar rules, we can then proceed to prove corres results over inter-
mediate functions in monadic specifications, and compose them to prove refinement of the
top-level entry points.

7.2.1 Example

In this section we will develop an abstract and concrete implementation for a toy scheduler
and prove corres between them.

Scheduler Specification

First we define the state for each scheduler.

record abstract state =
cur_thread :: thread id
threads :: thread id set

record concrete state =
cur_thread’ :: thread id
threads’ :: thread id list

In both states we store the currently running thread, and in the concrete state we maintain
an ordered list of runnable threads while the abstract state leaves it as an unordered set.
The relationship between these two states is straightforward to define.

definition state relation = {(s,s’).
cur_thread’ s’ = cur_thread s A

set (threads’ s’) = threads s}

Where set is the unordered set of elements in a given list, ie:

104

next thread abstract = next thread concrete =

do ts < gets threads; do ts’ < gets threads’;
select ts return (hd ts”)

od od
dequeue thread abstract t = dequeue thread concrete t' =

modify (As. modify (As.

s(threads := (threads s) — {t})) s(threads’ := removeAll ¢’ (threads’ s)))

set cur_thread abstract ¢ = set_cur_thread concrete t' =

modify(As. (s(cur_thread := t)))) modify(As. (s(cur_thread’ := ¢t’))))

Figure 7.1: Intermediate functions for scheduler abstract and scheduler concrete

set :: ‘a list = ‘a set
set [| =0
set (z - 1) = {z} Usetl

Next we define our abstract and concrete schedulers.
definition
schedule abstract :: (abstract _state, unit) nondet monad
where schedule abstract =
do t < next_thread abstract;
dequeue thread abstract t;

set cur_thread abstract ¢
od

definition
schedule concrete :: (concrete state, unit) nondet monad
where schedule concrete =
do t’ + next_thread concrete;
dequeue thread concrete t’;
set_cur_thread concrete t’
od

Each scheduler selects a new thread according to its scheduling algorithm (next thread *),
removes it from the set of schedulable threads (dequeue thread *), then marks it as
the current thread (set cur_ thread *). The definitions for these functions are given
in Figure 7.1.
In the concrete scheduler, next thread concrete will simply select the first element of
the list with the partial function hd.
hd :: ‘a list = ‘a
hd (z - zs) = z
For the abstract scheduler, since our thread pool is unordered, our only option is to
use non-determinism via the select function when defining next thread abstract.
To dequeue the selected thread in dequeue thread concrete, we remove it from the
list of schedulable threads with removeAll.

105

removeAll :: 'a = ‘a list = ’a list
removeAll z [| = []
removeAll z (y - 1) = (if x = y then removeAll z [else y - removeAll z [)

Whereas in dequeue thread abstract we can use set difference.

op — :: 'a set = ’a set = ‘a set
A-—B={zecA|z ¢ B}

Scheduler Corres Proof

The most interesting functions in this example are the thread selectors
(next thread abstract and next thread concrete). For these functions to corre-
spond, we require that at least one thread can be scheduled (otherwise their behaviours
diverge). To ensure this on both sides, it is sufficient to assume that the concrete list
of threads is nonempty (i.e. As’. threads' s’ # []) since this will imply that the abstract
set of threads is nonempty via the state relation. We know that there is always a
nondeterministic branch in next thread abstract where the selected thread is the same
as next_thread concrete, so we set our return relation to equivalence.
lemma corres _next thread:
corres (At t’. t = t') T (As’. threads’ s’ # [])
next thread abstract next thread concrete
unfolding next thread abstract def next thread concrete def

After unfolding the definitions of next thread abstract and next thread concrete we start
our proof by replacing the precondition with a schematic.

apply (rule corres guard _imp)

1. corres (Att. t=1t") ?2Q ?Q’
(do ts < gets threads;
select ¢s
od)
(do ts’ + gets threads’;
return (hd ts’)
od)
2. N\s s’
[True; threads' s’ # [|; (s, s’) € state_relation]
= Qs A ?Q’ s’

We now have schematic variables for our corres preconditions in the head subgoal, and
two additional subgoals showing that they are implied by the given preconditions.

106

apply (rule corres split)

1. corres ?R’'3 ?P3 ?P'3 (gets threads) (gets threads’)
2. Nts ts'.
?R'3 ts ts' =
corres (At t'. t = t') (253 ts)
(2573 ts’) (select ts) (return (hd ts’))
3. {?Q3] gets threads {?53]}
4. {?2Q'3} gets threads' {25’53
5. N\s s’
[True; threads’ s’ # [|; (s, s’) € state_relation]
= (?P3 and ?Q3) s A (?P'3 and ?Q'3) s’

After applying the split rule we get one subgoal for each pair of elementary functions.
To solve the first goal we specialize corres gets to have trivial preconditions, and set the
return relation to state that each set of schedulable threads is equivalent.

apply (rule corres getslwhere P=T and P'=T and rrel=M\ts ts'. set ts’ = ts])

1. A\s s’ [True; True; (s, s') € state_relation] = set (threads' s’) = threads s
A total of 5 subgoals...

This goal is now a trivial consequence of state relation and can be solved by unfolding its
definition.

apply (simp add: state relation def)

1. N\ts ts'.
set ts' = ts =
corres (At t'. t =t') (253 ts)
(2573 ts') (select ts) (return (hd ts’))
2. {?2Q3]} gets threads {253}
3. {?Q'3} gets threads’ {25'3]}
4. N\s s’
[True; threads’ s’ # [|; (s, s’) € state_relation]
= ((A_. True) and ?Q3) s A
((A_. True) and 2Q'3) s’

The first corres subgoal is now solved and we are left with the second. However our
return-value relation is now instantiated concretely in the goal assumptions (i.e. set ts’' =
ts). This goal can be solved with our previously shown corres select return rule, where
we explicitly assume that the fetched thread set (now the ts bound goal parameter) is
nonempty.

107

apply (rule_tac P=T and P'=_. ts’ # [Jin corres_select return)

1. Ntsts’ s s'.
[set ts’ = ts; True; ts’ # [[]
= Ja€ts. a = hd ts’

A total of 4 subgoals...

This goal now only discusses sets and lists, therefore it can be solved by fastforce alone.

apply fastforce

1. {?Q3] gets threads {Ats . True}
2. {2Q'3} gets threads’ {Ats’ . ts’ # [|}
3. N\s s’
[True; threads’ s’ # [|; (s, s’) € state_relation]
= ((A_. True) and ?Q3) s A
((A_. True) and ?Q’'3) s’

Now we are left with only Hoare triples, which are both easily discharged with gets wp
(or by applying the wp method).

apply (rule gets wp)+

1. A\s s’
[True; threads' s’ # []; (s, s’) € state_relation]
= ((A_. True) and (As. True)) s A
((A_. True) and (As. threads’ s # [])) s’

The rest of the goals are now trivial implications which can be solved by auto.
by auto

The proofs for dequeuing and setting the current thread are trivial consequences of cor-
resmodify and the definition of state relation.

corres__dequeue:
corresdc T T
(dequeue thread abstract ¢) (dequeue thread concrete t)

corres set cur thread:
corresdc T T

(set cur thread abstract ¢) (set cur thread concrete t)

Finally, with these three lemmas we can prove our main result.

108

lemma corres_schedule:
corres dc T (As’. threads’ s’ # [])
(schedule abstract) (schedule concrete)
unfolding schedule abstract def schedule concrete def
apply (rule corres _guard _imp)
apply (rule corres split)
apply (rule corres next thread)
apply (rule corres split)

1N\t
t=t'—=
corres (YR'8 t t') (?P9t) (?P'11 t’)
(dequeue thread abstract ¢) (dequeue thread concrete t')
A total of 7 subgoals...

Attempting to apply corres dequeue here directly will fail, since the arguments to each
dequeue function differ (¢ on the left and ¢’ on the right). We first need to simplify the
goal in order to rewrite the conclusion with the assumption (¢ = ¢’) so that our rule will be
applicable (this assumption comes from the return-value relation of corres next thread).

apply simp

1.\t t.
t=t =
corres (YR'8 t' t') (?P9 t') (?P'11 ¢')
(dequeue thread abstract t) (dequeue thread concrete t’)
A total of 7 subgoals...

The rest of the proof proceeds as expected, with a similar simplification step required
for corres _set cur_thread.

apply (rule corres_dequeue)
apply simp
apply (rule corres_set cur_thread)

apply wp+
by auto

7.3 The Corres Proof Method

In this section we will incrementally build a proof method for solving corres proofs us-
ing Eisbach. The objective is to demonstrate how a complex method can be iteratively
constructed using a combination of Eisbach and Isabelle/Isar. To this end, many imple-
mentation details have been omitted that appear in the final methods used in L4.verified.
The full source of the Eisbach methods, auxiliary Isabelle/ML tools, and proof calculus
are available in the L4.verified repository [5].

109

7.3.1 First Steps and Limitations of Corres

The core algorithm of a corres proof is the same as a Hoare logic proof:

1. Apply weakening rule to replace precondition(s) with schematics.
2. Repeatedly apply split rules to distribute across binds.
3. Solve terminal goals with previously proven rules.

4. Solve the final verification conditions.

For our VCG we are concerned with the first three steps, ideally generating the verification
condition with as little intervention from the end user as possible. A first attempt at
encoding this as a proof method using Eisbach might look as follows (including breakpoints
to trace its execution via apply debug (see Section 6.1)):

method corres _simple uses corres_rules =
(rule corres _guard imp, #break,

(rule corres_ split corres rules, #break)+)

This method weakens the preconditions in the goal, then attempts to repeatedly apply
either the split rule or some given rule for solving terminal goals. A naive attempt at
applying this to our thread selector proof, however, does not make significant progress.

lemma corres_next thread:
corres (At t'. t = t') T (As'. threads’ s’ # [])
next thread abstract next thread concrete
unfolding next thread abstract def next thread concrete def
apply debug
(corres_simple corres_ rules:
corres_getslwhere P=T and P'=T and rrel=M\ts ts'. set ts’ = ts]
corres_select return)

1. corres (At t'. t =1t') 2Q ?Q’
(do ts < gets threads;
select ts
od)
(do ts’ < gets threads’;
return (hd ts’)
od)
A total of 2 subgoals...

After applying corres guard imp, the preconditions in the goal have been replaced with
schematics. From here, corres split is then applied to decompose the subgoal.

110

continue

1. corres ?R’'3 ?P3 ?P'3 (gets threads) (gets threads’)
2. Nts ts'.
?R'3 ts ts' =
corres (At t'. t = t') (253 ts)
(2573 ts') (select ts) (return (hd ts”))
A total of 5 subgoals...

Now that the head subgoal is an atomic function, corres simple applies the given
corres_rules to discharge it.

continue

1. N\s s’ [True; True; (s, s’) € state_relation] = set (threads’ s’) = threads s
A total of 5 subgoals...

The method has now successfully applied corres gets, introducing its assumption as a
new subgoal.

finish

1. N\s s’ [True; True; (s, s’) € state_relation] = set (threads' s’) = threads s
2. N\ts ts'.

set ts' = ts =

corres (At t'. ¢t = t') (253 ts)

(2573 ts') (select ts) (return (hd ts’))

3. {?Q3] gets threads {?53]
4. {?2Q'3} gets threads' {25’53
5. N\s s’

[True; threads’ s’ # [|; (s, s’) € state_relation]

= ((A_. True) and ?Q3) s A

((A_. True) and ?Q’'3) s’

Final Result.

The method has now finished evaluating, leaving the assumption from corres gets to be
solved. The issue here is that corres gets has a non-corres assumption which needs to
be proven. Standard resolution (via the rule method) puts this assumption as the head
subgoal, where it blocks our simple VCG from making progress and the process terminates.

In general any rule of this form will be a problem for corres simple. Since we are
interested in generating a single verification condition to be solved interactively, while
automatically processing all corres obligations, we need to defer any domain-specific rea-
soning (e.g. set or list reasoning) to the end of the proof.

One solution would be to instead move the rule assumptions into one of the corres
preconditions, e.g.:

111

lemma corres _gets2:
corres rrel
(As. Vs’ (s,s’) € state_relation — P s — P’ s’ — rrel (fs) (f' s’)) P’

(gets f) (gets [)

lemma corres_select return2:
corres R (As. Ps — (Ja€A. R a b)) P’ (select A) (return b)

lemma corres _next_thread:
corres (At t'. t =t') T (As'. threads’ s’ # [])
next thread abstract next thread concrete
unfolding next thread abstract def next thread concrete def
apply (corres_simple corres_rules:
corres_gets2[where P=T and P'=T and rrel=M\ts ts'. set ts’ = ts]
corres_select return2)

1. \ts ts'.
set s/ = ts =
corres (At t'. t = t') (253 ts)
(2573 ts') (select ts) (return (hd ts’))
2. {?Q3] gets threads {753}
3. {?Q'3} gets threads’ {25'3]}
4. N\ss'.
[True; threads’ s’ # [J; (s, s’) € state_relation]
= ((As. Vs’ (s, s’) € state_relation —
True — True — set (threads' s’) = threads s) and
7Q3)
s A
((A_. True) and 2Q'3) s’

This attempt has made more progress and successfully applied corres gets2 (with its
precondition now deferred to the 4th subgoal), however corres select return2 has not
been applied as expected. Now the problem is the scope of the goal parameters ts and
ts’. Note that the abstract schematic precondition in our head subgoal is a function of
ts while the concrete precondition is a function of ¢s’. This is a result of the corres split
rule, restated here:
corres _ split:
[corres R' P P’ a c;
Arvrv’. R rv rv’ = corres R (S rv) (S rv’) (b rv) (d rv’);
{QF a {SE {Q} ¢ {51 =
corres R (P and Q) (P’ and Q") (a >>= (Arv. b mv)) (¢ >>= (Arv’. d 1))
In this rule, S and S’ only depend on v and v’ respectively. This is necessary because
these parameters are placeholders for the return values of the respective functions a and c.
In corres select return2, however, our new precondition contains terms from both sides
(Ja€A. R a b where A is the abstract set and b is the concrete return value). This
prevents it from being stated as a precondition on either side of corres in a way that’s
compatible with corres split.

112

The solution is to extend the corres constant to add an additional slot for these extra
conditions. This gives us more control over the order that they are solved in, and ultimately
how they are propagated through the subgoal structure.

7.3.2 CorresK

We define a simple extension to corres that adds a stateless precondition.
corresK FrPP' fg=F — corresr PP’ fg

Additionally, we define a weaker version of corres that exclusively handles return-value
relations.
corres_rv :: bool = (‘a = 'b = bool) = (’s = bool) = ('t = bool)
= (’s, 'a) nondet monad = ('t, 'b) nondet monad =
("a = 'b = bool) = bool
corres v FrPP' ff'R=
F— (Vss'. Ps— P's'—
(Vsa rv. (rv, sa) € fst (fs) —
(Vsa’ rv'. (rv’, sa’) € fst (f's') —
rrorv’ — R rvrv’)))

Where two functions f and f’ satisfy corres rv if their return values satisfy the given
return value relation R, under the assumption F and preconditions P and P’. This is
useful to write the split rule for corresK:

corresK split:

[corresK F r’ P P’ a ¢;

Arv v’ v’ ro ro’ = corresK (F' rv rv’) r (R rv) (R’ rv') (b rv) (d mv");

corres v F""r’ Q Q" ac F/

{Sh a AR} {5} c {R'}] =

corresK (FF A F') r (Q and P and S) (Q"and P’ and S’)
(a >>= (Arv. b rv)) (¢ >>= (Arv’. d)

This rule looks very similar to corres split, however additional stateless preconditions F,
F’and F" have been added for corresK. Importantly, F'’is a function of both return values
in the second assumption. The third assumption is analogous to a Hoare triple: it states
that under some stateless precondition F'”, and additional preconditions @ and Q’, the
stateless precondition F'/, required for proving corres between b and d, is satisfied by a
and c. These conditions are then all propagated back up through the stateless, abstract
and concrete preconditions in the goal conclusion.

In comparison to the original corres split rule, here we have additional stateless pre-
conditions for handling rule assumptions that would otherwise create additional subgoals.
The precondition weakening rule is straightforward to write:

corresK guard imp:
[corresK F'' R Q Q' a c;
Ns s [P s; P's'; F; (s, s') € state_relation] = F'A Qs A Q' s =
corresKk FRP P’ ac
We can additionally rephrase our previous terminal rules over corresK, moving the as-
sumption to the stateless precondition.

113

corresK _select _return:
corresK (Fa€A. Rab) RT T (select A) (return b)

corresK _gets:

corresK
(Vs s’ (s,s') € state_relation — P s — P’ s’ — rrel (fs) (f's")
rrel P P’ (gets f) (gets f”)

corresK _modify:
corresK
(Vss'.Ps— P's’ — (s, s') € state_relation — (f s, f' s’) € state_relation)

dc P P’ (modify f) (modify f/)

We now also require rules for discharging corres rv subgoals. The corresK split rule
uses corres_rv as an opportunity to introduce extra preconditions in order to prove the
stateless precondition after the bind F'’. When corres rv is encountered during a proof,
its preconditions F, P and P’ will all be schematic, to later be instantiated appropriately.
This can normally be handled through one of the three following rules:

corres_rv_wp_right:
{P'} f/ {rrv’ s. ¥V rv. rrvrv’ — Q rv rv’} = corres_rv True 7 T P/ ff' Q

corres_rv_wp _ left:
{P} f {rrvs. Yo' rrvrv’ — Q rvrv'} = corres_rv True r P T ff' Q

corres_rv_ defer:
corres v (Vrorv . rrorv’ — Qroro) r T T ffQ

The rule corres rv_wp_right will instantiate the stateless and abstract preconditions to
simply True, and lift the schematic P’ as the precondition to a Hoare triple with a post-
condition (), assuming the return-value relation r and a fixed, arbitrary return value for
f- This effectively removes f from consideration, and assumes that @) can be established
as a postcondition of f’in Hoare logic. Similarly corres rv_wp left discards f’ and lifts
the goal into a Hoare triple over f.

Finally, corres rv_ defer discards all information about f and f’, instantiating P and
P’ to True and the stateless precondition to showing that @ is a direct consequence of the
return-value relation r. Automatically applying these rules turns out to be non-trivial, so
we will defer their discussion to a later section. For now we will manually apply them as
appropriate.

We can now write a version of our corres simple method, but for corresK. Additionally,
we declare a new named theorem corresK to maintain a collection of rules in the context.

named theorems corresK

method corresK _simple declares corresK =
(rule corresK guard _imp, (rule corresK _split corresK)+)

Rules that can be applied safely by this method can now simply be declared as correK
rules.

declare corresK _select return[corresK]

114

Example

Now we can revisit our scheduler example, armed with a new calculus and VCG.

lemma corresK next thread|corresK]:
corresK True (At t’. ¢t = ¢') T (As’. threads’ s’ # [])
next thread abstract next thread concrete
unfolding next thread abstract def next thread concrete def
apply (corresK simple corresK:
corresK _getslwhere P=T and P'=T and rrel=M\ts ts'. set ts’ = ts])

1. corres_rv ?F"3 (Ats ts'. set ts' = ts) 2Q3 ?Q'3
(gets threads) (gets threads’) (Ats ts’. Jacts. a = hd ts)
2. {253} gets threads {Ats . True}
3. {25'3]} gets threads’ {Ats’ . Truel}
4. N\s s’
[True; threads' s’ # []; True; (s, s’) € state_relation]
= ((Vs s
(s, 8’) € state_relation —
True — True — set (threads’ s’) = threads s) A
ZF"3) A
(?Q% and (A_. True) and 253) s A
(?Q'3 and (A_. True) and 25'3) s’

The corresK subgoals have now been successfully discharged and we are left with a corres _ rv
goal. We can defer this postcondition to a Hoare triple on the concrete (right) side of
corresK with corres _rv_wp_right.

apply (rule corres_rv_wp_right)

1. {?2Q'3] gets threads’

{Arv’ s. Vrv. set v’ = rv — (Fa€rv. a = hd ')}
2. {253]} gets threads {Ats . Truel
3. { 25’3} gets threads’ {Ats’ . True}

4. N\s s’
[True; threads' s’ # [|; True; (s, s’) € state_relation]
= ((Vs s
(s, s) € state_relation — True — True — set (threads’ s’) = threads s) A
True) A

((A_. True) and (A_. True) and 253) s A
(2Q'3 and (A _. True) and 2573) s’

The resulting postcondition is solvable, since it will follow from the top-level precondition
threads’ s’ # []. The top 3 subgoals now are all Hoare triples and can be solved by wp,
instantiating their preconditions in the verification condition.

115

apply wp+

1. Ass”.
[True; threads' s’ # [|; True; (s, s’) € state_relation]
= ((Vs s
(s, s) € state_relation — True — True — set (threads’ s’) = threads s) A
True) A

((A_. True) and (A_. True) and (As. True)) s A
((As. Vrv. set (threads' s) = rv —

(Fa€rv. a = hd (threads’ s))) and
(A_. True) and
(As. True))
Sl

Finally we are left with a verification condition, solved by unfolding the definition of
state relation.

by (fastforce simp add: state relation def)

Our proof now has a more natural flow: solve corres goals, then solve Hoare logic goals,
then finally solve the verification condition. The corresK calculus gives us fine-grained
control over how additional subgoals are produced, ensuring that the head subgoal remains
over corresK until all the open subgoals have been reduced to Hoare logic or verification
conditions.

The corresK equivalents for dequeue and set cur thread are similarly straightforward
consequences of corresK modify.

corresK dequeue|corresK]:

corresK (t =t")dec T T
(dequeue thread abstract ¢) (dequeue thread concrete t')

corresK _set cur_thread|corresK]:
corresK (t =t)dc T T
(set_cur_thread abstract t) (set cur_thread concrete t’)

Note that in corres dequeue and corres _set cur_thread, the assumption ¢ = ¢’ was im-
plicit since only ¢t was used. Now, by stating it explicitly as the stateless precondition for
corresK, we will defer proving this to the verification condition.

With these added to the corresK named theorem, they will be automatically used by
corresK _simple and the proof of corresK schedule becomes straightforward.

116

lemma corresK _schedule:
corresK True dc T (As’. threads’ s’ # [])
(schedule abstract) (schedule concrete)
unfolding schedule abstract def schedule concrete def
apply (corresK simple)

1.\t t
t=t' =
corres_rv (?F9 t t') dc (2Q10 1) (?Q'13 ')
(dequeue thread abstract ¢) (dequeue thread concrete t') (A\y ya. t = t)
N\ttt =t = {2512 t}} dequeue thread abstract ¢ {\y . True]}
N
t =t = {25715 t'}} dequeue thread concrete ¢’ {\ya . True}
4. corres_rv 2F"3 (At ¢ t =t') 2Q8 ?Q'3 next_thread abstract next thread concrete
Attt =t'APF"9 ¢t
. {253} next_thread abstract {At. ?Q10 ¢ and (A_. True) and 2512 t|}
. {253} next_thread concrete
{rt’. 2Q’'13 t" and (A_. True) and 25715 t'}
7. \s s’
[True; threads’ s’ # [|; True; (s, s’) € state_relation]
= (True A 2F"'3) A
(2Q3 and (_. True) and 253) s A
(?Q'3 and (As’. threads’ s’ # []) and 25'3) s’

Co o

D O

All corresK subgoals have been discharged, leaving only corres rv and Hoare triples. Both
corres _rv goals are trivial consequences of the return-value relation established by cor-
resK next thread, and so they can be deferred.

apply (rule corres rv_defer | wp)+

1. A\s s’
[True; threads’ s’ # [|; True; (s, s’) € state_relation]
= (True A
(Vrvrv'.
rv=rv’ —
rv=rv’ A
(Vrva rv'a. dc rva rv'a — v = ™)) A
((A_. True) and (A_. True) and (As. True A True A True)) s A
((A_. True) and (As’. threads’ s’ # []) and (As. True A True A True)) s’

Finally, the resulting verification condition is trivially solved by simp.

by simp

7.3.3 Mismatched Functions

In our examples so far, there has been no structural difference between the abstract and
concrete functions. In cases where there are an equal number of matching atomic steps
on each side, the simple strategy employed by corresK simple is sufficient to complete the
proof.

117

add_thread abstract ¢t = add thread concrete ¢’ =
modify (As. modify (As.
s(threads := (threads s) U {t})) s(threads’ := insort ¢’ (threads’ s)|))

Figure 7.2: Intermediate functions for enqueuing threads.

In general, however, there can be significant structural differences between abstract
and concrete functions. A concrete function may, for example, require extra steps to
maintain the consistency of a concrete data structure, which is unnecessary in its abstract
version. These steps have no corresponding abstract function, and therefore must be
handled differently.

In corres, there are a number of strategies that can be used for handling mismatched
functions. In some cases, functions can be proven equivalent to alternate representations
which do structurally match. Often, however, more advanced calculus rules must be
applied to “step” only the left or right side of a corres subgoal, until they have synchronized.

Our naive VCG corresK _simple will generate unsolvable goals if functions are mis-
matched, since corresK _split is applied unconditionally. A safe and effective VCG needs
to both detect that the functions are mismatched, and be able to handle it.

Returning to our scheduler example, we now add specifications for enqueueing new
threads.

definition
enqueue_thread abstract :: thread id = (abstract _state, bool) nondet monad
where enqueue _thread abstract ¢t =
do add thread abstract ¢;
select {True, False}
od

definition
enqueue thread concrete :: thread id = (concrete state, bool) nondet monad
where enqueue thread concrete ¢/ =
do add thread concrete ¢/
cur_thread’ + gets cur_thread’;
return (¢' < cur_thread’)

od

In this example, each enqueue function takes a thread identifier and returns a
boolean indicating whether or not the scheduler needs to be re-run. The definitions
for add thread abstract and add thread concrete are given in Figure 7.2. In en-
queue thread abstract the thread is simply inserted into the unordered set of threads.
In enqueue thread concrete, the given thread is inserted into its sorted position in the
list of threads with insort.

insort :: ‘a = ‘a list = 'a list

insort z [| = []

insort x (y#ys) = (if © < y then (z#y#ys) else y#(insort z ys))

To determine if the scheduler needs to be re-run, enqueue thread abstract can only non-
deterministically return True or False since it has no concept of thread priority. In en-
queue thread concrete, however, t' needs to be compared to the currently running thread.

118

Similar to corres dequeue, the corresK lemma for add thread is a straightforward con-
sequence of corresK _modify.

corresK _add _thread|corresK]:
corresK (t = t') dc T T (add thread abstract ¢)(add thread concrete t’)

Although these functions indeed correspond, applying corresK simple yields unexpected
results.
lemma corresK _enqueue thread:
corresK (t =t) (Abb. b=0b")T T
(enqueue thread abstract ¢) (enqueue thread concrete t')
unfolding enqueue thread abstract def enqueue thread concrete def
apply corresK simple

1. Ny ya.
dc y ya =

corresK (?F’'3 y ya) (Ab b’. b = b
(?R3 y) (?R'3 ya)
(select {True, False})
(do cur_thread’ + gets cur_thread’;
return (¢/ < cur_thread’)
od)
A total of 5 subgoals...

The proof is now stuck at an unsolvable goal, since select and gets cur thread’ certainly
do not correspond.

Generating an unsolvable goal is a serious issue for a VCG, as it prevents exploring
alternate strategies when used as part of a larger method expression.

To address this, we can update our method to instead recursively apply itself after a
corresK _split. This then requires that at a rule from corresK eventually be successfully
applied after applying any corresK split. Additionally, we abstract this split rule into a
named theorem corresK _calc, designed to hold other unsafe calculational rules.

named theorems corresK _calc
declare corresK _split[corresK calc]

method corresK _once declares corresK corresK calc =
(rule corresK | (rule corresK calc, corresK once))

method corresK declares corresK corresK calc =
(corresK _once | (rule corresK guard imp, corresK once))+

Returning to our example, this new method will now successfully split the goal and solve
the first obligation.

119

lemma corresK _enqueue thread:
corresK (t =t) (Abb. b=0b")TT
(enqueue thread abstract t) (enqueue thread concrete t') unfolding en-
queue thread abstract def enqueue thread concrete def
apply corresK

1. Ny ya.
dc y ya =

corresK (?F’'3 y ya) (Ab b’. b = b
(?R3 y) (?R'3 ya)
(select {True, False})
(do cur_thread’ + gets cur_thread’;
return (¢/ < cur_thread”)
od)
A total of 5 subgoals...

To make progress on a subgoal like this, we require non-standard corresK rules that can
handle mismatched function bodies. In this case, we need to step the concrete function
body across gets cur_thread’ in order to make progress.

corresK _gets bind:

[Arv. corresK (F rv) v P (Q' mv) a (c rv);
corres_rv F/dc T P’ (return ()) (gets f) (A_ ™" Frv)] =

corresK F/'r P (As". P's' N Q' (fs') s) a (gets f >>= ¢)

apply (rule corresK gets bind)

1. Ay ya rv.
dc y ya =

corresK (?F10 y ya rv) (Ab b". b = b
(PR3 y) (?Q'14 ya rv)
(select {True, False}) (return (¢’ < rv))
A total of 6 subgoals...

Now the function bodies match on each side of corresK and the proof can proceed as usual.

120

apply corresK

1. Ay ya.
dc y ya =

corres _rv (?F'3 y ya) dc (A_. True) (?P'15 ya)
(return ()) (gets cur_thread’)
(A_ rv. Jae{True, False}. a = (¢' < rv))
2. corres_rv ?F"'3 dc Q3 ?Q’3 (add_thread abstract ¢) (add thread concrete t’) ?F'3
3. {?S3]} add thread abstract ¢t {Ay . True}
4.{%25'3} add _thread concrete ¢’ {Aa b. ?P'15 a b A True}
5. N\s s’
[True; True; t = t'; (s, s’) € state_relation]
— (t=t'A 2F"3) A
(?Q3 and (A_. True) and 253) s A
(?Q'3 and (A_. True) and 75'3) s’

This corres rv obligation comes from corresK select return and in this case it is triv-
ially true. It can therefore be propagated to the final verification condition with cor-
res rv_defer. This final verification condition is then solved by simp.

apply (rule corres rv_defer | wp)+

by simp
This proof is successful, and the corresK method now successfully avoids creating unsolv-
able goals.

Corres Search

In general, handling mismatched function bodies in a corresK proof requires applying
irregular rules like corresK gets bind, however these rules should not be applied uncon-
ditionally or fully automatically. The goal, therefore, will be to maintain a collection of
unsafe rules that can be speculatively applied until the subgoal reaches some expected
form.

Specifically, we define a method corresK _search that recursively applies a set of rules
until the given rule can be successfully applied.

named theorems corresK _search

method corresK _search uses search declares corresK search corresK calc =
(rule search)
| (rule corresK search corresK calc, corresK search search: search)

declare corresK gets bind|corresK _search]

This method will backtrack over all possible combinations of the unsafe corresK search
rules and calculational rules from corresK calc until the given fact search successfully
applies.

In our thread queuing example, we can see that the final matching functions are se-
lect and return, therefore by providing corresK select return as our search fact to cor-
resK search, we can safely apply corresK gets bind.

121

lemma corresK _enqueue thread:
corresK (t =t) (Abb. b=0b")TT
(enqueue thread abstract ¢) (enqueue thread concrete t')
unfolding enqueue thread abstract def enqueue thread concrete def
apply (corresK | corresK search search: corresK select return)+
apply (rule corres rv_defer | wp)+

by simp
Critically, we have not specified how corresK _select return should be applied, rather that
its successful application will indicate that the search has been successful. This effec-
tively allows the user to provide hints to the method indicating how the function bodies
correspond, without necessarily knowing the required calculational rules to prove it.

7.3.4 Automating Corres rv

The corresK calculus introduced a new constant corres_rv in order to propagate stateless
preconditions through the subgoal structure. In our examples, however, each corres rv
proof obligation required manual intervention in order to address it. Similar to corresK,
we can build a simple VCG for discharging corres rv subgoals.

A corres rv statement is similar to a Hoare triple in that it has a single postcondition to
be proven to hold as the result of some execution, except that it has multiple preconditions
and multiple functions. We can decompose the postcondition across conjuncts in order to
decide how to handle each one independently.

corres_rv_conj _ lift:
[corres rv Fr P PP fg Q;corres rv F'r P' PP' fg Q] =
corres rv (FAF)Yr (As. Ps AN P’'s)(As’. PPs"ANPP's') fyg
Arvrv’. Q rvorv’ A Q' rv rv’)
By repeatedly applying this rule, we can isolate each conjunct in a corres rv goal.

Next, we can decide if an (atomic) postcondition should be propagated as a Hoare
triple based on which goal parameters it discusses. If a postcondition only contains goal
parameters that represent abstract return values, then it can be propagated as an abstract
Hoare triple. Similarly if it only contains concrete parameters it can be propagated as a
concrete Hoare triple.

We can decide this with a simple method that determines if two terms can be unified.
Note that match will not work here, since information about the scope of goal parameters
is lost inside of a subgoal focus.

definition can_unify P Q = True

lemma can_unify refl: can_unify P P
lemma can_unify trivial: can_unify P Q

method can_unify = (succeeds (rule can _unify refl, rule can_unify _trivial)

With succeeds, can_unify checks if the two terms from can_unify could be unified with
can_unify refl, but discards the result.

122

corres_rv_wp _left _safe:
[can_unify P (A_.Vrorv'. Qrorv’); {P} f {drvs. Vvl rro ' — Q ro m'}] =
corres rv True r P T ff'Q

corres_rv_wp_right _safe:
[can_unify P" (A . Vrorv' Q rvrv’); {P'} f/ {Arv' s. Yrv. rrvre’ — Q rom'}] =
corres_rv Truer T P/ ff'Q
In cases where the postcondition doesn’t depend on the return values of f or f’, it can be
safely propagated through the stateless precondition of corres rv.

corres_rv_defer _safe:
corres v (Vrorv. rroro’ — F)r T T ff'(A_ . F)

Alternatively, if the function is a trivial consequence of the return-value relation then the
goal can be discharged without propagating any preconditions.

corres rv trivial:
corres_rv Truer T T ff'r

We define two named theorems, one to maintain rules which emit a can _unify subgoal and
one to maintain rules which can be safely applied unconditionally.

named theorems corres rv and corres_rv_ unify

lemmas [corres _rv] = corres_rv_defer safe corres rv_trivial
lemmas [corres_rv_unify] = corres_rv_wp_left safe corres rv_wp_right safe

From this it is straightforward to define a corres rv method.

method corres_rv_once declares corres _rv corres _rv_unify =
(rule corres_rv) | (rule corres_rv_unify, can_unify)

method corres rv declares corres rv corres_rv_unify =
(corres_rv_once | (rule corres_rv_conj_lift, corres_rv_once))+

7.3.5 Integration with Corres

Although it is possible to convert an existing proof development that uses the corres
calculus to instead use corresK, it is impractical if a large number of proofs already exist.
Our final VCG therefore must be able to make use of existing corres rules, and be applicable
to a corres subgoal.

With the @ attribute (see Section 6.2) converting corres rule into a corresK rule is
straightforward.

lemma corresK_drop:
corres 7 QQ Q' f g = corresK True r Q Q' f g

lemma corresK_convert:
A—corresT PQff = corresK ArPQff'

method corresK _convert = (((drule uncurry)+)?, drule corresK _convert corresK _drop)

123

Combined with the atomized attribute, which converts a rule into its object-logic equiva-
lent, this will move any rule assumptions from a corres rule into the stateless precondition
of corresK.

thm corres_return — ?R ?a b = corres ?R (A_. True) (A_. True) (return %a) (return ¢b)

thm corres_return[atomized, QcorresK _convert]
— corresK (2R ?a 2b) ?R (A_. True) (A_. True) (return ?a) (return 2b)

Recall, however, in our example the previously-implicit assumption that the function
arguments were equivalent needed to be made explicit in the stateless precondition of
corresK. To handle this case, we can use match.

lemma lift corresK args:

corresK Fr (Pz) (P'z) (fz) (f z) =
corresK (F Az =z')yr (Px) (P'z) (fz) (f)

lemma corresK _drop_True:
corresK (True A F) r PP’ ff' = corresK Fr P P'ff’

method lift_corresK args =
(drule corresK drop True |
match premises in
Hthin]: corresK (P z) (P'z) (fz) (f'z) (cut 5) for PP' ff' = =
(match ((f,f’)) in
(_, 2 _.g) for g = fail |
(A_.g,)forg=fal]| =
cut_tac lift_corresK args|where f=f and f’=f’and P=P and P'’=P’, OF H]»)+
This attempts to match the corres statement by determining if all of its elements can be
abstracted over some z. Since all of these patterns are higher-order (i.e. both P and z are
variables in the expression P z) the number of valid match results is unbounded. To avoid
looping when no arguments exist to be lifted, we cut the number of backtracking results
to 5. We then explicitly fail on any match results where f or f’ discard the argument (i.e.
(A_. g) and z).

method corresK_lift _convert = (corresK _convert, lift _corresK _args)

thm corres_dequeue
— corres dc T T (dequeue thread abstract ?¢) (dequeue thread concrete %t)

thm corres_ dequeue[@corresK _lift _convert]
— corresK (2t = ?z') dc T T (dequeue thread abstract ?t) (dequeue thread concrete ?z)

Finally, we can write a corres method and named theorem, that internally converts rules
and subgoals into its native corresK calculus.

124

lemma corresK _start:
corresK True r P P’ a ¢ => corres r P P’ a ¢

named theorems corres

method corres declares corresK corresK calc corres =
((rule corresK _start) ?, corresK corresK: corres[atomized, @corresK lift convert])

7.3.6 Corressimp

By decomposing the automation strategy for corres into multiple components, we have
the ability to carefully apply these specialized methods in order to observe and control
their individual behaviour on proofs, and integrate them into other tools. In many cases,
however, the proof author will simply wish to attempt all known strategies in order to
maximally leverage the available automation.

We can integrate this into a single corressimp method, that applies our corres methods
along with simp and wp repeatedly to the first subgoal. Note that corresK search is
guarded with a match to ensure it is not attempted when no search fact is given.

method corressimp uses search wp simp declares corres corresK corresK calc =

((corres

| corres _rv

| match search in = «(corresK _search search: search

| wp add: wp

| simp add: simp)+)[1]

7.4 Application to L4.verified

The methods developed in the previous section are a simplification of their final imple-
mentation in L4.verified. In practice, there are many side conditions that have to be
considered in order to have a robust method that can integrate with existing proofs. The
final implementation, including auxiliary methods and the corresK calculus, is approxi-
mately 922 lines of Isabelle source: 32 Eisbach methods spanning 121 lines, 36 lines of
ML2, 14 definitions spanning 32 lines, and 135 lemmas spanning 733 lines.

Development began by identifying several corres proofs from the L4.verified refinement
proof that were excessively manual as a result of the corres calculus. The goal was to
be able to refactor the proofs in-place to use an automated method, without requiring
significant modifications to the surrounding proofs or rules.

The implementation progressed iteratively, with naive implementations for the core
methods that gradually grew more complex as more side conditions were encountered
when the corres proof method was used in more proofs. The majority of the complexity in
the implementation resulted from handling mismatched function bodies and the corres rv
obligations that emerged in those proofs.

2This is a single ML function to retrieve splitting rules for case statements over inductive datatypes,
and has been lifted into a standalone rule attribute.

125

To evaluate the method, 9 individual proofs from L4.verified were refactored to use
the corres proof method. In Table 7.1 we show the number of lines of proof for each
lemma before and after it is refactored. The total number of proof lines was reduced 45%,
from 475 to 261, with an average reduction of 21 lines and 45% per proof. Some proofs
had much more dramatic changes in relative proof size than others, for example set ep
was reduced by almost 80% after refactoring, while resolve address bits was only reduced
by 24%. This is largely explained by differences in the complexity of the verification
conditions that appear in the proofs. In resolve address bits, for example, the proof text
is primarily dedicated to solving the verification condition, thus the benefit of the corres
method is not significant when viewed as a percentage of the total proof size.

In addition to measuring the total reduction in proof size, we can also consider the
number of corres lemmas that appear in the proof text itself. Each lemma that is explicitly
used indicates a place where the proof author needed to stop to think about the underlying
calculus, and potentially look up the relevant rule. Learning the library of corres rules has
proven to be a major hurdle when on-boarding new proof engineers, and it is precisely
this manual burden that the corres method aims to alleviate.

In Table 7.2 we show instead the number of corres lemmas that were explicitly used in
the source proof text before and after each proof was refactored. Nearly all corres lemmas
no longer appear in the proof text, and the few that remain are either simple terminal
rules used to guide corres search or induction rules used to manually instantiate loop
invariants, and cannot be automatically applied.

There is little to no change in the overall proof processing time for the refactored
proofs, as this is still largely dominated by solving the final verification condition.

7.4.1 Proof Example

To understand the effect of the corres method, and indeed proof automation in general,
we show the original 38 line proof of set asid pool corres in Figure 7.3. After the initial
use of 4 corres rules, the rest of the proof is dedicated to solving the emerging verification
conditions. At this point there are 15 open subgoals, with Hoare logic obligations inter-
leaved with verification conditions, as seen by the combined used of wp and auto. Clearly
there is some repeated reasoning, as many of the clarsimp, simp and auto lines look very
similar, but the subgoal structure makes this extremely difficult to capture or exploit.
After the proof has been refactored, it is much more straightforward.

lemma set_asid _pool corres:
a = inv ASIDPool ¢’ 0 ucast =
corres dc (asid_pool at p and valid etcbs) (asid pool at’ p)
(set_asid_pool p a) (setObject p a’)

unfolding set asid pool def

apply (corressimp search: set _other obj corresjwhere P=X_. True]
wp: get object ret get object wp)

apply (clarsimp simp: obj at simps other obj relation def asid pool relation def)

by (auto simp: obj at simps typ_at to obj at arches

split: Structures_ A.kernel object.splits if _splits arch _kernel _obj.splits)

In this case, corressimp has successfully handled the corres proof obligation and emitted a

126

Table 7.1: Sizes of L4.verified corres proofs before and after refactoring, measured in lines
of proof.

. Original | Refactored # %

Function Name Size Size Reduction | Reduction
create _mapping entries 36 17 19 53
set_asid pool 38 10 28 74
lookup pt_slot 24 13 11 46
copy_global mappings 47 20 27 o7
find_pd_for_ asid 74 55 19 26
getSlotCap 14 11 3 21
resolve address bits 156 119 37 24
set_ep 33 7 26 79
set ntfn 32 8 24 75
Total 454 260 194 43
Average 50 29 21 51

Table 7.2: Number of corres lemmas appearing in proof text of L4.verified corres proofs
before and after refactoring.

Function Name Original | Refactored # %

Lemmas | # Lemmas | Reduction | Reduction
create _mapping entries 12 0 12 100
set_asid _pool 4 1 3 75
lookup pt_slot 4 0 4 100
copy _global mappings 9 1 8 89
find_pd_for_asid 7 2 5 71
getSlotCap 4 0 4 100
resolve address bits 6 1 5 83
set_ep 4 1 3 75
set ntfn 3 1 2 67
Total 53 7 46 87
Average 6 1 9 84

127

lemma set_asid pool corres:
a = inv ASIDPool ¢’ 0 ucast =
corres dc (asid pool at p and valid etcbs) (asid pool at’ p)
(set_asid_pool p a) (setObject p a’)
apply (simp add: set_asid pool def)
apply (rule corres_symb _exec I)
apply (rule corres_symb _exec_ 1)
apply (rule corres _guard _imp)
apply (rule set _other obj corres [where P=M\ko::asidpool. True])
apply simp
apply (clarsimp simp: obj at’ def projectKOs)
apply (erule map _to ctes upd other, simp, simp)
apply (simp add: a_type def is_other obj relation type def)
apply (simp add: objBits simps archObjSize def)
apply simp
apply (simp add: objBits _simps archObjSize def pageBits def)
apply (simp add: other obj relation def asid pool relation def)
apply assumption
apply (simp add: typ at’ def obj at’ def ko wp at’ def projectKOs)
apply clarsimp
apply (case tac ko; simp)
apply (rename_tac arch_ kernel_ object)
apply (case tac arch_ kernel object; simp)
prefer 5
apply (rule get object sp)
apply (clarsimp simp: obj at_def exs valid def assert def a_type def return def fail def)
apply (auto split: Structures A.kernel object.split_asm arch kernel obj.split _asm if split_asm)[1]
apply wp
apply (clarsimp simp: obj at def a_type def)
apply (auto split: Structures A.kernel object.split _asm arch kernel obj.split _asm if split_asm)[1]
apply (rule no_fail pre, wp)
apply (clarsimp simp: simp: obj at def a_type def)
apply (auto split: Structures A .kernel object.splits arch _kernel obj.splits if split _asm)[1]
apply (clarsimp simp: obj at def exs valid def get object def exec gets)
apply (simp add: return_def)
apply (rule no_fail pre, wp)
apply (clarsimp simp add: obj at _def)
done

Figure 7.3: The corres proof for set asid pool before refactoring.

128

single verification condition. Although the corressimp method has only directly replaced
4 uses of the corres rules, it has additionally produced a subgoal structure which is much
more amenable to using Isabelle’s built-in automation. Previously, verification conditions
were interleaved with Hoare logic obligations, and many related and similar conditions
had been spread across multiple subgoals.

In the refactored proof, the single verification condition can now be handled with one
invocation of auto (and some help from clarsimp). This has effectively factored out a
significant amount of duplicated reasoning from the original proof, while also abstracting
away the details of the corres calculus.

As the development of L4.verified continues, the corres method has now started to
appear in new proofs.

7.5 Conclusion

In this chapter we have outlined the design and implementation of a new proof method for
handling refinement proofs using Eisbach. This was motivated by identifying a significant
source of manual proof effort in L4.verified. Although the Hoare logic verification-condition
generator (VCG) wp has been used extensively in the L4.verified proofs, no such VCG
existed for automating refinement proofs.

Building on the corres calculus 23], we identified a key factor that made it unsuitable
to effectively use automated reasoning. This motivated the development of a new corresK
calculus, which enabled greater control over how verification conditions were propagated
through Isabelle’s subgoal structure. With this, we were able to build a corresK method
for automating corresK proofs, and ultimately integrate this into the existing corres infras-
tructure of L4.verified in a corres method.

We refactored several existing refinement proofs from L4.verified to use this new proof
method, achieving a significant reduction in overall proof size in many cases, and in every
case eliminating most of the corres calculus rules that appear in the final proof text. The
benefit of the corres method is therefore twofold: explicit use of corres rules is no longer
required except when completely necessary, reducing the manual burden of generating
a verification condition; and the resulting condition is now a single subgoal, enabling
much more effective use of Isabelle’s built-in automation (or domain-specific methods)
and avoiding duplicated reasoning in the proof text.

This case study motivated and made use of the advanced features presented in Chap-
ter 6. An initial design goal for this VCG was for the majority of the source to be Isar and
Eisbach, with as little as possible ML. Where ML functionality was initially required,
general-purpose tools were often built instead (i.e. the @ attribute and fold subgoals
method). The apply debug command was designed to trace the backtracking behaviour
of corresK _search, and was later updated to support proof state modifications in order to
perform ad-hoc experiments with different corresK calculational rules. The final result of
this study was both an effective corres proof method, and a rich library of tools for future
method development.

Developing the corresK calculus was necessary due to the original focus of the corres
calculus on manual, interactive proofs. It is a conservative extension of corres that provides

129

a minimal extra layer in order to support the necessary formal bookkeeping for a VCG.
Were Eisbach available during the initial development of corres, it is highly likely that
a VCG would have been developed in tandem with the calculus itself and the results
would have been much different. For example, annotated specifications could have been
generated from the invariant proofs and avoided the need for Hoare logic reasoning in the
middle of each corres proof.

Eisbach allows such experiments to be carried out easily, allowing for more informed
decisions when embarking on new proof developments.

130

Chapter 8

Conclusion

The demand for software verification is growing [28]: as complex computer systems are
entrusted with an ever-increasing range of mission-critical tasks, their correctness and
resilience to attack is paramount. In the past few decades, interactive theorem provers
(ITPs) have increased the practical scope of using formal logic to prove the correctness
of software. Large-scale verification projects, such as L4.verified, are now becoming more
common-place. L4.verified consists of over 500,000 lines of Isabelle proof text, verifying
sell4’s relatively small 10,000 line C implementation.

In Section 2.3 we introduced proof engineering as the practice of managing the scal-
ability issues inherent to producing and maintaining large proofs in ITPs. Effectively
engineering a proof requires productively using (or building) frameworks in order to mini-
mize the cost of both its initial development and ongoing maintenance. A critical aspect of
proof engineering is performing empirical analysis of proof projects and artefacts, in order
to inform cost and effort models of formal proof development. We discussed a research
agenda by Jeffery et al. [39], in which they identify over thirty open questions in proof
engineering that require additional data. In this thesis, we noted this question from the
agenda:

How are characteristics of formal specifications, properties, or code related to
effort in formal proofs?

We considered this question in Chapter 4 by building on previous work by Staples et
al. [64][65], where they establish a linear relationship between proof effort and proof size,
as well as between code size and formal specification size. In our study, we developed
metrics to investigate the relationship between the size of a formal statement and the size
of its proof, finding a quadratic relationship in the verification projects considered. This
suggests, combined with the results from Staples et al., that with current methods the
effort required to prove the correctness of software will increase quadratically with code
size.

This quadratic scaling factor poses a significant challenge for formal verification of
larger software systems. It indicates that hundreds of thousands of lines of verified code
potentially results in tens of millions of lines of proof, requiring dozens of person-years to
complete.

131

Motivated by this, we considered a second question from the research agenda:

How can we best combine interactive proof and proof automation to achieve
high proof productivity during initial proof development and subsequent proof
maintenance?

The availability and use of automated reasoning is intrinsically linked with the scala-
bility of proof effort. In an interactive theorem prover, each line of proof indicates some
upper bound on the amount of reasoning that can be expressed with a single step. Most
modern I'TPs provide a tactic language for writing new proof tactics, either as a domain-
specific language (e.g. Ltac in Coq), or a set of standard libraries in the implementation
language of the prover (e.g. ML in HOL).

In Isabelle, powerful automated proof methods come built-in with Isar. This has al-
lowed for significant results to be achieved without requiring a specialized language for
developing new methods, as custom proof methods can be implemented in ML by expert
users. However, larger proof developments have seen scalability and maintenance chal-
lenges arise from a lack of custom proof methods. We hypothesized that this was due to a
lack of familiarity with ML within the Isabelle community. Although many proofs would
benefit from custom proof methods, they can still be completed without them, at the cost
of duplicated reasoning in the proof text or additional manual effort.

To address this, in Chapter 5 we presented Fisbach, a proof method language and exten-
sible proof automation framework for Isabelle that leverages Isar’s syntax and integration
with ML. Eisbach’s expressive match method uses Isabelle’s unifier to give control-flow to
inner method expressions, while using subgoal focusing to provide direct access to logical
elements of Isabelle’s subgoal state. Although match is a core aspect of Eisbach, it is im-
plemented in ML as a standard proof method with no special status. This is a testament
to the extensibility of Eisbach, as similarly expressive language extensions can easily be
provided by end users. This is explored further in Chapter 6 where we introduced a suite
of language extensions, including tools to treat proof methods as fact-producing functions,
as well as an interactive debugger.

Eisbach’s integration with named theorems additionally allows for ad-hoc extensibility,
where proof methods can refer to named collections of facts that are dynamically extended
later. This functionality is critical in the proof methods introduced in Chapter 7 to reduce
the manual effort of proofs in L4.verified. Using this, as well as extensions presented
in Chapter 6, we developed a set of proof methods for calculating verification conditions
in refinement proofs. By applying these methods to several existing proofs from L4.verified,
we demonstrated that their size and complexity could be drastically reduced. Across 9
lemmas we reduced proof size by 21-77%, with an average reduction of 51%. Additionally,
we reduced explicit references to refinement calculus rules by 67-100%, with an average
reduction of 84%.

These results are a promising indication that powerful automated methods can address
the quadratic scaling factor identified in Chapter 4. By reducing the required proof effort
for each individual instance of a particular problem, we hypothesize that we can reduce
the coefficient on this quadratic relationship and, in some cases, reduce it to linear. In
the presence of automation, however, even measuring proof effort becomes more complex

132

as the role of the proof author shifts from providing individual proof steps to simply
guiding automated methods. Each method will therefore likely require its own model for
understanding how much effort is required for a proof author to determine the necessary
input parameters.

Eisbach has been incorporated into many other proof developments since its initial
2015 release, confirming our experience that Eisbach can make proof development more
productive. In his PhD thesis [9], Alasdair Armstrong remarks “compared to the develop-
ment of tactics in Isabelle/ML. .. FEisbach makes the development of such tactics available
to even the novice Isabelle user.”

Building trustworthy, verified systems is crucial for the increasing number of mission-
critical applications of computers. As larger, more complex software systems are being
formally verified in interactive theorem provers, the discipline of proof engineering is be-
coming more important. A proof engineer requires both the tools and knowledge to manage
the challenges, costs and efforts inherent in developing and maintaining large-scale proofs.

In this thesis, we have presented Eisbach as a supporting framework for scalable proof
engineering in Isabelle, motivated by an empirical investigation and evaluated with a case
study. By increasing the accessibility of writing custom proof automation with Eisbach, we
can achieve better scalability of proof efforts. This enables the field of proof engineering to
tackle future grand verification challenges, expanding our capacity to verify larger mission-
critical systems.

133

Bibliography

(1]

2]

13]

4]

15]

[6]

7]

18]

19]

[10]

[11]

Afp statistics. https://www.isa-afp.org/statistics.html. [Online; accessed
2018-03-23.

Coq package index. https://coq.inria.fr/opam/www/. |Online; accessed 2018-03-
23].

Deploy: Industrial deployment of system engineering methods providing high de-
pendability and productivity. http://www.deploy-project.eu/. [Online; accessed
2015-02-06].

Mizar mathematical library. http://mizar.org/library/. [Online; accessed 2018-
03-23].

sel4/14v: Proofs for sel4-8.0.0. https://doi.org/10.5281/zenodo.1168016, Feb.
2018. [Online; accessed 2018-04-15].

AvLAMA, J., MAMANE, L., AND URBAN, J. Dependencies in formal mathematics:
Applications and extraction for Coq and Mizar. In Intelligent Computer Mathematics
(2012), pp. 1-16.

ALKASSAR, E., PAUL, W., STAROSTIN, A., AND TSYBAN, A. Pervasive verification
of an OS microkernel. In Verified Software: Theories, Tools, Experiments (2010),
pp- 71-85.

ANDRONICK, J., JEFFERY, R., KLEIN, G., KOLANSKI, R., STAPLES, M., ZHANG,
H. J., AND ZHuU, L. Large-scale formal verification in practice: A process perspec-

tive. In International Conference on Software Engineering (Zurich, Switzerland, June
2012), ACM, pp. 1002-1011.

ARMSTRONG, A. Formal Analysis of Concurrent Programs. PhD thesis, University
of Sheffield, 2015.

BALLARIN, C. Locales and locale expressions in Isabelle/Isar. In Types for Proofs
and Programs (TYPES 2003) (2003), S. Berardi, M. Coppo, and F. Damiani, Eds.,
vol. 3085 of Lecture Notes in Computer Science, Springer.

BALLARIN, C. Locales: A module system for mathematical theories. Journal of
Automated Reasoning 52, 2 (2014), 123-153.

134

https://www.isa-afp.org/statistics.html
https://coq.inria.fr/opam/www/
http://www.deploy-project.eu/
http://mizar.org/library/
https://doi.org/10.5281/zenodo.1168016

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

BANCEREK, G., AND RUDNICKI, P. Information retrieval in MML. In International
Conference on Mathematical Knowledge Management (2003), Springer, pp. 119-132.

BARENDREGT, H., AND WIEDLJK, F. The challenge of computer mathematics. Philo-
sophical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 363, 1835 (2005), 2351-2375.

BELLARD, F. Qemu, a fast and portable dynamic translator. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference (Berkeley, CA, USA,
2005), ATEC ’05, USENIX Association, pp. 41-41.

BERGHOFER, S., AND NIPKOW, T. Proof terms for simply typed higher order logic.
In Theorem Proving in Higher Order Logics, M. Aagaard and J. Harrison, Eds.,
vol. 1869 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2000,
pp. 38-52.

BoLLIN, A. Metrics for quantifying evolutionary changes in Z specifications. Journal
of Software: Evolution and Process 25, 9 (2013), 1027-10509.

BoURrkE, T., DauMm, M., KLEIN, G., AND KoLANSKI, R. Challenges and experi-
ences in managing large-scale proofs. In Intelligent Computer Mathematics (2012),

pp. 32-48.
BOYER, R., AND MOORE, J. A Computational Logic. Academic Press, 1979.

BoyToN, A., ANDRONICK, J., BANNISTER, C., FERNANDEZ, M., Gao, X.,
GREENAWAY, D., KLEIN, G., LEwIs, C., AND SEWELL, T. Formally verified system
initialisation. In Proceedings of the 15th International Conference on Formal Engi-
neering Methods (Queenstown, New Zealand, Oct. 2013), Lindsay Groves, Jing Sun,
Ed., Springer, pp. 70-85.

CHECKOWAY, S., McCoy, D., KANTOR, B., ANDERSON, D., SHACHAM, H., Sav-
AGE, S., KOsCHER, K., CzEskis, A., ROESNER, F., AND KoHNO, T. Comprehen-
sive experimental analyses of automotive attack surfaces. In Proceedings of the 20th
USENIX Security Symposium (2011).

CHLIPALA, A. Mostly-automated verification of low-level programs in computational
separation logic. ACM SIGPLAN Notices 46, 6 (Jun 2011), 234.

CHRZASZCZ, J. Implementing modules in the coq system. In International Conference
on Theorem Proving in Higher Order Logics (2003), Springer, pp. 270-286.

Cock, D., KLEIN, G., AND SEWELL, T. Secure microkernels, state monads and
scalable refinement. In Proceedings of the 21st International Conference on Theo-
rem Proving in Higher Order Logics (Montreal, Canada, Aug. 2008), Otmane Ait
Mohamed, César Munioz, Sofiéne Tahar, Ed., Springer, pp. 167-182.

DE MoURA, L., KoNG, S., AvVIGAD, J., VAN DOORN, F., AND VON RAUMER,
J. The lean theorem prover (system description). In International Conference on
Automated Deduction (2015), Springer, pp. 378-388.

135

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

DELAHAYE, D. A tactic language for the system Coq. In International Conference on
Logic for Programming, Artificial Intelligence and Reasoning (Nov. 2000), vol. 1955
of Lecture Notes in Computer Science, Springer.

DuksTtrA, E. W. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM 18, 8 (Aug. 1975), 453-457.

FeLTY, A., AND HOWE, D. Generalization and reuse of tactic proofs. Logic Pro-
gramming and Automated Reasoning (1994).

FisHEr, K. HACMS: High assurance cyber military systems. In Proceedings of
the 2012 ACM Conference on High Integrity Language Technology (Boston, Mas-
sachusetts, USA, 2012), HILT ’12, ACM, pp. 51-52.

FOwWLER, M., BECK, K., BRANT, J., OPDYKE, W., AND ROBERTS, D. Refactoring:
improving the design of existing code. Addison-Wesley Professional, 1999.

GONTHIER, G., AND MAHBOUBI, A. An introduction to small scale reflection in
Coq. J. Formalized Reasoning 3, 2 (2010).

GONTHIER, G., ZILIANI, B., NANEVSKI, A., AND DREYER, D. How to make ad
hoc proof automation less ad hoc. J. Funct. Program. 23, 4 (2013), 357-401.

GORDON, M. J. C., MILNER, R., AND WADSWORTH, C. P. Edinburgh LCF: A
Mechanized Logic of Computation. LNCS 78. Springer, 1979.

GREENAWAY, D. Automated Proof-Producing Abstraction of C' Code. PhD thesis,
Sydney, Australia, jan 2015.

Grov, G., AND MACLEAN, E. Towards automated proof strategy generalisation.
CoRR abs/1303.2 (2013), 1-15.

HavperiN, D., CLARK, S. S., Fu, K., HEyDT-BENJAMIN, T. S., DEFEND, B.,
Kouno, T., RANSFORD, B., MORGAN, W., AND MAISEL, W. H. Pacemakers and
implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In
Proceedings of the IEEE Symposium on Security and Privacy (Oakland, CA, USA,
May 2008), pp. 129-142.

HALSTEAD, M. H. Elements of Software Science (Operating and Programming Sys-
tems Series). Elsevier Science Inc., New York, NY, USA, 1977.

HupPEL, L. Interactive simplifier tracing and debugging in Isabelle. In Intelligent
Computer Mathematics. Springer, 2014, pp. 328—-343.

ISO/IEC 19761:2011, Software engineering — COSMIC: a functional size measure-
ment method, 2011.

JEFFERY, R., STAPLES, M., ANDRONICK, J., KLEIN, G., AND MURRAY, T. An em-
pirical research agenda for understanding formal methods productivity. Information
and Software Technology 60 (2015), 102-112.

136

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

KAUFMANN, M., AND MOORE, J. S. ACL2: An industrial strength version of Nqthm.
In Computer Assurance (1996).

KLEIN, G., ANDRONICK, J., ELPHINSTONE, K., MURRAY, T., SEWELL, T.,
Kovranski, R., AND HEISER, G. Comprehensive formal verification of an OS micro-
kernel. ACM Transactions on Computer Systems 32, 1 (Feb. 2014), 2:1-2:70.

KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J., COCK, D., DERRIN,
P., ELKADUWE, D., ENGELHARDT, K., KOLANSKI, R., NORRISH, M., SEWELL,
T., TucH, H., AND WINWOOD, S. seL4: Formal verification of an OS kernel. In
ACM Symposium on Operating Systems Principles (Big Sky, MT, USA, Oct. 2009),
ACM, pp. 207-220.

KreEIN, G., Nipkow, T., AND PAULSON, L. The archive of formal proofs. http:
//afp.sf.net. [Online; accessed 2018-03-28|.

LOCHBIHLER, A. Jinja with threads. Archive of Formal Proofs (Dec. 2007). http:

//afp.sf.net/entries/JinjaThreads.shtml, Formal proof development [Online;
accessed 2018-04-15].

Maric, F. Formal verification of modern SAT solvers. Archive of Formal Proofs (July
2008). http://afp.sf.net/entries/SATSolverVerification.shtml, Formal proof
development [Online; accessed 2018-04-15].

MATICHUK, D., AND MURRAY, T. Extensible specifications for automatic re-use of

specifications and proofs. In 10th International Conference on Software Engineering
and Formal Methods (Thessaloniki, Greece, Dec. 2012), p. 8.

MATICHUK, D., MURRAY, T., ANDRONICK, J., JEFFERY, R., KLEIN, G., AND
STAPLES, M. Empirical study towards a leading indicator for cost of formal software
verification. In Proceedings of the 37th International Conference on Software Engi-
neering - Volume 1 (Piscataway, NJ, USA, 2015), ICSE 15, IEEE Press, pp. 722-732.

MATICHUK, D., MURRAY, T., AND WENZEL, M. Eisbach: A proof method language
for Isabelle. J. Autom. Reason. 56, 3 (Mar. 2016), 261-282.

MATICHUK, D.;, WENZEL, M., AND MURRAY, T. The Eisbach user manual. https:
//isabelle.in.tum.de/doc/eisbach.pdf. |Online; accessed 2018-03-23].

MATICHUK, D., WENZEL, M., AND MURRAY, T. An Isabelle proof method language.
In Interactive Theorem Proving (ITP) (Vienna, Austria, July 2014), p. 16.

McCABE, T. A complexity measure. Software Engineering, IEEE Transactions on
SE-2, 4 (Dec 1976), 308-320.

MURRAY, T., MATICHUK, D., BrRASSIL, M., GAMMIE, P., BOURKE, T., SEEFRIED,
S., LEwis, C., Gao, X., AND KLEIN, G. sel4: from general purpose to a proof
of information flow enforcement. In IEEE Symposium on Security and Privacy (San
Francisco, CA, May 2013), pp. 415-429.

137

http://afp.sf.net
http://afp.sf.net
http://afp.sf.net/entries/JinjaThreads.shtml
http://afp.sf.net/entries/JinjaThreads.shtml
http://afp.sf.net/entries/SATSolverVerification.shtml
https://isabelle.in.tum.de/doc/eisbach.pdf
https://isabelle.in.tum.de/doc/eisbach.pdf

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

MURRAY, T., MATICHUK, D., BrASSIL, M., GAMMIE, P., AND KLEIN, G. Nonin-
terference for operating system kernels. In The Second International Conference on
Certified Programs and Proofs (Kyoto, Dec. 2012), Chris Hawblitzel and Dale Miller,
Ed., Springer, pp. 126-142.

Nipkow, T., PAULSON, L., AND WENZEL, M. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, vol. 2283 of Lecture Notes in Computer Science. Springer,
2002.

OLszEwsKA (PrLAskA), M., AND SERE, K. Specification metrics for Event-B devel-
opments. In Proceedings of the CONQUEST 2010: “Software Quality Improvement”
(2010), I. Schieferdecker, R. Seidl, and S. Goericke, Eds., International Software Qual-
ity Institute, pp. 1-12.

PauLson, L. C. Isabelle: the next 700 theorem provers. In Logic and Computer
Science, P. Odifreddi, Ed. Academic Press, 1990.

RINGER, T., YAZDANI, N., LEO, J., AND GROSSMAN, D. Adapting proof automa-
tion to adapt proofs. In CPP (2018).

RUDNICKI, P. An overview of the Mizar project. In Types for Proofs and Programs
(1992), pp. 1-22.

SAMSON, W. B., NEvILL, D. G., AND DUGARD, P. I. Predictive software metrics
based on a formal specification. Inf. Softw. Technol. 29, 5 (June 1987), 242-248.

SCHIRMER, N. Verification of sequential imperative programs in Isabelle/HOL. PhD
thesis, Technische Universitat Miinchen, 2006.

SEWELL, T. seL4 enforces integrity. Interactive Theorem Proving 6898 (2011), 325—
340.

SEWELL, T., MYREEN, M., AND KLEIN, G. Translation validation for a verified
OS kernel. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (Seattle, Washington, USA, June 2013), ACM, pp. 471-481.

SEWELL, T., WINwWoOOD, S., GAMMIE, P., MURRAY, T., ANDRONICK, J., AND
KLEIN, G. selL4 enforces integrity. In Proceedings of the 2nd International Conference
on Interactive Theorem Proving (Nijmegen, The Netherlands, Aug. 2011), M. C. J. D.
van Eekelen, H. Geuvers, J. Schmaltz, and F. Wiedijk, Eds., vol. 6898 of Lecture Notes
in Computer Science, Springer, pp. 325-340.

STAPLES, M., JEFFERY, R., ANDRONICK, J., MURRAY, T., KLEIN, G., AND
KovraANskI, R. Productivity for proof engineering. In Empirical Software Engineering
and Measurement (Turin, Italy, Sept. 2014).

StapLES, M., KorLaNski, R., KLEIN, G., LEwis, COREY ND ANDRONICK, J.,
MURRAY, T., JEFFERY, R., AND BAss, L. Formal specifications better than function
points for code sizing. In International Conference on Software Engineering (San

138

[66]

[67]

|68]

[69]

[70]

[71]

[72]

73]

[74]

[75]
[76]

Francisco, USA, May 2013), David Notkin, Betty H. C. Cheng, Klaus Pohl, Ed.,
IEEE, pp. 1257-1260.

STipDOLPH, D. C., AND WHITEHEAD, J. Managerial issues for the consideration
and use of formal methods. In In Stefania Gnesi, Keijiro Araki, and Dino Mandrioli
(eds.), FME 2003, International Symposium of Formal Methods Europe (2003), pp. 8—
14.

TABAREH, A. Predictive software measures based on formal Z specifications. Master’s
thesis, University of Gothenburg - Department of Computer Science and Engineering,
2011.

TRUSTWORTHY SYSTEMS TEAM. sel.4 proofs for API 1.03, release 2014-08-10, Aug
2014.

TucH, H., KLEIN, G., AND NORRISH, M. Types, bytes, and separation logic. In
ACM SIGPLAN Notices (2007), vol. 42, ACM, pp. 97-108.

WENZEL, M. Isar - a generic interpretative approach to readable formal proof doc-
uments. In Proceedings of the 12th International Conference on Theorem Proving
in Higher Order Logics (London, UK, UK, 1999), TPHOLs 99, Springer-Verlag,
pp. 167-184.

WENZEL, M. Isabelle/Isar—a versatile environment for human-readable formal proof
documents. PhD thesis, Technische Universitat Miinchen, 2002.

WENZEL, M., AND CHAIEB, A. SML with antiquotations embedded into

Isabelle/Isar. In Workshop on Programming Languages for Mechanized Mathematics
(PLMMS 2007). Hagenberg, Austria (June 2007), J. Carette and F. Wiedijk, Eds.

WENZEL, M., AND WIEDIJK, F. A comparison of Mizar and Isar. Journal of
Automated Reasoning 29, 3-4 (2002), 389-411.

WHITESIDE, I., ASPINALL, D., DiXoN, L., AND Grov, G. Towards formal proof
script refactoring. In Intelligent Computer Mathematics (2011), pp. 260-275.

WIEDUK, F., Ed. The Seventeen Provers of the World, vol. 3600. 2006.

ZILIANI, B., DREYER, D., KRISHNASWAMI, N. R., NANEVSKI, A., AND VAFEIADIS,
V. Mtac: a monad for typed tactic programming in Coq. In ICFP (2013), G. Mor-
risett and T. Uustalu, Eds., ACM.

139

	Title page - Automation for Proof Engineering
	Abstract
	Acknowledgements
	Contents

	Chapter 1 - Introduction
	Thesis objectives and contributions
	Summary of thesis contributions

	Document Overview

	Chapter 2 - Related Work
	Proof Systems
	Mizar
	Nqthm and ACL2
	LCF
	HOL
	Coq
	The Lean Theorem Prover
	Isabelle

	Relationship to Isabelle/Eisbach
	Proof Engineering
	Proof Maintenance
	Proof Generalization
	Empirical Evaluation of Proof Artefacts

	Conclusion

	Chapter 3 - Background
	Introduction to Isar
	A Simple Proof
	The Languages of Isabelle

	Isabelle/Pure
	Meta-logic Connectives
	Terms
	Proof Kernel
	Isabelle/HOL

	Proof Methods
	Basic Proof Methods
	Automated Proof Methods
	Method Combinators and Backtracking

	Isar Revisited
	Facts and Theorems
	Definitions
	Records
	Proof Context
	Rule Attributes
	Isabelle/ML

	L4.verified
	L4.verified specifications
	L4.verified refinement stack
	Additional L4.verified proofs

	The Archive of Formal Proofs
	Formatting Remarks
	Fonts
	Interactive Proof State

	Chapter 4 - Empirical Analysis of Proof Effort Scalability
	Motivation and Summary
	Limitations

	Approach and Measures
	Proofs and Specifications
	Proof Size
	Raw Statement Size
	Idealised Statement Size

	Measures in Isabelle
	Measuring Proof Size
	Measuring Raw Statement Size
	Approximating Idealised Statement Size

	Data Collected
	L4.verified Proofs
	Proofs from the AFP

	Results and Discussion
	Results using the Raw Measure
	Effectiveness of the Idealised Measure

	Conclusion

	Chapter 5 - Eisbach
	Motivation
	Eisbach
	Fact Abstraction
	Term Abstraction
	Custom Combinators
	Matching
	Premises within a Subgoal Focus
	Example
	Integration with ML

	Design and Implementation
	Readable Proof Methods
	Design Goals and Comparison to Ltac
	Method Correctness and Types
	Static Closure of Concrete Syntax
	Subgoal Focusing

	Conclusion

	Chapter 6 - Advanced Eisbach
	Method Expression Debugging
	Example Debugging Session
	The apply_debug command
	Proof state interaction
	Document-based debugging

	Rule Attributes from Methods
	Advanced Methods and Combinators
	A Hoare Logic Combinator
	Subgoal Folding

	Conclusion

	Chapter 7 - Case Study: L4.verified
	L4.verified, VCGs, and Refinement
	Refinement
	The State Monad
	Monadic Hoare Logic

	Corres
	Example

	The Corres Proof Method
	First Steps and Limitations of Corres
	CorresK
	Mismatched Functions
	Automating Corres_rv
	Integration with Corres
	Corressimp

	Application to L4.verified
	Proof Example

	Conclusion

	Conclusion
	Bibliography

