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Abstract. We extend recent work in Quantitative Information Flow
(QIF) to provide tools for the analysis of programs that aim to implement
differentially private mechanisms. We demonstrate how differential pri-
vacy can be expressed using loss functions, and how to use this idea in con-
junction with a QIF-enabled program semantics to verify differentially
private guarantees. Finally we describe how to use this approach experi-
mentally using Kuifje, a recently developed tool for analysing information-
flow properties of programs.
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1 Introduction

This paper concerns the verification of privacy properties of programs. Our par-
ticular focus is differential privacy and how to prove that implementations of
privacy-style mechanisms satisfy a differentially private property. Whilst differ-
ential privacy has been much studied as a mathematical theory there is further
work to be done in ensuring that its properties are faithfully implemented in a
programming language. This is particularly important because implementations
are rarely transcriptions of mathematical functions, and program code could
present very differently from the mathematical function it purports to compute.
There are several important approaches for tackling this problem [?,?] from a
programming languages perspective. In this paper we study it as a verification
exercise using a programming semantics based on the Quantitative Information
Flow (QIF) paradigm.

Quantitative information flow is designed to model the severity of risks associ-
ated with any information leaks in systems that process confidential information.
QIF consists of three components. The first is a model for confidential informa-
tion (or “secrets”) based on probability distributions over possible values that a
secret could take. The second is a model of a mechanism (or program) which
describes how the mechanism’s external outputs affect the flow of information
about the secret. The third is a model of an adversary (as a gain or loss function)

⋆ This research was supported by the Australian Research Council Grant
DP140101119.



operating within a specific scenario describing how an adversary could exploit
any flow that has occurred. A QIF analysis takes these elements and then in-
terprets the severity of the information leak relative to the given adversarial
scenario.

Elsewhere [?] it has been shown how to model differential privacy as a QIF
mechanism and here we extend that idea by introducing an adverarial scenario
(or loss function) that can be used to verify whether a mechanism satisfies a
differential privacy guarantee. We also show how it can be applied directly to
a QIF-enabled semantics of a sequential programming language [?,?] to verify
differential privacy. Finally we describe how a QIF-enabled interpreter Kuifje
[?] is able to verify experimentally that sequential programs satisfy differentially
private properties.

In §?? we review the fundamentals of QIF, and in §?? we show how to express
a the notion of differential privacy as an adversarial scenario. In §?? we recall how
to use the basic QIF ideas in a QIF-enabled program semantics and illustrate
how to use it to verify a small example based on the familiar random-response
protocol of Warner [?].

2 Review of Quantitative Information Flow

The informal idea of a secret is that it is something about which there is some
uncertainty, and the greater the uncertainty the more difficult it is to discover
exactly what the secret is. For example, the name of one’s first primary school
teacher might not be generally known, but if the gender of the teacher is leaked,
then it might rule out some possible names and make others more likely. Similarly,
when some information about a secret becomes available to an observer (often
referred to as an adversary) the uncertainty is reduced, and it becomes easier to
guess its value. If that happens, we say that information (about the secret) has
leaked, or equivalently that information flow has occurred.

Quantitative Information Flow (QIF) makes this intuition mathematically
precise. Given a range of possible secret values of (finite) type X , let DX be the
space of probability distributions over X . We model a secret as a probability
distribution of type DX , because it ascribes “probabilistic uncertainty” to the
secret’s exact value. Given π:DX we write πx for the probability that π assigns
to x:X with the idea that the more likely it is that the real value is some specific
x then the closer πx will be to 1. Normally the uniform distribution over X
models a secret which with equal likelihood could take any one of the possible
values drawn from its type and we might say that, beyond the existence of the
secret, nothing else is known. There could, of course, be many reasons for using
some other distribution, for example if the secret was the height of an individual
then a normal distribution might be more realistic. In any case, once we have
a secret, we are interested in analysing whether an algorithm, or protocol, that
uses it might leak some information about it. To do this we define a measure for
uncertainty, and use it to compare the uncertainty of the secret before and after



executing the algorithm. If we find that the two measurements are different then
we can say that there has been an information leak.

The original QIF analyses of information leaks in computer systems used
Shannon entropy [?] to measure uncertainty because it captures the idea that
more uncertainty implies “more secrecy”, and indeed the uniform distribution
corresponds to maximum Shannon entropy (corresponding to maximum “Shan-
non uncertainty”). More recent treatments have shown however that Shannon
entropy is not the best way to measure uncertainty in security contexts because
it does not necessarily model scenarios relevant to the goals of the adversary. In
particular there are some circumstances where a Shannon analysis gives a more
favourable assessment of security than is actually warranted if the adversary’s
motivation is taken into account [?].

Alvim et al. [?] proposed a more general notion of uncertainty based on
“gain functions”. Here we shall use its dual formulation namely loss functions.
A loss function measures a secret’s uncertainty according to how it affects an
adversary’s actions within a given scenario. We write W for a (usually finite) set
of actions available to an adversary corresponding to an “attack scenario” where
the adversary tries to guess something (e.g. some property) about the secret. For
a given secret x:X an adversary’s choice of w:W results in the adversary losing
something beneficial to his objective 3. This loss can vary depending on the
adversary’s choice (w) and the exact value of the secret (x). The more effective
is the adversary’s choice in how to act, the more he is able to overcome any
uncertainty concerning the secret’s value thereby losing less compared to his
losses in the same scenario but without the benefit of the leaked information.

Definition 1. Given a type X of secrets, a loss function ℓ:W×X → R is a
real-valued function such that ℓ(w, x) determines the loss to an adversary if he
chooses w and the secret is x.

A simple example of a loss function is given by br, where W :=X , and

br(x, x′) := 0 if x = x′ else 1 . (1)

For this scenario, the cost to the adversary if he correctly guesses the value of
a secret is 0, but 1 if he guesses incorrectly. Elsewhere the utility and expressivity
of loss functions for measuring various attack scenarios relevant to security have
been explored in more detail [?,?]. Given a loss function we define the uncertainty
of a secret in DX relative to the scenario it describes: it is the minimum average
loss to an adversary.

Definition 2. Let ℓ:W×X → R be a loss function, and π:DX be a secret. The
uncertainty Uℓ[π] of the secret wrt. ℓ is:

Uℓ[π] := min
w∈W

∑

x∈X

ℓ(w, x)×πx .

3 Alvim et al. explained this as a gain to benefit the adversary; couching the interpre-
tation as losses is mathematically equivalent but the formulation as losses turns out
to be more convenient for reasoning about programs [?].



For a secret π:DX , the uncertainty wrt. br in particular is Ubr[π]:= 1−maxx:X πx,
i.e. the complement of the maximum probability assigned by π to possible values
of x. The adversary’s best strategy for minimising his loss would therefore be to
choose the value x that corresponds to the maximum probability under π.

A mechanism is an abstract model of a protocol or algorithm that uses secrets.
As the mechanism executes we assume that there are a number of observables
that can depend on the actual value of the secret. We define Y to be the type for
observables. The model of a mechanism now assigns a probability that y:Y can
be observed given that the secret is x. Such observables could be sample timings
in a timing analysis in cryptography, for example.

Definition 3. A mechanism is a stochastic matrix4 C:X×Y→ [0, 1]. The value
Cxy is the probability that y is observed given that the secret is x. Given a (prior)
secret π:DX we write π〉C for the joint distribution over X×Y defined

(π〉C)xy := πx×Cxy .

For each y:Y, the marginal probability that y is observed is py:=
∑

x:X (π〉C)xy.
And for each observable y the corresponding posterior probability of the secret
is the conditional π|y:DX defined (π|y)x:= (π〉C)xy/py . 5 (It is undefined if py
is zero.)

Now consider the secret space with only two values, X := {c,¬c} and the
channel inc given below which produces two observations A and B. If the secret
is c then A will be observed with probability 1/4 and B will be observed with
probability 3/4. Alternatively if the secret is ¬c then A will be observed with
probability 3/4 and B will be observed with probability 1/4.

inc:=

(

A B

c 1/4 3/4
¬c 3/4 1/4

)

(2)

Intuitively, given a prior secret π, the entry πx×Cxy of the joint distribution
π〉C is the probability that the actual secret value is x and the observation is
y. This joint distribution contains two pieces of information: the probability py
of observing y and the corresponding posterior π|y which would then represent
the adversary’s updated view about the uncertainty of the secret’s value. In our
example above, if π is the uniform distribution over {c,¬c} then pA = pB = 1/2.
On the other hand the posterior π|A assigns a probability of 1/4 that the secret
is c, an event to which π|B assigns a probability of 3/4. This implies that if A
is observed the adversary is likely to decide that the secret is ¬c, whereas if he
observes B then he will most likely determine that the secret is c. The extent
to which the adversary can use the leaked information can be understood by
comparing the uncertainties of the posteriors with the uncertainty of the prior.

4 Stochastic means that the rows sum to 1.
5 We use py and π|y for typographical convenience. Notation suited for calculation

would need to incorporate C and π.



For example if Uℓ[π|
A] is strictly less than Uℓ[π] then the adversary is indeed

able to use the information leaked by inc to benefit himself within the scenario
defined by the loss function ℓ.

More generally if the risk of the posterior decreases wrt. a scenario defined
by ℓ, then information about the secret has leaked and the adversary can use it
to decrease his loss by changing how he chooses to act. The adversary’s average
overall loss, taking the observations into account, is defined to be the average
posterior uncertainty (i.e. the posterior distribution, weighted according to their
respective marginals):

Uℓ[π〉C] :=
∑

y∈Y

py×Uℓ[π|
y] , where py, π|y are defined at Def. ??. (3)

Now that we have Def. ?? and Def. ?? we can start to investigate whether the
information leaked through observations Y actually have an impact in terms of
whether it is useful to an adversary. It is easy to see that for any loss function ℓ,
prior π and mechanism C we have that Uℓ[π] ≥ Uℓ[π〉C]. In fact the greater the
difference between the prior and posterior vulnerability, the more the adversary
is able to use the leaked information within the scenario defined by ℓ. In a
mechanism that leaks no information at all, its prior and posterior vulnerabilities
are the same under any scenario.

In our example above, can compare the overall losses without the benefit
of inc’s leaks and with them as follows. Since Ubr[π] = 1/2 and Ubr[π〉inc] =
1−3/4 = 1/4, we can see that with the benefit of inc’s leaked information the
adversary is able to halve his losses (in the Bayes’ Risk scenario).

Using the idea of quantifying losses, we can define a robust qualitative com-
parison between mechanisms. We say that one mechanism M ′ is more secure
than another M exactly when the adversary’s losses under M ′ are always at
least those under M in every possible scenario defined by a prior and a loss
function.

Definition 4. Given mechanisms M,M ′ we say that M ′ is more secure than
M , or M ⊑ M ′ if for all loss functions ℓ and priors π we have that

Uℓ[π〉M ] ≤ Uℓ[π〉M
′] .

Given the observation above that Uℓ[π] ≥ Uℓ[π〉C] we can say (now formally)
that the mechanism that releases no information is the most secure amongst all
mechanisms.

In the next section we will review how to specialise the above ideas to obtain
a QIF formulation of differential privacy which can then be applied directly to
verify programs.



3 Differential privacy as a problem in QIF

Dwork’s original definition of differential privacy [?] relates to databases and
protections for individuals whose data might or might not be contained in the
database. We generalise the definition for the context of secrets described above.

Given a (privacy) mechanism M : X→DY and ǫ>0, we say that M is ǫ-
differentially private with respect to secrets x, x′ if:

∫

M.x

ζ ≤ eǫ ×

∫

M.x′
ζ , (4)

where ζ : Y → R is any (measurable) function, and we write
∫

γ
ζ for the weighted

average of ζ with respect to the distribution γ ∈ DY. More general definitions of
differential privacy [?] include a metric between secrets which are incorporated
in constraints such as (??), so that:

∫

M.x

ζ ≤ eǫ×d(x,x
′) ×

∫

M.x′
ζ (5)

must hold, where d(·, ·) is a metric on values. Here the metric provides a measure
of similarity between alternative values, with a greater divergence between values
implying a possible greater variation in the distributions over outputs. In our
definitions below we use the simpler (??), but note here that they can easily be
extended to include a metric as in (??). 6

Alvim et al. [?] show that when a mechanism is modelled as a channel the
above definition (??) is equivalent to comparing rows of channels relating to x, x′.
In particular (??) applied to a channel M says that M is ǫ-differentially private
for x, x′ if

Mxy ≤ eǫMx′y and Mx′y ≤ eǫMxy (6)

for all y ∈ Y. Notice that (??) compares two channel rows corresponding to secret
values x, x′. It turns out that we can do the same thing using loss functions. Given

a pair v:= (v1, v2) ∈ X×X we write
←
v for the left component v1 and

→
v for the

right component v2. We say that a subset of pairs V ⊆ X×X is symmetric and
irreflexive if whenever (x, x′) ∈ V then also (x′, x) ∈ V and (x, x) 6∈ V for any x.

Definition 5. Given are ǫ>0, and W :=V ∪{⋆}, where V ⊆ X×X is symmetric
and irreflexive. We define dpǫ, the ǫ-differentially private loss function relative
to W:

dpǫ(w, x) = −1 , if w 6= ⋆ ∧
←
w= x

dpǫ(w, x) = eǫ , if w 6= ⋆ ∧
→
w= x

dpǫ(w, x) = 0 , if w 6= ⋆ ∧
←
w 6= x 6=

→
w

dpǫ(⋆, x) = 0 .

6 The revised definition would change the second line of Def. ?? to be

dpǫ(w, x) = e
ǫ×d(

←

w,
→

w )
, if w 6= ⋆ ∧

→

w= x .



Note that for π ∈ DX we see that Udpǫ
[π] = minx 6=x′(πx×eǫ − πx′)min 0,

where the minimisation is over the relevant pairs (x, x′) defined by V . This means
that if Udpǫ

[π] ≥ 0 then for each x 6= x′ we must have that πx×eǫ − πx′ ≥ 0,
which is reminiscent of (??). It turns out that this idea can indeed be applied to
privacy, as follows.

Theorem 1. Given are ǫ>0, and M a mechanism interpreted as a channel, and
let υ be the uniform distribution in DX . Then M satisfies ǫ-differential privacy
if and only if

Udpǫ
[υ〉M ] = 0 .

Proof. It is clear that Udpǫ
[υ〉M ] ≤ 0, since the adversary is always able to choose

action ⋆ for a loss of zero to the adversary. If it turns out that Udpǫ
[υ〉M ] < 0,

it implies by (??) that there is some observation y such that the adversary can
choose some w ∈ V that gives an average negative loss, i.e. that Udpǫ

[υ|y]<0 for
some observation y. Let (x, x′) = w be the action that produces that negative
minimum loss for this y. We reason as follows:

Udpǫ
[υ|y] < 0

⇒
∑

x′′∈X dpǫ(w, x
′′)×Mx′′y/|X | < 0 “Def. ?? for υ|y and choice of w Def. ??”

⇒ eǫMx′y/|X | −Mxy/|X | < 0 , “Def. ??, with w = (x, x′)”

implying from (??) that M is not differentially private.
On the other hand if Udpǫ

[υ〉M ]≥0, it must mean that eǫMx′y|/X|−Mxy/|X | ≥
0 for all choices of x, x′, y and so M is ǫ-differentially private.

A simple corollary is that any mechanisms that are more secure than some
ǫ-differentially private mechanism M , must also be ǫ-differentially private.

Lemma 1. If M,M ′ are two mechanisms and M ⊑ M ′, then if M is ǫ-differentially
private, so is M ′.

Proof. We reason as follows:

Udpǫ
[υ〉M ′]

≥ Udpǫ
[υ〉M ] “M ⊑ M ′, Def. ??”

≥ 0 , “Thm. ?? for M”

implying that M ′ is ǫ-differentially private, also by Thm. ??.

Observe that when M fails to be ǫ-differentially private it is because the
adversary is able to reason that the secret is more likely to be one value rather
than another by an amount distinguishable by eǫ.

Recall the mechanism inc from (??). Now from Def. ?? and Thm. ?? we see
that inc is log 3 differentially private 7 but not log 2 differentially private, since

Udplog 2
[υ〉inc] < 0 ≤ Udplog 3

[υ〉inc] .

7 We use logs base e throughout.



Next we prove the familiar additive law for differentially-private mechanisms.
Recall that the additive law determines that if the secret is accessed first by
M and then by M ′ then the combined access represents a mechanism with
(differential privacy) parameter the sum of those of M and M ′. From (??) we
can see that Uℓ[υ〉M ] is determined by the posteriors, and Thm. ?? teaches us
that whether or not a mechanism satisfies a differentially private property is
therefore determined by the “unpredictability” of its posteriors, defined next.

Definition 6. Let π be a (prior/posterior) distribution in DX , and let ǫ>0. We
say that π is dpǫ-unpredictable if Udpǫ

[π] ≥ 0.

The uniform distribution υ of the whole type is dp0-unpredictable, and a
consequence of Thm. ?? is that a mechanism is ǫ-differentially private if and
only if all posteriors in u〉M are dpǫ-unpredictable. In cases where the prior π is
known, and it is not uniform, we can see that unpredictability of the posteriors
π〉M are bounded by π’s unpredictability and the ǫ-privacy of M .

Lemma 2. Let π ∈ DX be dpǫ-unpredictable, and let M be ǫ′-differentially pri-
vate. Then Udp

ǫ+ǫ
′
[π〉M ] = 0.

Proof. (Sketch.) We observe first that by assumption we have that for (relevant)
x, x′ ∈ X and any y ∈ Y, we know that πx−eǫπx′ ≥ 0 and Mxy−eǫ

′

Mx′y ≥ 0.
Rearranging, we have:

πx ≥ eǫπx′ ∧ Mxy ≥ eǫ
′

Mx′y

⇒ πx×Mxy ≥ eǫ+ǫ′πx′×Mx′y , “arithmetic”

from which we deduce that πx×Mxy − eǫ+ǫ′πx′×Mx′y ≥ 0. This implies that
Udp

ǫ+ǫ
′
[π|y] = 0 for the posterior π|y. Hence by (??) we must have Udp

ǫ+ǫ
′
[π〉M ] =

0 as well.

For the composition of two differentially private mechanisms, if the posteri-
ors of the composition written (υ〉(M ;M ′)) are formed from the posteriors of
(υ|y〉M ′), where υ|y is any posterior of (υ〉M), then it follows that the unpre-
dictability of all the posteriors (υ〉(M ;M ′)) are determined by Lem. ??. In fact
we shall see in our semantics for programming language this is case (see §??),
thus for such a composition we have the following additive law.

Corollary 1. Let M be ǫ-differentially private, and M ′ be ǫ′-differentially pri-
vate. The composition M ;M ′ is ǫ+ǫ′-differentially private.

Proof. (Sketch.) This follows if all posteriors of (υ〉(M ;M ′)) are dpǫ+ǫ′-unpredictable.
But each such posterior is exactly one of the posteriors of υ|y〉M ′ for some pos-
terior υ|y of (υ〉M) (see discussion above). Since M is ǫ-differentially private
we have that υ|y must be dpǫ-unpredictable; therefore by Lem. ?? it must be that
all posteriors of (υ|y〉M ′) are dpǫ+ǫ′-unpredictable since M ′ is ǫ′-differentially
private.

In the remainder of the paper we show how to apply these ideas to the
verification of programs that implement differential privacy.



4 QIF in programming languages

Elsewhere [?] we introduced a probabilistic semantics applicable to a small se-
quential programming language. It embeds QIF ideas within a probabilistic se-
mantics based on the well known probability monad [?].

4.1 The probabilistic Monad for information flow

Standard models of (sequential) probabilistic programs are normally based on
Markov Processes with type A → DA. In this sense programs can be thought of
as mapping a base type A to a probability distribution (also) over type A. In
QIF however, as has been noted, the mathematical essentials for understanding
information flows are priors, posteriors and marginals. Setting A to DX that
gives the type of a QIF-enabled model for programs as DX → D(DX ), or DX →
D

2X .
We call an object of type D

2X a hyper-distribution over X . It turns out
that hyper-distributions exactly match the structure of posteriors and marginals
discussed above. Recall the mechanism inc described at (??) and that the obser-
vations labelled A and B both occurred with probability 1/2 (in the given scenario
of a uniform prior) with corresponding posteriors π|A and π|B. Formatted as a
hyper-distribution, this scenario can be presented as:

1

2
(π|A) ⊕

1

2
(π|B) , (7)

where we use the operator ⊕ to indicate addition at the level of DX considered as
a “vector space”, so that a hyper-distribution is a weighted ⊕-sum of posteriors
considered as individual (1-summing) vectors.

In (??) the outer distribution corresponds to the marginal and the inner
distributions corresponds to posteriors. Moreover for a hyper-distribution ∆ ∈
D

2X , we write ∆δ for the outer probability corresponding to inner δ; we can
therefore define the average uncertainty relative to ∆ as:

Uℓ(∆) :=
∑

δ

Uℓ[δ]×∆δ .

If we let [π〉M ] be formatted as a hyper-distribution as sketched above, we can
see clearly that Uℓ[π〉M ] returns exactly the same value as (??) for π〉M as a joint
distribution, showing that the average posterior uncertainty does not depend
on the names of the observations, but only on how a mechanism determines
marginals and posteriors [?,?]. With this in mind we can define a QIF-enabled
semantic space.

Definition 7 ([?,?]). Let X be a (finite) state space. The space of programs is
defined to be the set of functions from priors to hyper-distributions DX → D

2X .
If P, P ′ : DX → D

2X are programs then we say that P ⊑ P ′ if Uℓ(P.π) ≤
Uℓ(P

′.π) for all loss functions ℓ and priors π.



Once a program is modelled as a function DX → D
2X , it turns out that a

standard Giry Monadic setting provides the basic functionality for sequencing
and assignments. We summarise the semantics for three important operators
here, and refer elsewhere for full details [?]. Recall the Giry Monad defined by
the triple (D, η, avg), where the type constructor D is a functor, η maps an object
of type A to a point distribution in DA and avg : D2A → DA takes the weighted
average of a hyper-distribution, defined

(avg.∆)a :=
∑

δ∈DX

∆δ×δa .

Here we use + and
∑

to mean the normal summation between numbers.
We can interpret a programming language in terms of Def. ?? as follows,

where we use [[·]] to map a program fragment to a function DX → D
2X .

1. Assignment. Let f : X → DX be a function that maps states in X to
distributions over states in X . 8

[[x:= f(x)]].π := (η ◦ avg ◦ Df).π .

2. Sequence. Let P,Q be program fragments.
[[P ;Q]].π := (avg ◦ D[[Q]] ◦ [[P ]]).π .

3. Print statement. Let g be a function from X to Y.
[[Print g]].π :=

⊕

y py(π|
y) ,

where py:= ((Dg).π)y , and π|y is the posterior probability distribution, given
that y is an output of g, and ⊕ is the summation over 1-summing vectors
described above.

The assignment statement is used to assign a value to a variable x according
to a distribution, where informally we assume that the value of the variable x
is value x ∈ X . We use the unit of the Giry Monad to produce a point hyper-
distribution. Sequence is defined in the standard monadic manner, by first apply-
ing [[P ]] to the input and then D[[Q]] is applied to [[P ]]’s output hyper-distribution,
with a final application of avg applied to amalgamate equivalent posteriors. The
action of D[[Q]] is to apply [[Q]] to each of the posteriors in the output of [[P ]],
thus satisfying the condition for Cor. ??. Finally, notice that the Print state-
ment acts like a channel but without creating the joint distribution between the
observables and the prior. Instead it formats the (equivalent) result directly as
a hyper-distribution. A full description of the QIF-aware program semantics is
detailed elsewhere [?].

5 Example: Implementing plausible deniability

8 This is essentially a Markov update of the state.



Consider the small program in Fig. ?? which forms the basis for a random-
response program. A participant in a survey is asked to input a response resp
to a yes/no question. If they are concerned about the security of the method of
collection, in particular whether their answer will be leaked, they might decline
to participate. In order to encourage participation, Warner [?], devised a random
response protocol which gives participants “plausible deniability” in regards to
their responses, if the results of the survey are published.

In Fig. ?? we see the details of the algorithm SingleRespondent implemented
as a sequential program. The participant’s answer is stored in a variable resp (1
for “yes” and 0 for “no”). The variable count is used to store and then publish the
result of the data collection. First a random result is stored in a variable coin,
where we use “0[1/2]1” to mean that the value is randomised between 0 or 1,
using an unbiased “coin toss”. Next the variable count is updated, and again the
update is randomised between either incrementing count with the value stored
previously in coin, or with the participant’s choice resp. The last act is then to
publish the final value of count.

A participant worried about the collection procedure might wonder whether
the data collected is an accurate recording of their real response resp. The answer
is “it depends”, in the sense that the final value of count could be either 1 or 0
whatever the value of resp, with the difference between the initial values of resp
observed through the probabilities ascribed to the possible values of count ob-
served. However that difference is bounded by a differentially private guarantee.
This fact can be proven by showing that SingleRespondent is log 3 differentially
private with respect to the two conditions defined by resp.

A traditional QIF analysis would construct an explicit channel for the random
response protocol to describe how information about the secret (in this case resp)
can leak. The result of this exercise turns out to be the of the channel inc at
(??). From, this we can initialise resp to be either 0 or 1 with probability 1/2
each; finally we can compute Udplog 3

[υ〉inc] and observe that it is 0.
An alternative approach is to interpret SingleRespondent directly in the

QIF semantics above. First we define a mechanism over the secret resp as follows.
Let δ ∈ D{0, 1}. Define a mechanism M : DX → D

2X 9

M.δ := [[SingleRespondent]].δ .

Now we examine Udplog 3
(M.υ) = 0, showing similarly that the difference in

resp = 0 and resp = 1, is that for any observation of count, the corresponding
posteriors differ in probability according to the multiplicative contstraint elog 3 =
3.

5.1 Random response protocol

9 Strictly speaking the state is determined by the values of all the program variables.
However the only secret that we worry about for this example is the value of resp.
These details can all be handled by adjusting the definition of dpǫ.



// Assume resp i s e i t h e r 0 or 1 i n i t i a l l y

count := 0 ;
co in := 0 [ 1 / 2 ] 1 ; // Random response
count := ( count + co in

[ 1 / 2 ] // Randomly i n c l ude resp or not
count + resp ) ;

Pr int count ; // Announce the approximate count

The value resp is either added to the variable count or not; in the case that it is not
included, a random response coin for that participant is delivered instead.

Fig. 1. Randomised response, SingleRespondent

An implementation of a full random response protocol is set out in Fig. ??. For
N participants, each participant executes the single response protocol defined at
Fig. ??.

// Assume resp i s an array o f l en g t h N s e t to
// p a r t i c i p an t s ’ responses , to a survey ques t i on .
i := 0 ;
count := 0 ;
while ( i<N) {

co in := 0 [ 1 / 2 ] 1 ; // Random response
count := ( count + co in

[ 1 / 2 ] // Randomly i n c l ude p a r t i c i p an t i or not
count + resp [ i ] ) ;

i++;
}
Pr int count ; // Announce the approximate count

On each iteration, the participant i is randomly selected for inclusion in the count or
not. In the case that the participant’s true response resp[i] is not included, a random
response coin for that participant is delivered instead.

Fig. 2. Randomised response with N participants

The privacy for each individual is whether their specific response is private.
For that we can use the results above to show that their individual response is
protected through Fig. ?? considered as a log 3 differentially private mechanism.
Moreover within the context of the other responses, we are able to show that
the other respondents do not affect that privacy level. For example, for the
final participant in Fig. ??, the other participants’ responses reveals nothing
about the final participant’s response, thus the protocol is equivalent to R;R′

where R corresponds to the collection of the first N−1 participants responses
and R to the collection of the final participant’s response. We have that R is 0-



differentially private with respect to the final participant’s response and that R′

is log 3-differentially private. Hence by the additive law Cor. ?? we have that the
full random response protocol in Fig. ?? is also log 3-differentially private (for
that participant). This argument can be generalised to apply to any participant
taking part in the random response.

6 Experiment and exploration

The experiments described above were carried out using the tool Kuifje [?,?]
which interprets a small programming language in terms of the QIF semantics
alluded to above. Kuifje supports the usual programming constructs (assignment,
sequencing, conditionals and loops) but crucially it takes into account informa-
tion flows consistent with QIF. In particular the Print statements used in our
examples correspond exactly to the observations that an adversary could make
during program execution. This allows a direct model for eg. known side channels
that potentially expose partially computation traces during program execution.

The basic assumption built into the semantics of Kuifje is that no variable
can be observed unless revealed fully or partially through a Print statement. For
example Print x would print the value of variable x and so reveal it completely
at that point of execution, but Print(x>0)would reveal only whether x is strictly
positive or not. As usual, we also assume that the adversary knows the program
code.

Kuifje is implemented in Haskell and makes extensive use of the Giry monad
[?] for managing the prior, posterior and marginal probabilities in the form of
“hyper-distributions”.

In order to use Kuifje to analyse Fig. ?? and Fig. ??, we assume a uniform in-
put for resp (resp[i]). Kuifje then generates the hyper-distribution output, which
can then be evaluated against dpǫ for a chosen ǫ>0. Since we are only interested
in a specific response, we can assume that the secret is determined by resp
(resp[i]). We can then adjust the details of dpǫ by setting V to be sensitive only
to different values of resp (resp[i]).

Finally, we note that since Kuifje computes the output hyper-distribution,
other properties of Fig. ?? and Fig. ?? can also be explored, such as the Bayes
Risk of the resp, and the true average number of “yes” respondents.

7 Related work

Differential privacy was proposed by Dwork [?] to provide mechanisms that
satisfy strong privacy guarantees for individuals. Alvim et al. [?] were the first
to explain the relationship between information-flow channels and differential
privacy, and to investigate leakage properties of differentially-private mechanisms
modelled as channels [?].

There has been recent interest in verification techniques for proving differential-
privacy properties, with the intention of providing programmers with the ca-
pability to certify privacy guarantees, and to support reasoning. Wang et al.



have [?] proposed a technique called “Shadow execution” to enable the verifi-
cation of implementations of differentially private algorithms using traditional
program logics. Adaptations of Hoare Logic have been proposed [?] based on
reasoning about product programs. Bathe et al. [?] use a technique based on
probabilistic couplings to enable differential privacy to be treated as a program-
verification problem. More generally Barthe et al. [?] describe three verification
and programming-language techniques for certifying that programs satisfy the
more general (ǫ, γ) differential privacy guarantees, as in:

∫

M.x

ζ ≤ eǫ ×

∫

M.x′
ζ + γ . (8)

All of these techniques are supported by automation. Zhang and Kifer [?]
use a relational type system to decompose privacy verification into two parts,
one for relational reasoning and the other to compute the “privacy budget”. A
privacy budget is related to the fact that every query to a database, even one
protected by differential privacy, leaks some information about the data. A pri-
vacy budget denotes an upper limit on information leakage that is insufficient
to identify individuals. Finally, Ebadi and Sands [?] have implemented a system
based similarly on reasoning rules to keep track of the privacy budget related to
datasets.

8 Conclusions

We have shown how to use a loss function combined with a QIF-enabled pro-
gramming semantics to verify privacy properties for programs. We have used the
interpreter Kuifje to enable experimental investigation of differential privacy for
small sequential programs.

We described the simplest and most restrictive version of differential privacy
(??), but note that the weaker (ǫ, γ) notion of differential privacy can also be
modelled using loss functions. To see this, we note that if M is not ǫ-differentially
private for some particular x, x′ ∈ X , we must have:

∑

y∈Y

(Mx′ye
ǫ −Mxy)min 0 < 0 . (9)

In fact each individual summand is non-zero exactly when Mx′y/Mxy can be
distinguished by more than the “allowed” eǫ multiplier. Observe that the sum
of those summands is equal to some value −γ′, and if it is at least −γ in (??)
then M is (ǫ, γ) differentially private. We can formalise this observation using
loss functions as follows.

As in Def. ?? we formulate a loss function dp∗ǫ , this time letting V := {(x, x′), ⋆}.
If we let υ be the uniform distribution over x, x′, we see that Udp

ǫ
∗
[υ〉M ] is equal

to half the sum in (??). Thus we can conclude that M is (ǫ, γ) differentially pri-
vate if Udp

ǫ
∗
[υ〉M ] ≥ −γ/2 for all such pairs x, x′. More investigation is required

to determine whether this provides a useful characterisation.



Finally we observe that a QIF model is rich enough to capture many other
other kinds of risks related to information flow. For example a participant in
the random response survey might be more interested in whether their response
can be determined with some likelihood, and the response gatherer might be
interested in how the output count is related to the real “yes” count. Both of
these properties can be analysed using loss functions and the QIF interpretation
[?,?].
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