
Noninterference for Operating System Kernels

Toby Murray1,2, Daniel Matichuk1, Matthew Brassil1, Peter Gammie1 and
Gerwin Klein1,2

1 NICTA, Sydney, Australia? ??

2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{firstname.lastname}@nicta.com.au

Abstract. While intransitive noninterference is a natural property for
any secure OS kernel to enforce, proving that the implementation of
any particular general-purpose kernel enforces this property is yet to
be achieved. In this paper we take a significant step towards this vision
by presenting a machine-checked formulation of intransitive noninterfer-
ence for OS kernels, and its associated sound and complete unwinding
conditions, as well as a scalable proof calculus over nondeterministic
state monads for discharging these unwinding conditions across a kernel’s
implementation. Our ongoing experience applying this noninterference
framework and proof calculus to the seL4 microkernel validates their
utility and real-world applicability.

Keywords: Information flow, refinement, scheduling, state monads.

1 Introduction

A primary function of any operating system (OS) kernel is to enforce security
properties and policies. The classical security property of noninterference [8]
formalises the absence of unwanted information flows within a system, and
is a natural goal for any secure OS to aim to enforce. Here, the system is
divided into a number of domains, and the allowed information flows between
domains specified by means of an information flow policy ;, such that d ; d ′ if
information is allowed to flow from domain d to domain d ′. So-called intransitive
noninterference [10] generalises noninterference to the case in which the relation ;

is possibly intransitive.
While intransitive noninterference is a natural property for any secure OS

kernel to enforce, proving that the implementation of any particular general-
purpose kernel enforces this property is yet to be achieved. In this paper we

?
NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program.

??
This material is in part based on research sponsored by the Air Force Research Laboratory,
under agreement number FA2386-10-1-4105. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of
the Air Force Research Laboratory or the U.S. Government.

take a significant step towards this vision by presenting a machine-checked
formulation of intransitive noninterference for OS kernels, and its associated
sound and complete proof obligations (called unwinding conditions), as well as a
scalable proof calculus over nondeterministic state monads for discharging these
unwinding conditions across a kernel’s implementation. Both our noninterference
formulation and proof calculus are termination-insensitive, under the assumption
that a noninterference verification for an OS kernel is performed only after proving
that its execution is always defined (and thus every system call always terminates).
Our experience applying this noninterference framework and proof calculus to
the seL4 microkernel [11] validates their utility and real-world applicability.

Our intransitive noninterference formulation improves on traditional formula-
tions [10, 16, 19, 21] in two ways that make it more suitable for application to OS
kernels. Firstly, traditional formulations of intransitive noninterference assume a
static mapping dom from actions to domains, such that the domain dom a on
whose behalf some action a is being performed can be determined solely from the
action itself. No such mapping exists in the case of an OS kernel, which must infer
this information at run-time. For instance, when a system call occurs, in order to
work out which thread has requested the system call the kernel must consult the
data-structures of the scheduler to determine which thread is currently running.
This prevents traditional noninterference formulations from being able to reason
about potential information flows that might occur via these scheduling data
structures. An example would be a scheduler that does not properly isolate
domains by basing its decision about whether to schedule a Low thread on
whether a High thread is runnable. Our noninterference formulation makes dom

dependent on the current state s, in order to overcome this problem, such that
the domain associated with some action a that occurs from state s is dom a s.
This makes the resulting noninterference formulation entirely state-dependent
and complicates the proofs of soundness for our unwinding conditions. Proving
that a system satisfies these unwinding conditions (and therefore our formulation
of noninterference) requires showing that the scheduler does not leak information
via its scheduling decisions.

Secondly, while phrased for (possibly) nondeterministic systems, our noninter-
ference formulation is preserved by refinement. As explained later, this requires it
to preclude all domain-visible nondeterminism, which necessarily abstracts away
possible sources of information. Being preserved by refinement is important in
allowing our noninterference formulation to be proved of real kernels at reasonable
cost, as it can be proved about an abstract specification and then transported to
the more complex implementation by refinement. In the case of seL4, this allows
us to prove noninterference about a mostly-deterministic refinement [13] of its
abstract functional specification, which its C implementation has been proved to
refine [11], in order to conclude it of the implementation. Our experience to date
suggests that reasoning about seL4’s functional specification requires an order of
magnitude less effort than reasoning directly about the implementation [12].

Our proof calculus resembles prior language-based frameworks for proving
termination-insensitive confidentiality (and other relational) properties of pro-

grams [1, 2, 4]; however, it is better suited than these frameworks for general-
purpose OS kernels. Firstly, our calculus aims not at generality but rather at
scalability, which is essential to enable its practical application to entire OS
kernels. Secondly, it is explicitly designed for reasoning about systems for which
no complete static assignment of memory locations or program variables to
security domains exists. As is the case with a general-purpose OS kernel like seL4
that implements a dynamic access control system, whether a memory location is
allowed to be read by the currently running thread depends on the access rights
that the current thread has, if any, to that location. In a microkernel like seL4
that implements virtual memory, this of course depends on the current virtual
memory mappings for the currently running thread. Thus, like the mapping of
actions to domains, the mapping of memory locations to domains is also state-
dependent in a general-purpose OS kernel. Our proof calculus is tuned to tracking
and discharging these kinds of state-dependent proof obligations that arise when
reasoning about confidentiality in such a system. These manifest themselves as
preconditions on confidentiality statements about individual function calls that
we discharge using a monadic Hoare logic and its associated VCG [6]. Our calculus
is specially tuned so that this same VCG engine can automate its application,
without modification, to automatically prove confidentiality statements for those
functions that do not read confidential state (i.e. the vast majority of them),
given appropriate user-supplied loop invariants.

Our experience applying this calculus to seL4 suggests that it scales very well
to real-world systems. So far we have used it to prove confidentiality for 98%
of the functions in the abstract seL4 specification in under 15 person-months.
The remaining fraction comprises nondeterministic functions that abstract away
from sources of confidential information — i.e. parts of the specification that
are too abstract to allow correct reasoning about confidentiality. We are in the
process of making these parts of the specification more concrete to produce a
refinement of the functional specification, which seL4’s C implementation refines
in turn, suitable for reasoning about confidentiality [13]. We have already done
this and proved confidentiality for the revoke system call, which is the kernel’s
most complex code path. The remaining functions are currently in progress.

In this paper, Section 2 presents our noninterference formulation for OS
kernels and its associated unwinding conditions. In Section 3 we present our
proof calculus for discharging these unwinding conditions across an entire kernel.
Section 4 considers related work before Section 5 concludes. All theorems and
definitions in this paper have been generated directly from the interactive theorem
prover Isabelle/HOL [14] in which all of our work was carried out.

2 Noninterference

Our noninterference formulation for OS kernels extends von Oheimb’s notion of
noninfluence [21]. We formalise noninterference over de Roever-Engelhardt style
data types [7], which can be thought of as automata with a supported theory of
refinement, allowing us to prove that our noninterference formulation is preserved

under refinement. We first introduce the data type formalism and the notion of
refinement, before presenting our noninterference formulation and its associated
unwinding conditions. We prove that the unwinding conditions are sound and
complete for our noninterference formulation. We explain how our unwinding
conditions (and, hence, our noninterference formulation) require us to prove the
absence of information leaks through scheduling decisions. Lastly we show how
our noninterference formulation is preserved by refinement.

2.1 Data Types and Refinement

We model an OS kernel as a state machine whose transitions include processing
an interrupt or exception, performing a system call, and ordinary user-level
actions like reading and writing user-accessible memory. We use the terms event
and action interchangeably to refer to an automaton’s individual transitions.

A data type automaton A is simply a triple comprising three functions:
an initialisation function InitA :: state ⇒ istate set that maps individual ob-
servable states to sets of corresponding internal states, an internal step re-
lation IStepA :: event ⇒ (istate × istate) set , and a final projection function
FinA :: istate ⇒ state that maps individual internal states to corresponding indi-
vidual observable states. For a data type A and initial observable state s :: state
and sequence of transitions as, let execution A s as denote the set of observable
states that can be reached by A performing as. execution A s as operates by first
applying InitA to the observable state s to produce a set of corresponding initial
internal states. It then computes a set of resulting internal states by repeatedly
applying IStepA to each event a in as in turn to arrive at a set of final internal
states. To each of these it applies FinA to obtain the set of final observable states.

execution A s as ≡ FinA ‘ foldl (λS a. IStepA a ‘‘ S) (InitA s) as

Here R ‘‘ S and f ‘ S are the relational images of the set S under the relation R
and function f respectively, and foldl is the standard fold function on lists.

A data type C refines data type A, written A v C, when its behaviours are
a subset of A’s.

A v C ≡ ∀ s as. execution C s as ⊆ execution A s as

2.2 System Model

Let A be an automaton, whose observable state is of type state, and s0::state de-
note the initial observable state from which execution of A begins. Let reachable s
denote that observable state s is reachable from s0:

reachable s ≡ ∃ as. s ∈ execution A s0 as

As occurs in OS kernels generally, we assume that every event is always enabled.

reachable s −→ (∃ s ′. s ′ ∈ execution A s as)

Let the function Step characterise the single-step behaviour of the system:

Step a ≡ {(s, s ′) | s ′ ∈ execution A s [a]}

For the information flow policy, we assume a set of security domains and a
reflexive relation ; that specifies the allowed information flows between domains,
where d ; d ′ implies that information is allowed to flow from domain d directly
to d ′. Noninterference asserts that no information flows outside of ; can occur.

For each domain d, let
d∼ be an equivalence relation on observable states, such

that s
d∼ t if and only if domain d ’s state is identical in s and t. Here, d ’s state

will include the user-visible state that d can directly read, but might also include
kernel-level state that the kernel might legitimately reveal to d. This relation is
sometimes called an unwinding relation. When the system transitions directly

from state s to state s ′ and s
d∼ s ′ for example, domain d has not been observably

affected by this transition. For a set of domains D, let s
D
≈ t ≡ ∀ d∈D . s

d∼ t.
Traditional noninterference formulations associate a security domain dom e

with each event e that occurs, which defines the domain that performed the event.
Recall from Section 1 that when a system call event occurs, the kernel must
consult the data structures of the scheduler to determine which thread performed
the system call, which will be the thread that is currently active. So events are
not intrinsically associated with domains; rather, this association depends on part
of the current state of the system which records the currently running domain.

Therefore, let dom :: event ⇒ state ⇒ domain be a function such that dom e s
gives the security domain that is associated with event e in state s. When the
scheduler’s state is identical in states s and t, we expect that dom e s = dom e t
for all events e. Formally, let s-dom :: domain be an arbitrary domain, whose
state encompasses that part of the system state that determines which domain is
currently active. s-dom stands for scheduler domain. Then we assume that for all
events e and states s and t

s
s-dom∼ t −→ dom e s = dom e t

Actions of the scheduling domain s-dom naturally include all those that
schedule a new domain d to execute. We expect that when a domain d is
scheduled, that d will be able to detect that it is now active, and so that an
information flow might have occurred from s-dom to d. Since the scheduler can
possibly schedule any domain, we expect that a wellformed information flow
policy ; will have an edge from s-dom to every domain d :

s-dom ; d

In order to prevent s-dom from being a global transitive channel by which
information can flow from any domain to any other, we require that information
can never flow directly from any other domain d to s-dom, so

d ; s-dom −→ d = s-dom.

This restriction forces us to prove that the scheduler’s decisions about which
domain should execute next are independent of the other domains, which is
typical scheduler behaviour in a separation kernel.

2.3 Formulating Noninterference

Traditionally [16], intransitive noninterference definitions make use of a sources

function, whereby for a sequence of actions as and a domain d, sources as d gives
the set of domains that are allowed to pass information to d when as occurs.
Because our dom function depends on the current state s, sources must do so
as well. Therefore let sources as s d denote the set of domains that can pass
information to d when as occurs, beginning in state s. The following definition is
an extension of the standard one [16,21] in line with our augmented dom function.

sources [] s d = {d}
sources (a·as) s d =⋃
{sources as s ′ d | (s, s ′) ∈ Step a} ∪

{w | w = dom a s ∧ (∃ v s ′. dom a s ; v ∧ (s, s ′) ∈ Step a ∧ v ∈ sources as s ′ d)}

Here, we include in sources (a·as) s d all domains that can pass information to
d when as occurs from all successor-states s ′ of s, as well as the domain dom a s
performing a, whenever there exists some intermediate domain v that it is allowed
to pass information to who in turn can pass information to d when the remaining
events as occur from some successor state s ′ of s. An alternative, and seemingly
more restrictive, definition would include only those domains that are present
in all sources as s ′ d, and include dom a s only when some such v can be found
for each sources as s ′ d, where (s, s ′) ∈ Step a. However, as a consequence of
Lemma 2 introduced later, this yields an equivalent noninterference formulation.

As is usual, the sources function is used to define a purge function, ipurge, in
terms of which noninterference is formulated. Traditionally, for a domain d and
action sequence as, ipurge d as returns the sequence of actions as with all actions
removed that are not allowed to (indirectly) influence d when as occurs [16].
Naturally, we must include the current state s in our ipurge function. However,
for nondeterministic systems purging may proceed from a set ss of possible initial
states. This leads to the following definition.

ipurge d [] ss = []

ipurge d (a·as) ss = if ∃ s∈ss. dom a s ∈ sources (a·as) s d
then a·ipurge d as (

⋃
s∈ss {s ′ | (s, s ′) ∈ Step a})

else ipurge d as ss

Initially, the set ss will be a singleton containing one initial state s. Given a
sequence of actions a·as being performed from s, ipurge will keep the first action a
if dom a s ∈ sources (a·as) s d, i.e. if this action is allowed to affect the target
domain d. Purging then continues on the remaining actions as from the successor
states of s after a. On the other hand, if the action a being performed is not
allowed to affect the target domain d, then it is removed from the sequence.
For this reason, purging continues on the remaining actions as from the current
state s, rather than its successors. We require the action to be able to affect the
target domain in only one of the states s ∈ ss to avoid purging it. An alternative
definition would instead place this requirement on all states s ∈ ss. Again however,
because of Lemma 2, this yields an equivalent noninterference formulation.

For states s and t and sequences of actions as and bs and domain d, let
uwr-equiv s as t bs d denote when the contents of domain d is identical after
executing as from s and bs from t in all resulting pairs of states. When
uwr-equiv s as t bs d is true, domain d is unable to distinguish the cases in which as
is executed from s, and bs is executed from t. Recall that we assume that every
event is always enabled and that divergence never occurs on any individual
execution step, under the assumption that noninterference is proved only after
proving that a system’s execution is always defined. This is why uwr-equiv and
the following noninterference formulation are termination-insensitive.

uwr-equiv s as t bs d ≡
∀ s ′ t ′. s ′ ∈ execution A s as ∧ t ′ ∈ execution A t bs −→ s ′ d∼ t ′

Traditionally [16, 21] this property is defined using a projection function

out :: domain ⇒ state ⇒ output so that, rather than testing whether s ′
d∼ t ′

for final states s ′ and t ′, it tests whether out d s ′ = out d t ′. However, these
traditional formulations invariably require the unwinding condition of output

consistency which asserts that out d s ′ = out d t ′ whenever s ′
d∼ t ′, and construct

the remaining unwinding conditions to establish precisely this latter relation.
We avoid this indirection by discarding out entirely. One could re-phrase the
noninterference formulation here in terms of out if necessary, in which case the
addition of output consistency to the unwinding conditions presented here would
be sufficient to prove the resulting noninterference property.

We now have the ingredients to express our noninterference formulation,
which we derive as follows. Given two action sequences as and bs, a domain d,
and an initial state s from which each sequence is executed, if ipurge d as {s} =
ipurge d bs {s} then, when all events that are not allowed to affect d are removed
from each sequence, they are both identical. So if none of these removed events
can actually affect d, we should expect that d cannot distinguish the execution
of one sequence from the other, i.e. that uwr-equiv s as s bs d should hold.

However, the only domains that should be able to affect d when as executes
here are those in sources as s d. So if s were modified to produce a state t from
which bs was executed instead, we should expect uwr-equiv s as t bs d to hold
so long as: (1) s and t agree on the state of all domains in sources as s d, i.e.

s
sources as s d

≈ t, and (2) the same domain is currently active in both, i.e. s
s-dom∼ t.

This is our formulation of von Oheimb’s noninfluence [21], denoted noninfluence.

noninfluence ≡
∀ d as bs s t .

reachable s ∧ reachable t ∧ s
sources as s d
≈ t ∧ s s-dom∼ t ∧

ipurge d as {s} = ipurge d bs {s} −→ uwr-equiv s as t bs d

Note that, as a consequence of Lemma 1 introduced later, replacing the term
ipurge d bs {s} by ipurge d bs {t} here yields an equivalent property.

noninfluence might be too strong a property for systems with a pre-determined
static schedule that is fixed for the entire lifetime of the system and known to
all domains. If every domain always knows the exact sequence of events that

must have gone before whenever it executes, then purging makes less sense. For
these kinds of systems, an analogue of von Oheimb’s weaker notion of nonleakage
might be more appropriate. We denote this property nonleakage.

nonleakage ≡ ∀ as s t d . reachable s ∧ reachable t ∧ s
s-dom∼ t ∧ s

sources as s d
≈ t −→

uwr-equiv s as t as d

Naturally, noninfluence implies nonleakage.

2.4 Unwinding Conditions

A standard proof technique for noninterference properties involves proving so-
called unwinding conditions [16] that examine individual execution steps of the
system in question. We introduce two unwinding conditions. The first is sound
and complete for nonleakage. The addition of the second to the first is sound and
complete for noninfluence.

Both of these conditions examine individual execution steps of the system,
and assert that they must all satisfy specific properties. As is usual with nonin-
terference, we would like to conclude that these same properties are true across
all runs of the system. However, this rests on the assumption that a run of the
system, say in which it performs some sequence of actions as, is equivalent to
performing a sequence of one-step executions for each of the events in as in turn.

This is formalised by the following function Run, which takes a step func-
tion Stepf, and repeatedly applies it to perform a sequence of actions as by
executing each action in as in turn.

Run Stepf [] = {(s, s) | True}
Run Stepf (a·as) = Stepf a ◦ Run Stepf as

Like ours, traditional unwinding conditions are predicated on the assumption
that reachable s −→ execution A s as = {s ′ | (s, s ′) ∈ Run Step as} (assuming
naturally that reachable s0 too). While this is valid for traditional noninterference
formulations, in which their execution is defined exactly in this way [21], it is
not always true for an arbitrary data-type automaton of the kind introduced in
Section 2.1 over which our noninterference properties are defined. However, for
most well behaved data types this condition is true, and certainly holds for those
that model the seL4 functional specification and its C implementation. Thus
we restrict our attention to those automata A that satisfy this assumption and
return to our unwinding conditions.

The first unwinding condition is a confidentiality property, while the second
is an integrity property. The confidentiality property we denote confidentiality-u,
and resembles the conjunction of von Oheimb’s weak step consistency and step
respect [21] for deterministic systems; however, we require it to hold for all
successor states and to take into account the scheduler domain s-dom.

confidentiality-u ≡ ∀ a d s t s ′ t ′. reachable s ∧ reachable t ∧ s s-dom∼ t ∧ s d∼ t ∧
(dom a s ; d −→ s

dom a s∼ t) ∧ (s, s ′) ∈ Step a ∧ (t , t ′) ∈ Step a −→ s ′
d∼ t ′

This property says that the contents of a domain d after an action a occurs
can depend only on d ’s contents before a occurred, as well as the contents of the
domain dom a s performing a if that domain is allowed to send information to d.
This condition alone allows d to perhaps infer that a has occurred, but not to
learn anything about the contents of confidential domains.

The second unwinding condition is an integrity property, denoted integrity-u,
and is essentially Rushby’s local respect [16] adapted to nondeterministic systems
and again asserted for all successor states.

integrity-u ≡ ∀ a d s s ′. reachable s ∧ dom a s 6; d ∧ (s, s ′) ∈ Step a −→ s
d∼ s ′

It says that an action a that occurs from some state s can affect only those
domains that the domain performing the action, dom a s, is allowed to directly
send information to. It prevents any domain d for which dom a s 6; d from even
knowing that a has occurred.

The soundness proofs for these unwinding conditions are slightly more involved
than traditional proofs of soundness for unwinding conditions. This is because
our sources and ipurge functions are both state-dependent. The following lemma
is useful for characterising those states that agree on sources and ipurge, under

confidentiality-u, namely those related by
s-dom∼ .

Lemma 1. confidentiality-u ∧ reachable s ∧ reachable t ∧ s s-dom∼ t −→
sources as s d = sources as t d ∧ ipurge d as {s} = ipurge d as {t}

With this result, the proofs of the soundness of our unwinding conditions
are similar to those for traditional non-state-dependent formulations of non-
interference, since (as we explain shortly) confidentiality-u guarantees that the

equivalence
s-dom∼ , asserted by noninfluence and nonleakage, is always maintained.

The completeness proofs for these unwinding conditions are straightforward.

Theorem 1 (Soundness and Completeness).

nonleakage = confidentiality-u, and noninfluence = (confidentiality-u ∧ integrity-u)

2.5 Scheduling

We said that our noninterference formulation requires us to show that the
scheduler’s choices are independent of the other domains. To see why, consider
when the domain d from our unwinding conditions is s-dom. Then confidentiality-u

implies that s-dom can never be affected by the state of the other domains:

∀ a s t s ′ t ′. reachable s ∧ reachable t ∧ s s-dom∼ t ∧ (s, s ′) ∈ Step a ∧ (t , t ′) ∈ Step a

−→ s ′ s-dom∼ t ′

Thus confidentiality-u implies that
s-dom∼ is always maintained.

When dom a s 6= s-dom, dom a s 6; s-dom. So integrity-u implies that the sched-
uler domain can never be affected by the actions of the other domains:

∀ a s s ′. reachable s ∧ dom a s 6= s-dom ∧ (s, s ′) ∈ Step a −→ s
s-dom∼ s ′

2.6 Refinement

We now show that noninfluence and nonleakage are preserved by refinement. This
means we can prove them of an abstract specification A and conclude that they
hold for all concrete implementations C that refine it (i.e. for which A v C).

Theorem 2 (noninfluence and nonleakage are Refinement-Closed).
When A v C, noninfluenceA −→ noninfluenceC , and nonleakageA −→ nonleakageC

Proof. We will prove that each unwinding condition is closed under refinement,
which implies that their conjunction is as well. The result then follows from Theo-
rem 1. Let A and C be two automata, and write StepA, sourcesA etc. for those re-
spective functions applied to A and similarly for C. Then, when A v C, C ’s execu-
tions are a subset of A’s, so reachableC s −→ reachableA s and StepC a ⊆ StepA a.
It is straightforward to show then that integrity-uA −→ integrity-uC and
confidentiality-uA −→ confidentiality-uC , as required. 2

As mentioned earlier, a consequence of being preserved by refinement is that
our unwinding conditions tolerate very little nondeterminism. Specifically, if the
unwinding conditions hold, a system must have no domain-visible nondeterminism,
which is nondeterminism that can be observed by any domain. This is because
any such nondeterminism could abstract from a confidential source of information
that is present in a refinement, and so implies the existence of insecure refinements.
The following lemma states this restriction formally.

Lemma 2 (No Visible Nondeterminism).

confidentiality-u ∧ reachable s ∧ (s, s ′) ∈ Step a ∧ (s, s ′′) ∈ Step a −→ s ′ d∼ s ′′

3 A Proof Calculus for Confidentiality for State Monads

Having explained our noninterference formulation, and in particular its unwinding
conditions, we now present a proof calculus for discharging these unwinding
conditions across an OS kernel. We have successfully applied this calculus to
the seL4 microkernel, as part of ongoing work to prove that it enforces our
noninterference formulation.

Our proof calculus operates over nondeterministic state monads, the formalism
that underpins the seL4 abstract functional specification. Specifically, the internal
steps of the automaton that embodies the seL4 functional specification are
formalised as computations of a nondeterministic state monad. The state type
of this monad is simply the internal state of the automaton, which for the seL4
functional specification is also identical to its observable state. The unwinding
condition integrity-u asserts that the state before a single execution step is related
to each final state after the execution step. It is naturally phrased as a Hoare triple,
and discharged using standard verification techniques. For seL4, we have used a
monadic Hoare logic and its associated verification condition generator (VCG) [6]
to discharge this condition [17]. This leaves just the property confidentiality-u. It
is this property that our confidentiality proof calculus addresses.

3.1 Nondeterministic State Monad

To prove confidentiality for an entire kernel specification, we need to be able to
decompose it across that specification to make verification tractable. It is this
challenge that our proof calculus addresses for nondeterministic state monads.

The type for this nondeterministic state monad is

state ⇒ (α × state) set × bool

That is, it is a function that takes a state s as its sole argument, and returns a
pair p. The first component fst p is a set of pairs (rv , s ′), where rv is a return-value
and s ′ is the result state. Each such pair (rv , s ′) represents a possible execution
of the monad. The presence of more than one element in this set implies that
the execution is nondeterministic. The second part snd p of the pair returned by
the monad is a boolean flag, indicating whether at least one of the computations
has failed. Since our confidentiality property is termination insensitive, this flag
can be ignored for the purpose of this paper.

Our proof calculus for confidentiality properties over this state monad builds
upon the simpler proof calculus for Hoare triples [6] mentioned above. In this
calculus, a precondition P is a function of type state ⇒ bool, i.e. a function P
such that, a given state s satisfies P if and only if P s is true. Since a monad f
returns a set of return-value/result-state pairs, a postcondition Q is a function
of type α ⇒ state ⇒ bool . Q may be viewed as a function that given a return-
value rv and corresponding result-state s ′, tells whether they meet some criteria.
Alternatively, Q may be viewed as a function that, given some return-value rv,
yields a state-predicate Q rv that tests validity of the corresponding result-state s ′.
We write such Hoare triples as {|P |} f {|Q |}, and define their meaning as follows.

{|P |} f {|Q |} ≡ ∀ s. P s −→ (∀ (rv , s ′)∈fst (f s). Q rv s ′)

The proof calculus for Hoare triples of our nondeterministic state monad
includes a mechanical rule application engine that acts as a VCG for discharging
Hoare triples [6]. Later we discuss how we can apply this same engine to act as a
VCG for discharging our confidentiality properties.

3.2 Confidentiality over State Monads

Observe that the property, confidentiality-u, addressed by our confidentiality proof
calculus considers two pre-states, s and t, for which some equivalences hold, and
then asserts that for all post-states, s ′ and t ′, another equivalence holds. We
formalise this for our nondeterministic state monad, generalising over the pre- and
post-state equivalences, as the property ev A B P f, pronounced equivalence valid.
Here, A and B are pre-state and post-state equivalence relations respectively
(often called just the pre-equivalence and post-equivalence respectively), f is the
monadic computation being executed and P is a precondition that the pre-states s
and t are assumed to satisfy.

ev A B P f ≡
∀ s t . P s ∧ P t ∧ A s t −→ (∀ (ra, s ′)∈fst (f s). ∀ (rb, t ′)∈fst (f t). ra = rb ∧ B s ′ t ′)

Note that ev A B P f also asserts that the return values from both executions
of f are equal. This requires that these return-values be derived only from those
parts of the system state that are identical between the two executions (i.e. those
parts that the pre-equivalence A guarantees are identical). The purpose of the
precondition P is to allow extra conditions under which the pre-equivalence A
guarantees that confidentiality is satisfied. For instance, if f is a function that
reads a region of user memory, the precondition P might include a condition that
ensures that this region is covered by the pre-equivalence A.

To decompose this property across a monadic specification, we need to define
proof rules for the basic monad operators, return and >>= (pronounced “bind”).
return x is the state monad that leaves the state unchanged and simply returns
the value x. This means that if A holds for the pre-states, then A will hold for
the post-states as well. Also, return x always returns the same value (x) when
called. This gives us the following proof rule.

ev A A (λ-. True) (return x)
return-ev

Note that this rule restricts the post-equivalence to be the same as the pre-
equivalence. As we explain shortly, this turns out not to be a problem in practice.

f >>= g is the composite computation that runs f, and then runs g on the
result, and is used to sequence computations together. Specifically, f >>= g runs
the computation f to obtain a return value rv and result state s ′, and then calls
g rv to obtain a second computation that is run on the state s ′. Because f might
be nondeterministic, f >>= g does this for all pairs (rv , s ′) that f emits, taking
the distributed union over all results returned from each g rv s ′.

Because we want to be able to decompose the proof of ev across a specification,
we need a proof rule for f >>= g that allows us to prove ev for f and g separately,
and then combine the results to obtain a result overall. The following proof rule,
bind-ev, does exactly that.

∀ rv . ev B C (Q rv) (g rv) ev A B P ′ f {|P ′′|} f {|Q |}
ev A C (P ′ and P ′′) (f >>= g)

bind-ev

Here, P ′ and P ′′ is the conjunction of preconditions P ′ and P ′′, i.e. P ′ and P ′′ ≡
λs. P ′ s ∧ P ′′ s. bind-ev can be read as a recipe for finding a precondition ?P
such that ev A C ?P (f >>= g) is true. First, for any return value rv that f
might emit, find some state-equivalence B and a precondition Q rv, which may
mention rv, such that g rv yields post-states that satisfy the post-equivalence C.
Secondly, find a precondition P ′ such that executing f yields post-states that
satisfy the just found state-equivalence B. Finally, find a precondition P ′′, such
that for all return-values rv emitted from executing f, their corresponding result-
states satisfy Q rv. The desired precondition ?P is then P ′ and P ′′.

This rule works because if ev is true for f, we know that both executions
of f yield the same return-value, say rv, which means that the two subsequent
executions both run the same computation, g rv. In the rare case that ev cannot
be proved for f (say because f returns a value rv derived from confidential state),
a more sophisticated rule is required that we introduce later in Section 3.4.

3.3 Automating Confidentiality Proofs

Note that when C = A, we may define a simpler variant of bind-ev, called
bind-ev’, in which B and C are both A.

∀ rv . ev A A (Q rv) (g rv) ev A A P ′ f {|P ′′|} f {|Q |}
ev A A (P ′ and P ′′) (f >>= g)

bind-ev’

To apply this rule, we need only compute sufficient preconditions Q rv, P ′ and P ′′

for the relevant obligations. Our ordinary Hoare logic VCG can be applied to
compute P ′′, of course, while bind-ev’ is itself a recipe for computing sufficient
Q rv and P ′. In other words, we may recursively apply bind-ev’ to compute
appropriate Q rv and P ′, given appropriate ev rules for the primitive monadic
functions.

This is precisely the technique that we have taken to prove these statements
across the seL4 functional specification. Specifically, at the top-level, the pre-
equivalence of confidentiality-u, asserted for s and t, implies the post-equivalence,
d∼, asserted for all s ′ and t ′, because the pre-equivalence includes

d∼. Hence, if
we prove that the pre-equivalence is preserved, we can deduce that the post-
equivalence must hold after each kernel event. This allows us to reason about a
more restricted version of ev in which the pre- and post-equivalences are always
identical, using rules like return-ev and bind-ev’ above.

The rule-application engine developed previously [6] that acts as a VCG for
Hoare triples over our nondeterministic state monad, can be applied directly
without any modification to discharge ev statements by feeding it the appropriate
rules. It requires rules like bind-ev’, to decompose these proofs into smaller goals,
as well as appropriate rules, like return-ev, to discharge the goals at the leaves
of the proof tree. Familiar rules from prior work on proof methods for relational
properties of programs [1, 2, 4] may be derived for other monadic functions, such
as the one below for monadic while-loops. It establishes confidentiality for the
loop under the invariant P when the loop body B maintains confidentiality and
the pre-equivalence A guarantees that both executions terminate together. The
loop body B and condition C are both parametrised by a loop parameter n,
which for subsequent loop iterations is the return-value of the previous iteration.

∀ s t n. A s t ∧ P n s ∧ P n t −→ C n s = C n t
∀n. {|P n and C n|} B n {|P |} ∀n. ev A A (P n and C n) (B n)

ev A A (P n) (whileLoop C B n)
while-ev

3.4 Proving the Functions that Read Confidential State

The approach so far allows very automatic proofs for functions that do not read
any confidential state, and so always yield identical return-values rv. Because
these functions make up the bulk of seL4, this is what our calculus has been
tuned for. However, it is less well suited to functions that operate on confidential
state without revealing it to unauthorised domains. Our approach requires
confidentiality proofs for these kinds of functions to be performed more manually.

∀ s t . P s ∧ P ′ t ∧ A s t −→ R x y

ev2 A A R P P ′ (return x) (return y)
return-ev2

∀ rv rv ′. R ′ rv rv ′ −→ ev2 B C R (Q rv) (Q ′ rv ′) (g rv) (g ′ rv ′)
ev2 A B R ′ P P ′ f f ′ {|S |} f {|Q |} {|S ′|} f ′ {|Q ′|}

ev2 A C R (P and S) (P ′ and S ′) (f >>= g) (f ′ >>= g ′)
bind-ev2

Fig. 1. VCG rules for ev2

An example is the seL4 function send-async-ipc, which sends a message on an
asynchronous endpoint. Asynchronous endpoints facilitate unidirectional com-
munication, which implies that the act of sending on an asynchronous endpoint
should not leak any information back to the sender. Sending such a message does
require the kernel to read state outside of the sending domain (such as state in
the endpoint); however, it should not reveal any of this state to the sender.

There is no guarantee, then, that when the two executions of send-async-ipc

that ev compares each read the internal state of the endpoint in question, they
will get the same result. This means their subsequent executions might behave
differently to each other. Proving that ev holds in this case requires comparing
two different executions, and showing that they establish the post-equivalence.
This suggests that we should reason about a more general property than ev that
can talk about two different executions, and allows return-values to differ.

These insights lead to the following property, called ev2.

ev2 A B R P P ′ f f ′ ≡
∀ s t . P s ∧ P ′ t ∧ A s t −→

(∀ (ra, s ′)∈fst (f s). ∀ (rb, t ′)∈fst (f ′ t). R ra rb ∧ B s ′ t ′)

ev2 takes two computations, f and f ′, and two associated preconditions, P and P ′.
It also takes a return-value relation R, that it asserts holds for the return-values
of f and f ′. ev2 generalises ev, specifically ev A B P f ≡ ev2 A B op = P P f f ,
where op = is the equality operator. One usually applies this equivalence to
rewrite ev goals that cannot be proved by the VCG, into ev2 goals. One then
manually applies proof rules like in Figure 1 to discharge these goals.

Applying bind-ev2 usually requires the human to come up with an appro-
priate intermediate return-value relation R ′ that will hold for the return values
emitted from f and f ′. As with ev, we usually work with a simpler rule in which
(B = C) = A, which we omit for brevity. We suspect that techniques could be
borrowed from other work on automatically proving confidentiality properties of
programs [2, 18] to help automatically infer appropriate R ′. However, because
ev2 proofs are seldom required for seL4, we have not needed to implement them.

4 Related Work

Recently, Barthe et al. [3] presented a formalisation of isolation for an idealised
model of a hypervisor, and its unwinding conditions. Like ours, their definition

is based on von Oheimb’s noninfluence [21]. As in traditional formalisations of
noninterference, in their formulation actions are intrinsically linked to domains,
and so it cannot reason about information leaks through scheduling decisions.

INTEGRITY-178B is a real-time operating system for which an isolation
proof has been completed [15]. The isolation property proved is based on the
GWVr2 information flow property [9], which bears similarities to the unwinding
conditions for noninterference. Like ours, it is general enough to handle systems
in which previous execution steps affect which is the entity that executes next.
Unlike ours, it is defined only for deterministic systems. The exact relationship
between GWVr2 and our conditions deserves further study.

Our formulation of information flow security is descendant from traditional
ipurge-based formulations of intransitive noninterference (starting with Haigh
and Young’s [10]). Van der Meyden [19] argues that ipurge-based formulations
of intransitive noninterference are too weak for certain intransitive policies, and
proposes a number of stronger definitions. He shows that Rushby’s unwinding
conditions [16] are sufficient for some of these alternatives. Given the similarity of
our unwinding conditions to Rushby’s, we wonder whether our existing unwinding
conditions may be sufficient to prove analogues of van der Meyden’s definitions.

Others have presented noninterference conditions for systems with scheduling
components. One recent example is van der Meyden and Zhang [20], who consider
systems that run in lock-step with a scheduling component that controls which
domain’s actions are currently enabled. Their security condition for the scheduler
requires that the actions of the High domain cannot affect scheduling decisions.
Our formulation, in contrast, has the scheduler update a component of the system
state that determines the currently running domain. This allows our scheduler
security condition to require that scheduling decisions be unaffected not only by
domain actions, but also by domain state.

A range of proof calculi and verification procedures for confidentiality proper-
ties, and other relational properties, have also been developed [1,2,4,5,18]. Unlike
many of these, ours aims not at generality but rather at scalability. The simplicity
of our calculus has enabled it to scale to the entire functional specification of the
seL4 microkernel, whose size is around 2,500 lines of Isabelle/HOL, and whose
implementation that refines this specification is around 8,500 lines of C.

5 Conclusion

We have presented a definition of noninterference for operating system kernels,
with sound and complete unwinding conditions. We have shown how these latter
can be implemented in a proof calculus for nondeterministic state monads with
automation support. Our success in applying both of these to the seL4 microkernel,
in an ongoing effort to prove that it enforces noninterference, attest to their
practical utility and applicability to programs on the order of 10,000 lines of C.

Acknowledgements We thank Kai Engelhardt, Sean Seefried, and Timothy Bourke
for their comments on earlier drafts of this paper.

References

1. T. Amtoft and A. Banerjee. Information flow analysis in logical form. In SAS ’04,
volume 3148 of LNCS, pages 33–36. Springer-Verlag, 2004.

2. T. Amtoft and A. Banerjee. Verification condition generation for conditional
information flow. In FMSE ’07, pages 2–11. ACM, 2007.

3. G. Barthe, G. Betarte, J. Campo, and C. Luna. Formally verifying isolation and
availability in an idealized model of virtualization. In M. Butler and W. Schulte,
editors, 17th FM, volume 6664 of LNCS, pages 231–245. Springer-Verlag, 2011.

4. N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In POPL 2004, pages 14–25. ACM, 2004.

5. L. Beringer. Relational decomposition. In 2nd ITP, volume 6898 of LNCS, pages
39–54. Springer-Verlag, 2011.

6. D. Cock, G. Klein, and T. Sewell. Secure microkernels, state monads and scalable
refinement. In 21st TPHOLs, volume 5170 of LNCS, pages 167–182, Aug 2008.

7. W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof
Methods and their Comparison. Cambridge University Press, 1998.

8. J. Goguen and J. Meseguer. Security policies and security models. In IEEE Symp.
Security & Privacy, pages 11–20, Oakland, California, USA, Apr 1982. IEEE.

9. D. A. Greve. Information security modeling and analysis. In D. S. Hardin, editor,
Design and Verification of Microprocessor Systems for High-Assurance Applications,
pages 249–300. Springer-Verlag, 2010.

10. J. T. Haigh and W. D. Young. Extending the noninterference version of MLS for
SAT. Trans. Softw. Engin., 13:141–150, Feb 1987.

11. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In 22nd SOSP, pages 207–220. ACM, 2009.

12. G. Klein, T. Murray, P. Gammie, T. Sewell, and S. Winwood. Provable security:
How feasible is it? In 13th HotOS, pages 28–32, Napa, CA, USA, May 2011.
USENIX.

13. D. Matichuk and T. Murray. Extensible specifications for automatic re-use of
specifications and proofs. In 10th SEFM, Oct 2012.

14. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

15. R. J. Richards. Modeling and security analysis of a commercial real-time operating
system kernel. In D. S. Hardin, editor, Design and Verification of Microprocessor
Systems for High-Assurance Applications, pages 301–322. Springer-Verlag, 2010.

16. J. Rushby. Noninterference, transitivity, and channel-control security policies.
Technical Report CSL-92-02, SRI International, Dec 1992.

17. T. Sewell, S. Winwood, P. Gammie, T. Murray, J. Andronick, and G. Klein. seL4
enforces integrity. In 2nd ITP, volume 6898 of LNCS, pages 325–340, Nijmegen,
The Netherlands, Aug 2011. Springer-Verlag.

18. T. Terauchi and A. Aiken. Secure information flow as a safety problem. In SAS
’05, volume 3672 of LNCS, pages 352–367. Springer-Verlag, 2005.

19. R. van der Meyden. What, indeed, is intransitive noninterference? In 12th ESORICS,
volume 4734 of LNCS, pages 235–250. Springer-Verlag, 2007.

20. R. van der Meyden and C. Zhang. Information flow in systems with schedulers. In
21st CSF, pages 301–312. IEEE, Jun 2008.

21. D. von Oheimb. Information flow control revisited: Noninfluence = noninterference
+ nonleakage. In 9th ESORICS, volume 3193 of LNCS, pages 225–243, 2004.

	Noninterference for Operating System Kernels

