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Abstract

This paper presents a framework aimed at significantly reducing the cost of proving functional
correctness for low-level operating systems components. The framework is designed around a new
functional programming language, Cogent. A central aspect of the language is its uniqueness type
system, which eliminates the need for a trusted runtime or garbage collector while still guaranteeing
memory safety, a crucial property for safety and security. Moreover, it allows us to assign two
semantics to the language: The first semantics is imperative, suitable for efficient C code generation,
and the second is purely functional, providing a user friendly interface for equational reasoning
and verification of higher level correctness properties. The refinement theorem connecting the two
semantics allows the compiler to produce a proof via translation validation certifying the correctness
of the generated C code with respect to the semantics of the Cogent source program. We have
demonstrated the effectiveness of our framework for implementation and for verification through two
file system implementations.
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2 Cogent: Uniqueness Types and Certifying Compilation

1 Introduction

The correctness of any application critically depends on the correctness of the systems on
which it relies. Proving the correctness of systems code, however, is particularly challenging
because it is usually written in low-level languages such as C, which provide fine grained
control over the program execution, but few abstraction mechanisms and static guarantees.
The verification framework we present in this paper addresses this problem. It enables the
programmer to write low-level systems code in Cogent, a purely functional language with a
strong static type system. It facilitates simpler verification of code via equational reasoning
in the interactive theorem prover Isabelle/HOL (Nipkow et al., 2002), through a certifying
compiler from Cogent to efficient C code. This compiler, given a well-typed program,
produces a high-level shallow embedding of the program’s semantics in Isabelle/HOL,
suitable for equational reasoning, as well as a proof that connects this shallow embedding
to the compiler-generated C code. As a consequence, any functional correctness property
proved of the shallow embedding is guaranteed to hold for the generated C. Because the
code generated by Cogent is within the subset of the binary verification tool of Sewell et al.
(2013), it is possible in principle to extend this compilation certificate all the way down to
the binary level.

The compilation target of our compiler is C, because it is the language in which most
existing systems code is written, and because with the advent of tools like CompCert (Leroy,
2009b) and gcc translation validation (Sewell et al., 2013), large subsets of C now have
a formalised semantics and an existing formal verification infrastructure. Why, then, do
we not opt to verify C systems code directly? After all, there is an ever growing list
of successes (Beringer et al., 2015; Gu et al., 2016; Klein et al., 2009) in this space.
The reason is simple: verification of manually written C programs remains expensive.
Just as high-level languages increase programmer productivity, they should also increase
verification productivity. Cogent is specifically designed with a verification-friendly high-
level semantics. This makes the difference between imperative and functional verification:
the proof engineer faces pointer fiddling and undefined behaviour guards in C versus abstract
functional objects and equations in Cogent. An imperative VCG (Dijkstra, 1997) for C must
overwhelm the prover with detail, while the abstraction and type system of Cogent enable
the use of far stronger existing automation for high-level proofs.

In contrast to CakeML (Kumar et al., 2014), which is the state of the art for certifying
compilation of general purpose functional languages, Cogent is targeted at a substantially
different application area and point in the design space. CakeML includes a verified runtime
and garbage collector, while Cogent works hard to avoid these so it can be applicable to
low-level embedded systems code. CakeML covers full Turing-complete ML with complex,
stateful semantics, which works well for the implementation of theorem provers. Cogent is
a restricted language of total functions with intentionally simple, pure semantics that are
easy to reason about equationally. CakeML is great for application code; Cogent is great for
systems code, especially layered systems code with minimal sharing such as the control
code of file systems or network protocol stacks. Cogent is not designed for systems code
with closely-coupled, cross-cutting sharing, such as microkernels.
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The main restrictions of Cogent are the (purposeful) lack of built-in iteration or recursion,
and its uniqueness type system. The former ensures totality, which is important for both
systems code correctness as well as for a simple shallow representation in higher-order logic.
The latter is important for safe memory management and for enabling a transition from
an imperative C-style semantics, suitable for code generation, to a functional semantics,
suitable for equational reasoning and verification.

The lack of recursion in Cogent is not much of a problem in practice, given the target
domain, but iteration over finite structures is of course necessary. This is where Cogent’s
integrated foreign function interface (FFI) comes in: engineers can provide their own verified
data types and iterator interfaces in C and use them seamlessly in Cogent, including in
formal reasoning. Our framework guarantees that the verification of combined C-Cogent
code bases has no room for unsoundness.

To evaluate the suitability of the framework, we performed two major case studies and
implemented two full-scale Linux file systems (Amani et al., 2016)—the standard Linux
ext2 and the BilbyFs Flash file system (Keller et al., 2013) and prove two core functional
correctness properties of BilbyFs. These file systems were competitive in performance with
their C counterparts. This illustrates that Cogent is suitable both for implementation and
proofs, dramatically reducing the cost of verifying correctness of practical file systems.
These case studies are beneficial in their own right, as file systems constitute the second
largest proportion of OS code, and have among the highest density of faults (Palix et al.,
2011a). The benefits of this language-based approach for file system verification were
conjectured by Keller et al. (2013) and are confirmed by our work.

Cogent is restricted, but it is not specific to the file systems domain. This leads us to
believe that our language-based approach for simplifying verification will extend in the near
future to other domains, either with Cogent directly, or with languages that make different
trade-offs suitable for different types of software. Our main contribution is the framework
for significantly reducing the cost of formal verification for important classes of systems
code, using this language-based approach for automatically co-generating code and proofs.

This paper is the consolidation of a long research programme consisting of several
conference papers and a PhD thesis (O’Connor, 2019). Specifically, this paper presents:

• The Cogent language (§2), its certifying compiler and static semantics (§3). The
version of the type system featured in this paper includes a new subtyping feature
that was not present in its initial presentation (O’Connor et al., 2016). We present our
formalisation of this feature in Section 3 and discuss its impact in Section 5.

• The formal semantics of Cogent, as well as a machine-checked proof for switching
from imperative update semantics to functional value semantics for a full-featured
functional language, justified by uniqueness types (§4). We build upon well-known
theoretical results about linear types, accounting for pointers and heap allocation. We
also formally specify the assumptions required for C code imported via the FFI to
maintain the guarantees of the uniqueness type system and the overall refinement
certificate. This work was originally presented by O’Connor et al. (2016).

• The top-level compiler certificate, and the verification stages that make up the com-
piler correctness theorem (§5), including automated refinement calculi, formally
verified type checking, A-normalisation, and monomorphisation. The final stage
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4 Cogent: Uniqueness Types and Certifying Compilation

connecting Cogent and C code relies on a sophisticated refinement calculus, which is
summarised in Section 5 with more technical details available from Rizkallah et al.
(2016).

The implementation and verification of our case study file systems are discussed in detail in
other work (Amani et al., 2016; Amani, 2016), and briefly summarised here. These case
studies demonstrate Cogent’s suitability for systems programming, as well as its potential
to reduce the cost of functional correctness verification for real world systems.

2 Cogent

Before we discuss the formalisation of the static and dynamic semantics, and the verification
of Cogent software, let us first examine Cogent as a programming language. In this section,
we will give a short tutorial on Cogent, and briefly discuss the experience of writing systems
software in Cogent with reference to our two case studies.

Cogent is a functional language, with syntax resembling ML or Haskell:

add : (U32, U32)→ U32

add (x, y) = x + y

Arithmetic operations (e.g. +) are overloaded to be used on any numeric type (e.g. U8),
as long as the arguments both have the same numeric type. Cogent does not presently
support closures, so partial application via currying is also not common. As a consequence,
multi-parameter functions typically take tuples of their arguments.

Cogent supports conditionals, non-recursive let-bindings, and pattern matching. The
syntax of the latter is more lightweight than in Haskell or ML, because pattern matching is
used in Cogent for error-handling situations that would make use of exceptions in Haskell
or ML. Also unlike those languages, our patterns must also be exhaustive. Omitting a case
is not just a warning but a compile error. To match on an expression, a series of vertically-
aligned pipe characters (|) are placed after the expression, one for each case, rendered in
this paper as a solid vertical line.

Consider the following function add′, which again adds to unsigned 32-bit numbers, but
this time using pattern matching to check for and handle overflow:

add′ : (U32, U32)→ U32

add′ (x, y) =
let out = x + y
in out < x ‖ out < y

True→ 0
False⇒ out

The programmer can convey optimisation information to the underlying C compiler to
determine the likelihood of each branch by choosing different arrow symbols,→ (->) and
⇒ (=>) in the example, for normal and likely branches respectively.
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2.1 Variant types

Known in other languages as a tagged union or a sum type, a variant type describes values
that may be one of several types, disambiguated by a tag or constructor. For example,
a value of type 〈Failure U16 | Success U8〉 may contain either an eight-bit or sixteen-bit
unsigned integer, depending on which constructor (Success or Failure) is used.

Using the unit type (written ()), the type with a single trivial inhabitant (also written ()),
we can also use variant types to construct the familiar Option or Maybe types from ML or
Haskell:

type Option a = 〈None () | Some a〉

Here we have used the syntax for type synonyms in Cogent. While Option U8 is easier for
humans to write, the Cogent type system makes absolutely no distinction between Option
U8 and 〈None () | Some U8〉.

A variant type may include any number of constructors:

type CarState = 〈Drive U32 | Neutral () | Reverse U32〉

Variant types are deconstructed via pattern matching, and constructed by simply typing a
constructor name followed by its parameter. Constructor names are required to begin with a
capital letter, so that they can be disambiguated from variables and functions.

To ease implementation, compatibility with Isabelle, and to avoid costly backtracking,
we require that the pattern for a constructor’s argument be irrefutable (i.e. a pattern like
(Some (Some v)) is not allowed). An irrefutable pattern will always successfully match
against any well-typed value.

2.2 Subtyping and variant types

Our requirement that pattern matching may not fail could, with a simplistic type system,
lead to a significant amount of dead code. For example, the caller of the accelerate function
has to handle the case for the Neutral constructor, despite the fact that this case will never
be executed.

accelerate : (CarState, U32)→ CarState
accelerate (st, δ ) =

st
Drive vel→ Drive (vel + δ )
Neutral ()→ Drive δ

Reverse vel→ Reverse (vel + δ )

One simple way to solve this problem is to have a version of CarState without the Neutral
constructor:

type CarState′ = 〈Drive U32 | Reverse U32〉

We can then use this to give the above function a more precise type:

accelerate : (CarState, U32)→ CarState′
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6 Cogent: Uniqueness Types and Certifying Compilation

While this would type-check, the representation of CarState′ is completely independent of
CarState. This means that, even though a trivial injection exists from CarState′ to CarState,
any function that makes use of CarState cannot accept a CarState′ without a potentially
expensive copy.

We address this problem by allowing the programmer to specify that certain constructors
of a variant type are statically known not to be present, using the take keyword:

accelerate : (CarState, U32)→ CarState take Neutral

Unlike CarState′, the type CarState take Neutral has the same run-time representation as
CarState, and thus can be trivially coerced into the broader type. Indeed, the type checker
will automatically perform such coercions via subtyping.

Such additional static information also becomes useful when default cases are used in
pattern matching, for example:

bounce : CarState→ CarState take Drive
bounce

Drive vel→ Reverse vel
st→ st

Note that the local variable st here is of type CarState take Drive because the Drive
constructor has already been matched.

2.3 Abstract types and functions

By omitting the implementations of functions and type definitions, we declare them to
be abstract. Abstract types and functions are defined outside of Cogent. Typically, an
implementation is provided in C. The Cogent compiler includes powerful infrastructure for
compiling C implementations along with Cogent code, including the embedding of Cogent
types and expressions inside C code using quasi-quotation.

type Buffer

poke : (Buffer, U32, U8)→ Buffer
Outwardly, the interface of this Buffer type seems purely functional, however Cogent
assumes by default that all abstract types are linear. This means that any variable of type
Buffer, or any compound type such as a variant that could potentially contain a Buffer, must
be used exactly once. This scheme of uniqueness types ensures that there is only one active
reference to a given Buffer object at any given time. Therefore, the C implementation of
poke is free to destructively update the provided Buffer without contradicting the purely
functional semantics of Cogent.

hello : Buffer→ Buffer
hello buf =

let buf = poke (buf , 0, ‘H’)
and buf = poke (buf , 1, ‘e’)
and buf = poke (buf , 2, ‘l’)
and buf = poke (buf , 3, ‘l’)
and buf = poke (buf , 4, ‘o’)
in buf
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In the above example, while it would appear that many intermediate buffers are created, the
real implementation is merely a series of destructive updates to the same buffer.

2.4 Suspending uniqueness

When we are only reading from a data structure, uniqueness types complicate a program
unnecessarily, as the structure would have to be threaded through the program. For example,
a simple peek function to read from a buffer would, if Buffer were linear, have to have this
cumbersome type:

peek′ : (Buffer, U32)→ 〈Err Buffer | Ok (U8, Buffer)〉

The ! type operator helps to avoid this problem. This operator converts any linear, writable
type to a read-only type that can be freely shared or discarded. This is analogous to a shared
reference in the type system of Rust. A function that takes a value of type Buffer! is free
to read from the buffer, but is unable to write to it.

peek′ : (Buffer!, U32)→ 〈Err () | Ok U8〉

A value of type Buffer can be temporarily converted to a Buffer! using the expression-level !
construct. By placing a ! followed by a variable name after any let binding, match scrutinee
or if condition, the variable will be made temporarily read-only for the duration of that
expression.

For example, a function that writes a character to the address specified at the beginning
of a buffer combines both read-only and writable uses of the same buffer:

writeChar : (U8, Buffer)→ 〈Err Buffer | Ok Buffer〉
writeChar (c, buf ) =

peek′ (buf , 0) !buf
Ok i⇒ Ok (poke (buf , i, c))
Err ()→ Err buf

Here the use of the ! post-fix on the third line allows the buf variable to be used both in a
read-only way as an argument to peek′ and in a writable way as an argument to poke.

To ensure that read-only references are never simultaneously live with writable references,
we require that any such !-annotated expression must not contain any use of the ! operator
in its type. This restriction prevents types with the ! operator from escaping the scope in
which they are used, which is necessary to be able to reason equationally about Cogent
programs and to preserve the refinement theorem connecting the two semantics.

2.5 Higher-order functions

As Cogent does not support recursion, iteration is expressed through the use of abstract
higher-order functions, providing basic functional traversal combinators such as map and
fold for abstract types. For example, the Buffer type described above could have a map

function like:

map : (U8→ U8, Buffer)→ Buffer
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Here our map function is able to destructively overwrite the buffer with the results of the
function applied to each byte.

While Cogent does support higher-order functions (functions that accept functions as
arguments or return functions), it does not yet support nested lambda abstractions or closures,
as these can require allocation if they capture variables. Thus, to invoke this map function,
a separate top-level function must be defined for its argument.

2.6 Polymorphism

Cogent also supports parametric polymorphism. Our compiler generates multiple specialised
C implementations from a polymorphic C template, one for each concrete instantiation used
in the Cogent code.

Polymorphic functions can be instantiated to concrete types using square brackets. This
type application syntax is not always necessary — the type checker can often infer the
omitted types.

foldBuf : ∀a. (Buffer!,(U8,a)→ a, a)→ a

sumBuf : Buffer!→ U32

sumBuf buf = foldBuf[U32] (buf , sumHelper, 0)

sumHelper : (U8, U32)→ U32

sumHelper (x, y) = (upcast x) + y

As in ML, polymorphic functions are not first class — we only allow polymorphic definitions
on the top-level. Variables of polymorphic type are by default treated as linear — they must
be used exactly once — this allows the polymorphic type variable to be instantiated to any
type, shareable or not. Additional constraints can be placed on the type variable (before the
⇒ symbol, as in Haskell) to restrict the possible instantiations to those that can be shared:

dup : ∀a. (Share a)⇒ a→ (a, a)
dup a = (a, a)

In addition to Share constraints, we also allow Drop constraints, which require instantia-
tions to be discardable without being used, as well as Escape constraints, which require
instantiations to be safe to return from a !-annotated expression. Multiple constraints can be
specified as follows:

dupOrDrop : ∀a. (Drop a, Share a)⇒ (Bool, a)→ 〈Drop () | Dup (a, a)〉
dupOrDrop (b, a) = if b then Dup (a, a) else Drop

Abstract types may be given type parameters also, such as in the Array type given below.
As with abstract functions, this will correspond to a family of automatically generated C
types for each concrete type used in the Cogent code. The type-level ! operator can also be
applied to type variables, as shown in the abstract fold function below, for abstract arrays:

type Array a

fold : ((Array a)!, (a!, b)→ b, b)→ b
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type Heap

type Bag = {count : U32, sum : U32}

newBag : Heap→ 〈Failure Heap | Success (Bag, Heap)〉

freeBag : (Heap, Bag)→ Heap

addToBag : (U32, Bag)→ Bag
addToBag (x, b {count = c, sum = s}) =

b {count = c + 1, sum = s + x}

averageBag : Bag!→ 〈EmptyBag | Success U32〉
averageBag (b {count, sum}) =

if count == 0 then EmptyBag else Success (sum / count)

type List a

reduce : ∀a b. (List a!, (a!, b)→ b, b)→ b

average : (Heap, List U32!)→ (Heap, U32)
average (h, ls) =

newBag h
Success (bag, h′)→ let bag′ = reduce (ls, addToBag, bag)

in averageBag bag′ !bag′

Success n→ (freeBag (h′, bag′), n)
EmptyBag→ (freeBag (h′, bag′), 0)

Failure h′→ (h′, 0)

Fig. 1. Average using a Bag of numbers

2.7 Records

Cogent also supports records, which may be heap-allocated (and thus linear) or stack-
allocated. Like variants, certain fields of a record can be statically marked unavailable in a
type using the take keyword. We describe our record system in more detail in Section 3.

Figure 1 contains an example of a complete Cogent program, including the use of records.
Assuming an abstract List data structure with a reduce function (which aggregates a List
using a given aggregation function and identity element), the function average computes
the average of a list of 32-bit unsigned integers. It accomplishes this by storing the running
total and count in a heap-allocated data structure called a Bag. We define the Bag as a
heap-allocated record containing two 32-bit unsigned integers, and introduce allocation
and free functions for Bags. The newBag function returns a variant, indicating that either
a bag and a new heap will be returned in the case of Success, or, in the case of allocation
Failure, no new bag will be returned. The addToBag function demonstrates the use of
pattern-matching to destructure the heap-allocated record to gain access to its fields, and
update it with new values for each. The averageBag function returns, if possible, the average
of the numbers added to the Bag. The input type Bag! indicates that the input is a read-only,
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freely shareable view of a Bag. This view of the Bag is made with the ! notation in the
average function, which creates a Bag with newBag, pattern matches on the result, and, if
allocation was successful, adds every number in the given list to it, and returns their average.

2.8 Cogent for systems programming

In our previous work, we conducted a case study into the implementation and verification
of software systems written in Cogent (Amani et al., 2016). Two file systems were imple-
mented by systems programmers who were not Cogent developers but were experienced
in functional programming. The first is an almost feature-complete implementation of the
ext2 revision 1 file system, passing the POSIX File System Test Suite (ntfs3g, n.d.) for all
implemented features. Its performance is comparable to the implementation of ext2 that is
included as part of the Linux Kernel. The second is a flash file system BilbyFs, designed
from the ground up to be easy to verify (Keller et al., 2013).

The Cogent implementations of ext2 and BilbyFs share a common C library of abstract
data types that includes fixed-length arrays for words and structures, simple iterators for
implementing loops, and Cogent stubs for accessing a range of Linux APIs such as the
buffer cache and its native red-black tree implementation. The interfaces exposed by this
library are carefully designed to ensure compatibility with Cogent’s uniqueness type system.

The ext2 implementation demonstrates Cogent’s ability to enable re-engineering of
existing file systems, and thus its potential to provide an incremental upgrade path to
increase the reliability of existing systems code. BilbyFs, on the other hand, provides a
glimpse of how to design and engineer new file systems that are not only performant,
but amenable to being verified as correct against a high-level specification of file system
correctness.

2.9 Experience with Cogent

In order to shed light on Cogent’s usability as a systems programming language, we briefly
describe the experience of developing the ext2 and BilbyFs implementations. In both cases,
a manually-written C implementation was used as a starting point: In the case of ext2, this
was Linux’s ext2fs implementation; for BilbyFs, it was our own implementation of the file
system that was used to prototype its design (Keller et al., 2013). The two file systems were
written by separate developers, but in the case of BilbyFs, the same developer wrote both
the C and Cogent implementations. Both developers were already familiar with functional
programming.

Naturally, Cogent itself evolved in the process — at the time of the initial implementations,
the language had uniqueness types, but no polymorphism nor higher-order functions. The
developers jointly wrote the shared C library, and the ext2 developer spent considerable
time assisting with Cogent tool-chain design and development. Unfortunately, this makes
it infeasible to give accurate effort estimates for how long each file system would have
taken to write had the language and tool-chain been stable, as they are now. Having to adopt
Cogent’s functional style was not a major barrier for either developer; indeed one reported
that Cogent’s use of let-expressions for sequencing and pattern matching for error handling
aided his understanding of the potential control paths of his code. While both had to get used



461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

Journal of Functional Programming 11

Original C Cogent Generated C
ext2 4, 077 2, 789 12, 066

BilbyFs 4, 021 4, 643 18, 182
(Generated line counts include C library.)

Table 1. Implementation source lines of code, measured with sloccount.

to the uniqueness type system, both reported that this happened quite quickly and that the
type system generally did not impose much of a burden when writing ordinary Cogent code.
Both developers noted the usefulness of Cogent’s uniqueness types for tracking memory
allocation and catching memory leaks. Uniqueness types were reported to cause some
friction when having to design the shared C library interfaces to respect the constraints of
the type system.

Both developers reported that the strong type system provided by Cogent decreased the
time they usually would have spent debugging, which is to be expected. Of course, logic
bugs which cannot be captured by the static semantics could remain in Cogent code. Such
bugs are harder to debug than in a comparable C implementation, because of the lack of
debugging tool support for Cogent. The developers, however, found comparatively few bugs
in the Cogent code; the vast majority of bugs were in the C code that accompanies it.

Table 1 shows the source code sizes of the two systems. For the original ext2 system (i.e.
the Linux code) we exclude code that implements features that the Cogent implementation
does not support. We can see that for the ext2 system, the Cogent implementation is about
two-thirds the size of C.

BilbyFs’ Cogent implementation is larger than ext2’s, relative to their respective original
C implementations. This is because BilbyFs makes heavier use of the various abstract data
types available in the C library, some of which present fairly verbose client interfaces in
their current implementation.

The blowout in size of the generated C code is mostly a result of normalisation steps
applied by the Cogent compiler, most of which is easily optimised away by the C compiler.
The performance of these file systems is generally competitive with their C counter-
parts (Amani et al., 2016), however we found that gcc’s optimiser does an unsatisfactory
job of optimising operations on large structs, resulting in some unnecessary copy operations
left in the code. Our new subtyping feature helps to reduce the amount of copying in the
generated C code, however more work needs to be done to generate C code that is more in
line with the expectations of the C optimiser.

3 Static semantics

The central feature of the Cogent language is its system of uniqueness types (de Vries et al.,
2008). It is this feature that allows it to be interpreted simultaneously (and equivalently) as
both purely functional and fully imperative – combining destructive updates with equational
reasoning. This semantic coincidence, discussed in Section 4, is the foundation of the overall
refinement certificate of Section 5. In this section, we will formally describe the type system
for a minimal version of Cogent. The process of type inference and elaboration from the
surface level language to this core language is detailed by O’Connor (2019), and is outside
the scope of this paper.
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expressions e ::= x | `
| e1 o e2 (primops)
| e1 e2 | f [⇀τi] (applications)
| let x = e1 in e2

| if e1 then e2 else e3

| e :: τ (type signatures)
| · · ·

types τ, ρ ::= a | τ1→ τ2 | T | · · ·
prim. types T ::= U8 | U16 | U32 | U64 | Bool
operators o ::= + | ≤ | 6= | ∧ | · · ·
literals ` ::= True | False | N
constraints C ::= τ1 v τ2 (subtyping)

| τ Share | τ Drop (contract/weaken)
contexts Γ ::= x : τ

axiom sets A ::= ai Drop, b j Share
polytypes π ::= ∀⇀a. C⇒ τ

type vars a, b, c
variables x, y, z

⇀Harpoons indicate a list of zero or more.
Overlines indicate a set, i.e. order is not important.

(Continued in Figures 6, 9, and 12)

Fig. 2. Syntax of the basic fragment of Cogent

A ` Γ Γ1 � Γ2

A ` Γ Γ1 � Γ2

A ` x : τ, Γ x : τ, Γ1 � Γ2
L

A ` Γ Γ1 � Γ2

A ` x : τ, Γ Γ1 � x : τ, Γ2
R

A ` ε ε � ε

A ` Γ Γ1 � Γ2 A ` τ Share
A ` x : τ, Γ x : τ, Γ1 � x : τ, Γ2

C

A ` Γ
weak
 Γ

′

A ` Γ
weak
 Γ

′

A ` x : τ, Γ
weak
 x : τ, Γ

′ K
A ` Γ

weak
 Γ

′ A ` τ Drop

A ` x : τ, Γ
weak
 Γ

′ D

A ` ε
weak
 ε

Fig. 3. Context relations
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For Cogent, typical ML-style type systems are simultaneously too rich, as they support
local polymorphic bindings which Cogent disallows; and somewhat deficient, as they
assume that the theory includes a structural context. That is, they accept the following
structural laws implicitly:

Γ1Γ2 ` e : τ

Γ2Γ1 ` e : τ
EXCHANGE

Γ1 ` e : τ

Γ1Γ2 ` e : τ
WEAKENING

Γ1Γ1Γ2 ` e : τ

Γ1Γ2 ` e : τ
CONTRACTION

These laws, which respectively state that we may swap, drop, or duplicate assumptions
whenever necessary, allow the typing context to be treated as a set. Indeed, in many such
calculi the rule for variables is presented as

(x : τ)∈ Γ

Γ ` x : τ
VAR

where the WEAKENING rule is implicitly used to discard unneeded assumptions, rather than
the more precise version of the rule:

x : τ ` x : τ
VAR

As Cogent makes use of a substructural type system, specifically uniqueness types, we
must be substantially more precise when dealing with contexts. We do not accept the rules
of CONTRACTION and WEAKENING universally. Admitting CONTRACTION for any type
would allow multiple references to a mutable object to be accessible at one time, thus
breaking the semantic correspondence Cogent enjoys. Admitting WEAKENING for any type
would allow resources to be discarded without being properly disposed.1 Rather than a set,
a context is now a multiset, where each assumption about a variable is viewed as a one-use
permission to type that variable.

Of course, not all types benefit from such linearity restrictions. For example, it would be
most inconvenient if one was forced to use a variable of type Bool exactly once. Thus, it
becomes beneficial to allow contraction and weakening for some types, but not others.

To cleanly accomplish this, we move the manipulation of contexts out of the structural
rules; instead reifying them as the explicit relations given in Figure 3. We define a context-
splitting operation, used for typing the branches of the abstract syntax tree, which, given
assumptions A about the linearity of polymorphic type variables, splits a context Γ into
two sub-contexts Γ1 and Γ2. Each assumption from Γ must be put into either Γ1 or Γ2. An
assumption may only be distributed into both sub-contexts if it is shareable, i.e. it contains
no unique references. We also define a weakening relation, used for typing the leaves of
the abstract syntax tree, which, under assumptions A, weakens a context Γ into a smaller
context Γ′, where each discarded assumption must have a discardable type. The specifics
of what makes a type shareable or discardable are encapsulated by the Share and Drop
judgements respectively, definitions of which are provided later in Figure 5. The fragment
of Cogent defined in Figure 2 contains only primitive types, however, which are all freely
shareable and discardable.

1 Although it is possible to statically insert destructor code as linear variables go out of scope, giving an affine
type system, this complicates implementation and is omitted for now.
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A; Γ ` e : τ

A ` Γ
weak
 x : τ

A; Γ ` x : τ
VAR

A; Γ ` e : τ

A; Γ ` e :: τ : τ
SIG

A ` Γ Γ1 � Γ2

A; Γ1 ` e1 : τ1→ τ2 A; Γ2 ` e2 : τ1

A; Γ ` e1 e2 : τ2
APP

A ` Γ
weak
 ε typeOf( f ) = ∀⇀ai. C⇒ τ

A `C
[
⇀τi/⇀ai

]
A; Γ ` f [⇀τi] : τ

[
⇀τi/⇀ai

] TAPP

A ` Γ Γ1 � Γ2

A; Γ1 ` e1 : τ1 A; x : τ2, Γ2 ` e2 : τ2

A; Γ ` let x = e1 in e2 : τ2
LET

A ` Γ Γ1 � Γ2 A; Γ1 ` e1 : Bool
A; Γ2 ` e2 : τ A; Γ2 ` e3 : τ

A; Γ ` if e1 then e2 else e3 : τ
IF

A ` Γ Γ1 � Γ2

T 6= Bool o ∈ {+,−,×,÷, . . . }
A; Γ1 ` e1 : T A; Γ2 ` e2 : T

A; Γ ` e1 o e2 : T
IOP

A ` Γ Γ1 � Γ2

T 6= Bool o ∈ {=, 6=, <, >,≤,≥}
A; Γ1 ` e1 : T A; Γ2 ` e2 : T

A; Γ ` e1 o e2 : Bool
COP

A ` Γ Γ1 � Γ2 o ∈ {∧,∨}
A; Γ1 ` e1 : Bool A; Γ2 ` e2 : Bool

A; Γ ` e1 o e2 : Bool
BOP

A ` Γ
weak
 ε `∈N ` < |T |

A; Γ ` ` : T
ILIT

A ` Γ
weak
 ε `∈ {True, False}

A; Γ ` ` : Bool
BLIT

(Continued in Figures 7, 11, and 13)

Fig. 4. Some basic typing rules

A `C

A ` τ v τ
REFL

C ∈ A

A `C
ASM

A ` ρ1 v τ1 A ` τ2 v ρ2

A ` (τ1→ τ2)v (ρ1→ ρ2)
FUN

A ` τ1→ τ2 Share
FUN-S

A ` τ1→ τ2 Drop
FUN-D

A ` T Share
PRIM-S

A ` T Drop
PRIM-D

(Continued in Figures 8, 10, and 14)

Fig. 5. Constraint semantics
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Figure 4 contains the typing rules for this elementary fragment of Cogent: just variables
(VAR), literals (ILIT and BLIT), binary operators (IOP, BOP and COP), conditionals (IF),
and local monomorphic bindings (LET). For simplicity, Cogent does not currently include
lambda abstractions or local polymorphism. Thus, all function definitions or polymorphic
definitions must occur on the top-level. We assume the existence of a global environment
typeOf (·) that includes the complete types of all top-level definitions so far. The rule TAPP

allows these top-level polymorphic definitions to be used and instantiated.

3.1 Variant types

Variants in Cogent are an anonymous n-ary sum type consisting of a set of constructor
names paired with types. The syntax for variants is given in Figure 6. Users may construct a
value of variant type by invoking a constructor, as in

K 42 : 〈K◦ U8, J• Bool〉

We also tag each constructor with a usage tag, either • or ◦, for use in exhaustivity checking
for pattern matching. These usage tags are how we represent the type-level take annotations
on variant types seen in Section 2 in our core language. A constructor is marked with •
if it is statically known that this constructor is not the one actually used to construct the
value. In this way, we can ensure exhaustivity by only permitting irrefutable patterns when
every other constructor is marked with •. Unfortunately, this necessitates the addition of
subtyping to the type system. Take this simple example:

if (condition) then
K 42 : 〈K◦ U8, J• Bool〉

else
J True : 〈K• U8, J◦ Bool〉

: 〈K◦ U8, J◦ Bool〉

Note that the types for the two branches of the conditional differ only in the static knowledge
we have of the constructor. The two types have the same run-time representation, so it is
safe to discard information in order to type the expression. Fortunately, this subtyping is
fairly well behaved, forming a complete lattice for each variant type:

〈K◦ U8, J◦ Bool〉

〈K• U8, J◦ Bool〉

77

〈K◦ U8, J• Bool〉

gg

〈K• U8, J• Bool〉

gg 77

This subtyping feature is new to Cogent when compared to previously published
work (O’Connor et al., 2016), and significantly simplified the shallow embeddings produced
by the compiler. The impact of this feature is discussed in more detail in Section 5.6.
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expressions e ::= · · · | K e (variant constructor)
| case e1 of K x. e2 else y. e3 (pattern matching)
| case e1 of K x. e2 (irrefutable match)

types τ, ρ ::= · · · | 〈Ku τ〉 (variant types)
usage tags u ::= ◦ (unused)

| • (used)
constructors K

Fig. 6. Syntax for variants

A; Γ ` e : τ

· · ·
A; Γ ` e : τ

′ A ` τ
′ v τ

A; Γ ` e : τ
SUB

A; Γ ` e : τ

A; Γ `K e : 〈K◦ τ, K•i τi〉
VCON

A ` Γ Γ1 � Γ2 A; Γ1 ` e1 : 〈K◦ ρ, Ku
i τi〉

A; x : ρ, Γ2 ` e2 : τ A; y : 〈K• ρ, Ku
i τi〉, Γ2 ` e3 : τ

A; Γ ` case e1 of K x. e2 else y. e3 : τ
CASE

A ` Γ Γ1 � Γ2 A; Γ1 ` e1 : 〈K◦ ρ, K•i τi〉
A; x : ρ, Γ2 ` e2 : τ

A; Γ ` case e1 of K x. e2 : τ
IRREF

Fig. 7. Typing Rules for variants

Typing rules for all expressions dealing with variants are given in Figure 7.
Pattern matching on variants is accomplished in our core language with two primitive

forms (case expressions). The first is for a refutable match (i.e. when the pattern in question
is not statically known to match the value), and it includes a default alternative in case the
match fails. The second is for irrefutable matches, and is only well-typed when the pattern
match can be shown statically to succeed.

Typically, a long chain of patterns is desugared into a nested chain of refutable case
expressions, with a final irrefutable match when the chain of patterns is exhaustive:

case x of
K1 a→ e1

K2 b→ e2

K3 c→ e3

becomes

case x of
K1 a. e1

x′. case x′ of
K2 b. e2

x′′. case x′′ of
K3 c. e3
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τ ↪→ τ

〈K◦ τ, Ku
i ρi〉 take K ↪→ 〈K• τ, Ku

i ρi〉

A `C

· · ·
for each i: A ` τi v ρi for each j: A ` τ j v ρ j

A ` 〈K•i τi, Ku
j τ j〉 v 〈K◦i ρi, Ku

j ρ j〉
VARSUB

for each i: A ` τi Share
A ` 〈K◦i τi, K•j ρ j〉 Share

VARSHARE

for each i: A ` τi Drop
A ` 〈K◦i τi, K•j ρ j〉 Drop

VARDROP

Fig. 8. Constraint semantics for variants

types τ, ρ ::= · · · | A ⇀τ s (abstract types)
| a! (observer types)
| bang(τ) (observation operator)

constraints C ::= · · · | τ Escape (escape analysis)
expressions e ::= · · · | let! (yi) x = e1 in e2 (observation)
sigils s ::= w© (writable)

| r© (read-only)
| u© (unboxed)

Fig. 9. Syntax for abstract and observer types

3.2 Abstract and observer types

An abstract type is a type whose full definition must be provided in imported C code. Values
of abstract type must be constructed (and, if necessary, destroyed) by imported C functions,
and all operations on them must also be defined in C. Nevertheless, they must be explicitly
declared when used in Cogent code. An abstract type declaration consists of a type name
and a series of parameters, without any definition provided.

In our core type system, an abstract type is represented as A ⇀τ s, where A is the type name,
⇀τ is the list of type parameters, and s is a sigil, which determines which constraints are
satisfied by the abstract type. There are three forms of sigil:

• Read-only sigils ( r©), indicating that the value is represented as a pointer that can be
freely shared or dropped, as the value cannot be written to during the lifetime of this
pointer.

• Writable sigils ( w©), indicating that the value is represented as a pointer, and must be
linear, as the value may be destructively updated.
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τ ↪→ τ

bang(〈Ku
i ρi〉) ↪→ 〈Ku

i bang(ρi)〉
bang(τ→ ρ) ↪→ τ→ ρ

bang(A ⇀τi w©) ↪→ A
⇀bang(τi) r©

bang(A ⇀τi r©) ↪→ A
⇀bang(τi) r©

bang(A ⇀τi u©) ↪→ A
⇀bang(τi) u©

bang(a) ↪→ a!
bang(a!) ↪→ a!
bang(T ) ↪→ T

A `C

· · ·
A `C[τ] τ ↪→ ρ

A `C[ρ]
NORM

s 6= w©
for each i: A ` τi Drop

A ` A ⇀τi s Drop
ABSDROP

s 6= w©
for each i: A ` τi Share

A ` A ⇀τi s Share
ABSSHARE

s 6= r©
for each i: A ` τi Escape

A ` A ⇀τi s Escape
ABSESC

A ` τ→ ρ Escape
FUNESC

A ` T Escape
PRIMESC

for each i: A ` ρi Escape
A ` 〈Ku

i ρi〉 Escape
SUMESC

A ` a! Drop
OBSDROP

A ` a! Share
OBSSHARE

Fig. 10. Constraint semantics for abstract and observer types

• Unboxed sigils ( u©), indicating that the value is not represented as a pointer at all,2

and may be freely shared or dropped.

Note that, according to the constraint semantics given in Figure 10, an abstract type can
only satisfy the Share and Drop constraints if the sigil is not w©ritable. Thus these writable
abstract types are the first of the types we have introduced to be linear.

3.2.1 Observation and escape analysis

In our core language, the expression-level ! construct that allows linear values to be
temporarily shared within a limited scope is desugared into the syntactic form let! (yi) x =
e1 in e2. This form is similar to a let expression, except that the variables yi : ρi are
temporarily retyped during the typing of e1 as yi : bang(ρi), where bang(·) is a type
operator that changes all linear w©ritable sigils in a type to shareable r©ead-only ones. The

2 Or, as a pointer to which no w©ritable pointer will ever exist.
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A; Γ ` e : τ

· · ·
A ` Γ Γ1 � Γ2

A; yi : bang(ρi), Γ1 ` e1 : τ
′ A ` τ

′ Escape A; x : τ
′, yi : ρi, Γ2 ` e2 : τ

A; yi : ρi, Γ ` let! (yi) x = e1 in e2 : τ
LET!

Fig. 11. Typing rules for let!

typing rules for let! expressions are given in Figure 11. We provide normalisation rules
for this type operator, starting in Figure 10: Written τ ↪→ τ ′, these rules describe how types
may be rewritten to eliminate the type operators. In the compiler implementation, this
normalisation is also used to handle features such as type synonyms.

To handle polymorphic type variables, which may be instantiated to types containing
w©ritable sigils, we introduce another kind of polymorphic type variable, written a!, which
becomes bang(τ) under the application of the substitution [τ/a]. Furthermore, for a type
variable a, we define bang(a) 7→ a!. In this way, we can guarantee that bang(τ) is always
non-linear regardless of τ , as no w©ritable sigils will remain in the type. This technique is
originally due to Odersky (1992).

Theorem 3.1 (bang non linear). For all types τ and assumptions A, if no unification
variables occur in τ we have A ` bang(τ) Share and A ` bang(τ) Drop.

Proof By structural induction on τ . �

The dynamic uniqueness property, introduced informally in Section 2 and formally in
Section 4, can be stated as:

No w©ritable pointer can be aliased by any other pointer. A r©ead-only pointer
may be aliased by any number of other r©ead-only pointers.

We prove in Section 4 that this property is maintained as a dynamic invariant as a conse-
quence of the static semantics (making w©ritable pointers linear). A naı̈ve implementation
of the let! feature, however, can easily lead to this invariant being violated:

let! (x) y = x in (x, y)

In this example, the freely shareable r©ead-only pointer x is bound to y, and thus aliases
the w©ritable pointer x in the returned tuple. Therefore, to maintain the invariant, we must
prevent the r©ead-only pointers available in a let! from escaping their scope. The first
formulation to include a let! feature is that of Wadler (1990), which imposes a type-based
safety check on the type of the binding in a let!, essentially requiring that the type of the
binding and the type of the temporarily non-linear variables have no components in common.
We adopt a slightly different approach which originated from Odersky (1992), although it
differs in presentation.

We introduce a new type constraint, written τ Escape, that states that τ can be safely
bound by a let! expression. Crucially, it does not hold if any r© sigils appear in the type.
This means that read-only pointers cannot be bound in a let! expression, but writable, linear
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types τ, ρ ::= · · · | {fui : τi} s (record types)
expressions e ::= · · · | ]{fi = ei} (unboxed allocation)

| take x {f= y}= e1 in e2 (record patterns)
| put e1.f= e2 (record updates)
| e1.f (record field read)

field names f

Fig. 12. Syntax for records

pointers and unboxed values can be bound without a type error. Figure 10 contains full
definitions for this Escape judgement.

Both methods, our own and that of Wadler (1990), are sound, type-based over-
approximations of escape analysis. Fruitful avenues for further research may be to
incorporate more sophisticated analysis techniques to improve the flexibility and pre-
dictability of this feature. One possible method may be the use of region types (Tofte &
Talpin, 1994) to track the provenance of pointer variables more precisely, which Rust uses
to great effect in its similar type system.

3.3 Record types

Lastly, we must formalise the typing rules for record types or products. The syntax for
record types is given in Figure 12. A record, written {fu

i : τi} s, consists of one or more
fields (fi). Due to the additional properties maintained by our type system, record types
in Cogent are structured slightly differently to more traditional programming languages.
Suppose we wish to access a particular field f of a record r. An expression like r.f would
be problematic, as this uses the variable r, so any non-f fields in r would need to satisfy
Drop. If this were the only way to access the fields of a record, any record with two linear
fields would be unusable.

If instead we imagine a pattern-matching expression that reintroduces the record as a new
variable name, like so:

let r′ {f= x}= r in · · ·

Then this violates the uniqueness property that our type system purports to maintain, as
the field f could be accessed from the resultant record r′ as well as by the new variable
x. To solve this problem, any field that is extracted via pattern matching is marked as
unavailable in the type of the resultant record, by changing the usage tag associated with
each of the extracted fields to be •. This pattern matching is desugared into one or more
take expressions, written take x {f= y}= e1 in e2. Note that the typing rules in Figure 13
requires that the field being taken is available (tagged with ◦), and ensures that the field
is no longer available in e2 (tagged with •). Conversely, record assignment expressions
are desugared into put expressions, of the form put e1.f= e2. The typing rule for this
expression ensures that the field being overwritten has already been extracted (•), and makes
the field available again in the resultant record (◦).



921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

Journal of Functional Programming 21

A; Γ ` e : τ

· · ·
A; Γ ` e : {f•i : τi, f

◦ : τ} s

A; Γ ` e.f : τ
MEMBER

A; Γ ` ei : τi

A; Γ ` ]{fi = ei} : {f◦i : τi} u©
STRUCT

A ` Γ Γ1 � Γ2

A; Γ1 ` e1 : {fui : τi, f
• : τ} s

s 6= r© A; Γ2 ` e2 : τ

A; Γ ` put e1.f= e2 : {fui : τi, f
◦ : τ} s

PUT

A ` Γ Γ1 � Γ2

A; Γ1 ` e1 : {fui : τi, f
◦ : ρ} s s 6= r©

A; x : {fui : τi, f
• : ρ} s, y : ρ, Γ2 ` e2 : τ

A; Γ ` take x {f= y}= e1 in e2 : τ
TAKE

A; Γ ` ei : τi

A ` Γ
weak
 ε

A; Γ ` ε
EMPTY

A ` Γ Γ1 � Γ2 A; Γ ` e : τ A; Γ ` ei : τi

A; Γ ` e : τ, ei : τi
CONS

Fig. 13. Typing rules for records

τ ↪→ τ

· · ·
bang({fui : τi} w©) ↪→ {fui : bang(τi)} r©
bang({fui : τi} r©) ↪→ {fui : bang(τi)} r©
bang({fui : τi} u©) ↪→ {fui : bang(τi)} u©

A `C

· · ·
for each i: A ` τi Drop for each i: A ` τi v ρi for each j: A ` τ j v ρ j

A ` {f◦i : τi, fuj : τ j} sv {f•i : ρi, fuj : ρ j} s
RECSUB

s 6= w© for each i: A ` τi Share
A ` {f◦i : τi, f•j : τ j} s Share

RECSHARE

s 6= w© for each i: A ` τi Drop
A ` {f◦i : τi, f•j : τ j} s Drop

RECDROP

s 6= r© for each i: A ` τi Escape
A ` {f◦i : τi, f•j : τ j} s Escape

RECESCAPE

Fig. 14. Constraint semantics for records
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Like abstract types, records may be stored on the heap and passed around by reference,
in which case we must track uniqueness of each pointer to the record. For this reason,
record types are tagged with a sigil s, which, much as with abstract types, allows records
to be declared read-only r©, where they are stored on the heap and passed by a read-only,
shareable pointer; writable w©, where they are stored on the heap and passed by a writable,
linear pointer; or unboxed u©, where they are typically represented on the stack or as a flat
structure. Tuples are desugared in our core language as unboxed record types with two
fields. As can be seen in Figure 14, the bang operator interacts with these sigils in much
the same way as with abstract types. The Share, Drop, and Escape constraints place the
same constraints on the sigils as with abstract types, with the added requirement that the
type of each available field also satisfies the constraint in question.

If we wish to put a new value into a field that is marked as available (◦) in the original
record, the typing rules seem to indicate that we would have to take the field out, discard
it, and put in a new value. To avoid having to explicitly take out every field we wish to
discard, we allow fields that satisfyDrop to be automatically discarded from a record via
subtyping — almost a dual of the subtyping relation used for variants:

{f•1 : U8, f•2 : Bool, f◦3 : Buf w©}

{f•1 : U8, f◦2 : Bool, f◦3 : Buf w©}

Bool Drop
55

{f◦1 : U8, f•2 : Bool, f◦3 : Buf w©}

U8 Drop
ii

{f◦1 : U8, f◦2 : Bool, f◦3 : Buf w©}
U8 Drop

ii

Bool Drop

55

3.4 Polymorphism

The polymorphism in Cogent is carefully restricted. As polymorphism is only permitted on
the top level functions in prenex position, we can statically determine all instantiations that
are needed for a polymorphic function, and can generate specialised functions at compile
time. Because all polymorphism is top-level, our typing rules can simply treat type variables
as concrete types. The assumptions A for the constraint semantics and typing rules indicate
which uniqueness constraints (of Share, Drop, and Escape) are satisfied by these type
variables.

We prove that instantiating polymorphic type variables does not make well-typed terms ill-
typed, nor does it make satisfiable type constraints unsatisfiable. These theorems are useful
for showing type preservation in Section 4, and for the correctness of the monomorphisation
phase of our refinement framework described in Section 5.

Theorem 3.2 (Instantiating Type Variables in Constraints).

Given a constraint that holds under assumptions A, A `C
and a substitution to type variables that satisfies A, ∧ ∀Ci ∈ A. ε ` σ(Ci)

then the substituted constraint also holds. ⇒ ε ` σ(C)
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Proof Straightforward rule induction on the assumption A `C. Wherever the rule ASM is
used, we refer to the second assumption to justify the validity of the substituted constraint.
Whenever observer type variables (a!) are substituted, we make use of Theorem 3.1. �

Theorem 3.3 (Instantiating Type Variables — instantiation).

Given a term typed under requirements A, A; Γ ` e : τ

and a substitution to type variables that satisfies A, ∧ ∀Ci ∈ A. ε ` σ(Ci)

then the substituted term is also well-typed. ⇒ ε; σ(Γ) ` σ(e) : σ(τ)

Proof Rule induction, using Theorem 3.2. �

3.5 Subtyping

Subtyping could be viewed as a partial order on types, as we have seen in our typing rules,
or as a partial lattice with greatest lowest bound (glb) u and least upper bound (lub) t
operations. These operations are partial as, for instance, (τ1, τ2)u (ρ1→ ρ2) is not defined.

Each of the two views of subtyping is convenient in different contexts. The order view is
more convenient for proofs, as it is a simple inductive relation on two types, whereas the
glb and lub operations are mutually inductive. The lattice view is more convenient for type
inference, as it provides a direct way to find common supertypes or subtypes (see O’Connor
(2019)).

To bridge the gap between these two interpretations, we have formalised both views of
subtyping in Isabelle/HOL, and proven the standard equivalences:

Theorem 3.4 (Equivalence of two subtyping notions).

The notions that τ is a subtype of ρ; A ` τ v ρ

that τ is the glb of ρ and τ; and ⇔ A ` τ u ρ = τ

that ρ is the lub of ρ and τ are all ⇔ A ` τ t ρ = ρ

equivalent.

4 Dynamic semantics

It has long been understood that linear and uniqueness type systems can be used to provide
a purely functional interface to mutable state and side-effects (Wadler, 1990). This intuition
follows from the uniqueness property mentioned in Section 2, that each live mutable object
is referenced by exactly one variable at a time: If a function has a reference to a mutable
object, no other references must exist. Therefore, destructive update is indistinguishable
from the traditional purely functional copy-update idiom, as no aliases exist to observe the
change.

Despite this result, many languages with uniqueness types, such as Rust (Rust, 2014)
or Vault (DeLine & Fähndrich, 2001), only make use of such type systems to reduce or
eliminate the need for run-time memory management, and to facilitate informal reasoning
about the provenance of pointers. The functional language Clean (Barendsen & Smetsers,
1993) makes use of uniqueness types to abstract over effects, but it still has need for a
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A ` τ u ρ = γ

τ ∈ {Bool, U8, U16, U32, U64}
A ` τ u τ = τ

PRIM-u
A ` τ1 t ρ1 = γ1 A ` τ2 u ρ2 = γ2

A ` (τ1→ τ2)u (ρ1→ ρ2) = (γ1→ γ2)
FUNCTION-u

A ` (τ1 u ρ1) = γ1 A ` (τ2 u ρ2) = γ2

A ` (τ1 × τ2)u (ρ1 × ρ2) = (γ1 × γ2)
TUPLE-u

A ` A τi u A τi = A τi
ABSTRACT-u

for each i: A ` τi u ρi = γi for each j: A ` τ j u ρ j = γ j for each k: A ` τk u ρk = γk

A ` 〈K•i τi, K◦j τ j, Ku
k τk〉 u 〈K◦i ρi, K•j τ j, Ku

k ρk〉= 〈K•i γi, K•j γ j, Ku
k γk〉

VARIANT-u

for each i: A ` τi u ρi = γi for each j: A ` τ j u ρ j = γ j for each k: A ` τk u ρk = γk

A ` {f◦i : τi, f•j : τ j, fuk : τk} su {f•i : ρi, f◦j : τ j, fuk : ρk} s = {f◦i : ρi, f◦j : τ j, fuk : ρk} s
RECORD-u

A ` τ t ρ = γ

τ ∈ {Bool, U8, U16, U32, U64}
A ` τ t τ = τ

PRIM-t
A ` τ1 u ρ1 = γ1 A ` τ2 t ρ2 = γ2

A ` (τ1→ τ2)t (ρ1→ ρ2) = (γ1→ γ2)
FUNCTION-t

A ` (τ1 t ρ1) = γ1 A ` (τ2 t ρ2) = γ2

A ` (τ1 × τ2)t (ρ1 × ρ2) = (γ1 × γ2)
TUPLE-t

A ` A τi t A τi = A τi
ABSTRACT-t

for each i: A ` τi t ρi = γi for each j: A ` τ j t ρ j = γ j for each k: A ` τk t ρk = γk

A ` 〈K•i τi, K◦j τ j, Ku
k τk〉 t 〈K◦i ρi, K•j τ j, Ku

k ρk〉= 〈K◦i γi, K◦j γ j, Ku
k γk〉

VARIANT-t

for each i: A ` τi Drop for each i: A ` τi t ρi = γi
for each j: A ` ρ j Drop for each j: A ` τ j t ρ j = γ j for each k: A ` τk t ρk = γk

A ` {f◦i : τi, f•j : τ j, fuk : τk} st {f•i : ρi, f◦j : τ j, fuk : ρk} s = {f•i : ρi, f•j : τ j, fuk : ρk} s
RECORD-t

Fig. 15. The rules of the subtyping relation viewed as a lattice

garbage collector, and it does not prove, on paper nor in a machine-checked proof script,
the semantic coincidence that results from the type system.

The proof of this semantic coincidence is more than just a curiosity for Cogent, as it
forms a key part of the compiler certificate used to show refinement from an Isabelle/HOL
shallow embedding of the Cogent code all the way to an efficient C implementation, the
details of which are discussed in Section 5.

Hofmann (2000) first formalised this intuition by providing both a set-theoretic denota-
tional semantics and a compilation to C for a functional language, and demonstrating that
these two semantics coincide in a pen-and-paper proof. The language in question, however,
was extremely minimal, and did not involve heap-allocated objects or pointers, merely
mutable stack-allocated integers.

In this respect, the machine-checked proof of semantic coincidence for Cogent represents
a significant advancement in the state of the art, as Cogent is a higher-order language with
full support for compound types and heap-allocated objects, necessitating a more intricate
formulation of the uniqueness property, outlined in Section 4.2. Cogent also integrates with
C code called via the foreign function interface, which necessitates a formal treatment of
the boundary between these languages. Specifically, we must characterise the obligations
the C code must meet in order to maintain our uniqueness invariant (see Section 4.2.4).

Each of the theorems presented in this section are formalised and machine-checked in
Isabelle/HOL, as they form a vital part of our overall refinement certificate. Each theorem
includes the corresponding name (written in typewriter typeface) of the equivalent
theorem in Isabelle/HOL formalisation of Cogent (n.d.).



1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

Journal of Functional Programming 25

4.1 A Tale of Two Semantics

As previously mentioned, we assign two dynamic semantics to Cogent terms. The first is
the functional value semantics, which is suitable for equational reasoning, and can be easily
connected to an Isabelle/HOL shallow embedding. The second, the update semantics, is
more imperative in flavour, where values may take the form of pointers to a mutable store.

Figure 16 describes the syntax of values and their environments for our two dynamic
semantics. Both semantics definitions are parameterised by a set of abstract values, aV

and aU respectively, which denote values of abstract types defined in C. They are also
parameterised by functional abstractions of any C foreign functions used in the Cogent code,
manually written and supplied by the programmer. For an abstract function f , the value
semantics abstraction [[ f ]]V must be a pure function, and the update semantics abstraction
[[ f ]]U must be a refinement of [[ f ]]V which respects the invariants of our type system. The
exact proof obligations placed on these functions are outlined in Section 4.2.4. The Cogent
refinement framework described in Section 5 is additionally parameterised by refinement
proofs between these purely functional abstractions and their C implementation. If full
end-to-end verification of all components of the system is desired, the user must additionally
prove this refinement, and compose this proof with our framework.

4.1.1 Value semantics

The rules for the value semantics are given in Figure 17. Specified as a big-step evaluation
relation V ` e V v, these rules describe the evaluation of an expression e to a single result
value v with the environment V containing the values of all variables in scope. In many ways,
these semantics are entirely typical of a λ -calculus or other purely functional language:
all values are self-contained, there is no notion of sharing or references. Therefore, other
than the values of all available variables, there is no need for any context to evaluate
an expression. The rules can be viewed as an evaluation algorithm, as they are entirely
syntax-directed — exactly one rule specifies the evaluation for each form of expression.
Syntactic constructs which only exist to aid the uniqueness type system have no impact on
the dynamic semantics. For example, the let! construct behaves identically to let.

Just as in Section 3, where we assumed the existence of a global type environment for
top-level definitions called typeOf(·), we include a global definition environment defnOf(·)
that, given a function name, provides either:

1. a transparent definition, written Λ⇀a. λx. e, which denotes a Cogent function returning
e, parametric for type variables ⇀a and a single value argument x; or

2. a black box (�), which indicates that the function’s definition is abstract, i.e. provided
externally in C.

The rule VTAPP describes how non-abstract functions are evaluated to function values. As
functions must be defined on the top-level, our function values 〈〈λx. e〉〉 consist only of an
unevaluated expression parameterised by a value, evaluated when the function is applied,
thereby supplying the argument value. There is no need to define closures or environment
capture, as top-level functions cannot capture local bindings. Abstract function values,
written 〈〈abs. f | ⇀τ〉〉, are passed indirectly, as a pair of the function name and a list of the
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Value Semantics

value semantics values v ::= ` (literals)
| 〈〈λx. e〉〉 (function values)
| 〈〈abs. f | ⇀τ〉〉 (abstract functions)
| K v (variant values)
| {f 7→ v} (records)
| aV (abstract values)

environments V ::= x 7→ v
abstract values aV

abstract function semantics [[ · ]]V : f → v→ v

Update Semantics

update semantics values u ::= ` (literals)
| 〈〈λx. e〉〉 (function values)
| 〈〈abs. f | ⇀τ〉〉 (abstract functions)
| K u (variant values)
| {f 7→ u} (records)
| aU (abstract values)
| p (pointers)

environments U ::= x 7→ u
abstract values aU

pointers p
sets of pointers r, w
mutable stores µ : p 9 u
abstract function semantics [[ · ]]U : f → µ × u→ µ × u

primop semantics [[ o ]] : v× v→ v
function defn. env. defnOf(·) : f →D
function defn. D ::= � (abstract functions)

| Λ⇀a. λx. e (function definitions)

Fig. 16. Syntax for both dynamic semantics interpretations.

types used to instantiate type variables. When an abstract function value 〈〈abs. f | ⇀τ〉〉 is
applied to an argument, the user-supplied purely functional abstraction of the C semantics
[[ f ]]V is invoked—merely a mathematical function from the argument value to the output
value.

4.1.2 Update semantics

Similarly to the value semantics, the update semantics is specified as a big-step evaluation
relation, however unlike the value semantics, a mutable store is included as an input to
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V ` e V v

x 7→ v∈V

V ` x V v
VVAR

V ` ` V `
VLIT

V ` e1 V v1 V ` e2 V v2

V ` e1 o e2 V v1 [[ o ]] v2
VOP

V ` e V True V ` e1 V v

V ` if e then e1 else e2 V v
VIF-T

V ` e V False V ` e2 V v

V ` if e then e1 else e2 V v
VIF-F

V ` e1 V 〈〈λx. e〉〉
V ` e2 V v x 7→ v ` e V v′

V ` e1 e2 V v′
VAPP

V ` e1 V 〈〈abs. f | τ〉〉
V ` e2 V v v′ = [[ f ]]V v

V ` e1 e2 V v′
VAPP-A

defnOf( f ) = Λ⇀ai. λx. e

V ` f [⇀τi] V 〈〈λx. e
[
⇀τi/⇀ai

]
〉〉

VTAPP

defnOf( f ) =�

V ` f [⇀τi] V 〈〈abs. f | ⇀τi〉〉
VTAPP-A

V ` e1 V v′ x 7→ v′,V ` e2 V v

V ` let x = e1 in e2 V v
VLET

V ` e1 V v′ x 7→ v′,V ` e2 V v

V ` let! (y) x = e1 in e2 V v
VLET!

V ` e V {f 7→ v, fi 7→ vi}
V ` e.f V v

VMEMBER

for each i,V ` ei V vi

V ` ]{fi = ei} V {fi 7→ vi}
VSTRUCT

V ` e1 V {f 7→ v, fi 7→ vi}
x 7→ {f 7→ v, fi 7→ vi}, y 7→ v,V ` e2 V v′

V ` take x {f= y}= e1 in e2 V v′
VTAKE

V ` e1 V {f 7→ v, fi 7→ vi} V ` e2 V v′

V ` put e1.f= e2 V {f 7→ v′, fi 7→ vi}
VPUT

V ` e V v

V `K e V K v
VCON

V ` e V K v′ x 7→ v′,V ` e′ V v

V ` case e of K x. e′ V v
VIRREF

V ` e V K v′ x 7→ v′,V ` e1 V v

V ` case e of K x. e1 else y. e2 V v
VCASE-M

V ` e V K′ v′ K 6= K′

y 7→K′ v′,V ` e2 V v

V ` case e of K x. e1 else y. e2 V v
VCASE-N

Fig. 17. The value semantics evaluation rules.
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U ` e | µ U u | µ

x 7→ u∈U

U ` x | µ U u | µ
UVAR

U ` ` | µ U ` | µ
ULIT

U ` e1 | µ1 U u1 | µ2
U ` e2 | µ2 U u2 | µ3

U ` e1 o e2 | µ1 U u1 [[ o ]] u2 | µ3
UOP

U ` e | µ1 U True | µ2
U ` e1 | µ2 U u | µ3

U ` if e then e1 else e2 | µ1 U u | µ3
UIF-T

U ` e | µ1 U False | µ2
U ` e2 | µ2 U u | µ3

U ` if e then e1 else e2 | µ1 U u | µ3
UIF-F

U ` e1 | µ1 U 〈〈λx. e〉〉 | µ2
U ` e2 | µ2 U u | µ3

x 7→ u ` e | µ3 U u′ | µ4

U ` e1 e2 | µ1 U u′ | µ4
UAPP

U ` e1 | µ1 U 〈〈abs. f | τ〉〉 | µ2
U ` e2 | µ2 U u | µ3
(u′, µ4) = [[ f ]]U (u, µ3)

U ` e1 e2 | µ1 U u′ | µ4
UAPP-A

defnOf( f ) = Λ⇀ai. λx. e

U ` f [⇀τi] | µ U 〈〈λx. e
[
⇀τi/⇀ai

]
〉〉 | µ

UTAPP
defnOf( f ) =�

U ` f [⇀τi] | µ U 〈〈abs. f | ⇀τi〉〉 | µ
UTAPP-A

U ` e1 | µ1 U u′ | µ2
x 7→ u′,U ` e2 | µ2 U u | µ3

U ` let x = e1 in e2 | µ1 U u | µ3
ULET

U ` e1 | µ1 U u′ | µ2
x 7→ u′,U ` e2 | µ2 U u | µ3

U ` let! (y) x = e1 in e2 | µ1 U u | µ3
ULET!

U ` e1 | µ1 U {f 7→ u, fi 7→ ui} | µ2
x 7→ {f 7→ u, fi 7→ ui}, y 7→ u,U ` e2 | µ2 U u′ | µ3

U ` take x {f= y}= e1 in e2 | µ1 U u′ | µ3
UTAKE

U ` e1 | µ1 U {f 7→ u, fi 7→ ui} | µ2 U ` e2 | µ2 U u′ | µ3

U ` put e1.f= e2 | µ1 U {f 7→ u′, fi 7→ ui} | µ3
UPUT

U ` e | µ1 U {f 7→ u, fi 7→ ui} | µ2

U ` e.f | µ1 U u | µ2
UMEM

U ` ei | µ1 U
?

ui | µ2

U ` ]{fi = ei} | µ1 U {fi 7→ ui} | µ2
USTRUCT

U ` e | µ1 U u | µ2

U `K e | µ1 U K u | µ2
UCON

U ` e | µ1 U K u′ | µ2
x 7→ u′,U ` e′ | µ2 U u | µ3

U ` case e of K x. e′ | µ1 U u | µ2
UIRREF

U ` e | µ1 U K u′ | µ2 x 7→ u′,U ` e1 | µ2 U u | µ3

U ` case e of K x. e1 else y. e2 | µ1 U u | µ3
UCASE-M

U ` e | µ1 U K′ u′ | µ2 K 6= K′

y 7→K′ u′,U ` e2 | µ2 U u | µ3

U ` case e of K x. e1 else y. e2 | µ1 U u | µ3
UCASE-N

(Continued in Figure 19)

U ` e | µ U
?

u | µ

U ` ε | µ U
?

ε | µ
UNIL

U ` e0 | µ1 U u0 | µ2 U ` ei | µ2 U
?

ui | µ3

U ` e0 ei | µ1 U
?

u0 ui | µ3
UCONS

Fig. 18. The straightforward update semantics evaluation rules.
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U ` e | µ U u | µ

U ` e1 | µ1 U p | µ2 µ2(p) = {f 7→ u, fi 7→ ui}
x 7→ p, y 7→ u,U ` e2 | µ2 U u′ | µ3

U ` take x {f= y}= e1 in e2 | µ1 U u′ | µ3
UTAKE-B

U ` e1 | µ1 U p | µ2 µ2(p) = {f 7→ u, fi 7→ ui} U ` e2 | µ2 U u′ | µ3

U ` put e1.f= e2 | µ1 U p | µ3(p := {f 7→ u′, fi 7→ ui})
UPUT-B

U ` e | µ1 U p | µ2 µ2(p) = {f 7→ u, fi 7→ ui}
U ` e.f | µ1 U u | µ2

UMEM-B

Fig. 19. The update semantics evaluation rules concerning pointers.

and output of an expression’s evaluation, and values may be represented as pointers to
locations in that mutable store. Written U ` e | µ U u | µ ′, this evaluation relation specifies
that, given an environment U of values that may contain pointers into a mutable store µ ,
the evaluation of the expression e will result in the value u and a final store µ ′. Figure 18
outlines the straightforward rules for this evaluation relation. The majority of these are very
similar to their value-semantics equivalents, save that they thread the mutable store through
the evaluation. The mutable store is specified as a partial mapping from pointers (written p)
to values. The exact content of pointer values is left abstract: our semantics merely requires
that they be enumerable and comparable. In Section 5, we instantiate p to a concrete set to
prove refinement to the C implementation. Like in the value semantics, the semantics of
foreign functions are provided externally, this time permitting modifications to the mutable
store in addition to returning a value.

Unlike the value semantics, the update semantics distinguishes between boxed and
unboxed records. For unboxed records, which are stack-allocated and passed by value,
the rules for take, put etc. resemble their value-semantics counterparts. Boxed records,
however, are represented as a pointer — the rule for take must consult the heap, and the
rule for put mutates the heap, destructively updating the record. The rules that involve the
mutable heap are specified in Figure 19.

4.2 Refinement and type preservation

To show that the update semantics refines the value semantics, the typical approach from
data refinement (de Roever & Engelhardt, 1998) is to define a refinement relation R between
values in the value semantics and states in the update semantics, and show that any update
semantics evaluation has a corresponding R-preserving value semantics evaluation. When
the semantics are viewed as binary relations from initial to final states (outputs), this
requirement can be succinctly expressed as a commutative diagram. For example, with
respect to an externally defined function f , we relate the user-provided value semantics
[[ f ]]V and update semantics [[ f ]]U as follows:



1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

30 Cogent: Uniqueness Types and Certifying Compilation

R; [[ f ]]U ⊆ [[ f ]]V; R
(where ; is forward composition of relations)

◦ ◦

• •

value

R

update

R⊆

Assuming that the relation holds initially, we can conclude from such a proof that any
execution in our update semantics interpretation has a corresponding execution in our value
semantics interpretation, and thus any functional correctness property we prove about all
our value semantics executions applies also to our update semantics executions.

The relation R must relate value semantics values (v) to update semantics states (u× µ).
A plausible definition would be as an abstraction function, which eliminates pointers from
each update semantics value u in the state by following all pointers from the value u in the
store µ , collapsing the pointer graph structure into a self-contained value v in the value
semantics.

Such a relation, however, is not preserved by evaluation in the presence of aliasing of
mutable data, as a destructive update (such as a put) to a location in the store aliased by
two variables would affect the value of both variables in the update semantics, but only one
of them in the value semantics. Therefore, the refinement relation must additionally encode
the uniqueness property ensured by our type system, which rules out not just direct aliasing,
where two separate variables refer to the same data structure on the heap, but also internal
aliasing, where a single data structure contains two or more aliasing pointers.

4.2.1 A typed refinement relation

The rules in Figure 20 define our refinement relation, extended to take into account the type
system and aliasing of pointers.

Because our relation relates both update semantics and value semantics to types, we can
derive a value-typing relation for either semantics by creatively erasing part of the rules.
Erasing all the update semantics parts (highlighted like this ) leaves a value-typing relation
definition for the value semantics, and erasing all the value semantics parts (highlighted
like this) gives a state-typing relation definition for the update semantics. As we ultimately
prove preservation for this refinement relation across evaluation, the same erasure strategy
can be applied to the proofs to produce a typing preservation proof for either semantics —
a key component of type safety. Written u | µ : v : τ [ r ∗ w ] , this judgement states that:

1. Transitively following all the pointers from u in the store µ results in the self-contained
value v,

2. Both u and v have the type τ ,
3. The set r contains all read-only pointers (according to the type τ) transitively

accessible from u,
4. The set w contains all writable pointers transitively accessible from u, and
5. The value u contains no internal aliasing of any of the writable pointers in w, whether

by read-only or writable pointers.
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u | µ : v : τ [ r ∗ w ]

` < |T |

` | µ : ` : T [ /0 ∗ /0 ]
RLIT

ε; x : τ ` e : τ
′

〈〈λx. e〉〉 | µ : 〈〈λx. e〉〉 : τ→ τ
′ [ /0 ∗ /0 ]

RFUN

typeOf( f ) = ∀⇀ai. C⇒ τ

〈〈abs. f | ⇀τi〉〉 | µ : 〈〈abs. f | ⇀τi〉〉 : τ

[
⇀τi/⇀ai

]
[ /0 ∗ /0 ]

RAFUN

u | µ : v : τ [ r ∗ w ]

K u | µ : K v : 〈K◦ τ, Ku
i τi〉 [ r ∗ w ]

RVARIANT

µ(p) = aU

aU | µ :A aV :A A ⇀τi r© [ r ∗ /0 ]

p | µ : aV : A ⇀τi r© [ {p} ∪ r ∗ /0 ]
RABSR

µ(p) = aU

aU | µ :A aV :A A ⇀τi w© [ r ∗ w ]

p | µ : aV : A ⇀τi w© [ r ∗ {p} ∪w ]
RABSW

aU | µ :A aV :A A ⇀τi u© [ r ∗ w ]

aU | µ : aV : A ⇀τi u© [ r ∗ w ]
RABSU

u = {fi 7→ ui, fk 7→ uk} v = {fi 7→ vi, fk 7→ vk}
for each i, ui | µ : vi : τi [ ri ∗ wi ]

for each f j ∈ fi where i 6= j, wi ∩ (r j ∪w j) = /0

u | µ : v : {f◦i : τi, f
•
k : τk} u© [

⋃
i ri ∗

⋃
i wi ]

RRECU

µ(p) = {fi 7→ ui, fk 7→ uk} v = {fi 7→ vi, fk 7→ vk}
for each i, ui | µ : vi : τi [ ri ∗ /0 ]

p | µ : v : {f◦i : τi, f
•
k : τk} r© [ {p} ∪

⋃
i ri ∗ /0 ]

RRECR

µ(p) = {fi 7→ ui, fk 7→ uk} v = {fi 7→ vi, fk 7→ vk}
for each i, ui | µ : vi : τi [ ri ∗ wi ]

for each f j ∈ fi where i 6= j, wi ∩ (r j ∪w j) = /0

p | µ : v : {f◦i : τi, f
•
k : τk} w© [

⋃
i ri ∗ {p} ∪

⋃
i wi ]

RRECW

aU | µ :A aV :A A ⇀τi s [ r ∗ w ]

(abstract types are user-provided)

U | µ : V : Γ [ r ∗ w ]

for each xi : τi ∈ Γ,

xi 7→ ui ∈U xi 7→ vi ∈V ui | µ : vi : τi [ ri ∗ wi ]

for each x j ∈ xi where i 6= j, wi ∩ (r j ∪w j) = /0

U | µ : V : Γ [ r ∗ w ]
RENV

Fig. 20. The value typing and update/value refinement rules.
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We call the sets r and w the footprint of the value u. By annotating the relation in this way,
we can insert the required non-aliasing requirements into the rules for compound values
such as records. Read-only pointers may alias other read-only pointers, but writable pointers
may not alias any other pointer, whether read-only or writable.

4.2.1.1 Polymorphism. As mentioned in Section 2, we implement parametric polymor-
phism by specialising code to avoid paying the performance penalties of other approaches
such as boxing. This means that polymorphism in Cogent is restricted to predicative rank-1
quantifiers, in the style of ML. This allows us to specify dynamic objects, such as our values
and their typing and refinement relations, in terms of simple monomorphic types, without
type variables. Thus, to evaluate a polymorphic program, each type variable must first be
instantiated to a monomorphic type. Theorem 3.3 shows that any valid instantiation of a
well-typed polymorphic program is well-typed, which implies the monomorphic specialisa-
tion case when all variables are instantiated. Thus, our results about our refinement relation
can safely assume the well-typedness of the monomorphic specialisation of the program
which is being evaluated.

4.2.1.2 Environments. Figure 20 also defines the refinement relation for environments
and type contexts, written U | µ : V : Γ [ r ∗ w ] . Just as our original refinement relation
enforces our uniqueness requirements inside a single value, the refinement relation for
environments requires that the values of all variables in Γ meet the uniqueness requirements,
such that no available variable will contain an alias of a writable pointer in any other
available variable. Because this relation is only concerned with available variables, we can
show that the context-splitting relation (given in Figure 3), which partitions the available
variables into two sub-contexts, also neatly bifurcates the associated pointer sets r and w,
such that the same environment viewed through either of the sub-contexts does not alias the
other sub-context’s writable pointers:

Lemma 4.1 (Splitting contexts splits footprints — u v matches split).

If an environment corresponds to a context, U | µ : V : Γ [ r ∗ w ]

and that context is split in two, then ∧ ε ` Γ Γ1 � Γ2

the heap footprint may also be split into ⇒ ∃r1 w1 r2 w2.

two sub-footprints, where each sub-footprint ∧ r = r1 ∪ r2 ∧w = w1 ∪w2

does not contain any aliases to writable ∧ w1 ∩ (w2 ∪ r2) = /0

pointers in the other footprint, and where ∧ w2 ∩ (w1 ∪ r1) = /0

the refinement relation holds for each ∧ U | µ : V : Γ1 [ r1 ∗ w1 ]

sub-footprint and sub-context respectively. ∧ U | µ : V : Γ2 [ r2 ∗ w2 ]

4.2.1.3 Abstract Values. Because the representation of abstract values is defined externally
to Cogent, the corresponding refinement relation aU | µ :A aV :A A ⇀τi s [ r ∗ w ] is defined
externally also.

To ensure that our uniqueness invariant is maintained, certain requirements are placed on
the pointer sets r and w in the user-supplied definition, depending on the sigil s:
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• If the sigil s is r©, then the set w must be empty. This is because abstract, read-only
values are assumed to be shareable in Cogent’s type system (see Figure 10), and
therefore must not contain any writable pointers.

• If the sigil s is u©, then both sets must be empty. Abstract, unboxed values meet the
Share, Drop and Escape constraints. Therefore, w must be empty to avoid violating
uniqueness directly, and r must be empty to prevent uniqueness violations in let!
expressions.

• If the sigil s is w©, then we only require that the sets r and w must be disjoint.

These pointer sets need not include all pointers contained within the data structure, but
merely those pointers to Cogent values that are accessible via the interface exposed to
Cogent. This allows data structures that rely on sharing, or would otherwise violate the
uniqueness property of the type system, to be safely imported and used by Cogent functions.
Similarly, the requirements of the frame relation here only apply to those pointers accessible
from the Cogent side. Thus, during the execution of an imported C function, the uniqueness
and framing conditions need not be adhered to — only the interface with Cogent needs to
satisfy these requirements. The exact requirements of the Cogent interface are summarised
in Section 4.2.4.

4.2.2 Framing

If the inputs to a Cogent program have a footprint [ r ∗w ], then it is reasonable to require
that no live objects in the store other than those referenced in w will be modified or affected
by the evaluation of the program. In this way, two subprograms that affect different parts
of the store may be evaluated independently. We formalise this requirement as a framing
relation, which states exactly how evaluation may affect the mutable store.

Definition 4.1 (Framing Relation). Given an input set of writable pointers wi to a
store µi, and an output set of writable pointers wo to a store µo, the framing relation
wi | µi frame wo | µo ensures three properties for any pointer p:

• Inertia: Any value outside the footprint is unaffected, i.e. if p /∈wi ∪wo then µi(p) =
µo(p).

• Leak freedom: Any value removed from the footprint must be freed, i.e. if p∈wi and
p /∈wo, then µo(p) =⊥.

• Fresh allocation: Any value added to the footprint must not overwrite anything else,
i.e. if p /∈wi and p∈wo then µi(p) =⊥.

If a program’s evaluation meets the requirements specified in the framing relation, we can
directly prove that our refinement relation is unaffected by any updates to the store outside
the footprint:

Lemma 4.2 (Unrelated updates — upd val rel frame).

Assuming two unrelated pointer sets, where w∩w1 = /0
one set is part of a value’s footprint, and the ∧ u | µ : v : τ [ r ∗ w ]

other is the frame of a computation; then the ∧ w1 | µ frame w2 | µ ′

refinement relation is re-established for the ⇒ u | µ ′ : v : τ [ r ∗ w ]

resultant store of that computation.
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This result also generalises smoothly to our refinement relation for environments and
contexts:

Lemma 4.3 (Unrelated updates for environments — upd val rel frame env).

Assuming two unrelated pointer sets, where w∩w1 = /0
one set is part of an environment’s footprint, ∧ U | µ : V : Γ [ r ∗ w ]

and the other is the frame of a computation; ∧ w1 | µ frame w2 | µ ′

then the refinement relation is re-established ⇒ U | µ ′ : V : Γ [ r ∗ w ]

for the resultant store of that computation.

The frame relation allows us to address the well known frame problem in verification and
logic. Using these results along with Lemma 4.1, we can show (in the proof of Theorem 4.1)
that evaluating one sub-expression does not affect any part of the store other than those
mentioned in the heap footprint for the corresponding sub-context, and therefore that the
refinement relation is preserved for the evaluation of subsequent sub-expressions.

4.2.3 Proving refinement

To prove our desired refinement statement, we must show that every evaluation in the
update semantics has a corresponding evaluation in the value semantics that preserves
our refinement relation. We decompose this into two main theorems: one to show general
preservation of the refinement relation, and one to show upward-propagation of evaluation.

As previously mentioned, the preservation theorem can, with the right kind of selective
vision, be viewed as a type preservation theorem for either semantics. Viewed in its entirety,
it states that our refinement relation is preserved by any pair of evaluations for a well typed
expression. Note that we relate the writable component of the footprints with the frame
relation, and we require that the read-only component of the output to be a subset of the
input. This means that a Cogent program can only read from pointers that are in its input
footprint, an important aspect of memory safety crucial for security.

Theorem 4.1 (Preservation of Refinement/Typing Relation — correspondence).

For a well-typed expression which evaluates A; Γ ` e : τ

in the value semantics from environment V , ∧ V ` e V v

and in the update semantics from U: ∧ U ` µ | e U u | µ ′

If V and U correspond with some footprint, ∧ U | µ : V : Γ [ r ∗ w ]

then there exists another footprint ⇒ ∃ r′ ⊆ r. ∃ w′.

which results from the initial footprint, w | µ frame w′ | µ ′

such that the result values correspond. ∧ u | µ : v : τ [ r′ ∗ w′ ]

Proof By rule induction on the update semantics evaluation. For expressions which involve
more than one sub-expression, we use Lemma 4.1 to establish that each sub-expression
has a non-overlapping footprint. Then, from the inductive hypothesis, we know that the
frame relation holds for each of these footprints. Then we use Lemma 4.2 and Lemma 4.3 to
demonstrate that the evaluation of the first expression still preserves the refinement relation
for the unrelated second expression.
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To obtain this inductive hypothesis, we must additionally prove for each case that the
frame relation holds for each evaluation. This is relatively simple, as the requirements of
the frame relation are all straightforward consequences of our uniqueness type system. �

Because it assumes the existence of an evaluation on both the update and value semantics
levels, this preservation theorem is not sufficient to show refinement by itself. We still need
to show that the value semantics evaluates whenever the update semantics does. This is
where our upward propagation theorem comes in, proven by straightforward rule induction:

Theorem 4.2 (Upward evaluation propagation — val executes from upd executes).

For a well-typed expression e which evaluates A; Γ ` e : τ

in the update semantics from U, if U has a ∧ U ` µ | e U u | µ ′
corresponding value semantics environment, ∧ U | µ : V : Γ [ r ∗ w ]

then e also evaluates in the value semantics. ⇒ ∃v. V ` e V v

With this result, the overall refinement of the value semantics to the update semantics is a
simple corollary:

Theorem 4.3 (Value→ Update refinement).

If a typed expression e, under environment A; Γ ` e : τ

U, evaluates to u in the update semantics, ∧ U ` µ | e U u | µ ′
and U corresponds to environment V , then ∧ U | µ : V : Γ [ r ∗ w ]

e evaluates to some v under V in the value ⇒ ∃v. V ` e V v
semantics, and there exists a footprint that ∧ ∃ r′ ⊆ r. ∃ w′.
results from the original footprint such that w | µ frame w′ | µ ′
u corresponds to v. ∧ u | µ : v : τ [ r′ ∗ w′ ]

This theorem forms an essential component of our overall compiler certificate, the
construction of which is outlined in Section 5.

4.2.4 Foreign functions

Each of the above theorems makes certain assumptions about the semantics given to abstract
functions, [[ · ]]U and [[ · ]]V. Specifically, we must assume that the two semantics are coherent,
in that they evaluate in analogous ways; that they respect the requirements of the frame
relation to maintain our memory invariants; and that they do not introduce any observable
aliasing, which would violate the uniqueness requirement of our type system.

These three properties are ensured by an assumption similar in format to the two lemmas
used for the proof of refinement, Theorems 4.1 and 4.2. Specifically, we assume for a
foreign function f of type τ→ ρ that, given input values u and v that correspond, i.e.
u | µ : v : τ [ r ∗ w ] ,

1. If the update semantics evaluates, i.e. [[ f ]]U(µ, u) = (µ ′, u′) , then the value semantics
evaluates, i.e. [[ f ]]V(v) = v′;

2. Their results correspond, i.e. u′ | µ ′ : v′ : ρ [ r′ ∗ w′ ] for some r′ ⊆ r and w′ ;
and

3. The frame relation holds, i.e. w | µ frame w′ | µ ′ .



1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

36 Cogent: Uniqueness Types and Certifying Compilation

These assumptions directly satisfy any obligations about foreign functions that arise in
the proofs of Theorems 4.1 and 4.2, thus providing all the necessary ingredients to prove
refinement in the presence of foreign functions.
The refinement theorem between our two semantic interpretations, vital to our overall
framework, is only possible because Cogent is a significantly restricted language, disal-
lowing aliasing of writable pointers. This semantic shift refinement has been proven in a
mechanical theorem prover, definitively confirming the intuition of Wadler (1990), and
extending existing pen-and-paper theoretical work (Hofmann, 2000) to apply to real-world
languages with heap-allocated objects and pointers.

5 Refinement framework

The refinement proof from value to update semantics presented in Section 4 is only one
piece, albeit a crucial one, of the overall refinement chain from the Isabelle/HOL embedding
of the Cogent code down to the generated C.

Both below and above this semantic shift, specialised tactics in Isabelle/HOL generate
numerous refinement proofs, which mirror each transformation made by the Cogent com-
piler. These refinement proofs are combined into a proof of a top-level refinement theorem
that connects the semantics of the C code with a higher-order logic (HOL) embedding of
the Cogent code. The proof structure of this refinement framework is outlined in Figure 21,
and involves a number of different embeddings: shallow embeddings, where the program is
represented as a semantically equivalent HOL term, and also deep embeddings, where the
program is represented as an abstract syntax tree in HOL.

As shallow embeddings have a direct semantic interpretation in HOL, they are easier
to reason about concretely: that is, individual shallowly embedded programs are mere
mathematical functions, and are therefore amenable to verification using standard theorem
prover definitions and tactics. This is why the more abstract embeddings at the top of
the chain are all shallow, as these embeddings are used for further functional correctness
verification, connecting to a higher level abstract specification written specifically for the
program under examination.

On the other hand, shallow embeddings make it very difficult to prove results for all
programs, such as the refinement theorem between update and value semantics in Section 4.
In such situations, deep embeddings are preferred, where the program terms are represented
as an abstract syntax tree, and separate evaluation relation(s) are defined to provide seman-
tics, such as those in Section 4. This allows us to perform induction on program terms,
exhaustively verifying a property for every program. Furthermore, this decoupling of term
structure and semantics allows us to define multiple semantic interpretations for the same
set of terms. We need both of these advantages to prove theorems like Theorem 4.3, which
justify the semantic shift from value semantics to update semantics. The embeddings in the
middle of the refinement chain are all therefore deep, as this is where Theorem 4.3 is used.

The lower-level embeddings closer to C code are also shallowly-embedded. This is
because the Cogent verification framework builds on two existing mature verification tools
for C software in Isabelle/HOL: The C→SIMPL Parser used in the seL4 project, and the
automatic C abstraction tool AutoCorres (Greenaway et al., 2014, 2012). As both of these
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are designed for manual verification of specific C programs, they choose to represent C code
using shallow embeddings, suitable for human consumption. The C Parser imports C code
into the Isabelle-embedded language SIMPL (Schirmer, 2005) extended with the memory
model of Tuch et al. (2007); while AutoCorres abstracts this SIMPL code into HOL terms
involving the non-deterministic state monad first described in Cock et al. (2008).

Each of the refinement proofs presented in Figure 21 is established via translation
validation (Pnueli et al., 1998b). That is, rather than a priori verification of phases of the
compiler, specialised Isabelle tactics and proof generators are used to establish a refinement
proof a posteriori, relating the input and output of each compiler phase after the compiler
has executed. For the most part, this is because these refinement stages involve shallow
embeddings, which do not allow the kind of term inspection needed to directly model a
compiler phase and prove it correct. It also has the advantage of allowing us some flexibility
in implementation, as the post-hoc generated refinement proof is not dependent on the exact
implementation of the compiler.

This approach is not without its drawbacks, however. Chief among these is the lack of a
completeness guarantee: While we know that the compiler acted correctly if Isabelle/HOL
validates the generated refinement proof, there is no way to establish any formal guarantee
that Isabelle/HOL will always validate the generated proof if the compiler acts correctly. In
a verified compiler, proofs need to be checked only once, thus indicating that the compiler is
trustworthy; but with translation validation, proofs must be checked after each compilation.

5.1 Refinement and forward simulation

As mentioned in Section 4, each of our refinement proofs is based on the forward simu-
lation technique for data refinement, an idea independently discovered by many people
but crystallised by de Roever & Engelhardt (1998). This technique involves defining a
refinement relation R that connects abstract states (for example in the HOL embedding)
to corresponding concrete states (for example in the C code). Then, assuming R holds for
initial states, we must prove that every possible concrete evaluation can be matched by a
corresponding abstract execution, resulting in final states for which R is re-established:

R; 〈abstract〉 ⊆ 〈concrete〉; R
(where ; is forward composition of relations)

◦ ◦

• •

abstract

R

concrete

R⊆

These relation preservation proofs only imply refinement given the assumption that the
relation R holds initially. This means that the two semantics must evaluate from comparable
environments. A similar assumption is made for the verification of seL4 (Klein et al., 2009).
Bridging this remaining gap in the verification chain must be made on a case-by-case basis,
and is the subject of further research.
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Fig. 21. Refinement phases of Cogent (arrows indicate refinement theorems)
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5.2 Well-typedness proof

The refinement theorems concerning the monomorphic deep embedding, such as our seman-
tic shift refinement relation in Section 4, assume that the Cogent program is well-typed.
Therefore, it is necessary to prove in Isabelle/HOL that the generated monomorphic deep
embedding is well-typed.

Specifically, the compiler will generate Isabelle/HOL definitions of the defnOf(·) and
typeOf(·) environments (described in Section 3) for the monomorphised version of the
Cogent program, and then prove the following theorem via a custom Isabelle tactic:

Generated Theorem 5.1 (Typing). Let f be the name of a monomorphic Cogent function,
where defnOf( f ) = λx. e and typeOf( f ) = τ→ ρ . Then, x : τ ` e : ρ .

Because the typing rules we have presented are not algorithmic, we require additional
information from the Cogent compiler to produce an efficient deterministic algorithm that
synthesises a proof of this theorem. There are a number of sources of non-determinism in
these typing rules:

1. The use of the context-splitting relation in the typing rules means that a naı̈ve algo-
rithm for proof synthesis could necessitate traversing over every sub-expression to
determine which variables are used in each split. The compiler eliminates the need
for this by emitting a table of hints that informs the proof-synthesis tactic on how
each context is split, indicating which variables are used in each sub-expression.

2. As the subsumption rule of subtyping is not syntax-directed, it could potentially be
used at any point in the typing derivation. To eliminate non-determinism resulting
from such potential upcasts, the compiler includes special promote syntax nodes
in the generated deep embedding, which indicate precisely where in the syntax tree
subsumption has been used.

3. Integer literals are overloaded in the Cogent syntax, which can make their typing
ambiguous. The compiler resolves this simply by annotating all literals with their
precise inferred type in the generated deep embedding.

Armed with this additional information from the compiler, our proof synthesis tactic pro-
ceeds by merely applying each of the typing rules from Section 3 as introduction rules.
The choice of which rule to apply, and which instantiations of type variables to use, is now
entirely unambiguous.

Because HOL is a proof-irrelevant logic, once we prove the top-level typing theorem
for a function, we lose access to the typing lemmas for each of the sub-expressions that
make up the function’s body. While it is true that well-typedness of an expression implies
well-typedness of its subexpressions, we specifically need access to the theorems (and
the instantiations of metavariables) that are used to construct the overall well-typedness
theorem. As theorems do not contain any information or structure beyond their provability,
we cannot precisely extract these lemmas from the theorem. As we will see in Section 5.3.1,
our synthesised refinement proof from the monomorphic deep embedding to the AutoCorres
embedding needs access to all of these typing lemmas. For this reason, our tactic remembers
each intermediate typing derivation in a tree structure as it proves the top-level typing
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theorem. This tree structurally matches the derivation tree for the typing theorem itself:
each node contains the intermediate theorem for that part of the typing derivation.

5.3 Refinement phases

The only synthesised proof artefacts in our framework aside from the proof of well-typedness
are the six refinement theorems presented in Figure 21. While they are all refinement
theorems proven by translation validation, the exact structure of the theorem and the
mechanism used to prove them differs in each case.

Each of the generated embeddings correspond to the parts of the program written in
Cogent. As mentioned in Section 2, many functions in Cogent software are foreign, i.e.
written externally in C. Each of the refinement certificates presented here assume similar
refinement statements for each of the foreign functions. Therefore, to fully verify Cogent
software, a proof engineer must provide manually-written abstractions of C code, and
manually prove the refinement theorems that are automatically generated for Cogent code.
As demonstrated in Section 2, these foreign functions tend to be reusable library functions.
Thus, the cost in terms of verification effort of these functions can be amortised by reusing
these manually-verified libraries in multiple systems.

5.3.1 SIMPL and AutoCorres

As previously mentioned, we assign a formal semantics to C code using the C→SIMPL
parser also used in the verification of seL4 and other projects. SIMPL is an imperative
language embedded in Isabelle/HOL with straightforward semantics designed by Schirmer
(2005), intended for use with program logics such as Hoare Logic for software verification.
The language semantics is parameterised by a type used to model all mutable state used in
the program. The C→SIMPL parser instantiates this parameter with a generated Isabelle
record type containing a field for each local variable in the program, along with a special
field for the C heap using the memory model of Tuch et al. (2007).

While we could, in principle, work with the SIMPL code directly, its memory model
treats the heap essentially as a large collection of bytes: It does not make use of any of the
information from C’s type system to automatically abstract heap data structures. This is,
in part, due to the nature of manually-written C code, where programmers often subvert
the type system using potentially unsafe casts, reinterpreting memory based on dynamic
information. Because our code is automatically generated, and does not rely on dynamically
reinterpreting memory, we can abstract away from the bits and bytes of the C heap to a
higher-level, typed representation — this is where AutoCorres comes in.

AutoCorres (Greenaway et al., 2014, 2012) is a tool intended to reduce the cost of
manually verifying C programs in Isabelle/HOL. It works by automatically abstracting the
SIMPL interpretation of the C code into a shallow embedding using the non-deterministic
state monad of Cock et al. (2008). In this monad, computations are represented using the
following HOL type:
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do · · · ; · · · od sequence of statements
x← P monadic binding
condition c P1 P2 run P1 if c is true, else run P2

return v monadic return
gets f return the part of the state given by f
modify h update the state using function h
guard g program fails if g is false
P >>= Q monadic bind (desugared)

Fig. 22. The monadic embedding do-notation.

Initial State

Possible Result

Final State

Non-determinism

Undefined Behaviour?

state⇒ (α × state) set× bool

Here, state represents all the global state of the C program, including any global variables,
and a set of typed heaps, one for each C type used on the heap in the C program. A typed
heap for a particular type τ is modelled as a function τ ptr⇒ τ .

Given an input state, the computation will produce a set called results, consisting of the
possible return value and final state pairs, as well as a flag called failed, which indicates
when undefined behaviour is possible.

In the generated embedding, each access to a typed heap is protected by a guard that
ensures that the given pointer is valid, to ensure that the heap function is defined for that
particular input. Proving that these guards always hold is therefore essential for showing
that the program is free of undefined behaviour. When proving refinement from Cogent
code, we discharge these obligations by appealing to a globally-invariant state relation that
implies the validity of all pointers in scope.

Figure 23 shows a very simple Cogent program that negates the boolean interpretation of
an unsigned integer inside a boxed record. To simplify code generation to C, the Cogent
compiler first transforms the program into A-normal form, an intermediate representation
first developed by Sabry & Felleisen (1992). This form ensures that a unique variable
binding is made for each step of the computation, making it easier to convert an expression-
oriented language like Cogent to a statement-oriented language like C. This A-normal form
also simplifies the refinement tactic used to connect the AutoCorres-abstracted C code to
the Cogent deep embedding, described in the next section. As shown in Figure 23, the
monadic embedding of the C code has a strong resemblance to the A-normal form of the
Cogent program. Figure 22 describes the notation used in HOL for the monadic embedding,
inspired by the do-notation of Haskell (Marlow, 2010). Because AutoCorres is designed
for human-guided verification, it includes a number of context-sensitive rules to simplify
the resulting monadic embedding. For example, it includes features which can simplify
reasoning about machine words into reasoning about natural numbers, if it can prove that
no overflow occurs. Because we are using AutoCorres as part of an automated framework,
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bnot : {f◦ : U8} w©→{f◦ : U8} w©
bnot x =

take x′ { f = y}= x
in if y == 0

then put x′.f := 1
else put x′.f := 0

bnotA : {f◦ : U8} w©→{f◦ : U8} w©
bnotA x =

take x′ { f = y}= x
in let ι1 = 0
in let ι2 = y == ι1

in if ι2

then let ι3 = 1
in let x′′ = put x′.f := ι3

in x′′

else let ι4 = 0
in let x′′ = put x′.f := ι4

in x′′

bnotC : rec1 ptr⇒ (rec1 ptr) nd monad
bnotC x = do

guard (λσ . is-valid σ x);
y← gets (λσ . σ [x]. f );
ι1← return 0;
ι2← return (c-bool (y = ι1));
ιresult← condition (ι2 6= 0)
(do ι3← return 1;

guard (λσ . is-valid σ x);
modify (λσ . σ [x]. f := ι3);
return x od)

(do ι4← return 0;
guard (λσ . is-valid σ x);
modify (λσ . σ [x]. f := ι4);
return x od);

return ιresult od

A-normalisation

C Code
Codegen

SIMPL
Parser

AutoCorres

Fig. 23. An example program, its A-normalisation, and monadic embedding.

most of these abstraction and simplification features are disabled to give highly predictable
output. The only significant feature used is the abstraction to the typed heap model.

As can be seen in Figure 21, AutoCorres synthesises a refinement proof, showing that
the monadic embedding is a true abstraction of the imported SIMPL code. While this
refinement proof forms a part of our overall compiler certificate, this proof is entirely
internal to AutoCorres, and the SIMPL embedding is not exposed. Therefore, our combined
refinement theorem, documented in Section 5.3.6, treats the AutoCorres-generated monadic
shallow embedding as the most concrete representation in our overall refinement statement.

5.3.2 AutoCorres and Cogent

While AutoCorres provides some much-needed abstraction on top of C code, the monadic
embedding still resembles the generated C code far more than the Cogent code from which
it was generated. We still need a technique to validate the code generation phase of the
compiler, and synthesise a refinement proof to connect the semantics of Cogent to this
monadic embedding (Rizkallah et al., 2016).

The C code generation phase of the compiler proceeds relatively straightforwardly, and
does not perform global optimisations or code transformations. Transformations such as
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representations δ ::= T (primitives)
| Fun (functions)
| Abstract A (abstract types)
| {f : δ} (records)
| 〈K δ 〉 (variants)
| Ptr δ (boxed types)

erase(·) : τ→ δ

erase(T ) = T
erase(τ→ ρ) = Fun
erase(A τi u©) = Abstract A
erase(A τi r©) = Ptr (Abstract A)
erase(A τi w©) = Ptr (Abstract A)
erase({fu

i : τi} u©) = {fi : erase(τi)}
erase({fu

i : τi} r©) = Ptr {fi : erase(τi)}
erase({fu

i : τi} w©) = Ptr {fi : erase(τi)}
erase(〈Ku

i τi〉) = 〈Ki erase(τi)〉

Fig. 24. Partial type erasure to determine C representation

the aforementioned A-normalisation occur in earlier compiler phases and are verified at a
higher level in the overall refinement certificate. As all terms are in A-normal form at this
stage, nested sub-expressions are replaced with explicit variable bindings. The refinement
framework consists of a series of compositional rules designed to prove refinement in a
syntax-directed way, one for each A-normal expression.

5.3.2.1 Refinement Relations. While our high level view of refinement from de Roever
& Engelhardt (1998) defines just a single refinement relation R that relates abstract and
concrete states, three relations must be defined when proving refinement from the Cogent
deep embedding (with the update semantics) to the AutoCorres monadic embedding. The
Cogent compiler generates each of these relations after obtaining the monadic shallow
embedding and the definitions of its typed heaps from AutoCorres:

1. A value relation, written Rval, that relates Cogent update-semantics values (defined
in Figure 16) to monadic C values. Because AutoCorres generates separate Isabelle
types for each C type, this value relation is defined for each generated type using
Isabelle’s ad-hoc overloading features. Morally, this relation asserts the equality of
the two values. For example, the record type in the example in Figure 23 would cause
the following definitions to be generated:

(`, vc :: 8 word) ∈ Rval ⇔ (`= vc)

({f 7→ u}, vc :: rec1) ∈ Rval ⇔ (u, vc. f )∈Rval

(p, vc :: rec1 ptr) ∈ Rval ⇔ (p = vc)
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Note that the definition for the C structure type rec1 depends on the definition for
8-bit words. The compiler always outputs these definitions in dependency order to
ensure that this does not pose a problem.

2. A type relation, written Rtype, which allows us to determine which AutoCorres heap
to select for a given Cogent type. As with the value relation, the type relation is defined
using ad-hoc overloading. It does not relate Cogent types directly to AutoCorres-
generated types, but rather a Cogent representation, as defined in Figure 24. A
representation, written as δ , is a partially-erased Cogent type, which contains all the
necessary information to determine which C type is used to represent it. Therefore,
the usage tags on taken fields and constructors, type parameters in abstract values,
the read-only status of sigils, and other superfluous information is discarded. The
function erase(·) describes how to convert a type to its representation.
The reasoning behind the decision to relate representations instead of Cogent types to
C types is quite subtle: Unlike in C, for a Cogent value to be well-typed, all accessible
pointers in the value must be valid (i.e. defined in the store µ) and the values those
pointers reference must also, in turn, be well-typed. For taken fields of a record,
however, no typing obligations are required for those values, as they may include
invalid pointers (see the update semantics erasure of the rules in Figure 20). In C,
however, taken fields must still be well-typed, and values can be well-typed even if
they contain invalid pointers. Therefore, it is impossible to determine from a Cogent
value alone what C type it corresponds to, making the overloading used for these
relations ambiguous.
To remedy this, we additionally include the representation of a value’s type inside
each update-semantics value u in our formalisation, although this detail is not shown
in Figure 16. This means that we can determine which C type corresponds to a Cogent
value simply by extracting the relevant representation, without requiring recursive
descent into the heap or unnecessary restrictions on taken fields.

3. A state relation, written R, which relates a Cogent store µ to a collection of
AutoCorres heaps σ . We define (µ, σ)∈R if and only if for all pointers p in the
domain of µ , there exists a value v in the appropriate heap of σ (selected by Rtype) at
location p such that (µ(p), v)∈Rval.
The state relation cannot be overloaded in the same way as Rval and Rtype, because it
relates the heaps for every type simultaneously. We introduce an intermediate state
relation, Rheap, which relates a particular typed heap with a portion of the Cogent
store. Like the other relations, this intermediate relation can make use of type-based
overloading. We define Rheap for each C type τC that appears on the heap as follows:

(µ, στC)∈Rheap ⇔ ∀p. µ(p) = u∧ (repr(u), τC)∈Rtype

⇒ is-valid στC p∧ (u, στC [p])∈Rval

where repr gives the representation for a value, and is-valid σ p is true iff the pointer
p points to a valid object in the heap σ . The state relation R over all typed heaps
is defined to be merely the conjunction of every Rheap for each C type used in the
program:

(µ, σ)∈R ⇔ (µ, στ1)∈Rheap ∧ (µ, στ2)∈Rheap ∧ · · ·
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(x 7→ u)∈U (u, vC)∈Rval

corres R x (return vC) U Γ µ σ
C-VAR

` Γ Γ1 � Γ2 Γ1 ` e1 : τ corres R e1 P1 U Γ1 µ σ

∀u vC µ
′

σ
′. (u, vC)∈Rval⇒ corres R e2 (Q vC) (x 7→ u,U) (x : τ, Γ2) µ

′
σ
′

corres R (let x = e1 in e2) (P >>= Q) U Γ µ σ
C-LET

` Γ Γ1 � Γ2 Γ1 ` x : Bool (x 7→ `)∈U (`= True)⇔ (c 6= 0)
corres R e1 P1 U Γ2 µ σ corres R e2 P2 U Γ2 µ σ

corres R (if x then e1 else e2) (condition c P1 P2) U Γ µ σ
C-IF

Fig. 25. Some example corres rules

5.3.2.2 Correspondence. We define refinement generically between a monadic C com-
putation P and a Cogent expression e, evaluated under the update semantics. We denote
refinement with a predicate corres, similar to the refinement calculus of Cock et al. (2008).
The state relation R changes for each Cogent program, so we parameterise corres by an
arbitrary state relation R. It is additionally parameterised by the typing context Γ and the
environment U , as well as by the initial update semantics store µ and typed heaps σ :

Definition 5.1 (Cogent→C correspondence).

corres R e P U Γ µ σ = (∃r w. U | µ : Γ [ r ∗ w ])∧ (µ, σ)∈R

⇒ ¬failed (P σ)

∧ ∀(vC, σ ′)∈ results (P σ).

∃µ ′ u. U ` µ | e U u | µ ′
∧ (µ ′, σ ′)∈R ∧ (u, vC)∈Rval

This definition states that, for well-typed stores µ where the state relation R holds initially,
the monadic embedding of the C program P will not exhibit any undefined behaviour and,
moreover, for all executions of P there must exist a corresponding execution under the
update semantics of the expression e such that the final states are related by the state
relation R, and the returned values are related by the value relation Rval.

AutoCorres proves that if failed is false for a given program, then the C code is type and
memory-safe, and is free of undefined behaviour (Greenaway et al., 2014). We prove non-
failure as a side-condition of the refinement statement, essentially using Cogent’s type
system to guarantee C memory safety during execution. The corres predicate can compose
with itself sequentially: it both assumes and shows the relation R, and the additional
typing assumptions are preserved thanks to update-semantics type preservation corollary of
Theorem 4.1.

Figure 25 shows some of the simpler corres rules used by our Isabelle tactic to automati-
cally prove refinement. The rule C-VAR for variables, relating them to a monadic return
operation; the rule C-LET for let bindings, relating them to the monadic bind operator >>=;
and the rule C-IF for conditional expressions, relating them to the condition operation
from Figure 22. Note that in the rule C-IF, we can assume that the condition expression x is
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a variable, as the Cogent code is already in A-normal form. In our Isabelle formalisation,
we have defined many corres rules which validate the entire Cogent language, however
they all follow the same basic format as the rules presented in Figure 25. The assumptions
for these rules fall into three main groups:

1. Each rule for compound expressions includes well-typedness assumptions about
some sub-expressions. Theorem 4.1, used to discharge value-typing assumptions in
the corres definition, also has well-typedness assumptions. Our automated tactic
therefore needs access to all of the typing derivations used to construct the overall
typing theorem for a program. A mere top-level well-typedness theorem is not
sufficient to discharge these obligations. This is why we store each intermediate
typing theorem as a tree in Isabelle/ML, as previously mentioned in Section 5.2.

2. Expressions which interact with the heap, such as take and put for boxed records,
must maintain the relation R between the Cogent store and the AutoCorres typed
heaps. Because the definitions of the typed heaps and the definition of is-valid are
not provided until after we import the C program, we define these rules generically,
parameterised by these AutoCorres-provided definitions. Then, after importing the C
program, our framework automatically generates and proves specialised versions of
the rule for the specific program at hand. This specialisation technique is documented
in detail by Rizkallah et al. (2016).

3. Expressions such as take and let which are not made into leaves of the syntax tree by
A-normalisation typically have recursive corres assumptions for each sub-expression,
resolved by recursively applying our tactic. Because each rule is defined for exactly
one A-normal Cogent expression, these proofs are syntax-directed and can be resolved
by recursive descent without ambiguity or back-tracking.

Cogent is a total language and does not permit recursion, so we have, in principle, a well-
ordering on function calls in any program. Therefore, our tactic proceeds by starting at the
leaves of the call graph, proving corres theorems bottom-up until refinement is proven for
the entire program.3

Generated Theorem 5.2 (Update SemanticsvMonadic Embedding). Let f be the name of
a monomorphic and A-normal Cogent function, where defnOf( f ) = λx. e and typeOf( f ) =
τ→ ρ . Let P be the monadic shallow embedding derived from the generated C code for f .
Then, for any corresponding arguments u and vC of the appropriate type, we have:

∀µ σ . (u, vC)∈Rval⇒ corres R e (P vC) (x 7→ u) (x : τ) µ σ

This picture is complicated somewhat by the presence of higher order functions in Cogent,
which are commonly used for loops and iteration. When higher order functions are involved,
the call graph is no longer so clear, as it cannot be strictly determined syntactically. Our
framework supports second-order functions by first proving corres for all argument func-
tions (e.g. the loop body) before establishing corres for the second-order function (e.g. the
loop combinator), a kind of defunctionalisation where we need consider only higher-order

3 There are options to achieve this in the presence of recursion. Primitive or structural recursion a la Coquand &
Paulin (1988) is one such option.
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functions applied to specific function arguments4. We could straightforwardly extend this
framework to any higher-order functions, but second-order functions were sufficient to
cover our case-study file system implementations (Amani et al., 2016).

5.3.3 Monomorphisation

The next refinement step that is established by translation validation is monomorphisation.
The monomorphisation proof shows that the supplied polymorphic Cogent program is an
abstraction of the monomorphised equivalent produced by the compiler. At this point, we
can operate freely in value semantics without concern for mutable state, as the semantic
shift occurs on the monomorphic deep embedding, justified by Theorem 4.3.

The Cogent compiler converts polymorphic programs into monomorphic ones by gener-
ating monomorphic specialisations of polymorphic functions based on each type argument
used in the program, a la Harper & Morrisett (1995). Inside our framework, the compiler
generates a renaming function θ that, for a polymorphic function name fp and types ⇀τ , yields
a specialised monomorphic function name fm. Just as we assume that foreign functions are
correctly implemented in C, we also assume that their behaviour remains consistent under
θ . We write two main Isabelle/HOL functions to simulate this compiler monomorphisation
phase, each defined in terms of an arbitrary renaming function θ : An expression monomor-
phisation function, Mθ (·), which applies θ to any type applications in the expression; and a
value monomorphisation function, M V

θ
(·) which applies the expression monomorphisation

function Mθ to each expression inside a value (i.e. in a function value). Then, we generate
a proof which shows that the monomorphised program the Isabelle function produces is
identical to that produced by the compiler. If the programs are not structurally identical, this
indicates a bug in the compiler.

Generated Theorem 5.3 (Monomorphisation). Let θ be the generated renaming function
and f be a polymorphic function where defnOf( f ) = λx. e. Let fm be a monomorphised
version of f generated by the compiler. Then, defnOf( fm) = λx. Mθ (e).

Then, it remains to prove that the monomorphic program is a refinement of the polymorphic
one:

Theorem 5.1 (Monomorphisation Refinement). Let f be a (polymorphic) Cogent function
and defnOf( f ) = λx. e. Let v be an appropriately-typed argument for f . Let θ be any
renaming function. Then for any v′, if (x 7→M V

θ
v) `Mθ e V M V

θ
v′, then (x 7→ v) `

e V v′.

Proof This is proven once and for all by rule induction over the value semantics relation,
with appropriate assumptions being made about foreign functions. Typing assumptions are
discharged via Theorem 3.3. �

5.3.4 A-normal and deep embeddings

Above the semantic shift and monomorphisation stages of our refinement chain, we no
longer have any use for deep embeddings. As we are now in the value semantics, shallow

4 This defunctionalisation is merely an implementation detail of the proof framework and doesn’t affect one’s
ability to reason about higher order functions on the level of Cogent specifications.
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embeddings are preferred, as Isabelle’s simplifier can work wonders on pure HOL terms.
Therefore, as with Section 5.3.1, we must connect a shallow embedding to a deep embedding.
However, this time the deep embedding is the bottom of the refinement, and the shallow
embedding is comprised of simple pure functions, rather than procedures in a state monad.

This shallow embedding is still in A-normal form and is produced by the compiler: For
each Cogent type, the compiler generates a corresponding Isabelle/HOL type definition, and
for each Cogent function, a corresponding Isabelle/HOL constant definition. We erase usage
tags, sigils and other type system features used for uniqueness type checking, converting
the Cogent program to a simple pure term in the fragment of System F (Girard, 1971;
Reynolds, 1974) supported by Isabelle/HOL. As we have already made use of the type
system to justify our semantic shift, we no longer need these type system features in the
value semantics.

In addition to these definitions, we automatically prove a theorem that each generated
HOL function refines to its corresponding deeply embedded polymorphic Cogent term under
the value semantics. Refinement is formally defined here by the predicate scorres, which
relates a shallowly embedded expression s to a deeply embedded one e when evaluated
under the environment V :

Definition 5.2 (Shallow→Deep correspondence).

scorres s e V = ∀v. V ` e V v⇒ (s, v)∈RS

Here, RS is a value relation, much like the value relation Rval for corres refinement,
connecting HOL and Cogent values. Just as with the corres refinement, the relation RS

is defined incrementally, using Isabelle’s ad-hoc overloading mechanism. The automated
tactic for scorres theorems is substantially simpler than the tactic for corres, as scorres
rules do not require well-typedness, nor do they involve any mutable state or the state
relation R. The tactic proceeds simply by applying specially-crafted introduction rules one
by one, which correspond exactly to each form of A-normal Cogent syntax.

The program-specific refinement theorem produced by our tactic is:

Generated Theorem 5.4 (Shallow to Deep refinement). Let f be the name of an A-normal
Cogent function where defnOf( f ) = λx. e and let s be the shallow embedding of f . Then,
for any (vs, v)∈RS, we have scorres (s vs) e (x 7→ v). The definition of RS ensures that vs

and v are of matching types.

5.3.5 Desugared and neat embeddings

Figure 26 depicts the top-level neat embedding for the example presented previously in
Figure 23. As can be seen, the Isabelle definitions use the same names and structure as the
original Cogent program, making it easy for the user to reason about. In addition to the
neat embedding, the compiler also produces a desugared shallow embedding, which does
not resemble the input program as closely. For example, pattern matching is split into a
series of binary case expressions. Lastly, the compiler also produces an A-normal shallow
embedding, which resembles the A-normal intermediate representation of the code, as seen
in Figure 23.
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record α T=

f :: α

definition
bnot :: (8 word) T ⇒ (8 word) T

where
bnot x =

let (x′, y) = take f x
in if (y = 0)

then x′ (| f = 1 |)
else x′ (| f = 0 |)

Fig. 26. “Neat” shallow embedding of the program from Figure 23.

Because we are now on the level of purely functional shallow embeddings, the proofs
connecting the neat embedding to desugared embedding, and the desugared embedding to
the A-normal equivalent, are significantly stronger than refinement — Instead, we prove
equality. In Isabelle/HOL, equality is defined based on αβη-equivalence, which means that
this notion of equality admits the principle of functional extensionality.

Generated Theorem 5.5 (Neat and A-Normal equality). Let sD be the desugared shallow

embedding and sA be the A-normal shallow embedding of a Cogent function. Then sD
αβη
= sA.

Generated Theorem 5.6 (Neat and Desugared equality). Let sN be the neat shallow

embedding and sD be the desugared shallow embedding of a Cogent function. Then sN
αβη
=

sD.

The proofs of these theorems are simple to generate. Since we can now use equational
reasoning with Isabelle’s powerful rewriter, we just unfold definitions on both sides, apply
extensionality, and the rest of the proof is automatic given the right congruence rules and
equality theorems for functions lower in the call graph.

5.3.6 Combined predicate for full refinement

To show that the top-level neat shallow embedding is a valid abstraction of the C
code, the individual refinement certificates presented in the previous sections (Generated
Theorems 5.2, 5.3, 5.4, 5.5 and 5.6) are not sufficient. We must also show that the individual
refinement relations for each of these stages compose together, producing an overall proof
of refinement across the entire chain.

We define our combined predicate correspondence connecting a top-level shallow
embedding s, a monomorphic deep embedding e of type τ , and an AutoCorres-produced
monadic embedding P. It is also parameterised by the C state relation R, the monomorphi-
sation renaming function θ , the update and value semantics environments U and V for the
deeply embedded expression e, as well as its typing context Γ, the Cogent store µ and the
AutoCorres state σ .
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Definition 5.3 (Correspondence).

correspondence θ R s e τ P U V Γ µ σ =

(∃r w. U | µ : V : Γ [ r ∗ w ])∧ (µ, σ)∈R

⇒¬failed (P σ)∧ ∀(vC, σ ′)∈ results (P σ).

∃µ ′ u v. U ` e | µ ⇓u u | µ ′
∧ V ` e ⇓v M v

θ
v

∧ (µ ′, σ ′)∈R ∧ (u, vC)∈Rval

∧ (∃r w. u | µ ′ : M v
θ

v : τ [ r ∗ w ])

∧ (s, v)∈RS

Observe that this definition is essentially the combination of our semantic shift preservation
theorem (i.e. Theorem 4.1) with the refinement predicates corres (Definition 5.1) and
scorres (Definition 5.2).

Intuitively, our top-level theorem states that for related input values, all programs in the
refinement chain evaluate to related output values, propagating up the chain according to
the intuitive forward-simulation method of de Roever & Engelhardt (1998). This can of
course be used to deduce that there exist intermediate programs through which the C code
and its shallow embedding are directly related. The user does not need to care what those
intermediate programs are.

Generated Theorem 5.7 (Overall Refinement). For a Cogent function f , let defnOf( f ) =
λx. e and s be the shallow embedding of f . Let fm be the monomorphised version of
f according to renaming function θ , where typeOf( fm) = τ→ ρ , and P is the monadic
embedding of the generated C for fm.

Then, we can show that for related input values vS, v, u and vC for the pure shallow
embedding, value semantics, update semantics and monadic embedding respectively, our
correspondence predicate holds:

∀µ σ . (vS, v)∈RS

∧ (∃r w. u | µ : M v
θ

v : τ [ r ∗ w ])

∧ (u, vC)∈Rval

⇒ correspondence θ R (s vS) (Mθ e) ρ (P vC) (x 7→ u) (x 7→ v) (x : τ) µ σ

The automatic proof of this theorem is straightforward, merely unfolding the definitions of
corres and scorres in Generated Theorems 5.2 and 5.4, applying Generated Theorem 5.3
to establish the equivalence of the definition of fm with Mθ e, and applying Theorem 4.3 to
connect the value and update semantics.

Generated Theorems 5.6 and 5.5 show equality, not mere refinement, and thus they
implicitly apply to our overall theorem, extending it to cover these high-level embeddings.

As previously mentioned, this theorem assumes that foreign functions adhere to their
user-provided specification and their behaviour is unchanged when monomorphised. To
fully verify a system implemented in Cogent and C, one needs to provide abstractions of
the C code and manually prove that the C code respects the frame conditions similar to
those ensured by Cogent’s type system as well as refinement statements similar to those
generated by the Cogent compiler. Cheung et al. (2021) provide such proofs for the C
implementation of fixed-length word arrays used in the ext2 and BilbyFS implementations.
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Word arrays are specified as Isabelle/HOL lists and iterators over the array are specified
as map accumulate and fold functions over lists. These abstractions and proofs are used
to discharge assumptions about foreign functions generated by the Cogent compiler. This
demonstrates that Cogent’s foreign function interface provides a modular cross-language
approach to proving refinement between Cogent, a safe functional language, and C, an
unsafe imperative language. Cogent’s foreign function interface ensures safe and correct
interoperability between the two languages.

5.4 Connecting to abstract specifications

Generated Theorem 5.7 shows that, assuming that the refinement relation holds initially,
that the C functions are appropriately verified, and that our SIMPL C semantics accurately
capture the semantics of the executed code, any functional correctness property we prove
about the neat shallow embedding applies just as well to our C implementation. We stipulate
functional correctness properties here, as other properties, such as security or timing
properties, are not necessarily preserved by refinement.

To prove functional correctness, we must first define a functional correctness specification.
This specification can take a variety of forms, but must essentially capture the externally
observable correctness requirements of the program, without concern for implementation
details or performance. Typically, this specification is highly non-deterministic, to allow for
abstraction from operational details of the program. For example, the seL4 refinement proof
contains a number of layers of specification, where non-determinism increases in each layer
up the refinement chain (Klein et al., 2009). The Cogent file system verification of Amani
et al. (2016) specifies each file system operation as a program in a set monad to model this
non-determinism.

5.5 Example: verification of the sync() function in BilbyFs

To demonstrate how this high-level specification facilitates further formal reasoning at much
reduced effort compared to traditional functional correctness verification as typified by e.g.
seL4 (Klein et al., 2009), we show the manual functional correctness proof of the sync()
function in BilbyFs (Amani et al., 2016). For more complete and detailed reports on the file
system’s design, verification, and our experience, we refer interested readers to our previous
publications (Amani et al., 2016; Amani, 2016; Amani & Murray, 2015).

5.5.1 Functional correctness specification

The goal is to show that the BilbyFs sync() operation implemented in Cogent is func-
tionally correct, meaning that it behaves correctly in accordance with a top-level, abstract
specification for this operation. We call this specification a functional correctness specifica-
tion. It is short enough that a human can audit it to ensure that it accurately captures the
intended behaviour.

The top-level specifications for sync() is depicted in Figure 27. sync() implements
the corresponding functions expected of the Linux’s virtual file system (VFS) layer. It
synchronises the current in-memory state of the file system to physical storage. As BilbyFs
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1 afs sync afs≡
2 if is readonly afs then
3 return (afs, Error eRoFs)

4 else do
5 n← select{0..length (updates afs)};
6 let updates = updates afs;
7 (toapply, rem) = (take n updates, drop n updates);
8 afs = (afs(|med := apply updates toapply (med afs),
9 updates := rem|));

10 in if rem = [] then
11 return (afs, Success ())

12 else do
13 e← select {eIO, eNoMem, eNoSpc, eOverflow};
14 return (afs(|is readonly := (e = eIO)|), Error e)
15 od
16 od

Fig. 27. Functional correctness specifications for sync()

buffers pending writes in memory for better performance, the in-memory state may be
temporarily out-of-sync with the physical state. The top-level abstract file system (AFS)
specification for sync(), afs sync, operates over the abstract file system state afs. The
afs state is a record, consisting of (1) a map from inode numbers to inode objects, which
tracks the state of the physical storage medium (med); (2) a list of functions modifying the
physical storage for pending in-memory medium updates (updates); (3) and a Boolean flag
indicating whether the file-system is currently read-only (is readonly). The specification
says that sync() first checks whether the file system is read-only, in which case an appro-
priate Error code is returned with the file system state unchanged (lines 2 and 3). Otherwise,
it applies the in-memory updates to the physical medium, with each update modelled as a
function modifying the physical medium.

The specification is sufficiently non-deterministic to capture the behaviour of a correct
file system under the situation when the in-memory updates are only partially applied,
perhaps because of a flash device failure part-way through. For this reason, the specification
allows any number of updates n (line 5) to succeed, between 0 and the total number of
updates currently in-memory (i.e. length (updates afs)). It then (lines 8 and 9) applies the
first n updates (toapply) to the physical medium med afs, and remembers the updates that
remain to be applied rem. If all updates were applied, it returns Successfully, yielding the
new file system state (lines 10 and 11). Otherwise (lines 12 to 14), it returns an appropriate
error code, selected non-deterministically because the specification abstracts away from the
precise reason why the failure might have occurred. In case of an I/O error (eIO), the file
system is also put into read-only mode.
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lemma refine sync :
assumes ref : "afs fsop rel afs fs st"
shows
"
∧

ex. cogent corres rsync res (afs sync afs) (fsop sync fs (fs st))"

Fig. 28. Refinement lemma for the sync() operation.

5.5.2 Functional correctness proof

We prove the correctness of the BilbyFs implementation of the sync() operation in a
modular fashion against the top-level specifications in Figure 27. BilbyFs is designed with
formal verification in mind and features a highly modular design. Thus the proof can follow
the modular decomposition of its implementation. To prove the sync() implementation
refines its functional correctness specification, we make assumption about each of the
modules sync() depends on. These assumptions form an axiomatic specification of the
respective module, and serves as a compact representation of its correctness that abstracts
away its implementation details.

For sync(), one such interfacing module is ObjectStore, which keeps track of a map-
ping from object identifiers to generic file system objects. To prove ObjectStore correct,
we follow the same approach by proving it correct with respect to its top-level abstract
specification based on the assumptions on its dependencies. The proof eventually bottoms
out at components that are entirely abstract, only captured by an axiomatic specification.
The validity of the entire functional correctness proof then rests on the validity of the these
axioms. In our file systems, these are hardware or other trusted components of the operating
system.

In the Isabelle/HOL development, the refinement (by forward simulation) lemma
Figure 28 for the sync() function is very standard (c.f. Section 5.1): if the correspondence
relation afs fsop rel holds between the abstract file system state afs and the Cogent state
fs st, then after applying the abstract function afs sync and the Cogent function fsop sync fs
respectively, then the results are also related by rsync res.

With the modular verification strategy, our proof script for sync() in Isabelle/HOL con-
sists of approximately 60 lines of code, among which most are simply unfolding definitions
and simplification rules, which is exactly what is expected of equational reasoning. 5

5.5.3 Proving invariants

As we have demonstrated above, these proofs are far simpler than e.g. the comparable
functional correctness proofs of seL4 (Klein et al., 2009), which establish similar properties.
Just as with seL4, the functional correctness proof here requires us to establish global
invariants about the abstract specification and its implementation. We now showcase the
proof of the invariants that are needed in the refinement proof above.

The lemma afs inv steps updated afsD in Figure 29 states that if the invariants (afs inv)
hold when any prefix of the list of pending updates in afs is applied (afs inv steps), then
they also hold when the list of updates are fully applied. In this case, the invariants include

5 The line count does not include generic lemmas from HOL or those about common data structures, nor does
it include the few auxiliary lemmas needed for afs, which can be proved by the Isabelle/HOL’s simplifer (e.g.
Section 5.5.3).
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definition
"afs inv steps afs ≡
(∀n≤ length (a medium updates afs).

afs inv (a afs updated n n (a medium afs afs) (a medium updates afs)))"

lemma afs inv steps updated afsD : "afs inv steps afs =⇒ afs inv (updated afs afs)"
apply (simp add : updated afs def )
apply (simp add : afs inv steps def )
apply (erule tac x = "length (a medium updates afs)" in allE)
apply (fastforce simp add : a afs updated def )

done
Fig. 29. Invariants that need to be maintained before and after applying the pending updates.

e.g. the absence of link cycles, dangling links and the correctness of link counts, as well as
the consistency of information that is duplicated in the file system for efficiency.

Importantly, unlike with seL4, none of the invariants have to include that in-memory
objects do not overlap, or that object-pointers are correctly aligned and do point to valid
objects. All of these properties are ensured automatically by Cogent’s type system, and
justified by Generated Theorem 5.7. Even better, when proving that the file system correctly
maintains its invariants, we get to reason over pure, functional specifications of the Cogent
code. Because they are pure functions, these specifications do not deal with mutable state
(as e.g., the seL4 ones do). The proof can be done simply by unfolding definitions (as shown
in Figure 29 by the simp add : ∗ def rules).

5.6 Subtyping and refinement framework

The introduction of subtyping to Cogent’s type system required adapting our original Cogent
compiler, formalisation, and refinement framework (O’Connor et al., 2016) to account for
this addition. As mentioned in Section 3.1, due to subtyping the compiler no longer needs
to generate separate data types for each narrowing of a variant type. Thus, this feature
drastically reduced the number of data types in the generated C code and the generated
shallow embedding. For the the Bilby file system, Cogent previously generated 49 separate
data type definitions; with subtyping, this has been reduced to 7.

This makes the automated refinement proof of correspondence between Cogent code and
the generated shallow embedding much clearer, and also simplifies the shallow embedding.
In addition conversion functions between variants are no longer generated in the C code and
shallow embedding. Re-proving the correctness of the BilbyFs operations that we previously
verified on top of the new shallow embedding did not require much effort. The manual
proofs on top of the shallow embedding have not increased in complexity as a result of our
change.
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6 Conclusions, evaluation, and future work

Our work has already shown promising results, both as a systems programming language
and a verification target, however the file system implementations and verification conducted
as a case-study (Amani, 2016; Amani et al., 2016) bring several opportunities into focus for
future improvements to our framework.

6.1 The Cogent toolchain

Our decision to write the Cogent compiler tool-chain in Haskell but the refinement frame-
work and proof tactics in Isabelle/ML allows the Cogent tool-chain to be used outside the
theorem prover, while still allowing our refinement framework to build on the existing C
and AutoCorres framework available in Isabelle/HOL.

On the other hand, this choice leads to some complexity in designing the interface
between these components. This is illustrated by the well-typedness proof in Section 5.2,
where the Cogent compiler generates a certificate tree with the necessary type derivation
hints. Initially, a naı̈ve format consisting of the entire derivation tree was used, resulting in
gigabyte-sized certificates. Various compression techniques reduced this to a reasonable
size (a few megabytes), but these certificates still take some time to process. It would be
possible to avoid these certificates entirely by duplicating the entire type inference algorithm
from the compiler in Isabelle/ML, but this would increase the code maintenance burden
significantly.

The use of pre-existing mature tools to give C code a semantics in Isabelle/HOL, namely
the C→SIMPL parser and AutoCorres, is a pragmatic choice aimed at reducing the effort
required to build our refinement framework, ensuring that our C semantics lines up with
other large-scale C verification projects, and enabling integration with the seL4 verification
specifically. Unfortunately, however, these tools are particularly time-consuming when
processing Cogent-generated C code. For the file system implementations of Amani et al.
(2016), these tools take anywhere from 12 to 32 CPU hours to generate the monadic
embedding of the generated C code. While the time taken to establish our refinement
certificate does not endanger the trustworthiness of Cogent software, it does make our
automatic verification framework less useful as a debugging tool. Future work involves
integrating robust specification-based testing tools in the style of QuickCheck (Claessen &
Hughes, 2000) to Cogent (Chen et al., 2017), to improve turn-around time for debugging
and to allow verification to be attempted only after developers are confident that the code is
indeed correct.

6.2 Verification effort

Klein et al. (2009) report that approximately one third of the overall verification effort for
seL4 went into the second refinement step, connecting the intermediate executable specifi-
cation to the C code. This estimation is not including the effort that went into developing
re-usable libraries and frameworks. Our Generated Theorem 5.7 encompasses this step and
more, because, as previously discussed, our intermediate executable specification (the neat
embedding) is significantly more high-level. Therefore, we can confidently predict that,
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where Cogent can be used to implement a system, our refinement framework will reduce
the effort of verifying that system by at least a third, relative to existing C verification
techniques. Because our neat embedding is higher-level than the intermediate executable
specification of seL4, the savings are possibly even greater.

In the course of the verification of two file system operations, we found six defects in our
already-tested file system implementations (Amani et al., 2016). The effort for verifying
the complete file system component chain for these operations was roughly 9.25 person
months, and produced roughly 13,000 lines of proof for the 1,350 lines of Cogent code.
This compares favourably with traditional C-level verification as for instance in seL4, which
spent 12 person years with 200,000 lines of proof for 8,700 source lines of C code. Roughly
1.65 person months per 100 C source lines in seL4 are reduced to ≈0.69 person months
per 100 Cogent source lines with our framework. We are in the process of implementing a
data-description language as an extension to Cogent (O’Connor et al., 2018; Chen et al.,
2019), which will automate the functional correctness verification of approximately 850
lines of deserialisation and serialisation code in these file system implementations. These
850 lines of Cogent code required ≈4000 lines of proof to verify, taking approximately 4.5
person months. With this added automation, the cost of verification can be reduced even
further. This data description language also enables us to reduce the amount of marshalling
and unmarshalling code required to pass data structures between C and Cogent, as we can
ensure that data is laid out in the same way in both languages. This can eliminate copies
and improve efficiency of the generated code.

Another possible avenue to reduce the cost of functional correctness verification is to
provide stronger static guarantees from the type system. The more properties we can encode
in the type system and check automatically, the less will have to be manually established
by a proof engineer in post-hoc verification.For this purpose, we plan to explore adding
refinement types (Freeman & Pfenning, 1991) to Cogent. Refinement types allow specifying
propositions on types and may therefore help us track that array indices are within bounds
and thus memory safety once arrays are introduced to Cogent. More generally, refinement
types have the potential to drastically reduce verification effort, depending on the expressive
power of the refinements, as well as potentially reducing debugging turn-around time, as
SMT push-button verification is faster than manual proof in an interactive theorem prover,
although less powerful.

6.3 Safety and Security

Cogent’s certificate goes beyond certifying the correctness of the generated C code rela-
tive to the HOL embedding. Even systems programmers without any formal verification
expertise can statically eliminate whole classes of common errors that lead to security
vulnerabilities (Amani et al., 2016): The language is type safe. The compiler and type
system in turn automatically ensure memory safety (de Amorim et al., 2018), which ensures
the absence of any undefined behaviour on the C level, null pointer dereferences, buffer
overflows, memory leaks, and pointer mis-management in error handling.

File systems, which motivated the inception of Cogent, constitute the largest fraction
of code in Linux after device drivers and have among the highest defect density of Linux
kernel code (Palix et al., 2011b). The mismanagement of pointers in error-handling code
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is a wide-spread problem in Linux file systems specifically (Rubio-González & Liblit,
2011), and Saha et al. (2011) shows that file systems have among the highest density of
error-handling code in Linux.

This problem isn’t local to file systems: the “goto-fail” defect in Apple’s SSL/TLS imple-
mentation was an error-handling problem obscured by gotos in an if-cascade (OpenSSL,
2014), and the memory leak in Android Lollipop also was part of error-handling code
(Lollipop, 2014). By requiring programs to be expressed as pure and total functions, and
enforcing correct cleanup and management of resources with uniqueness types, Cogent
ensures that errors are correctly handled and all pointers and resources are correctly disposed
of in an error scenario.

More generally, one of the most common sources of security vulnerabilities in software
implemented in low-level languages such as C is memory corruption bugs (Szekeres et al.,
2013). The infamous Heartbleed bug for instance, was a buffer overflow (Heartbleed, 2014).
All such vulnerabilities relating to the absence of memory safety are prevented on the
language level by Cogent and are enforced by its certifying compiler.

Memory safety is intimately tied to the notion of noninterference (Goguen & Meseguer,
1982) which requires showing that programs can neither affect nor be affected by unreach-
able parts of the state (de Amorim et al., 2018). The formal notion of memory safety defined
by de Amorim et al. (2018) is similar to ours in that it supports local reasoning about state.
In the case of Cogent, this requirement is demonstrated by the frame relation and other
restrictions on the heap footprints of programs, key to proving that Cogent’s imperative
semantics can be abstracted by its functional semantics. While Cogent does not make
many guarantees about foreign C code that is unverified, our frame relation already places
verification requirements on foreign C code that enforce a kind of integrity: Any objects to
which a function is not explicitly given access (i.e. any pointer outside the heap footprint)
may not be modified by Cogent-compliant C code.

While Cogent’s static guarantees rule out a large class of security vulnerabilities, Cogent
does not provide constructs for defining and tracking security levels and for reasoning about
information-flow control. One extension of Cogent that is under development is Flogent,
which is a type system extension to Cogent that leverages uniqueness types to establish
information-flow control (Dang, 2020). In the future, we plan to investigate preserving
information flow security through compilation in the style of Covern (Sison & Murray,
2019).

6.4 Optimisations

Adding optimisation passes to the Cogent compiler would improve performance, but
presents a verification challenge. Cogent-to-Cogent optimisations are straightforward to
verify— the ease of proving A-normalisation correctness over the shallow embedding via
rewriting suggests that this is the right approach in our context. Many optimisations are
described as equational rewrites for functional languages, for example stream fusion (Coutts
et al., 2007). In particular, some of the source-to-source optimisations discussed by Chlipala
(2015) seem promising for Cogent. However, introducing significant optimisations to the
Cogent-to-C stage of our framework will complicate the syntax-directed correspondence
approach described in Section 5.
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Currently, the Cogent compiler relies primarily on the underlying C compiler for optimi-
sations. Generated code displays patterns which are uncommon in handwritten code and
therefore might not be picked up by the C optimiser, even if they are trivial to optimise. For
example, due to the A-normal representation used by the Cogent compiler, the generated
C code is already quite close to single static assignment (SSA) form used internally by
C compilers gcc and clang, however these compilers do not always recognise this and
optimise accordingly. Generating a compiler’s SSA representation directly, such as LLVM
IR, may eliminate these problems. Shang (2020) has recently implemented a prototype of
an LLVM backend for a core subset of Cogent. We plan to extend the LLVM backend to the
full Cogent language and certify this compilation. Projects to verify subsets of LLVM IR
exist for us to target (Zhao et al., 2012; Lammich, 2019), however such an endeavor would
imply significant and fundamental changes to our verification infrastructure. Thus, we plan
to use this as opportunity to explore a new approach for establishing compiler assurance.

There are two main approaches to establishing compiler assurance (Leroy, 2009a):
compiler verification (Kumar et al., 2014; Leroy, 2009b), and translation validation (Pnueli
et al., 1998a) through either a verified validator (Rideau & Leroy, 2010) or by synthesising a
proof of correctness in a theorem prover after each translation, as we do in Cogent. Compiler
verification is difficult to establish and costly to maintain, and, as previously mentioned, our
current approach requires time-consuming proof checking for every compilation (Rizkallah
et al., 2016). Translation validation through a verified validator provides no guarantees
when the validator rejects (Leroy, 2009a). An ideal approach would combine several of
the benefits of the existing approaches. For our LLVM backend, we plan to explore a new
verification approach that draws inspiration from a line of work on creating trustworthy
certifying algorithms (Blum & Kannan, 1995; Sullivan & Masson, 1990; McConnell et al.,
2011) using verified checkers (Bright et al., 1997; Alkassar et al., 2014; Noschinski et al.,
2014; Rizkallah, 2015).

6.5 Language features

We are currently working to remove limitations of the language, to make Cogent more
convenient to use, and to enable more kinds of code to be written and verified with Cogent.
One of the most glaring limitations of Cogent is the intentional absence of recursion, to
ensure that all Cogent programs terminate. We are working on relaxing these limitations
by introducing recursive types and functions (Murray, 2019) as well as a limited form of
arrays to Cogent. To maintain our termination guarantee, we are implementing termination
checking algorithms in the compiler front-end.

Another clear avenue for extension is support for concurrency. Session types (Dezani-
Ciancaglini & de’Liguoro, 2010), intended to describe concurrent systems, could be cleanly
integrated into Cogent’s uniqueness type system. Verifying a concurrent Cogent would also
necessitate a verified concurrent semantics for each level in our refinement chain, including
for C. While there is a concurrent version of SIMPL, based on the foundational Owicki/Gries
method (Owicki & Gries, 1976), called COMPLX (Amani et al., 2017), it is intended for
verification of low-level, potentially racy code and may therefore not be suitable for our
purpose. Connecting to this low-level semantics, or developing a higher-level semantics
based on more recent methods will be a significant endeavour.
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We are also still investigating improvements to our type inference algorithm (see
O’Connor (2019) for an initial formalisation) as well as proving soundness of this type
inference process in Isabelle/HOL. As Cogent involves a number of language features that
complicate type inference (subtyping, uniqueness types, and our unique structural record
and variant types), our algorithm is quite involved and its verification is ongoing work.

6.6 Related Work

6.6.1 Safe languages

Formally verified full-scale language implementations include the verified C compiler
CompCert (Leroy, 2009b), the verified ML compiler CakeML (Kumar et al., 2014),
Verisoft’s implementation language C0 (Leinenbach, 2010), and Dafny (Rustan & Leino,
2010). All of these verified language implementations do not provide the functional abstrac-
tion over mutation that Cogent does, which is crucial for providing a clean equational
interface for reasoning about high-level specifications. Additionally, they either come with
a run-time and garbage collector (as in CakeML or Dafny), or they provide only weak type
system guarantees (as in C or C0). The key novelty in Cogent is that its verification gives
high-level type system benefits and a strong theorem proving interface without the need to
include a garbage collector in low-level systems code.

Similarly, while type safe C dialects such as Cyclone (Jim et al., 2002) or CCured (Necula
et al., 2005), and programming languages like Rust (Rust, 2014), can guarantee memory
safety using types without depending on a garbage collector, they do not raise the level
of abstraction as Cogent does. As these are imperative programming languages, they do
not use their type systems to provide a functional abstraction of mutation, but merely as a
means to track the lifetime of heap objects. Therefore, these type systems are less restrictive
than that of Cogent. Rust and Cyclone additionally have a much more fine-grained notion of
lifetimes than Cogent, similar to region types (Tofte & Talpin, 1994), which may be worth
integrating into Cogent in future.

There are many tools to generate shallow embeddings from functional code, such as
CFML (Charguéraud, 2010, 2011) and hs-to-coq (Spector-Zabusky et al., 2018; Breitner
et al., 2021). Like us, these generate shallow embeddings to facilitate mechanical proofs,
but unlike us they do not prove correctness of compilation.

The Ivory language (Pike et al., 2014) is a strongly-typed domain-specific language
embedded in Haskell for systems programming, in particular for writing programs that
interact directly with hardware and do not require dynamic memory allocation. It presently
has a formal semantics, but no compiler correctness proof. Its intended domain is close but
separate from Cogent. Cogent is less aimed at interacting directly with hardware, but more
for high-level control code and does support dynamic memory allocation and tracking of
dynamic memory with its linear type system.

Like Cogent, the programming language developed as part of the HASP project,
Habit (HASP project, 2010), is a functional systems language. It has a verified garbage
collector (McCreight et al., 2010), but no formal language semantics or compilation
certificate.
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The Rosette language (Torlak & Bodik, 2014) is a rapid prototyping environment for
domain-specific languages, including support for solver-aided verification and synthesis,
but not as such for efficient and verified compilation to standalone systems code.

Linear types have seen growing use, with extensions being developed for
Haskell (Bernardy et al., 2017) and Idris (Brady, 2013). PacLang (Ennals et al., 2004) uses
linear types to guide optimisation of packet processing on network processors. Uniqueness
types are integrated into the functional language Clean (Barendsen & Smetsers, 1993),
although Clean still depends on run-time garbage collection.

Section 4 mentions that Hofmann (2000) proves, in pen and paper, the equivalence of the
functional and imperative interpretation of a language with a linear type system. The proof
is from a first order functional language to its translation in C, without any pointers or heap
allocation. In contrast, Cogent is higher order, accommodates heap-allocated data, and its
compiler produces a machine checked proof linking a purely functional shallow embedding
to its C implementation.

6.6.2 Safe file systems

Functional verification of file systems belongs to systems verification in general. Klein
et al. (2017) gives a more thorough overview of the work in this area. Some major achieve-
ments are the comprehensive verification of the seL4 microkernel (Klein et al., 2009),
the verification stack of the Verisoft project (Alkassar et al., 2009, 2010), the increase
of verification productivity in CertiKOS (Gu et al., 2011, 2015), and the full end-to-end
application verification in Ironclad (Hawblitzel et al., 2014), which builds on a modified
verified Verve kernel (Yang & Hawblitzel, 2010) and the aforementioned Dafny language.

Early Z specifications of file systems are those by Morgan & Sufrin (1984) for UNIX,
and Bevier et al. (1995) for a custom file system. Arkoudas et al. (2004) verify two key
operations on the block-level of a file system, but the result remains partial and the authors
even argue that system components such as file systems will probably always remain beyond
the reach of full correctness proofs.

There is plenty of previous work containing proofs about high-level abstractions of
file systems. Our work closes the gap from these high level abstractions to code. For
instance, Hesselink and Lali (Hesselink & Lali, 2009) manage to prove a file refinement
stack that goes down to a formal model, but assumes an infinite storage device and other
simplifications, and does not end in code. The Event B refinement proof by Damchoom et
al. (Damchoom et al., 2008) similarly does not end in code. In theory, Event B can generate
code from low-level models, but neither of these verifications are close enough to achieve
usable file system implementations, let alone high performance.

The most realistic high-level Flash file system verification work to date is conducted
using the KIV tool (Reif et al., 1998) and goes from the Flash device layer up to a Linux
VFS implementation (Schierl et al., 2009; Ernst et al., 2013; Schellhorn et al., 2014). The
verification work is still in progress and the current code generation from low-level models
targets Scala running on a Java Virtual Machine, which implies run-time overheads and
dependency on a large language run-time. It may be fruitful to investigate a Cogent backend
for this work.
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Maric & Sprenger (2014) investigate the issue of crash tolerance in file systems, and
previously Andronick (2006) formally analysed similar issues for tearing in smart cards
with persistent storage. Cogent does not provide any special handling for crash tolerance,
but the generated executable specifications are detailed enough to facilitate reasoning about
it. Chen et al. (2015) take crash tolerance to the level of a complete file system in a proof
that includes functional correctness of an implementation in Coq. Its implementation relies
on generating Haskell code from Coq, and executing that code with a full Haskell runtime
in userspace. We focus on bridging high-level specification and low-level implementation,
on efficiency, and on providing a small trusted computing base, while Chen et al. (2015)
assume all these are given and focus on crash resilience. The approaches are complementary,
i.e. it would be potentially straightfoward to implement Crash Hoare Logic on top of Isabelle
Cogent executable specifications, enabling a verification of crash tolerance for Cogent file
systems.

Another stream of work in the literature focuses on more automatic techniques such as
model checking and static analysis (Yang et al., 2006; Gunawi et al., 2008; Rubio-González
& Liblit, 2011). While in theory these techniques could be used to provide similar guarantees
as Cogent, this has not yet been achieved in practice. Instead of providing guarantees, such
analyses are more useful as tools for efficiently finding defects in existing implementations.
They also do not provide a path to further higher-level reasoning.

6.7 Conclusion

Cogent has achieved its stated goal: To reduce the cost of formally verifying functional
correctness of low-level operating systems components. It achieves this by allowing users to
write code at a high level of abstraction, in the native language of interactive proof assistants
— purely functional programming.

Functional programmers have long recognised, and advocated for, the benefits afforded
by reasoning over pure functions. For the first time, Cogent allows these benefits to be
enjoyed by proof engineers verifying low-level systems, without depending on a run-time
system or enlarging the trusted computing base. Building on the key refinement theorem
given to us by our uniqueness type system (Theorem 4.3), our refinement framework makes
use of multiple translation validation techniques to establish a long refinement chain. This
allows engineers to reason about Cogent code on a high level in Isabelle/HOL and have
confidence that their reasoning applies just as well to the C implementation we generate.

To interact with existing systems and to enable greater expressivity, we include a foreign
function interface that allows the programmer to mix Cogent code with C code. It is
possible to verify C code and compose these proofs with the proofs generated by the Cogent
framework.

Our two case study file systems serve to validate our approach, with key operations of
one file system verified for functional correctness. The results from these studies confirm
our hypothesis: the language ensures a greater degree of reliability by default compared to
C programming, verification effort is reduced by at least one third, and the performance
of the generated code is, while slower, still comparable to native C implementations, and
acceptable for realistic file system implementations.
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Cogent not only allows non-experts in formal verification to write provably-safe code,
it is also a key step towards lowering the effort and complexity for the full mechanical
verification of operating system components against high-level formal specifications. It
is a significant milestone, bringing the grand goal of affordable, verified, high-assurance
systems one step closer to reality.
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and Küsters, R. (eds), Principles of Security and Trust - 7th International Conference, POST 2018,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings. Lecture Notes in Computer Science 10804,

http://ssrg.nicta.com/publications/csiro_full_text/Chen_DOSRK_19.pdf
http://ssrg.nicta.com/publications/csiro_full_text/Chen_DOSRK_19.pdf
https://github.com/NICTA/cogent
https://github.com/NICTA/cogent


2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

64 Cogent: Uniqueness Types and Certifying Compilation

pp. 79–105. Springer.
de Roever, W. P. and Engelhardt, K. (1998) Data Refinement: Model-oriented Proof Theories and their

Comparison. Cambridge Tracts in Theoretical Computer Science, vol. 46. Cambridge University
Press.

de Vries, E., Plasmeijer, R. and Abrahamson, D. M. (2008) Uniqueness typing simplified.
Implementation and Application of Functional Languages.

DeLine, R. and Fähndrich, M. (2001) Enforcing high-level protocols in low-level software.
Programming Language Design and Implementation pp. 59–69.

Dezani-Ciancaglini, M. and de’Liguoro, U. (2010) Sessions and session types: An overview. Web
Services and Formal Methods pp. 1–28. Springer.

Dijkstra, E. W. (1997) A Discipline of Programming. 1st edn. Prentice Hall PTR.
Ennals, R., Sharp, R. and Mycroft, A. (2004) Linear types for packet processing. European Symposium

on Programming pp. 204–218. Springer.
Ernst, G., Schellhorn, G., Haneberg, D., Pfähler, J. and Reif, W. (2013) Verification of a virtual

filesystem switch. Verified Software: Theories, Tools and Experiments. Lecture Notes in Computer
Science 8164, pp. 242–261. Springer.

Freeman, T. and Pfenning, F. (1991) Refinement types for ml. Programming Language Design and
Implementation pp. 268–277. ACM.

Girard, J.-Y. (1971) Une extension de l’interprétation de Gödel à l’analyse, et son application à
l’élimination de coupures dans l’analyse et la théorie des types. Scandinavian Logic Symposium pp.
63–92. North-Holland.

Goguen, J. A. and Meseguer, J. (1982) Security policies and security models. 1982 IEEE Symposium
on Security and Privacy, Oakland, CA, USA, April 26-28, 1982 pp. 11–20. IEEE Computer Society.

Greenaway, D., Andronick, J. and Klein, G. (2012) Bridging the gap: Automatic verified abstraction
of C. International Conference on Interactive Theorem Proving pp. 99–115. Springer.

Greenaway, D., Lim, J., Andronick, J. and Klein, G. (2014) Don’t sweat the small stuff: Formal
verification of C code without the pain. Programming Language Design and Implementation pp.
429–439. ACM.

Gu, L., Vaynberg, A., Ford, B., Shao, Z. and Costanzo, D. (2011) CertiKOS: A certified kernel for
secure cloud computing. Asia-Pacific Workshop on Systems.

Gu, R., Koenig, J., Ramananandro, T., Shao, Z., Wu, X. N., Weng, S., Zhang, H. and Guo, Y. (2015)
Deep specifications and certified abstraction layers. Principles of Programming Languages pp.
595–608. ACM.

Gu, R., Shao, Z., Chen, H., Wu, X. N., Kim, J., Sjöberg, V. and Costanzo, D. (2016) CertiKOS: An
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