
First steps in verifying the seL4 Core Platform
Mathieu Paturel, Isitha Subasinghe, Gernot Heiser

gernot@unsw.edu.au
Trustworthy Systems Research Group, UNSW Sydney

ABSTRACT
We report on our initial effort to formally verify the seL4 Core
Platform, an OS framework for the verified seL4 microkernel.
This includes a formal specification of the seL4 Core Platform
library, an automated proof of its functional correctness,
and a verified mapping of the seL4 Core Platform’s System
Description to the CapDL formalism that describes seL4
access rights and enables verified system initialisation.
ACM Reference Format:
Mathieu Paturel, Isitha Subasinghe, Gernot Heiser. 2023. First steps
in verifying the seL4 Core Platform. In 14th ACM SIGOPS Asia-
Pacific Workshop on Systems (APSys ’23), August 24–25, 2023, Seoul,
Republic of Korea. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3609510.3609821

1 INTRODUCTION
Formal verification uses mathematical methods to confirm
that software meets its predetermined specifications; it is
one of the few techniques that can positively establish the
absence of bugs in software.
The correct operation of a system depends on the un-

derlying hardware, the operating system (OS) kernel, and
higher-level frameworks that provide the environment in
which the system executes. Consequently, bugs in the kernel
or the frameworks can and will compromise the system’s
correctness and overall reliability.

The high-performance seL4microkernel was the first ever
general-purpose OS kernel with a formal proof of implemen-
tation correctness, which was later extended to the binary
code (taking the compiler out of the trust chain), proofs of
security enforcement, and proofs of its worst-case execu-
tion time [Klein et al. 2014]. Presently, the full proof chain
exists for the 32-bit Arm and 64-bit RISC-V architectures,
with the implementation-correctness proof also available for
the 64-bit x86 architecture. At the same time, seL4 demon-
strates best-in-class performance [Mi et al. 2019], making it

APSys ’23, August 24–25, 2023, Seoul, Republic of Korea
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
14th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’23), August 24–
25, 2023, Seoul, Republic of Korea, https://doi.org/10.1145/3609510.3609821.

the ideal foundation for secure and dependable real-world
systems. The seL4 microkernel’s ongoing influence of seL4
was recently recognised by the 2022 ACM Software System
Award.

However, far from a full OS, seL4 is a microkernel which
provides only basic mechanisms for securely multiplexing
hardware. Its API is consequently policy-free and low-level,
making development of performant and correct systems on
top costly and requiring a high level of expertise, and gener-
ally creating a high barrier to uptake.
The recently developed seL4 Core Platform

(seL4CP) [Heiser et al. 2022] addresses this challenge
by providing a small set of higher level abstractions that are
easy to use for building modular, yet performant, systems
that leverage seL4’s isolation properties [Parker 2022]. It
also comes with an SDK that simplifies system generation.
The seL4CP is still not an OS, but a framework for build-

ing OS services and applications. It achieves much of its
simplicity by restricting the application domain: Instead of
striving for generality (as seL4 does), the seL4CP is designed
for systems with a static architecture, i.e. one where all com-
ponents and their interactions (but not necessarily the im-
plementation of those components) are known at system-
configuration time. These restrictions, while incompatible
with desktop or cloud hosting environments, are sufficient
to support most IoT and cyber-physical systems.

Along with a leap in usability, the simplicity of the seL4CP
has another advantage: module implementations tend to be
very simple. Combined with the fact that module interfaces
are enforced by verified seL4 mechanisms, this should dra-
matically simplify the task of verifying seL4CP-based sys-
tems. However, the full benefit of verifying such systems
will only be realised if the seL4CP itself is verified.

Simplicity helps here as well, as the implementation of the
seL4CP itself is also fairly straightforward, simple enough
to experiment with a more automated verification process.
Verification of the seL4 kernel used interactive theorem

proving in Isabelle/HOL, which allows the construction of
elaborate, machine-checked proofs. While powerful in what
it can prove, this manual approach is highly labour-intensive.
Furthermore, it requires manual re-verification whenever
the code changes. This is in contrast to SMT solvers, which
are tools that, once set up, can verify functional proper-
ties fully automatically, known as “push-button verification”.
This approach was deployed in the binary verification of

https://trustworthy.systems/
https://doi.org/10.1145/3609510.3609821
https://doi.org/10.1145/3609510.3609821
https://doi.org/10.1145/3609510.3609821


Protection Domain 1

init(…)

notified(…)

protected(…)

Memory Region

Communication Channel

Protected Procedure Call (…)

notify(…)

Protection Domain 2

init(…)

notified(…)

Figure 1: seL4 Core Platform abstractions at a glance.

seL4 [Sewell et al. 2013], and more recently in functional-
correctness proofs of simple operating systems [Nelson et al.
2019, 2017].
Significant challenges remain. The seL4 proofs could

assume strictly sequential execution, thanks to the non-
preemptible implementation of seL4 [Peters et al. 2015]. This
assumption does not hold for code that executes in usermode,
such as the seL4CP and system components built on top, as
their execution can be preempted at any time. Making verifi-
cation tractable requires taming this concurrency (see last
paragraph of Section 2). Previous push-button verification
approaches assume these challenges away, which drastically
limits the guarantees that can be obtained from verification.

Here we report on the first successful steps in the formal
verification process for the seL4 Core Platform. Our contri-
butions are:
(1) A formal specification of the seL4CP-seL4 interface

library (libsel4cp);
(2) An automated functional correctness proof, showing

that the libsel4cp implementation satisfies this spec-
ification.

(3) A verified mapping of the seL4CP system specifica-
tion to the CapDL formalism [Kuz et al. 2010] which
describes access rights in seL4 and enables a verified
system initialisation.

2 SEL4 CORE PLATFORM OVERVIEW
The seL4 Core Platform implementation consists of two com-
ponents, which are linked to user-provided module imple-
mentations by the seL4CP SDK:

• The interface library libsel4cp, which maps seL4CP
APIs to seL4 system calls. It implements an event loop
that invokes user-provided handler functions. The to-
tal size of libsel4cp is presently only about 280 SLOC
of C;

• sel4cpinit, a boot task which allocates system re-
sources. The design for static architectures makes it
possible to restrict this allocation to system startup
time. After startup, sel4cpinit remains active as a
fault handler.

The programming model presented by the seL4CP API is
extremely simple, all abstractions are summarised in Figure 1:

• The protection domain (PD) is the process abstrac-
tion; it provides a simple, event-driven execution
model, where the user provides the implementation of
a handler, called the notified function. The user must
also provide an implementation of the init function,
which is called by the system exactly once at startup
time.

• A communication channel (CC) connects exactly
two PDs. Communication is asynchronous: a PD may
notify a CC, which will invoke the notified function
of the PD at the other end of the channel, passing the
identity of the notifier.

• A memory region (MR) may be mapped into one
or more PDs, with potentially different access rights,
providing shared memory for communication.

• A protected procedure call (PPC) is an operation
on a CC that invokes the protected function in the
PD across the channel, which executes synchronously
to the caller. The protected entrypoint is optional,
meaning only some PDs, informally called “servers”,
may be invoked via a PPC – the PPC is the seL4CP’s
equivalent of a system call in a monolithic OS. The sys-
tem requires (but does not enforce programmatically)
that a PPC can only go to a higher priority PD (thus
preventing deadlock).

An seL4CP-based system is then a collection of concur-
rently executing PDs (modules) that communicate via shared
memory, synchronise via notifications sent along channels,
and invoke servers via PPCs. The composition is defined in
a formalism called the system description format (SDF).

PDs are single-threaded. (Support for multi-threaded appli-
cations is on the roadmap. It will allowmultiple PDs, running
on different cores, to share an address space, i.e. code and
data [Trustworthy Systems 2023].) Concurrency within a PD
is tamed; the seL4CP guarantees that the init, notified
and protected functions execute atomically with respect to
each other, eliminating the need for any concurrency control
inside a PD, in the spirit of the CSP model of Hoare [1978].

3 GLOBAL CORRECTNESS
Ultimately our goal is to prove the correctness of an seL4CP-
based system. This requires specifying the system in terms
of a global state machine, which holds the externally visible
state of the PDs, and a trace (temporally ordered list of API
calls and shared memory writes made by the PDs, which act
as state transitions for this state machine). Correctness can
then be defined in terms of permissible traces.

This requires guarantees provided by the seL4CP, consist-
ing of formally verified theorems about the traces possible



in any system implemented in terms of the fundamental
seL4CP abstractions. These guarantees require a proof that
the implementation of the libsel4cp and sel4cpinit li-
braries are correct, based on the formal specification of seL4
itself.

A representative guarantee is:
(†) If a PD 𝑝 sent a notification on a chan-
nel 𝑐 , whose other end is PD 𝑞, using the
sel4cp_notify(c) API call, then eventually
(but no sooner than the next time PD 𝑞 makes
a call to receive notifications) the PD 𝑞 will exe-
cute the notified(c) function.

This long-term goal requires overcoming significant chal-
lenges:
(1) The guarantees required of the seL4CP combine com-

plicated liveness (finiteness of the trace) and safety
properties (ruling out certain finite prefixes of the
trace). Verification of such properties is hard with inter-
active theorem proving and out-of-reach for effective
automated techniques; the common theories imple-
mented in SMT solvers do not allow reasoning about
unbounded traces.

(2) One has to show that the semantics captures the whole
external state that a given protection domain may ob-
serve.

(3) Property † can only hold subject to certain schedul-
ing restrictions. For example, if a protection domain
𝑟 with a priority higher than 𝑝 monopolises 𝑞 with
PPCs, the notification will never be processed. This
is a legal scenario, which can be prevented by limit-
ing 𝑟 ’s time budget [Lyons et al. 2018], but requires
reasoning about scheduling behaviour which seL4’s
current abstract specification leaves undefined.

4 LOCAL CORRECTNESS
As a first step we start verification at a local level. Crucially,
we carefully express the local correctness in such a way that
it can be reasoned about using SMT solvers.

4.1 Approach
We specify the seL4CP API (as implemented in the
libsel4cp library) in terms of a local state machine, which
contains only the state pertaining to the code executing in a
single PD, and describes:
(1) the execution state of the PD making the API call,
(2) the SDF-specified static configuration of the system,

and
(3) the observations that one can make during the current

execution about the state of the rest of the system (such
as receive calls, shared memory accesses), modeled as
single-use oracles.

Intuitively, single-use oracles are filled by the global state
machine, and consumed by the local one. This allows the
former to summarise and communicate complex informa-
tion to the latter (notably, information only available in the
traces).1 For example, when a PD makes a receive call, it
consumes the receive oracle and deduces the return value
from it. Beforehand, the global state machine filled the ora-
cle appropriately by observing the trace of the system as a
whole.

Our formal specification of libsel4cp describes how the
various seL4CP API calls made by the currently executing PD
should affect this local state machine. In terms of the static
configuration of the system, and the single-use oracles, we
are able to state guarantees that a correct seL4CP implemen-
tation (and by extension, every piece of user code running
inside a PD) should provide. For example, we state that a
correct implementation will not make a sel4cp_notify(c)
call to a non-existent channel 𝑐 , nor will it make a PPC to
a PD that has lower or equal scheduling priority than the
currently executing PD – we are able to guarantee these on
verified systems even though the current implementation of
the library does not programmatically enforce the restric-
tions. The correctness condition for the main libsel4cp

handler loop, which executes on every PD, states:
(★) The handler loop never terminates. It will
make a call to receive notifications and PPCs
exactly once per iteration, and will correctly
handle any and all responses returned by the
receive call (according to the single-use oracle),
including calling notified(c) if a notification
was received on a channel 𝑐 , and protected(c,

m) if a PPC was received on channel 𝑐 with argu-
ment𝑚. Furthermore, it will notmake “phantom”
calls such as calling notified(x) on a channel
𝑥 on which no notification was received.

The local correctness conditions were derived with the
global correctness in mind, ie. we expect to use them in a
global proof specified in terms of traces. For example, one
would appeal to the local condition ★, along with a delivery
guarantee coming from the kernel to establish the condition
†. We emphasise that these local conditions are necessary but
that by themselves not sufficient to prove conditions like †.
Establishing global conditions will require some additional,
manual proof work in interactive theorem provers.

4.2 Formalised specification
We write the initial specification in a constrained subset of
the Haskell programming language. The local state machine
is defined as an algebraic data type, and each of the seL4CP
1From the perspective of the local state machine, oracles predict the future,
hence the name.



APIs is defined in the form of a weakest precondition: for
each API call f() and property 𝜑 we describe the weakest
condition 𝐹 (𝜑) under which the call f() either does not
terminate, or it terminates and upon termination successfully
establishes the condition 𝜑 . The correctness guarantees are
also specified: e.g. the handler loop iteration gets annotated
with explicit pre- and postconditions requiring that property
★ holds.

4.3 Implementation Relation
We can now verify the libsel4cp implementation against
this local specification. This requires a model of the seL4
kernel state, and an implementation relation that relates
a momentary state 𝑘 of the underlying seL4 kernel to the
momentary state ℎ of the local seL4CP state machine. This
implementation relation ℎ ∼ 𝑘 holds true if, and only if, the
current seL4 kernel state accurately implements the local
seL4CP state.
To define this relation inside the Haskell specification,

we also need a state machine describing (a part of) the
seL4 kernel state, and an axiomatisation of how seL4 kernel
calls change this state. Fortunately, there is already an exe-
cutable model of the seL4 kernel written in Haskell, which
is an important intermediate artefact in the seL4 correctness
proof [Klein et al. 2014], and is therefore kept in sync with
kernel changes (although it is not verified). The kernel state
we use as the domain of the implementation relation is a
manually derived (i.e. presently unverified) small projection
(restriction to a tiny subset) of the executable Haskell model.
Similarly to the seL4CP API calls, the seL4 kernel calls are
also axiomatised in terms of weakest preconditions. These
do not need to be full specifications of all possible kernel
calls: they only specify the effects of those calls that we know
will occur while executing the libsel4cp implementation,
and forbid all others.
In seL4 all system objects and resources are accessed

through capabilities [Dennis and Van Horn 1966]. seL4 capa-
bilities are part of kernel state and are referenced at user-level
by references (CSpace indices).
Recall that the static configuration of the system (i.e. the

SDF spec used to generate it) is one of the constituent parts
of the local state machine for the seL4CP. The implementa-
tion relation relates the static configuration of the system to
the capability distribution in the corresponding implementa-
tion kernel state. This relation is defined in a way such that
exactly one capability distribution corresponds to a valid im-
plementation of a SDF spec. In Section 5.2 we describe how
knowing this capability distribution allows us to implement
formally verified system initialisation for seL4CP systems.

seL4CP SDK

Isabelle
SDF

User-supplied
ELF binaries

libsel4cp.c
init.c

User-supplied
ELF binaries

Isabelle
SIMPL

seL4CP
SDK

Isabelle
CapDL

Translation Validation Proof

CapDLseL4CP SDK
User-

supplied
SDF config

Executable
System
Image

seL4CP SDK

seL4CP SDK

SydTV-GL
Graph Lang.

Automated
ProofGordian + z3

CapDL tool+ 
seL4CP SDK

Figure 2: The full verification pipeline for the auto-
mated verification of the seL4 Core Platform library
and the translation validation of the CapDL export.
Formal artefacts are green, informal ones blue. Yellow
arrows indicate new translation and verification tools
developed over the course of the project, light grey
arrows are the result of prior work. The dashed line
separates the two sets of proofs (CapDL generation and
libsel4cp implementation).

Once the implementation relation is defined, the local
correctness of the implementation can be established by
showing that:

(1) the libsel4cp implementation maintains the imple-
mentation relation (simulation-proof like), i.e. if ℎ ∼ 𝑘

holds for some platform state ℎ and corresponding
kernel state 𝑘 , and making an seL4CP API call f() will
leave the platform in some new state ℎ′, then execut-
ing the implementation of f() starting from a kernel
state 𝑘 leaves the kernel in some related state 𝑘 ′ (i.e.
for all ℎ, 𝑘 , if ℎ ∼ 𝑘 holds then ℎ′ ∼ 𝑘 ′ holds);

(2) the implementation upholds all the correctness guar-
antees (e.g. that the main handler loop provides the ★
guarantee defined above).

The final formalised specification consists of 812 lines of
Haskell code. The use of the constrained subset of Haskell
is meant to ensure that the specification can be faithfully
rendered in the very limited specification language used by
the SMT solvers in the process of automated verification.



seL4CP Global Spec
(trace semantics)

seL4 Kernel
Abstract Spec

seL4CP Local Spec
(Haskell/SMTLIB2)

libsel4cp implementation
(C)

seL4 Kernel Local Spec
(Haskell/SMTLIB2)

Figure 3: Relationships between specifications for
libsel4cp verification. Solid arrows: formally verified
correspondence as part of this work, red arrows indi-
cate correspondence proofs not yet complete at time
of writing; dashed arrows: unverified/unimplemented.
The dark green box represents the abstract spec agains
which the seL4 kernel’s implementation was verified.

5 VERIFICATION PIPELINE
The automated verification of the seL4CP implementation
proceeds via multiple stages (see Figure 2) and reuses a num-
ber of tools and libraries developed for the seL4 kernel ver-
ification effort. This is not just for convenience: it reduces
the risk of semantic mismatch, where the assumptions of
one artifact in the proof chain may not be satisfied by the
guarantees of the previous. Such mismatches can be subtle
and easily obscured by unverified correspondences.

5.1 Verifying libsel4cp

The C implementation of libsel4cp is first processed by the
same C parser that is used in seL4 kernel verification [Klein
et al. 2014]. This tool translates the C source code into the
SIMPL programming language [Schirmer 2006], which has
a well-defined operational semantics in Isabelle/HOL. This
allows us to use the very same C semantics as the kernel veri-
fication. In the next step, we perform a semantics-preserving
translation of the SIMPL code into a control-flow graph in the
SydTV-GL language, using the existing SimplExport tools.
SydTV-GL is a common intermediate language, able to

represent essentially arbitrary, unstructured control flow. It
is already used in the binary verification of the seL4 ker-
nel [Sewell et al. 2013] (and should eventually enable ex-
tending the libsel4cp correctness proof to the binary). We
manually transcribe the seL4CP Haskell specification (Sec-
tion 4.2) into the quantifier-free theory of arrays and bit
vectors (QF_ABV) implemented in SMTLIB2, a standard input-
output format for SMT solvers. Figure 3 shows how the
various specifications are connected.

We have developed a new tool, Gordian, to verify the C
code represented by the control flow graph. Specifically, Gor-
dian takes the SMTLIB2 QF_ABV specification, as well as the
exported SydTV-GL graph, annotates the graph with the

specification, then generates a single logical verification con-
dition, using a variant of the weakest-precondition calculus
for unstructured programs of Barnett and Leino [2005]. This
verification condition is then passed to an SMT solver, which
either proves the condition or provides a counter-model. If
the verification condition is proved successfully, the imple-
mented C function satisfies its specification.

On a successful run, the verifier establishes that the given
C functions are functionally correct with respect to the pro-
vided specification, and provides strict guarantees about the
absence of common programming errors including:

• null pointer dereferences and inappropriate memory
accesses;

• arithmetic overflows and exceptions (signed integer
overflows, division-by-zero, invalid bit shifts, invalid
conversions);

• undefined behavior such as using the values of unini-
tialised local variables.

The SydTV-GL Export of libsel4cp consists of 3,540 lines
of code. The Gordian tool is able to verify the functional cor-
rectness of the main handler loop of the seL4CP (condition
★ above). Using the z3 SMT solver as the main backend, this
verification takes about 20 seconds on a desktop computer.
The proof is fully automated, no manual proof effort is re-
quired. In experiments, we found the tool resilient to code
changes: when tested on multiple (correct and incorrect) mi-
nor variations of the handler loop, it always produces the
expected result (verification or counter model).

5.2 Verified system initialisation
Any properties proved about the system will only hold if it is
correctly initialised. We can achieve this by using a formally
verified system initialiser.

CapDL is a language for describing access rights in seL4-
based systems [Kuz et al. 2010]. CapDL specifications can be
used to track which objects and entities have access to which
seL4 capabilities, and provide complete descriptions of the
capability distribution in a system running on the seL4 ker-
nel, making CapDL an extremely powerful and versatile tool
for managing seL4-based systems. There are multiple tools
which can initialise seL4-based systems into a given CapDL
distribution: these include the original capdl-loader, writ-
ten in C and maintained by the Trustworthy Systems Group,
and a new Rust CapDL loader [Spinale 2023]. There is also
a formally verified system initialiser, called case-init for
historical reasons, which is written in the CakeML language
that has a verified compiler [Tan et al. 2016].
We augment the seL4CP SDK with functionality for au-

tomatically generating CapDL language output correspond-
ing to the system specification. Since the SDK is written in



Python, we can reuse the well-tested and maintained preex-
isting Python CapDL bindings for this development.
Since it is not possible to formally verify the functional

correctness of the Python SDK directly, we implement trans-
lation validation: a correspondence between the input SDF
and the output CapDL is shown post hoc, in each instance.We
accomplish this by transcribing a part of the implementation
relation into Isabelle/HOL. The input SDF and the output
CapDL are both imported into Isabelle/HOL (one as the static
platform configuration, the other as the kernel state), and a
simple automated proof script verifies that the implementa-
tion relation holds between them, excluding the part of the
relation pertaining to the contents of virtual address spaces.
The verified CapDL already allows us to use either the

capdl-loader or the rust-capdl-loader to initialise seL4
Core Platform systems.2 The formally verified case-init

tool does not support the 64-bit Arm architecture yet, but
once ported, the seL4CP will have fully verified system ini-
tialisation.

6 THREATS TO VALIDITY
We only prove functional correctness between the induced
semantics for the C code and its specification, so the compiler
and linker need to be trusted. This gap may be bridged by
combining our tool with the existing seL4 binary-verification
toolchain, which ensures that the seL4 kernel proofs apply
to the compiled kernel binaries. We do not yet verify the
absence of stack overflows.
The proof work is done by SMT solvers: we therefore as-

sume that the SMT solver used is functionally correct and
is invoked correctly. Since we thoroughly test and check
the correctness of the different transformations in the Gor-
dian tool, we trust that it generates the correct SMT queries
required to prove condition ★, but we have not formally
verified it.

We have to trust that the sel4cp tool correctly exports
its SDF input to Isabelle/HOL. In practice, this is a straight
forward data transformation which is amenable to manual
inspection.
As always, one also has to make some bottom-level as-

sumptions about the physical world and other code running
in the system: these have to be left to future work (where
possible) or have to be validated by empirical means. If these
assumptions are not met, faults can still occur. In our case,
the assumptions are that the hardware works as specified, the
kernel has been loaded correctly, and that the libraries out-
side the scope of the verification project, such as libseL4,
also satisfy the properties stated in the spec. The correct

2The latter requires a fork of the seL4 Core Platform that does not use the
mixed-criticality scheduling features of the kernel.

initialisation by sel4cpinit is assumed unless the verified
case-init is used.

7 CONCLUSIONS
Our newly developed Gordian verification tool has success-
fully verified the functional correctness of the main handler
loop of libseL4. We also have achieved a verified mapping
of the system specification to the CapDL formalism, which
allows using the verified case-init system verifier (subject
to resolving compatibility issues). Thanks to the use of SMT
solvers, the proofs are fully automated, and no manual proof
effort is required.
All artefacts discussed in this paper are open-sourced,

see https://trustworthy.systems/projects/TS/sel4cp/
verification/.

ACKNOWLEDGMENTS
We thank Ben Leslie for developing seL4CP, Nick Spinale for
the Rust CapDL loader, and the UK National Cyber Security
Centre (NCSC) for financial support. Most of all, we grate-
fully acknowledge the contributions of former Trustworthy
Systems member Zoltan A. Kocsis, who is the brain behind
the work but was unable to be listed as an author due to his
personal stand against mandatory ORCID registration.

REFERENCES
Mike Barnett and K. Rustan M. Leino. 2005. Weakest-Precondition of Un-

structured Programs. In ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE). Lisbon, PT.

Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics for
Multiprogrammed Computations. Commun. ACM 9 (1966), 143–155.

Gernot Heiser, Lucy Parker, Peter Chubb, Ivan Velickovic, and Ben Leslie.
2022. Can We Put the "S" Into IoT?. In IEEE World Forum on Internet of
Things. Yokohama, JP.

C.A.R. Hoare. 1978. Communicating Sequential Processes. Commun. ACM
21 (1978), 666–77.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Comprehensive For-
mal Verification of an OS Microkernel. ACM Transactions on Computer
Systems 32, 1 (Feb. 2014), 2:1–2:70.

Ihor Kuz, Gerwin Klein, Corey Lewis, and Adam Christopher Walker. 2010.
capDL: A Language for Describing Capability-Based Systems. In Asia-
Pacific Workshop on Systems (APSys). New Delhi, India, 31–35.

Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser. 2018.
Scheduling-Context Capabilities: A Principled, Light-Weight OS Mecha-
nism for Managing Time. In EuroSys Conference. ACM, Porto, Portugal,
14.

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen. 2019. Sky-
Bridge: Fast and Secure Inter-Process Communication for Microkernels.
In EuroSys Conference. ACM, Dresden, DE, 15.

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak,
and Xi Wang. 2019. Scaling symbolic evaluation for automated verifi-
cation of systems code with Serval. In ACM Symposium on Operating
Systems Principles. 225–242.

Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James
Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel: Push-Button

https://github.com/seL4/capdl/tree/master/python-capdl-tool
https://trustworthy.systems/projects/TS/sel4cp/verification/
https://trustworthy.systems/projects/TS/sel4cp/verification/


Verification of an OS Kernel. In ACM Symposium on Operating Systems
Principles. ACM, 252–269.

Lucy Parker. 2022. The seL4 Device Driver Framework (sDDF). Talk at the
seL4 Summit. https://sel4.systems/Foundation/Summit/abstracts2022#a-
sDDF

Sean Peters, Adrian Danis, Kevin Elphinstone, and Gernot Heiser. 2015. For
a Microkernel, a Big Lock Is Fine. In Asia-Pacific Workshop on Systems
(APSys). ACM, Tokyo, JP, 7.

Norbert Schirmer. 2006. Verification of Sequential Imperative Programs in
Isabelle/HOL. Ph.D. Dissertation. Technische Universität München.

Thomas Sewell, Magnus Myreen, and Gerwin Klein. 2013. Translation
Validation for a Verified OS Kernel. In ACM SIGPLAN Conference on

Programming Language Design and Implementation. ACM, Seattle, Wash-
ington, USA, 471–481.

Nick Spinale. 2023. Rust-seL4 CapDL Loader. https://gitlab.com/
coliasgroup/rust-seL4/-/tree/main/crates/capdl

Yong Kiam Tan, Magnus Myreen, Ramana Kumar, Anthony Fox, Scott
Owens, andMichael Norrish. 2016. A New Verified Compiler Backend for
CakeML. In International Conference on Functional Programming. Nara,
Japan, 14.

Trustworthy Systems. 2023. The seL4 Core Platform. https://trustworthy.
systems/projects/TS/sel4cp/

https://sel4.systems/Foundation/Summit/abstracts2022#a-sDDF
https://sel4.systems/Foundation/Summit/abstracts2022#a-sDDF
https://gitlab.com/coliasgroup/rust-seL4/-/tree/main/crates/capdl
https://gitlab.com/coliasgroup/rust-seL4/-/tree/main/crates/capdl
https://trustworthy.systems/projects/TS/sel4cp/
https://trustworthy.systems/projects/TS/sel4cp/

	Abstract
	1 Introduction
	2 seL4 Core Platform Overview
	3 Global Correctness
	4 Local Correctness
	4.1 Approach
	4.2 Formalised specification
	4.3 Implementation Relation

	5 Verification Pipeline
	5.1 Verifying libsel4cp
	5.2 Verified system initialisation

	6 Threats to Validity
	7 Conclusions
	Acknowledgments
	References

