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Abstract
We introduce Pancake, a new language for verifiable, low-

level systems programming, especially device drivers. Pan-

cake eschews complex type systems to make the language

attractive to systems programmers, while at the same time

aiming to ease the formal verification of code. We describe

the design of the language and its verified compiler, and

examine its usability, performance and current limitations

through case studies of device drivers and related systems

components for an seL4-based operating system.
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1 Introduction
Low-level systems programming is notoriously error-prone.

While widespread use of the C programming language is

not the only culprit, its unsafety and complicated semantics

certainly do not help. A significant amount of programming

language research has therefore been invested in the creating

programming languages for safe systems programming.

In this paper, we introduce a new systems programming

language, Pancake, aimed at enabling formal verification of

real-world device drivers. Unlike previous languages, the de-

sign of Pancake emphasises ease of verification over achiev-

ing safety via, e.g., type safety or language restrictions.

Why device drivers? Driver bugs are the leading cause

of OS compromise, accounting for the majority of the 1,057

CVEs reported for Linux in the period 2018–22 [MITRE Cor-

poration 2023]—clearly they should be the #1 targets of OS

verification efforts.

Furthermore, when starting with the formally verified

seL4 microkernel [Klein et al. 2014], all the remaining

OS code that directly interfaces to hardware is in device

drivers. Hardware interfaces require dealing with hardware-

specified data layouts and access protocols, something not

possible in most high-level languages. Making a language

suitable for drivers ensures that it can be used for all OS code.

Why not C? While C is the de-facto standard systems

language, from a verification standpoint, C’s semantics has

a number of undesirable properties: a complicated mem-

ory model, underspecified order of evaluation, and the need

https://orcid.org/0000-0002-6406-7875
https://orcid.org/0000-0002-7069-0831
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to prove the absence of undefined behaviour at almost ev-

ery step. While the seL4 verification demonstrated that

these challenges can be overcome, even when verifying

machine code without relying on formal properties of a

compiler [Sewell et al. 2013], the cost was high: $350/SLOC

just for verifying the C code, and this cost continues to im-

pact evolution of the kernel. While using a verified com-

piler [Leroy 2009] with the verification toolchain VST [Ap-

pel 2011] can help, this has to date not resulted in verified

real-world drivers.

Why not type safety? A popular approach to better sys-

tems programming languages is incorporating advanced lan-

guage features that make certain safety properties hold by

construction. For example, Cogent has a linear type disci-

pline that prevents memory leaks [Amani et al. 2016], Rust’s

borrow checker enforces ownership and lifetimes [Klabnik

and Nichols 2017], and Cyclone incorporates garbage collec-

tion and ML-style polymorphism [Jim et al. 2002].

Such features can eliminate whole classes of bugs, or at

least reduce bug density, at the cost of making the language

semantics and implementation more complicated. Yet they

still fall short of ensuring full functional correctness, which

is the main focus of our work, and it is unclear how helpful

advanced language features are in achieving this goal.

What then? Our working hypothesis is that in order to

drive down the cost of verified systems code, we need a

language less complicated than C, but not necessarily a safer
language. Consider the following points:

• Functional correctness proofs produce (and consume) sig-

nificantly stronger properties than type systems typically

guarantee. Imagine proving this Hoare triple:

{𝑛 ∈ N} 𝑥 := fib(𝑛) {𝑥 = 𝑛th Fibonacci no.}
A sound static type checker might give us the following

information nuggets:

fib :: int → int 𝑛 :: int 𝑥 :: int,

but their value to a correctness proof is unclear. The type

annotation on 𝑛 gives us strictly less information than

the precondition, and the type annotation on 𝑥 gives us

strictly less information than the postcondition. Knowing

the type of fib does not obviate the need to dig into its

implementation details in the proof.

A stronger type system could givemore useful information,

but unless it is so powerful (and so undecidable) as to be

a full-featured proof calculus, the information we need

will almost always be stronger than what the type system

provides.

• The information provided by a type system is only useful if

the type system is sound.Most practical languages have un-

verified type systems, or type systems with known sound-

ness bugs. Type systems can be verified [Naraschewski

and Nipkow 1999], but type soundness proofs tend to be

delicate, and have subtle interactions with seemingly mi-

nor changes to a language. Maintaining a type soundness

proof for a living language can significantly bog down

development.

• The safety guarantees of a language only hold if no back-

doors are used. However, in low-level systems program-

ming, it is often necessary to break out of a type-safe

environment. For example, device driver code must adhere

to hardware-specified data locations, layouts and access

protocols. Hence driver code written in safe languages

must use significant amounts of unsafe code, effectively es-

capes to C [Astrauskas et al. 2020; Evans et al. 2020], which

mostly eliminates the benefit of using a safe language.

• A simple formal semantics will be amenable to simpler

proofs, while more safety features tend to make the seman-

tics more complicated. Provided such a formal semantics

exists in the first place: despite years of research [Jung et al.

2018; Kan et al. 2018; Wang et al. 2018; Weiss et al. 2019],

there is still no complete formal specification of Rust.

Enter Pancake. We aim for a radically minimal design

that offers a sufficiently expressive interface for writing low-

level systems programs, such as device drivers, alongside a

number of advantages for formal verification. Most impor-

tantly, the language is completely specified by a straight-

forward formal semantics that fits in a few hundred lines

of HOL4 code, with a simple memory model, no notion of

undefined behaviour, and no ambiguities in evaluation order.

Pancake is an unmanaged language with no static type

system, at a level of abstraction between C and assembly. The

type system and memory model are kept as simple as possi-

ble: the only kinds of data are machine words, code pointers,

and structs. Programs cannot inspect the stack, which sim-

plifies semantics. The heap is statically allocated; there is no

equivalent of malloc and free. There are no concurrency

primitives—making drivers single-threaded [Ryzhyk et al.

2009, 2010] significantly simplifies verification, maps well

onto the modular design of microkernel-based OSes, and is

routinely used for drivers on seL4 without undue impact on

performance [Heiser et al. 2022].

Contributions. Pancake is work in progress; we have not

yet completed a device-driver verification case study, hence

cannot yet confirm our working hypothesis. Nevertheless,

we present two key technical contributions:

1. A formally verified end-to-end compiler (Section 2), which

allows safety and liveness properties of Pancake programs

to carry over to the machine code that runs them. Our

compiler reuses significant parts of the compiler backend

and proofs for the CakeML compiler [Tan et al. 2019].

Crucially, to preserve liveness properties, the compiler
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performs a sound static analysis that guarantees the ab-

sence of premature termination arising from stack over-

flows. The compiler and its verification is free software,

and available online.
1

2. We demonstrate that Pancake is usable by systems pro-

grammers brought up on C, as confirmed by a case study

(Section 3) consisting of serial drivers and multiplexer

components for serial and network devices for the seL4

Core Platform [Heiser et al. 2022]. While the study shows

a performance penalty compared to equivalent compo-

nents written in C, our networking system still manages

to outperform Linux.

Below we discuss the design of Pancake and the two contri-

butions, as well as on-going and planned work (Section 4).

2 Pancake Overview
Pancake leverages the compiler backend of CakeML [Kumar

et al. 2014], an impure functional programming language

similar to Standard ML, with an optimising compiler verified

all the way from source syntax to machine code. This elimi-

nates the compiler from the Trusted Computing Base (TCB),

and avoids the need for fragile validation of the compiler

output on a program-by-program basis [Sewell et al. 2013].

CakeML itself is not suited for low-level systems pro-

gramming in resource-constrained environments, where pre-

dictable performance is important. Its memory management

is all handled by the language runtime, and memory alloca-

tion may trigger a stop-the-world garbage collector.

Pancake, in contrast, is explicitly designed to be close to

hardware, and not managed. Yet, by integration into the

CakeML ecosystem, it can reuse many of the existing cor-

rectness proofs for the CakeML compiler,
2
and possibly other

infrastructure developed for verification of CakeML code.

2.1 Design
For ease of verification and predictability of compilation, we

keep Pancake’s type system and memory model as simple

as possible. The type system has only three kinds of data:

1. Machine words of the architecture’s word size.

2. Labels, which are essentially code pointers.

3. Structs, whose fields are machine words, labels, or

nested structs.

Local variables are stack-allocated, and the language does

not allow pointers into the stack. Data may also be allocated

on a static heap: there is no equivalent of malloc and free.
Reads and writes to the heap can be performed byte-wise or

word-wise.

1http://code.cakeml.org for source, or http://cakeml.org for pre-packaged
versions. Note that Pancake is fully integrated into the CakeML compiler,

rather than a stand-alone release.

2
Specifically, we can reuse the correctness proofs of everything fromWord-

Lang downwards in Figure 3, and the compiler bootstrapping machinery.

exp := Const word | Var string | Label string
| Struct exp★ | Field num exp
| Load shape exp | LoadByte exp
| Op binop exp★ | Cmp cmp exp exp
| Shift shift exp num | BaseAddr

prog := Skip | Dec string exp prog
| Assign string exp | Store exp exp
| StoreByte exp exp | Seq prog prog
| If exp prog prog | While exp prog
| Break | Continue | Call ret exp exp★

| Raise string exp | Return exp | Tick
| ExtCall string exp exp exp exp

Figure 1. Abstract syntax of Pancake.

while true {
#tx_fifo_busy(tmp_c_uart, tmp_clen_uart,

tmp_a_uart, tmp_alen_uart);
tx_fifo_ret = ldb tmp_a_uart;
if tx_fifo_ret <> 1 {

strb c_arr_uart, tmp;
#putchar_regs(c_arr_uart, clen_uart,

a_arr_uart, alen_uart);
break;

}
}

Figure 2. Pancake code snippet (concrete syntax)

Figure 1 shows the current abstract syntax of Pancake, di-

vided into expressions (exp) and statements (prog). It includes
the standard structured programming primitives, operators

for manipulating words, and primitives for reading from

and writing to the heap. The programmer is responsible for

declaring whether function calls (Call) are tail calls or re-
turning calls by specifying ret appropriately. ret may also

contain exception handlers, which will catch any exceptions

raised (using Raise) by the callee. ExtCall represents foreign
function calls, and is currently the only way for Pancake

programs to interact with the outside world. Data is passed

using byte arrays, allocated from within Pancake’s statically

allocated heap.

Expressions are designed to be completely free of side

effects: function calls are statements, and that there is no

equivalent of the ++ operators familiar from e.g. C. This sim-

plifies verification and compilation by making the evaluation

order of expressions immaterial.

The flavour of the concrete syntax is illustrated by the

code snippet in Figure 2. It is taken from the serial driver

discussed in Section 3. Foreign function calls (prefixed with

#) are used to communicate with the device.

http://code.cakeml.org
http://cakeml.org
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Figure 3. Overview of CakeML and Pancake compiler stack.

2.2 Compiler
Figure 3 illustrates how the Pancake compiler fits into the

CakeML compiler backend. Each box denotes an intermedi-

ate language, and each arrow denotes a compiler pass.

The Pancake compiler enters the CakeML compiler back-

end in theWordLang intermediate language.WordLang

is assembly-like in its very low-level data representation

(machine words are the only type), but in terms of control

flow it is a structured programming language similar to C.

Some features of WordLang, such as its garbage collection

primitive, are useful when compiling functional programs,

but not used by Pancake.

The Pancake compiler goes through two intermediate

languages beforeWordLang. The first, CrepLang, is very

similar to Pancake but does not feature structs. Thus, the

main purpose of this compiler pass is to flatten structs. The

second, LoopLang, allows expressions only on the RHS of as-

signment statements (c.f. Figure 1), and annotates loops with

liveness information for its stack variables. This facilitates

the eventual transition from structured code to instruction

sequences, and allows us to compile away loops using tail

recursion (because loops are absent in WordLang).

The compiler is implemented as shallowly embedded func-

tions in the HOL4 theorem prover [Slind and Norrish 2008],

as well as a stand-alone binary compiler obtained by in-logic

bootstrapping [Myreen 2021]. The former is used for in-logic

evaluation, which can generate very strong certificate theo-

rems about the machine code produced by individual com-

piler runs. The latter is suitable for a more humane workflow,

with compilation times in seconds instead of hours.

2.3 Semantics
Pancake inherits CakeML’s semantics style, functional big-
step semantics [Owens et al. 2016], which uses an evaluation

function from programs to results. In standard relational

big-step semantics, a program is given meaning by a relation
between programs and results. The functional style is similar

to a language interpreter, but not necessarily executable.

All the intermediate languages shown as coloured boxes

in Figure 3 have this kind of semantics. This style simpli-

fies formal proofs of compiler correctness by making the

semantics more amenable to term rewriting, at the expense

of making the treatment of non-termination awkward. The

top-level semantics of a Pancake program is an element of

the following datatype:

datatype behaviour = Diverge (io_event llist)
| Terminate outcome (io_event list)
| Fail

The key point is that a program’s behaviour is defined
in terms of a finite (list) or possibly infinite (llist) trace of
I/O events. An io_event denotes a returning foreign function

interface (FFI) call (ExtCall from Figure 1), together with its

arguments and return value.

Pancake programs that communicate with the outside

world via the FFI have semantics that is parameterised on

a foreign function oracle modelling the outside world. The

oracle describes the effects of FFI calls: how they change the

state of the outside world, and what data they pass back to

the Pancake program.

This model is sufficiently expressive to enable verification

of several key correctness properties. First, we can prove the

absence of crashes and undefined behaviour arising from

generic programming faults, by proving that drivers cannot
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Figure 4. sDDF networking architecture. Coloured boxes

are modules, grey boxes shared data structures.

Fail. More interestingly, we can show compliance with pro-

tocols for interacting with devices and operating systems, by

proving temporal properties about the io_events. Real-time

properties are often important in device drivers, but are for

now left out of scope; but as a first approximation, we can

include events that model delays in the io_events without
changing the current model.

2.4 Compiler Correctness
We have verified the Pancake compiler backend in HOL4.

That is, we proved that for any Pancake program that does

not Fail, the behaviour of the Pancake source program and

the generated machine code is equal.

The verification proves the absence of out-of-memory

errors: we have implemented and verified a compilation

phase that can statically calculate an upper bound on stack

usage, and proved this bound correct using our previous

work on space-cost semantics [Gómez-Londoño et al. 2020].

This tells systems designers exactly how much space they

must reserve for the Pancake stack in a statically allocated

environment. Obviously, this does not apply to programs

featuring non-tail recursion, which can exhaust the stack,

but such recursion is generally not useful for systems code

such as drivers.

We proved the correctness of Pancake-specific compiler

phases (Pancake to WordLang), and then composed with

the correctness proof fromWordLang down to the target

established from the CakeML backend proof. This compo-

sition required some care in minimising the implication of

CakeML language features (e.g. garbage collection) as well

as in setting out low-level information that Pancake needs.

3 Case Study: Serial Driver and
Multiplexers

Figure 4 shows a modularised networking system based on

the seL4 Device Driver Framework (sDDF) [Parker 2023],

which is designed to provide high-performance I/O for an

seL4-based high-assurance operating system (OS) using the

seL4 Microkit [Heiser et al. 2022; Trustworthy Systems 2023].

The design emphasises implementation simplicity for robust-

ness and verification, with each component a sequential,

event-driven program in its own address space. Components

use shared-memory communication synchronised by seL4-

provided semaphores.

The design emphasises strong separation of concerns: each

component has a single purpose, e.g. the device driver solely

translates a hardware-specific device interface to a hardware-

independent device-class interface. Devices are shared be-

tween multiple clients using explicit multiplexer (Mux) com-

ponents, and explicit copiers are used where required to

isolate clients from each other.

Currently, each Pancake sDDF component consists of at

least two files, one C and one Pancake. The C component

contains a set of functions callable via Pancake’s FFI (Sec-

tion 2.3). The Pancake component contains the majority of

the logic, and utilises the FFI for interacting with memory-

mapped device registers, and the shared memory regions

used for inter-component communication. The C code also

allocates the memory used for Pancake’s stack and heap.

We implement three components in Pancake:

Serial Driver: existing driver transcribed from C;

Serial Mux: new multiplexer for serial driver;

Ethernet Mux: existing receive (Rx) and transmit (Tx) Eth-

ernet Muxes, plus Rx Copier, transcribed from C.

Table 1 compares the source-code sizes of the Pancake (+C)

Ethernet Mux and the original C-only implementation. A

portion of the Pancake C code is taken from the basis_ffi
template (from the CakeML repository), which includes some

helper functions for converting variables to byte sized ar-

rays, as well as initialising Pancake’s memory regions. The

above figures also exclude the boilerplate cml_exit() and
cml_clear() functions, which originally are used to destroy
the process after Pancake has finished execution, and clear

Pancake’s code buffer region from the instruction cache.

These functions are expected by the Pancake compiler but

as we do not invoke these functions, they can be left stubbed

out in our implementation. A significant contributor to the

Pancake C total is the packing and unpacking of arguments

and return values.

We evaluate the performance of the Pancake Muxes

against the C versions by interfacing them to the same C

Ethernet driver, and a single client, which receives UDP

packets and sends them back unmodified. We evaluate this

configuration on a Freescale i.MX 8M Mini quad SoC with

2GiB RAM running at 1.2 GHz, restricted to using a single

core. Our system uses a minimally adapted lwIP protocol

stack [Dunkels 2001], which is linked against its client. We

use ipbench [Wienand and Macpherson 2004], running on

Component Pan Code Pan C Code Pan Total C Total

mux_tx 81 206 287 85

mux_rx 179 314 493 222

Table 1. Comparison of source code size (SLOC) of Pancake Mux

components and the original C implementation.
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Figure 5. Performance of Ethernet multiplexer written in

Pancake vs C, in terms of achieved throughput (Xput) and

observed CPU utilisation (CPU).

a 10-node x86 cluster to generate network load, measuring

achieved throughput and latency of the returned packets.

Figure 5 shows the received throughput and CPU utilisa-

tion of the two implementations. We see that the Pancake

implementation handles the load until we reach requested

throughputs of 900 Mb/s, where CPU utilisation reaches 92%

and throughput stagnates at 858Mb/s, whereas the C im-

plementation achieves wire speed. At 100Mb/s throughput

(where no batching occurs), CPU load of C is 16%, compared

to 25% for Pancake, a 50% overhead.

One cause of this overhead is the re-running of initialisa-

tion code when entering Pancake. Pancake presently expects

to be a stand-alone program that starts and runs to comple-

tion. In contrast, we invoke Pancake as an event handler,

requiring redundant execution of initialisation code. This

initialisation code is auto-generated by the compiler and

placed at the beginning of the main function in the assembly

output as a series of .byte instructions. When compiling

a Pancake program consisting of a single return statement,

the compiler generates an assembly file with 211 SLOC, with

103 of these lines being the .byte instructions in the main
function. We plan to remove the need for this in future work.

Another source of overhead is that the Pancake compiler

optimises less aggressively than C. The reference C imple-

mentation is compiled with the highest level of optimista-

tions available. However, in our Pancake implementation,

the Pancake segments of the Rx and Tx Mux components do

not receive such optimisations. When building the reference

C implementation with no optimisations enabled for the Rx

and Tx components, we find similar trends to the original

Pancake benchmarks. We achieve a maximum of 828 Mb/s at

1 Gb/s requested throughputs, with CPU utilisation peaking

at 94%.

Figure 6 compares the Pancake/seL4 setup to a Linux v6.1.1

system using buildroot and running on the same hardware,

with a simple user program which reads from a socket using
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Figure 6. Linux vs Pancake Mux Benchmark

the recvmsg() system call, and then returns the packets

using sendmsg(). We see that Linux throughput plateaus

at 700Mb/s, when it saturates the CPU. Linux CPU load at

100Mb/s is 36%, 44% above that of the Pancake configuration.

4 Current and Future Work
While still a work in progress, Pancake is already usable for

low-level systems programming (Section 3), with strength-

ened assurance resulting from a verified compiler (Section 2).

Here we outline some of our current and planned activities

for making the language fully fit for purpose and to build a

verification framework for Pancake programs.

4.1 Shared-Memory Semantics
Currently, the Pancake semantics assumes exclusive owner-

ship of the statically allocated heap memory region and that

this memory is not observable by the environment. These

assumptions do not hold for memory-mapped device regis-

ters, which are special memory locations used for interfacing

with device hardware. Nor does it hold when devices directly

write to memory (DMA) which is also accessed by the driver.

This limitation forces awkward workarounds (Section 3)

and code bloat (Table 1): Any interaction with the device is

mediated by FFI calls to C, adding a layer of indirection as

part of the TCB. Native Pancake support for interacting with

shared memory will eliminate this indirection.

The key research challenge is that the ISA models used

by the compiler backend [Tan et al. 2019] are inherently

sequential, and 100+ KSLOC of compiler correctness proofs

inextricably rely on this fact. Previous work has integrated

driver models for specific devices directly into an ARM ISA

model with an interleaving semantics [Alkassar et al. 2007].

This approach would have to abandon much of the existing

proof base, and would not provide the modularity we need

for targeting multiple ISAs and devices. We are therefore

parameterising the language semantics on amodel for shared

memory, which supports proof reuse and provides flexibility

for incorporating arbitrary devices.
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We have introduced such a shared memory semantics into

the lower part of the compiler and verified the compilation

phase from assembly (LabLang in Figure 3) to machine code.

4.2 Interaction Tree Semantics
As discussed in Section 2.3, Pancake programs that commu-

nicate with the outside world have their semantics param-

eterised on an oracle that describes how the outside world

responds to observable events: how the world changes and

what data it makes available to the Pancake program. The

oracles are deterministic, which simplifies definitions and

compiler proofs but prevents modelling realistic devices,

which have inherent non-determinism in their interactions

with the outside world. The oracle model also requires de-

vice models to be provided up-front, making it difficult to

decouple reasoning about code and about devices.

A more promising approach is interaction trees [Xia et al.

2020], which represent the behaviour of a program as a (possi-

bly infinite) coinductive tree, with nodes representing actions

and branches representing possible environmental responses.

This model naturally accommodates non-determinism, and

obviates the need to have an oracle at all.

We have developed an interaction tree semantics for Pan-

cake. We are currently proving it sound and complete, and

are in the process of using it to verify the device drivers

described in Section 3.

4.3 Decompilation Framework
Pancake is designed to give programmers the fine-grained

control of low-level details necessary for systems program-

ming. But for verification, reasoning at a higher level of

abstraction is crucial for scalability. We plan to leverage pre-

vious work on decompilation into logic [Myreen et al. 2008],

where higher-level models are automatically generated from

the program source code, together with proofs that themodel

accurately describes the behaviour of the program, enabling

high-level proofs about low-level code with no gap in the

trust story.

While decompilation has been used on C [Greenaway et al.

2014] and machine code [Myreen et al. 2008], this earlier

work verified non-interactive code using traditional pre- and

post-conditions, techniques that are applicable only to termi-

nating programs. In contrast, device drivers are interactive

and should never terminate, requiring decompilation tech-

niques that target event-based specifications of potentially

non-terminating programs.

5 Related Work
We aim to use Pancake to make driver verification scale to

real-world, non-trivial drivers without cutting corners on

realism or soundness. Previous attempts to verify drivers ei-

ther left significant gaps between the analysed model and the

real code [Kim et al. 2008; Möre 2021; Penninckx et al. 2012],

or failed to demonstrate scalability beyond the most simple

serial drivers [Alkassar et al. 2007; Alkassar and Hillebrand

2008; Chen et al. 2016; Duan and Regehr 2010]. Specifically

such work did not deal with core characteristics of real dri-

vers, such as direct memory access (DMA) by the device.

Pancake will address these issues and our case study will be

a real-world ethernet driver.

We aim to prove drivers correct at the level of a convenient

source language, and then transport the proved properties to

the level of the machine code that actually runs. The Verified

Software Toolchain [Appel 2011] achieves similar aims using

a retargettable Separation Logic [Appel et al. 2014] on top

of CompCert C and the verified CompCert compiler [Leroy

2009]. However, when using VST, users developing verifica-

tion proofs are forced to deal with the intricacies that arise

from a C semantics. This can be mitigated if the programmer

takes care to use only a well-behaved subset of C. But even

then, even very basic operations such as integer arithmetic

can potentially trigger undefined behaviour, and this must

be considered in rigorous proofs. Pancake invites us to ask:

would it not be easier if this well-behaved subset was just

the whole language? Finally, we note that to the best of our

knowledge, VST has not been used for verification of device

drivers.

The earlier Cogent project [Amani et al. 2016] had much

the same aims as Pancake. It stalled however, partly because

systems programmers found it difficult to understand the

language, and work around its restrictions.

6 Conclusion
We have introduced Pancake, a programming language de-

signed for verifiable low-level systems programming. Our

initial experience with Pancake is encouraging, despite more

work being needed to create a language and verification

framework that are fully fit for purpose.

First, our case studies show that systems programmers

used to C find the language easy to understand and adapt to,

and sufficiently expressive to develop reasonably performant

device drivers. Second, the decision to build atop CakeML

has paid off from a proof-engineering point of view: we have

been able to reuse proofs for several key compilation passes,

including in particular register allocation.
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