
Eidolon: Adapting distributed
applications to their environment

A thesis submitted to the School of Computer Science and

Engineering at The University of New South Wales in

fulfilment of the requirements for the degree of Doctor of

Philosophy.

Daniel Potts

January 29, 2008

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational institu-
tion, except where due acknowledgement is made in the thesis. Any contribution
made to the research by others, with whom I have worked at UNSW or elsewhere,
is explicitly acknowledged in the thesis. I also declare that the intellectual content
of this thesis is the product of my own work, except to the extent that assistance
from others in the project’s design and conception or in style, presentation and
linguistic expression is acknowledged.

2

3

In loving memory of my sons Joshua and Jacob.

4

5

CONTENTS

1 Introduction 2
1.1 Overview . 2
1.2 Problem areas . 4
1.3 Revisiting distributed applications and middleware 6
1.4 Thesis contributions . 8
1.5 Thesis road-map . 9

2 Related Work 11
2.1 Background . 11

2.1.1 Shared memory communication 12
2.1.2 Message-passing communication 16

2.2 Optimising applications via protocol selection 17
2.2.1 Traditional protocols and middleware 17
2.2.2 Specialised protocols and middleware 18
2.2.3 Adaptive protocols and middleware 20

2.3 Wide-area distributed systems 22
2.4 Interoperable middleware . 25
2.5 Other approaches . 25
2.6 Multiple model applications . 26

3 The View Model 27
3.1 Conceptual model . 27

3.1.1 Non-overlapping views 30
3.1.2 Overlapping views . 32
3.1.3 Mapped views . 33

3.2 Properties of the model . 34

i

3.2.1 Layered abstraction . 35
3.2.2 Protocol selection . 37
3.2.3 Programming model independence 43

4 Eidolon: A Realisation of the View Model 45
4.1 Views . 45

4.1.1 View interface . 46
4.1.2 View clients and pagers 51

4.2 Interactions between views . 54

5 Eidolon Framework 59
5.1 Framework components . 60

5.1.1 Client and server structure 61
5.1.2 Configuring node view selection 61

5.2 Communication . 61
5.2.1 Network interconnects and protocols 62
5.2.2 Design . 64
5.2.3 Communication transport implementation 67

5.3 Wide-area data communication 69

6 Programming Views 71
6.1 Sequential- and release-consistent memory 71

6.1.1 Client interface . 71
6.1.2 Library interface . 71
6.1.3 Explicit update consistency 72
6.1.4 Strict consistency . 73
6.1.5 Multiple reader, multiple writer consistency 74
6.1.6 Home-based lazy release consistency 74

6.2 One-sided message passing . 75
6.2.1 Client interface . 76
6.2.2 Protocol implementation 78

6.3 Two-sided message passing . 79

ii

7 Experimental Verification and Evaluation 80
7.1 Run-time environment and execution scenarios 82

7.1.1 View configurations . 84
7.2 Optimisation and configuration experiments 85

7.2.1 Matrix multiply . 86
7.2.2 Red-black successive over-relaxation 96
7.2.3 3D-FFT . 98
7.2.4 Parallel scan . 101
7.2.5 TSP . 104
7.2.6 Quick sort . 108
7.2.7 Integer sort . 109
7.2.8 Single-sided MPI micro-benchmarks 113

7.3 Ease of use . 117
7.3.1 Simple process-based applications 118
7.3.2 API libraries . 119
7.3.3 New protocols . 119
7.3.4 New programming models 119

8 Using Eidolon Views 121
8.1 Explicit specification of views in application 122
8.2 Specification of views in a Grid environment 123
8.3 Applications . 124

9 Conclusion 126
9.1 Summary . 126
9.2 Thesis contributions . 127
9.3 Further work . 128
9.4 Closing remarks . 129

A Eidolon Internals 130

iii

LIST OF FIGURES

2.1 Home-based Lazy Release Consistency 15

3.1 A view’s behaviour specification, along with requirements of the
run-time environment, determines the components used to imple-
ment a view. 29

3.2 The FFT application running across two nodes, accesses View 1
and View 2 via their own view clients (VC). 30

3.3 An application with a single view for data sharing across all nodes
is equivalent to a traditional middleware. 31

3.4 Non-overlapping views: two views representing separate regions
of a traditional address space. Each view may provide different
data-sharing behaviour for the region they represent. 32

3.5 Overlapping views: used to represent the same data region, but
with different sharing semantics. 32

3.6 Mapped views: a mapping function is used to translate the data
and operations from one view into the other. 34

3.7 Conceptual separation of middleware of the view architecture. . . 36
3.8 An application using non-overlapping views for different data ac-

cess patterns. At the bottom of this figure we see how data propa-
gates for each view. 38

3.9 An example scenario where several systems and nodes are used
for running a release-consistent program in a Grid. 40

3.10 View structure and configuration for example scenario where sev-
eral systems and nodes are used for a running release-consistent
program in a Grid. 41

iv

4.1 Two address-space clients interacting over TCP/IP within a single
view. 52

4.2 A distributed application client writing to shared memory which
triggers communication to a view pager via VIOs. 54

4.3 Overlapping views are connected via a view binder (CX) client.
View interface operations are simply passed-through to the other
side. 55

4.4 Mapped views are connected via a view mapping client (CM).
This client performs translations on view interface operations as
they go from one view to the other. 56

4.5 A run-time environment (top) and view hierarchy (bottom) for a
long-running computation. 58

5.1 Framework for running various distributed applications. 60
5.2 Message is represented by a set of vectors 65
5.3 Transmitted message over Ethernet using zero-copy. 69

7.1 Eight processor dual ccNUMA environment. 83
7.2 Twenty processor multi-cluster environment. Cluster 1 nodes are

connected via 100Mbit/s Ethernet. Cluster 2 nodes are connected
via 1000Mbit/s Ethernet. The link between clusters is 100Mbit/s
Ethernet. 83

7.3 Twenty processor multi-cluster environment with a single view
encapsulating all processors. 84

7.4 Twenty processor multi-cluster environment with a second view
encapsulating the processors of cluster two. 85

7.5 Twenty processor multi-cluster environment with views encapsu-
lating each cluster and the processors of each machine. 85

7.6 Data access pattern for a single client when running matrix multi-
ply across 16 processors. 86

v

7.7 Two implementations of matrix multiply running on a multi-processor
system. The first is a cluster-based implementation capable of
running on clusters and multi-processor systems. The second is a
multi-threaded implementation, that runs faster through transpar-
ent utilisation of hardware shared memory. 88

7.8 Execution time speedup of matrix multiply when run in different
view configurations across the processors of two 4-way ccNUMA
machines. 89

7.9 Bandwidth utilisation between ccNUMA machines for a single
strict view configuration (top) and dual-strict multi-mrmw view
configuration (bottom) when running matrix multiply with 8 pro-
cesses. 90

7.10 Execution time speedup of matrix multiply benchmark when run
in different view configurations across the processors of a multi-
cluster. 91

7.11 Network bandwidth utilisation into (top) and out of (bottom) clus-
ter 2 for matrix multiply across 16 processors. 92

7.12 Network bandwidth utilisation into (top) and out of (bottom) a
dual SMP processor node for matrix multiply across 16 proces-
sors. 93

7.13 Number of requests in and out of the primary node for different
view configuration scenarios. A reduction in operations typically
corresponds to improved performance. 94

7.14 Data access pattern for a single client when running SOR across
8 processors. 96

7.15 Execution time speedup of SOR benchmark when run in different
view configurations across the processors of two 4-way ccNUMA
machines. 97

7.16 Bandwidth utilisation between ccNUMA machines for a single
view configuration (top) and dual-strict multi-mrmw view config-
uration (bottom) when running SOR. 98

7.17 Data access pattern for processor five running FFT. 99

vi

7.18 Execution time speedup of FFT when run in different view con-
figurations across the processors of two 4-way ccNUMA machines. 100

7.19 Bandwidth utilisation between ccNUMA machines for a single
view configuration (top) and dual-strict multi-mrmw view config-
uration (bottom) when running FFT. 101

7.20 Execution time speedup of FFT when run in different view con-
figurations across the processors of a multi-cluster. 102

7.21 Data access pattern for a client running parallel-scan. 103
7.22 Execution time speedup of parallel-scan when run in different

view configurations across the processors of two 4-way ccNUMA
machines. 104

7.23 Bandwidth utilisation between ccNUMA machines for a single
view configuration (top) and dual-strict multi-mrmw view config-
uration (bottom) when running parallel scan. 105

7.24 Data access pattern for a single client when running TSP across 8
processors. 106

7.25 Execution time speedup of TSP when run in different view con-
figurations across the processors of two 4-way ccNUMA machines. 106

7.26 Bandwidth utilisation between ccNUMA machines for a single
HLRC view configuration (top) and dual-HLRC view configura-
tion (bottom) when running TSP. 107

7.27 Data access pattern for a single client when running QS across 8
processors. 108

7.28 Execution time speedup of quick sort when run in different view
configurations across the processors of two 4-way ccNUMA ma-
chines. 109

7.29 Bandwidth utilisation between ccNUMA machines for a single
view configuration (top) and dual-strict multi-mrmw view config-
uration (bottom) when running QS. 110

7.30 Data access pattern for a single client when running IS across 8
processors. 111

vii

7.31 Execution time speedup of integer sort when run in different view
configurations across the processors of two 4-way ccNUMA ma-
chines. 111

7.32 Bandwidth utilisation between ccNUMA machines for a single
view configuration (top) and dual-strict multi-mrmw view config-
uration (bottom) when running IS. 112

7.33 Single-sided MPI Get (top) and MPI Put (bottom) bandwidth . . . 114
7.34 Single-sided MPI Get latency. 115
7.35 Single-sided MPI get multi-point on a 4-way ccNUMA machine. . 116
7.36 Single-sided MPI get multi-point on two 2-way ccNUMA machines.117

8.1 Eight processor dual ccNUMA environment. 121
8.2 Matrix multiply application with two shared memory regions and

its view configuration . 122

A.1 Common framework component libraries for an Eidolon instance. 130

viii

LIST OF TABLES

4.1 Summary of view-interface operations. 48

6.1 DSM client interface. 72
6.2 One-sided MPI interface. 76

7.1 Number of requests handled locally for different view configura-
tions when running a matrix multiply. 95

7.2 Comparison of effort required to port different distributed appli-
cation components to Eidolon. 120

ix

ABSTRACT

Grids, multi-clusters, NUMA systems, and ad-hoc collections of distributed com-
puting devices all present diverse environments in which distributed computing
applications can be run. Due to the diversity of features provided by these en-
vironments a distributed application that is to perform well must be specifically
designed and optimised for the environment in which it is deployed. Such optimi-
sations generally affect the application’s communication structure, its consistency
protocols, and its communication protocols.

This thesis explores approaches to improving the ability of distributed appli-
cations to share consistent data efficiently and with improved functionality over
wide-area and diverse environments.

We identify a fundamental separation of concerns for distributed applications.
This is used to propose a new model, called the view model, which is a hybrid,
cost-conscious approach to remote data sharing. It provides the necessary mecha-
nisms and interconnects to improve the flexibility and functionality of data sharing
without defining new programming models or protocols.

We employ the view model to adapt distributed applications to their run-time
environment without modifying the application or inventing new consistency or
communication protocols. We explore the use of view model properties on several
programming models and their consistency protocols. In particular, we focus on
programming models used in distributed-shared-memory middleware and appli-
cations, as these can benefit significantly from the properties of the view model.

Our evaluation demonstrates the benefits, side effects and potential short-
comings of the view model by comparing our model with traditional models when
running distributed applications across several multi-clusters scenarios. In partic-
ular, we show that the view model improves the performance of distributed appli-
cations while reducing resource usage and communication overheads.

x

PUBLICATIONS

Portions of this work have been published in the following articles:

Adapting distributed shared memory applications in diverse environments [74]
Daniel Potts and Ihor Kuz

Proceedings of the 6th International Symposium on Cluster Computing and
the Grid, Singapore, May, 2006

xi

ACKNOWLEDGEMENTS

There are many people that have influenced my life over the years who have di-
rectly and indirectly helped me along the road to completing my thesis. I’d like to
begin by thanking my friends, family and work colleagues at Open Kernel Labs
for their love, support, encouragement and laughter.

I would like to thank my supervisor Prof. Gernot Heiser for his ongoing sup-
port and encouragement. Ihor Kuz, my co-supervisor for this dedication towards
improving content, writing skills and attention to detail that contributed to many
refinements of this thesis and earlier papers.

I would also like to thank staff, researchers and students at the School of Com-
puter Science and Engineering of the University of New South Wales for their aca-
demic, financial and moral support. The Gelato program at the University of New
South Wales for their technical support and access to hardware for debugging and
running the framework presented in this thesis.

Finally, I’d like to thank my wife Belinda Hannan for her love and support
over the years and our little girl, Zara, for providing me with company during the
long nights of thesis writeup (even if she was sleeping).

1

CHAPTER 1

INTRODUCTION

This dissertation considers the challenges of running distributed applications in
diverse environments.

We identify a fundamental separation of concerns for distributed applications.
This is used to propose a new model, called the view model, which is a hybrid,
cost-conscious approach to remote data sharing. We employ the view model to
adapt distributed applications to their run-time environment without modifying
the application or inventing new consistency or communication protocols.

1.1 Overview

Developing parallel programs and running them across many computers in a dis-
tributed environment has long been established as an approach to achieve per-
formance and functionality improvements beyond those possible with a single
computer.

In order to get the greatest benefit out of this approach, distributed applica-
tions, much like their sequential counter-parts, must be optimised for their pro-
gramming and run-time environments. For distributed applications this often re-
quires careful consideration of network bandwidth and latency, algorithm scala-
bility, and many other characteristics of the application, its middleware, and its
run-time environment.

Unfortunately, optimising an application for one environment often results in
poor performance or loss of functionality in another. For example, some optimi-

2

sations, such as taking advantage of specialised communication interconnects for
performance improvements, will reduce the portability of an application.

This is a significant problem, as there is a diverse range of distributed comput-
ing environments available today. These range from homogeneous clusters, het-
erogeneous clusters and multi-processors, to Grids and other wide-area computing
networks. When developing a distributed application, an applicaton programmer
must choose between trade-offs of functionality, portability, performance and time
required to optimise for a specific environment.

The programming model used by the application is another consideration that
impacts the ability of a program to run across diverse environments, and how easy
it is to optimise or adapt to specific environments. The programming model some-
what determines the parallelism approach taken by the programmer. Parallelism
is generally provided via explicit message passing, or a shared data model.

Shared data programming models, which implement some form of distributed
shared memory (DSM), are often considered to be easier to use as they behave
much more closely to that of a convential uni-processor or multi-processor ma-
chine. However, DSM applications are considered to be poor performers with
poor scalability, due to overheads of providing data sharing, consistency and com-
munication in software. Unlike DSM, most message-passing applications use ex-
plicit message transfers, avoiding unnecessary communication and related over-
heads. As such, message-passing has become a prominent approach to sharing
data in distributed applications.

DSM applications, and to a lesser degree, message-passing applications, per-
form poorly when moved to new environments, across wide-area environments,
and in heterogeneous environments. Furthermore, due to a lack of scalability
and perhaps more importantly, adaption, DSM applications fail to provide similar
levels of functionality to those provided by message-passing environments. How-
ever, there has been a recent push to address these issues with approaches such as
single-sided MPI [68], and middleware such as InterWeave [23] and JuxMem [5]
which are better suited to wide-area distribution.

This thesis identifies a fundamental separation of concerns for distributed ap-
plications. The programming model, consistency protocols, communication pro-
tocols, sharing interactions and the execution environment are all separate aspects

3

of a distributed application. Traditionally, application and distributed software
developers do not differentiate between these aspects of a distributed application,
thereby limiting and restricting the application to a specific execution environ-
ment. This thesis proposes that by treating these separately, we gain significant
flexibility in the design, optimisation and execution of distributed applications.

We present this approach with a focus on shared-data programming models,
which are able to benefit most from the flexibility and adaption aspects of this
approach. In particular, we are able to apply the techniques developed in this
thesis to demonstrate new ways to improve the performance and functionality of
DSM applications, thereby allowing DSM to continue to develop as an alternative
programming model to message passing.

1.2 Problem areas

Grids, multi-clusters, NUMA systems, and ad-hoc collections of distributed com-
puting devices all present diverse environments in which distributed computing
applications can be run. Due to the diversity of features provided by these en-
vironments a distributed application that is to perform well must be specifically
designed and optimised for the environment in which it is deployed. Such optimi-
sations generally affect the application’s communication structure, its consistency
protocols, and its communication protocols.

Applications in new environments Since applications are optimised in envi-
ronment-specific ways, reusing an application in different environments poses
some problems. First of all, when an application’s execution environment does
not match the environment that it was developed for, problems with performance
and poor resource utilisation arise.

For example, a DSM application designed to run on a cluster environment us-
ing a software-based consistency protocol will not run efficiently on a ccNUMA
machine. The application is not able to take advantage of the hardware’s built-in
data sharing and consistency mechanisms, thereby under utilising the resources
available. Likewise, when running a message-passing application in this environ-
ment the application will normally communicate over TCP/IP by treating each

4

application instance as if it were running on a separate node, unaware of the un-
derlying hardware interconnect. Furthermore, an application designed to run on
a cache-coherent NUMA (ccNUMA) machine may not run efficiently in a clus-
ter environment (with the help of a DSM software layer) due to the application’s
inability to compensate for added latency penalties resulting from the cluster’s
slower interconnects [72]. To avoid this, applications must be optimised for every
new environment that they run in.

Traditionally this problem can be solved in two ways. Firstly, if a replacement
protocol library is available, it can be used. For example, many DSM middleware
allow the user to select from a variety of different protocols [12,65]. However, this
requires the application to be compatible with the new protocol library. The other
choice is to port or modify the application and underlying protocol implementa-
tion to match the new environment. Given the considerable differences between
environments, most distributed applications need significant and time-consuming
modifications if they are to achieve reasonable performance [90].

Applications in non-uniform environments The second problem concerns the
execution of distributed applications in non-uniform environments, that is, envi-
ronments that consist of a collection of smaller environments, each with different
characteristics. Take, for example, a two-cluster system where one cluster consists
of nodes connected by a high speed interconnect (such as Myrinet) while the other
cluster consists of nodes connected by Ethernet. To achieve good performance,
an application running in this environment should be aware of the available in-
terconnects and take full advantage of them [11, 53]. Thus, when communicating
within the Myrinet cluster, a Myrinet-specific protocol rather than TCP/IP over
Ethernet should be used. Furthermore, the application should be partitioned in
such a way that it takes advantage of the high speed interconnects while avoiding
communication over the slower interconnects.

All the above problems relate to the configuration and optimisation of dis-
tributed applications in diverse execution environments. The main problem is that
applications, and in particular their consistency protocols, require modifications
that are highly tailored to the environment in which they run. Any significant
change in the environment requires a change in the application.

5

Application programming models The problems presented above exist regard-
less of the programming model used for writing our distributed applications. For
example, a matrix multiply application may be written for OpenMP as well as for
single-sided MPI. The same approach to optimisations must be re-implemented
for each programming model.

The trend towards building multi-model applications is another method for
optimising an application to suit the execution environment. Multi-model applica-
tions utilise hybrid parallelisation paradigms to implement the application using
more than one programming model. They utilise programming models that are
best suited for particular environments for each part of a program. For example,
data distribution is implemented with single-sided MPI while the inner-loop com-
putation is implemented using shared memory. Such an application is well suited
to run on a cluster of ccNUMA machines. Examples include the multi-zone NAS
parallel benchmarks [52] which experiment with several hybrid implementations
and other research into hybrid parallelisation [17, 84].

Multi-model applications require mechanisms in place for programming model
interaction. Currently, interaction between programming models is implemented
explicitly by the application, restricting the ability to reuse components of a multi-
model application and adapt them to different runtime environments.

1.3 Revisiting distributed applications and middle-
ware

All of the problems presented above relate to our ability to develop distributed ap-
plications that can share data efficiently in using our diverse computing resources.
This includes not only how our applications perform in new environments, but
also how they are able to interact with other distributed applications. To solve
these problems we require a distributed computing model that provides us with
the flexibility to adapt applications to both their runtime environment and their
data sharing interactions.

In all of the cases introduced in Section 1.2 the main problem is that applica-
tions, and in particular their consistency protocols, require modifications that are

6

highly tailored to the environment in which they are run. Any significant change
in the environment requires a change in the application which may be difficult,
time consuming and error prone.

There are two shortcomings of traditional distributed application development
approaches that this thesis will address:

1. Lack of adaption of distributed applications.

There are two main issues here. Firstly, applications designed for one envi-
ronment do not run well in another. Secondly, applications perform poorly
when executed in non-uniform environments including diverse and hetero-
geneous environments. In both cases, traditional models lack the ability
to adapt the application to the environments without requiring significant
effort from the application developer.

2. Limited data sharing flexibility of applications.

Separate applications that use different consistency or communication tech-
niques are not able to easily or effectively share data without significant
program modification.

In order to address these shortcomings the following requirements will be ad-
dressed by the solution provided in this thesis:

Configuration and optimisation of the application so that it better adapts to di-
verse environments. The requirements in this category can be summarised
as follows:

• Application adaption via application-independent protocol selection.
This is one approach to optimising an application without making di-
rect changes to the application.

• The ability for applications to handle protocol domains for easy opti-
misation of locality.

• A method that allows protocols to interact with each other so that ap-
plications may select different protocols best suited to particular parts
of a runtime environment.

7

Protocol interoperability expands the requirements related to configuration and
optimisation beyond environment adaption to include the data sharing inter-
actions between applications that use different programming models.

As applications can be written in different programming models, they may
require the ability to access data or state generated from applications written
using other programming models.

Specifically, we require the following:

• The ability to share data between applications that use different pro-
gramming models and are implemented using different protocols.

• The ability to share data in multi-model applications.

Ease of use of a model that provides a solution to the problems of configuration,
optimisation and protocol interoperability. A model that provides these so-
lutions should do so without the complexity and restrictions of traditional
solutions.

1.4 Thesis contributions

This thesis explores approaches to improving the ability of distributed applications
to share consistent data efficiently and with improved functionality over wide-area
and diverse environments.

This thesis proposes the view model as a hybrid, cost-conscious approach to
remote data sharing. This model has the following properties:

• It separates the application and its programming model from issues of con-
sistency protocol, communication and data flow hierarchies. This provides
us with the flexibility required to provide configurations and optimisations
that are independent of application and programming model.

• It allows communication, consistency and synchronisation protocol selec-
tion without requiring changes to the application. This enables performance
tuning by allowing an execution environment to transparently select the best
protocols suited to an application.

8

• It allows the choice of programming model to be independent of protocol,
communication and data flow hierarchies supported by specific implemen-
tations of that model.

• It allows an application to use more than one protocol at once for sharing
the same state. That is, the model supports interactions between different
protocols allowing them to communicate and ensure consistency of data.

• It provides a mechanism for the development of applications that use mul-
tiple programming models. That is, it supports the interactions between
different programming models and their underlying protocol implementa-
tions.

This thesis makes the following contributions:

1. A model based on a separation of concerns of a distributed application.

2. An architecture implementation of our model called Eidolon which specifies
some constraints on the model suitable for an implementation.

3. An experimental framework and implementation used to evaluate Eidolon
and traditional third-party approaches using existing applications.

4. An approach to address lack of adaption of distributed applications to their
run-time environment, without modifications to the application, or signifi-
cant effort from the user.

5. An approach to improve the flexibility of sharing consistent data between
distributed applications such as those that use different programming mod-
els.

1.5 Thesis road-map

The remainder of this thesis includes the following chapters:

Related Work Chapter 2 surveys existing approaches to running distributed ap-
plications in wide-area and diverse environments. Other related work in-
cluding background material is also discussed.

9

The View Model Chapter 3 presents the conceptual model. This chapter explores
the properties inherent in the model and provides examples of how each
property can be used to share data.

Eidolon: A Realisation of the View Model Chapter 4 describes our implemen-
tation of the view model as an architecture suitable to use primarily for
distributed shared memory and message passing systems.

Eidolon Framework Chapter 5 provides implementation details of the experi-
mental framework. This includes details on how applications are executed,
locate data and communicate using our framework.

Programming Views Chapter 6 explores the implementation of several program-
ming models and consistency protocols in Eidolon.

Experimental Verification and Evaluation Chapter 7 presents our experiments
and evaluations of Eidolon. We focus on demonstrating the benefits and
side-effects of the view model and compare these against traditional ap-
proaches.

Using Eidolon Views Chapter 8 discusses approaches to using Eidolon to run
distributed applications and as a foundation for distributed systems.

Conclusion Chapter 9 concludes the dissertation by examining how well the
challenges of running distributed applications in diverse environments has
been addressed and provides a discussion of future work.

10

CHAPTER 2

RELATED WORK

Distributed computing in diverse environments or across a wide area requires:

1. programming models and protocols for sharing consistent data,

2. services and protocols for locating data based on a unique identifier (e.g., a
name or address),

3. heterogeneous shared data access.

These services and protocols should be efficient and resource-aware in order
to deliver reasonable performance. In this chapter we explore the related work in
these areas.

2.1 Background

This thesis considers two communication paradigms used to share data. These are
shared memory communication and message passing communication. While the
approach presented in this thesis is relevant to both communication and program-
ming model paradigms, we focus on shared memory communication, which due
to its nature, can benefit significantly from the model presented. We also present
related work on message passing systems and their approaches to wide-area and
diverse environment distributed computing.

11

2.1.1 Shared memory communication

Communication occurs by altering the contents of shared memory, usually by
using architecture load and store instructions. Synchronisation and mutual exclu-
sion is often performed via barrier and locking primitives, if these primitives are
defined to be part of the memory model.

This communication model very closely mimics the execution environment of
a computer, providing ease of programming and transparency for the application
developer. However, the visibility of updates to shared memory depends on the
memory model provided by the shared memory implementation.

SMP and ccNUMA machines implement shared memory communication trans-
parently in hardware. In order to use the same programming and communication
paradigms between separate nodes, a software implementation must be provided
which simulates a clearly-defined memory model.

Distributed shared memory (DSM) [61] provides the illusion of a cache-coherent
multiprocessor to an application.

One popular approach is to use the virtual memory mechanism of modern
computers to trap memory operations and keep data coherent via message passing.
These are often referred to as page-based DSM systems due to their used of page-
fault catching mechanisms of an architecture. The programming environment is
the same as that of a shared memory system.

Object-based DSMs maintain consistency at the object level. They generally
employ approaches [24, 82] that avoid using an architecture’s page-fault catching
mechanisms.

Examples of shared-memory-communication programming models include
sequential consistency and release consistency. Many traditional hardware ar-
chitectures provide a sequential consistency model. For multi-processors, it guar-
antees that all processors observe writes in the same order. Providing sequential
consistency across a cluster of nodes requires a software implementation to en-
force this memory ordering rule. This is generally achieved through single-writer,
multiple-reader protocols.

For many applications, sequential consistency has significant drawbacks for
both hardware and software implementations. For hardware implementations, is-

12

suing memory operations in order is not always efficient. For software implemen-
tations, the granularity of updates can cause problems with false sharing when
one or more processors access different data elements that reside within the same
update unit. Many early DSM consistency protocols used an architecture’s page
size as the granularity of updates.

In order to understand why performance of DSM is poor compared to hardware-
based systems and to analyse the coherency characteristics of applications running
in a DSM environment, we can highlight the following traits of DSM.

Consistency granularity is the smallest unit of memory transfered over the net-
work. This is normally restricted in size by the architecture’s supported
page size granularity such that a page is the unit of consistency granularity.
However, some DSM consistency protocols reduce communication by ex-
amining the changes to a page and only communicating those changes. In
this case, the unit of consistency granularity is much smaller than a page.

False sharing occurs when multiple processors access unrelated variables within
the same unit of consistency granularity and at least one is a write access.
This causes unnecessary network traffic as consistency state and possibly
the data within the contended unit of consistency granularity bounces be-
tween nodes unnecessarily.

Fragmentation occurs when an entire unit of consistency granularity is fetched
instead of just the word for which the memory operation references. This
adds unnecessary traffic on the network. However, it has the benefit of pre-
fetching data.

Protocol overhead includes the latency of communication performed in software
over a typical network. Protocol overhead varies with network topology and
the method used to maintain consistency state. The cost of servicing the
virtual memory requests in software also add to this overhead.

Synchronisation is used to keep data consistent and is normally performed via
message-passing primitives. The protocol overhead of message-passing has
a dramatic impact on synchronisation. There are several methods for main-
taining consistent state used to enforce and provide synchronisation of data

13

such as tagging data with a version or vector timestamp. These vary in
communication and computational overhead. Many current synchronisa-
tion techniques suffer from unbounded growth in consistency meta state
that requires garbage collection to limit growth.

To relieve some of the problems with sequential consistency models, other
models have been proposed. Protocols that relax the consistency requirements of
shared data differ in the way that they maintain, propogate and apply coherency
information at coherence points in the application (eg. acquire and release locking
semantics). In doing so, they achieve performance gains by reducing the amount
of communication required over sequential consistency while others focus more
on reducing latency.

The protocols discussed below have different levels of consistency. Some are
suited to particular applications more than others.

Sequential consistency (SC) [59] is a typical method employed by hardware-
based coherent systems such as typical symmetric multiprocessor systems.
Ordering rules apply to reads and writes. The first DSM systems imple-
mented this method of consistency.

This method performs poorly due to unnecessary communication when im-
plemented as a software protocol for distributed systems.

Release consistency (RC) [35] weakens consistency model [2] by delaying the
propagation and application of coherence information until explicit syn-
chronisation points (distinguished by the use of synchronisation variables).
This method significantly improves the performance of many distributed
applications.

Release consistency is supported by the Munin system [20] and more re-
cently it is supported by architectures such as the Itanium [44].

Many improved software implementations also exist. Lazy release con-
sistency (LRC) [55] improves the performance of release consistency by
propagating changes to data only as demanded by a remote node, instead of
propagating changes eagerly.

14

Home-based lazy release consistency (HLRC) [96] Home-based protocols [45]
provide the opportunity to improve scalability and limit the overheads that
are typical with homeless distributed protocols. Unlike homeless protocols,
they do not allow page changes to be spread across multiple nodes at any
one time. HLRC, for example, assigns a node to each page. Any requests
for up-to-date data are made to the home node. Changes made to a page are
sent back to the home node at a specified synchronisation point.

Release(l)

apply diff

diff

make twin

fetch page

Node 0 Node 1 Node 2 (home)

Read(x)

Acquire(l)

Release(l)

Acquire(l)

Write(x)

Figure 2.1: Home-based Lazy Release Consistency

Figure 2.1 shows an example of how a home-based protocol works between
multiple nodes. Unlike the homeless LRC protocol, where page changes
are stored at the writer node(s) and provided on demand to the faulting
node, in home-based LRC the page changes (page differences known as
diffs) containing the new value of x are sent to the home node at release
or acquire time. Unlike LRC, the page changes made at each node can be
discarded as soon as the home node acknowledges reception of the message.
This significantly reduces the memory and communication overhead.

Entry consistency (EC) [13] binds data to synchronisation variables and only
makes this data consistent at a synchronisation event. This binding enforces
not only when data is made coherent (such as in release consistency) but
also which data is made coherent.

15

EC can be tedious for programmers as they have to explicitly provide the
binding.

Scope consistency (ScC) [47] is a refinement and relaxation of EC whereby data
accessed within a scope (by acquiring the scope/lock variable) is consistent.

Instead of requiring the programmer to bind data to synchronisation vari-
ables, ScC synchronisation variables define scope with which the associa-
tion of data is achieved dynamically when a write access occurs inside a
scope.

ScC reduces some of the burden on the programmer compared to EC. How-
ever, extra effort may be required to ensure program correctness, compared
to the other consistency protocols mentioned above.

While DSM is generally the ideal model for most users [83], problems with
false sharing, write detection and excessive communication has lead to DSM be-
ing a less popular paradigm in the distributed computing community. However,
we believe this model is better suited for applications that perform irregular data
accesses, and because it maps more naturally to the models provided by hard-
ware architectures. This is particularly relevant with the increasing trend of using
multi-processor systems for both distributed and general computing.

2.1.2 Message-passing communication

Communication occurs by explicitly exchanging messages, usually via simple
send and receive operations. Message-passing communication is implemented
in programming models such as MPI [67] and PVM [86].

Arguably message passing is easier for the programmer to reason about as
threads of an application must explicitly communicate with their intended source
or destination. However, for applications with irregular data accesses, message
passing is somewhat troublesome as the source or destination of communication
is often unknown.

Furthermore, message passing is typically asynchronous, requiring the mes-
sage to be copied one or more times when transferring from sender to receiver.
Hence message passing does not adapt well to architectures that provide shared

16

memory in hardware, especially for applications that can use shared data without
copying.

More recently, one-sided message passing techniques have been introduced as
part of the MPI specification [68] to address the difficulty to perform irregular data
accesses which benefits some applications. This is also known as remote direct
memory access (RDMA), as it uses a uni-directional shared-memory window for
shared communication between nodes. One node end-point uses put and get op-
erations that manipulate data in a shared memory window on a remote end-point.
The remote end-point can perform normal memory read and write operations in
this memory window.

2.2 Optimising applications via protocol selection

One approach to improving the performance of a distributed application is to im-
prove or replace the underlying middleware software implementation. In this sec-
tion we discuss these approaches.

2.2.1 Traditional protocols and middleware

The traditional DSM approach to addressing poor performance has typically fo-
cused on new or improved protocols that aim to reduce the amount of communi-
cation that occurs between nodes such that it more closely resembles the commu-
nication in explicit message passing programs. This is generally achieved by de-
tecting and adapting to the data access patterns of an application [3,29,48,69,70].

Carter [19] proposes multi-protocol release consistency allowing each shared
variable to use a protocol that best matches the way it is accessed. He demon-
strates that DSM applications can come close to the performance of message
passing programs by focusing on reducing the amount of DSM-related commu-
nication. His work focuses on developing protocols that adapt to the data access
patterns of applications and does not directly consider the run-time environment.

Other alternatives have proposed new programming models that in some cases
required the application to be modified for correctness. For example, instead of
requiring the programmer to bind data to synchronisation variables as is the case

17

for release consistency, scope consistency [47] uses synchronisation variables to
define scope. Data is dynamically associated with a scope when a write access
occurs inside a scope. The visibility of changes to data is therefore associated
with a scope, requiring a worker thread to first obtain a scope before data changes
are visible. This approach helps reduce the amount of data associated with each
synchronisation variable, thereby reducing excessive communication. It also in-
directly assists grouping data with common access requirements together, which
is an approach used by entry consistency [13].

Another model, view-oriented parallel programming (VOPP) [42, 43] aims
to assist the application programmer to better organise shared data in order to
performance optimise the application. It achieves this by requiring the user to
group data with similar attributes, such as frequency of access, into objects called
views. Views become the granularity of data access and are accessed exclusively.
This behaviour is provided by the view-consistency protocol. Note that the VOPP
model and consistency protocol are orthogonal to the model and architecture pro-
posed in this thesis. Both use the term view, however each model provides it
as a unique concept. In both cases, it can be considered a “view” of memory.
MultiView [49], a DSM which supports fine-grained sharing, also uses the term
“view”.

The approaches discussed in this section are only suitable for scenarios where
the protocol and or programming model suits the run-time environment and the
needs of the application. These protocols may not fully utilise the available re-
sources of some environments. Likewise, adapting an application to a new pro-
gramming model can require a significant amount of effort from the user.

2.2.2 Specialised protocols and middleware

When the hardware architecture and network topology of the run-time environ-
ment is known, as is often the case with a cluster of nodes, the middleware can be
optimised to take such characteristics or features into account.

For example, the architecture features of many multiprocessor machines, such
as SMP and ccNUMA, provide specialised mechanisms that perform communi-
cation and synchronisation at the hardware level between the processors of each

18

node. To take advantage of these mechanisms for data communication and syn-
chronisation, the application or underlying middleware must be modified.

One approach is to modify the application to support multiple threads of exe-
cution [79, 87]. Walters et al. [91] support multi-threading over a heterogeneous
DSM. Their approach supports improved utilisation through load balancing, by
allowing threads to migrate across the system. For many sequential applications
adding multi-threaded support requires significant re-engineering effort.

Another approach is to modify the middleware to support communication be-
tween processors on the same node as a special case, taking advantage of the
intra-node hardware cache conherence and synchronisation mechanisms [14, 39,
66, 81, 82]. This approach has the benefit of avoiding changes to the application
while making use of the hardware inter-connects.

Besides Ethernet connectivity, specialised interconnects are available which
offer remote direct memory access (RDMA) between nodes. For example, MPI-
2, which was introduced in Section 2.1.2, supports one-sided message-passing by
using a uni-directional shared-memory window for shared communication and is
capable of using specialised interconnects that offer RDMA.

While many implementations of one-sided MPI are built using two-sided MPI
send/receive operations, Jiang et al. [50] provide an efficient, high-performance
implementation by utilising the RDMA operations of Infiniband [71]. Other one-
sided MPI implementations exist that are optimised for particular machines [8]
and interconnects [93]. MPI-2 [68] on the NEC SX-5 [88] supports one-sided
MPI operations over a global shared memory, similar to the method used for one-
sided MPI presented in this thesis. The one-sided MPI operation is performed
directly in shared memory via a memory copy, allowing the operation to utilise
the full memory bandwidth of the available system. This technique is also applied
successfully to two-sided MPI.

There are also several software libraries that implement optimised methods
for common communication operations. The Nexus [31] communication library
supports multiple communication mechanisms, allowing a distributed application
to utilise the best available method for communicating with other nodes in hetero-
geneous computing environments. The Madeleine III [9] communication library
provides multi-protocol support suitable for multi-cluster environments. Using

19

these communication libraries allows MPI implementations to efficiently adapt
communication performed by a distributed application to better suit the environ-
ment between communicating nodes.

In multi-cluster environments, applications designed for single clusters expe-
rience performance problems due to the higher latency and lower bandwidth of the
communication links between clusters. Applications that take into account the un-
derlying network topology have been shown to improve performance and scalabil-
ity [11]. For example, increasing locality by placing data-sharing nodes together
in the same cluster helps avoid communication over the lower performance com-
munication links, thereby improving performance and increasing concurrency. In
situations where inter-cluster communication cannot be avoided, communication
hierarchies help to hide the latency of using these links [54].

Arantes et al. [6] extends LRC for multi-cluster environments by grouping
nodes into clusters whereby intra-cluster communication is preferred. This ex-
ploits cluster locality by caching accessed data locally on each cluster. However,
this system is targeted at running compute-intensive applications with a small
number of nodes. LRC requires all processors to keep all updates in memory
in case they are needed by another processor. Furthermore, no attempt is made to
reduce the need to use costly vector time-stamps that require information on the
progress of each processor in the system. This system works well for small-scale
compute-intensive DSM applications, however it is unsuitable for more general
use due to the overheads incurred and the unscalable nature of such a system.

2.2.3 Adaptive protocols and middleware

There are several adaptive DSM consistency protocols [3, 22, 28, 70] that attempt
to detect and alter their protocol behaviour based on application behaviour. This
includes how and when updates are propagated, use of invalidates, granularity of
updates and specialised update techniques.

This type of adaption is limited to aspects of the protocol behaviour that can
be reasonably changed. For example, release consistency can be implemented by
lazy release consistency (LRC) [55] which is a home-less protocol. When using
home-less protocols, unlike home-based protocols, data updates to a page do not

20

get propagated to a single node (called a home), requiring updates to be requested
from each node with recent changes. It is not straightforward to adapt this protocol
to a home-based protocol such as home-based LRC (HLRC) [45] which may be
a better match for some applications. For these problems, a better solution is to
select a more suitable consistency protocol and implementation.

Adaptation by selection of more suitable consistency protocols is provided
by Middleware such as DSM-PM2 [4]. DSM-PM2 supports selection of consis-
tency protocol on a per-region basis for data and code in a distributed application.
However, while this flexibility provides greater adaptation to an application’s con-
sistency requirements it does not support the utilisation of the most efficient con-
sistency protocol for the underlying execution environment.

Another important aspect of adaption is support for heterogeneous environ-
ments where nodes may provide different architectures. Early work [62,95] showed
that building a heterogeneous DSM was possible. In this work, a modified multi-
reader, single-writer protocol was used for consistency between nodes. This thesis
does not address heterogeneity of nodes.

MPICH-2 [7] is an open source implementation of the MPI [67] specification.
It provides limited support for adaption to run-time environment through selection
of communication protocol. For example, MPICH-2 includes support for commu-
nicating point-to-point over TCP/IP, shared memory, Infiniband [71] and several
other interconnects [36].

The ability to optimise a distributed application by communication protocol
selection does not, however, fully adapt an application to running across more
than one different environment at once.

To better support these environments, many MPI implementations including
MPICH-2 support the concurrent use of different communication channel imple-
mentations. For example, MPICH-2 can send intra-machine messages using a
shared memory channel between processors of the same node, while communica-
tion between nodes occurs using TCP/IP.

Another existing solution is to use metacomputing frameworks that allow
vendor-specific implementations within each machine and communication over
TCP between machines. For example, Interoperable MPI (IMPI) [34] allows
a distributed application to select not only the best communication protocol but

21

also the best vendor implementation to use. Unfortunately current metacomput-
ing frameworks lack the ability to flexibly support a wider range of interconnects
that may exist between clusters or machines. For example, resorting to TCP/IP
communication between machines is not suitable when the ccNUMA machines
are connected together via Infiniband or other high performance interconnects.

MPICH-Madeleine [10] addresses the inefficiencies of poor heterogeneous
point-to-point communication that traditionally required any intra-cluster commu-
nication to sub-optimally use TCP. It supports virtualised communication chan-
nels that support the communication across the available interconnects between
two nodes. This allows two-sided MPI applications to perform well across hetero-
geneous environments. However, one-sided MPI communication and multi-cast
communication will still occur using point-to-point communication, thereby not
fully utilising the underlying coherency and communication mechanisms avail-
able, for example, in ccNUMA systems.

2.3 Wide-area distributed systems

Maintaining data coherency over a wide-area without impacting on performance
remains a challenge for the distributed computing community. Wide-area envi-
ronments contain a broad range of systems, resources, interconnects and network
topologies that create unique data-sharing environments much more complex than
that of well known environments such as clusters. To address these challenges,
many distributed applications implement their own data management mechanisms
or utilise middleware that provides appropriate abstractions for wide-area data ac-
cess. Distributed data stores attempt to provide a common platform for the effi-
cient distribution of data. There are several challenging problems related to the
tradeoffs of scalability, data consistency, efficiency and performance.

InterWeave [23] allows the programmer to map shared segments into programs
running on multiple heterogeneous machines. It provides three levels of sharing to
deal with different interconnect topologies: hardware-coherent multiprocessors,
tightly-coupled clusters using software-based lazy release consistency and more
coarsely grained version-based consistency for distributing shared segments. This
partly addresses one of the problems tackled in this thesis: taking advantage of

22

local interconnects by using multiple consistency methods. However, it is not a
general solution since it is specifically tailored towards particular environments
and makes restrictive assumptions about consistency in data sharing.

Khazana [18] is a peer-to-peer data service that provides a common infras-
tructure for managing distributed shared data, allowing applications the flexibil-
ity of trading off consistency for availability and performance. It provides these
using aggressive replication and customisable consistency management. Khaz-
ana presents applications with a persistent, globally-shared 128-bit address space.
Applications access this address space via explicit accesses or by mapping parts
of the global address space into their virtual memory space.

Unfortunately, Khazana lacks the ability to allow the use of a protocol de-
signed for optimal execution within a particular environment or to meet specific
application requirements. Furthermore, it is not designed to allow multiple envi-
ronments that each use their own optimal internal protocol to interact consistently.
Hence, the ability of Khazana to offer a scalable data store is limited by the choice
of consistency protocol selected by the application. It does not take advantage of
underlying architectural features that may be present in some environments in
which data sharing occurs.

Besides Khazana and InterWeave, there is a wide range of distributed data
stores that focus on data access scalability and delivery such as OceanStore [58]
and Pangaea [80]. However, these systems are not suitable for maintaining con-
sistent data that is frequently updated during a distributed computation.

One important feature of a DSM model is that shared memory provides location-
independent data access. Hardware and software shared-memory implementa-
tions are required to keep a directory of where the current data elements are lo-
cated so that they can be retrieved by any processor (or node). For a wide-area
DSM, or a DSM with many nodes, this poses a challenge.

To address this challenge, JuxMem [5] explores the idea of a hybrid DSM and
peer-to-peer data sharing service. The DSM component provides location trans-
parency and data consistency, while the peer-to-peer component provides data
location and persistence in a Grid environment. JuxMem provides a hierarchical
architecture by grouping nodes into clusters which are networked together. A net-
work overlay is provided on top of the physical network and is used to manage

23

and locate shared data. For managing consistency of shared data, JuxMem im-
plements an entry-consistency memory model. This approach makes it suitable
to small numbers of nodes accessing shared data concurrently, where the nodes
may be part of a large network spread out over a wide area. However, applications
are restricted to the limitations of the entry consistency model, which enforces a
particular programming paradigm on the programmer.

Legion [38] is an object-based system that aims to provide a single, coherent
globally-scalable virtual machine. Legion provides a single, persistent name space
for all files and data. Legion relies on object-orientated techniques at the core of
the system. While this provides flexibility, it restricts the programming models
that can be used in the system. Objects communicate with one another via object
method invocations rather than using shared regions of address space or other
techniques.

Teamster [21] is a hybrid thread architecture that provides a transparent DSM
system. It has been extended to Grid systems in Teamster-G [63,64] by relying on
a consistency protocol that implements eager-update page-based consistency. This
protocol is suitable for wide-area access where latency is not a critical function of
the program. Unlike the model presented in this thesis, it is not able to adapt to
the underlying environments utilised by the distributed application.

Wide-area Grid support in Teamster-G is implemented using the Globus [32]
meta-computing toolkit for Grid-scale distributed applications. Globus provides
a set of low-level mechanisms such as communication, authentication, network
information and data access. It is also used to implement higher-level services
and programming environments such as MPI. Globus aims to allow applications
to configure themselves accordingly to the underlying execution environment and
available Grid resources.

MPICH-G2 [53] and PACX-MPI [33] are examples of two MPI implemen-
tations designed for metacomputing over wide area and heterogeneous networks.
They address issues of wide-area and heterogeneous computing by optimising
point-to-point communication by using protocol selection techniques, particularly
within environments such as clusters. However, between clusters, communication
is generally limited to TCP/IP which may be an inefficient use of the available
interconnects between clusters.

24

2.4 Interoperable middleware

Interoperable middleware provides applications with the ability to use one or more
different middleware instances or implementations at the same time.

As introduced earlier, interoperable MPI (IMPI) [34], is a specification for al-
lowing MPI communication between different MPI implementations. This is use-
ful for running a distributed application across heterogeneous environments such
as multi-clusters. Vendor-specific MPI implementations that are performance-
tuned for a particular environment can be run on each cluster, thereby providing
a technique for adaption. Communication between MPI implementations occurs
via an IMPI server over TCP/IP. One MPI implementation called LAM [16] im-
plements a MPI personality that supports the IMPI interface.

Likewise, Jimnez et al. [51] formally describe an approach for the intercon-
nection of different distributed shared memory models such that they behave as a
single DSM. This approach should allow for interoperable DSMs, however their
focus is the formalisation of an interconnection protocol with restrictions and as-
sumptions about the memory models used.

2.5 Other approaches

Tempest [77] is a communication interface that defines a set of mechanisms for
implementing shared-memory policies. The tempest mechanisms include low-
overhead messaging, bulk data transfer and fine-grained memory management.
Using these mechanisms, a program can use various programming models includ-
ing both message passing and shared memory models.

This thesis realises that restricting protocol implementations to specific ab-
stractions restricts the ability of a model to adapt to a diverse range of environ-
ments and their approaches to communicating and synchronising data. Hence, we
do not directly define mechanisms for protocol implementation, thereby retaining
the advantage that specialised protocol implementations provide to applications
running on some environments.

25

2.6 Multiple model applications

An approach to developing multiple-model applications provides a mechanism for
developing a computation that uses the best programming model for each part of
an algorithm. This approach is also known as hybrid parallelisation. For example,
another optimisation technique, suited to clustered SMPs, requires modifying an
algorithm so that it uses both a shared memory and a message-passing program-
ming model [37]. Shared-memory programming is used for data shared between
processes on an SMP node, while message passing is used for sharing data be-
tween processes on separate SMP nodes. Other approaches [17,40,52,84] explore
similar techniques with MPI and OpenMP [26].

This approach can be further extended to support visualisation of program run-
time using visualisation toolkits [57] and provide a mechanism for code reuse of
common algorithms implemented using particular programming models.

The ability to map from one programming model to another is not always
easy or obvious. The model presented in this thesis provides a mechanism for
supporting this approach, reducing the need to re-engineer code.

26

CHAPTER 3

THE VIEW MODEL

In this chapter we present our model that provides an approach to address the
problem areas outlined in Section 1.2.

The view model is a hybrid, cost-conscious approach to remote data sharing.
It provides the necessary mechanisms and interconnects to improve the flexibility
and functionality of data sharing without defining new programming models or
protocols.

3.1 Conceptual model

The view model provides a shared data space abstraction based on the concept of
views. A view represents a region of a shared data space. Examples of such shared
data spaces include tuple spaces, shared memory, and name spaces such as those
found in Unix file-systems.

Shared data spaces provide mechanisms to store, retrieve, and manipulate data
elements. These mechanisms and the structure of a data element are data space
dependent. For example, in a tuple space, data exists in the form of tuples which
are referenced by a key. In a shared-memory address-space, data is represented as
bytes referenced by a unique address.

Besides the shared data space, a view also specifies the data-sharing behaviour
of that space. A view’s data-sharing behaviour determines how a view interacts
with its environment, how it reacts to any external interaction, and how it manages
shared data. More specifically, this includes behavioural characteristics such as

27

replication of data, consistency of data, the timeliness of interactions, and the
format and structure of interactions.

The goal of the behaviour specification is to provide an outline of what the ap-
plication expects and what the run-time system is required to provide. For exam-
ple, the behavioural requirements for a release-consistency programming model
could be defined as requiring consistent data for a data sharer using release seman-
tics, eager propagation of data updates and a data-access granularity of a word via
a shared data space. This level of specification gives the run-time system some
flexibility in how it meets the behavioural requirements of an application.

A view’s data-sharing behaviour specification partially determines the data
sharing protocols used to implement a view. Data-sharing protocols address the
data consistency, communication, and storage aspects of the behaviour specifica-
tion. Hence, for a view implementation to accurately model a behaviour spec-
ification requires, among other traits, the selection of one or more data sharing
and communication protocols. For example, a distributed system that specifies
a shared-memory model of release consistency would need to provide a suitable
release consistency protocol and a communication protocol suitable for commu-
nication over a network.

The selection of a data consistency protocol depends on the programming
model used by the distributed application, and the type of data sharing the ap-
plication is likely to use. The selection of a communication protocol generally
depends on the runtime environment. For example, for a cluster with an Ethernet
interconnect, a TCP/IP communication protocol would be appropriate.

Figure 3.1 illustrates a simplified behaviour specification. As shown, a spec-
ification of a release-consistency memory model maps to a view which provides
a lazy release-consistency (LRC) protocol, along with TCP/IP communication.
This choice is suitable for managing release consistency in software, for a cluster
of nodes.

A system may provide several suitable data-sharing and communication pro-
tocols that match a behaviour specification. This allows the system to select the
protocols required to model a behaviour specification based on environmental pa-
rameters and constraints. We call this protocol selection and discuss it further in
Section 3.2.2.

28

Interface

Lazy release consistency

TCP/IP communication

Single address space

Data cache

Application

View

load/store/barrier operations

2. Generic network communication

1. Release consistent memory model

Behaviour specification

Figure 3.1: A view’s behaviour specification, along with requirements of the run-
time environment, determines the components used to implement a view.

In our model, a distributed application accesses and modifies shared data
through a view. All entities that communicate with a view are known as view

clients. View clients represent the producers and consumers of data, such as the
threads of a distributed application that uses a threaded programming model.

Conceptually each view client is associated with a single view. A thread of
a distributed application that utilises several views concurrently is represented by
a view client for each view of which it is a member. For example, Figure 3.2
shows a distributed fast-fourier-transform (FFT) application running across two
nodes. On each node, the application has access to two separate views. Each view
corresponds to data sets with different data sharing semantics. Access to each
view is achieved via view clients (VCs). Each VC interfaces to a specific view.

View clients are independent of the view details. A view’s behaviour specifi-
cation does, however, place restrictions on the interactions between the view and
its view clients. This means that a view client must always be compatible with a
view’s behaviour specification. For example, a view that has a specified behaviour
of release consistency is not normally suitable for a view client that provides an

29

VCVC VCVC

Address
space

View 1 View 2

FFT FFT

Node 2Node 1

Figure 3.2: The FFT application running across two nodes, accesses View 1 and
View 2 via their own view clients (VC).

implementation of two-sided MPI.
As illustrated by Figure 3.3, a single view with several view clients provides

a conceptual representation of a traditional middleware. The goal of the view
model, however, is to support a variety of relationships between views. Relation-
ships between different views can be formed by sharing regions of data spaces
or through mappings from one data space to another. There are three ways of
achieving this: non-overlapping views, overlapping views and mapped views.

3.1.1 Non-overlapping views

Non-overlapping views provide a mechanism that allows different regions of shared
data space to use different protocols or even programming models for data shar-
ing. One of many uses of non-overlapping views is to allow applications, which
may be familiar with their data access patterns, to optimise for their sharing pat-
terns. For example, immutable objects such as input data sets can be shared with a
protocol optimised for data delivery and dissemination, while computation occurs
using another data region with a more suitable consistency protocol.

Several views may be present within a single data space, with each view repre-
senting a separate region of that space. This is illustrated in Figure 3.4 where the

30

View ModelTraditional Middleware Model

TCP/IP communication

Interface

Middleware Lazy release consistency

Data cache

Node 1

Node 3

Application

Address space

Node 1

Node 2

Data cache

View

Node 3

Application

Address space

Node 2

Figure 3.3: An application with a single view for data sharing across all nodes is
equivalent to a traditional middleware.

shared data space is a traditional address space. In this example, view 1 and view
2 represent separate regions of the address space, possibly providing different data
sharing behaviour within each region. View 1 has two view clients named C1 and
C2 which are able to access data in the region covered by view 1. Likewise, view
2’s view clients are named C3 and C4 and access data in the region provided by
view 2.

Clients within the same view see updates to shared data whenever the view’s
specified data-sharing protocol makes the updates available. That is, like all data-
sharing protocols, the protocol determines when updates are visible to the partici-
pants of data sharing. Hence, an update to data made by client C1 will be available
to client C2 only when view 1’s specified data-sharing protocol makes it visible
to its clients.

31

C2C1 C3 C4

View 1 View 2

Address
space

Figure 3.4: Non-overlapping views: two views representing separate regions of a
traditional address space. Each view may provide different data-sharing behaviour
for the region they represent.

3.1.2 Overlapping views

Overlapping views provides a mechanism whereby two or more views overlap so
that they are able to represent the same region of data, while providing different
data-sharing semantics to their view clients. Each view may use a different data-
sharing protocol or vary some other parameter that makes it better suited to the
needs of its view clients.

View 1 View 2

CX C3 C4C2C1

Address
space

Figure 3.5: Overlapping views: used to represent the same data region, but with
different sharing semantics.

Figure 3.5 illustrates the data sharing interactions between two overlapping
views. When two views overlap, the effect of a modification in one view on the

32

other view is a result of the interaction between each view’s corresponding data-
sharing protocols. This interaction is best explained through the introduction of a
conceptual view client (client CX, in Figure 3.5). This view client is a client of
both views. When client C1 performs a modification through view 1, client CX
will be informed of the change according to view 1’s data sharing behaviour. Once
client CX is informed of a modification from view 1, it performs that modification
in view 2. The other clients of view 2 (C3 and C4) will be informed of the change
according to view 2’s data sharing behaviour.

Each view’s data sharing behaviour also determines how and when it is in-
formed of changes. For example, a view that cannot receive notications without
polling will have different behavioral semantics.

3.1.3 Mapped views

In Figure 3.5 the overlapping views represent regions of the same data space. It is
also possible for views to represent the same data in different data spaces through
the use of mapped views.

Mapped views are an extension of overlapping views whereby they share data
by converting it using a mapping function. The mapping function is implemented
by a view mapping client. This mapping function may provide translation of data
representation from one data space to another, and may interpret interactions be-
tween views in a manner that suits the mapped views. The view clients in each
view are able to access the same data elements, but with a different data space
representation and different view behaviour specifications.

The inherent differences between some data space representations make it dif-
ficult and unnatural to provide a generic solution to mapping a data element in
one data space to another. Hence, a specialised mapping view client must be im-
plemented to suit the specific sharing requirements of distributed applications that
wish to share or interact using different data spaces.

For example, Figure 3.6 shows a conventional data address space and a tuple
space that interact with each other via a mapping from one data space to the other.
Client CM implements a mapping function, which maps the tuple space represen-
tation to a data address space representation. The mapping function uses the data

33

C2C1

Tuple Space

{100,"fred"}

{200,"sam"}

Address
space

View 2

C3 C4CM

View 1

Figure 3.6: Mapped views: a mapping function is used to translate the data and
operations from one view into the other.

address as the key to a tuple query. Thus, when client C3, in view 2 requests a data
element at address 100 within the conventional data address space, client CM re-
ceives this request and translates the request address to a corresponding argument
of a tuple query for key 100.

This key is used by client CM to generate a tuple request into view 1. Once
client CM has received a reply to its tuple request, it performs the modification on
view 2 by replying to the original request for address 100 from client C3. Client
C3 is then able to continue.

From the point-of-view of client C3, the data element appears to have been
read directly from the conventional address space. The mapping operation is en-
tirely transparent.

In this example it appears that view 2 is not storing data, and instead acts
as a proxy for all data transactions, through client CM. This interaction depends
on the view behaviour specification. More complicated views could cache the
data locally, and only issue requests via client CM when the views’ consistency
requirements required it to do so.

3.2 Properties of the model

The conceptual view model presented in Section 3.1 has a number of inherent
properties that improve the flexibility and functionality of data sharing. In this

34

section we discuss these properties, but first begin by presenting the layered ab-
straction from which these properties are derived.

3.2.1 Layered abstraction

Traditionally, distributed applications are written on top of a middleware. The
middleware provides a software implementation which manages data communica-
tion and consistency of the application running across several nodes of a network.
Most middleware acts as a single layer of abstraction which hides the details of the
underlying implementation from the application, while providing the application
with a clearly defined programming interface.

This separation provides flexibility by allowing a single middleware imple-
mentation to be used as a platform for many different distributed applications.
Furthermore, this separation allows the middleware to be altered without requir-
ing changes to the application. For example, the communication protocol used
within the middleware can be changed so that the application better supports a
desired run-time environment. This increases the portability of distributed appli-
cations.

The view model, like other middleware, separates applications from the mid-
dleware implementation via a programming model API. Furthermore, the view
model defines four different layers of abstraction and the interfaces between them.
These abstractions define the mechanisms and structure of our conceptual model
implementation presented in Section 3.1. For a single application instance, these
abstractions of the view model are illustrated by Figure 3.7. At the top level in
this figure is an instance of a distributed application. The application is written
according to a particular (view independent) programming model API, such as
OpenMP [26].

The next level provides an implementation of this API, which corresponds to
the system boundary presented by a middleware implementation. This is known as
the programming model client level because it implements a programming model
API as a specialised view client. The functionality provided here is itself im-
plemented in terms of an abstraction layer known as the view interface, which
provides a programming-model-independent way for the view client to invoke the

35

Application instance

client code

View abstraction interface

Data abstraction interface

Behaviour implementation

Conceptual data space

Programming model

Programming model API

Communication protocol

Consistency protocol

Figure 3.7: Conceptual separation of middleware of the view architecture.

view-specific behaviour implemented at the next level. In essence, it acts as a glue
layer and does not normally implement the actual programming model behaviour.
Instead, it provides a mapping from the programming model API to the view in-
terface. The view interface will be described in greater detail in Section 4.1.1.

Below the view interface, the behaviour implementation provides the view’s
data sharing behaviour. This level includes implementations of consistency proto-
cols, communication protocols and other behaviour related functionality discussed
in Section 3.1.

The final level of abstraction represents the data space used by the behaviour
implementation. The data space has a defined data element structure and an inter-
face for storing, retrieving, and modifying shared data. Conceptually, it represents
the data space visible to the application which is manipulated by the abstractions
between the application and the data space.

The overhead of these abstractions is implementation dependant. An imple-
mentation that glues abstraction layers together via function calls incurs an in-
significant amount of overhead. That is, an implementation can construct itself
similar to a traditional monolithic implementation where all functional compo-
nents are linked together into a single binary. The implementation presented in
this thesis separates they layering into two parts: the application instance and the

36

view server. This structure incurs the communication overhead of local shared
memory and context switch latencies of the run-time system. These overheads are
insignificant compared to a page data transfer between nodes.

These layered abstractions and interfaces provide the view model with the
flexibility necessary to provide several interesting properties. We present these
below.

3.2.2 Protocol selection

Perhaps the most important property of the view model is protocol selection. Pro-
tocol selection is the ability to change a part (or all) of a view’s behaviour im-
plementation in order to better suit an application’s underlying runtime environ-
ment or data-sharing characteristics. The selection of a different protocol changes
the view behaviour implementation without requiring changes to any interface or
other layers. This is akin to replacing the implementation of a traditional middle-
ware system without making changes to the application. However, the view model
approach is more precise in that it allows the replacement of a single part of a pro-
gramming model implementation, such as the communication protocol, without
replacing other components. In this case, the view model could be considered an
example of reflective middleware [56]. The mechanisms and approach to achieve
this using the view model are explained in Chapter 4.

The following example illustrates the benefits of protocol selection. Prior to
run-time in a Grid environment, a distributed application does not always know
what kinds of network interconnects will be available. The application must rely
on protocols that are known to work across the whole execution environment. In
this case it is safest to assume a generic TCP/IP communication interface. How-
ever, when the run-time environment includes specialised interconnects, such as
shared memory or Infiniband, a generic protocol will fail to make full use of these
interconnects. In such as case, allowing the application to change protocols can
lead to marked performance and efficiency improvements.

Furthermore, on multi-processor machines that support coherent shared mem-
ory the application should use the available hardware support rather than relying
on conventional software-based protocols. As such, protocol selection mecha-

37

nisms provide a method for optimising and adapting a distributed application to
its runtime environment and resources.

Using protocol selection to change the protocols used for an entire application
is an ability provided by many adaptive middleware systems. Combining protocol
selection with non-overlapping and overlapping views allows this approach to be
used to further adapt the application and its data-sharing characteristics.

Protocol selection with non-overlapping views

As mentioned in Section 3.1.1, non-overlapping views are useful for representing
shared data regions with different sharing semantics. This is achieved by using
protocol selection to choose the most appropriate protocols for each shared data
region.

VC

1 2

3 4

1 2

3 4

Address
space

View 1 View 2

FFT FFT

Node 2Node 1

Immutable Shared

Data flow:

VCVC VC

Figure 3.8: An application using non-overlapping views for different data access
patterns. At the bottom of this figure we see how data propagates for each view.

38

Figure 3.8 shows a fast-fourier transform (FFT) distributed application run-
ning across two nodes. Like many applications, there are two separate data shar-
ing phases. Firstly, the source data needs to be delivered to the nodes that require it
for computation. The data is subsequently used to perform a shared data computa-
tion across the participating nodes. In this case, the immutable read-only data can
be distributed to nodes by view 1 using a protocol designed for bulk-data transfer
while data sharing during computation uses a release consistent protocol in view
2.

For this application, the use of two different data sharing protocols is not nec-
essary in order to run the application. For example, the release consistent protocol
used by view 2 could be used to transfer the immutable data sets and for compu-
ation. However, it benefits the application to separate these two run-time phases
as it will permit more efficient resource usage. Specifically, the consistency meta-
state normally used for release consisteny is unnecessary for the immutable data
sharing region.

Furthermore, the immutable data region can be distributed by taking advantage
of data multicast techniques which use less bandwidth and generally result in
higher performance [76].

Protocol selection with overlapping views

In heterogeneous environments such as multi-clusters and Grids, it is important
to fully utilise the available underlying resources and communication capabilities.
Overlapping views, combined with protocol selection, can be used in these envi-
ronments to select protocols that best suit each distinguishable locality domains,
including each cluster and nodes such as ccNUMA nodes.

To illustrate, consider the scenario shown in Figure 3.9 where several clusters
and nodes are spread out over a wide-area network. In this scenario it is desirable
to utilise the available underlying resources of each cluster and to favour local
area communication over wide-area communication. This can be achieved using
the view model by encapsulating each locality domain within a view, with each
view using protocols best suited to its environment. For a distributed shared mem-
ory application running in this environment, a suitable view structure is shown in

39

Figure 3.10. In this figure, the Infiniband cluster utilises a view that provides a
software-based protocol implementation of home-based lazy release consistency
(HLRC) [46]. A view encapsulating the enterprise nodes selects HLRC over
TCP/IP, and the ccNUMA view uses a protocol implementation that allows worker
threads to communicate directly using hardware-supported shared memory. Ac-
cess to shared data within the ccNUMA system results in external communication
only when the data is determined to be inconsistent by the view behaviour imple-
mentation. Any subsequent access to the same data within the ccNUMA system
will occur directly over shared memory, without any unnecessary software inter-
vention.

Overlapping views form an interconnected topology. Each view is able to
choose different behaviour implementations through protocol selection while be-
ing able to interact with each other through the conceptual view client used by
overlapping views. This approach allows a distributed application to use different
behaviour implementations concurrently.

The topology of interconnected views may be arbitrary allowing the formation
of simple or complex interconnected views. However, in this thesis we restrict
ourselves to data-flow hierarchies where data flows between views in a tree-like
interconnect.

University

ccNUMA

Enterprise
nodes

Infiniband
cluster

link
Wide−area Ethernet

link

Figure 3.9: An example scenario where several systems and nodes are used for
running a release-consistent program in a Grid.

40

view

HLRC
over

Infiniband
view

HLRC
over

TCP/IP
view

ccNUMA

Figure 3.10: View structure and configuration for example scenario where several
systems and nodes are used for a running release-consistent program in a Grid.

A topology of interconnected overlapping views provides the following prop-
erties:

Optimisation for locality As demonstrated by our previous example, views can
be used to encapsulate locality domains and optimise data sharing within
that domain via protocol selection.

Data communication amortisation between views Normally, communication
between views of an unchanged data element occurs only once, regardless
of the number of view clients that request the data element. Once a data el-
ement enters a view, it remains local to that view so long as it is considered
coherent by the protocol implementation (if the intention is coherent data).
Requests for the data element within the view are then resolved internally,
without external communication. Likewise when a data element changes
states within a view, such as when view clients modify the data element, the
changes do not need to propagate outside that view until required to, based
on the view’s behaviour specification. This property can provide many ap-
plications with a significant reduction in communication, particularly when
view boundaries are placed across contented network links.

Reduces the impact of the scalability of protocols Many complex protocols,

41

particularly DSM protocols such as LRC, impose significant resource over-
head that is proportional to the number of processors (or, in our model, view
clients) sharing data. The use of multiple views in this scenario gives the
appearance of fewer total processors to the protocol implementation. Using
multiple views in this way may allow a protocol to be used over a larger
number of real nodes.

Improved flexibility Views transform data and operations on data from one form
to another. With this in mind, views can be used for purposes other than data
delivery and data sharing. For example, a view designed to store data to a
file system could form the basis for data storage of long lived data with-
out the need for an explicit file system interface in the application. Using
overlapping views, this approach would ensure long lived data was written
back to disk when computation was no longer in progress. Other uses could
include transforms on data such as data compression.

Optimised synchronisation token management Synchronisation tokens, dis-
cussed further in Section 4.1.1, are used to represent synchronisation primi-
tives such as barriers and locks. Like data elements, synchronisation tokens
are also transferred between views.

A view’s behaviour specification provides details on what happens when a
token enters a view, and how it should be managed. This allows a view’s in-
ternal implementation of barriers to be provided using multi-cast and other
similar approaches [89]. Furthermore, amortisation of barrier messages is
possible if a view model implementation defines a barrier token leaving
a view to mean all clients within the view have reached the barrier. For
other synchronisation primitives, such as locks, other optimisations are pos-
sible. For example, a ccNUMA view protocol may choose to use hardware-
supported synchronisation primitives in order to minimise synchronisation
overheads.

42

3.2.3 Programming model independence

Another important property of the view model is programming model indepen-
dence. The view model does not require any particular programming model to be
used by view clients. Hence, techniques using protocol selection and overlapping
views can be employed and reused regardless of the programming model used by
the application.

For example, both of the DSM and one-sided MPI programming model ex-
periments presented in Chapter 7 use the same optimisation techniques, including
the use of overlapping views. This also extends to other models, such as tradi-
tional message passing. The layered abstraction of the view model also allows
the implementation of communication protocols to be reused between different
programming models.

Programming models and mapped views provide interoperability

The programming model independence property extends to programming-model
interoperability. Programming-model interoperability allows construction and ex-
ecution of distributed applications that use more than one programming model
for data sharing. It also allows interoperability between distributed applications
that use different programming models such as visualisation and computational
applications.

Support for programming model interoperability can be provided through
mapped views. This is achieved by using views with behavioural implementa-
tions of different programming models and connecting them as interacting views
through a view mapping client.

For example, consider a program that is built up of algorithms written using
different programming models. The selection of these algorithms may be at run-
time in order to optimise the choice of algorithm dependent on the underlying
environments. Sharing data between algorithms using the different programming
models requires the use of view mappings. Hence, a fast-fourier transform (FFT)
algorithm written to run on traditional shared memory may be used in an inner
loop, while MPI is used to distribute the source and results data. Likewise, an
external visualisation tool may wish to examine the data generated by the FFT

43

algorithm at run-time by accessing the data through a mapped view.

44

CHAPTER 4

EIDOLON: A REALISATION OF THE

VIEW MODEL

ei ; do ; lon (Ī ; dō" l @ n)
n. pl. ei ; do ; lons or ei ; do ; la (-l @)

1. A phantom; an apparition.

2. An image of an ideal.

In the previous chapters we presented our view model and outlined the con-
cepts and properties that are inherent in the model. In this chapter, we define
an architecture for the model, which we call Eidolon. Eidolon realises the view
model by specifying details required for implementation, including a number of
constraints and design decisions that are outlined in this chapter. The Eidolon
architecture is implemented for our experimental platform and is used for demon-
strating and analysing the view model in Chapter 7.

4.1 Views

Interactions between views, their clients, and other views occurs through a view
interface. In this section we outline how views are defined, how they communicate
and the interfaces they use to communicate.

45

4.1.1 View interface

Section 3.2.1 introduced the view model’s layered abstraction and introduced an
important abstraction called the view interface. Communication between a view
and its view clients occurs through the view interface. Likewise, communication
between views can also occur via the view interface. That is, there is no distinction
between views sharing data with each other and other clients. This feature allows
views to be connected to other views in flexible configurations.

The implementation of the view interface provided by Eidolon defines a set of
operations and a data abstraction used by the operations to address data elements.

Data addressing and representation

The view model names and addresses data elements using a unique identifier.
When an operation is performed via the view interface, data elements are ad-
dressed by this unique identifier. Hence, while the data addressing approach is
independent of the view model, it must be specified in order to allow views and
their clients to communicate. For example, tuple space addressing could be used
by a client and its views to refer to data elements.

At first sight, this seems to restrict views communicating directly with each
other to use the same data addressing approach. However, as introduced earlier,
the flexibility of mapped views allows for different data space representations
through the use of a view mapping client. This mapping client will provide trans-
lation of an operation and its data addressing at the view interface.

Some programming models do not have the concept of a data space and do not
refer to data elements directly. For example, message passing generally invokes
simple data send and receive operations. In this case, data addressing is essentially
irrelevant. Changes to data appear as a flow of updates and only the message
sender and recipient can infer any meaning about the content of a message. In
order to allow communication and interoperability between message passing and
addressed-data models, a view mapping client can also be used. This specialised
view client takes operations from one view and converts them into a usable repre-
sentation for the other view.

46

Eidolon address space

In order to uniquely identify all data elements, Eidolon provides a single-address-
space (SAS). Every data element is assigned and identified by an address in this
SAS. This includes views and synchronisation tokens which are given a unique
address within the SAS.

Eidolon’s data addressing approach does not preclude the use of other data
addressing approaches such as tuple space, nor does it prevent the use of message-
passing models. However, for the purposes of evaluation, the SAS approach gives
us the flexibility to explore improvements to DSM applications using the prop-
erties of views, while experimenting with the use of other programming models.
A detailed examination of other data representations including tuple spaces and
two-sided message passing models are beyond the scope of this thesis.

In Eidolon, mapped view clients provide the necessary mechanism to allow
interoperability between different programming models and their data space rep-
resentations. For message passing programming models, while not strictly neces-
sary, the data address is used to refer to a communication end-point known to the
application. This approach simplifies the implementation of any view mapping
clients and allows us to experiment with a single view interface. For example, a
DSM application writing to a specific data address causes an update propagate

operation to be invoked on a mapped message-passing view. The view mapping
client handles this request by treating the update propagate operation as a message
sent to a specific worker thread. Other approaches are possible, with a suitable
translation provided by a mapped view client.

View interface operations

The Eidolon architecture implements the view interface using a set of operations
known as view interface operations (VIOs). These operations are sent as messages
between view clients and their view pager. The view pager implements the view
behaviour and is discussed further in Section 4.1.2. The VIOs are divided into
three core categories shown in Table 4.1. First, data coherence operations specify
actions to be performed on a region of data. Second, synchronisation operations

control the flow of data and specify possible dependencies between data and nodes

47

that modify the data. Third, high-level view manipulation operations allow for
views to be created, manipulated and destroyed.

update request requests updates for a given region
update propagate: propagate updates for a given region
protection request: request access to given region
protection propagate: indication of new region access
acknowledge: indicates success of an operation
token create: create a synchronisation token
token request: request a synchronisation token
token response: receive a synchronisation token
view create: create a new view
view select: select a view for use
view unselect: release a view

Table 4.1: Summary of view-interface operations.

All data coherence operations specify a single region of data within the SAS
along with any other parameters required for the operation. These operations in-
clude protection-based read/write/execute permissions. The prototypes of a suit-
able interface are included below.

Update request indicates the desire of the caller to receive updated data for a
specified region.

int update_request (view_t view, sas_t base, sas_t ←↩

end, int flags)

The specified region is indicated by the base and end variables. Any
permissions set in the flags variable indicate the caller’s desire for on-
going access without the need for future communication. For example, if
the request includes read permissions, the caller is asking that it be able to
read from the memory region without requiring any further read request
operations until this access is revoked by the callee.

Update propagate indicates that the caller is sending a data update or reply to an
update request.

48

int update_propagate (view_t view, sas_t base, ←↩

sas_t end, int flags, void *data)

If permissions are included, they indicate the on-going access rights the
recipient has to the data region.

This operation also passes a pointer to a buffer containing the changed mem-
ory region. Note, however, that our implementation avoids a buffer copy to
the client address space by using direct-mapped zero-copy techniques when
possible.

Protection request indicates a request to have specified on-going access to a re-
gion.

int protection_request (view_t view, sas_t base, ←↩

sas_t end, int flags)

For some programming models and consistency protocols, this operation
has no meaning and can be ignored. For example, message passing has no
concept of memory protection.

Protection propagate indicates to the recipient that its permissions to a given
region have changed.

int protection_propagate (view_t view, sas_t base, ←↩

sas_t end, int flags)

Acknowledge indicates the success of a previous request for an acknowledge.

The success is encoded within the flags variable of the response.

int acknowledge (view_t view, sas_t base, sas_t ←↩

end, int flags)

The caller for all operations can request an acknowledgement, which is sent
back as an acknowledge operation.

49

Out-of-band data is also supported with all operations. This may be used to
convey protocol-specific state between a view and its clients. For example, view
pagers that implement the same consistency protocol, such as LRC, may include
vector time-stamps as an additional consistency hint with data transfers.

Synchronisation tokens are used by a view to represent barriers, locks and
other synchronisation primitives.

Token create will create a new token when invoked on a view. The caller can
indicate what the token will be used for by specifying a hint.

token_t token_create (view_t view, int type_hint)

Token request will request a known token from a view.

int token_request (view_t view, token_t token)

Token response delivers a token to a client.

token_t token_response (view_t view, token_t tokn)

All data and synchronisation operations invoked on a view or client are as-
sumed to be processed in order. This allows a view to propagate data changes
associated with a lock by first sending the data changes followed by the lock to-
ken.

For efficient processing, these operations can be batched together. Change sets
used by protocols such as LRC can be supported in this fashion.

The creation and management of views is provided for via view manipula-
tion operations. Views must be established before using any of the data or syn-
chronisation operations, however, this can often be performed transparently to the
application through either a library or by the run-time system. 1

View create creates a view at a specified region in the SAS. The view may be tied
to a parent view to establish overlapping or mapped views. This operation
returns a view identifier which is used when invoking other VIOs.

1Approaches to using views are discussed in Chapter 8.

50

view_t view_create (int type, sas_t base, sas_t ←↩

end, view_t parent)

View select is invoked by all clients requesting access to a view. This allows
them to choose the views used to construct their data sharing regions.

int view_select (view_t view)

View unselect indicates that a view is no longer being used by a client.

int view_unselect (view_t view)

4.1.2 View clients and pagers

View clients provide the application with its desired programming model inter-
face. The data sharing components of a programming model interface must be
abstracted and implemented in terms of operations on one or more views using
VIOs. In Chapter 6 we provide implementation details of how this is achieved for
several programming models and DSM consistency protocols.

When view clients interact with a view, it is the view pager that receives and
processes each VIO. The view pager provides an implementation of the view’s be-
haviour specification. This includes most shared memory consistency protocols,
however, unlike traditional DSM implementations, the communication protocol
used by the consistency protocols is not a part of the view pager. Instead, commu-
nication protocols are provided by a separate view client.

To understand how communication occurs between view client and pager, Fig-
ure 4.1 shows the interactions between two address space (AS) clients that are
running a DSM application across two separate nodes. The AS client behaves as
a user-level pager for shared memory regions. It catches page faults within a view
and maps data into the address space of the application based on instructions from
the view pager.

51

Node 2Node 1

6

7

View pager

TCP/IP

View InterfaceView Interface

AS Client 1 AS Client 2

View Interface

Comms

View Interface

View Interface

Pager Protocol

View Interface

View Interface

Pager Protocol

View Interface

Comms

memory region memory region
Address space

view client
TCP/IP

view client
1

2

3

4

5

Figure 4.1: Two address-space clients interacting over TCP/IP within a single
view.

In this example, a page-fault occurs in AS client 1 for a data page that is cur-
rently only available to AS client 2. The first step converts the page-fault into an
update request view-interface operation.

At step two, the update request operation is performed on the view pager
leaving the pager to further handle the invocation. The invocation may be a remote
procedure call (RPC) or a local function call depending on the configuration of the
software.

The view pager then decides what to do based on its behaviour specification
(which is implemented as a consistency protocol). In this example, at step three
an update request operation is invoked on a communication view client. This
view client sends the update request across the network using TCP/IP. Note that
since the view pager is not aware that communication will occur over TCP/IP,

52

it invokes the update request operation on the communication view client as it
would for any other view client. There is a single view interface for all view
clients. Hence at step four, a view client that implements TCP/IP communication
converts the update request operation and any payload into a message suitable
for sending over the network. In this case, there is no data payload other than the
arguments required for an update request operation. The destination node, node 2,
receives the message and converts it back into a update request operation. At step
five, the view pager on node 2 receives an update request operation that appears
to be from AS client 1. The source of the request is passed as a parameter to each
view-interface operation so that the destination knows where to direct any reply
operations.

At step six, the view pager determines that it must invoke the operation on
the destination client AS client 2 as this client has the most up-to-date data. At
step seven, AS client 2 processes the operation and returns the data by invoking
an update propagate operation on its view pager. Note that for local interactions
between view pager and client, the data payload relies on zero-copy to avoid un-
necessary copying.

When the update propagate arrives back at node 1’s view pager, the pager
writes this operation’s payload into the view data space. Depending on the current
state of the target (AS client 1), the view pager may invoke an explicit update

propagate operation or rely on a cheaper synchronisation operation to notify the
target view client. During this process, the original update request operation from
AS client 1 has been blocking. Once the view client receives its notification, the
operation can continue.

The following example, illustrated in Figure 4.2, clarifies the interactions be-
tween a view pager and a client. In this example the view pager implements
a distributed shared memory (DSM) programming model. Writing to memory
(which, in this case maps directly to the SAS) causes the client to issue an
update request including a request for permissions for ongoing write ac-
cess to that memory area. The view pager replies with an update propagate

granting that access. Any future writes to memory at that address occur without
generating a new VIO until access is later revoked. The view pager implementa-
tion will behave like a typical DSM consistency protocol by mapping each view

53

interface operation to a particular consistency protocol action.
Eidolon’s view interface operations map nicely to page fault mechanisms of

a typical DSM and thereby provide a clean layer of abstraction for implementing
shared-memory address-space clients.

Other programming models may use and interpret VIOs differently. For ex-
ample, the approach used in the previous example is not adequate for message-
passing programming models, as they do not normally represent data using a
location-independent unique address. Furthermore, these models do not have the
concept of granting access to shared-data regions. Instead, the flow of VIOs be-
tween client and pager mimics the communication mechanisms expected by the
application. We discuss this further in Chapter 6.

client

1

2 3

1

2

3 update_propagate(0x1000,data)

update_request(0x1000,WRITE)

store instruction to memory at 0x1000

write
memory

view pager

req reply

address space

Figure 4.2: A distributed application client writing to shared memory which trig-
gers communication to a view pager via VIOs.

4.2 Interactions between views

In Section 3.1 we presented our conceptual model and illustrated how an interac-
tion between views occurs via a conceptual view client. For overlapping views

54

TCP/IP packets

view
view

TCP comms

client client

view interface operations

LRC pager

pager
MRMW

Node 1

client

TCP comms

Node 2

LRC pager

binder
CX

Figure 4.3: Overlapping views are connected via a view binder (CX) client. View
interface operations are simply passed-through to the other side.

such a view client takes an incoming VIO from one view and forwards it to the
other view. As Eidolon uses SAS addressing for all data operations we avoid
having to change the representation of data when communicating between views.
Hence, the view client for overlapping views only needs to provide simple proxy
functionality and does not need to translate the data addressing method of one data
space to that of the other.

Figure 4.3 illustrates a system using two overlapping views to share data. The
view client connecting the two overlapping views is called a view binder. The
view binder is an implementation of our conceptual client CX presented in earlier
chapters. Its task is simply to proxy requests. In our implementation, the view
binder alters only view identifiers which are associated with each view interface
operation. A view binder is created transparently by Eidolon when the user calls
view create and provides a parent view as an argument.

Mapped views require a more complicated view client. For example, a dis-
tributed application that uses both two-sided MPI communication and shared mem-
ory, must translate data space operations via a specialised view mapping client.
Both programming models have different methods of referring to data elements.

55

MPI operations

viewview

LRC pager

clientclient

view interface operations

Node 1

client

MPI pager

client

mapper

CM

Figure 4.4: Mapped views are connected via a view mapping client (CM). This
client performs translations on view interface operations as they go from one view
to the other.

In this case, a view client that maps VIOs from one programming model to another
needs to interpret how data elements are referred to in each model. In general, this
is dependent on the application in question.

Figure 4.4 illustrates a system using a mapped view to translate data from one
view into the other. Unlike overlapping views, which use a simple view binder
client, mapped views use a more specialised client which translates operations.
In this figure, this client is shown as mapper and represents our conceptual view
mapping client. The views form a data-flow hierarchy with one view as the parent
and the other as the child view. It does not normally matter which is the par-
ent view, however in this example, the LRC view should be the parent assuming
that data consistency is important. If the MRMW view was the parent view, it
would not be required to send consistent data changes to its child view as its view
behaviour would not require it.

In Eidolon, the approach for interconnecting both overlapping and mapped
views is the same. They both use a common interface and operations which are

56

provided by the view interface. These allow us to easily structure more complex
view hierarchies in order to match a particular data sharing scenario. Importantly,
when constructing these hierarchies, view pagers do not need to worry about the
details of whether overlapping or mapped views are used. These details are inde-
pendent from the views themselves, and they are able to treat all connecting views
as regular view clients.

This allows us to create complex data sharing hierarchies. For example, con-
sider a long-running distributed computation that performs computation using any
available computing resources and allows the user to visualise progress. The
run-time computing resources may be unknown and change over time, requiring
changes to the data-sharing structure. Figure 4.5 shows a run-time environment
and a conceptual view hierarchy for such a long-running computation.

In this figure, data sharing for computation is performed using release consis-
tency with HLRC used as the primary consistency protocol for managing sharing
of consistent data. The view hierarchy mimics that of the underlying intercon-
nected machines. In this structure, an HLRC view is present for each locality do-
main, i.e., one for each cluster. The ccNUMA cluster establishes further MRMW
views on each ccNUMA node. These are configured as child views connected to
their parent HLRC view. Note, however, the success of this structure on perfor-
mance is still very much dependent on the computation-to-communication ratio of
the application, and the scalability limits inherent with the run-time environment.

The visualisation component within the visualisation view, receives occasional
updates to data without any significant impact on the running computation. That
is, it avoids being a direct client of the release-consistent views. Finally, the results
are backed via a file backing store. This type of view handles all view data in a
coarse grained manner and stores it for later retrieval. It becomes the parent view
to which all updates flow, based on the sharing semantics of the views above.

57

ccNUMA ccNUMAVisualisation
node

Network

Backing
store

interconnect

HLRC

Computation

Explicit
update

Visualisation HLRC

MRMWMRMW

Backing
store

Figure 4.5: A run-time environment (top) and view hierarchy (bottom) for a long-
running computation.

58

CHAPTER 5

EIDOLON FRAMEWORK

This chapter presents the Eidolon framework and the infrastructure it provides for
running distributed applications in diverse and wide-area environments.

The Eidolon framework is an implementation of the Eidolon view architecture
presented in Chapter 4. The purpose of this implementation is to provide a frame-
work for verifying the view architecture through experimentation and benchmarks
using standard distributed applications.

The framework is designed to provide a portable infrastructure for implement-
ing Eidolon. It is structured so that it can be easily ported to run on top of any
operating system or possibly within an operating system that provides transparent
DSM to applications. The framework also supports several programming model
APIs using the layered abstraction of the view model. We configure the frame-
work as a server daemon. Client processes run separately and connect to the server
using local Unix sockets and mapped shared memory regions. An alternative con-
figuration of the framework allows for the server and client to be placed together,
in a single executable. While this approach means that interactions between view
pagers and the client are much faster, there is less flexibility. For example, in this
scenario, the server cannot be reused if multiple client applications are running on
a single machine.

The Eidolon framework is implemented on top of Kenge [30]. Kenge provides
Eidolon with a build system, libraries and device-driver interfaces. It supports
device drivers running as Linux kernel modules or as user-level applications, pro-
viding us with greater flexibility in choosing how to integrate Eidolon with our
host systems and applications. The implementation used for evaluation runs as a

59

user-level application for Linux, and as such, suffers from many of the overheads
of multiple memory protection and IPC operations that are required.

5.1 Framework components

Linux Pager Client

Eidolon core

Client

Communication library

Global FS

View Support Libraries

MPI−2HLRC

Infiniband

Strict

Ethernet

Address−space Pager

TCP

Overlay Interface
Communications Interface

View Operations Interface

View Operations Interface

Programming model clients

Overlay network handler

Figure 5.1: Framework for running various distributed applications.

Figure 5.1 shows the framework structure with each of the core components
that form an Eidolon application environment. The Eidolon framework imple-
mentation provides the following core components:

Programming model clients used by a distributed application. These include
DSM address-space pagers, one-sided MPI interfaces, and file system inter-
faces. These sit on top of the framework and communicate with the rest of
the system by using view interface operations as introduced in Section 4.1.1.

Eidolon core provides the key mechanisms for views, and implementations of
view consistency protocols such as Strict, HLRC and MPI-2 which pre-
sented in Chapter 6. These are used to manage data sharing and coherency.

Overlay network handler provides mechanisms for finding a node that is able to
answer a query about the location of data in the distributed system. Once the
query is answered, the Eidolon core provides data sharing and coherency.

Communication library allows nodes and views to communicate among them-
selves using a high-performance, low latency interface. The communication

60

library includes support for TCP/IP and Ethernet interconnects. These pro-
vide a view client interface. This library is discussed further in Section 5.2.

5.1.1 Client and server structure

As mentioned earlier, a design decision was made to separate the application from
the Eidolon middleware implementation, rather than linking or loading the Ei-
dolon middleware into the application. The application includes a small application-
to-Eidolon glue layer which implements Eidolon operations and forwards them
via Unix sockets to the Eidolon middleware.

This client and server approach allows for more than one client on the same
machine to share the same server. The main benefit of this is the ability to use
shared memory without additional copying when multiple clients exist on the
same node. Between each client and the server is a shared memory region used
to host the shared data. However, this approach suffers from the extra latency of
communication between client and server over Unix sockets for most operations.
For example, instructing the client to change access permissions to a region of
memory occurs over this communication channel.

5.1.2 Configuring node view selection

For benchmarking purposes the Eidolon framework supports manual configura-
tion of views on a per client basis. Configuration files are provided to instruct
each node to create and or select one or more views. The application then uses
these views to perform its data-sharing operations.

Alternative approaches to configuring and using views are discussed further in
Chapter 8.

5.2 Communication

Communication is one of the most critical apects affecting performance of dis-
tributed computation systems. Achieving high performance and good scalability
characteristics relies on being able to communicate a message from one node to

61

another using the most efficient means possible. This often requires the develop-
ment of communication routines that are optimised for a particular environment
and the network hardware used within that environment.

On the other hand to achieve portability, many systems are built using popular
communication protocols such as TCP/IP. While providing the desired portabil-
ity, these protocols incur high communication overheads, which leads to reduced
communications performance. At the expense of portability, other systems, such
as MPI on Infiniband presented by Jiang et al. [50], are designed and implemented
using specialised communications hardware in order to achieve high levels of per-
formance.

To investigate the trade-off of achieving portability at the expense of perfor-
mance, a high performance, multiple transport communication library has been
developed. To achieve efficient and optimised communication, this library pro-
vides several transports, each of which provide an optimised implementation of
communication routines for a particular network interconnect or software proto-
col. These include a raw Ethernet-based protocol, TCP/IP, and specalised shared
memory interconnects such as Infiniband [71]. If a specific interconnect is avail-
able between communicating nodes, the appropriate transport can be used to com-
municate messages. When a particular desired transport is not available, an alter-
native applicable transport is chosen. For communicating nodes where multiple
transports are available, nodes may choose the one that offers them the best per-
formance.

This design focuses on providing fast, zero copy, low latency communica-
tion where it is available between communicating clients. The complexity of the
transport interconnect, message routing and message interpretation are left up to
the higher-level routines that use the communication library. This significantly
reduces the transport implementation complexity and leaves a lot of room for
flexibility.

5.2.1 Network interconnects and protocols

In Chapter 2 we presented several approaches that address communication across
specialised interconnects such as Infiniband, and other approaches that support

62

multiple communication mechanisms such as Nexus and Madeleine. Nexus deals
with issues of portability by allowing multiple communication methods to be sup-
ported transparently. Nexus provides the nodes of an MPI-based system with a
single-sided communication mechanism called a remote service request (RSR).
The RSR mechanism of Nexus dictates the nature of message delivery and execu-
tion.

Message exchanges occur in Nexus by first encoding each field (such a as
piece of typed data) in a message one at a time. At the receiving end, the message
is decoded field by field until the whole message has been processed. Nexus al-
lows the message fields to be transmitted immediately, delayed or only performed
when it is safe to do so by providing this choice through its API. This provides
an application with flexibility, however these semantics imply that a data copy to
or from message buffers would have to occur in many circumstances. Nexus is
overly complicated for the requirements of a high-performance communication li-
brary for a framework implementation such as Eidolon, with the added complexity
impacting on performance.

Likewise, Madeleine III [9] allows for multiple communication transports at
a lower level than Nexus, while supporting the communication abstractions of
Nexus. It makes it easier to implement zero copy messaging, especially on inter-
connects that allow for it.

However, Eidolon requires only a simple zero-copy interface and as such
does not require the high-level features and options present in Madeleine. As
Madeleine messages are typed, the receiver does not know the size of the message
until it decodes the message. Once the message is decoded it can then copy it or
ask the sender to transfer the contents.

Due to the nature of the zero copy mechanism in Madeleine, messages larger
than MTU require flow control to be implemented. In Eidolon’s communications
library, handling message fragmentation generated by a communications inter-
connect is left up to the receiver who is able to make a better decision on the right
way to process the message.

The receive delegation phase of our library solves many of the handling issues
present in Madeleine. Messages are received by a delegation function in frag-
ments. This allows messages to be processed bit by bit if they are fragmented

63

due to transmission limitations of the interconnect. Furthermore, it is possible
for a transport to implement zero copy receive by only transmitting the message
fragment information for the receiver to first decode and then receive the message
contents using a remote-DMA capability, or by using other techniques such as
making an assumption message delivery ordering and destination and then receiv-
ing directly into the destination buffer.

Our model provides a simplified message format that provides similar ability
to the message pack/unpack operations of Nexus and Madeleine, however we do
not deal with the ability to handle typed data. Arguably this makes Eidolon’s
communication library less flexible than Madeleine but also less complicated,
since many of the features are not necessary for efficient message delivery and
only serve to restrict performance. For example, our library does not deal with
message retransmits that may be required for some interconnects (however, either
the transport interconnect, or a higher level may implement this). Hence, this li-
brary is designed to offer high performance, common interface for communication
without added functionality that is not necessary for the Eidolon framework.

5.2.2 Design

The design goals for this communications library are simple:

• To provide a simple interface that allows point-to-point communication and
point to multi-point communication if the transport supplies it.

• To avoid over-generalising such that the efficiency of a transport implemen-
tation is restricted. For example, the need for message copying should be
avoided.

These goals allow for the development of a high-performance library, that sup-
ports several of the modern day features of network devices such as zero-copy and
remote DMA while offering an API that is not restricted to a particular network
device implementation.

Eidolon allows nodes to communicate using multiple transports with each
transport providing an implementation designed to communicate over a particular

64

interconnect. When two nodes wish to communicate, the best available transport
is chosen for all on-going communication.

Eidolon also provides a common message format that promotes the use of
zero-copy messaging where possible. For example, buffers provided by a view
pager will not be copied until it is necessary, such as when communicated over
TCP/IP. The message format also supports fragmentation and delivery of partial
fragments to view pagers.

Message format

message

vector

vector

vector

tag

message
vector list

Figure 5.2: Message is represented by a set of vectors

A message is constructed using a list of vectors. Each scatter-gather vector
points to a buffer that forms part of a single message. Figure 5.2 shows the mes-
sage vector list expanded to represent a complete message comprising of the sep-
arate buffers. The vector list (shown on the left) is passed to the communications
library, representing the complete message (shown on the right) that will be re-
produced at the receiver. The use of vectors allows a programmer to quickly build
a message consisting of multiple parts without copying the data. Furthermore,
it provides the opportunity for the selected transport to use a zero-copy buffer
transfer method.

As well as the message buffer vector list, a message also contains a type field,
length field and application specific flags. The type specifies what type of message
is being sent and is used to determine which handler will process the message

65

upon arrival. The handlers are specified by the receiver. The length field provides
contains the complete message length. The flags provide details about the message
such as the message’s endian format and whether it is fragmented or not. These
flags are interpreted and handled by the receiver’s handler.

Handling message fragmentation

When transmitting a message the transport may be required to break up a message
into multiple fragments, such as packets, for communication. We avoid copying
fragments into a complete message by passing each fragment onto the receiver
handler. The receiver handler is able to make the best decision about what to do
with the fragment. For example, Eidolon views support fragmented data updates,
so the communications handlers do not need to re-construct whole messages in
this case.

Fragmentation is supported as follows. The first vector of a message repre-
sents a tag buffer. The tag, which is a unique identifier for each complete mes-
sage, is communicated with each fragment to assist in processing a message upon
reception. A fragmentation header may also be attached to each message by the
transport. The header contains details about the fragment, including the fragment
number and the byte offset into the message that the fragment contains. This al-
lows for the receiver to process a fragment of a message without having to receive
the whole message.

For example, when transfering a piece of data that is larger than the maximum
transfer unit of the transport, it gets fragmented. Each fragmented arrives at the
receiver which reads the tag header to determine which region of memory to ap-
ply the changes to. It then offsets into this region based on the fragment offset
information and copies (or DMA transfers) the data directly into the target mem-
ory buffer. The target memory buffer is encoded as part of the message transport
header and is used to direct the message to the appropriate view pager for further
processing.

API

The API is broken down into two categories.

66

Registration functions

register_transport(transport_t trans, send_func_t send)

register_msg_handler(handler_callback_t func)

Before being used on a node, a transport must first be registered. This is
achieved by calling the register transport function. This registers a
message send callback function that will be called by send msgv in order
to send a message.

Message handlers process a message based on a type field that is commu-
nicated with the message.

Communication functions

send_msgv (msgv_t *msg, node_t to, msg_type_t type)

delegate_msg (msgv_t *msg, node_t to, msg_type_t type)

Each transport implements the send msgv function. This function handles
the internal transmission of the message. When the message is received, it
is processed by an internal receive function that the transport provides. This
function then calls delegate msg which passes a fragment of a message to be
processed. This call invokes the appropriate pre-registered message handler.

Note that node t can represent a group of nodes for multi-cast and broad-
cast domains, however Eidolon does not currently make use of this feature.

5.2.3 Communication transport implementation

In this section we use the Ethernet transport as an example. The implementation
of other transports is quite similar except for network interconnect and protocol
details. All transports perform with zero-copy semantics until a copy is necessary
for communication or protocol interactions.

Nodes that can communicate directly to each other over Ethernet are able to
do so without the added overheads of TCP/IP and other network protocols. For a
cluster of nodes connected via high speed Ethernet, this results in greater perfor-
mance and lower protocol overheads [25].

67

When two nodes first start communicating with each other over Ethernet, they
first send node information to each other to establish point to point connections
between themselves. Once this occurs, each node caches information about the
other node for future communications.

Authentication

In general, transports authenticate end points for security and correctness. This is
achieved by first communicating node information to each other via a handshake.
Once this occurs, each node caches information about the other node for future
communications.

Zero-copy transmit and receive

Figure 5.3 shows how the Ethernet transport transmits a message represented by
a message vector list. Firstly, for each packet that the transport sends, labelled
with transmitted ethernet fragments in the diagram, it attaches a transport header
that contains an Ethernet header and transport specific state. It then appends the
tag buffer that is represented by the first vector of the message. For each packet
of a message this is attached. If multiple packet fragments are sent, a fragment
header is attached followed by the payload. The payload contains as much of the
message as can fit in the remaining packet space.

The temporary transport buffers are extra buffers that the transport requires in
order to communicate a message. It contains the transport header, which is used
for both message fragments, and each of the fragment headers. In this transport
implementation, reference counting is used to keep track of when these buffers
can be freed.

The receiving side receives Ethernet fragments. In most cases, each valid
fragment is passed to Eidolon for immediate processing. This approach allows
Eidolon to handle a message without unnecessary copying. Hence, for normal
message data, the only copy performed is from the fragment buffer into place in
the view’s address space. When a view client in Eidolon is blocked on receiving a
complete message, it will not continue until all fragments have been received for
correctness.

68

Ethernet Transport

vector

vector

vector

fragment 0

transport

tag

payload

fragments

transmitted
ethernet

transport

tag

fragment 1

payload

tag

transport

fragment 1

fragment 0

buffers
transport

temporary

vector list
message

message

Figure 5.3: Transmitted message over Ethernet using zero-copy.

5.3 Wide-area data communication

In Eidolon, an application’s state including data and synchronisation tokens live
within views. As explained in Chapter 4, these entities are addressed by a unique,
location-independent address inside a single-address-space (SAS). The SAS is
provided across all nodes running Eidolon. Using a SAS allows for long-lived
data, and multiple applications sharing a single distributed instance of Eidolon.

The distributed threads of an application require mechanisms for obtaining
their desired data or shared data regions by locating and then selecting already
established views, or by creating views to meet the application’s data sharing cri-
teria. Once the views required by an application are known, the application can
begin to use and exploit views. This provides our approach to usable wide-area
computation.

To achieve this, Eidolon requires mechanisms to resolve a view identifier to
its location. For small networks such as clusters, a simple broadcast mechanism

69

can be used to resolve this information. However, for wide-area and more com-
plex distributed networks, ranging from multi-clusters through to Grids, a more
efficient approach is needed.

Eidolon can use an overlay network in order to discover the views available
to the application with only a small number of messages being sent across the
network. The overlay network is also used to resolve the location of a view to a
specific node. The application then has access to further information specifically
related to that view.

Popular overlay networks implement a distributed hash table (DHT) service.
These include Chord [85], Pastry [78], Tapestry [41, 94], OceanStore [58], and
Ratnasamy et al. [75]. They are capable of resolving a request key to its value via
the DHT while only contacting a small number of nodes. For example, Tapestry
can resolve a request in O(n log n) hops, where O(n) is the number of objects.

Due to the nature of DHTs, one problem is that there is no locality involved
when resolving the value of a key. Other approaches such as Plaxton et al. [73]
implement a simple randomized algorithm which attempts to resolve requests us-
ing nearby data.

These overlay networks also make it difficult to resolve a range query. For
example, an application in Eidolon may know the address of data it is interested
in, however it may not know the SAS address of the view or view identifier. To
solve this, there exists overlay networks which support range-queries [1].

Eidolon provides its own overlay networks called Donut overlays suitable for
mapping a contiguous range of keys to a value rather than the typical distributed
hash table key/value pair mapping provided by current overlay networks. Donut
overlays are used by Eidolon in wide-area scenarios to resolve the node on which
a view lives, to locate and to communicate with nodes prior to establishing direct
connections, and to manage view data space allocation. Further discussion on
overlays for wide-area data-location are beyond the scope of this thesis.

70

CHAPTER 6

PROGRAMMING VIEWS

In this chapter we explore several programming models integrated with Eidolon.
We examine both the client interface implementation and their view pager imple-
mentations.

In Chapter 7, these implementations are used for evaluation of several different
view protocols, to allow us to explore the properties of the view model.

Note that while it is possible to take existing protocol implementations and
simply wrap them in view interface operations, we found that available protocol
implementations lack abstraction layers and are very tightly integrated with their
target platform making it infeasible to reuse their implementations.

6.1 Sequential- and release-consistent memory

6.1.1 Client interface

The shared-memory client interface maps shared regions into an address space
based on view address. Table 6.1 provides a summary of the client’s native action
and its corresponding invocation on the view interface. The latter part of the table
summarises the view operations invoked by the view pager on the view client.

6.1.2 Library interface

Along with the client interface, we have implemented several programming and
thread models:

71

View client action Invocation on view pager
Page fault update request
Response to invalidate request invalidate response

View client action from pager Invocation on view client
update propagate Map region into address space, copy data

if zero-copy is not possible. Update access
permission for region.

invalidate request Update access permissions for region
update request Reply with data using

update propagate, update access
permissions.

Table 6.1: DSM client interface.

Custom A simple programming interface that provides a global malloc()

for allocating consistent memory from within a single view. Barriers and
locks are provided to manage view synchronisation tokens. The view is
established by the underlying run-time system and choice of view behaviour
depends on the environment.

TreadMarks The TreadMarks API provides a release-consistent memory model
to applications and calls for establishing memory regions, barriers and locks.

SPLASH This interface is similar to the custom and TreadMarks interfaces, how-
ever it provides an interface for running SPLASH benchmarks.

VODCA A preliminary VODCA [42] interface (a part of VOPP introduced in
Section 2.2) has been implemented in order to support VODCA applica-
tions. Currently, shared data is backed by consistent data views, however,
ideally would be backed by VODCA’s native consistency protocol views.

6.1.3 Explicit update consistency

This view type requires the programmer to explicitly request updates or propa-
gate data changes for a specified region of data within the view. This type of

72

view is useful for bulk data transfer to nodes, without any meta-state management
overheads that are typical of other protocols.

All view interface operations treat a whole region as a unit of coherency. That
is, the client must ensure that single-writer semantics are enforced for each region
it specifies in a view-interface operation.

The view home keeps track of the current home of each data region. Data
regions migrate to the node of the writer if they exhibit single-writer semantics.

6.1.4 Strict consistency

This protocol, also known as multiple reader, single writer (MRSW) consistency,
enforces sequential consistency.

This allows programs without shared-memory annotations (e.g., release-
consistency annotations) to execute correctly. A significant drawback of this is
false sharing, which leads to excessive communication and poor performance.

The unit of consistency is a fixed page size (8192 bytes on Itanium systems).
This page size used is the minimum granularity of all data transfers from the view
client. Note, however this does not restrict view clients from using arbitrary region
sizes. To reduce the impact of false sharing, hardware that supports smaller page
sizes may request page data in units of their page size.

The view home is required to maintain the location of each unit of consistency
and enforce the single-writer/multi-reader semantics on each page. Strict consis-
tency states a page as having exclusive (write) access or non-exclusive access. The
view home maintains this state for each page the view covers.

Synchronisation tokens such as locks are forwarded to the user. The con-
sistency protocol does not need to maintain any meta-state with the lock. The
implementation of this protocol also ignores barriers by forwarding their tokens
to view clients. A side-affect of this is that counting of waiters on a barrier is not
performed within the view, resulting in more communication. An improvement to
this view would count view clients entering a barrier in order to reduce communi-
cation externally to the view until all view clients have reached the barrier.

73

6.1.5 Multiple reader, multiple writer consistency

Multiple reader, multiple writer (MRMW) consistency supports systems that pro-
vide shared-memory coherency in hardware.

When an MRMW view receives access to a data region from its parent view, it
maps the data region to its clients using the access rights granted to it by the parent
view. This allows it to map its maximum access permissions to all clients. Any
future shared-memory operations, including writes, occur without any software
intervention.

The parent view can revoke this access, which is required for maintaining data
consistency outside the child MRMW view. When this occurs, all data sharers
within the MRMW view get part or all of their access revoked. This mecha-
nism allows us to place an MRMW view on top of another view, such as a strict
consistent view and thereby maintain strict consistency, while allowing hardware-
coherent nodes within an MRMW view to perform consistent operations without
software management or intervention.

MRMW views are not suitable for communication over TCP/IP or where data
sharing and consistency is not managed transparently, unless the intention of the
user is to explicitly avoid communication.

This protocol works on whole pages and does not perform sub-page diffing.

6.1.6 Home-based lazy release consistency

Each page of the view has a home in which all updates are propagated, signifi-
cantly reducing the memory overhead compared to lazy release consistency (LRC)
as memory changes can be discarded once committed to the home page.

This protocol uses a vector time-stamp for each page. The vector consists of a
time-stamp entry for each node participating in the computation. The time-stamp
entry monotonically increases after each modification by a view client.

Consistency intervals are generated in the form of a write notice. The write-
notice contains a list of pages that have been modified and a timestamp. When
changes to pages are committed to their home nodes, the timestamp for the node
that made the change is updated for each page’s timestamp vector. This is trans-
ferred with the data using the out-of-band messaging support of the view interface.

74

Hence, when communicating with other views that do not use time-stamp vectors,
this information can be discarded.

When a new node requests the lock, the request is sent to the previous holder
of the lock which sends the required set of write-notices that the requester may not
have seen, since last acquiring the lock. The requester can then determine which
pages it needs to request from the page’s home.

The view home keeps track of each HLRC data home page within the view
context. In most cases the view home will normally be the home for each HLRC
page, however it has been shown that home-page migration can improve perfor-
mance, particularly if code is exhibiting migratory data accesses.

The view home also manages all locks that enter the view and ensures a co-
herent view of data can be obtained for any lock that leaves the view. This also
applies for other consistency operations.

A barrier manager keeps tracks of view clients entering a barrier. Once all
clients with a barrier are reached, it will signal its view parent, or current authori-
tative barrier that the barrier may continue. This avoids unnecessary communica-
tion for each view client reaching a barrier.

6.2 One-sided message passing

One-sided message passing provides a window of shared memory on a node. One
side accesses the shared memory region directly using hardware memory oper-
ations, while the other side performs explicit read and write operations into this
window. This approach is an extension to traditional two-sided message passing
with a simplified shared memory window.

There are several benefits of the one-sided MPI implementation provided by
Eidolon over other implementations, such as that provided by MPICH-2. One-
sided MPI was designed to take advantage of interconnects that provide Remote
Memory Access (RMA) and architectures that provide hardware-coherent shared
memory. Eidolon allows a one-sided MPI implementation to take full advantage
of these mechanisms for data sharing. The configurable nature of views also al-
lows one-sided MPI applications to perform optimised broadcast and collective
communication.

75

6.2.1 Client interface

Table 6.2 provides a summary of the MPI API and its corresponding implementa-
tion via one or more view-interface operations.

View client action Invocation on view pager
MPI Win Create view create
MPI Put Queue transaction for write-batching

and begin transfer using non-blocking
update propagate.

MPI Get Queue transaction and begin non-blocking
update request.

MPI Win Fence Wait until all data transfer queues are empty
then signal using token request on
fence token.

MPI Barrier Issue a token request on barrier token.

View client action from pager Invocation on view client
update request Return data using non-blocking

update propagate.
update propagate Write data into window if not zero-copy,

and process corresponding MPI Get re-
quest from transaction queue.

Table 6.2: One-sided MPI interface.

Window Creation and Deletion

MPI Win create is a collective operation performed by all clients in order to
allow other clients to access a local memory region.

This operation maps to view create which creates a globally-shared region that
overlaps the window specified as arguments to MPI Win create. At this stage
it is possible that Eidolon will create a hierarchy of views in order to adapt to the
underlying run-time environment. Once a view is created, all participants must
select their appropriate view using view select.

The type of view created depends on the view’s behaviour specification and the
underlying run-time environment. For example, when running on a ccNUMA sys-

76

tem, ideally any communication between nodes should be handled by the cache-
coherent memory interconnect provided by the hardware. Hence, for a one-sided
MPI application in this environment, we select a view implementation that directly
maps the one-sided operations to shared memory. Doing so will significantly re-
duce overheads by allowing updates to shared data to occur without explicit soft-
ware intervention.

MPI Win delete is a collective operation for releasing and freeing all state
associated with a window. In the view architecture this maps to a view unselect

operation. View state will not be freed until all clients have called this operation
or it is forcibly removed.

MPI Put, MPI Get, MPI Accumulate

The design and implementation of these functions depends on the view behaviour
specification which the communicating clients must adhere to.

We identify two design options. Firstly, the one-sided MPI data operations
map directly to the view-interface operations outlined by Table 4.1 in Section 4.1.1.
For example, MPI Put becomes a non-blocking update propagate. Once the ac-
tion is completed, the requester receives an acknowledge response. This is ar-
guably the correct approach as the behaviour of such calls will mimic a traditional
middleware implementation of one-sided MPI. In particular, as it is non-blocking
it can easily pre-fetch data regions, ensuring good overlap of communication and
computation.

Alternately, they may sit on top of a view client that catches address-space
page faults, such as the view client presented in Section 6.1.1, and not invoke
any view operations directly. The MPI operations then become simple memory
copies, however they suffer from additional latency that is caused when data needs
to be paged in. In this case, the client blocks on a page fault until the data for that
page is received from remote nodes.

In our evaluation of Eidolon, we explored both approaches and noted that for
the benchmarks performed in our evaluation, we achieved an average 12% im-
provement in throughput when using explicit requests across nodes communicat-
ing via a 100Mbit TCP/IP network.

77

However, for one-sided communication between clients running on a ccNUMA
machine the second approach, where we rely on explicit page faults, performed an
order of magnitude better in cases where the shared-memory window is already
pre-mapped and accessible by clients running on the ccNUMA node.

We implement MPI Put and MPI Get as non-blocking update propagate

and update request respectively. Each operation is tracked to ensure completion
before exiting a MPI Win Fence, and if necessary, is copied to its destination.
MPI Accumulate iterates over the window performing the accumulate opera-
tion.

Synchronisation

MPI synchronisation primitives are implemented by using the view token opera-
tions. In our implementation, when each client invokes MPI Barrier, it issues
a token request operation to the view pager managing the token. Once all clients
have issued a token request, the view pager sends a token response to each client.
The barrier call then exits and allows program execution to continue.

The function MPI Win fence is a collective synchronisation operation is-
sued by all clients sharing a window object. It ensures that all previous requests
within the window have completed and also begins a new epoch for future re-
quests. To ensure all clients wait for all requests to complete, tokens are used to
implement a barrier call. In this case the view pager also ensures that any previ-
ously outstanding operations are completed.

The operations MPI Win start, MPI Win post, MPI Win wait and
MPI Win complete provide window synchronisation that can be restricted to
include only the clients actually exchanging information. Currently these MPI
operations are implemented sub-optimally using barriers.

6.2.2 Protocol implementation

A view protocol for one-sided MPI operations is not necessary, as other shared
memory protocols such as strict consistency are sufficient. However, the main
benefit of a view pager implementation is to provide more efficient processing
of the communication generated from MPI Get and MPI Put events. This is

78

achieved by queuing update request and update propagate operations
within the view pager, similar to the method discussed above for the client in-
terface. The view pager can then perform write-combining and amortisation of
these operations by delaying any communication until an MPI Win Fence or a
communication threshold is reached.

6.3 Two-sided message passing

Two-sided message passing relies on explicit communication between two worker
threads (or nodes). This includes point-to-point and bulk forms of communication.

In this thesis we do not explore this model further. However, we speculate
that the view model can benefit two-sided message passing systems such as MPI
in a number of ways. Protocol selection ensures communication between two
end-points uses the best available communication protocols including multi-cast
and other forms of bulk communication. Through overlapping views, an efficient
communication path between nodes can be represented.

The complexity of developing a complete two-sided message-passing inter-
face is comparable to that of a one-sided implementation as traditional send and
receive map well to the view API. However, care is required to ensure that per-
formance meets that of a traditional two-sided implementation, particularly when
coupled with other views.

79

CHAPTER 7

EXPERIMENTAL VERIFICATION AND

EVALUATION

The evaluation in this chapter evaluates the view model using Eidolon. We eval-
uate the properties of the view model presented in Section 3.2 using techniques
including protocol selection, locality domains and view hierachies to adapt appli-
cations in environments such as multi-clusters.

The benchmarks used to evaluate the view model are derived from bench-
marking suites including SPLASH-2 and TreadMarks [65] while others are hand-
crafted implementations of well known algorithms. These benchmarks are exe-
cuted across a variety of small non-uniform cluster scenarios.

One-sided MPI micro-benchmarks are also evaluated to illustrate the use of
views for alternative programming models. Finally, we evaluate the ease of use of
Eidolon for running unmodified applications.

We argue that the evaluation of Eidolon on multi-clusters extends to Grid en-
vironments. Many applications, particularly those that require significant low-
latency communication, use a small number of nodes when run on Eidolon (or
any distributed system). In a Grid environment the nodes used by the application
may be selected from a larger pool of nodes on a Grid. Alternately, applications
that have low communication resource requirements are run using a large num-
ber of nodes. These applications are less interesting cases for demonstrating and
experimenting with Eidolon.

Grid environments have many characteristics in common with multi-clusters.

80

Both can consist of a variety of heterogeneous nodes of varying performance
and architecture, networks with specialised interconnects and varying latency and
unique topologies. In essence, Grid environments for distributed computing are
an extension of multi-clusters to include more nodes over wide areas.

The experiments performed in this chapter run parallel application bench-
marks that exhibit a variety of different data-sharing characteristics. We exam-
ine the benefits that Eidolon views provide these applications without directly
modifiying or re-configuring the application to be better suited to their run-time
environments. In order to provide our evaluation, we consider the following ap-
plication characteristics:

Speed up To most users, and for obvious reasons, the overall execution time of a
distributed application is the most important measurement to consider when
analysing the performance of a distributed system or software. We begin
by presenting the execution time and relative speed ups for a number of
different distributed applications.

Speed up provides an indication of how well a distributed application per-
forms in different environments. There are, however, a number of factors
that influence the execution time and potential speed up of a distributed ap-
plication. This includes algorithms and data sets used by the application,
underlying architecture scalability limits and software consistency protocol
scalability limits. For many distributed applications, these factors play a
major role in determining the limitation of performance improvements that
are possible.

To begin to understand these limitations, we must first consider the concur-

rency and load balancing characteristics of a program [92]. The concur-
rency and load balancing characteristics of a distributed application indi-
cate how well the program will utilise the computing resources available to
it. An understanding of these characteristics allows an application program-
mer to modify an application to better utilise resources.

The view model does not directly alter the application based on these char-
acteristics. Hence, in order to more clearly examine the properties of the
view model, we examine the characteristics discussed below.

81

Data access patterns Graphing data access over time illustrates the behaviour of
an application as seen from the underlying middleware system. We present
data access patterns in order to examine the temporal and spatial locality
properties of different applications and view configurations.

Data access locality Client data accesses often result in external communication
from one node to another before a data request can be resolved. Minimising
the time it takes to resolve these requests can be achieved through data-
caching hierarchies, such as those provided by view hierarchies. We exam-
ine the distance a data request has to travel to be resolved by presenting the
ratio of resolving requests within a client and views.

Network characteristics (bandwidth and latency) The communication-to-
computation ratio of many distributed applications directly affects its
ability to scale performance with additional nodes. By examining an
application’s network characteristics we gain information about potential
communication bottlenecks.

7.1 Run-time environment and execution scenarios

The execution environment consists of a collection of multi-processor Itanium
nodes connected via Ethernet. For most experiments, these are configured into
two different environments.

The first environment, illustrated by Figure 7.1, includes two four-way cc-
NUMA nodes connected via 100Mbit/s Ethernet. One node has 900MHz Itanium
processors, while the other node has 1.5GHz Itanium-II processors. In this en-
vironment communication between processors of each node has more bandwidth
with lower latency compared to communication between processors of different
nodes.

The second environment, illustrated by Figure 7.2, is a multi-cluster. Clus-
ter 1 contains several SMP nodes along with a ccNUMA node. The nodes of
cluster 1 are connected to each other via 100Mbit/s switched Ethernet and each
processor is 900MHz. Cluster 2 contains an identical configuration of nodes to

82

ccNUMA ccNUMA

Figure 7.1: Eight processor dual ccNUMA environment.

Cluster 1, however, these nodes are connected via 1000Mbit/s switched Ether-
net and each processor is 1.5GHz. The two clusters are connected via 100Mbit/s
Ethernet. In this environment there is a communication hierarchy which reflects
the environment’s network topology. Communication between processors of the
same node should be favoured over communication between nodes of the same
cluster. Likewise, the cost of communicating between clusters is less desirable
than communication between nodes of a single cluster.

The experiment results presented in this chapter number each processor start-
ing with the processors of the ccNUMA in Cluster 1.

Cluster 2ccNUMA

SMP SMP SMP

Cluster 1 ccNUMA

SMP SMP SMP

Figure 7.2: Twenty processor multi-cluster environment. Cluster 1 nodes are con-
nected via 100Mbit/s Ethernet. Cluster 2 nodes are connected via 1000Mbit/s
Ethernet. The link between clusters is 100Mbit/s Ethernet.

83

7.1.1 View configurations

There are a number of possible view configurations suitable for the run-time en-
vironments used in these experiments. Firstly, we consider a single view con-
figuration that uses a single consistency protocol instance across all nodes as il-
lustrated by Figure 7.3. Protocols are chosen between single-reader/multi-writer
(SRMW) strict consistency, multi-reader/multi-writer (MRMW) consistency, and
home-based lazy release consistency (HLRC). A single-sided MPI protocol is
used for MPI experiments. This configuration mimics that of a traditional middle-
ware system and provides a base-line for all experiments. This configuration can
be varied slightly via protocol selection.

Secondly, we examine Eidolon in scenarios where locality of access and adap-
tion to network topology are important. For multi-clusters we configure our bench-
marks to use a view for each cluster as illustrated by Figure 7.4. For clusters of
multi-clusters or SMP nodes, we build a hierarchy of views whereby each view
encompasses a locality domain as illustrated by Figure 7.5.

Single view

ccNUMA

SMP SMP SMP

Cluster 1
ccNUMA

SMP SMP SMP

Cluster 2

Figure 7.3: Twenty processor multi-cluster environment with a single view encap-
sulating all processors.

Finally, we combine multi-cluster view configurations with protocol-selection
techniques to adapt data sharing to use the most efficient means available. For
communication within ccNUMA and SMP nodes, the MRMW consistency proto-
col is used as it supports the direct use of each node’s hardware data consistency

84

Dual view

ccNUMA

SMP SMP SMP

Cluster 1
ccNUMA

SMP SMP SMP

Cluster 2

Figure 7.4: Twenty processor multi-cluster environment with a second view en-
capsulating the processors of cluster two.

Multi view

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

ccNUMA

SMP SMP SMP

Cluster 1
ccNUMA

SMP SMP SMP

Cluster 2

Figure 7.5: Twenty processor multi-cluster environment with views encapsulating
each cluster and the processors of each machine.

mechanism without the overheads of software intervention.

7.2 Optimisation and configuration experiments

In this section we examine several distributed application benchmarks using Ei-
dolon with different view configurations. Benchmarks were chosen that offer a

85

variety of different data-sharing characteristics.

7.2.1 Matrix multiply

Matrix multiply computes the matrix product C = AB where A is a m-by-n
matrix and B is a n-by-p matrix. Each entry of new matrix C is calculated by
computing the inner product of every row of matrix A with every column of matrix
B as follows:

(AB)ij =
n∑

k=1

aikbkj = ai1b1j + ai2b2j + + ainbnj where 1 ≤ i ≤ m and

1 ≤ j ≤ p.
The implementation used for benchmarking is a somewhat naive O(n3) num-

ber of operations, however it performs well by computing along rows of matrix C

for improved page-access locality. This minimises write false-sharing, which can
occur when using protocols such as strict consistency when the elements of C are
updated by different processors. The matrix sizes for benchmarking is 1200x1200
extended floating-point integers.

4a768
4baf0
4ce78
4e200
4f588
50910
51c98
53020
543a8
55730
56ab8

 0 5 10 15 20 25

Ad
dr

es
s

Time (seconds)

Figure 7.6: Data access pattern for a single client when running matrix multiply
across 16 processors.

Figure 7.6 shows the data access pattern of a single distributed worker thread.
For this application, there are three distinct address ranges of data access that
correspond to matrix A, B and C (top). Data access is regular with good temporal
and spatial locality.

86

Optimising matrix multiply for multi-processor environments

Multi-processor environments are becoming increasingly more common. While
many applications that were traditionally designed for cluster environments are
capable of running on multi-processor systems, they communicate using trans-
ports such as TCP/IP rather than directly over shared memory. In particular, clus-
ter applications are able to run naively in multi-processor environments by treat-
ing each processor as a separate cluster node. Software consistency protocols are
used to ensure shared data is kept consistent. On the other hand, multi-threaded
applications are able to run on multi-processors and as they make use of shared
memory, are more resource efficient than their cluster-based counterparts. How-
ever, as they rely exclusively on shared memory communication provided by the
multi-processor, they are not able to run in cluster environments. Hence, there
is often a trade off between portability to new environments and performance for
distributed applications.

Figure 7.7 compares two traditional implementations of matrix multiply on
a 4-way ccNUMA machine. As expected, the multi-threaded approach is better
suited to shared-memory multi-processors. The worker threads of the applica-
tion share an address space whereby the consistency of memory operations is
maintained by the hardware. The cluster approach, which implements strict con-
sistency protocol, incurs a performance impact from processing 6171 page faults
that occur so that the implementation can enforce shared data consistency during
the run-time of this application.

This benchmark illustrates that better resource utilisation, achieved through
approaches such as direct communication over hardware shared memory, is one
method of optimising applications for multi-processor environments.

Speedup of matrix multiply for dual cluster

Figure 7.8 shows the speedup of matrix multiply executed across two four-way
ccNUMA machines for several different view configurations summarised in Sec-
tion 7.1.1.

The first run, single strict, shows a traditional scenario with a single strict
consistency view. That is, the strict consistency protocol is used on across all

87

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4

Sp
ee

du
p

Number of client processes

Cluster DSM
Multi-processor

Figure 7.7: Two implementations of matrix multiply running on a multi-processor
system. The first is a cluster-based implementation capable of running on clusters
and multi-processor systems. The second is a multi-threaded implementation, that
runs faster through transparent utilisation of hardware shared memory.

processors, treating each processor as a separate node of a cluster. This is equiv-
alent to taking an existing traditional cluster implementation of matrix multiply
and running it in this environment. In this scenario, we see a maximum speedup
improvement at seven processors. Adding more processors degrades performance.

The poor performance and degradation in speed compared to the other view
configurations can be attributed to communication bottlenecks. The top graph of
Figure 7.9 presents the bandwidth utilisation across the 100Mbit/s Ethernet link
between each ccNUMA node when configured to use a single strict consistency
view. For this benchmark the outgoing data saturates the connection, and is caused
by false sharing. The incoming data uses approximately half the available band-
width.

The next benchmark run, using the dual-strict view scenario, places the pro-
cessors of each ccNUMA machine into their own view, creating a dual-view sce-
nario. This establishes domains of locality whereby local client accesses can be
resolved without external communication. For example, if a read-only data page
is already present within a view, other view clients can access it directly. In terms
of view hierarchy, the processors of the second machine are part of a child view.
Within the child view, any request that cannot be handled internally, is sent as a

88

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of client processes

Single strict
Dual strict

Dual strict, multi strict
Dual strict, multi mrmw

Figure 7.8: Execution time speedup of matrix multiply when run in different view
configurations across the processors of two 4-way ccNUMA machines.

request to the parent view. The parent view contains the processors of the first
machine, however only one server (running on one processor) handles requests
from child views.

The dual-strict multi-strict view scenario creates an extra level of views for
each ccNUMA machine. These new views are child views of each Strict view. In
this environment, this view configuration does not benefit data sharing as locality
domains have already been established with a strict view per ccNUMA machine.
It is normally used for larger clusters to establish hierarchical locality domains.
However, this result illustrates that in this case, the overhead of extra views is
minimal.

The final run, dual-strict multi-mrmw, encapsulates the processors of each cc-
NUMA machine in a MRMW view. These views are child views of the Strict
view. This ensures that all data sharing between processors of each machine oc-
curs over shared memory whereas in the previous view configuration dual-strict

multi-strict used a software-based consistency protocol to maintain consistency
between processors. As a higher proportion of data sharing is handled by shared
memory, a further speedup improvement is evident.

The speed up improvements over a single view are clearly evident, due to the
lower communication overheads of the dual-strict multi-strict configuration. In

89

0

2

4

6

8

10

12

14

 0 5 10 15 20 25 30 35

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

0

2

4

6

8

10

12

14

 0 5 10 15 20 25 30 35

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

Figure 7.9: Bandwidth utilisation between ccNUMA machines for a single strict
view configuration (top) and dual-strict multi-mrmw view configuration (bottom)
when running matrix multiply with 8 processes.

Figure 7.9 we see this configuration has much lower communication bandwidth
utilisation than the single strict view configuration. This is due to the dual-strict
view configuration which ensures read-only matrix data is sent only once over
the Ethernet link, and also allows read or write requests for data already present
within each locality domain to be resolved without external communication.

Speedup for cluster of non-uniform multi-processors

The twenty processor, multi-cluster configuration outlined in Section 7.1 provides
another environment to analyse the properties of views. Figure 7.10 shows the

90

speed up of matrix multiply across the processors of this system. In this environ-
ment, we see steady speedup for all view configurations until external communi-
cation is required at processor five and onwards.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20

S
pe

ed
up

Number of client processes

Single strict
Dual strict

Dual struct, multi strict
Dual strict, multi mrmw

Figure 7.10: Execution time speedup of matrix multiply benchmark when run in
different view configurations across the processors of a multi-cluster.

The speedup results for each view configuration appear to be split into two
groups. The first containing the single-strict and dual-strict view configurations,
improve in speedup until around 10 processors before dropping off. The second
group performs much better and maintains a higher level of speedup for increas-
ing number of processors. One reason for the difference in performance is due
to scalability limitations of the software protocol implementation. In scenarios
that use multiple views with view clients (representing worker threads) spread be-
tween views, each view has fewer view clients and therefore reduces the client
management overheads, and effects of latency between clients for a consistency
protocol [27]. In general, multiple views distribute the management overhead
when large numbers of view clients are present.

Furthermore, network bandwidth utilisation, particularly on contented net-
work links can have a direct impact on performance. Figure 7.11 compares the
incoming and outgoing bandwidth utilisation between clusters for single-strict
view and dual-strict multi-mrmw view configurations when running matrix mul-
tiply across 16 processors. While the bandwidth utilisation is much lower than

91

0

2

4

6

8

10

12

 0 10 20 30 40 50 60 70 80

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Dual strict, multi mrmw
Single strict

0

2

4

6

8

10

12

 0 10 20 30 40 50 60 70 80

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Dual strict, multi mrmw
Single strict

Figure 7.11: Network bandwidth utilisation into (top) and out of (bottom) cluster
2 for matrix multiply across 16 processors.

the dual-machine case in Section 7.2.1, we see significant communication for the
single-strict view configuration due to false sharing. The effects of false sharing
are reduced for the dual-strict dual-multi view configuration as most requests can
be handled in each locality domain.

92

0

1

2

3

4

5

6

7

 0 10 20 30 40 50 60 70 80

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Dual strict, multi mrmw
Single strict

0

1

2

3

4

5

6

7

 0 10 20 30 40 50 60 70 80

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Dual strict, multi mrmw
Single strict

Figure 7.12: Network bandwidth utilisation into (top) and out of (bottom) a dual
SMP processor node for matrix multiply across 16 processors.

The bandwidth utilisation for a single node in cluster 1 is illustrated in Fig-
ure 7.12. Interestingly, the bandwidth utilisation for this node is comparable to
the communication between clusters.

The smaller improvements to speedup for the dual/multi view configurations
as we increase the number of nodes is largely due to a lack of load balancing in the
application, which divides work to be done evenly. While increasing the number
of processors to execute the application reduces the amount of work do be done
by each processor, the faster nodes of cluster 2 complete sooner and therefore
contribute less to a reduction in run-time.

Differences in speedup between each view configuration can be best explained

93

by examining the number of data operations that occur for each view configura-
tion. Strict consistency relies on a centralised view pager, called the primary view

pager, to resolve requests that other nodes propagate requests to when necessary.
Hence, we examine the number of request operations that are processed by this
view pager in Figure 7.13.

request outgoing
request incoming

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

Multi_MRMWMultiDualSingle

N
u
m

b
e
r

o
f
o
p
e
ra

ti
o
n
s

Configuration

Figure 7.13: Number of requests in and out of the primary node for different
view configuration scenarios. A reduction in operations typically corresponds to
improved performance.

In the single view configuration, the primary view pager is required to manage
the data operations for all worker threads in accordance with the strict consistency
protocol. This results in a high number of incoming and outgoing requests. In
particular, the large number of outgoing requests is the result of read-only data
revocations from multiple readers along with some contention from false shar-
ing. This occured mostly for matrix B, and is evident in the data access plot in
Figure 7.6.

The introduction of dual views for locality reduces the number of outgoing
requests, however there is only a small reduction in incoming requests for data.
The reduction comes from cluster 2 which now handles many requests internally.

94

The reduction in number of operations for each successive view configuration
corresponds well to their measured speedup shown in Figure 7.10. In particular,
dual-strict multi-strict significantly reduces the number of requests.

The speedup of dual-strict multi-strict and dual-strict multi-mrmw are similar
with a small increase in operations for the latter. These are due to differences at
run-time and vary with each run. In this case, the lower overheads when using
MRMW allow for slightly better speedup with the added operations attributed to
a small increase in false sharing.

Configuration % handled locally # outgoing # internal comms
Single strict 0% - -
Dual strict 24.5% 4629 5338
Dual-strict multi-strict 59.3% 1854 1368
Dual-strict multi-mrmw 50.0% 2031 904

Table 7.1: Number of requests handled locally for different view configurations
when running a matrix multiply.

Analysis of the operations on the primary view pager only provides part of the
picture on the benefit of views. For our multi-cluster scenarios, we are especially
interested in the benefit of views that act as locality domains whereby they handle
requests locally without external communication. Table 7.1 presents the locality
effects of views. The first column shows the percentage of requests from within
cluster 2 that are handled internally. The remainder are sent over the link to cluster
1 to be handled. The more requests handled locally means lower average latency
and lower bandwidth utilisation across the link between clusters. Hence, for a
single strict view spanning all processors of both clusters, no requests are handled
locally with cluster 2 as the primary pager lives on cluster 1.

The second column shows the number of requests sent out of cluster 2. The
multi view configurations that establish a view per node generate less than half the
outgoing cluster 2 operations. The third column shows the number of communi-
cation requests sent within cluster 2.

95

7.2.2 Red-black successive over-relaxation

Red-Black Successive Over-Relaxation (SOR) is a method for solving a linear
system of equations which divides a red and black array into equal sets of rows,
each of which are assigned to a different worker thread. The arrays are allocated
in shared memory and access synchronised using barriers.

49f98

4a380

4a768

4ab50

4af38

4b320

4b708

4baf0

 0 20 40 60 80 100 120

Ad
dr

es
s

Time (seconds)

Figure 7.14: Data access pattern for a single client when running SOR across 8
processors.

This benchmark is run on a 4000x2000 matrix of floating-point numbers for
100 iterations. As the row size is not a multiple of hardware page size, false
sharing between processors will occur at adjacent rows as these rows will share a
page.

The work is divided up equally among worker threads, which on some sys-
tems leads to load imbalance. For example, machines with faster processors are
likely to complete their work sooner than slower machines and will be idle for the
remaining time.

The data access pattern for a single worker thread running SOR is illustrated
by Figure 7.14. It is dominated by access to a small region of matrix data for the
majority of a benchmark run. Communication normally occurs when the algo-
rithm crosses row boundaries and when any false sharing is present. SOR has a
high computation-to-communication ratio.

Figure 7.15 shows good speedup improvements for increasing number of pro-

96

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of client processes

Single strict
Dual strict

Dual strict, multi strict
Dual multi, strict mrmw

Figure 7.15: Execution time speedup of SOR benchmark when run in different
view configurations across the processors of two 4-way ccNUMA machines.

cessors across all view configurations. SOR benefits most from view configura-
tions that provide locality domains which group sets of processors of each cc-
NUMA node together.

View configuration dual-strict multi-strict outperforms dual-strict by group-
ing processors together as it benefits from lower overheads of communication via
a single view pager for each multi view.

Locality domains reduce the bandwidth utilisation between nodes, as illus-
trated by Figure 7.16. This figure shows the bandwidth utilisation between cc-
NUMA nodes for the single view and the dual-strict multi-mrmw view config-
uration. In both cases bandwidth utilisation remains low for the duration of the
benchmark run leading to the high computation-to-communication ratio and good
speedup achieved by SOR. As expected, dual-strict multi-mrmw has lower band-
width utilisation due to the amortisation of data requests and replies between
nodes.

The introduction of MRMW for the dual-strict multi-mrmw view configura-
tion also slightly improves speedup beyond that of dual-strict multi-strict. This is
due to a reduction in overheads for handling page faults for the processors of each
ccNUMA node that is normally required for software-based protocols.

97

0

2

4

6

8

10

12

14

 0 20 40 60 80 100 120 140

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

0

2

4

6

8

10

12

14

 0 20 40 60 80 100 120 140

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

Figure 7.16: Bandwidth utilisation between ccNUMA machines for a single view
configuration (top) and dual-strict multi-mrmw view configuration (bottom) when
running SOR.

7.2.3 3D-FFT

The 3-D Fast-fourier transform (FFT) benchmark from TreadMarks solves a par-
tial differential equation using three dimensional forward and inverse FFTs. To
perform the 3-D FFT, this benchmark performs a number of 1-D FFT and array
transpositions. Between iterations, a global memory barrier is used to synchronise
processors.

This benchmark was configured with parameter M = 7 in order to perform
the 3-D FFT over a 128x128x128 array of double precision complex numbers for
four iterations. A 3-D FFT for a data-set of this size executes in 41 seconds on a

98

493e0
4a768
4baf0
4ce78
4e200
4f588
50910
51c98
53020
543a8
55730
56ab8

 0 5 10 15 20 25 30 35 40 45

Ad
dr

es
s

Time (seconds)

Figure 7.17: Data access pattern for processor five running FFT.

single Itanium processor.
The data access pattern of a worker thread running FFT on processor five is

shown in Figure 7.17. FFT worker threads walk iteratively over the arrays present
in shared memory accessing a large amount of shared memory quickly, creating
the vertical stripes of the data access pattern. This data access pattern places a
significant burden on memory management, impacting the overall scalability of
this application.

The speedups for different view configurations are shown in Figure 7.18. For
optimised view scenarios including dual-strict multi-strict and dual-strict multi-

mrmw, there is good speedup while the worker threads run exclusively on a single
ccNUMA machine (up to 4 worker threads). From 5 worker threads, communica-
tion over TCP/IP impedes performance reducing any speedup benefits.

A comparison of bandwidth utilisation for single and dual-strict multi-mrmw

view configurations between machines is shown by Figure 7.19. Interestingly, the
bandwidth utilisation for single view is lower than dual-strict multi-mrmw indi-
cating that the communication bottleneck between machines is not the main lim-
iting performance factor for single view configuration. The speedup of the single
view configuration for worker threads on the same machine (less than 5 worker
threads) also indicates that communication between machines is not the primary
bottleneck limiting performance improvements. For dual-strict multi-mrmw we

99

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9

Sp
ee

du
p

Number of client processes

Single strict
Dual strict

Dual strict, multi strict
Dual multi, strict mrmw

Figure 7.18: Execution time speedup of FFT when run in different view configu-
rations across the processors of two 4-way ccNUMA machines.

see the communication link is almost always saturated with bursty traffic patterns.
The single and dual view configurations perform poorly, even on a single cc-

NUMA machine. These results show that the communication overheads are sig-
nificant for this benchmark and are the limiting factor for scalability of this bench-
mark.

Figure 7.20 shows the speedup for our twenty processor multi-cluster environ-
ment. As expected from the previous dual machine results, there is no speedup
achieved beyond 4 worker threads due to communication overheads.

100

0

2

4

6

8

10

12

14

16

 0 10 20 30 40 50 60 70 80

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

0

2

4

6

8

10

12

14

 0 5 10 15 20 25 30 35

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

Figure 7.19: Bandwidth utilisation between ccNUMA machines for a single view
configuration (top) and dual-strict multi-mrmw view configuration (bottom) when
running FFT.

7.2.4 Parallel scan

Parallel prefix algorithms allow us to parallelise a serial algorithm at the cost of
doing more work overall. The problem is distributed across several nodes using a
divide and conquer approach, leading to a reduction in overall execution time.

Some serial algorithms that are difficult to parallelise are often parallel prefix
algorthims. Consider a book where we know the size of each chapter. If we
want to calculate the offset from the start of the book for each chapter, we have
a parallel prefix problem. This problem is solved serially by summing the size of
each chapter to calculate the offsets.

101

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

Sp
ee

du
p

Number of client processes

Single strict
Dual strict

Dual strict, multi strict
Dual multi, strict mrmw

Figure 7.20: Execution time speedup of FFT when run in different view configu-
rations across the processors of a multi-cluster.

The parallel prefix algorithm [15] calculates an associative function, f , on all
prefixes of an n-element array. That is, s[0], f(s[0], s[1]), f(s[0], f(s[1], s[2])), ...,

f(s[0], ...f(s[n− 2], s[n− 1])...), which may be executed using Θ(n) processors
in Θ(log n) time.

for j = 0 to log2(n-1) do

for i = 2j to n-1 parallel-do

s[i] = f(s[i-2j], s[i])

The inner loop is executed across all nodes in parallel. The n-element array
is divided equally between all nodes. For each inner loop iteration, each node
updates the array for elements that fall within each division.

Since this algorithm above overwrites the elements of the matrix on each iter-
ation, each node makes a local copy of the array elements it requires before each
inner loop cycle.

For benchmarking, we use a hand-crafted implementation of the parallel prefix
algorithm described above called pscan (short for parallel scan). The data access
pattern for a client running pscan is shown in Figure 7.21. Compared to 3D-FFT
data access is less demanding for pscan.

102

493e0

4a768

4baf0

4ce78

4e200

4f588

50910

51c98

 0 20 40 60 80 100 120

Ad
dr

es
s

Time (seconds)

Figure 7.21: Data access pattern for a client running parallel-scan.

The speedup results for each view configuration in a dual ccNUMA environ-
ment are shown in Figure 7.22. Overall, there are speedup improvements as the
number of worker threads on the system increases.

For this benchmark there is a degradation impact to speedup once commu-
nication is required across the network link between machines. This is the case
for all view configurations, however the speedup numbers recover slightly for all
configurations except the single view configuration.

A comparison of bandwidth utilisation between nodes for single view and
dual-strict multi-mrmw view configurations in Figure 7.23 indicates that at times
the benchmark is limited by bandwidth. However, the network is not saturated.

103

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of client processes

Single strict
Dual strict

Dual multi strict
Dual multi strict mrmw

Figure 7.22: Execution time speedup of parallel-scan when run in different view
configurations across the processors of two 4-way ccNUMA machines.

7.2.5 TSP

The traveling salesman problem (TSP) [60] involves discovering the shortest route
which visits all cities and returns to the starting point. Each possible intermediate
solution is called a tour. The discovery of the shortest tour is classified as an
NP-Hard problem.

This benchmark implements TSP using a priority queue that contains partially
evaluated tours. A lock protects access to the queue. A worker thread runs on
each processor and attempts to lock the queue to acquire a partially evaluated tour
to be solved.

Data sharing is required for most data structures used by TSP, including the
priority queue and an array of structures for maintaining tour state. The layout of
these structures provide the potential for false sharing.

We solve a 19 city problem using the input data set 19b provided with the
TreadMarks implementation of TSP. Figure 7.24 shows the irregular data pattern
for a client running TSP. The same data pages are accessed several times, indi-
cating potential false sharing issues of the application. However, with the use of
HLRC consistency protocol, false sharing during each iteration is avoided.

The speedup results for TSP are shown in Figure 7.25. The first view configu-
ration shows a single HLRC view running across all processors of two ccNUMA

104

0

2

4

6

8

10

12

14

 0 20 40 60 80 100 120 140 160

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

0

2

4

6

8

10

12

14

 0 20 40 60 80 100 120 140 160

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

Figure 7.23: Bandwidth utilisation between ccNUMA machines for a single view
configuration (top) and dual-strict multi-mrmw view configuration (bottom) when
running parallel scan.

machines. There is very little speedup increase (or decrease) in this view con-
figuration which was found to be due to lock contention. That is, most worker
threads spent their time waiting to access the work queue, which is protected by
a lock. The path discovery algorithm runs quick enough such that the benefits of
parallelism for this data set are minimal. It is likely that a higher computation re-
quirement of this benchmark by using more complex route data set would produce
a greater speedup by offsetting locking costs.

The next view configuration shows a dual-strict view scenario. The speedup
does not improve as the number of processors used by the benchmark increases,
even on a single ccNUMA node with fast interconnects and large communication

105

49ffc

4a010

4a024

4a038

4a04c

4a060

4a074

 0 2 4 6 8 10 12 14 16

Ad
dr

es
s

Time (seconds)

Figure 7.24: Data access pattern for a single client when running TSP across 8
processors.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of client processes

Single HLRC
Dual strict

Dual HLRC
Dual multi, strict mrmw

Figure 7.25: Execution time speedup of TSP when run in different view configu-
rations across the processors of two 4-way ccNUMA machines.

bandwidth. This is caused by high contention due to false sharing of data pages.
Hence, while HLRC does not perform well for this benchmark, it does alleviate
some problems prevalent with strict consistency that would be beneficial to other
applications.

The next view configuration uses dual HLRC views and shows performance
improvements over a single HLRC view. Initally, speedup is almost linear as the
number of worker threads increases, however lock contention impacts this bench-

106

mark beyond 3 worker threads. Figure 7.26 compares the bandwidth usage for the
single HLRC and dual HLRC view configurations. There is significantly lower
bandwidth utilisation in the dual HLRC case, which contributes to the overall
speedup improvement.

Finally, the last view configuration uses MRMW on a single ccNUMA node.
There is linear speedup as all communication occurs without software interven-
tion. This configuration was not run beyond a single node, as MRMW does not
perform correctly beyond a single node without being coupled with another view
(and would therefore have a software overhead).

0

2

4

6

8

10

 0 2 4 6 8 10 12 14 16

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

0

2

4

6

8

10

 0 2 4 6 8 10 12 14 16

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

Figure 7.26: Bandwidth utilisation between ccNUMA machines for a single
HLRC view configuration (top) and dual-HLRC view configuration (bottom)
when running TSP.

107

7.2.6 Quick sort

Quick sort (QS) employs a divide and conquer approach to recursively sort an
unsorted input list using on average Θ(n log n) comparisons to sort n items. This
is achieved by dividing the unsorted input list into sub-lists, which are then solved
recursively and in parallel by worker threads.

The implementation of this benchmark stores sub-lists on a task stack. The
task stack is provided in shared memory and accessed by worker threads running
on each node. Once a sub-list is processed, it is returned back to the task stack.
Access to the task stack is protected by a lock.

For this benchmark, we sort 10 million integers with a default bubble threshold
of 1024. The bubble threshold indicates the point from which work is distributed
to other processors. This threshold limit is small for today’s systems and likely to
significantly degrade benchmark performance.

The data access pattern for a client is shown by Figure 7.27. This access
pattern illustrates low demand for data, with some false sharing across time.

49ffc

4a006

4a010

4a01a

4a024

4a02e

4a038

4a042

 0 5 10 15 20 25 30 35 40

Ad
dr

es
s

Time (seconds)

Figure 7.27: Data access pattern for a single client when running QS across 8
processors.

Figure 7.28 shows the speedup for each view configuration. The speedup re-
sults are similar to other benchmarks where we see that as the number of clients in-
crease performance degrades. In the case of this benchmark, we see performance
benefits on a single node when using the dual-strict multi-strict/mrmw view con-

108

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-1 0 1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of client processes

Single strict
Dual strict

Dual strict, multi strict
Dual multi, strict mrmw

Figure 7.28: Execution time speedup of quick sort when run in different view
configurations across the processors of two 4-way ccNUMA machines.

figurations however, once communication across the network is required, speedup
drops. Locking for update to the shared quick sort list is the main contributing fac-
tor to latency and poor speed up in each view configuration, however the point of
degradation varies based on the level of adaption of each view configuration. Poor
performance of this application when network communication is required can be
alleviated by reconfiguring the application to perform a larger amount of local
processing on each node by altering the bubble threshold. This is performed for
the integer sort application in Section 7.2.7, which exhibits similar performance
when not reconfigured.

The communication bandwidth utilisation illustrated by Figure 7.29 shows
bursts of traffic that correspond to the client doing work requiring communica-
tion, then waiting for the lock to update its results. As expected, the single view
configuration has a higher bandwidth utilisation, however the communication link
is not saturated.

7.2.7 Integer sort

Integer Sort (IS) ranks an unsorted list of keys using a bucket sort. In this imple-
mentation, each worker thread has a private array of buckets and shares access to
a shared array of buckets. Each worker thread performs the sort on its own private

109

0

1

2

3

4

5

6

7

8

 0 5 10 15 20 25 30 35 40

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

0

1

2

3

4

5

6

7

8

 0 5 10 15 20 25 30 35 40

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

Figure 7.29: Bandwidth utilisation between ccNUMA machines for a single view
configuration (top) and dual-strict multi-mrmw view configuration (bottom) when
running QS.

array, before adding its values to the shared array. Synchronisation of the shared
array is protected by a lock. Barriers are also used for each iteration performed by
worker threads.

This benchmark sorted 226 keys ranging from 0 to 216 on each worker thread
for 10 iterations of the algorithm.

The data access pattern for IS is shown in Figure 7.30. This access pattern
appears almost identical to the QS benchmark and has similar performance re-
sults when the IS application uses a smaller worker-thread key assignment. The
performance results for IS is shown by Figure 7.31. There are good speedup
improvements when using multiple views. In particular, dual-strict multi-strict

110

49ffc

4a006

4a010

4a01a

4a024

4a02e

4a038

4a042

 0 5 10 15 20 25 30 35 40

Ad
dr

es
s

Time (seconds)

Figure 7.30: Data access pattern for a single client when running IS across 8
processors.

outperforms the other view configurations.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of client processes

Single strict
Dual strict

Dual multi strict
Dual multi strict mrmw

Figure 7.31: Execution time speedup of integer sort when run in different view
configurations across the processors of two 4-way ccNUMA machines.

Network bandwidth utilisation between clusters (ccNUMA nodes) when run-
ning with 8 client processes is shown in Figure 7.32. On each interation of the
benchmark, shared data is copied locally to each node. This corresponds to the
peaks in the bandwidth utilisation graphs and is many-to-many communication.

In wide-area and grid environments this benchmark is best configured by in-

111

creasing the number of keys processed by each node on each iteration in order
to amortise the latency of barrier synchronisation required on each iteration. Our
experimentation with these parameters increased the key range processed on each
worker thread from 215 to 216 to accommodate this for our twenty processor multi-
cluster environment with processors capable of processing that key range quickly.

0

1

2

3

4

5

6

7

8

 0 5 10 15 20 25 30 35 40

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

0

1

2

3

4

5

6

7

8

 0 5 10 15 20 25 30 35 40

m
eg

ab
yt

es
/s

ec
on

d

Time (seconds)

Incoming data
Outgoing data

Figure 7.32: Bandwidth utilisation between ccNUMA machines for a single view
configuration (top) and dual-strict multi-mrmw view configuration (bottom) when
running IS.

112

7.2.8 Single-sided MPI micro-benchmarks

The purpose of the micro-benchmarks in this section is two-fold. Firstly, to
demonstrate the use of views in an alternative programming model. Secondly,
to clearly illustrate the impact of views for simple data operations compared to
that of MPICH-2, a popular MPI environment that implements one-sided opera-
tions. Furthermore, using this benchmark we can evaluate one-to-many operations
for both view and MPICH2 configurations.

To examine throughput, latency and a variety of view configuration scenar-
ios, these micro-benchmarks are based on the following MPI Get() bandwidth
benchmark which is a modified OSU MPI bandwidth benchmark [50]:

win = MPI_Win_Create(window_buf, window_size)

for (s=1; s <= max; s *= 2) do

if my_id == 0 then

write_random_data_to_buf(window_buf)

MPI_Win_fence(win)

if my_id != 0 then

MPI_Get(local_buf, s, win)

MPI_Win_fence(win)

This benchmark simulates distributing data from a data producer to one or
more data consumers using MPI single-sided operations. Firstly, it creates a
shared memory window using MPI Win Create. It then iterates using vary-
ing data message size. On each iteration, one client writes random data into
this window, which is then read by the other clients. The benchmarks utilise
MPI Win fence for synchronisation of all participating worker threads.

MPICH2 has an optimised point-to-point TCP communication library. For
single-sided MPI operations, there is no support for multi-cast communication.
Likewise, Eidolon uses only point-to-point communication for communication
over TCP/IP. However, view configuration scenarios that use multiple views may

113

alleviate this drawback through amortization of communication across criticial
network links on view boundaries. The Eidolon implementation is described in
Section 6.2.

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

w
id

th
 (M

illi
on

By
te

s/
s)

Size (bytes)

 MPICH-2
Views

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

w
id

th
 (M

illi
on

By
te

s/
s)

Size (bytes)

 MPICH-2
Views

Figure 7.33: Single-sided MPI Get (top) and MPI Put (bottom) bandwidth

The first set of experiments compares the bandwidth of MPI Get between
two clients running on MPICH-2 and on views. Included in this set of experi-
ments is MPI Put which performs data transfer in the reverse direction. These
experiments are executed on a single Itanium ccNUMA machine using the shared
memory communication mechanisms available to each middleware implementa-
tion. After an initial warm up, the MPI Get benchmark performs several iter-
ations of MPI Get specifying new regions of the window on each call. This
ensures that new data is fetched, guaranteeing that communication occurs in the

114

view implementation which may otherwise fetch a local, but consistent copy of
the data. The results for this experiment using both MPI Get and MPI Put are
shown in Figure 7.33.

The bandwidth available for the benchmark running on MPICH-2 is limited
due to the overheads of the implementation. While MPICH-2 supports communi-
cation over shared memory, it does so by performing two-sided message passing
of the message in shared memory. The bandwidth available when using Eidolon
views is only limited by the system memory and bus bandwidth between proces-
sors.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 10 100 1000 10000 100000 1e+06 1e+07

La
te

nc
y

(M
ic

ro
Se

co
nd

s)

Size (bytes)

 MPICH-2
Views

Figure 7.34: Single-sided MPI Get latency.

The next benchmark measures latency of the MPI Get operation, shown in
Figure 7.34. The view performance results for this benchmark show that the view
pager implementation for shared memory systems has very low latency. For small
messages the measured latency is around 3 microseconds as the only overhead is
the cost of transferring the data from memory or the remote processor’s cache.
The MPICH-2 results show the performance of the optimised two-sided commu-
nication implementation. For small message sizes the latency is 46 microseconds
which is quite low when considering the synchronisation requirements of the im-
plementation.

The next benchmark simulates a scenario where a one-sided MPI operation is
used to transfer the same data set to multiple client processes. Figure 7.35 shows

115

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

w
id

th
 (M

illi
on

By
te

s/
s)

Size (bytes)

MPICH-2, n=2
MPICH-2, n=3
MPICH-2, n=4

Views, n=2
Views, n=3
Views, n=4

Figure 7.35: Single-sided MPI get multi-point on a 4-way ccNUMA machine.

the achieved throughput for client processes when there are multiple processes
performing a MPI Get on a single 4-way SMP system.

The MPICH-2 implementation sends each data message to each client via
point-to-point connections. Hence, the bandwidth available to each client is re-
duced as the number of clients on the system increases. The view implementation
performs much better, however as the number of clients increase, the available
system bandwidth for each client is proportionally lower. Peak throughput occurs
when the benchmark data fits within the shared system cache. Beyond this point,
each processor gets a proportional share of the system’s memory bandwidth. This
degrades as the working set grows beyond cache sizes.

The final benchmark examines a dual four-way ccNUMA machine environ-
ment outlined in Section 7.1. This environment forms a small heterogeneous
multi-cluster where communication between clusters (each ccNUMA machine)
occurs via TCP, and ideally, internal system communication occurs via shared
memory. In this benchmark the number of clients used for each run is split evenly
across both systems.

The results in Figure 7.36 show that bandwidth scales better with number of
processes for the view implementation than the MPICH-2 implementation. This
demonstrates the ability of views to encapsulate groups of clients into specific
sub-environments and to optimise communication between each sub-environment.

116

 0

 2

 4

 6

 8

 10

 12

 1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

w
id

th
 (M

illi
on

By
te

s/
s)

Size (bytes)

MPICH-2, n=2
MPICH-2, n=4
MPICH-2, n=8

Views, n=2
Views, n=4
Views, n=8

Figure 7.36: Single-sided MPI get multi-point on two 2-way ccNUMA machines.

The current view implementation for TCP suffers from additional latency as each
request for data currently blocks. For small messages we also see additional over-
head as the number of processes increases due to a poor barrier implementation
that does not scale well. Both these problems are implementation issues that are
straightforward to improve with a more complete implementation. Note that the
clients running on the same system as the target of the MPI Get calls will com-
plete much sooner than the remote nodes as they have the local bandwidth avail-
ability shown in Figure 7.35.

7.3 Ease of use

In Section 7.2 we demonstrated the performance and resource usage benefits
that the view model can provide to applications running in diverse environments.
Other approaches to improving performance and resource usage of the applica-
tion include direct modification of the application or underlying middleware im-
plementation using approaches discussed in Section 2.2. These modifications are
time consuming and may be infeasible on dynamic systems where it is difficult
to know what modifications are required prior to run-time. However, these al-
ternative approaches are somewhat orthogonal to the approaches available when
using the view model. That is, the user is free to devote resources to improv-

117

ing the application using other available techniques regardless of their use of the
view model. In this section we argue that the approaches available when using the
model require less effort by the user than the effort required to adapt applications
through other approaches.

We believe that most, if not all distributed applications can be adapted to the
view model through an implementation such as Eidolon by implementing the ap-
plication’s API using view interface calls that are described in Section 4.1.1.

An application may invoke view interface calls explicitly, however this re-
quires it to have knowledge about its run-time system in order for it to define
a suitable view hierarchy. Alternately, Eidolon provides a client support library
that transparently handles non-overlapping, overlapping and mapped view calls
for any client application, or a programming model API implementation. These
approaches are discussed further in Chapter 8.

Table 7.2 outlines the effort to port a variety of different distributed appli-
cations and middleware components to Eidolon. These are discussed separately
below.

7.3.1 Simple process-based applications

The matrix multiply application presented in Section 7.2.1 was developed into
two implementations. The first is a traditional multi-threaded application suitable
for running on an shared-memory multi-processor. The second implementation
provides a cluster-based, distributed shared memory. In both cases the applica-
tion relies on a global shared memory for matrix data only and uses barriers for
synchronisation between worker threads.

The number of modifications to directly adapt matrix multiply, which does not
use a pre-defined API, was 5 out of 400 lines of code which consisted of calls to
initialise the application and changes to memory allocation and barriers.

Matrix multiply in Eidolon makes use of Eidolon’s client support library.
Global memory allocation using malloc is replaced by client obtain view calls.
This call invokes view create and view select view interface calls on behalf of
the client, and manages view hierarchies based on rules specified by the underly-
ing run-time environment. A global barrier is used for synchronisation which is

118

implemented in terms of token request and token reply.

7.3.2 API libraries

Other applications that are written on top of well-known APIs including the bench-
marks from TreadMarks, Splash-2 and OSU’s MPI-2 benchmarks do not require
any modifications. These applications can be run immediately without any changes
or effort from the user other than compiling and linking the application against Ei-
dolon’s TreadMarks client library.

Implementing a programming model API such as TreadMarks in terms of view
interface operations is straightforward. The TreadMarks implementation for Ei-
dolon was 235 lines of code. This implementation makes direct view interface
calls using sequential consistent and release consistent view pagers.

7.3.3 New protocols

Providing an implementation of a new protocol view pager in Eidolon requires im-
plementing the protocol in terms of view interface operations. The effort required
depends on the complexity of the protocol. Compared to other middleware imple-
mentations, implementing view pagers in Eidolon means that the protocol imple-
mentation does not need to provide additional code for communication between
nodes or client interface implementations as these are usually already provided
and abstracted by the view model. This reduces code complexity and improves
code reuse, which we argue reduces the effort required by the programmer.

7.3.4 New programming models

While it is not expected that a programming model needs to be developed that
support views, we nevertheless examine the effort required to develop a new pro-
gramming model in Eidolon.

New programming models require careful thought on how they map to view
interface operations, and their expected behaviour. They require the implementa-
tion of view pagers, and in many cases the implementation of client interfaces and
APIs. An implementation of one-sided MPI client interface is around 500 lines of

119

Porting application/protocol Modifications Time
Multi-threaded application: matrix multiply 5 of 400 lines 2 hours
TreadMarks applications: 3D-FFT, SOR, etc 0 lines 0 hours
TreadMarks API with shared memory, locks, barri-
ers, etc

235 lines 8 hours

Simplified VODCA API with shared memory, locks,
barriers, etc

100 lines 8 hours

New paging protocol: HLRC 2000 lines 5 days
New programming model: one-sided MPI 1500 lines 7 days

Table 7.2: Comparison of effort required to port different distributed application
components to Eidolon.

code. A view pager implementation optimised for cluster environments is around
1000 lines of code. Note however, that our implementation supported the use of
other shared memory view pager implementations such as strict and MRMW.

The simplified VODCA API was implemented using an application client-
level library and did not require the implementation of new view pagers. As such,
it was quickly implemented in only 100 lines of code. It may be possible to im-
prove performance with an implementation of specialised view pagers that better
map view operations to the behaviour of VODCA, however this was not performed
as part of this thesis.

120

CHAPTER 8

USING EIDOLON VIEWS

The evaluation in Chapter 7 showed that the use of views results in better per-
formance and resource usage (such as bandwidth utilisation) in run-time envi-
ronments where we do not know details of the underlying environment, and in
diverse heterogeneous environments that have a non-uniform or hierarchical net-
work topology.

Use of views in these environments requires the construction of view hierar-
chies of overlapping views. Typically specification of views begins at the dis-
tributed application (or client library) which specifies what shared memory re-
gions are to be created using non-overlapping views. Each of these views may
then be abstracted by overlapping or mapped views.

ccNUMA ccNUMA

Figure 8.1: Eight processor dual ccNUMA environment.

Consider the dual ccNUMA environment illustrated in Figure 8.1 that was
also used as a benchmarking run-time environment in Section 7.1. Applications
such as matrix multiply create several shared memory regions, each with a special
purpose. In this case, one region for read-only source matrix data, and another for
the computed result matrix. The creation of views in this scenario is dependant on

121

the approach taken.

8.1 Explicit specification of views in application

Application

Strict

cluster 1

MRMW MRMW

cluster 2 cluster 1

MRMW MRMW

cluster 2

result data
Strict

Child views

address space
data sets

Figure 8.2: Matrix multiply application with two shared memory regions and its
view configuration

One approach to allocating views and creating view hierarchies is to explicitly
define them in the application by using a combination of view create calls.
Firstly the allocation of these regions would invoke the creation of (for argument’s
sake) two non-overlapping views illustrated in Figure 8.2, one for the read-only
data sets and one for the computation and result data. Any subsequent overlapping
views would be dependent on the run-time environment. Explicit specification of
these would require knowledge about the environment prior to run-time. Hence,
in this case for each region we create a child view. Each child view encompasses
data sharing on each ccNUMA machine. The explicit creation of the source data
views in this scenario is shown below:

/* create view for source data matrices,

* which are allocated together.

*/

if (my_node_id() == 0) {

v_src = view_create(matrix_src_address,

122

sizeof (matrix_src_data),

NO_PARENT, STRICT_CONSISTENCY);

v_src_cluster_1 = view_create(matrix_src_address,

sizeof (matrix_src_data),

v_src, MRMW_CONSISTENCY);

v_src_cluster_2 = view_create(matrix_src_address,

sizeof (matrix_src_data),

v_src, MRMW_CONSISTENCY);

}

/* select appropriate view */

if (in_cluster_1(my_node_id()) == True)

view_select(v_src_cluster_1)

if (in_cluster_2(my_node_id()) == True)

view_select(v_src_cluster_2)

8.2 Specification of views in a Grid environment

In terms of data sharing and distributed computation, we classify a grid environ-

ment as an environment that contains one or more of the following properties:

• one or more clusters of machines,

• a collection of heterogeneous machines of varying architecture, number of
processors, and available computational resources,

• diverse network topology, interconnects and latency characteristics,

• the type and number of machines used for computation are not known prior
to run-time or when writing the application,

• machines exist in administrative domains with restrictive security and com-
putation policies,

123

• machines, interconnects and other computing resources may come and go.

Grid environments require the ability to dynamically configure a view hier-
archy for an application at run-time. The topology of the view hierarchy should
depend on the sharing requirements of the application, any locality domains and
local knowledge about the most appropriate view pager implementations available
that meet the view behaviour specification of the application.

Hence, in the matrix multiply example presented in Section 8.1, the overlap-
ping views used by the application are determined by the underlying environment.
Firstly, the application creates the views it needs to share data by providing a view
behaviour specification. In this case, it indicates that it needs release consistency.
When each node attempts to access a view, the node determines if it needs to
create child views to enhance data sharing on each ccNUMA node leading to the
view hierarchy illustrated by Figure 8.2. Once the views are created, each node
selects the appropriate view that best represents its sharing requirements and char-
acteristics.

There are several approaches machines could use to determine when to create
new views and what is the best type of view to use. One approach would be to
have a set of defined rules that specify what action the framework implementation
(e.g. Eidolon) should take when it needs to create a new view. For example, the
administrator of a cluster could set rules that state when it detects a new applica-
tion view (as the view is unknown to the cluster), it will create a child view of the
same type. This gives it benefits of locality. Secondly, it may evaluate if the clus-
ter is capable of using an optimised view. This can be achieved by knowing which
optimised views can be used for each type of view. For example, our experiments
used MRMW views in-place of strict views.

8.3 Applications

The evaluation presented in Chapter 7 showed that a view specification that con-
siders the resources and topology of an environment can lead to performance
increases. It also showed that some applications are not suitable for distribu-
tion across multi-cluster environments which is largely due to the computation-

124

to-communication ratio of today’s systems. However, this is not a problem for
many Grid applications which are specifically designed for the high latency and
non-uniform aspects of Grids.

125

CHAPTER 9

CONCLUSION

In this chapter we conclude this thesis with a review of the thesis contributions
and discussion of future work.

9.1 Summary

Chapter 2 surveyed existing approaches to running distributed applications in
wide-area and diverse environments. In particular, this chapter examined
many of the approaches used to improve the performance of distributed ap-
plications when moved to new, wide-area and other diverse environments.
Other related work including background material was also discussed.

This chapter concluded that there is no suitable solution for adapting dis-
tributed applications in diverse environments that provides a high level of
functionality, performance, resource usage and ease of use. Furthermore,
DSM applications are far behind in terms of their ability to adapt to diverse
environments, which is likely to be a contributing factor to their declined
use over the past decade.

Chapter 3 presented the conceptual model named the view model along with its
properties to address data sharing limitations of existing distributed applica-
tion middleware. This chapter explores the properties inherent in the model
and provides examples of how each property can be used to share data.

Chapter 4 described our implementation of the view model as an architecture.

126

This architecture, known as Eidolon, used the properties of the view model
in a single-address-space for use primarily with distributed shared memory
(DSM) applications.

Chapter 5 provided implementation details of the experimental framework used
to evaluate the properties of the view model.

Chapter 6 explored the implementation of several programming models and con-
sistency protocols in Eidolon. The view client and view pager implementa-
tions are discussed, along with how they interact using view interface oper-
ations.

Chapter 7 presented our experiments and evaluations of Eidolon. We demon-
strated that using views can lower the resource usage and improve perfor-
mance for a variety of application benchmarks while maintaining ease of
use. These improvements allowed us to adapt unmodified applications to
their environment which is essential for running distributed applications in
wide-area environments.

Chapter 8 discussed approaches to using Eidolon to run distributed applications
and as a foundation for distributed systems.

9.2 Thesis contributions

This thesis made the following contributions:

1. A conceptual model known as the view model which is based on a separa-
tion of concerns of a distributed application. This separation of concerns
allowed us to define a set of mechanisms including non-overlapping, over-
lapping, and mapped views. These mechanisms allow applications to easily
use approaches including protocol selection, locality domains and protocol
interoperability to improve their data sharing capabilities.

2. An architecture implementation of our conceptual model called Eidolon

which was also used for an experimental framework used to evaluate the
view model.

127

3. An experimental evaluation of the view model for improved data-sharing
functionality and performance of distributed applications. Applications
demonstrated performance, resource usage and scalability improvements
when configured to use a view configuration appropriate for the underlying
run-time environment. Independently from views, it showed many applica-
tions without modification are not likely to scale to large numbers of worker
threads or the unbalanced latencies of many diverse environments.

4. The view model provides an approach to address lack of adaption of dis-
tributed applications to their run-time environment, without modifications
to the application, or significant effort from the user.

5. An approach to improve the flexibility of sharing consistent data between
distributed applications such as those that use different programming mod-
els.

9.3 Further work

The current Eidolon implementation and evaluation provides a proof-of-concept
that the properties of views can benefit development and deployment of distributed
applications in diverse environments. In the evaluation it was demonstrated that
the views provide some resilience against the affects of bandwidth limitations and
latency that is present in multi-clusters. We believe the approach taken expands to
Grids and other wide-area systems. The next step is to employ the techniques used
with this model into platforms designed for Grid and wide-area systems along with
their applications.

Other programming models such as two-sided message passing should also
be explored in order to understand the full benefits a view model would provide
these models. We anticipate that the same benefits of protocol adaption, and af-
fects of locality domains such as multi-cast message communication amortisation
would transfer to these models. However, it is unclear if these benefits would be
significant.

128

9.4 Closing remarks

As there is an increasing desire to run distributed applications in diverse environ-
ments, there needs to be changes not only to the applications and their algorithms
but also to the underlying approach we use to develop our middleware and share
consistent data.

The model proposed in this thesis helps address data-sharing functionality and
flexibility necessary for diverse environments. We hope this model and the ap-
proaches presented in this thesis simplify and promote improved data sharing ca-
pabilities across several distributed computing paradigms.

129

APPENDIX A

EIDOLON INTERNALS

The framework is implemented in C, using the Kenge [30] build environment
and makes use of many of Kenge’s standard libraries. The framework code is
abstracted and separated into multiple libraries that allow it to be used in other
projects. The structure is very similar to that presented in Chapter 5.

view implementation view implementation

transportstransports

view comms manager

transport plug−in manageroverlay

view plug−in manager

view resolver

SAS managerview manager job (queue) manager

DSM application

page/view fault handler

threads

pager+pagetable

Client

Server

Figure A.1: Common framework component libraries for an Eidolon instance.

Figure A.1 shows the component library structure for an Eidolon application
instance. Each component is built as a library. Eidolon client and servers are built

130

separately. The components within each are linked together and typically utilise a
function call interface between components. It is possible to build both client and
server together for application scenarios where this is appropriate, however we do
not illustrate this here. These components can be summarised as follows:

• Page and view fault handlers

Catches page faults and view interface calls. Different client implemen-
tations may have different ways of catching or annotating data access and
view coherence operations that required handling by Eidolon.

• Address space and Protection Domain Pager

This pager stores mappings for clients within the same address space, on
the same node. This is useful for clients managing page-based systems, as
it caches access rights. However, it is not necessary.

• View resolver: local node view handler and index library

On each node, this library keeps track of views used actively on that node
and maintains a lookup table for views.

• SAS manager: Shared address space arbitrator

The shared address space used by applications needs to be allocated and
delegated globally. A simple arbitrator is written which allows nodes to
obtain a region of the shared address space in which to allocate memory
and create root views within.

• Job (queue) manager: Pending job library

This library keeps track of various pending jobs in the system. For example,
message retransmits are handled via a timeout mechanism provided by this
library. Pending requests to remote nodes are also indexed by this library to
allow any pending requests that are waiting on a reply to be restarted.

Threads waiting on a request can be put to sleep until a timeout or the pend-
ing request is resolved.

131

• View communications manager

This library manages the transfer of view data and state between nodes.

• Active sharer set tracking

This library keeps track of dependencies such as remote nodes and local
clients that are using a view, in a view pager implementation. It allows
view pagers to support an unbounded number of nodes without excessive
resource and performance penalties. Active sets are compressed into bit
fields that make dependency lookups fast.

• Plug-in view pager support

Allows new view pagers to be plugged into the system at run time.

• Overlay

Keeps tracks of views, and provides mechanisms for resolving views.

• Plug-in communications transport support

Allows new transport interconnects to be plugged into the system at run
time.

132

BIBLIOGRAPHY

[1] Karl Aberer. P-Grid: A self-organizing access structure for P2P information

systems. In Sixth International Conference on Cooperative Information Systems

(CoopIS 2001), 2001.

[2] Sarita V. Adve and Mark D. Hill. Weak ordering—A new definition. In Proceedings

of the 17th Annual Int’l Symp. on Computer Architecture (ISCA’90), pages 2–14,

1990.

[3] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Soft-

ware DSM protocols that adapt between single writer and multiple writer. In

Proceedings of the 3rd IEEE Symp. on High-Performance Computer Architecture

(HPCA-3), pages 261–271, 1997.

[4] Gabriel Antoniu, Luc Bougé, and Raymond Namyst. Generic distributed shared

memory: the DSM–PM2 approach. Technical Report RR2000-19, LIP, ENS Lyon,

Lyon, France, May 2000.

[5] Gabriel Antoniu, Luc Boug, and Mathieu Jan. JuxMem: An adaptive supportive

platform for data sharing on the Grid. Scalable Computing: Practice and Experi-

ence, 6(3):45–55, September 2005.

[6] Luciana Bezerra Arantes, Pierre Sens, and Bertil Folliot. An effective logical cache

for a clustered LRC-based DSM system. Journal of Cluster Computing, 5(1):19–31,

2002.

[7] Argonne National Laboratory. MPICH2. http://www.unix.mcs.anl.gov/mpi/
mpich2/.

[8] Noboru Asai, Thomas Kentemich, and Pierre Lagier. MPI-2 implementation on

Fujitsu generic message passing kernel. In Supercomputing ’99: Proceedings of the

1999 ACM/IEEE conference on Supercomputing (CDROM), page 18, New York,

NY, USA, 1999. ACM Press.

133

[9] Olivier Aumage. Heterogeneous multi-cluster networking with the Madeleine III

communication library. In Proceedings of the 11th Heterogeneous Computing Work-

shop (HCW 2002), page 172, Fort Lauderdale, April 2002. Held in conjunction with

IPDPS 2002, IEEE Computer Society. 12 pages. Extended proceedings in electronic

form only.

[10] Olivier Aumage and Guillaume Mercier. MPICH/MADIII: a Cluster of Clusters

Enabled MPI Implementation. In Proceedings of the 3rd IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGrid 2003), Tokyo, May 2003.

IEEE.

[11] H. Bal, A. Plaat, M. Bakker, P. Dozy, and R. Hofman. Optimizing parallel appli-

cations for wide-area clusters. In Proceedings of the 12th International Parallel

Processing Symposium, pages 784–790. IEEE Computer Society, 1998.

[12] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Distributed shared

memory based on type-specific memory coherence. In Conference on Principles

and Practice of Parallel Programming, pages 168–176. ACM, 1990.

[13] Brian N. Bershad and Matthew J. Zekauskas. Midway: Shared memory parallel pro-

gramming with entry consistency for distributed memory multiprocessors. Technical

Report CMU-CS-91-170, School of Computer Science, Carnegie Mellon University,

Pittsburgh, USA, September 1991.

[14] Angelos Bilas, Liviu Iftode, David Martin, and Jaswinder Pal Singh. Shared virtual

memory across SMP nodes using automatic update: Protocols and performance.

Technical Report TR-517-96, Department of Computer Science, Princeton Univer-

sity, Princeton, New Jersey, USA, October 1996.

[15] Paul E. Black. Parallel prefix computation. in Dictionary of Algorithms and

Data Structures [online], Paul E. Black, ed., U.S. National Institute of Standards

and Technology, December 2004. (accessed 14 January 2007) Available from:

http://www.nist.gov/dads/HTML/parallprefix.html.

[16] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Environment

for MPI. In Proceedings of Supercomputing Symposium, pages 379–386, 1994.

[17] Franck Cappello and Daniel Etiemble. MPI versus MPI+OpenMP on IBM SP for

the NAS benchmarks. In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE

134

conference on Supercomputing (CDROM), page 12, Washington, DC, USA, 2000.

IEEE Computer Society.

[18] John Carter, Anand Ranganathan, and Sai Susarla. Khazana: An Infrastructure

for Building Distributed Services. In Proceedings of the 18th IEEE International

Conference on Distributed Computing Systems, pages 562–571, Amsterdam, The

Netherlands, May 1998.

[19] John B. Carter. Efficient Distributed Shared Memory Based on Multi-Protocol Re-

lease Consistency. PhD thesis, Rice University, Houston, Texas, September 1993.

[20] John B. Carter, John K. Bennett, and Will Zwaenepoel. Implementation and perfor-

mance of Munin. In Proceedings of the 13th ACM Symposium on OS Principles,

pages 152–64, 1991.

[21] J. B. Chang and Ce Kuen Shieh. Teamster: a transparent distributed shared memory

for cluster symmetric multiprocessors. In Proceedings of the 1st IEEE International

Symposium on Cluster Computing and the Grid, pages 508–513, 2001.

[22] Matthew Chapman and Gernot Heiser. Implementing transparent shared memory

on clusters using virtual machines. In Proceedings of the 2005 USENIX Technical

Conference, pages 383–386, Anaheim, CA, USA, April 2005.

[23] DeQing Chen, Sandhya Dwarkadas, Srinivasan Parthasarathy, Eduardo Pinheiro,

and Michael L. Scott. InterWeave: A middleware system for distributed shared

state. In Languages, Compilers, and Run-Time Systems for Scalable Computers,

pages 207–220, 2000.

[24] Benny Wang-Leung Cheung, Cho-Li Wang, and Francis Chi-Moon Lau. LOTS: a

software DSM supporting large object space. cluster, 0:225–234, 2004.

[25] Giuseppe Ciaccio. Optimal communication performance on fast ethernet with

GAMMA. In Proceedings of the 12th Parallel Processing Symposium and 9th Sym-

posium on Parallel and Distributed Processing Workshops, pages 534–548, Orlando,

Florida, USA, April 1998.

[26] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for

shared-memory programming. IEEE Computational Science and Engineering,

5(1):46–55, 1998.

135

[27] Eyal de Lara. The effect of contention on the scalability of page-based software

shared memory systems. Master’s thesis, Rice University, Houston, Texas, United

States, January 1999.

[28] Christopher Diaz. Demand-Update: Scalable consistency for distributed systems in

wide-area networks. In Proceedings of the International Conference on Emerging

Technologies, August 2003.

[29] Christopher S. Diaz and Jim Griffioen. Measuring consistency costs for distributed

shared data. In Proceedings of the 5th International Workshop on Languages, Com-

pilers, and Run-Time Systems for Scalable Computers, pages 170–181, London, UK,

May 2000. Springer-Verlag.

[30] University of New South Wales DiSy Group. Kenge. http://www.l4hq.org/
projects/env/kenge/, 2004.

[31] Ian Foster, Jonathan Geisler, Carl Kesselman, and Steven Tuecke. Managing mul-

tiple communication methods in high-performance networked computing systems.

Journal of Parallel and Distributed Computing, 40(1):35–48, 1997.

[32] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit.

The International Journal of Supercomputer Applications and High Performance

Computing, 11(2):115–128, Summer 1997.

[33] Edgar Gabriel, Michael Resch, Thomas Beisel, and Rainer Keller. Distributed com-

puting in a heterogeneous computing environment. In PVM/MPI, pages 180–187,

1998.

[34] William L. George, John G. Hagedorn, and Judith E. Devaney. IMPI: Making MPI

interoperable. Journal of Research of the National Institute of Standands and Tech-

nology, 105(3):343–428, 2000.

[35] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop

Gupta, and John Hennessey. Memory consistency and event ordering in scalable

shared-memory multiprocessors. In Proceedings of the 17th Symposium on Com-

puter Architecture, pages 15–26. IEEE/ACM, 1990.

[36] Richard B. Gillett. Memory channel network for PCI. IEEE Micro, 16(1):12–18,

1996.

136

[37] L. Giraud. Combining shared and distributed memory programming models on clus-

ters of symmetric multiprocessors: Some basic promising experiments. Technical

Report WN/PA/01/19, CERFACS, Toulouse Cedex, France, September 2001.

[38] Andrew S. Grimshaw and William A. Wulf. Legion-a view from 50,000 feet. In

Proceedings of the 5th IEEE International Symposium on High Performance Dis-

tributed Computing, page 89. IEEE Computer Society, 1996.

[39] Attila Gursoy and Ilker Cengiz. Mechanism for programming SMP clusters. In

Proceedings of the International Conference on Parallel and Distributed Processing

Techniques and Applications, volume IV, pages 1723–1729, Las Vegas, June 1999.

[40] D. S. Henty. Performance of hybrid message-passing and shared-memory paral-

lelism for discrete element modeling. In Supercomputing ’00: Proceedings of the

2000 ACM/IEEE conference on Supercomputing (CDROM), page 10, Washington,

DC, USA, 2000. IEEE Computer Society.

[41] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao. Distributed

data location in a dynamic network. Technical Report UCB/CSD-02-1178, April

2002. Updated version to appear in SPAA 2002.

[42] Zhiyi Huang, Wenguang Chen, Martin K. Purvis, and Weimin Zheng. VODCA:

View-Oriented, Distributed, Cluster-based Approach to parallel computing. In

(CDROM) Sixth IEEE International Symposium on Cluster Computing and the Grid

(CCGrid 2006), page 15, Singpore, May 2006. IEEE Computer Society.

[43] Zhiyi Huang, Martin K. Purvis, and Paul Werstein. Performance evaluation of view-

oriented parallel programming. In Proceedings of the 34th International Conference

on Parallel Processing, pages 251–258, 2005.

[44] Jerry Huck, Dale Morris, Jonathan Ross, Allan Knies, Hans Mulder, and Rumi Zahir.

Introducing the IA-64 architecture. IEEE Micro, 20(5):12–23, 2000.

[45] Liviu Iftode. Home-based Shared Virtual Memory. PhD thesis, Princeton University,

Dept of Computer Science, 1998.

[46] Liviu Iftode. Home-based Shared Virtual Memory. PhD thesis, Dept. of Computer

Science, Princeton University, June 1998.

137

[47] Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Scope consistency: A bridge between

release consistency and entry consistency. In Proc. of the 8th ACM Annual Symp. on

Parallel Algorithms and Architectures (SPAA’96), pages 277–287, 1996.

[48] Ayal Itzkovitz, Nitzan Niv, and Assaf Schuster. Dynamic adaptation of sharing

granularity in DSM systems. The Journal of Systems and Software, 55(1):19–32,

2000.

[49] Ayal Itzkovitz and Assaf Schuster. MultiView and Millipage – fine-grain sharing in

page-based DSMs. In OSDI ’99: Proceedings of the third symposium on Operat-

ing systems design and implementation, pages 215–228, Berkeley, CA, USA, 1999.

USENIX Association.

[50] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda, William

Gropp, and Rajeev Thakur. High performance MPI-2 one-sided communication

over InfiniBand. In Proceedings of the 4th IEEE/ACM Int’l Symp. on Cluster Com-

puting and the Grid, April 2004.

[51] Ernesto Jimnez, Antonio Fernndez, and Vicente Cholvi. Decoupled interconnection

of distributed memory models. In Proceedings of the 7th International Conference

on Principles of Distributed Systems, volume 3144 of Lecture Notes in Computer

Science, pages 235–246. Springer, November 2003.

[52] Haoqiang Jin and Rob F. Van der Wijngaart. Performance characteristics of the

multi-zone NAS parallel benchmarks. Proceedings of the 18th International Parallel

and Distributed Processing Symposium, 01:6b, 2004.

[53] Nicholas T. Karohis, Brian Toonen, and Ian Foster. MPICH-G2: A Grid-enabled

implementation of the message passing interface. The Journal of Supercomputing,

63(5):551–563, 2003.

[54] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan. Ex-

ploiting hierarchy in parallel computer networks to optimize collective operation

performance. In Proceedings of the 14th International Parallel Distributed Process-

ing Symposium, pages 377–84, Cancun, Mexico, May 2000.

[55] Peter Keleher, Alan L. Cox, and Willie Zwanepoel. Lazy release consistency for

software distributed shared memory. In Proceedings of the 19th International Sym-

posium on Computer Architecture, pages 13–21. ACM/IEEE, 1992.

138

[56] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The case for reflective

middleware. Communications of the ACM, 45(6):33–38, 2002.

[57] Dieter Kranzlmüller, Paul Heinzlreiter, Herbert Rosmanith, and Jens Volkert. Grid-

enabled visualization with GVK. In European Across Grids Conference, volume

2970 of Lecture Notes in Computer Science, pages 139–146, Santiago, February

2003. Springer.

[58] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakr-

ishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher

Wells, and Ben Zhao. Oceanstore: An architecture for global-scale persistent stor-

age. In Proceedings of ACM ASPLOS. ACM, November 2000.

[59] Leslie Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE Transactions on Computers, C-28:690–1, 1979.

[60] Eugene L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Khan, and D. B. Shmoys.

The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization.

John Wiley and Sons, 1985.

[61] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. Phd thesis,

Yale Univ., Dept. of Computer Science, 1986. RR-492.

[62] Kai Li, Michael Stumm, David Wortmann, and Songnian Zhou. Shared virtual mem-

ory accomodating heterogeneity. technical report CSRI-220, Computer Systems Re-

search Institute, University of Toronto, Canada, 1988.

[63] Tyng-Yeu Liang, Chun-Yi Wu, Jyh-Biau Chang, and Ce-Kuen Shieh. Teamster-G: A

Grid-enabled software DSM system. In Proceedings of the 5th IEEE International

Symposium on Cluster Computing and the Grid, volume 2, pages 905–912, May

2005.

[64] Tyng-Yeu Liang, Chun-Yi Wu, Jyh-Biau Chang, Ce-Kuen Shieh, and Pei-Hsin Fan.

Enabling software DSM system for Grid computing. In Proceedings of the 8th

IEEE International Symposium on Parallel Architectures, Algorithms and Networks,

volume 2, page 6, December 2005.

[65] Honghui Lu, Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel. Quantifying

the performance differences between PVM and TreadMarks. Journal of Parallel and

Distributed Computing, 43(2):65–78, 1997.

139

[66] Steven S. Lumetta, Alan Mainwaring, and David E. Culler. Multi-protocol active

messages on a cluster of SMPs. In High Performance Networking and Computing:

Proceedings of the ACM/1EEE SuperComputing Conference, San Jose, California,

USA, November 1997.

[67] Message Passing Interface Forum. MPI: A Message Passing Interface. In Proceed-

ings of Supercomputing ’93, pages 878–883. IEEE Computer Society Press, 1993.

[68] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-

terface. Technical report, University of Tennessee, Knoxville, TX, 1996.

[69] Luiz Rodolpho Monnerat and Ricardo Bianchini. Efficiently adapting to sharing

patterns in software DSMs. In Proceedings of the 4th International Symposium on

High-Performance Computer Architecture, pages 289–299, Washington, DC, USA,

February 1998. IEEE Computer Society.

[70] M. C. Ng and Weng Fai Wong. ORION: An adaptive home-based software dis-

tributed shared memory system. In Proceedings of the Seventh International Confer-

ence on Parallel and Distributed Systems (ICPADS’00), pages 187–194, July 2000.

[71] Gregory F. Pfister. An introduction to the InfiniBand architecture. In Hai Jin, Toni

Cortes, and Rajkumar Buyya, editors, High Performance Mass Storage and Parallel

I/O: Technologies and Applications, chapter 42, pages 617–632. IEEE Computer

Society Press and Wiley, New York, NY, 2001.

[72] Aske Plaat, Henri E. Bal, and Rutger F. H. Hofman. Sensitivity of parallel appli-

cations to large differences in bandwidth and latency in two-layer interconnects.

Future Generation Computer Systems, 17(6):769–782, 2001.

[73] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing nearby

copies of replicated objects in a distributed environment. In ACM Symposium on

Parallel Algorithms and Architectures, pages 311–320, 1997.

[74] Daniel Potts and Ihor Kuz. Adapting distributed shared memory applications in

diverse environments. In Proceedings of the 6th International Symposium on Cluster

Computing and the Grid, Singapore, May 2006.

[75] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.

A scalable content addressable network. In Proceedings of ACM SIGCOMM 2001,

2001.

140

[76] Felix Rauch. Distribution and Storage of Data on Local and Remote Disks in Multi-

Use Clusters of PCs. PhD thesis, Dept. of Computer Science, Swiss Federal Institute

of Technology (ETH Zurich), Zurich, Switzerland, 2003. ISBN 3-89649-893-2.

[77] Steven K. Reinhardt, Lames R. Larus, and David A. Wood. Tempest and Typhoon:

User-level shared memory. In Proceedings of the 21st International Symposium on

Computer Architecture, pages 325–336. IEEE, 1994.

[78] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-

tion, and routing for large-scale peer-to-peer systems. In IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware), pages 329–350, 2001.

[79] Sumit Roy and Vipin Chaudhary. Strings: A high-performance distributed shared

memory for symmetrical multiprocessor clusters. In Proceedings of the Seventh

IEEE International Symposium on High Performance Distributed Computing, pages

90–97, 1998.

[80] Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik Mahalingam.

Taming aggressive replication in the Pangaea wide-area file system. In Proceedings

of the 5th USENIX Symposium on Operating Systems Design and Implementation,

pages 15–30, December 2002.

[81] Rudrajit Samanta, Angelos Bilas, Liviu Iftode, and Jaswinder Pal Singh. Home-

based SVM protocols for SMP clusters: Design and performance. In Proceedings of

the 4th IEEE Symp. on High-Performance Computer Architecture (HPCA-4), 1998.

[82] D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-grain software distributed

shared memory on SMP clusters. In Proceedings of the 4th IEEE Symp. on High-

Performance Computer Architecture (HPCA-4), page 125. IEEE Computer Society,

1998.

[83] Angela C. Sodan. Message-passing and shared-data programming models — wish

vs. reality. In Proceedings of the 19th International Symposium on High Perfor-

mance Computing Systems and Applications, pages 131–139, Washington, DC,

USA, 2005. IEEE Computer Society.

[84] Alexander Spiegel and Dieter an Mey. Hybrid parallelization with dynamic thread

balancing on a ccNUMA system. In Proccedings of the Sixth European Workshop

141

on OpenMP, pages 77–81, KTH Royal Institute of Technology, Stickholm, Sweden,

October 2004.

[85] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-

nan. Chord: A scalable peer-to-peer lookup service for internet applications. In Pro-

ceedings of the ACM Conference on Communications, pages 149–160, San Diego,

California, USA, 2001.

[86] V S. Sunderam. PVM: a framework for parallel distributed computing. Concurrency,

Practice and Experience, 2(4):315–340, 1990.

[87] Kritchalach Thitikamol and Pete Keleher. Multi-threading and remote latency in

software DSMs. In Proceedings of the 17th International Conference on Distributed

Computing Systems, May 1997.

[88] Jesper Larsson Traff, Hubert Ritzdorf, and Rolf Hempel. The implementation of

MPI-2 one-sided communication for the NEC SX-5. In Supercomputing ’00: Pro-

ceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM), page 1,

Washington, DC, USA, 2000. IEEE Computer Society.

[89] Nian-Feng Tzeng and Angkul Kongmunvattana. Distributed shared memory systems

with improved barrier synchronization and data transfer. In Proceedings of the 11th

International Conference on Supercomputing, pages 148–155, New York, NY, USA,

1997. ACM Press.

[90] Abdul Waheed and Jerry Yan. Performance modeling and measurement of paral-

lelized code for distributed shared memory multiprocessors. In Proceedings of the

6th International Symposium on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems, page 161, Washington, DC, USA, 1998. IEEE

Computer Society.

[91] John Paul Walters, Hai Jiang, and Vipin Chaudhary. An adaptive heterogeneous

software DSM. In Proceedings of the 2006 International Conference Workshops on

Parallel Processing, pages 266–272, Los Alamitos, CA, USA, 2006. IEEE Com-

puter Society.

[92] S. C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 programs:

Characterization and methodological considerations. In Proceedings of the 22nd An-

nual International Symposium on Computer Architecture, pages 24–36, June 1995.

142

[93] Joachim Worringen, Andreas Gäer, and Frank Reker. Exploiting transparent remote

memory access for non-contiguous and one-sided-communication. In IPDPS 2002,

Workshop for Communication Architecture in Clusters (CAC ’02), Fort Lauderdale,

Florida, April 2002. IEEE Computer Society.

[94] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An infrastructure

for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-

1141, UC Berkeley, April 2001.

[95] Songnian Zhou, Michael Stumm, Kai Li, and David Wortman. Heterogeneous dis-

tributed shared memory. IEEE Transactions on Parallel and Distributed Systems,

3:540–54, 1992.

[96] Yuanyuan Zhou, Liviu Iftode, and Kai Li. Performance evaluation of two home-

based lazy release consistency protocols for shared memory virtual memory sys-

tems. In Proceedings of the 2nd Symp. on Operating Systems Design and Imple-

mentation (OSDI’96), pages 75–88, 1996.

143

