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Abstract. We propose a categorical model for information flows of cor-
related secrets in programs. We show how programs act as transformers
of such correlations, and that they can be seen as natural transformations
between probabilistic constructors. We also study some basic properties
of the construction.

1 Introduction

The foundations for Quantitative Information Flow (QIF') [2-5,14,15] has had
great successes in explaining the impact of information flows in security systems.
A basic assumption in QIF is that there is a single secret, it does not change
over time, and that one risk of observing the behaviour of the system is that
partial information about the secret leaks out. A QIF analysis is then able to
answer questions such as “can adversaries use the information leaked to their
advantage?”

In contexts where the secret does change over time however, the analysis
becomes considerably more difficult. Even more challenging are contexts where
there are multiple secrets, some correlated with others, some that change, whilst
others remain unchanged. Here we are concerned with this most egregious case.

Consider the scenario of A who is burdened by her company’s policy of forcing
employees to change passwords every month. Moreover, since the company wants
its employees to put serious effort into picking a strong password, they measure
the time it takes for the new password to be selected, to avoid the situation
that the employees will simply add another digit to their current password. A
decides to use a workaround to this draconian practice: she writes a short but
effective password selection program, which first allows time to pass for some
random interval determined by the current value of the password, and then
selects independently a completely random password which is ultimately stored
automatically in A’s keychain. Her code looks something like this, where pw
stands for her current password.

while (pw>0) { // Wait for some time
pw—=;
}

pw:= uniform(0, N) // Select uniformly at random a new password
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Over lunch, A tells her friend G about her scheme; G is a little concerned
because of a known timing attack on the loop which counts down from the initial
value of pw. However, since it only reveals the initial value of pw, which is then
immediately reset to a completely random value, there seems little to worry
about.

A few months later the IT department introduces a new computer system
to supplement the existing one. Whilst some aspects of her work environment
improve, unfortunately now A has to reset two passwords every month — one
for the old system, and an additional one for the supplementary system. She
decides on an easy extension of her password updating program, setting her new
password npw to her old password, and then updating pw as before:

npw:= pw;

while (pw>0) { // Wait for some time
pw--;

}

pw:= uniform(0, N) // Select uniformly at random a new password

Unfortunately, since it has been months since she started using the original
scheme, she has forgotten about G’s brief analysis concerning the leaking of the
initial value of pw, and indeed there was nothing to worry about since there was
only one secret. But now, in this extended context, there is a serious vulnerability,
not for pw, but for npw — its value is correlated with the initial value of pw
which is completely revealed through the timing attack during the iteration of
the loop. Thus G’s original analysis, which assumed a single secret, although
effective under that assumption, turns out to be unhelpful in general. ®

In this paper we consider the general situation illustrated by that story. We
find that any general analysis should take into account possible future correla-
tions with other secrets. Our general approach suggests that secrets should never
be considered in isolation, and that instead the basic currency of QIF should be
correlations of secrets, and that any analysis should study leaks about correla-
tions. It turns out that a categorical approach can be used to give a description
of this situation. In particular we show how information flow can be summarised
by a natural transformation between two constructors for structuring prior and
posterior knowledge.

This paper is organised as follows. In Sec. 2, we revise the use of HMM'’s
in modelling information flow pertaining to static and dynamic secrets. We also
introduce the notion of correlated secrets. In Sec. 3, we construct a category
within which correlated secrets live. This form the fundamental basis for our
new compositional semantics where security programs modelled as HMM’s are
in turn interpreted as natural transformations over this category. We also explore
some characteristic properties of this category and the new semantic maps. We
conclude in Sec 4.

5 Recall the Ariane disaster, which occurred when the software was executed within
an environment for which it was not originally designed.
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2 Channels, HMM’s and secrets that change

Hidden Markov Models or HMM’s are commonly used to solve inference prob-
lems such as to infer a sequence of hidden states that could have produced a
sequence of observations. The most well known practical application is speech
recognition, where a HMM is trained to recognise and translate speech wave-
forms into texts. HMM’s have also been applied to cryptanalysis where a cryp-
tographic algorithm can emit a sequence of observations if given a sequence
of states. In [7], Karlof and Wagner use HMM’s to model noisy side channels.
Their work provides a generalised framework through which a large class of side
channel attacks can be modelled. More recently, Smith provided a general foun-
dation upon which the notion of information leakage is precisely defined, and
then computed [14]. Even though Smith works mainly with static secrets, his
notions of channel and their leakages are central to the subsequent advancement
of Quantitative Information Flow (QIF').

Fundamental to QIF is the idea of an information flow channel. It models
the process by which a secret with values drawn from a basic type X can be
partially revealed to an adversary. We say that a channel C'is an X' x) stochastic
matriz denoted by X—). Here ) denotes the set of observables available to a
passive but curious adversary. ¢ An entry Cgy is the (conditional) probability
that, given the secret has some value x in X', then the observation is y € ).
Stochastic means that, for each z in X', we have that Zyey Cyzy = 1. What can
an adversary do with this information? We assume first that the adversary has
some prior knowledge about the possible values of X and that this is modelled
as a probability distribution 7 € DX. Once we have a channel C' and a prior 7
we can form the joint distribution 7)C in D(X %)) defined

(MCay = TCay , (1)

which describes the probability that the secret is x and the observation is y.
We focus on two interesting distributions that provide some insight into what
exactly has been leaked by the channel, and what the adversary can do with
that leak.

The first is the marginal distribution over the observation set ) — this is
the probability that a specific y occurs when we don’t know which particular x
occurred. It is

zeX

Next we look at the adversary’s revised knowledge of the secret given that
observation y has occurred. This is the posterior distribution wrt y and is the
conditional distribution Eqn. (1) relative to y:

(0%)e = (M) C)ay/(m)C)—y -

5 We do not assume that X and ) are finite. We do however assume that they are
discrete and countable.
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It turns out that the marginal and the posterior disributions can be combined
to form a hyper-distribution —a distribution over distributions— of type DDX =
D2X, where the outer distribution corresponds to the marginal (at some )
and the inner distribution corresponds to the posterior. We write [r)C] for the
hyper-distribution corresponding to the joint distribution 7)C', where for §: DX
the posterior corresponding to observation y, we have

[mCls = Y (mMC)-y,

y: Vs

where Vs C V is the subset of ) consisting of observations y such that ¢ and
0Y are the same distribution, i.e. 6, = (8Y), for all x. Note that the hyper-
distribution formulation represents the collection of posteriors and their respec-
tive marginal probabilities related to the joint distribution Eqn. (1) except that
the outer probability [7)C]s is the sum of the marginal probabilities associated
with any other posterior that is the same as §. The reason is that separating
those posteriors does not affect the computation of information flow [12]. Using
this fact allows us to give an abstract information flow semantics as abstract
channels of type priors to hyper-distributions, that is [C]: DX —D?X defined by

[Clm = [=)C]7.

In our example in Sec. 1 above, we see a more complicated case of information
flow, where the original secret pw was updated. In other work [9] we showed
how a generalisation of abstract channels called abstract Hidden Markov Models
(HMM’s) can be used to model this situation. HMM’s combine the effect of
information flow (as defined above) for channels together with “Markov updates”
to describe how secrets can be changed. Intuitively, a single HMM step describes
the effect of first leaking some information about a secret through a channel
matrix C followed by an immediate update of the secret via a Markov matrix
M. This single step HMM is denoted by a matrix H = (C:M): ¥—-)Yx X such
that

sza:’ = nywa’ .

More complicated HMM’s can be formed by sequentially composing smaller
HMM matrices to give a pattern of leaking information about the current
value of the secret, followed by a possible update. For example the sequen-
tial composition of two HMM’s H: X—Y; xX and K: X —)Yox X gives a HMM
H;K: X— (Y1 xY2)x X such that

(Hi K)o yoye = > HayoKeyour - (2)

We note that the “observations” now record a pair of elements from the observ-
able set V1 x)s, and in general the observations for n sequential compositions
will be a trace of length n.

T f.z denotes the application of a function f to the argument .
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Just as for channels, HMM’s also transform initial prior information into
a hyper-distribution through the construction of a joint distribution. But now
consider the situation of executing an HMM over basic secret of type X which
is correlated with some other secret of type Z, by which we mean that there is
a dependency between X and Z described by a joint distribution. This was the
situation described in Sec.1, where the explicit leak about pw caused a collateral
leak about a different dependent secret npw. To account for this “collateral leak”,
we start with a correlation between the secret and some arbitrary secret ranging
over Z modelled as a joint distribution I7:D(Xx Z). We can now track what
happens to the correlation of the two secrets when HMM H executes. It results
in a joint distribution in D(ZxX xY):

(IDH)zzry = > MyzHayye .

Next, as we did for abstract channels, we abstract from the observation name
y to obtain a hyper-distribution in [IT)H]: D?(X'x Z) such that [II)H] is the
probability that A:D?(X'x Z) occurs as a (posterior) distribution. This implies
that the abstract type of our HMM H, given some other secret Z that is not
changed by H, but could be correlated with X is now

[H]Z : D(Xx2)=D*(Xx2Z) , (3)
where correlation IT:D(X x Z) is mapped to hyperdistribution

[H]#.11 = [IT)H] . (4)

Here, we see that this type captures clearly the role of H — that it is a
mechanism for leaking and changing secrets, but in a way that it has an effect
on other, possibly correlated secrets, which might or might not become relevant
in a wider context. In fact the abstract semantics is now a set of transformations
(parameterised by Z). We show below in Sec. (3) that in fact H can be seen as
a natural transformation.

Before moving further, let us see how the program used by A in the previous
section is expressed in our framework. It is made up of 3 parts: the first assign-
ment npw:= pw, followed by the while loop, and then the final resetting of pw
to a random value. The first assignment establishes a correlation I between pw
and npw, which describes a distribution with the property that the only non-zero
entries occur when pw and npw are the same. The while loop leaks the exact value
of pw and then sets it to 0; recall that a curious eavesdropper would be able to
count how many iterations the loop performs. If we assume that X = {0, 1}, the
while loop is then represented by the following HMM matrix:
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The labels oB and oS denote the observations that the
oS oB body of the loop was executed or not, respectively. The
= = other column labels come from the column labels in the
1 execution of the body of the loop. Thus each column is
0 ) labelled by a pair in {oB, 08} x X. The first row (labelled
0 0) describes the scenario where the initial value of pw
is 0 so that the loop terminates immediately (i.e. there

is a single 1 in the column (oS, 0)).

The last program that randomly sets pw is simply a Markov matrix with 0.5 in
all positions. The two programs are composed using the sequential composition
defined at Eqn. (2) above to model to model the effect of information leakage
on the secret stored in npw.

3 A category of correlations

In order to study the collateral consequences of information flow of a program
operating over a single secret, we must first find a mathematical space that
treats correlations as “first class citizens”. In this section we describe the space
of collateral types, show that it forms a category and we study some of its
properties.

We begin by considering a basic relationship between two secrets. In general
this relationship is not necessarily symmetric and can be expressed in the form
of a channel, which means that observation of the value of one collateral secret
may leak information regarding the value of the other collateral secret.

Definition 1. The category CORR of collateral types contains finite sets Z1, 2o
as objects and channel matrices Z: Z1 — Z9 between them as arrows. The compo-
sition of channel in this category is the matriz multiplication of channel matrices.
That is, given Z1: Z1—29 and Zs: Zo— 23, we have Zy-Zoy: Z1—23.

Intuitively, objects of CORR correspond to spaces in which all of A’s pass-
words live. This includes pw and npw.

Lemma 1. CORR is a category.

Proof. This is clear since matriz multiplication behaves exactly as a functional
composition and identity arrows are given by identity matrices.

Recall that Eqn. (3) gives the type of a HMM on the secret type X and
taking into account a collateral type Z. The main intuition here is that, instead
of simply transforming information regarding the mutable secret type X, the
program transforms joint information, which is an object in D(X xZ). When
the mutable secret type X is fixed, the set D(X x Z) is parametrised by Z.

More precisely, for a fixed X we can construct a functor Fy from CORR to
a category containing D(X'xZ) as an object instance. Since XX Z is a finite
set, the set D(X x Z) is a compact metric space with respect to the Kantorovich
metric [9,13] 8. We know that the compact metric spaces and the continuous

8 In D(X x Z), the Kantorovich metric is equivalent to the standard Euclidian distance.
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functions between them form a category which we refer to as Comp [1,16]. The
functor Fx: CORR—COMP constructs the set of correlations D(X x Z), for each
type X.

Definition 2. Let X be a fized mutable type. We define the collateral functor
Fx: CORR—COMP as follows:

— For objects, Fx(2):=D(Xx Z) is the set of all joint distributions over X
and Z for any collateral type Z.

— For an arrow Z: Z1—25, we have Fx(Z):D(X X Z1)—=D(X' X Z3) such that,
for every IT in D(X x Z1) we have

Fx(2)(IT) = II-Z, ()
which is the matriz multiplication of I and Z.

The extra line npw := pw in the second program above creates a diagonal
matrix in Fy(X’) where X’ is a copy of type X. This produces a diagonal
correlation between the values of these two variables.

Lemma 2. Fy is a functor.

Proof. Let Z be a collateral type. It is clear that Fx(id): D(X X Z2)—=D(X X Z) is
the identity map when id: Z—Z is the identity channel matriz on Z.

The functor Fx preserves composition follows from the associativity of matriz
multiplication.

Finally, for well-definedness, as long as we start with finite (or compact) X
and Z, the set D(X' X Z) is a compact metric space with the Kantorovich distance
and the function Fx(Z) is continuous [13].

We can rewrite (3) using the newly defined functors Fx. That is, the deno-
tation of a program H with mutable type X and collateral type Z has type

[H]?:Fx(Z2) — DFx(2) (6)

Note however that the denotation of H should only depend on X explicitly. In
other words, [H]? is parametric in Z. This means that [H]Z in (6) is actually
a component of the denotation of the HMM H given that we know the col-
lateral type is Z. This is an important observation because it implies that the
“unparametrised” denotation of H should have type

Fy = DFy y

that is, [H] should transform the functor Fx into the composite functor DF ».
This suggests that the denotation of a program computing with secrets is a
natural transformation because the parameter Z should be manipulated in a
syntactic manner. More precisely, [H] should apply to the collateral type Z
polymorphically. This is exactly the rationale behind our next definition.
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Definition 3. An abstract program with mutable type X is a natural transfor-
mation h: Fxy=DF y. That is, for every correlated type Z1, Z5 and channel arrow
7. Z1— 2o, we have that the following diagram commutes:

D(Xx2,) 275 DA% 2))

IE‘X(Z)\L lDFX(Z)

D(Xx Z5) —— DA(XxZ;)

This definition implies that an abstract program h operates on the category
CORR directly. Its denotation is independent of the collateral types, that is, any
relationship (channel) between Z; and Z; can be accounted for before or after
the execution of h while preserving information flow.

The following result shows that if H is a HMM matrix then [H] is indeed a
natural transformation.

Theorem 1. For any HMM matriz H, [H] is a natural transformation.

Proof. Let II: D(XX 2Z1) and Z: Z1—Z5 be any channel arrow. We need to show
that
DFx(Z)o[H]*'.IT = [H]?*.Fx(Z)(II) . (7)

We use Eqns. (4) and (5) to instantiate the inners of the left and right hand side
hyper distributions.

On the one hand, an inner vY of the left-hand side of Eqn. (7), associated to
observation y, takes the form

Zzl (Zx szl Hryz/) Zzlzz
7?!

Y —
’yx’ZQ -

where 7Y =3 oo Wazy Hyyar 22,2, -
On the other hand, an inner §Y of the right hand side, associated with the
observation y, takes the form

Zx (Zzl H$21Zzlz2) Hacyac/

5:;/,22 = 6y
where 80 = Zm,zlzz o 2o oy Hyyar . It follows, after some arithmetic, that
0¥ =Y.

This theorem shows that there are indeed natural transformations from F »
to DFy, of which the denotations of HMM matrices form a subset. Thus, the
first program in the introduction is also a natural transformation where X is the
set of all possible values that A can choose for variable pw.

To compose arrows of type D(X x Z)—D?(X x Z), we need to define the Giry
monad (ID, n, avg). The natural transformation 7 is the identity with n: X=D and
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Nx (x) is the point distribution at . The natural transformation avg “squashes”
higher level distributions (such as hyper-distributions) by averaging. That is,
avg: D?=D where, for each AcD?X, we intuitively have

(avgx(A))a= Y 6,45 .°
sebx

It is shown in [10] that
[H:K]? = [HI%[K]® = avgp(rxz)oDIK]o[H]? (®)

where the right hand side is the definition of sequential composition in the Giry
monad [6].

Eqn. (8) is central for the compositionality result we show in [10]. It assumes
that the mutable secrets of H and K are represented by the exact same vari-
ables ranging over X. A slightly more general version is proven in the Appendix
(Lem. 4).

Next, we show that the sequential composition of HMM’s in (2) is defined
using the vertical composition of natural transformations (keh)?:=kZoh?.

Theorem 2. Let H and K be HMM matrices on the mutable secret type X.
Then [H;K] is also a natural transformation where

[H;K] = avgg, e D[K] o [H]

)
in which e is the vertical composition of natural transformations.

Proof. Let Z be a collateral type. By definition of the vertical composition, we
have

(anFX‘D[[K]]'[[H]])Z = anFX(Z)O(D[[K]])ZO[[H]]Z = 3VgD(sz)°D[[K]]ZO[[H]]Z

The second equality follows from the definition of Fx(Z) and the composition of
a functor with natural transformation, namely, (D[H])? = D[H]Z.
The result now follows from Eqn. (8).

The denotation of a HMM is therefore polymorphic with respect to the object
of the underlying category CORR. In particular, the mutable type X of the
HMM is also an object of CORR and we will show that the arrow h* completely
characterises the natural transformation.

Let Z be an arbitrary collateral type and J:D(XxZ) be any prior joint
distribution. We can decompose J into a joint distribution IT: DX? and channel
matrix Z: X—Z such that IT)Z = J. This decomposition can be achieved within
the context of the collateral functor Fy and the construction is given in the
following lemma.

9 Rigorously, the sum in right hand side is an integral when A is not a discrete dis-
tribution. In this case, the left hand side should be applied to a measurable subset
rather than the singleton.
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Lemma 3. Let X be a finite mutable type and Z be a non-empty object in CORR.
For every joint-distribution J:D(Xx Z), there exists II: DX? and Z: X—Z such
that

Fr(2)U) = J

Proof. One way to decompose J:D(XxZ) is through the marginal-diagonal-
conditional decomposition [10]. Let II:DX? be the diagonal matriz such that

. _ !
Ha:a:/ = {ZZ Jzz ,fo =

10 otherwise ,
and Z: X—Z such that

2T\ 1/1Z|]  otherwise .

Since I1 is a diagonal matriz, we have

)7 =y Zy, = ZHMwa/Z =Fx(Z)(II) .
Moreover, for I, > 0, we have Il Z,, = J,. If I, = 0 for some x, then
Jzz =0 for every z. In either cases, J = Fx(Z)(II).

Note that the decomposition in Lem. 3 is not necessarily unique. For instance,
the convention Z,, = 1/|Z] is arbitrary and can be replaced with any collection
of numbers such that > Z,. = 1.

The following corollary of Lem. 3 shows that a natural transformation h: Fx=DF y
is fully characterised by its realisation h”¥: Fy(X)—DFx(X).

Corollary 1. hZ is determined by h? i.e.

hZ.J = DFx(Z) o b (II)
for every J:D(X X Z) where Z,II is a decomposition of J.
Proof. Lem. 8 and Defn. 3.

This corollary has practical importance as it allows us to focus any formal
analysis of a program H on the arrow [H]* without any thought about the
possibly unknown collateral type Z. Thus, we do not need to exhaust all possible
collateral types to know the collateral effect of executing H. We only need to
compute the leaked information regarding the initial and final values of the
mutable secret with type X' [10].

In particular, if two programs H, K leak the exact same amount of infor-
mation about the initial and final values of the secret with type X, then [H]?
and [K]? leak the exact same amount of information about the collateral type
Z. For instance, once A understands that she needs to account for both the ini-
tial and final value of pw, she realises that the collateral secret npw is not safe
anymore well before she creates the new password.

Let us now explore a few special cases which reinforce the fact that our nat-
ural transformation semantics fully captures the notion of collateral information
leakage.
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3.1 Z is a null channel: Z; = {*}

This first case explains that the closed semantics of a HMM in [9] is a particular
instance of our natural transformation semantics. We obtain this by replacing
Z5 with the singleton set {x}.

An arrow Z: Z;—{x} is equivalent to the null channel on Z; (i.e. single
column filled with ones). Defn. 3 reduces to

D(XxZ;) 220 D2(Xx2;)
FX(Z)J |prx@)

Dx — D2X
where Fx (Z): D(X % Z;)—DX such that, for J:D(X'x Z;) we have

Fx(Z)(D)a = Jez

which is the A-marginal of J and becomes our prior, which is then fed into the
closed semantics h*. In other words, h* is obtained by forgetting any correlated
type i.e. working with the X-marginals of priors and posteriors.

3.2 Z selects a collateral prior: Z; = {*}

Our second case shows that the closed semantics can only express independent
correlations. Two independent secrets are expressed as a joint distribution in
D(X x Z) that is obtained as the product of marginals on X and Z. We obtain
this by setting Z; to be the singleton set {x}.

An arrow Z:{x}—Z5 is identified with a distribution in DZ5. In this case,
Defn. 3 reduces to

DX — P D2y
]FX(Z)\L J{D]FX(Z)

D(X x Z3) — D2(X % Z5)

where Fy (Z): DX —D(X x Z3) such that, for 7: DX we have
Fx(Z)(m)ee = a2, . 9)

So what does this mean? Well, we know that the denotation A* cannot express
the information flow of variables correlated to the secret with type X [10]. How-
ever, Eqn. (9) says that Fy(Z) simply constructs the independent product of Z
and a prior 7, and similarly for DFy(Z). Thus the above commutative diagram
says that, when Z5 is independent of X', we can construct the joint distributions
and encapsulating hypers by simply multiplying the marginals pointwise. This
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is the standard definition of a joint distribution expressing independence of the
column and row random variables. This is an expected sanity check.

In other words, the non-compositional denotation h* is also a special case
of the compositional semantics where every other wvariable not specified in the
underlying program is independent of the secret of type X. In this case, and this
case only, hZ can be expressed via h*.

3.3 Collateral only: X = {*}

In this case, we will always know the value of the mutable secret variable (which
is *, of course) and the uncertainty about any correlated secret should remain
the same pre- and post execution of a program h.

Let us make that intuition precise. Let Z: Z1—Z5. We have F,(Z): DZ; —»D2Z5
(up to the isomorphism {*}x Z ~ Z) where, for every m: D2

Fo(Z)(m) = 7.2 .

That h is natural gives us

Dz, "2 D2z,

F, (z)l J{]D)]F*(Z)

DZQ W D2 ZQ

But what is %17 Well, Corollary 1 tells us that hZ is determined by h¥* for
every Z. But since X = {*}, we deduce that h*: D{x}—D?{x}. The only arrow
of this type is Drn where n maps the point * to the point distribution 7,. That
is, h* = Dn which means that it is the Skip program.

Finally, for every m:DZ; (actually D({*}x Z1)), the only decomposition given
by Lem 3 is given by the joint distribution matrix (1)€D{*}? and channel
Z:{+}—2; with Z, = 7. So

h? .1 =DF.(Z) o h*((1)) = DF.(Z)(n)) = 0w, (2)((1)) = N -

Thus hZ is also Skip as expected.

4 Conclusion

We have shown that programs computing with secrets can be interpreted as nat-
ural transformations acting on a category CORR of correlations. This semantic
space is compositional. For each collateral type Z, the natural transformation
[P], for an arbitrary program P, can be instantiated on Z by working with
the arrow [P]#. Moreover, the natural transformation [P] is completely charac-
terised by the component [P]¥. This implies that, instead of trying to capture
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all possible correlations (known and unknown), one can simply look at programs
as constructing correlations between initial and final secret values. Thus a fresh
correlation can be attached to the output using the preserved initial secret val-
ues. This is captured abstractly by the notion of polymorphism.

Our main goal was to provide a categorical compositional semantics that can
be used as a foundation for further frameworks suitable for program with secrets.
In particular, we did not elaborate on the explicit construction of a refinement
ordering on the space of natural transformation nor did we study any notion
of convergence of a sequence of natural transformations. Though both of these
items are important to obtain a sound logical framework for programs, we leave
them for future work.
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A Compositional sequential composition

The sequential composition (8) assumes that the mutable secrets of H and K are
represented by the exact same variables ranging in X. A slightly more general
version of that result is to assume that H and K may share a hidden variable
ranging in X and that they also have other hidden variables specific to each
HMM. In this case, if H contains another hidden secret with type X then this
secret must be considered as a collateral secret in K — thus K leaks collateral
information about it, but does not update that secret. More precisely, we have
the following lemma.

Lemma 4. Let H: (X x X)) = Y1 X (X xXy) with K: (X XXs) = YVox (X xXs) be
two HMM matrices. We have

[H;K]? = [H]™ %K) = (10)

where the composition H;K is given by Eqn. (2) and the composition operator
(;) on the right takes the isomorphism between Xy x Xy and Xox Xy into account.

Proof. Firstly, we have the following types

— [H;K]Z:D(Xx X x Xox Z2)—D? (X x Xy X Xa X Z)
— [H]*2*Z:D(X XX x Xox Z)=D? (X x Xy x X X Z)
— [K]" %2 D(X x Xox Xy x Z2) =D (X x Xy x Xy X Z)

Let us assume that we have applied the isomorphism that permutes the positions
of the X1 and Xy in the domain of [K]***Z so that the right hand side com-
position is well defined and is given by the sequential composition in the Giry
monad [6]. This type matching function is implicitly embedded into the right
hand side composition in (10).

Let II:D(Xx Xy xXox Z), Eqns. (1) and (2) give

(H>(H;K))y1y271//x’lz’2z = Z szlzgzZerlylx’x’le/zgyzm”I’Q (11)

TI1T2 x/



Categorical information flow 15

On the other hand, [H]*2*Z;[K]**% = avgoD[K]"*Z o [H]*2*Z uses the
Kleisli lifting. Let us consider an inner § of [H|*2*Z;[K]|***Z.II. There exists
an inner o of [H]***Z I such that § is an inner of [K]***Z.a. That is, there
ezist two observations y and y' such that

Y1 B Zml Hﬂ?mmszmylz/z’l

Qo oy —
1

a1

oYl =
where ¥t = Zm’m’lmzz (Zmzl walwngwzlmw'w’l); and

} : Y1 K
’ 11 !
z'x2 am’m’lxgz TL2Y2T Ty

5y1yz
xxixhz T gylyz

where
TY1Y2 Y1
0 - z : (2 :am’mizgszliUZyZﬂU”xé)
xxixhz \z'T2

By substituting « into the expression of § and simplifying a¥', we have

§Y1v2 _ Zx’azz (Zmzl Hﬂ?fFl‘TZZHlelllwlw&) leIZyZI/,a:é
’ ’ -
ey Zz//wﬁwéz (Zw/wz (Zzwl Hzm1mzzH3:x1y19€/$,1) Kx'-@2y2$”$/2)
_ melwz Hammwz Z:p’ H$$1y1$/$/1 Kx'I2y2I”$,2
Zz//z'1$/22 (szlzg H:rz1x2z Zz’ Hmmylf/mi Kz/zQsz”xé)

The inner §¥1¥2 corresponds exactly to a normalized (y1,ys)-column of IT)(H; K)
as per Eqn. (11).

Lem. 4 is a straightforward generalisation our sequential composition for sys-
tems independent of any other collateral type [8,9] as well as our compositional,
but single secret, semantics [10,11]. That is, the closed sequential composition
is obtained by setting X} = Xy = Z = {*} while the context aware version is
obtained by setting X3 = X5 = {*}. Lem. 4 is slightly more general than the
composition we define in [10] because it allows the declaration of new variables
“on the go”. For instance, if we set X7 = {*}, then a new secret variable of type
X, that is declared in K does not change in H. The lifted map [H]* is aware
of this upcoming new secret and accounts for the correlation between the new
variable and current secret of type X.



