
Distribution + Persistence = Global Virtual Memory

A Position Paper

Stephen Russell Alan Skea Kevin Elphinstone Gernot Heiser Keith Burston

Ian Gorton Graham Hellestrand

School of Computer Science and Engineering

University of New South Wales, NSW Australia 2033

email: dist@vast.unsw.edu.au

1 Introduction

The Distributed Systems Group at the University of New

South Wales is currently constructing a distributed operat-

ing system based on global virtual memory (GVM). Unlike

previously published systems, our system combines local

and remote storage into a single large virtual address space.

This provides a uniform method for naming and accessing

objects regardless of their location, removes the distinction

between persistent and transient data, and simplifies the

migration of data and processes.

Our GVM system uses conventional computing nodes con-

nected to specialised network interfaces. A fault-tolerant

migration and replication protocol keeps the system oper-

ational and consistent in case of network errors or node

crashes. Password capabilities are used to control access

to the GVM.

2 System Overview

The dominant models for current distributed systems are

based on communication between objects [6, 14, 28, 30].

Regardless of whether this communication is done explic-

itly, or is hidden by an RPC interface, a program treats

external objects as being potentially remote. The artificial

distinction between local and remote objects often requires

different naming and access mechanisms.

A similar distinction is made in naming internal data re-

siding within a program’s address space, and external data,

such as files, managed by a traditional operating system.

Persistent programming systems [11, 25] attempt to unify

access. However, few of these systems have addressed the

problems of distribution, and have been restricted in scale

by a limited address space.

With the advent of 64-bit microprocessors, it is now pos-

sible to investigate systems in which all objects reside in

a single global virtual address space. This address space

solves the problems of transparent distribution and sup-

porting persistence by removing unnecessary distinctions

between local and remote objects. In such a GVM system,

exactly the same mechanism would be used to address a lo-

cal variable of a procedure, for example, as would be used

to access a database which resides on a remote node. Data

can be shared by reference without unnecessary copying,

and references to any object can be embedded in user data

structures. As well, process migration involves little more

than moving the process’ register set to another node.

Our goal is to provide a minimal set of mechanisms to ef-

ficiently support distributed object oriented systems. We

believe that an operating system should concentrate on is-

sues such as mobility, replication and protection. Other

policy decisions about object support should be left to the

developers of languages and applications. Our proposed

object support mechanisms are described in the following

sections. The final section then compares our system with

other approaches.

3 Objects and Migration

Our GVM system supports course grained objects consist-

ing of multiple pages. These objects are analogous to files

and directories in traditional operating systems. Support

for fine grained objects is expected to be provided by lan-

guage runtime systems. Objects are created by allocating

a portion of the global virtual address space. Each node

is responsible for managing the portions of the GVM from

which it creates objects.

Protection is provided at the object level, and access is

authenticated when the object is first referenced. Object

protection information is stored at the creation node, and

replicated at other nodes.

From the system’s point of view, however, the GVM is

divided into fixed-size pages which may migrate around

the network. A multi-reader/single-writer protocol is used

to maintain coherency, with ownership of pages migrating

to the writing node. Pages may also be migrated to achieve

load balancing.



Each node maintains hints as to the likely current loca-

tion of the individual pages. Remote pages not found by

querying these nodes are located by broadcasting their ad-

dresses to the network. These broadcasts could impose an

unacceptable load on the node processors, so we are inves-

tigating special hardware that supports the object location

protocols. A preliminary proposal for this hardware has

been made in [29].

4 Protection

In our GVM system, we propose a mixture of hardware and

software mechanisms to provide multiple levels of security.

At the first level, hardware protection of the network will

be provided by a variant of Amoeba’s F-boxes [30]. All

connections to the network are via physically secure in-

terfaces which use one-way functions to prevent intruders

from receiving messages addressed to other nodes.

Protecting network access is not sufficient, however, to pro-

vide protection of the objects in the GVM. At the system

level, memory access is controlled using password capabil-

ities similar to those used by [1]. A capability consists of

the object’s global virtual address (GVA) and a password.

Every object has a set of different passwords, each of which

confers a particular access permission, such as read–only,

read/write or executable.

A process can only access those objects that have been

mapped into its view of the GVM. Such a mapping may be

established by a direct request to the system. Alternatively,

the first access to an unmapped page results in a page fault

that creates the mapping, provided that the process pos-

sesses a suitable capability.

Each group of processes maintains its own list of capa-

bilities, which is searched by the page fault handler. The

capability lists are themselves persistent, and so are avail-

able immediately when a user logs in. Each list therefore

represents the environment of a user.

The system also provides a distributed authentication ser-

vice which manages protected directories for storing capa-

bilities. While these services have been provided by some

existing distributed operating systems [20], many questions

arise as to how the existing approaches can be adapted to

the GVM model.

5 Persistence and Replication

Our goal is that the proposed GVM system exhibit such a

degree of fault tolerance that most users’ work will not be

seriously affected if a small number of computing nodes

crash. It is essential that this level of fault tolerance has

little or no impact on system performance.

This requires that all network communication uses a pro-

tocol that maintains GVM consistency in the presence of

faults. In particular, the page migration algorithm must

ensure that page ownership is never lost or shared. It is an-

ticipated that existing approaches [3, 4, 17] can be adapted

for our system.

Secondly, we would like to improve performance by mak-

ing use of distributed backup copies. We intend investigat-

ing several different approaches for maintaining the consis-

tency of replicated page copies, including weak consistency

models based on object types [2], and using replicants to

support a resilient persistent store.

6 Comparison With Other Systems

Some aspects of the above issues have been previously

addressed. Our GVM system combines aspects of exist-

ing distributed shared memory (DSM) systems, distributed

programming systems and distributed operating systems.

Existing DSM systems fall in two categories: distributed

multiprocessor systems [5, 16, 17], and systems that pro-

vide a shared memory service, maintained either by the

kernel [12] or by user-level servers [2, 19].

Systems in the first category are designed for running ded-

icated multiprocessing applications and provide no multi-

user or general purpose computing support. Systems of

the second type provide limited shared memory which can

only be used by explicit actions on the part of the program-

mer. By contrast, our goal is to provide a general purpose

operating system built on top of the GVM system.

Both classes of DSM systems have other deficiencies. None

of the systems address the problems that arise in the case of

a node failure, they do not protect the address space from

eavesdropping on the network, and there is no fine-grained

access control to the shared memory areas. These issues

have all been addressed by our system.

There have been many distributed programming systems [4,

6, 18] and distributed operating systems [10, 26, 27, 28]

constructed in recent years. While the goal of these systems

is similar to our own, they differ in many important aspects.

None of these systems present a uniform address space,

but instead provide an object based model with remote

operations. Each object resides in its own private address

space. Remote data can only be accessed indirectly by

invoking an operation provided by the owner of the data

which returns a copy of the requested data.

Early systems such as Multics [21] and more recent systems

such as Domain [15] and Locus [23] allow files (or portions

of files) to be mapped into process address spaces. In our

GVM system all objects reside in the same global address

space, so no explicit mapping is required. Our system

also takes advantage of advancing technology to overcome

hardware address space limitations that constrained these

earlier systems.



Our choice to use password capabilities results in three

benefits. First, we can use conventional microprocessors

as our node processors, unlike other proposals to support

large address spaces [9, 13]. Second, the alternative ap-

proach to prevent forgeries of capabilities by segregating

them into a separate space [24, 31] prevents users from stor-

ing GVAs in their own data structures. Finally passwords

effectively increase the sparseness of the address space and

allow addresses to be reused.

7 Current Status

The page migration and replication system is currently be-

ing designed, and a prototype will shortly be developed us-

ing the x-kernel [22]. We have commenced modifications

of the Choices [8] operating system. A group of students

are instrumenting a Unix system to obtain data for our sim-

ulations of page size, address space management and page

migration. We are also building specialised network hard-

ware which is a locally developed 110Mbps broadband ring

which supports efficient multicast communication [7]. A

prototype system should be operational early in 1993.

References

[1] M. Anderson, R. Pose, and C. Wallace. A password-

capability system. Comp. J., 29(1):1–8, 1986.

[2] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin:

Distributed shared memory based on type-specific memory

coherence. In Conf. Princip. and Pract. Parallel Program-

ming, pages 168–176. ACM, 1990.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-

rency Control and Recovery in Database Systems. Addison-

Wesley, 1987.

[4] K. Birman. Replication and fault-tolerance in the ISIS sys-

tem. ACM Symp. OS Princip., pages 79–86, 1985.

[5] R. Bisiani and M. Ravishankar. PLUS: A distributed shared-

memory system. In 17th Int. Symp. Comp. Arch., pages

115–124. IEEE, 1990.

[6] A. Black. Distribution and abstract types in Emerald. IEEE

Trans. Softw. Engin., SE-13(1):65–76, January 1987.

[7] A. Burston. An architecture for a broadband LAN. In Int.

Conf. Private Switching Syst. and Netw., London, June 1992.

IEE.

[8] R. H. Campbell, V. Russo, and G. Johnston. Choices:

The design of a multiprocessor operating system. In Proc.

USENIX C++ W., pages 109–123, Santa Fe, USA, 1987.

[9] W. Cockshott and P. Foulk. Implementing 128 bit persis-

tent addresses on 80x86 processors. In J. Rosenberg and

J. Keedy, editors, Int. W. Comp. Arch. to Support Security

and Persistence Inform., pages 123–136,Bremen, Germany,

1990. Springer-Verlag.

[10] P. Dasgupta, R. LeBlanc, and W. Appelbe. The Clouds

distributed operating system. In Int. Conf. Distr. Comput.

Syst., 1988.

[11] A. Dearleand, G. Shaw, and S. Zdonik, editors. Int. W. Per-

sistent Obj. Syst., Martha’s Vineyard, USA, 1990. Morgan-

Koffman.

[12] B. D. Fleisch and G. J. Popek. Mirage: A coherent dis-

tributed shared memory design. In ACM Symp. OS Princip.,

pages 211–223, 1989.

[13] D. Koch and J. Rosenberg. A secure RISC-based archi-

tecture supporting data persistence. In J. Rosenberg and

J. Keedy, editors, Int. W. Comp. Arch. to Support Security

and Persistence Inform., pages188–201, Bremen, Germany,

1990. Springer-Verlag.

[14] R. Lea, P. Amaral, and C. Jacquemot. COOL-2: an object

oriented support platform built above the Chorus micro-

kernel. In Int. W. Obj. Orient. Operating Syst., pages 68–72,

Palo Alto, USA, 1991. IEEE.

[15] P. Leach, P. Levine, J. Hamilton, and B. Stumpf. The filesys-

tem of an integrated local network. In ACM Comp. Science

Conf., New Orleans, 1985.

[16] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and

J. Hennessy. The directory-based cache coherence protocol

for the DASH multiprocessor. In Int. Symp. Comp. Arch.,

pages 148–59. IEEE, 1990.

[17] K. Li and R. Schaefer. A hypercube shared virtual memory

system. In Int. Conf. Parallel Processing, pages 125–32.

IEEE, 1989.

[18] B. Liskov. Distributed programming in Argus. Comm. ACM,

31(3):300–312, March 1988.

[19] R. G. Minnich and D. J. Farber. The Mether system: Dis-

tributed shared memory for SunOS 4.0. In Summer USENIX

Conf., pages 51–60, 1989.

[20] J. Morris, M. Satyanarayanan, M. Conner, J. Howard,

D. Rosenthal, and F. Smith. Andrew: a distributed per-

sonal computer environment. Comm. ACM, 29(3), March

1986.

[21] E. I. Organick. The Multics System: an Examination of its

Structure. MIT Press, 1972.

[22] L. L. Peterson, N. C. Hutchinson, and S. W. O. H. Rao.

The x -kernel: A platform for accessing internet resources.

Computer, 23(5):23–33, 1990.

[23] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Ru-

disin, and G. Thiel. LOCUS: a network transparent, high

reliability distributed system. In ACM Symp. OS Princip.,

pages 169–177, 1981.

[24] J. Rosenberg and J. Keedy. Object management and ad-

dressing in the MONADS architecture. In Int. W. Persistent

Obj. Syst., Appin, Scotland, 1987.

[25] J. Rosenberg and D. Koch, editors. Int. W. Persistent Obj.

Syst., Newcastle, Australia, 1989. Springer-Verlag.

[26] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Glen,

M. Guillemont, F. Herrman, C. Kaiser, S. Langlois,

P. Leonard, and W. Neuhauser. Overview of the CHORUS

distributed operating system. Technical Report CS/TR-90-

25, Chorus systèmes, April 1990.



[27] R. Schantz, R. Thomas, and G. Eono. The architecture of

the Cronus distributed operating system. In Int. Conf. Distr.

Comput. Syst., pages 250–259, 1986.

[28] M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin,

and C. Valot. SOS: an object-oriented operating system -

assessment and perspectives. Comput. Syst., 2(4):287–338,

December 1989.

[29] A. Skea. A memory and network interface for a processor

in a distributed system. Technical report, School Comp.

Science and Engin., University NSW, Sydney, Australia,

1992.

[30] A. Tanenbaum, R. van Renesse, H. van Staveren, G. Sharp,

S. Mullender, J. Jansen, and G. van Rossum. Experiences

with the Amoeba distributed operating system. Comm.

ACM, 33:46–63, 1990.

[31] M. Wilkes. Hardware support for memory protection: Ca-

pability implementation. Symp. Architectural Support for

Progr. Lang. and Operating Syst., pages 108–116, 1982.


