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Abstract

This dissertation is dedicated to the problem of device driver reliability. Software defects

in device drivers constitute the biggest source of failure in operating systems, causing sig-

nificant damage through downtime and data loss. Previous research on driver reliability has

concentrated on detecting and mitigating defects in existing drivers using static analysis or

runtime isolation. In contrast, this dissertation presents an approach to reducing the number

of defects through an improved device driver architecture and development process.

In analysing factors that contribute to driver complexity and induce errors, I show that a

large proportion of errors are due to two key shortcomings inthe device-driver architecture

enforced by current operating systems: poorly-defined communication protocols between

drivers and the operating system, which confuse developersand lead to protocol violations,

and a multithreaded model of computation, which leads to numerous race conditions and

deadlocks. To address the first shortcoming, I propose to describe driver protocols using

a formal, state-machine based, language, which avoids confusion and ambiguity and helps

driver writers implement correct behaviour. The second issue is addressed by abandoning

multithreading in drivers in favour of a more disciplined event-driven model of computation,

which eliminates most concurrency-related faults. These improvements reduce the number

of defects without radically changing the way drivers are developed.

In order to further reduce the impact of human error on driverreliability, I propose to

automate the driver development process by synthesising the implementation of a driver

from the combination of three formal specifications: a device-class specification that de-

scribes common properties of a class of similar devices, a device specification that describes

a concrete representative of the class, and an operating system interface specification that

describes the communication protocol between the driver and the operating system. This

approach allows those with the most appropriate skills and knowledge to develop speci-

fications: device specifications are developed by device manufacturers, operating system

specifications by the operating system designers. The device-class specification is the only

one that requires understanding of both hardware and software-related issues. However

writing such a specification is a one-off task that only needsto be completed once for a

class of devices.

This approach also facilitates the reuse of specifications:a single operating-system

specification can be combined with many device specifications to synthesise drivers for
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multiple devices. Likewise, since device specifications are independent of any operating

system, drivers for different systems can be synthesised from a single device specification.

As a result, the likelihood of errors due to incorrect specifications is reduced because these

specifications are shared by many drivers.

I demonstrate that the proposed techniques can be incorporated into existing operating

systems without sacrificing performance or functionality by presenting their implementation

in Linux. This implementation allows drivers developed using these techniques to coexist

with conventional Linux drivers, providing a gradual migration path to more reliable drivers.
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Chapter 1

Introduction

This dissertation is dedicated to the problem of device driver reliability. According to re-

cent studies [GGP06, Mur04], software faults in device drivers are responsible for 70% of

operating system (OS)failures, making drivers the leading source of instabilityin modern

computer systems.

Several factors contribute to this situation. First, device drivers are an integral part of

the system software stack, providing critical services to other system components (e.g.,

network stacks and file systems), as well as to user-level applications. As a result, a failure

of a device driver can trigger a system-wide failure, potentially causing downtime and data

loss. This is true for both in-kernel drivers and, to a lesserdegree, for drivers that execute

as user-level processes.

Second, the quality of driver code is inferior to that of other OS components. Writing

a device driver requires profound understanding of both device and OS internals. In prac-

tice, driver developers are usually experts in at most one ofthe two areas and are likely to

introduce errors when dealing with the less familiar part ofthe driver functionality.

In addition, drivers do not get tested as thoroughly as the rest of the OS. Many corner

cases that may trigger driver defects arise from interleavings of hardware and software

events that are difficult to reproduce deterministically during testing. Another problem is

that many drivers are intended to support a range of similar devices from a single or multiple

vendors; however it is often impractical to test the driver with all supported hardware.

As a result, the density of errors in driver code is an order ofmagnitude higher than in

the core parts of the system, e.g., the scheduler or the virtual memory manager [CYC+01].

Finally, drivers account for a large fraction of OS code and therefore have a strong

effect on OS reliability. For example, the total size of device drivers shipped with the

Linux 2.6.27 kernel is 3,448,000lines of code (LOC), which constitutes 69% of the entire

kernel tree, including all supported file systems, network protocols, and x86-specific code.1

Not all drivers run simultaneously on a real system. As an example of a representative

1These measurements reflect lines of code, excluding comments, measured using David A. Wheeler’s

SLOCCount tool [Whe] run with default parameters.

1
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Driver LOC

ACPI drivers

ACPI processor driver 3804

ACPI fan driver 268

ACPI battery driver 765

ACPI smart battery system driver 889

ACPI AC adapter driver 292

ACPI button driver 428

ACPI PCI slot driver 245

ACPI system management bus driver293

ACPI video driver 1755

ACPI PATA controller driver 179

ACPI dock station driver 558

ACPI thermal zone driver 1414

Interconnect drivers

PCI bus driver 8464

Parallel port driver 4730

Secure Digital host controller driver 1900

AGP controller driver 4137

PCI hotplug controller driver 2322

Intel PATA/SATA controller driver 1028

IEEE-1394 OHCI controller driver 2753

IEEE-1394 SBP-2 protocol driver 1746

Sonics Silicon Backplane driver 1134

USB EHCI controller driver 720

USB UHCI controller driver 851

Driver LOC

Storage

Generic CDROM driver 2483

SCSI CDROM driver 1337

SCSI disk driver 1833

Sound

Intel HD audio controller driver 1749

PC speaker driver 103

Video

Pixart PAC207BCA USB webcam

driver

2031

Intel 965 Express graphics card

driver

2409

Networking

Intel PRO/Wireless 3945ABG

adapter driver

9077

Broadcom 44xx/47xx Ethernet con-

troller driver

2169

Human interface devices

Synaptics mousepad driver 1760

USB HID driver 4450

Other

Intel TCP watchdog timer driver 734

Generic parallel printer driver 712

Total 71522

Table 1.1: Device drivers running on a typical Linux laptop.

configuration, Table 1.1 lists drivers running on the Linux laptop used to typeset this thesis.

The list includes 36 different drivers, comprised of 71,522lines of C code, which constitutes

approximately 30% of the entire code running in the kernel onthis system. Given the much

higher density of errors in drivers compared to the rest of the kernel, this explains why OS

failure statistics is dominated by device drivers.

Much of the previous research on device driver reliability has focused on developing

runtime isolation and recovery techniques for drivers. Theidea of this approach is to place

device drivers inside hardware or software-enforced protection boundaries, making sure that

a faulty driver cannot overwrite memory used by other parts of the OS. This forms the basis

for a failure detection and recovery infrastructure responsible for detecting misbehaving

drivers and preventing failures from propagating throughout the system.

Another common approach consists of detecting errors statically, by analysing the code

of the driver. This approach is enabled by recent advances instatic analysis and model

checking, which made these techniques applicable to large programs written in a low-level
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OS

Device

OS interface

Device interface

Driver

Figure 1.1: A generalised device-driver architecture.

language.

As will be shown in the related work survey in Chapter 3, whileoffering considerable

improvements, both approaches suffer serious limitations. In particular, runtime isolation

is associated with substantial performance overhead. Moreimportantly, in order to make a

runtime failure transparent to the system, one must have a stateful driver recovery mecha-

nism in place. Such a mechanism must intercept all interactions between the driver and the

OS and keep track of data needed for transparent recovery. Itturned out that complex and

poorly defined driver interfaces in current OSs make it hard to implement this in practice.

Static techniques do not involve any runtime overhead; however, despite many improve-

ments in the area, they are still only capable of finding a limited subset of driver bugs.

Given that these existing approaches do not fully neutralise the effect of driver errors, I

claim that a complementary solution that enables the creation of drivers with fewer errors

has the potential to greatly improve the device driver and hence the overall system reliability.

To this end, this dissertation first analyses the root causesleading to driver errors, with

a view of identifying those of them that can be overcome with the help of an improved

device driver architecture or development process. Based on a study of a large sample of

real drivers defects, described in Chapter 4, I conclude that the majority of these defects

are related to handling the device and the OS interfaces of the driver (Figure 1.1). Both

interfaces tend to be complex and poorly defined, which confuses driver developers and

induces errors. The situation is exacerbated by the common device driver organisation

where interactions with the device and the OS are tightly intertwined, forcing the driver

developer to deal with the complexity of both interfaces simultaneously and leading to poor

separation of concerns inside the driver.



4 CHAPTER 1. INTRODUCTION

1.1 Improving OS support for device drivers with Dingo

These findings point to potential areas of improvement. In particular, focusing on the OS

interface of the driver, I identify two key shortcomings of this interface, as it is defined

in current systems. First, most operating systems enforce amultithreaded model of com-

putation on device drivers. In this model, the driver must handle invocations from multiple

concurrent threads, which puts the burden of synchronisation on driver developers and leads

to numerous race conditions and deadlocks.

The second problem is the lack of well-defined communicationprotocols between dri-

vers and the OS. Modern OSs impose complex constraints on theordering and content of

interactions with device drivers. These constraints are implicitly defined in the source code

of the system and are not captured in documentation, which generally focuses on describing

individual driver and OS entry points, while ignoring theirpossible orderings. This confuses

developers and leads to protocol violations. Moreover, as the OS evolves, these constraints

may change in subtle ways, often breaking previously correct drivers.

In order to address both shortcomings, I propose an improveddevice-driver architec-

ture, called Dingo2. In particular, I suggest abandoning multithreading in device drivers

in favour of a more disciplined event-based model of computation, which eliminates most

concurrency-related issues. In order to reduce protocol violations, I propose to describe

driver protocols using a visual, state-machine based, language, called Tingu3. Tingu speci-

fications serve as documentation, providing easy-to-use guidelines to driver developers, thus

avoiding confusion and ambiguity and helping the developers implement correct behaviour.

In order to demonstrate that these improvements can be incorporated in existing OSs

without sacrificing performance or functionality, I present a Linux-based implementation,

which provides a set of wrappers that make drivers developedin compliance with the Dingo

interface appear as regular Linux drivers to the rest of the kernel. This enables Dingo and

conventional Linux drivers to coexist, providing a gradualmigration path to more reliable

drivers. Experimental evaluation of the Dingo driver architecture shows that it eliminates

most synchronisation errors and reduces the likelihood of protocol violations, while intro-

ducing negligible performance overhead.

1.2 Automatic device driver synthesis with Termite

Further reduction in the number of errors can be achieved with the help of an improved

driver development process. The task of writing a device driver consists of defining a map-

ping from OS requests into sequences of device commands thatsatisfy these requests. To

do so, the driver developer relies on two sets of documentation: a specification of the de-

vice interface, which describes how device functions can becontrolled from software, and a

2The Dingo is Australia’s wild dog.
3Tingu is an Australian aboriginal name for a Dingo cub.
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specification of the OS interface, which describes the service that the OS expects the driver

to implement, as well as OS services available to the driver.Given these two specifications,

the developer derives a driver algorithm that translates any valid sequence of OS requests

into a matching sequence of device operations—a straightforward, yet error-prone task.

In this thesis I demonstrate that this task can be automated.I develop a tool, called

Termite, that synthesises a driver implementation automatically based on three formal spec-

ifications: a device-class specification that describes common properties of a class of similar

devices (e.g., Ethernet controllers), a device specification that describes a concrete repre-

sentative of the class, and an OS interface specification that describes the communication

protocol between the driver and the OS.

Separating the device description from OS-related detailsis a key aspect of the proposed

approach to driver synthesis. It allows those with the most appropriate skills and knowledge

to develop specifications: device interface specificationsare developed by device manufac-

turers, OS interface specifications—by the OS developers who have intimate knowledge of

the OS and the driver support it provides. The device-class specification is the only one that

requires understanding of both hardware and software-related issues. However writing such

a specification is a one-off task that only needs to be completed once for a class of devices.

The separation of specifications also facilitates their reuse. The OS specification need

only be developed once for each OS and each device class. It isthen combined with many

concrete device specifications to synthesise drivers for these devices. As a result, the likeli-

hood of errors due to incorrect OS interface specifications is further reduced because these

specifications are shared by many drivers. Likewise, since device specifications are in-

dependent of any specific OS, drivers for different OSs can besynthesised from a single

specification.

With Termite, the problem of writing a correct driver is reduced to that of obtaining cor-

rect specifications. The practical utility of this approachis therefore subject to cooperation

from device and OS manufacturers, who are in the best position to develop the respective

specifications. For device manufacturers, the driver synthesis approach allows for a re-

duction in driver development effort and an increase in driver quality. Furthermore, once

developed, a driver specification will allow drivers to be synthesised for any supported OS,

increasing the compatibility of the device. For OS developers the quality and reputation of

their OS depends greatly on the quality of its device drivers: major OS vendors suffer seri-

ous financial and image damage because of faulty drivers. Driver quality can be improved

by providing and encouraging the use of tools for automatic driver synthesis as part of driver

development toolkits.

The key components of the driver synthesis methodology are the specification language

used to describe device and OS interfaces and the synthesis algorithm that processes these

specifications and generates the driver implementation. The Termite specification language

is a dialect of the Tingu language. It shares most concepts with Tingu, but uses a textual

rather than visual syntax.
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The Termite synthesis algorithm is based on game theory. Thedriver synthesis problem

is formalised as a two-player game between the driver and itsenvironment, consisting of the

device and the OS. Rules of the game define constraints on legal sequences of interaction

between the players and are given by the interface specifications. The objective of the game

is to ensure that the driver will satisfy all OS requests in any well-behaved environment.

I evaluate Termite by using it to synthesise drivers for two real devices: an Ethernet

controller and aSecure Digital (SD)host controller. I demonstrate that the performance

of the synthesised drivers is virtually identical to the performance of their hand-written

counterparts.

1.3 Contributions

This dissertation makes three main contributions. First, it performs root-cause analysis of

device driver defects and identifies the complexity of the device and the OS interfaces of

the driver as the key factors that provoke the majority of errors.

Second, it develops a new device driver architecture aimed at reducing errors related

to the interaction between the driver and the OS. This is achieved by replacing the multi-

threaded model of computation with a more disciplined event-based model and by using a

formal visual language to specify the driver-OS interface clearly and unambiguously.

Third, this dissertation proposes a new method of driver construction, which consists

of automatically generating the implementation of the driver based on a formal model of

its device and OS interfaces. This approach has the potential to dramatically reduce driver

development effort while increasing driver quality.

The proposed techniques are evaluated in the context of the Linux kernel; however the

results of this work are applicable to other OSs and to both in-kernel and user-level drivers.

1.4 Chapter outline

The rest of this dissertation is structured as follows. Chapter 2 provides background infor-

mation about device drivers and driver development. Chapter 3 surveys previous research

on device driver reliability. Chapter 4 carries out root-cause analysis of driver defects by

analysing a sample of real defects found in Linux device drivers. New approaches to im-

proving the driver reliability are presented in Chapters 5 and 6, which describe the Dingo

driver architecture and the Termite driver synthesis methodology respectively. Chapter 7

draws conclusions.



Chapter 2

Background

This chapter introduces key notions related to device drivers and I/O programming.

A device driver is the part of the OS that is responsible for controlling aninput/output

(I/O) device. In collaboration with other OS subsystems, it fulfils the following functions:

• Abstraction. The driver hides the complexity of the low-level device protocol from

its clients, allowing them to use the device through a set of high-level operations. For

example, the low-level device protocol for sending a network packet through a net-

work controller device may involve creating a packet descriptor in memory, writing

the location of the descriptor to a device register, writinganother device register to

trigger the transfer, and then waiting for a transfer completion signal from the device.

All of these operations occur inside the driver. A client of the driver sends a packet

simply by calling thesend() function of the driver.

• Unification. By providing a unified interface to a class of similar devices, drivers

hide the differences between the devices from their clients. For example, another

network controller may support a different packet descriptor format and implement

its own set of registers. However, since the drivers for bothcontrollers implement

the same interface, their clients remain unaware of these distinctions. In some cases,

unification requires the driver to perform extensive data processing in order to abstract

different levels of hardware implementation. For example,while conventional dial-up

modems perform all signal processing in hardware, softwaremodems delegate most

of the modulation functions to the driver.

• Protection.Access to an I/O device is a sensitive operation, subject to the OS access

control policy and to physical constraints of the device. The OS enforces the access

control policy by making sure that only authorised applications can use the driver.

• Multiplexing. The device driver cooperates with the OS in order to enable multiple

applications to access the device concurrently. For the most part, multiplexing is

performed by the OS outside the driver. For instance, in caseof a network controller

driver, the OS queues packets obtained from multiple clients and delivers them to the

7
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driver one by one. Some types of drivers, however, maintain per-client contexts and

distinguish between requests from multiple clients. For example, InfiniBand [Inf08]

controller drivers use this approach to achieve traffic isolation between clients.

2.1 The history of device drivers

The early predecessors of modern device drivers were I/O library routines introduced in the

days of batch processing systems for mainframe computers, such as the IBM 709 (1958).

The primary motivation for the use of these routines was protection: a user program was

expected to access its data on the tape via I/O routines, rather than directly, to prevent

corruption of data belonging to the OS or to other jobs in the batch [Ros69]. In the absence

of hardware enforcement mechanisms, this facility only guarded against accidental rather

than malicious damage.

The reliance on standard software components to perform I/Oincreased with the intro-

duction of more advanced I/O architectures in later computers, e.g. IBM 7090 (1960). The

most prominent innovation was the use of I/O channels and interrupts, which enabled I/O

and computation to overlap, the concept currently known as asynchronous I/O. While offer-

ing performance benefits, asynchronous I/O was much harder to program than synchronous

I/O. It required buffering data that arrived from the devicewhile the program was executing.

In addition, since at the time computers did not support multitasking, it also required pro-

gramming non-trivial interrupt logic, where a reentrant interrupt handler routine processed

interrupts from multiple independent sources. According to Rosin [Ros69],

the complex routines were required to allow even the simplest user program to

take full advantage of the hardware, but writing them was beyond the capability

of the majority of programmers. This necessitated a set of standard interrupt

processing and I/O request programs for use by all programs to be run in the

system.

Emergence of new types of I/O devices, such as magnetic disks, drum storage, graphics

engines, etc., emphasised the unification role of device drivers. For example, the IBM 7094

mainframe computer (1962) supported several different types of remote terminals, including

teletypes, IBM 1050 data communication systems, and flexowriters, and could store data on

two types of storage devices: magnetic tapes and magnetic disks. The CTSS time-sharing

OS used on these machines required all device drivers (called I/O adapter programs) to

implement one of two standard interfaces. The following quotation is taken from a CTSS

technical report [Sal65].

Any character-type device can be attached to the system by providing an I/O

adapter program which converts the raw hardware interface into the standard
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format of Interface I, which consists of one character/wordin the character pool

buffer.

There is also another broad class of devices, such as magnetic tape, which

work in terms of words, and blocks of words. A second interface is provided

for these devices. . . . For any input or output device for which Interface II

appears to be appropriate, an I/O adapter module may be written to perform

the function of matching the hardware characteristics to Interface II.

The proliferation of time-sharing computing increased thedemand to protect hardware

resources of the machine against unauthorised access. Thisled to the introduction of hard-

ware protection mechanisms, such as the mastercentral processing unit (CPU)mode in the

GE-635 mainframe (1963) [GE-64]. Among other restrictions, only the privileged super-

visor running in the master mode was allowed to execute I/O instructions. Non-privileged

programs performed I/O by sending requests to I/O modules ofthe supervisor.

Further evolution of device drivers has been driven by hardware trends on the one hand,

and changes in the OS architecture on the other. An example ofthe former is the invention

of computer networks and network controller devices, whichform a separate device cate-

gory, distinct from character and block devices. An exampleof the latter is the switch to

implementing OSs, and hence device drivers, in high-level languages like C.

2.2 I/O hardware organisation in modern computer systems

Before presenting the device driver architecture in modernoperating systems, I give a brief

overview of the hardware that these systems run on. A key difference between peripheral

device organisation in modern computers compared to the early machines described in the

previous section is the presence of the I/O bus hierarchy.

An I/O bus is a subsystem that connects one or more devices to the CPU. There exist a

variety of I/O buses, providing different trade-offs amongcost, performance, functionality,

form-factor, etc. To achieve compatibility with a wide range of devices and to enable flexi-

ble system configuration, most computer systems contain several types of buses. Figure 2.1

shows a fragment of a typical desktop or server system, containing four different buses.

TheFront-Side Bus (FSB)enables communication among the core components of the

system, i.e. CPU(s) and memory. This bus is designed for fastCPU-to-CPU and CPU-

to-memory transfers. For example, the latest revision of the HyperTransport [Hyp08] FSB

architecture allows point-to-point communication at 51.2GB/s.

Some FSBs, including HyperTransport, allow direct connection of high-performance

I/O devices. In most systems, however, devices are connected to a dedicated I/O bus, in

this case thePeripheral Component Interconnect (PCI)bus. While being slower than the

FSB, this bus provides sufficient bandwidth for efficient communication with devices, for

example the currentPCI Express (PCIe)2.0 standard [PCI07] supports bandwidth of up to
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controller
(AX88772)

SATA disk

Figure 2.1: I/O bus hierarchy of a typical desktop system. Core system components (CPU

and the memory controller) are represented by grey rectangles.

16GB/s per device. In addition, it allows longer physical links than most FSBs, provides

support for expansion slots and expansion cables, and accommodates a large number of

devices organised in a hierarchical topology.

The PCI bus is connected to the FSB through a PCI bus controller. A bus controller, or

bridge, is a special device that interfaces with two buses: it appears as a client device on the

parent bus and as a host device on the child bus. It receives requests destined to devices on

the child bus via the parent bus protocol and forwards these requests to their destinations

via the child bus protocol.

In addition to an Ethernet controller and a graphics controller, the PCI bus in Figure 2.1

hosts two secondary I/O buses. TheUniversal Serial Bus (USB)allows easy connection of

a variety of external I/O devices to the computer. TheSerial AT Attachment (SATA)bus is a

specialised bus for storage devices, such as hard disks and optical drives.

Each type of bus supports its own protocol and provides its own set of operations for

communication with devices on the bus. I consider PCI and USBbuses in some more detail,

since drivers for PCI and USB devices will be used as examplesthroughout the thesis.

2.2.1 Peripheral Component Interconnect bus

PCI is a ubiquitous I/O bus found in virtually all desktop, laptop, and server systems, as

well as in many embedded devices. Since the introduction of PCI in 1992, three different

standards have been developed in response to growing performance demands: conventional
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PCI [PCI04], PCI-X [PCI02], and PCIe [PCI07]. PCI-X is a faster version of conventional

PCI, whereas PCIe is based on a very different logical design. The three standards are

software backwards compatible, i.e., any bus or device driver developed for conventional

PCI will work correctly with a PCI-X or PCIe bus controller.

The PCI standard allows the host to communicate with deviceson the bus using three

separate address spaces: configuration, memory, and I/O. Every device can have one or

more regions in each address space. Mappings of device regions to the corresponding

global PCI address space are established during device configuration by the systemBasic

Input/Output System (BIOS)or by the OS.

The configuration space contains standard device descriptors used for device enumera-

tion, identification, and configuration. It allows the OS to detect devices on the bus, locate

a driver for each device, and control basic device capabilities, such as bus mastering, in a

device-independent way.

Device-specific registers and data buffers that are accessible from software are mapped

to the PCI memory space, which is in turn mapped into the physical address space of the

CPU. When the CPU initiates a load or store transaction on theFSB, which falls into the

address range of the PCI memory space, the PCI controller translates this transaction into a

PCI memory transaction. One of the devices on the bus recognises the load or store address

as belonging to its memory region and responds to the transaction.

The use of memory-mapped I/O raises memory ordering issues between the device and

the CPU (or CPUs). Even though caching is normally disabled for I/O memory, other fea-

tures of modern CPUs, including write reordering and load speculation, as well as compiler

optimisations, can cause the device to observe stores issued by the same or different pro-

cessors out-of-order. Device drivers can enforce orderingon sensitive memory operations

using memory barrier instructions [How].

The PCI I/O space is an obsolete feature, which was originally introduced to improve

the integration of the PCI bus into x86-based systems. In addition to the physical mem-

ory space, x86 family processors can address a 64KB I/O space. The PCI I/O space can

be mapped into the processor I/O space in the same manner as the PCI memory space is

mapped into the processor physical address space. One problem with this is that non-x86

architectures do not support the I/O space, and can only access the PCI I/O space indirectly

through PCI controller registers. More importantly, the 64KB address range is too small to

accommodate all devices in the system. As a result, most devices nowadays either do not

use the I/O space or define I/O regions as aliases to memory regions.

Normally, configuration, memory, and I/O transactions are initiated by the PCI bus

controller in response to a request from the CPU, however PCIdevices are also allowed to

initiate bus transactions if they have the bus mastering capability. This feature is used to

implement thedirect memory access (DMA)mechanism, where the device transfers data to

or from the main memory without involvement of the CPU. To this end, the device starts a

PCI memory transaction, specifying an address in the PCI memory space. This transaction
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is recognised by the PCI controller, which translates it into a memory transaction on the

FSB.

DMA is crucial for efficient I/O and is supported by all devices with non-trivial perfor-

mance requirements. The simplest way to implement DMA is to keep the data exchanged

with the device in a contiguous buffer, which means that the driver must copy data to be

sent to the device into this buffer. High-performance devices are able to parse complex data

structures that describe multiple buffers comprising one or more data transfers. Such data

structures are called DMA descriptors. This facility can beused to reduce the number of

data copies performed in the path from the application to thedevice and back.

DMA-capable devices pose potential security issues, sincea misbehaving or miscon-

figured device can overwrite system or application data in memory. This is a particularly

pressing problem in virtualised environments where several virtual machines (VMs)running

on top of avirtual machine monitor (VMM)have direct access to I/O devices. A faulty or

malicious VM can program an I/O device to read or write physical memory pages belonging

to another VM, thus violating the isolation enforced by the VMM.

To address this problem, recent PCI bus implementations incorporateinput/output mem-

ory management units (IOMMUs)[Int08, Adv00], which provide a mechanism to ensure

that every I/O device can only access memory locations allocated to it by the OS. This is

achieved using I/O page tables that map the device address space to the physical address

space. Thus, the IOMMU controls physical memory accessibleto devices much like the

conventional MMU controls physical memory accessible to applications.

Another type of interaction initiated by the device is an interrupt notification, used to re-

port an asynchronous event, such as a DMA transfer completion or an error condition, to the

CPU. Interrupts are routed from the device to the CPU throughthe interrupt controller. The

original PCI specification supported interrupt routing viaseparate interrupt pins and traces.

This limited the number of available interrupts and restricted interrupt configurability. The

PCIe standard and the latest versions of conventional PCI introduce a new interrupt delivery

mechanism,message signaled interrupts (MSI), which allows devices to signal interrupts

using normal memory transactions. It enables devices to usea large number of interrupts

and supports flexible assignment of interrupts to CPUs in a multiprocessor system.

Regardless of the specific interrupt delivery mechanism used, software control of inter-

rupts can be performed at three levels. First, it is possibleto completely disable the delivery

of all I/O interrupts in the CPU. This facility is primarily used to achieve atomic execu-

tion of a small fragment of code, without being interrupted by external events. Second, the

interrupt controller provides means to prioritise interrupts and disable individual interrupt

sources (i.e., interrupts from individual devices or, in case of MSI, individual interrupts al-

located to the device). The exact mechanisms for doing so aredifferent for conventional and

MSI interrupts. Third, each device provides its own device-specific interface for enabling

and acknowledging interrupts, which usually consists of a set of interrupt control and status

registers in the device’s memory space.
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A typical interrupt handling sequence in Linux proceeds as follows:

1. The device sends an interrupt message over the PCI bus. Themessage is routed

through the PCI controller and the interrupt controller andis eventually delivered to

the CPU.

2. The task currently running on the CPU is interrupted and control is transferred to the

interrupt handler routine, which invokes the driver for thedevice through its interrupt

entry point, also known as the top-half handler.

3. While the top-half handler is running, the delivery of subsequent interrupts to the CPU

is postponed until the handler returns. Therefore, the top-half handler is required to

return quickly, to allow interrupts from other sources to bedelivered. The top-half

handler interacts with the device by reading and writing registers in its memory space

in order to identify the interrupt cause and clear the interrupt condition. If the given

interrupt is level-triggered, meaning that the device keeps generating the interrupt

signal as long as the condition that triggered the interruptis present, then clearing the

interrupt condition causes the device to deassert the interrupt line. This prevents the

CPU from being interrupted immediately after returning from the primary interrupt

handler. If any further long-running processing is required, it must be scheduled for

execution in the context of a separate task, known as the bottom-half handler. In the

unusual case when the driver is not able to clear the interrupt condition in the device

in the top-half handler (e.g., some delayed processing is required), it must disable the

interrupt source in the interrupt controller. Otherwise, the CPU will be interrupted

immediately after completing the interrupt handler, thus going in a livelock state.

4. The bottom-half handler performs the remaining interrupt processing, e.g., delivers

data returned by the device to the OS and submits new requeststo the device. If the

interrupt source was disabled in the top-half handler, the bottom-half handler must

reenable it to allow subsequent interrupts from the device.

2.2.2 Universal Serial Bus

The USB 1.0 specification was released in 1996 and has by the time of writing undergone

two major revisions: USB 2.0 [USB00] and USB 3.0 [USB08a]. Inaddition, a wireless

USB standard [USB05] was introduced in 2005. The description in this section applies to

wired USB version 2.0 and earlier.

USB is a host-centric bus, i.e., all transfers to and from USBdevices are initiated by the

bus controller. Every USB device implements a number of communication endpoints. The

bus controller interacts with the device by writing or reading data through the endpoints.

The bus controller initiates a transfer by sending a setup packet, which identifies the

target device and endpoint. This is followed by a series of data and handshake packets.
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The bus controller broadcasts all packets to all devices on the bus, however only the target

device responds to these packets.

The USB standard defines four types of endpoints and, respectively, four types of trans-

fers. Control endpoints are used to enumerate and configure devices. They typically use

short sporadic transfers. Bulk endpoints are used to reliably exchange large amounts of

raw data, such as network packets or disk blocks. Isochronous endpoints are best suited for

real-time audio or video streaming. They guarantee access to USB bandwidth with bounded

latency, but do not provide reliable transfer. If a packet isnot delivered because of a bus er-

ror or software delay, the error is detected on the receiver side, but no retransmission occurs.

Finally, interrupt endpoints are used to notify the host about device status changes.

USB interrupts are implemented differently from PCI interrupts. Since all USB transfers

are initiated by the bus controller, there is no way for an interrupt endpoint to notify the

host about an interrupt without being asked for it by the bus controller. Therefore the bus

controller periodically polls interrupt endpoints to check for an outstanding interrupt.

The USB bus supports a tree topology with USB hubs acting as nodes and non-hub de-

vices as leaves. The root of the tree is the root hub device integrated with the bus controller.

A USB hub is able to detect and report to the bus controller when a new device is connected

to it. The bus controller notifies the OS about the new device.The OS then assigns a USB

bus address (ranging between 1 and 127) to the device, discovers device capabilities, and

allocates a power budget (i.e., how much current the device can draw from the bus) to it by

issuing a series of commands to the bus controller and the hub.

The mechanism for accessing devices on the USB bus from software is determined by

the bus controller. There exist three standard bus controller architectures:Open Host Con-

troller Interface (OHCI)[OHC99], Universal Host Controller Interface (UHCI)[Int99],

andEnhanced Host Controller Interface (EHCI)[Int02]. All of them rely on the bus con-

troller driver to maintain an in-memory data structure thatdescribes a schedule of USB

transfers. This data structure contains pointers to the actual data buffers to be sent to de-

vices on the bus or to be filled with data received from devices. The address of this structure

is stored in a bus controller register. The bus controller iterates over this schedule using

DMA over the PCI bus and executes scheduled transfers in the prescribed order. Results

of completed transfers (status codes, number of bytes read or written, etc.) are DMAed to

another in-memory data structure.

Thus, communication with a device on the USB bus is mediated by the bus controllers

located in the path between the CPU and the device in question, in this case the PCI and

the USB controllers. A software architecture for managing this bus hierarchy is presented

in the following section.
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Figure 2.2: Architectural patterns used in the design of operating system I/O frameworks.

Lollipop connectors represent interfaces; the dashed arrow represents the communication

path between the driver and the device, consisting of the software bus framework and the

hardware bus hierarchy (not shown in the figure).

2.3 Device drivers in modern operating systems

This section gives an overview of the OS subsystem responsible for managing peripheral

devices, often referred to as the operating system I/O framework. While the details of the

I/O framework design vary across different systems, any such framework must implement

two common architectural patterns shown in Figure 2.2.

The Bus pattern (Figure 2.2(a)) is centred around a bus controller driver (or simply

“bus driver”), which provides a generic interface to the bustransport, e.g., PCI or USB.

Internally, it encapsulates the details of a specific bus controller device interface. The bus

driver is managed by the bus framework, which is responsiblefor enumerating devices on

the bus, instantiating a driver for every device, multiplexing the bus among multiple client

drivers, and tearing down drivers for devices that get disconnected. The bus framework

is implemented once for every type of bus (e.g., PCI or USB) and is independent of the

particular bus controller implementation. It presents each client driver with a high-level

interface to the bus. The Bus pattern is instantiated for every I/O bus in the system.

To illustrate this pattern, consider a PCI bus driver, whichprovides an interface for raw

access to the PCI configuration, memory, and I/O spaces. The PCI bus framework uses the

bus driver to enumerate PCI devices at startup, by reading the content of the configuration

space, and creates a driver for every device on the bus. It provides each client driver with

access to functions to read and write configuration, memory,and I/O regions that belong
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to its device. It may also provide convenience functions to perform standard configuration

actions on the device, such as reading device identificationdata from the configuration

space.

The Driver pattern (Figure 2.2(b)) consists of a driver for an I/O device that communi-

cates with the device via the bus transport interface provided by the bus framework. It hides

device details, such as the register layout or the format of DMA descriptors supported by the

device and exports a device-class-specific interface to itsclient. For example, an Ethernet

controller driver implements functions to send and receivenetwork packets. The client of

the driver in this case is the network protocol stack. The Driver pattern is instantiated for

every I/O device in the system, including bus controller devices.

Since this thesis is concerned with the design of device drivers and driver interfaces, the

Driver pattern will frequently occur in the following chapters. This pattern can be viewed

as a refinement of the abstract driver architecture introduced in Figure 1.1. It decomposes

the OS interface of the driver into two separate interfaces:the bus client interface and the

device-class interface. It also emphasises the fact that communication with the device is

mediated by the bus infrastructure.

The two patterns overlap. If the device driver in the Driver pattern is a bus driver, then

its device-class interface is the bus interface from the Buspattern, and its client is the bus

framework. Figure 2.3 illustrates this overlap by showing two bus drivers stacked on top of

each other.

Thus, when applying these patterns to instantiate an I/O framework for a specific hard-

ware configuration, the resulting software architecture mirrors the hardware topology, with

device drivers stacked on top of their corresponding bus drivers. This is illustrated in Fig-

ure 2.4 using the example of the system in Figure 2.1. Figure 2.4(a) shows an alternative

representation of the same system in the form of a tree, with bus controllers in tree nodes

and other devices in leaves. Figure 2.4(b) shows the corresponding software architecture.

Some of the drivers in Figure 2.4(b) are drivers for specific device models, e.g., the

BCM4401 Ethernet adapter, while others are generic driversthat can manage analogous

devices from multiple vendors. Examples of the latter are the generic SCSI disk driver

and the USB EHCI controller driver. This reflects the trend towards device standardisation,

when a regulatory body that defines a family of hardware protocols also defines a standard

architecture for devices that implement this protocol. This approach reduces the number

of poorly engineered devices. In addition, it allows hardware vendors to avoid developing

their own drivers: as long as the device complies with the standard, it can be managed by a

generic driver provided with the OS. Thus, by unifying hardware interfaces, standardisation

reduces the number of drivers that need to be developed and maintained, which leads to

better tested drivers.

Nevertheless, there still remains much diversity among devices. In order to maintain

a competitive advantage, many vendors define their own interfaces or extend existing in-

terfaces to achieve better performance. Others try to cut down on development costs by
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implementing a scaled down or modified version of the standard. If the deviation from the

standard is minor, it can be handled as a special case in the generic driver. Otherwise, a

separate driver needs to be developed.

2.4 Generic OS services

In order to accomplish their function of managing I/O devices, most drivers rely on some

generic (i.e., device-independent) services provided by the OS, most noticeably, memory

management, timing, and synchronisation services. Thus, in addition to the device-class

interface and the bus client interface (Figure 2.2b), the driver interacts with the OS through

the generic services interface, as shown in Figure 2.5.

2.4.1 Memory management

Most drivers use conventionalmalloc -style kernel memory managers to allocate storage

for their internal dynamic data structures. In addition, drivers for devices that support DMA

must manage memory buffers for communication with the device.

The concrete interface for I/O buffer management is OS-specific, however the function-
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ality provided through this interface can be expressed in terms of five basic operations.

• Allocate a region of virtual memory with the given size and alignment. The driver

uses this operation to allocate buffers for data exchanged with the device.

• Pin down the entire region or some of its pages to physical memory. This ensures

that buffers transferred to or from the device are located inthe physical RAM, where

the device is able to access them. In some cases, the driver may request that physical

pages for the region are allocated contiguously. This is useful when the DMA engine

of the device is only capable of dealing with contiguous buffers.

• Mark the region as uncacheable, so that reads and writes to the region are forwarded

directly to the PCI bus and are not intercepted by the CPU cache.

• Perform a virtual-to-bus address translation inside an I/Oregion. Since devices are

only capable of issuing load and store operations in the bus address space (e.g., the

PCI memory space), buffer pointers passed to the device mustcontain addresses in

this space.

• Perform a physical-to-virtual address translation on a pointer received from the de-

vice. Devices that deal with multiple data buffers store physical addresses of com-

pleted buffers in memory or register data structures. The driver reads these physical

addresses and converts them to virtual addresses in order tobe able to access the

buffers and perform further processing on them (or simply hand them back to the

OS).
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2.4.2 Timers

There exist two common situations when a device driver needsto use the OS timer service.

The first one occurs when the driver issues a long-running command to the device that

does not generate an interrupt upon completion. For example, this is the case for the reset

operation in most devices. The device specification defines the upper timing bound for

such operations, which allows the driver to synchronise with the device by waiting for the

specified amount of time using the timer service.

Second, timers can be used to detect a device malfunction, when the device fails to reply

to an I/O request within a certain time frame. A device-specific action, e.g., a reset can then

be taken to return the device to a normal state.

The OS enables time-driven behaviour through asynchronousand synchronous timer

services. An asynchronous timer invokes a specified callback function when the timeout

expires. A synchronous delay suspends the current thread for a requested amount of time.

2.5 Concurrency and synchronisation in device drivers

Most OS kernels are multithreaded, meaning that all parts ofthe kernel, including de-

vice drivers, must be prepared to handle invocations in the context of multiple concurrent

threads. Programming in the multithreaded environment requires careful use of synchroni-

sation primitives to avoid race conditions and deadlocks.

Further complications arise from the fact that in some systems, including Linux, driver

entry points can be invoked in the primary interrupt context(see the discussion of top and

bottom halves in Section 2.2.1). At this time the kernel is running with interrupts disabled,

hence an attempt to acquire a lock or invoke a potentially blocking operation may deadlock

the system. The driver developer must be aware of which driver methods can be invoked

in the interrupt context and structure the driver to avoid blocking in these methods. The

only synchronisation primitives that can be safely used with interrupts disabled are spin-

locks. Spinlocks are busy locks, suitable for protecting small critical code sections against

concurrent access from multiple processors. Whenever blocking is unavoidable, the driver

must postpone operations that involve blocking to be executed in the bottom half context.

Linux provides two mechanisms for constructing bottom halves: tasklets and work queues.

Bottom halves execute in a separate thread, concurrently with the rest of the driver, and

hence must be synchronised with other driver functions.

Operating system I/O frameworks provide driver developerswith varying degrees of

support for dealing with concurrency. Some systems, including Linux and versions of Win-

dows before Windows Vista, treat device drivers as regular kernel components responsible

for their own synchronisation. Others provide generic synchronisation facilities for device

drivers, which shift much of the synchronisation complexity from the driver into the frame-

work. Two examples of such facilities are the workloop architecture implemented in the
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Mac OS X IOKit framework [App06] and synchronisation scopesin the Windows Driver

Foundation [Mic06].

2.5.1 The Mac OS X workloop architecture

The workloop architecture associates a lock with the entirestack of drivers connected to a

single hardware interrupt. For example, a USB host controller driver and drivers for all USB

devices connected to the controller share the same lock. Theframework guarantees that

most driver operations are protected by this lock. Other operations can optionally acquire

the lock, thus ensuring that their execution is serialised with respect to other workloop-

protected operations.

The main limitation of this architecture is that the workloop lock should not be held for

extended periods of time, since this would delay other requests to the driver and negatively

impact the performance. Furthermore, executing a blockingoperation in the workloop con-

text can cause a deadlock. Two mechanisms are provided to perform such operations out-

side the workloop. First, the driver may temporarily drop the lock before calling a blocking

function or waiting for an I/O completion. When used in this way, the workloop effectively

functions as a monitor [Hoa74].

Second, the driver may schedule the blocking operation for execution in the context of a

separate kernel thread. This approach is used to implement driver functions that are not al-

lowed to block. The helper threads may require access to driver state variables and therefore

need to be synchronised with each other and with other driverthreads. The synchronisation

is achieved using conventional locking primitives such as mutexes and semaphores.

2.5.2 Windows Driver Foundation synchronisation scopes

The Windows Driver Foundation I/O framework was introducedin the Windows Vista OS.

Among other improvements aimed at enabling simpler and morereliable drivers, the frame-

work provides configurable support for automatic serialisation of driver invocations. The

driver may choose one of the following serialisation scopes:

• No scope: any driver entry points can be invoked concurrently.

• Queue scope: requests from individual I/O queues are serialised, while requests from

different queues can be delivered concurrently.

• Device scope: all I/O requests to the driver are serialised.

• Complete serialisation: all I/O requests, interrupts, andtimer events are serialised.

Serialised operations are required to complete in a non-blocking fashion to avoid dead-

locks and performance degradation. Long-running operations must be executed in a sepa-

rate thread, outside the serialisation scope and must be synchronised with other operations

using conventional locking primitives.
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Both the Mac OS X workloop mechanism and Windows synchronisation contexts re-

duce the amount of concurrency that the driver developer hasto handle, but do not eliminate

it completely. Specifically, drivers are responsible for scheduling long-running operations

in the context of separate kernel threads and for synchronising their execution with the rest

of driver code.

In addition, these serialisation architectures associateone or several coarse-grained

locks with the driver, which can be detrimental to performance on multiprocessor systems.

This is the reason why both frameworks allow some flexibilityin choosing which operations

should be serialised, offering configurable trade-off between performance and programming

convenience.

Chapter 5 presents a device driver architecture that overcomes both limitations, i.e.,

it allows complete serialisation of all driver invocationswithout significant performance

overhead.

Another example of a driver architecture taking systematicapproach to concurrency

management is theUniform Driver Interface (UDI)standard [Pro01]. The standard was

developed to enable driver portability across different OSs. In particular, it specifies that

the driver should be partitioned into one or more regions. Invocations of every region are

serialised by the UDI framework. It did not, however, specify how drivers were expected

to handle blocking operations. The standard has not been adopted by the industry and no

production-quality drivers have been developed based on it. As a result, the architecture and

performance of UDI drivers have not undergone practical evaluation.

2.6 Hot plugging

Many modern I/O bus architectures, including PCI and USB, allow devices to be connected

and disconnected from the bus at runtime. Device connectionis detected by the bus driver,

which notifies the bus framework about the event and reports device identification informa-

tion. The bus framework uses this information to locate and load a driver for the device.

Device disconnection is also detected by the bus driver, which sends a notification to

the bus framework. Before unloading the device driver, the framework notifies it about the

hot-unplug event, giving the driver an opportunity to release any resources that it is holding.

Since the hot-unplug event happens asynchronously to all other operations of the driver, the

driver must be prepared to handle this event in any state.

2.7 Power management

Reducing power consumption is an important concern for mostcomputer systems, from

portable embedded appliances to servers. Peripheral devices typically account for a large

fraction of the overall power used by the system. Hardware support for reducing I/O power

consumption can be classified into device-internal power management and bus power man-
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agement. Device-internal power management features allowchanging the power consump-

tion of the device without changing the power state of its businterface. For instance, a hard

drive can be spinned down, which substantially reduces the amount of power it uses.

Bus power management provides mechanisms to limit the amount of power the device

can draw from the bus and to put the device in a sleep state where most device functions are

disabled and the device configuration can be partially or completely lost. Different sleep

states differ in the amount of power that the device can draw from the bus and the time

required to resume normal operation from the given state. Lower-power states correspond

to longer resume times.

Inside the OS I/O framework, sleep requests propagate from leaf devices towards

the root of the bus hierarchy. Leaf devices are suspended first based on the OS power-

management policy (e.g., after a period of inactivity). When all devices on an I/O bus have

been suspended, it is possible to suspend the bus controlleras well. Before suspending the

device, the OS notifies the driver about the upcoming suspend, giving it the opportunity to

complete any outstanding operations and save context information that will be lost after the

transition to the low-power mode.

Resume requests propagate from the bottom to the top of the stack: the entire hierarchy

of bus drivers must be resumed before resuming a leaf device.Once the device power state

is restored, its driver is notified by the OS, so that it can restore the saved context and prepare

the device for handling I/O requests.

2.8 A taxonomy of driver failures

This section sets the stage for the following discussion of driver reliability techniques by

enumerating the various ways in which a driver can misbehave. A definition of incorrect

behaviour, or failure, can only be given in relation to a selected vantage point, where the

system execution is observed. For example, from the end-user perspective, observable fail-

ures include system crashes and hangs, lack of network connectivity, file access errors,

etc. At the other extreme, if we trace the behaviour of the driver at the level of individual

programming language operators, then observable failuresinclude type and memory safety

violations, some of which may not even lead to any externallyvisible consequences.

The taxonomy of failure proposed here uses the interface between the driver and its

environment, comprised of the OS and the device, as the vantage point. All driver fail-

ures observable at this level can be classified intoOS protocol violations, device protocol

violations, andmemory access violations.

The OS protocol of a driver defines constraints on the communication between the driver

and the OS. This communication must be restricted to the three interfaces shown in Fig-

ure 2.5 (i.e., the bus framework interface, the client interface, and the generic OS services

interface) and must follow the rules on the ordering, timing, and content of interactions,

associated with each interface. OS protocol violations include:
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• Ordering violation. OS protocols tend to be stateful, meaning that the set of protocol

operations that can be performed at a given time depends on the history of previous

interactions. For example, a network driver in Linux is not allowed to feed incoming

packets to the OS before registering its network interface with the TCP/IP layer using

theregister_netdev function.

• Data format violation. Data structures exchanged between the driver and the OS

must follow certain format restrictions, which include static invariants, e.g., a linked

list must not contain cycles, as well as invariants that depend on the context in which

the data structure is used, e.g., an incoming packet passed by a network driver to the

OS must not be empty.

• Access to unauthorised services.A misbehaving driver may attempt to invoke an

OS function that is not part of its interface or directly calla privileged CPU operation.

For example, an in-kernel driver can call a function that modifies page table entries

and is only intended for use inside the virtual memory system.

• Excessive use of system resources.Drivers consume system resources, most impor-

tantly physical memory and CPU cycles. In an OS that does not enforce resource

allocation limits on device drivers, a buggy or malicious driver may consume exces-

sive amount of resources, leading to resource starvation inother parts of the system.

Typical errors that cause such failures include memory leaks, infinite loops, and mis-

placed spinlocks.

• Temporal failure. A failure of a driver to respond to OS requests in a timely manner

may affect the quality-of-service for both real-time and non-real-time applications.

In the extreme case of an infinite delay, e.g., due to a deadlock, the entire system or

its parts may become permanently unavailable.

Any of the above OS protocol violations may lead to arbitrarily severe consequences,

including compromised system security and integrity.

Device protocol violations occur when the driver behaves ina way that violates the

required hardware protocol, and typically result in a failure of the hardware to provide its

required service. They include:

• Incorrect use of the device state machine.In response to an OS request, a device

driver must take the device through a sequence of states, resulting in the request be-

ing satisfied by the device hardware. An incorrect driver implementation may fail to

do so. Typical violations include submitting a malformed command to the device,

issuing data transfer commands to an incompletely configured device, failing to cor-

rectly recover the device from a transient hardware fault, and issuing a sequence of

commands that render the device temporarily or permanentlyunusable.
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• DMA violation. The DMA mechanism enables shared-memory communication be-

tween the device and the driver. As mentioned above, the format of DMA data struc-

tures can be rather complicated. An error in the management of these data structures

can cause the device to read incorrect data from the memory orto issue a write trans-

action to a random memory location. In the absence of an IOMMU, such runaway

DMA transactions can corrupt the system state. Typical DMA-related errors include

incorrectly formatting DMA descriptors, forgetting to pinbuffers down to physical

memory before passing them to the device, and race conditions between the device

and the driver, e.g., when the driver acknowledges the receipt of a block of data from

the device before actually processing the data.

Finally, a memory access violation occurs when the driver attempts to read or write

a memory location that has not been granted to it by the OS (e.g., through an explicit or

implicit memory allocation).
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Chapter 3

Related work

Faulty device drivers have long been recognised as the biggest threat to system stability.

A variety of techniques have been proposed for dealing with driver errors. This chapter

presents a survey of these techniques and identifies their strengths and limitations.

Existing methods for improving software reliability fall into three major groups: fault

prevention, fault removal, and fault tolerance. The term “fault” here refers to an algorithmic

defect in the driver that, when triggered at runtime, causesa failure. I outline each of the

three approaches below. The following sections describe these approaches and their existing

implementations in more detail.

Fault prevention aims to prevent defects from being introduced in the system.In the

context of device drivers, fault prevention has been achieved using two approaches. The first

one consists of developing drivers using high-level programming languages where certain

types of errors are not expressible. For example, languagesthat do not allow direct pointer

manipulation eliminate errors in pointer arithmetic. The second approach is to generate a

partial or complete implementation of the driver automatically from a formal specification

of the required behaviour, thus avoiding the impact of coding errors on the driver reliability.

Fault removal techniques detect and eliminate defects before putting thesystem in pro-

duction use. Early fault detection is performed by the compiler. Compiler-aided fault detec-

tion is particularly effective for languages with advancedtype systems, such as Haskell and

C#, where many failures can be expressed as type safety violations. Therefore, several re-

search projects have investigated the use of such languagesfor implementing device drivers

and other OS components. Other types of faults can be detected with the help of static

analysis and model checking tools, which analyse the sourceor binary representation of the

driver against a formal specification of some desired properties and identify behaviours that

violate these properties. Finally, automated and manual testing remains the most common

fault removal method for device drivers.

27
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Fault tolerance techniques enable the system to continue normal operation in the face

of driver failures. A complete fault tolerance solution must include fault isolation and re-

covery components. The former is responsible for detectinga driver failure and preventing

it from propagating to the rest of the system. This can be achieved with the help of hard-

ware protection mechanisms, e.g., thememory management unit (MMU)available in most

modern processors, or using purely software-based techniques. The latter is responsible for

performing compensatory actions, such as reporting a failure to all existing clients of the

driver and creating a fresh instance of the driver to servicenew clients.

Any single fault prevention, fault removal, or fault tolerance technique is capable of

preventing, removing, or tolerating only certain subclasses of defects listed in Section 2.8.

Most existing implementations surveyed in this chapter combine several different tech-

niques to achieve better reliability. For example, the Singularity OS [FAH+06] uses

compile-time checking in combination with static analysis, and runtime fault isolation to

protect against the majority of driver faults.

3.1 Hardware-based fault tolerance

This section surveys fault isolation and recovery techniques that rely on CPU protection

mechanisms to encapsulate device drivers inside unprivileged protection domains. An en-

capsulated driver cannot directly invoke privileged CPU instructions and can only access

memory locations granted to it by the OS. Communication and memory sharing are medi-

ated by the OS, e.g., through the system call mechanism, and can be monitored for ordering

or format violations. Driver protection domains are managed similarly to normal user tasks,

in particular, they are subject to OS scheduling, memory allocation, and other resource

management policies.

Fault recovery is implemented by destroying the entire protection domain and releasing

all resources allocated to it, followed by the creation of a fresh copy of the driver in a

new protection domain. Complete failure transparency can be achieved by keeping track

of the state of the driver-OS interaction and brining the newdriver instance to the state

preceding the failure. This approach only works for transient failures that are unlikely to

occur again after the recovery. Alternatively, the recovery mechanism may simply inform

the OS about the failure, allowing existing users of the driver to either fail gracefully or to

perform application-specific recovery.

User-level device drivers were pioneered in Michigan Terminal System [Ale72], an OS

for the IBM System/360 mainframe computer. However this approach has not found wide

acceptance and the majority of OSs nowadays still implementdevice drivers as part of the

privileged kernel.
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3.1.1 Drivers in capability-based computer systems

Early implementations of hardware-based driver isolationwere found in operating systems

for capability-based computers, such as Plessey 250 [Eng72], Cambridge CAP [NW77],

and MONADS [Kee78]. These computers were created from the late 60’s through 70’s,

during the search for hardware mechanisms that would enableefficient and flexible protec-

tion, communication, and data sharing in multitasking environments. The concepts behind

capability-based architectures were formulated by Dennisand Van Horn [DVH66]. A sys-

tematic description of a number of such architectures was given by Levy [Lev84].

Every process in a capability-based system executes in the context of a capability space,

which contains a list of objects that the process can access.The two types of capabilities

are segment capabilities and protected control transfer capabilities. A segment capability

allows the process to read, write, or execute the content of acontiguous memory segment. A

protected control transfer capability allows the process to invoke a procedure in a different

capability space.

Protected control transfers are implemented in hardware, and therefore can potentially

provide a more efficientinter-process communication (IPC)mechanism, compared to con-

ventional OS-mediated communication (in practice, this isnot necessarily the case, as ex-

amplified by the lacklustre performance of the Intel 432 processor [CGJ88]). This allows

most system services, including device drivers, to be implemented as normal capability-

protected processes, without loss of performance.

In capability-based architectures, I/O device registers are mapped into the system mem-

ory space and can be protected with capabilities, similarlyto other types of resources. A

device driver is granted a capability to the memory region containing device registers. All

other system and application processes access the device byinvoking services exported by

the driver through protected entry points.

While this isolation architecture can be naturally extended with means for runtime mon-

itoring and recovery, to the best of my knowledge, none of theabove-mentioned systems

provide such mechanisms.

3.1.2 User-level device drivers in microkernel-based systems

Microkernel-based OSs are built around a small privileged kernel, with the majority of sys-

tem services implemented as user-level processes or libraries. In some cases, these include

a user-level implementation of device drivers. Unlike systems discussed in the previous

section, microkernel-based OSs run on architectures with conventional memory protection

facilities.

There exist three distinct styles of microkernel-based OS architectures. Single-server

systems implement the entire OS personality, including device drivers, in a single user-

level server process. Different OS personalities can be supported by multiple concurrent

servers. A fault in an OS server can bring down the entire server along with all its clients.
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Multi-server systems decompose an OS personality into multiple server processes, each

implementing a single service, such as a file system, a pager,or a device driver. These

systems enable fault isolation for individual services at the cost of increased communication

overhead. Finally, library-based OSs implement most of theOSapplication programming

interface (API)in libraries that are linked against user processes. This architecture localises

the effect of an OS fault to a single application. Shared services, such as device drivers,

must still be implemented as separate processes or as parts of the kernel.

The original motivation for the microkernel-based design was put forward by Brinch

Hansen [BH70] during the work on the OS for the RC 4000 computer. He argued that a

multiuser system should not be restricted to a fixed OS API anda fixed set of resource man-

agement policies. Improved flexibility can be achieved by exposing multiple concurrent

OS personalities to the user. These personalities are builton top of a policy-free kernel, or

“nucleus”, which plays the role of a “software extension of the hardware structure, which

makes the computer more attractive for multiprogramming”.The nucleus supports a hi-

erarchical resource management model, where every processallocates memory and CPU

resources for its children processes from its own resource pool. This model enables both

single-server and multi-server implementations of OS personalities.

The idea of a policy-free kernel was further refined in the Hydra OS [WCC+74]. Hydra

was designed to facilitate experimental exploration of theOS design space, which required

the ability to easily modify existing resource management policies and to add new types of

resources and policies to the system. These design goals required a highly modular system

structure. To this end, Hydra adopted a multi-server architecture, consisting of a policy-free

kernel and a collection of user-level services, which resided in separate protection domains

and were accessible via a protected procedure call mechanism implemented by the kernel.

Both Brinch Hansen’s nucleus and Hydra implemented device drivers as part of the

kernel; however the concepts promoted by these systems naturally led to user-level driver

architectures in later microkernel-based systems, such asMach 3 [ABB+86, FGB91] and

L3 [LBB+91,Lie93].

The first versions of Mach featured a hybrid design, with mostof the OS functional-

ity implemented in the kernel, which was structured as a collection of independent threads

interacting via a message-based IPC mechanism. Later, various system components, in-

cluding device drivers, were gradually moved out of the kernel [FGB91]. The transition

was simplified by the location transparency of Mach IPC, which supported uniform com-

munication with kernel, user-level, and even remote processes. In order to enable access

to I/O devices from the user-level processes, Mach mapped device registers to the address

space of the driver and vectored device interrupts to the driver thread.

Curiously enough, the original motivation for moving drivers out of the Mach kernel,

cited by Forin et al. [FGB91] was improved performance for single-server systems, where

the entire OS functionality was implemented in one server process, e.g., the UNIX simula-

tion server. Incorporating device drivers into the server eliminated the overhead of switching
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to the kernel on every driver invocation.

The L3 microkernel [LBB+91] followed a different and more principled approach. The

kernel was initially designed to only incorporate a minimalset of mechanisms to enable

user-level implementation of the complete OS functionality. These mechanisms included

thread creation and scheduling, address space management,persistence, interrupt dispatch-

ing, and synchronous IPC. File systems, device drivers, andother system services were

built on top of the kernel in the multi-server style.

The initial enthusiasm over the microkernel technology wasundermined by the failure

to build a high-performance commercial-quality microkernel-based OS. The most famous

example is the multi-billion-dollar IBM Workplace OS [Fle97] project, which aimed to

build a commercial multi-personality OS on top of Mach, but was closed when, after four

years of development, it became clear that the project wouldnot be able to achieve its

functionality, reliability, and performance objectives.

In retrospect, the failure was caused by the overly ambitious goals set by Workplace

and other microkernel OS projects. Apart from implementingconventional OS functions

on top of a microkernel, these systems aimed to provide support for multiple personalities,

distribution, persistence, checkpointing, multiprocessing, and other features. In pursuing all

these goals, the developers underestimated the complexityof the basic task of building a rea-

sonably efficient OS as a collection of multiple user-level servers. Microkernel proponents

claimed that by moving functionality out of the kernel, microkernels would automatically

enforce clean system design. In reality, microkernels provide basic mechanisms for modu-

larising the system, but do not help in defining the right module boundaries and interfaces.

Moreover, by complicating data sharing and increasing the cost of communication, they

introduce additional concerns that must be addressed to build a performing system.

While focusing on the advanced features, designers of first-generation microkernels

failed to solve the basic problem of providing an efficient inter-process communication

mechanism, which is the key to building an efficient OS. In a microkernel-based system,

IPC is used for communication between user applications andthe OS, as well as for intra-

OS interactions. High IPC cost in Mach and other microkernels led to substantial end-to-

end performance degradation for applications and eventually forced the designers to move

OS services, including device drivers, back to the kernel [CBMM94], thus defeating the

reliability improvements offered by the user-level design.

Liedtke [Lie93] carried out a detailed analysis of the costsinvolved in inter-process

communication, which led him to conclude that the poor IPC performance in systems like

Mach and L3 was a consequence of the complex semantics of the selected IPC primitives

and their suboptimal implementation. Based on these findings, he reimplemented the L3

IPC mechanism and later constructed a new L4 microkernel [Lie95], achieving a 20-fold

performance improvement. Optimisations used in these systems included reduced data

copy overhead, reduced kernel cache andtranslation lookaside buffer (TLB)footprints, and

scheduling optimisations.
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Härtig et al. [HHL+97] demonstrated that the performance of the Linux OS running

as a user-level process on top of L4 is within 6-7% of native Linux on kernel compilation

benchmarks. However they do not specifically report the performance of user-level drivers.

In general, little published data exists on the performanceof device drivers in microkernel-

based systems. Among available results are those for the DROPS OS [HBB+98], based

on a real-time version of L4 [Hoh02, HLM+03], and for the Fluke microkernel [FHL+99]

user-level driver framework [VM99]. Both systems use second-generation microkernels,

however their IPC performance was not optimised to the same degree as in L4. They achieve

I/O throughput close to that of a monolithic kernel at the cost of around 100% increase in

CPU utilisation under heavy I/O loads.

This overhead is due to several factors. First, the cost of handling interrupts at the user

level involves an extra context switch to the driver process. Second, every I/O request sent

to the driver, as well as a completion notification from the driver to its client, involves an

extra context switch. Finally, every request and completion involves transfer of data across

process boundaries. Whether it is accomplished by copying or mapping, the cost of this

operation is quite high.

Techniques have been proposed to mitigate these overheads.In particular, the cost of

interrupt delivery can be reduced via interrupt rate limiting [MR96] and more aggressive

use of interrupt coalescing (i.e., reducing the number of interrupts by configuring the device

to generate a single interrupt for multiple completed I/O operations). The overhead induced

by the interaction between the driver and its client can be reduced by buffering requests

and responses and by passing data via shared memory, as discussed below. Both interrupt

coalescing and buffering decrease CPU utilisation at the cost of increased I/O latency. This

tradeoff is acceptable for the majority of devices, which are optimised for throughput rather

than latency.

An efficient buffering mechanism, called rbufs, was proposed in the Neme-

sis [LMB+96] microkernel-based OS. Nemesis was designed for real-time processing of

multimedia data, therefore efficient data streaming between the network controller, the disk,

the graphics card, and the main memory was one of the primary design goals. The rbufs

mechanism is based on shared memory and asynchronous events. Shared memory is used to

exchange data without copying or mapping memory to the receiver’s address space on ev-

ery transfer. An asynchronous event is a communication primitive, provided by the kernel,

which increments a value in the receiving process’s addressspace and makes the process

runnable if it was waiting for the event, without blocking the sending process. It does not

involve any data transfer and therefore allows efficient implementation.

With rbufs, one can establish a communication channel between two processes, consist-

ing of a shared memory region and a pair of circular buffers. The shared memory region is

used to store data buffers exchanged by the two processes. Itis writable by the data origi-

nator and read-only to the receiver. The circular buffers also reside in shared memory and

are used to queue transfer descriptors. The master process,which initiates the transfer (it
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can be either the originator or the receiver), writes request descriptors to the first circular

buffer. The slave process reads request descriptors from the first buffer and writes response

descriptors to the second buffer. A buffer is writable by thewriting process and read-only

to the reading process. Each circular buffer has a pair of event channels associated with it.

These are used to communicate head and tail pointers betweenthe writer and the reader of

the buffer.

Rbufs preserve strong isolation of the communicating processes, while avoiding copy-

ing and reducing the number of context switches, which enables good performance for

user-level device drivers under I/O-intensive workloads.Unfortunately, none of the Neme-

sis publications show concrete device driver performance numbers.

In summary, microkernel-based systems allow the isolationof device drivers inside

user-level processes at the cost of significant CPU overhead. Approaches to reducing

this overhead have been proposed, including optimised IPC facilities and performance

tuning (e.g., interrupt coalescing). Nevertheless, aftertwo decades of active research no

microkernel-based OS has demonstrated a user-level devicedriver framework whose per-

formance would be close to that of a monolithic system.

User-level device drivers rely on OS protection mechanismsto detect and isolate mem-

ory access violations and a subset of OS protocol violations, such as access to unauthorised

services and excessive resource allocation (see Section 2.8). A complete fault tolerance so-

lution is required to also detect other types of failure and to provide mechanisms for failure

recovery. While all of the systems discussed above pointed out the possibility of construct-

ing such facilities, none of them has demonstrated a workingimplementation.

Recently, an attempt at building a complete driver reliability infrastructure for the

MINIX 3 [HBG +06] microkernel-based OS was undertaken by Herder et al. [HBG+09].

They extended fault isolation facilities available in previous systems with a limited form of

temporal failure detection based on heartbeat messages. Inaddition, MINIX 3 isolates the

most severe form of device protocol violations using an IOMMU.

MINIX 3 also implements an original approach to fault recovery by outsourcing the task

of restoring the state of the failed driver to its clients [HBG+07]. The OS simply creates a

new copy of the driver and reconnects it to the client. The client is notified about the failure

and can take compensatory actions to conceal the failure from user applications. The ratio-

nale behind this design is that the client often contains data required for recovery and hence

can implement recovery without the overhead of runtime monitoring. For instance, the file

system stores pending disk operations and can reissue them in case of the disk driver failure.

As another example, a network protocol stack handles network controller driver failures by

detecting and retransmitting lost packets as part of the TCPprotocol; applications that use

unreliable protocols, like UDP, implement application-specific mechanisms for tolerating

lost packets.

A number of microkernels and similar systems were not covered in the above survey,

because, despite their adherence to microkernel design principles, they implement drivers
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as part of the kernel. These include V [Che84], Accent [RR81], the Cache kernel [CD94],

Amoeba [TKRB91], early versions of Chorus [RAA+88], Exokernels [EKO95] and others.

Among currently active microkernels that support user-level drivers are both commercial

microkernels, such as OKL4 [OKL], QNX [Don00], and INTEGRITY [Gre] and academic

systems like seL4 [EDE07], MINIX3 [HBG+06], and Nexus [SWSS05].

3.1.3 Device driver isolation in monolithic OSs

Research on user-level device drivers in microkernel-based systems inspired the use of sim-

ilar isolation techniques in conventional monolithic OSs.In a monolithic system, the client

of the driver, e.g., the TCP/IP stack or the file system block layer, is usually located in

the kernel. This is in contrast to microkernel-based systems, where both the driver and its

client execute as user-level processes. Interaction between the kernel and a user-level pro-

cess involves fewer context switches than IPC between two processes, and hence can in

principle be faster. In practice, however, current monolithic OSs are not optimised for such

interaction and would require massive design effort to implement it efficiently.

User-level device drivers in Linux The communication overhead can be mitigated us-

ing buffering techniques, similar to those described in theprevious section. Leslie et

al. [LCFD+05] implemented this approach using an rbufs-like communication mechanism.

Their performance evaluation shows up to 7% throughput degradation and up to 17% CPU

overhead, compared to in-kernel drivers, for hard disk and Gigabit Ethernet controllers.

These encouraging results were obtained at the cost of increased I/O latency, which was not

measured in the paper.

Nooks The Nooks system, developed by Swift et al. [SBL03], adds memory protection to

kernel-mode drivers in Linux. Drivers are encapsulated inside light-weight protection do-

mains, called nooks. A nook executes in the kernel mode and has read access to all kernel

memory, but can only write to its private heap and to device memory regions. Communica-

tion between a nook and the rest of the kernel is mediated by the Nooks isolation manager,

which intercepts all function calls in both directions and makes sure that the driver can

safely write data structures passed to it by reference. Thisis achieved by either maintain-

ing a synchronised copy of the data structure inside the nookor by forwarding every write

access to the data structure to the kernel.

The isolation manager detects three types of driver failures: illegal memory accesses,

data format violations, and temporal failures. Illegal memory accesses are detected using

hardware protection mechanisms. Data format violations are detected by validating pa-

rameters passed by the driver to the kernel. Finally, temporal failures are detected using

timeouts.

The isolation manager also keeps track of all kernel objectsallocated or accessed by the

driver. In case of a driver failure, the Nooks recovery manager releases all kernel resources
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held by the driver, creates and initialises a new instance ofthe driver. This basic recovery

scheme ensures that the system remains in a consistent stateafter the failure; however ex-

isting users of the driver observe the failure, since the original copy of the driver becomes

unavailable and its state is lost.

Nooks was later extended to support fully transparent recovery using a mechanism

called shadow drivers [SABL04]. A shadow driver is a shim that is attached to an in-

stance of a Nooks driver and passively intercepts its communication with the OS, recording

information required to recover the driver in case of a failure. At the time of recovery, the

shadow driver attaches to the new driver instance and switches to the active mode, where it

generates a sequence of requests that recreate the state of the driver before the failure. Dur-

ing this time, all requests sent to the driver by the OS are blocked. OS calls issued by the

driver are either handled by the shadow driver or forwarded to the OS. Once the recovery is

complete, the shadow driver switches back to the passive mode. Shadow drivers are device

independent and need to be developed once for a class of devices.

One issue with Nooks is the complexity of implementing the isolation and recovery in-

frastructure. An isolation manager is required to understand the semantics of all driver-OS

interactions in order to perform argument validation and synchronise shared data structures.

Likewise, a shadow driver in the active mode assumes the roleof the OS and must correctly

implement the semantics of all OS functions used by the driver. Since a Linux driver has ac-

cess to a large number of internal kernel functions, Nooks runtime components are required

to incorporate semantics of a substantial subset of the kernel interface. While the feasibility

of this approach has been demonstrated on a small number of drivers, building a complete

and robust solution appears to be problematic due to the sizeand complexity of this subset.

Another limitation of the Nooks architecture is the significant performance overhead

induced by frequent protection boundary crossings. Linux drivers perform a large number of

kernel calls, all of which must be intercepted and forwardedto the kernel. For example, the

reported overhead for the Intel Pro/1000 Gigabit Ethernet adapter driver is 10% throughput

degradation and up to 80% increase in CPU utilisation.

Microdrivers The Microdrivers [GRB+08] architecture offers a tradeoff between safety

and performance by executing non-performance-critical parts of the driver at the user level.

This includes management and configuration functions, which account for 65% of the driver

code. The kernel-mode portion contains performance-critical data path functions.

An existing Linux driver can be turned into a microdriver by automatically partitioning it

into user and kernel-mode components. To this end, the user specifies a set of performance-

critical driver entrypoints that must execute in the kernel. A static analysis tool determines

driver functions that are transitively called from these entrypoints. The resulting set of

functions is included in the kernel-mode part of the microdriver; the remaining code will

execute in the user mode. Data structures shared between thekernel and the user part

are replicated and synchronised using a mechanism similar to the one implemented in the
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Nooks isolation manager. The current implementation of microdrivers does not support

fault recovery; however the authors point out that the Nooksrecovery infrastructure can be

easily adapted to this purpose.

The Microdrivers architecture was further enhanced in the Decaf [RS09] project. Decaf

provides a mechanism for manually converting the user-level portion of a microdriver to

the Java programming language. This enables the driver to take advantage of the Java type

and memory safety properties. The conversion is performed incrementally, on a function-

by-function basis. Data sharing and communication betweenthe C and the Java parts of

the driver is managed by another instantiation of the isolation manager mechanism, which

marshals method arguments and maintains synchronised copies of shared data structures

across language boundaries.

Microdrivers improve driver safety while introducing negligible performance overhead.

The main limitation of this approach is that a significant portion of the driver remains in the

kernel.

User-level drivers in mainstream products Due to performance problems and complex-

ity associated with user-level device drivers, mainstreamsystems are slow to move in this

direction. At the moment, most major OSs, including Windows, Linux and Mac OS X pro-

vide only a limited support for implementing certain types of drivers, such as drivers for

USB-based storage and webcam devices, at user level [Nak02,Mic07,App06].

3.1.4 User-level device drivers in paravirtualised systems

In recent years user-level device drivers have found new applications in the context of the

virtualisation technology. Specifically, they come into play in configurations where mul-

tiple virtual machines share the hardware resources of the host system. In such settings,

access to I/O devices from a guest OS can be enabled using two approaches. The first ap-

proach, implemented for instance in VMWare [SVL01], is device virtualisation, where the

VMM intercepts all I/O operations issued by the guest OS and emulates the behaviour of

the device as if it was exclusively owned by the guest. The emulated device does not have

to be the same as the actual physical device connected to the host. The advantage of device

virtualisation is that it does not require any changes to theguest OS. It is, however, associ-

ated with very high performance overhead and therefore cannot be used in applications that

require high I/O throughput.

The second approach is device paravirtualisation. The ideais to present the guest OS

with an I/O interface that differs from the actual hardware interface, but can be efficiently

implemented in the hypervisor. The guest OS must be extendedwith drivers that handle this

interface. Thus, paravirtualisation is not fully transparent to the guest.

Device paravirtualisation has been implemented, for instance, in the Xen [BDF+03]

VMM. Xen consists of a small privileged hypervisor (not unlike a microkernel [HWF+05]),
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which hosts multiple guest OSs running with user-level privileges. Only one guest has

direct access to I/O hardware. It runs an instance of Linux, which contains drivers for all

peripheral devices. This dedicated guest is called Domain0. All other guests use the devices

via Domain0. To this end they contain stub drivers, which appear as normal device drivers

to the guest OS, but internally communicate with Domain0, rather than the actual hardware.

Communication with drivers in Domain0 involves control anddata transfer across

process boundaries, which poses the same performance problems as user-level drivers in

microkernel-based systems. Not surprisingly, Xen addresses these problems using tech-

niques borrowed from microkernels. Specifically, it implements a communication mech-

anisms that uses circular buffers in shared memory and asynchronous notifications in a

manner similar to rbufs.

Nevertheless, the performance overhead of paravirtualisation remains quite high, gen-

erating up to 300% increase in CPU utilisation in the worst case of handling a stream of

incoming data packets [MST+05]. Menon et al. [MCZ06] and Santos et al. [STJP08] have

proposed a number of optimisations that reduce this overhead to 97% and to as low as 25%

for network controllers that support multiple receive queues. Lagar-Cavilla [LCTSdL07] et

al. obtained similar encouraging results for paravirtualised graphics adapters.

Härtig et al. [HLM+03] implemented device paravirtualisation in their workhorse ar-

chitecture, using the L4 Fiasco [Hoh02] microkernel as a hypervisor. Unlike Xen, where all

drivers reside in the Linux kernel running in Domain0, the workhorse architecture encapsu-

lates every driver in its own protection domain. Reuse of existing Linux drivers is enabled

by an emulation library that is linked against device drivers providing them with the illusion

of running inside the Linux kernel. The CPU overhead of device paravirtualisation in the

workhorse architecture runs up to 200% for network devices.

LeVasseur et al. [LUSG04] implemented a similar architecture on top of

L4::Pistachio [Sys03], but instead of using an emulation library they run each driver in-

side a separate virtualised instance of Linux. They report a100% CPU overhead.

3.2 Software-based fault isolation

Software fault isolation (SFI) enables safe execution of untrusted modules in the application

or kernel address space, without relying on hardware protection mechanisms. The safety

properties enforced by SFI include memory safety and control transfer safety (i.e., the mod-

ule can only invoke a pre-defined subset of kernel entry points). SFI operates at the binary

code level and therefore can be applied to programs written in low-level languages like C

or Assembly.

SFI was first proposed by Wahbe et al. [WLAG93] and was originally used to isolate un-

trusted extensions for user-level programs. Wahbe’s implementation performs binary code

transformation on the untrusted module, inserting runtimechecks that cannot be circum-

vented by the module. To perform these checks efficiently, restrictions are imposed on the
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application memory layout. The address space of the application is divided into contigu-

ous segments so that all addresses within a segment share a unique pattern of upper bits.

An untrusted module is only allowed to execute code in its code segment and access data

in its data segment. Immediate control transfer instructions, as well as immediate loads

and stores can be statically checked to comply with these constraints. Indirect jumps and

memory accesses are modified to use a small subset of registers that are not loaded by the

untrusted code, but only by inserted code, which applies a bit mask to the address, ensuring

that it falls into the right segment.

Inter-module communication is mediated by trusted stub routines. The code segment

of a module contains an indirection table of jump instructions to stub routines. These jump

instructions provide the only way to transfer control outside the module. Stub routines

implement control transfer and argument marshalling to thecallee module.

Performance results reported by Wahbe et al. show that SFI increases CPU utilisation

by up to 39%. One drawback of this architecture is that it complicates data sharing between

modules. Sharing can only be implemented at the page granularity using memory remap-

ping. Another limitation is that this solution relies on a RISC load and store architecture

and cannot be easily extended to CISC architectures, including x86.

Both limitations are overcome in the XFI [EAV+06] architecture, which enforces mem-

ory safety and control flow integrity without imposing any restrictions on the memory lay-

out. Control-flow integrity is enforced using static analysis and runtime guards. In order

to statically guarantee the integrity of data that influences the control flow, such as function

return addresses, the program execution stack is split intoa scoped stack, which stores all

such sensitive data and can never be accessed using computedaddresses, and an allocation

stack, which stores all other stack data.

Memory safety is enforced using runtime guards, which verify that every computed

memory access falls into one of contiguous memory regions assigned to the untrusted mod-

ule. The cost of the check depends on the number of available regions, which can vary

at runtime. Control-flow integrity properties enforced by XFI ensure that memory access

guards cannot be circumvented.

The overhead of XFI on various application benchmarks is within 125%. In particular, it

was applied to two Windows kernel drivers; however both of them were drivers for pseudo-

devices implemented in software, so these results may not berepresentative of real hardware

drivers.

The Vino [SESS96] OS uses the MiSFIT [SS98] SFI architectureto isolate and recover

from failures in kernel extensions. MiSFIT implements similar techniques to those intro-

duced by Wahbe et al., but adapts them to the IA32instruction set architecture (ISA). Like

Wahbe’s SFI architecture, MiSFIT does not allow data sharing between modules. Access to

OS data structures is performed via trusted accessor functions. Vino detects the following

types of failure: memory safety violations and control flow integrity violations (using MiS-

FIT), livelocks and deadlocks (using timeouts), and resource hoarding (using per-module
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resource accounting).

Vino supports a transactional model of computation for kernel extensions, using trans-

action rollback as the fault recovery mechanism. Every invocation of an extension starts a

new transaction. Whenever a transaction calls an OS function that modifies the state of a

kernel object, the modification is recorded in the transaction’s log and the object is locked

until the transaction commits or aborts. For each such mutator function, Vino provides an

undo function, which reverts its effect. If a transaction aborts due to an extension failure,

Vino calls all undo functions from its log and unloads the faulty extension. While the Vino

fault tolerance mechanism can in principle be adjusted to support recovery from driver fail-

ures, this has not been implemented.

The main limitations of the Vino architecture are its very high performance overhead

(more than a factor of 10 for some extensions), and the requirement to implement an undo

function for every mutator function callable from extensions, which increases kernel size

and complexity.

3.3 Fault removal using static analysis

Static analysis tools detect software defects by analysingthe source or binary code of

the program, without actually executing it. Recent improvements in static analysis tech-

niques have led to the development of tools, like Metal [ECCH00], SLAM [BBC+06], and

Blast [BHJM07], capable of detecting many common errors in device drivers written in C

and C++. This section surveys some of these improvements.

Early static analysis tools, such as Lint [Joh77], performed syntactic analysis of the

program in search of common programming bugs, such as reading uninitialised variables

or passing a wrong number of arguments to a function. Most of these checks have been

integrated into modern compilers.

Much more powerful analyses become possible with the help ofmodel checking tech-

niques. Model checking refers to verifying a formal model ofa system against a specifica-

tion of its required properties. The model is usually written in a formal language, such as

Promela [Hol03] or LOTOS [LOT89]. The specification can be a temporal logic [Pnu77]

formula or a program in the same language. In both cases it defines constraints on the

ordering of a subset of operations performed by the model. Alternatively, the property

specification can be incorporated into the system model in the form of assertions, in which

case it describes a subset of illegal system states. A model checker explores all possible

executions of the model and reports if any of them violate thespecification. In order to

efficiently explore very large state spaces encountered in real-world problems, most model

checkers use symbolic methods, which manipulate compressed representations of the state

space, e.g., in the form of abinary decision diagram (BDD)[Bry86].

Some model checkers, including Metal, SLAM, and Blast operate directly on the source

code of the system, rather than on its formal model. This approach allows checking prop-
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erties of the system without having to manually construct the model. However, it is harder

to implement than conventional model checking. Any non-trivial program has an enormous

state space, which cannot be explored using brute-force techniques. In conventional model

checking, the user who builds the model of the system abstracts away any state informa-

tion that is not essential to its correctness with respect tothe properties of interest. If the

resulting model is too complex for the model checker to explore within available time and

memory resources, the user relaxes the abstraction to make it susceptible to formal analysis.

If the model is too abstract, i.e., is missing information required to establish its correctness,

the user refines it by adding the missing details.

Source-level model checkers must choose the right abstraction without human involve-

ment. The simplest approach, implemented for instance in Metal, is to use a fixed abstrac-

tion. This may result in a high rate of false positives, especially when checking complex

properties. Another solution is to use counterexample-guided abstraction refinement algo-

rithms [CGJ+03] to adjust the abstraction automatically. Such algorithms start with com-

puting a very rough approximation of the program behaviour.For example, they may ab-

stract away all program variables and assume that any program branch can always be taken.

Next, the algorithm checks whether the desired property holds for this abstract model and,

if it does not, it attempts to produce a counterexample that violates the property. If such a

counterexample exists for the original program, the algorithm terminates, otherwise it re-

fines the model to avoid the spurious counterexample. The process iterates until a valid

counterexample is found or the model is shown to satisfy the property.

One problem that arises when applying model checking at the source code level is the

need to deal with complex semantics of programming languages. This is particularly dif-

ficult for system programming languages, which do not enforce type and memory safety

and allow explicit pointer manipulation. The memory state of programs written in such

languages cannot be represented by a set of typed values and must be modelled as an array

of bytes. Furthermore, multiple pointers inside the program may point to the same memory

location. Such aliases cannot always be reliably identified, making it hard to reason about

the memory state of the program. In practice a good approximation can often be obtained

using alias analysis [Das00].

In applying model checking to device drivers, an important question is: what properties

should be checked? Modern model checking techniques scale well with the size of the

analysed program, but are highly sensitive to the complexity of properties that this program

is checked against. Complex properties, which depend on large subsets of the program

state variables, reduce the effectiveness of abstraction techniques, forcing fixed abstractions

to yield large numbers of false positives, and increasing the runtime of algorithms that

use abstraction refinement. Hence, the best results can be obtained by capturing the most

common driver errors using simple properties.

Such properties can be generic or specific to device drivers.The Metal model checker

has been successfully used in detecting generic errors in system code [CYC+01]. Some
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examples of rules checked by Metal are: “release acquired locks; do not double-acquire

locks”, “do not dereference user pointers”, and “check potentially NULL pointers returned

from routine”. While these rules are applicable to all kernel components, Metal found 3 to

7 times more errors per line of code in device drivers compared to the rest of the kernel,

which illustrates the relatively poor quality of the drivercode.

Driver-specific properties describe rules of the kernel APIfor device drivers and are

used to detect OS protocol violations (see Section 2.8). TheSLAM model checker and the

commercial SDV [BCLR04] tool based on it have been used to detect many such viola-

tions in Windows device drivers. Examples of rules checked by SLAM are: “drivers do not

return STATUS_PENDING if IoCompleteRequest has been called”, “if a driver calls an-

other driver that is lower in the stack, then the dispatch routine returns the same status that

was returned by the lower driver”, and “drivers mark I/O request packets as pending while

queuing them”. SLAM allows users to specify additional rules using a domain-specific

language [BR01].

Input to the SLAM model checker consists of the source code ofthe driver, rules to be

checked, and a model of the OS environment. The last component simulates the order and

arguments with which the OS invokes driver entry points, as well as behaviour of OS APIs

invoked by device drivers.

The developers of SLAM report that one of the main problems they encountered was

the absence of well-defined OS API rules. According to Ball etal.,

“The rules for these APIs were hard to get right. Often, kernel experts in these

areas would disagree with one another about subtle points inthe rules. As a

result, we would develop a rule and have to iterate many timeswith experts,

showing them errors found by SFV and then refining the rules ifthe errors

were false. This took a tremendous amount of time and energy.”

The lack of well-defined rules constitutes a problem not onlyfor model checking, but also

for manual driver development, since in the absence of a clear definition of correct behaviour

writing correct drivers is problematic.

Other examples of static analysis tools that check driver-specific properties include Coc-

cinelle [PLHM08] and Carburizer [KRS09]. Coccinelle addresses the problem of collateral

evolution in Linux device drivers [PLM06], where changes made to internal kernel inter-

faces introduce errors in previously correct drivers. Coccinelle provides a language to spec-

ify such changes and a static analysis tool that identifies locations in the driver source code

that need to be updated and generates a source patch that implements the necessary updates.

Carburizer is an automatic driver hardening tool that detects situations where the driver

makes assumptions about device behaviour that can compromise its safety and inserts code

to fix these situations.

Unfortunately, existing literature on model checking for device drivers does not discuss

limitations of the approach. In particular, both SLAM and Metal report large numbers of
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errors found by checking simple rules, including the ones cited above, however they do not

give examples of more complex properties that cannot be efficiently validated using these

tools.

Compared to runtime isolation techniques discussed in the previous sections, static anal-

ysis has the advantage of finding errors without introducingruntime overhead. On the other

hand, static analysis only finds a subset of errors that can bedetected at runtime. For exam-

ple, memory safety of a C program cannot be checked statically.

In some cases, synergy between the two approaches is possible. The CCured [NCH+05]

system uses static analysis to check memory safety of as manyload and store instructions

as possible and relies on SFI to check the remaining ones at runtime. This way, fewer

runtime checks are required compared to conventional SFI, which reduces the runtime cost

of isolation.

3.4 Language-based fault prevention and fault tolerance tech-

niques for device drivers

High-level programming languages impose syntactic and semantic restrictions on the pro-

gram, making certain types of errors impossible or difficultto express and allowing other

errors to be detected by the compiler or the language runtime.

Memory safety is the most important property that can be enforced using language sup-

port. In low-level languages, like C, which allow explicit pointer manipulation, proving

memory safety is undecidable. Languages that disallow explicit pointer manipulation elim-

inate invalid memory accesses due to incorrect pointer arithmetic. Type-safe languages

additionally allow memory safety violations resulting from unsafe type casting to be de-

tected by the compiler. Finally, languages with automatic storage management eliminate

memory allocation errors, such as use after free and double free, and enable the detection

of array boundary violations using a combination of compile-time and runtime checks. A

combination of these techniques guarantees memory safety.

For performance reasons, most OSs are written in low-level languages. The increasing

complexity of system software encourages the use of more advanced software development

technology, including high-level languages. The rest of this section surveys research on the

use of high-level languages for operating system and in particular device driver develop-

ment.

Historical systems The use of high-level languages in OS development was pioneered in

the Burroughs B5000 series of computers [Org73]. The B5000 featured a stack-oriented

architecture, which enabled efficient execution of programs written in high-level languages.

All system and application software for B5000 was developedin Algol.

An Algol-based programming language, called Mesa, was usedat Xerox PARC to de-

velop the Pilot [RDH+80] OS for personal computers, including device drivers. Mesa pro-
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grams are structured as collections of modules, with moduleboundaries enforced by the

compiler. The next version of the Mesa language, called Cedar [SZBH86], supported auto-

matic storage management through garbage collection. Cedar was used to develop an OS

of the same name.

Lisp machines [Moo87,Dus88,Deu73] are a family of computerarchitectures designed

for efficient execution of Lisp programs. The entire software stack running on these com-

puters, including device drivers, was developed in Lisp.

Java OSs Java is a popular object-oriented virtual-machine-based garbage-collected pro-

gramming language. Several research and commercial OSs have been implemented in Java.

These systems do not support hardware-based memory protection and only run applications

written in Java.

JavaOS [Mad96] from Sun is based on a bare-metal implementation of the Java VM.

Apart from the language run-time, the entire OS, including device drivers, is written in Java.

All processes in JavaOS share a single object namespace. This design makes it difficult to

implement security and resource isolation.

KaffeOS [BHL00] and JX [GKB01] address this problem by combining the Java run-

time with traditional OS isolation techniques based on processes. A process is a unit of

resource accounting. Every process uses a private garbage-collected heap for memory al-

location. Process boundaries are enforced by an extended language runtime, without using

MMU-based protection. JX supports inter-process communication via remote procedure in-

vocations. Since processes have separate heaps, invocation arguments must be copied to the

callee’s heap. KaffeOS allows processes to create shared heaps and populate them with code

and data. Communicating processes interact by accessing the shared heap. The prototype

implementation of KaffeOS runs on top of Linux, with device drivers implemented inside

the Linux kernel. In contrast, JX runs directly on the hardware. Drivers are implemented in

Java and can take advantage of JX protection facilities.

An important limitation of Java-based OSs is that they only run programs written in

Java, which limits their use to narrow application domains.In addition, the use of Java

incurs high performance overhead. JX reports 50% slowdown on file system benchmarks,

compared to Linux.

House House [HJLT05] is an experimental OS developed in Haskell, running on top of

a bare-metal implementation of the Haskell runtime. In particular, House device drivers

are written in Haskell. Unlike Java-based OSs, House can runprograms written in any

programming language inside hardware protection domains.Reliability benefits of Haskell

are not limited to type and memory safety. Being a purely functional programming lan-

guage, Haskell facilitates formal reasoning about programbehaviour. House uses a version

of Haskell that supports code annotations with formal logicformulae [Kie02]. These an-

notations can be used as the basis for checking program correctness using static analysis,
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theorem proving, testing, or manual code inspection. For example, in case of device drivers,

properties of interest include device and OS protocol compliance. Although the approach

looks promising, no actual evidence of applying formal techniques to verifying the House

OS have been published so far.

Vault Language support can be used to enforce higher-level properties than memory

safety. In Section 3.3 we saw that checking even simple OS protocol rules in C-like lan-

guages requires complex algorithms and involves manual intervention to identify false pos-

itives. Incorporating these rules in a language type systemenables much more efficient

decision procedures.

This approach was implemented in the Vault [DF01] system programming language. In

Vault, software protocols are specified by associating a setof states with a data type and

annotating functions with pre- and post-conditions describing how the function changes the

states of its arguments. The programmer must explicitly keep track of the state of every

program variable by including the state of the variable, in its declaration. Furthermore,

he must explicitly mark all aliases to the same variable. This way, the compiler is able to

verify protocol compliance by performing only local type checking, e.g., it must check that

arguments passed to a function satisfy its preconditions.

Vault has been used to develop Windows 2000 device drivers, where the Vault type sys-

tem allowed enforcing resource management rules between the driver and the kernel. An

example of such a rule is: for every I/O request received fromthe OS the driver either com-

pletes the request immediately by calling theIoCompleteRequest function or passes

the request down the driver stack by calling theIoCallDriver function, or marks the

request for delayed processing usingIoMarkIrpPending .

A major drawback of the Vault approach is that it puts substantial burden on the pro-

grammer. In essence, it requires the programmer to incorporate a proof of protocol com-

pliance in the source code of the program. In addition, Vaultonly keeps track of statically

allocated resources. When dealing with dynamic data structures, the program must use

anonymisation operations to prevent the compiler from keeping track of variable states,

thus suppressing static protocol enforcement.

SafeDrive The SafeDrive [ZCA+06] system aims to improve the reliability of device

drivers written in C by making the C language more secure. It defines a simple language

extension that allows adding size annotations to pointer types, protecting the driver code

against out-of-bound memory reads and writes. These annotations are enforced via a com-

bination of static and runtime checks. SafeDrive does not track memory deallocation and

hence does not protect against dangling pointer dereference.

SafeDrive also provides a mechanism for recovering faulty device drivers, similar to

lightweight transactions mechanism in Vino: the SafeDriveruntime keeps track of changes

made by the driver to the system state and applies compensatory functions upon failure.
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The reported overhead of SafeDrive, in terms of CPU utilisation, is 23% in the worst

case.

Cyclone The Cyclone programming language [JMG+02] is a dialect of C that uses a

combination of language extensions, compile-time, and runtime support to achieve type and

memory safety. Cyclone language extensions include taggedunions, fat pointers, region-

based memory allocation, and data-flow annotations. These extensions enable compile-time

checking of many pointer operations. More complex checks are performed at runtime.

One interesting feature of the language is that it supports two mechanisms for safe

memory reclamation: garbage collection and data-flow annotations. The former supports

automatic memory management at the cost of some performanceoverhead, while the latter

requires additional manual effort, but does not incur any performance overhead.

Cyclone shares most of the C syntax and uses the C calling convention and data structure

layout, which makes it easy to integrate modules written using Cyclone into an OS kernel

written in C.

Several systems, including STP [PWW+03] and OKE [BS02], have used Cyclone as

the basis for the construction of safe kernel extensions. They enhance the type and memory

safety facilities of Cyclone with additional mechanisms that enable safe sharing of kernel

data structures, restricted access to kernel services, andcontrol over the use of CPU, and

other runtime resources.

In addition to high CPU overhead (up to 300% for CPU-intensive workloads), a major

drawback of Cyclone is its heavy reliance on manual annotations, which complicate the use

of the language.

Singularity The Singularity [FAH+06] OS combines the advantages of most of the

language-based techniques described above. The entire system is written in the Sing# lan-

guage, with type and memory safety being enforced by the Sing# compiler and virtual ma-

chine. User-level programs written in unsafe languages execute inside hardware protection

domains. Protection and resource isolation among OS components are achieved by running

every component, including device drivers, as a separate software-isolated process with its

own private heap. Inter-process communication is limited to messages exchanged through

typed channels, with data passed through a shared non-garbage-collected heap. Similar to

Vault, Sing# allows the formal specification of a channel’s communication protocol and

the static enforcement of protocol compliance. Furthermore, Singularity drivers can use

Sing# facilities for specifying program invariants to formalize and statically enforce device

protocol constraints.
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3.5 Preventing and tolerating device protocol violations

Most driver reliability techniques surveyed in the previous sections deal with memory ac-

cess violations and OS protocol violations. This section describes techniques for preventing

and tolerating device protocol violations.

Modern I/O bus architectures provide hardware support for isolating the most severe

failures in the form of an IOMMU (see Section 2.2.1). An IOMMUcan be used to prevent

device drivers within a single OS from accidentally overwriting kernel or application state

by programming the device to perform a DMA transfer to an invalid location [BYMK+06,

Lin]. In a virtualised environment, an IOMMU allows the VMM to protect guest OSs from

erroneous or malicious I/O operations issued by other guests [BYMK+06,WRC08].

Willmann et al. [WRC08] evaluated the impact of using an IOMMU on the system per-

formance. They found that creating a single-use mapping forevery I/O transaction increases

CPU utilisation by 30% for I/O-intensive workloads. This overhead can be significantly re-

duced by reusing mappings.

Williams et al. [WRW+08] developed a purely software-based replacement for IOMMU

for the Nexus [SWSS05] microkernel-based OS. Their solution consists of a Reference

Validation Mechanism (RVM), which intercepts and validates all device register accesses

issued by the driver. The RVM recognises when the driver configures the device for a

DMA operation and checks whether memory regions pointed to by the provided DMA

descriptor are owned by the driver. The RVM is configured per-device using a Device

Safety Specification (DSS), which describes the register layout of the device and its DMA

protocol. The RVM is located in the kernel and cannot be circumvented by device drivers,

which run at the user level. The RVM has modest impact on I/O bandwidth and latency

and introduces a CPU utilisation overhead of around 30%. Themain limitation of this

architecture is the requirement to develop a safety specification for every supported device.

Several domain-specific languages have been developed to simplify the implementa-

tion of the low-level device interface of a driver, including Devil [MRC+00], NDL [CE04],

HAIL [SYKI05], and Laddie [Wit08]. These languages allow declarative specification of

the device register and memory layouts. They also provide a means to formally define valid

sequences of register accesses in the form of finite state machines or temporal logic for-

mulae. The driver developer creates such specifications based on informal documentation

provided by the device manufacturer, usually in the form of adevice datasheet.

Given these specifications, the language compiler generates device accessor functions

in C or C++. These functions encapsulate bit-level arithmetics and low-level protocols

involved in using device registers. Constraints that cannot be encapsulated inside a single

function are enforced at runtime by adding appropriate checks to accessor functions. For

example, a check may assert that a given function is only invoked when the device is in

a certain state. In principle, these constraints could alsobe enforced using static analysis;

however none of the above systems has implemented this approach.
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3.6 Fault prevention through automatic device driver synthesis

A radical approach to improving device driver reliability consists of automatically generat-

ing the driver implementation based on a formal specification of its required behaviour. The

specification is written in a high-level domain-specific language and is therefore expected to

contain much fewer defects than manually developed drivers. In addition, the specification

is more readily susceptible to formal analysis than low-level C code, which allows further

reduction of errors due to incorrect specification.

There exist two approaches to automatic driver synthesis: hardware/software co-design

and standalone synthesis. In the co-design approach [BCG+97], the designer specifies

the structure and behaviour of the system in the form of communicating finite state ma-

chines. Once this abstract specification has been validatedusing simulation or formal veri-

fication, the designer may choose which components of the design should be implemented

in hardware and which in software. The hardware components are generated in the form of

field-programmable gate array (FPGA)s orapplication-specific integrated circuit (ASIC)s,

whereas the software components are translated into a program in a low-level programming

language.

Existing co-design techniques are intended for generatingsimple embedded microcon-

trollers and their drivers. Furthermore, they do not support OS-based drivers, i.e., drivers

generated using these techniques run without OS support or with a minimal real-time ker-

nel. These limitations are not inherent to the co-design methodology and may be overcome

in the future, making it a promising approach to improving the quality of device drivers.

In the standalone synthesis approach [WMB03,ZZC03,KSF00,OOJ98], the device and

its drivers are developed separately. Devices are usually designed using ahardware de-

scription language (HDL); however the driver developer does not typically have access to

the HDL specification. Instead, the device manufacturer publishes an informal description

of the device interface in the form of a datasheet and sample code. Based on this documenta-

tion, the driver developer creates a formal specification ofthe driver using a domain-specific

language. The data definition part of the specification describes register and memory lay-

outs of the device, similarly to Devil and related languages. The behavioural part of the

specification describes the functionality of the driver in the form of communicating finite

state machines. This specification is automatically translated into a driver implementation

in C or another programming language.

This approach has several advantages over implementing thedriver in the conventional

way. First, communicating state machines capture the driver behaviour more naturally than

procedural or functional languages. A device driver is in essence a controller for the device

state machine. Its state and operation reflect state and operation of the device and can be

most naturally modelled as another state machine. Second, specification languages used

for driver synthesis have simpler semantics than C (mainly due to their simpler memory

models) and are therefore easier to verify formally. For example, Wang and Malik [WM03]
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statically check properties like termination and deadlockfreedom. More complex checks,

such as adherence to OS protocols can also be checked in principle, however no such results

have been reported in the literature. Finally, a formal specification can abstract away some

low-level implementation details, such as CPU endianness,bus access method, OS API

for timers and interrupts, etc. These details can be added bythe synthesis tool. It should

be noted that similar advantages can be achieved in conventional drivers by wrapping the

corresponding functionality in library functions.

Practical merits and limitations of standalone driver synthesis tools are not yet fully

understood. Published results are based on early prototypes, use simple embedded devices

as examples, and do not report any performance results. Nevertheless, it is a promising

approach that deserves further exploration.

3.7 Conclusions

Techniques surveyed in this chapter prevent, detect, and tolerate many types of software

defects. However, all of them have serious limitations. In particular, runtime fault isola-

tion, based on either hardware or software mechanisms, introduces substantial performance

overhead. While, in principle, it can be used to isolate and recover all types of memory ac-

cess and OS protocol violations, in practice the lack of well-defined driver-OS protocols in

modern systems complicate the implementation of the isolation and recovery infrastructure.

Static analysis techniques do not introduce performance overhead; however they are

only capable of detecting a limited class of errors. Their use is also complicated by the

ambiguity of OS protocols, which makes it difficult to identify properties that the driver

should be checked against.

Prevention and isolation techniques for device protocol violations rely on the driver

developer to create a formal specification of the device interface, based on an informal

device datasheet. Errors introduced at this stage cannot bedetected automatically and lead

to software defects in the driver.

In summary, existing solutions do not provide full protection against driver bugs. There-

fore, an approach that helps driver developers produce better code, containing fewer bugs,

has the potential to improve both driver and overall system reliability. The remainder of this

thesis presents such an approach.
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Root-cause analysis of driver defects

This thesis aims to develop an improved device driver architecture and development process

that will enable driver writers to create drivers with fewerdefects. To achieve this, we must

first identify root causes of defects in existing drivers, i.e., the aspects of driver develop-

ment that introduce complexity and provoke errors. This chapter presents such aroot-cause

analysis (RCA).

Software RCA [Car98,MJHS90] involves understanding humanbehaviour and is there-

fore difficult to formalise. It relies on informal analysis of a large number of defects by

the developers, who are in the best position to determine whether a particular defect is pro-

voked by ambiguous requirements, inadequate documentation, complexity of a particular

algorithm or interface, a flow in the development methodology, or whether it is an unforced

coding error.

The result of this analysis is documented and added to the source repository along with

the fix for the error. Unfortunately, neither device manufacturers nor OS vendors make

this information publicly available. One notable exception are open-source systems like

Linux and FreeBSD, where a complete development history, including detailed explanation

of most software patches and the defects that they eliminate, is freely accessible. In par-

ticular, the study of driver defects presented in this chapter is based on the Linux kernel

development repository [Bit].

Other approaches to software defect analysis include statistical defects mod-

elling [MIO87] and the Orthogonal Defect Classification methodology [CBC+92]. These

approaches are quantitative in nature. They rely on predefined generic defect classifications

and only require superficial analysis of every particular defect. As such, they are much

easier to implement in industrial settings compared to RCA,but only provide limited infor-

mation about types of defects that occur in a particular software product. Since our goal is

to develop in-depth understanding of defects that are specific to device drivers, we rely on

the more laborious RCA methodology.

49
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Name Description LOC Defects

USB drivers

rtl8150 rtl8150 USB-to-Ethernet adapter 827 16

catc el1210a USB-to-Ethernet adapter 710 2

kaweth kl5kusb101 USB-to-Ethernet adapter 925 15

usb net generic USB network driver 914 45

usb hub USB hub 2234 67

usb serial USB-to-serial converter 989 50

usb storage USB Mass Storage devices 1864 23

IEEE 1394 drivers

eth1394 generic ieee1394 Ethernet driver 1413 22

sbp2 sbp-2 transport protocol 1713 46

PCI drivers

mthca InfiniHost InfiniBand adapter 11718 123

bnx2 bnx2 Ethernet adapter 5412 51

i810 fb i810 frame buffer device 2920 16

cmipci cmi8338 soundcard 2260 22

Total 33899 498

Table 4.1: Linux device drivers used in the study of driver defects. The table shows the

size of each driver in lines-of-code and the number of defects found in the driver during the

period covered by the source repository.

4.1 Methodology

I selected 13 device drivers for the study (Table 4.1), aiming to make the selection as diverse

as possible, to ensure that it provides a representative sample of driver defects. In partic-

ular, I consider drivers for different device classes, suchas Ethernet controllers, storage

devices, video and audio adapters, an InfiniBand host controller, a USB hub, and a USB-

to-serial converter. These devices are connected to the host via three different I/O buses:

USB, IEEE 1394 (FireWire), and PCI. Furthermore, the selected devices cover the entire

complexity spectrum, from simple devices, e.g., the CATC Ethernet controller, to high-end

ones, represented by the Mellanox InfiniBand controller.

This selection contains 4 drivers for similar USB-to-Ethernet adapter devices (top 4

entries in Table 4.1). The defect statistics for these drivers will be used in the evaluation of

the Dingo architecture presented in Chapter 5.

In order to identify the root causes of defects in the selected drivers, I analysed the com-

plete history of updates made to their source code during thesix-year period from 2002 to

2008 (which is the complete period covered by the repository). I only considered updates

that fixed incorrect behaviours and ignored all other changes, including performance opti-

misations, functionality extensions, and modifications tokeep the driver up-to-date with the
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evolving kernel API.

Each update was analysed to understand the exact defects that it addressed, how these

defects were fixed, and what factors provoked them. This information was obtained based

on the source code of the driver, the patch file that implemented the update, and the de-

veloper’s comments attached to it. In all, I analysed 498 defects. This does not include a

small number of defects (less than 5%) that were not documented clearly enough to estab-

lish their precise nature. All the defects covered by the study were classified into four broad

categories, based on the root cause of the defect:

1. Defects caused by the complexity of device protocols.These defects occur if the driver

developer does not fully understand the details of the software interface of the device

or fails to correctly express them in the driver code.

2. Defects caused by the complexity of OS protocols.These defects occur when the

driver incorrectly implements or uses one of its interfaceswith the OS (Figure 2.5).

3. Concurrency defects.These defects include race conditions and deadlocks due to

incorrect handling of multiple threads of control inside the driver.

4. Generic programming faults.This category includes defects that are not specific to

device drivers. This includes defects related to the use of alow-level programming

language or to the inherent complexity of implementing a large software component.

This taxonomy is similar to the taxonomy of failures presented in Section 2.8. The

principle difference is that failures represent incorrectbehaviours observable at runtime,

whereas defects represent algorithmic errors that may cause runtime failures. The corre-

spondence between defects and failures is not one-to-one. Adefect in the implementation

of the OS interface may cause an OS protocol violation; however it may also cause a mem-

ory access violation. The latter may happen, for instance, if the driver programmer does not

expect a certain OS request to occur in a particular state andtherefore does not allocate the

memory resources required to handle the request. Likewise,a concurrency bug may lead to

a race between two threads executing inside the driver, which can manifest itself as invalid

ordering of device or OS invocations or in a memory access fault. In general, any type of

defect can lead to any type of failure.

Table 4.2 summarises the results of the study by showing the number of defects of each

type found in each driver. Defects caused by the complexity of device protocols comprise

the biggest group, with the remaining defects distributed evenly among the three other cat-

egories.

4.2 Example

Before going into a detailed discussion of the various typesof defects, consider an example

of how a Linux driver defect is analysed and classified into a particular category.
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Driver Total defects
Root cause

Device prot.

complexity

OS protocol

complexity
Concurrency Generic

rtl8150 16 3 2 7 4

catc 2 1 0 1 0

kaweth 15 1 2 8 4

usb net 45 16 9 6 14

usb hub 67 27 16 13 11

usb serial 50 2 17 13 18

usb storage 23 7 5 10 1

eth1394 22 6 6 4 6

sbp2 46 18 10 12 6

mthca 123 52 22 11 38

bnx2 51 35 4 5 7

i810 fb 16 4 5 2 5

cmipci 22 17 3 1 1

Total 498 189 (38%) 101 (20%) 93 (19%) 115 (23%)

Table 4.2: Classified counts of driver defects. The maxima ineach row are highlighted.

The defect in question was found in revision 1.142 of the

drivers/usb/storage/usb.c file, which belongs to the USB storage driver,

and was fixed in revision 1.143. The following comment by the author of the driver

describes the problem:

The problem was introduced recently along with autosus-

pend support. Since usb_stor_scan_thread() now calls

usb_autopm_put_interface() before exiting, we can’t simply

leave the scanning thread running after a disconnect; we must wait until the

thread exits. This is solved by adding a new struct completion to the private

data structure.

The first step in analysing the defect involves studying the source code of the driver to

understand its overall structure and in particular parts related to the defect.

The USB storage driver is a unified driver for a range of USB mass storage devices

such as flash drives, hard drives, and SD card readers. All such devices are required by

the USB mass storage class specification [USB08b] to supporttheSmall Computer System

Interface (SCSI)command set. Therefore the USB storage driver uses the USB bus transport

interface to access the device and exports the SCSI host device-class interface to the Linux

kernel (Figure 4.1).

During initialisation, the driver registers itself as a SCSI host driver and spawns

a separate kernel thread to carry out SCSI-device scanning.The thread func-

tion (usb_stor_scan_thread() ) runs holding a power management lock on
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Figure 4.1: Linux USB storage driver interfaces.

the underlying USB interface. This is required to make sure that the device is

not automatically suspended while being scanned. The lock is released using the

usb_autopm_put_interface() Linux function before returning from the thread

function.

The race condition mentioned in the defect description occurred if the driver was shut

down (e.g., because the device was disconnected from the USBbus) while the scanning

was in progress. The disconnect handler calls thescsi_host_put() function in the

Linux SCSI layer, which unregisters the SCSI host and deallocates the data structure holding

the driver’s private state. Address of this data structure is passed to theusb_autopm-

_put_interface() function when it is invoked by the scanning thread, which results

in an invalid memory access. The error is fixed by simply waiting for the scanning thread

to terminate before callingscsi_host_put() .

At this point it is clear that the defect was provoked by the complexity of dealing with

concurrency inside the driver. This is also confirmed by the author’s description of the

defect, which suggests that the confusion was caused by thread synchronisation issues.

4.3 Defects caused by the complexity of device protocols

This and the following sections discuss specific types of defects that fall into each of the

four categories. In particular, defects related to the complexity of device protocols can be

further classified into the following groups.

Value defects The driver and the device exchange data, including device descriptors, con-

figuration commands, and I/O transfer descriptors, via memory and registers. Defects re-

lated to handling of device data include endianness errors,incorrect use of register bit fields,

sending invalid data values to the device, and incorrectly interpreting values received from

the device.
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For example, when configuring a newly connected device, the USB hub driver retrieves

a device descriptor, which specifies device capabilities and supported configurations. In

interpreting the device descriptor, the hub driver made a false assumption that the num-

ber of USB interfaces supported by the device in each configuration must be greater than

zero. However, the assumption contradicted the USB specification and could result in a

misconfigured device.

Ordering defects In order to correctly control the device, the driver must keep track of

the internal state of the device state machine. Errors occurwhen the programmer’s mental

model of this state machine diverges from its actual implementation. These errors may lead

to the driver issuing a sequence of commands to the device that fails to meet its intended

goal or even leaves the device in an invalid state.

A representative example of such a defect occurred in the USBhub driver, which er-

roneously tried to resume a suspended hub port when a new device was connected to it.

However, the resume command is not allowed in this state, since the suspended status of

the port is automatically cleared once there is a new connection. The error returned by the

resume command prevented Linux from using the given hub port.

Timing defects Device state transitions can be triggered by the passage of real time. The

driver simulates such transitions using timeouts. Forgetting to put a timeout statement in the

appropriate place or using an incorrect timeout value is likely to lead to failure of subsequent

commands issued to the device.

For instance, the USB hub specification mandates a delay in the hub port connection

sequence after the device attached to the port has been resetand before any commands

are issued to it; however the hub driver implementation ignored this requirement and at-

tempted control transfers with the device immediately after reset, resulting in unpredictable

outcomes.

Data races The device and the driver may engage in shared-memory communication us-

ing DMA and memory-mapped I/O. Access to shared memory regions is synchronised using

interrupts, device registers, and memory barriers. Incorrect use of synchronisation can lead

to a race between the driver and the device.

For instance, the bnx2 network controller driver containeda race condition where the

driver acknowledged packets in the device receive ring before actually processing them.

The device could overwrite the corresponding entries in thering with new ones, causing

lost packets and memory leaks.

Table 4.3 shows statistics for the various types of defects caused by the complexity of

device protocols.
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Type of defect # defects Relative frequency

Value defects 116 61%

Ordering defects 52 28%

Timing defects 15 8%

Data races 6 3%

Total 189 100%

Table 4.3: Defects caused by the complexity of device protocols.

4.4 Defects caused by the complexity of OS protocols

Defects related to the complexity of OS protocols can be classified into ordering and value

defects. Ordering defects occur when the driver developer misunderstands or fails to cor-

rectly implement rules on the ordering of invocations exchanged by the driver and the OS.

As a result, he may either invoke OS functions in the wrong order or incorrectly handle an

unexpected invocation from the OS.

Different classes of drivers implement similar interfaceswith the OS, which enables

further classification of ordering defects. For instance, any driver must implement ini-

tialisation, shutdown, power management, and data transfer operations. Accordingly, we

distinguish the following types of ordering defects.

Defects in the implementation of initialisation, shutdown, and configuration protocols

These protocols define sequences of invocations exchanged by the driver and the OS during

device initialisation, shutdown, and configuration. This includes establishing a connection

with the underlying bus driver, allocating bus resources required to access the device, reg-

istering the device-class interface with the OS, responding to configuration requests, and

handling of shutdown requests and hot unplug events.

One example of a related defect was found in the USB storage driver. During startup, the

driver first called thescsi_add_host() function to register itself as a SCSI host driver

and then thescsi_set_device() function, which associates the underlying device

with the SCSI host. The Linux SCSI layer, however, assumes that the SCSI host already

has a device associated with it whenscsi_add_host() is called, and in some cases

attempts to access the device immediately, leading to an illegal memory access and a kernel

panic.

Defects in the implementation of the data protocol During normal operation, the driver

exchanges streams of I/O requests and responses with the OS and the underlying bus driver.

This is the most frequently used and therefore the most thoroughly tested part of the driver

functionality. Nevertheless, it may still contain defects, which typically manifest themselves

in uncommon corner-case situations.

For instance, one such defect occurred in the rtl8150 USB-to-Ethernet adapter driver
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(a) A failure scenario.
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(b) Behaviour of the fixed driver.

Figure 4.2: A defect in the rtl8150 controller driver.

when the driver tried to cancel an outstanding USB transfer (e.g., because the transfer timed

out). To this end, the driver called theunlink_urb() function, which attempts to cancel

the transfer immediately, but if it is not possible because the transfer is currently being

handled by the USB controller, it schedules the transfer fordeferred cancellation and returns

to the caller. When the transfer is finally cancelled, the USBframework calls a completion

callback provided by the driver. In the rtl8150 driver this could happen after the driver

terminated and all its state was deallocated, which caused the completion callback to crash

the kernel. Figure 4.2a shows the possible sequence of interactions between the driver and

the OS that was not correctly handled by the driver.

The fixed version of the driver replaced the call tounlink_urb() with

kill_urb() , which always cancels the transfer before returning even ifthis requires

blocking, as shown in Figure 4.2b.

Defects in the implementation of resource ownership protocols The Linux kernel uses

reference counting to control the life time of various resources. The driver may obtain a

reference to a resource either explicitly, by calling an operation that increments its reference

count, or implicitly, by receiving a pointer to the given object in a request. Forgetting to

release a reference to an object or trying to access the object without holding a reference to

it may result in a resource leak or a kernel crash.
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Type of defect # defects Relative frequency

Ordering defects

Initialisation, shutdown and config. protocols 21 21%

Data protocols 9 9%

Resource ownership protocols 8 8%

Power management protocol 8 8%

Subtotal 46 46%

Value defects

Incorrect use of OS data structures 48 48%

Returning invalid error code 7 7%

Subtotal 55 55%

Total 101 100%

Table 4.4: Defects caused by the complexity of OS protocols.

.

Defects in the implementation of the power management protocol These defects are

related to the interaction between the driver and the OS during handling of device suspend

and wakeup requests.

For example, the following defect found in the suspend function of the cmi8338 sound-

card driver prevented the driver from correctly resuming the device after the suspension.

During the suspend sequence, the driver called thepci_set_power_state() func-

tion, provided by the Linux PCI framework, to remove power from the corresponding PCI

slot, followed by a call to thepci_save_state() function, which stores the content

of the device’s PCI configuration registers in memory. The intention was to restore the

configuration registers during wakeup. However, being invoked in this order the func-

tions did not produce the expected result, since the contentof the configuration registers

was lost once the power was removed from the device and therefore the values stored by

pci_save_state() were bogus.

The top part of Table 4.4 shows statistics for the various types of ordering defects.

We distinguish two types of value defects in the implementation of the driver-OS inter-

face:

Incorrect use of OS data structures The driver and the OS exchange and share data,

including device descriptors and I/O request descriptors.Failing to properly allocate and

initialise fields of a data structure before passing it to theOS or incorrectly interpreting data

received from the OS may lead to severe runtime consequences.

An example of such defect occurred in theport_query function of the InfiniHost

InfiniBand controller driver. This function returns a port descriptor, which describes prop-

erties of a physical port of the controller. The function failed to initialise the field of the

descriptor which reports maximal data segment size supported by the port, preventing the



58 CHAPTER 4. ROOT-CAUSE ANALYSIS OF DRIVER DEFECTS

OS from correctly using the port.

Returning invalid error code This type of defect includes situations where the driver

fails to correctly report the status of an I/O operation to the OS, e.g., it indicates successful

completion of a failed request or returns a status code that does not correctly reflect the

cause of the error.

Statistics of value defects are shown in the bottom part of Table 4.4.

4.5 Concurrency defects

As mentioned in Section 2.5, a device driver can be invoked inthe context of multiple

concurrent threads. Defects related to concurrency can be classified based on the types of

concurrent activities that cause the given race condition or deadlock.

Races and deadlocks in the data path These defects result in incorrect synchronisation

between functions responsible for streaming data to and from the device. For example, the

bnx2 Ethernet controller driver contained a race conditionbetween the function that queued

a new packet in the transmit ring and the interrupt handler that removed completed packets

from the ring. Both functions accessed common hardware datastructures and could leave

them in an inconsistent state, blocking the transmit operation of the controller.

Races and deadlocks in the configuration path These defects result in incorrect syn-

chronisation among initialisation, shutdown, and configuration functions and between these

functions and data path functions. The latter occur when thedriver gets a configuration or a

shutdown request while handling a stream of data requests. For example, a race between the

packet transfer and the shutdown functions of the rtl8150 USB-to-Ethernet adapter driver

could cause the driver to keep sending packets to the controller after the controller was

disabled.

Races and deadlocks in the power management functionsThese defects result in incor-

rect synchronisation between power management functions and any of the above functions

(i.e., configuration and data path functions). For example,a race in the bnx2 driver between

the device suspend function and the data path function responsible for resetting the con-

troller when a packet transfer timed out could cause the controller to be suspended while

the reset operation was in progress.

Races and deadlocks in the hot unplug handler Hot unplug events occur asyn-

chronously to all other driver activities, which makes themparticularly difficult to handle

correctly. For example, a hot unplug event may occur while the device is being suspended.

While unlikely, such a situation is possible, for instance if the user unplugs a USB device
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immediately after closing the laptop lid. In Section 4.2 we saw another example of a hot

unplug race, which occurred when the driver received a disconnect notification before the

device was completely initialised.

Calling a blocking function in an atomic context These defects occur when the driver

calls a potentially blocking OS function while running in the primary interrupt context.

Usually this happens if the programmer does not realise thatthe given driver entry point

can be invoked from the primary interrupt handler or when he does not realise that the OS

service that he uses can block.

For example, one such defect was introduced when fixing the incorrect use of the

unlink_urb() function described in Section 4.4. One instance ofunlink_urb()

invocation that was replaced withkill_urb() was located in the transmit timeout han-

dler function. This handler is invoked by the Linux kernel inthe context of a timer interrupt

and is therefore not allowed to block. Calling thekill_urb() function from this han-

dler could deadlock the kernel. Ironically, the defect was addressed by changing the call

to kill_urb() to unlink_urb() , thus reintroducing the original defect described in

Section 4.4.

Using uninitialised synchronisation primitives Drivers rely on various types of syn-

chronisation primitives, such as mutexes, semaphores, completions, etc., to avoid race con-

ditions. Linux requires every synchronisation object to beinitialised before use, using the

appropriate initialisation function or macro. Forgettingto do this may cause a kernel crash

or deadlock.

Imbalanced locks Every successful acquisition of a mutex or a semaphore must be bal-

anced by the appropriate release operation. Forgetting to release the lock is likely to result

in a deadlock.

Calling OS services without appropriate locks Some kernel services require the caller

to acquire a specific lock before using the service. For instance, calls to the Linux SCSI

layer must be protected by a lock associated with the SCSI host structure. Forgetting to

acquire this lock created a race condition in the USB storagedriver.

Table 4.5 provides statistics for the various types of concurrency-related defects. It

shows that most of these defects are provoked by events that happen relatively infrequently,

such as a a hot-unplug notification or a configuration requestthat arrives concurrently with

another configuration or data request.
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Type of defect # defects Relative frequency

Races and deadlocks in the configuration path 29 31%

Races and deadlocks in the hot-unplug handler 26 28%

Calling a blocking function in an atomic context 21 23%

Races and deadlocks in the data path 7 8%

Races and deadlocks in power management functions 5 5%

Using uninitialised synchronisation primitives 2 2%

Imbalanced locks 2 2%

Calling OS services without appropriate locks 1 1%

Total 93 100%

Table 4.5: Concurrency defects.

Type of defect # defects Relative frequency

Control flow defects 62 54%

Memory allocation errors 30 26%

Typos 5 4%

Missing return-value checks 16 14%

Arithmetic errors 2 2%

Total 115 100%

Table 4.6: Generic defects.

4.6 Generic programming faults

This category of defects includes common coding errors, such as memory allocation er-

rors (memory leaks, use-after-free, double-free, etc), typos, missing function return-status

checks, arithmetic errors, and control-flow defects that cannot be attributed to handling of

either device or OS protocols. Table 4.6 shows statistics for these defects.

4.7 Limitations of the study

Several factors limit the representativeness and accuracyof the results produced by the

study presented in this chapter. First of all, the study onlyconsiders Linux drivers. Statis-

tics of driver defects in other systems, in particular Windows and Mac OS, would provide

a more general picture. For example, since Windows drivers are typically developed by the

device vendor, it is logical to expect defects related to handing the device interface to be

less common and defects related to handling the OS interfaceto be more common in Win-

dows drivers than in Linux drivers. Unfortunately, these systems use closed development

processes, which do not allow free access to their source code, not to mention the complete

development history. Therefore, the study was limited to open-source systems, of which

Linux is the most important representative.
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Second, the study does not take into account the severity of analysed defects, i.e.,

whether the given defect leads to a system crash, a permanentor transient device failure,

degraded performance, etc. In many cases, the only reliableway to establish possible conse-

quences of the defect is by means of an experiment. However, performing such experiments

for a sufficiently large subset of defects covered by the study was infeasible within the scope

of the thesis project. Besides, many defects can lead to different failures in different scenar-

ios, which makes exhaustive analysis even harder.

Third, in analysing defects related to the complexity of OS and device interfaces, it

would be helpful to distinguish four different situations:(1) the defect was introduced be-

cause the required behaviour was not described in the appropriate specification (the device

datasheet or OS API documentation), (2) the specification was inaccurate, (3) the devel-

oper did not understand the specification, and (4) the developer understood the required

behaviour, but failed to implement it correctly. This kind of analysis would have provided

additional useful input for the study. Unfortunately, mostdriver patches in Linux do not

contain sufficient information to perform this analysis.

Fourth, this study does not account for the interplay between different root causes. In a

device driver, interaction with the device, interaction with the OS, and synchronisation are

closely intertwined. Therefore, it is likely that reducingthe complexity of one of these tasks

will lead to the reduction of all types of defects.

Finally, the study was focused on technical problems causing driver defects and did not

take into account other factors, such as potential problemsin the driver development process

and various social factors (e.g., communication between developers).

4.8 Conclusions

Despite the above limitations, the study provides useful findings that help to direct the

efforts in improving driver reliability to where they are likely to achieve the most impact.

Figure 4.3 represents the main results of the study by showing the relative frequency of the

four categories of driver defects.

Firstly, the study has established that defects caused by the complexity of device proto-

cols comprise the biggest group of driver defects (Figure 4.3). This is an expected result,

since managing the device is the primary purpose of any device driver and therefore it is nat-

ural that much of the driver complexity is concentrated in the code responsible for device

interaction.

More surprisingly, defects related to the interaction between the driver and the OS,

namely, defects caused by the complexity of OS protocols andconcurrency defects, are as

common as device-related defects. These defects can potentially be reduced via a better

design of the driver-OS interface. The next chapter presents one approach to constructing

such an improved interface.

Figure 4.4 compares the relative frequency of different types of defects in USB,
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Figure 4.3: Relative frequency of the four categories of driver defects.
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Figure 4.4: Summary of defects by bus.

IEEE 1394, and PCI drivers. It shows that OS-related defectsare much more common in

USB and IEEE 1394 drivers than in PCI drivers. Unlike the PCI bus, USB and IEEE 1394

buses are not memory mapped. Communication with the device is based on message pass-

ing. Even simple operations, such as reading or writing device registers are accomplished

by preparing and sending a message to the device and waiting for a reply message. This

complicates the bus transport interface provided by the OS and increases the amount of

concurrency that the driver must handle, since reply messages are delivered asynchronously

by a separate kernel thread.

In the rest of this thesis I develop techniques to mitigate each of the root causes identi-

fied in this study. In particular, the following chapter concentrates on improving the design

of the driver-OS interface to reduce defects related to concurrency and OS protocol com-

plexity. The automatic driver synthesis approach developed in Chapter 6 eliminates generic

programming faults and substantially reduces device protocol defects.



Chapter 5

Device driver architecture for

improved reliability

The driver defect study presented in the previous chapter has revealed areas where better OS

support could improve driver reliability. In particular two categories of defects are directly

related to how the driver interacts with the OS: defects caused by the complexity of OS

protocols and concurrency defects. Together, these defects constitute 39% of the defects in

our study, and are clearly a significant source of problems for drivers.

In this chapter I propose a new device driver architecture, called Dingo, that simplifies

interaction with the OS and allows driver developers to focus on the main task of a driver:

controlling the hardware. Dingo achieves this via two improvements over traditional driver

architectures. First, Dingo reduces the amount of concurrency that the driver must handle

by replacing the driver’s traditional multithreaded modelof computation with an event-

based model. This model eliminates the majority of concurrency-related driver defects

without impacting the performance. Second, Dingo providesa formal language, called

Tingu, for describing software protocols between device drivers and the OS, which avoids

confusion and ambiguity, and helps driver writers avoid defects in the implementation of

these protocols.

Dingo does not attempt to provide solutions to deal with the other types of defects iden-

tified (i.e., defects caused by the complexity of device protocols and generic programming

faults). These defects are provoked by factors that lie beyond the influence of the OS and

will be addressed as part of the automatic driver synthesis approach presented in Chapter 6.

I present an implementation of the Dingo architecture in Linux, which consists of a set

of wrappers that make drivers developed in compliance with the Dingo interface appear as

regular Linux drivers to the rest of the kernel. This enablesDingo and conventional Linux

drivers to coexist, providing a gradual migration path to more reliable drivers. Experimen-

tal evaluation of the Dingo driver architecture shows that it eliminates most synchronisation

errors and reduces the likelihood of protocol violations, while introducing negligible per-

formance overhead.

63
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Figure 5.1: Dingo driver for the ax88772 USB-to-Ethernet adapter and its ports. White

squares at the driver boundaries indicate ports.

5.1 Overview of Dingo

A Dingo driver is a software object that communicates with the OS over ports. A port is a

bidirectional communication point that defines a set of methods that must be implemented

by the driver and the OS. Every driver interface shown in Figure 2.5 is represented by one

or several Dingo ports.

Execution of a driver is triggered by invoking a method through one of its ports. Dingo

guarantees atomicity of driver invocations, i.e., at most one method of the driver can be

running at a time.

Each driver port is associated with a protocol, which specifies a behavioural contract

between the driver and the OS. It defines the methods that can be invoked over that port

as well as constraints on the ordering, timing, and arguments of invocations. Protocols are

specified as part of the OS driver framework and describe services that different types of

device drivers must provide to the OS as well as services provided by the OS to device

drivers.

When implementing a device driver, the developer declares its ports and chooses a pro-

tocol for each port among those supported by the OS. He must then provide an implemen-

tation of all incoming methods associated with the driver’sports.

Figure 5.1 shows the Dingo driver for the ax88772 USB-to-Ethernet adapter, its ports,

and the parts of the OS that the driver interacts with. The driver provides services to the

OS viaLifecycle , PowerManagement andEthernetController protocols. It

uses theUSBInterfaceClient protocol exported by the USB bus framework, and the

Timer protocol exported by the OS timer service. In the figure, eachport is labeled with

the name of the port (lc , pm, etc.) and the name of the protocol that it implements.

The Dingo architecture can be implemented as a self-contained OS driver framework or

it can be built as an extension of an existing driver framework, providing an improved inter-

face for developing device drivers within that framework. We have implemented the latter
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approach in Linux by constructing adapters between the multithreaded driver interfaces de-

fined by Linux and the Dingo protocols. This approach allows Dingo and native Linux

drivers to coexist in the same system, offering a gradual migration path to more reliable

device drivers.

5.2 An event-based architecture for drivers

The concurrency problems highlighted in Chapter 4 are not unique to device drivers. In a

multithreaded environment, concurrent activities interleave at the instruction level, leading

to non-determinism and the explosion of the number of possible executions. As a result,

many programmers are generally ineffective in dealing withthreads, which makes multi-

threading the leading source of bugs in a variety of applications.

An alternative to multithreaded concurrency is event-based concurrency. In the event

model, a program executes as a series of event-handlers triggered by events from the en-

vironment. Reactions to events are atomic; concurrency is achieved by interleaving events

belonging to different activities. Thus, the event model replaces instruction-level interleav-

ing with event-level interleaving. Event serialisation guarantees that the state of the program

observed at the start of an event can be modified only by the current event handler. This sim-

plifies reasoning about the program behaviour and reduces the potential for race conditions

and deadlocks.

Comparison of threads versus events has been the subject of lasting debate in the sys-

tems community [LN78,AHT+02,vBCB03]. The main point of consensus in this debate is

that different applications may favour different models.

One observation in favour of an event-based approach for drivers is that modern de-

vice drivers are already partially event-based for performance reasons. In particular, the

handling of all performance-critical I/O requests is splitinto two or more event handlers:

upon receiving a request, the driver adds it to the hardware queue and returns control to

the caller immediately, without waiting for the request to complete. Later, it receives a

completion event from the device and invokes a completion callback provided by the OS.

Such asynchronous handling of requests enables improved performance by parallelizing I/O

and computation. This interaction pattern of splitting long-running operations into request

and completion steps is typical for event-based systems. Thus, while current drivers do not

fully exploit the advantages of the event-based model, thisstyle of programming is already

familiar to driver developers.

Below I present an event-based architecture for device drivers and show that it elimi-

nates most concurrency-related defects and can be implemented in a way that neither com-

plicates driver development nor incurs a performance penalty. Thus it should be the pre-

ferred model.

In the Dingo event-based architecture events are deliveredto the driver by invoking its

methods through ports. Typical events include configuration and data transfer requests from
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the client and interrupt notifications delivered by the bus framework on behalf of the device.

Methods are executed in anatomic and non-blockingmanner. The atomicity guarantee

means that no new method invocation can begin while a previous method is running. This

prohibits simultaneous invocations of the driver by different threads, as well as recursive

calls from the same thread. Note that the atomicity constraint does not prevent the driver

from being invoked from different threads or different CPU cores, as long as all invocations

are serialised.

Inside the body of the method the driver may perform computation and invoke OS meth-

ods through ports. It is not allowed to block or busy wait, because such behaviour would

delay the delivery of subsequent events.

This event-based design affects driver development in two ways. First, since Dingo

serialises execution of the driver at the method level, there is no need for synchronisation

among concurrent message handlers. Therefore, Dingo drivers do not use spinlocks, mu-

texes, wait queues, or other thread-based synchronisationprimitives. However, the driver

may have to synchronise tasks that span multiple method invocations. For example, when

handling two long-running I/O requests that use the same hardware resource, the driver must

ensure that execution of the second request begins after thefirst request completes. This is

typically achieved by tracking the status of the shared resource using a state variable. As

will be shown in Section 5.4, the number of cases where such synchronisation is required

is much smaller than in multithreaded drivers. The event-based architecture also simplifies

the use of I/O memory barriers. In particular, barriers thatorder accesses to I/O memory

from different CPUs can be moved out from the driver into the framework. On architectures

that require barriers to order I/O memory accesses on a single CPU, the programmer is still

responsible for correctly placing such barriers.

Second, since the driver is not allowed to block, there is no way for it to freeze its ex-

ecution waiting for an event, such as a timeout or a hardware interrupt. Instead, the driver

has to return from the current method and later resume execution in the context of the cor-

responding event-handler method. Driver interfaces must be designed to take into account

this constraint. Specifically, any driver interface operation that may involve waiting must be

split into a request method provided by the driver and a completion callback method pro-

vided by the OS. The driver may invoke the completion callback from the request method,

if it is able to process the request immediately, or from another event-handler method, if the

request requires waiting for external events.

Splitting a single operation into a chain of completions maylead to complex and un-

maintainable code—the effect known as stack ripping [AHT+02]. Figure 5.2 illustrates the

problem by comparing a stylised implementation of theprobe() function in a conven-

tional Linux driver and equivalent non-blocking Dingo driver code.

Theprobe() function initialises the device hardware. The Linux version of the func-

tion writes configuration settings into the device configuration registers and then waits for

the device to complete internal initialisation by waiting for 10 milliseconds and then check-
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1 int probe(...) {

2 /*Write config registers*/

3 ...

4

5 do {

6 msleep (10);

7 /*Read status registers*/

8 ...

9 } while ( /*condition*/);

10 return 0;

11 }

1 void probe(...) {

2 /*Write config registers*/

3 ...

4 timer->setTimeout(timer,10);

5 driver->state = PROBE_TIMEOUT;

6 return;

7 }

8

9 void timeout(...) {

10 switch(driver->state) {

11 case PROBE_TIMEOUT:

12 /*Read status registers*/

13 ...

14 if ( /*condition*/)

15 lc->probeComplete(lc);

16 else

17 timer->setTimeout(timer,10);

18 break;

19 ...

20 }

21 }

(a) Linux (b) Dingo

Figure 5.2: The stack ripping problem in event-based drivers. Listing (a) shows a blocking

implementation of the probe request in a conventional Linuxdriver. Listing (b) shows

equivalent non-blocking Dingo code.

ing values in device status registers. The last steps are performed in a loop until the status

registers indicate that the initialisation has completed.

In Dingo, the equivalent behaviour is spread across two driver methods. Theprobe()

method writes the configuration registers and then calls thesetTimeout() method of the

OS timer service to schedule a 10-millisecond timeout (line4). Here, thetimer variable

is a pointer to a port of the driver (see Figure 5.1), which is passed as the first argument to

all methods invoked through the port. Before returning fromthe method, the driver sets its

state variable toPROBE_TIMEOUT(line 5).

When the timeout expires, the OS notifies the driver via thetimeout() method.

This method picks up the logical flow of execution where the method that called

setTimeout() dropped it. SincesetTimeout() can be called from multiple places

in the driver, the value of thestate variable is used for disambiguation (line 10). The

driver reads the values of status registers in lines 12 and 13and checks whether the hard-

ware initialisation has completed in line 14. If the check succeeds, then the driver signals

the completion of the probe request to the OS by calling theprobeComplete method of
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1 reactive probe(...) {

2 /*Write config registers*/

3 ...

4

5 do {

6 timer->setTimeout(timer,10);

7 AWAIT(timeout);

8 /*Read status registers*/

9 ...

10 } while ( /*condition*/);

11 return 0;

12 }

Figure 5.3: Implementation of the probe method (Figure 5.2)using the extended C syntax.

the lc port (Figure 5.1). Otherwise, it schedules another timeout(line 17).

The problem with this implementation is that it obfuscates the logical control flow,

requires the introduction of an auxiliary variable, and is twice as long as the equivalent

Linux code. The cause of the problem is that by splitting a function into multiple fragments

we lose compiler support for automatic stack management andmechanisms that rely on it,

such as control structures and local variables. The resulting complexity can easily exceed

the complexity of synchronisation, thus cancelling out theadvantages of the event-based

architecture.

Fortunately, one can combine an event-based model of computation with automatic

stack management. One way to achieve this has been demonstrated by the Tame [KKK07],

and Clarity [CCJR07] projects, both of which developed C language extensions providing

event-based programs with a sequential style of programming.

We have implemented a similar approach in Dingo. Our language extension, described

in Section 5.2.1, provides several constructs that enable driver control logic to be expressed

in the natural sequential way, avoiding stack ripping. The extension is implemented by

a simple source-to-source translator described in Section5.2.2. Using this extension, the

example in Figure 5.2b can be rewritten as shown in Figure 5.3. TheAWAITstatement in

line 7 stops the logical execution flow until the timeout event occurs. It expands into code

that saves the current execution context of theprobe() method and returns control to

the OS. When the timeout event is generated, it restores the execution context and resumes

execution from the line followingAWAIT.

The use of the language extension is optional. Many drivers contain only a few blocking

operations and so stack ripping does not constitute a serious problem for them. For example,

this is the case for most PCI-based device drivers. Such drivers can be written in pure C.

In contrast, all USB drivers use blocking extensively, since every interaction with a USB

device requires waiting for a response message. The only practical way to implement such
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drivers in Dingo is using the extended version of C presentedbelow.

5.2.1 C with events

The proposed C language extension allows a programmer to express event-based program

logic in a sequential way by providing first-class constructs for event-based communication.

It introduces the notion of a reactive function in addition to normal C functions. A reactive

function executes in a separate logical thread of control and can send and receive (react

to) events from other threads. Both events and threads are language-level objects and are

distinct from Linux kernel threads and driver interface events.

Unlike kernel threads, which are scheduled preemptively, language threads are sched-

uled cooperatively. Only one language thread inside the driver can be runnable at a time. A

switch to another thread can only occur when the current thread blocks waiting for an event.

Thus, this form of multithreading preserves the atomicity of execution offered by the Dingo

architecture.

A driver method can be declared as a reactive function. When such a method is invoked

by the kernel, a new language thread is spawned and keeps executing in the context of the in-

voking kernel thread until blocking waiting for an event. During its execution the language

thread may emit one or more events, waking up other language threads inside the driver.

These threads are activated one by one until all of them become blocked when there are no

more outstanding events. At this point, control is returnedto the invoking kernel thread.

Thus, while the driver can internally spawn multiple language threads, all these threads ex-

ecute in the context of a single kernel thread, the one that iscurrently invoking the driver.

This implementation results in a hybrid model of computation where language threads in-

side the driver are scheduled cooperatively with respect toeach other, but preemptively with

respect to regular kernel threads.

Table 5.1 lists the new constructs in C with events. TheEVENTstatement declares a

new event variable. The first argument is the name of the variable; the remaining arguments

describe event arguments, which describe the content of theevent. Like normal C vari-

ables, events can be declared within any local or global scope and passed as arguments to

functions. In addition, they can be used inEMIT, AWAIT, andCALL constructs described

below. Events are implemented as C structures whose fields correspond to event arguments.

TheEVENT_TYPEstatement declares a C type whose instances are events.

The reactive keyword is used to declare a reactive function. Invoking such a func-

tion creates a language thread, which terminates asynchronously to the calling language

thread, therefore a reactive function cannot have a return type.

The EMIT statement emits an event. Event parameters must be set by thecaller in

advance.EMIT does not indicate the recipient of the event; any language thread can request

to receive the event usingAWAIT. The same event can be emitted multiple times; however

once it is marked as emitted, subsequentEMIT’s have no effect until the event is received
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Syntax Description

EVENT(name, t1 f1,..., tn fn) Event instance declaration

EVENT_TYPE(name, t1 f1,..., tn fn) Event type declaration

reactive f(...){...} Reactive function declaration

EMIT(e) Emit an event

AWAIT(e1,...,en) Wait for one of several events

IF(e1)...ELIF(e2)...ELSE Check which event has been received

CALL(f(...),e) {f(...); AWAIT(e);}

Table 5.1: C with events syntax.

by a thread.

The AWAIT statement blocks the language thread waiting for one out of agroup of

events. Note thatAWAITwaits for specific event instances rather than for types of events.

If one of the specified events is already marked as emitted, the thread continues without

blocking. In the current implementation, only one thread can be waiting for an event. It

is the programmer’s responsibility to make sure that no two threads await the same event.

The IF...ELIF...ELSE construct is used to determine the event received by the last

AWAIT issued by the thread. Arguments ofIF andELIF clauses are evaluated in order

and if one of them is marked as emitted, the corresponding branch is taken. Otherwise, the

ELSEbranch is taken.

The CALL statement implements a common pattern of calling a reactivefunction and

waiting for a completion event from it.

5.2.2 Implementation of C with events

The source-to-source translator that handles C with eventsintroduces two new types of run-

time objects in the generated C code: continuations and events. A continuation is a data

structure that represents the state of a reactive function that is blocked waiting for an event.

It stores the values of its local variables and the program counter. It also contains a trampo-

line function that restarts the execution of the reactive function from the state described by

the continuation.

As mentioned above, an event is a C structure that contains event parameters. It also

contains two fields used by the generated code: a flag indicating whether the event is in

the in-flight state (i.e., has been emitted but has not yet been delivered) and a pointer to

the continuation of a reactive function awaiting this event. The latter can be NULL if no

function is waiting for the given event at the instance when it is issued.

The EMIT statement marks the event as emitted and puts it on the event queue. The

AWAITstatement checks whether one of the events listed as its arguments has been emitted

and, if so, removes it from the queue and continues executingthe following instructions.

Otherwise, it allocates a new continuation and saves the state of the function in it. It stores
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the address of this continuation in all events that the function is waiting for. Finally, it

invokes the dispatcher function to determine which thread should run next. To this end, the

dispatcher selects the first event in the queue that has a continuation associated with it and

activates this continuation.

C-with-events language threads run on the stack of the Linuxkernel thread that has

invoked the driver. When a language thread blocks, the stateof the currently executing

reactive function is saved in a continuation, which is allocated from the heap, and another

language thread is selected to run on the same stack. When there are no more runnable

threads inside the driver (i.e., all threads are blocked), the dispatcher returns control to the

kernel thread that invoked the driver. Execution of the driver resumes with the next methods

invocation.

Note that blocking of a language thread does not cause the Linux thread in the context

of which the driver is running to block. Instead, control is immediately passed either to

another language thread or back to the Linux thread. Thus, driver invocations can be safely

performed in any context, e.g., while the calling thread is holding a lock or is executing in

a primary interrupt handler, without introducing the risk of a deadlock.

5.2.3 Dingo on Linux1

This section presents our implementation of the Dingo runtime framework for Linux. The

framework is designed to allow driver developers to take advantage of the Dingo architec-

ture when writing new device drivers, while being able to runexisting drivers without any

changes. To this end, the framework is designed as a collection of adapters that perform

the translation between Linux and Dingo driver interfaces.These adapters are attached to a

Dingo driver at runtime, making it appear as a normal Linux driver to the rest of the system

(Figure 5.4).

Linux and Dingo driver interfaces differ in two aspects. First, Linux interfaces al-

low multithreading, whereas Dingo requires all driver invocations to be serialised. Sec-

ond, Linux driver interfaces include both asynchronous andsynchronous methods, whereas

Dingo interfaces are completely asynchronous. An asynchronous method may return con-

trol to the caller before the I/O operation started by this method completes. The completion

of the operation is signalled via a separate callback function. A synchronous method al-

ways completes the requested operation before returning tothe caller, which may involve

blocking.

In order to translate between Linux’s and Dingo’s driver interfaces, the Dingo frame-

work associates a queue and a mutex with each driver. The queue is used to serialise requests

delivered to the driver. Access to the queue is protected by aspinlock. The mutex is used

to ensure that at most one thread can enter the driver. A request is delivered to the driver as

follows. The Linux thread performing the request places therequest on the queue. Then it

1The implementation described in this section was developedin collaboration with Dr. Peter Chubb.
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TCP/IP stack
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lc:Lifecycle pm:PowerManagement

eth:EthernetController

usb:USBInterfaceClient
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Ethernet iface adapter

USB bus adapterTimer service adapter

Figure 5.4: Dingo interface adapters using the example of the ax88772 controller driver.

attempts to acquire the mutex. If this succeeds, then it dequeues and delivers all requests in

the queue to the driver, one by one. Otherwise, the calling thread relies on the thread that is

currently holding the driver lock to deliver the request.

Further behaviour of the requesting thread depends on whether the request is syn-

chronous or asynchronous. In the former case, the requesting thread blocks waiting for

a completion notification from the driver, which may requirewaiting for a response from

the device (Figure 5.5a). In the latter case, control is returned to the caller immediately and

the driver response is delivered to the kernel by invoking the appropriate callback function

(Figure 5.5b).

Figure 5.6 shows how the framework handles requests sent by the Dingo driver to Linux.

If Linux handles this type of request asynchronously, then the request is simply forwarded

to the kernel and later the response is forwarded to the driver (Figure 5.6a). Otherwise, if

the corresponding Linux function may block then the requestmust be handled in a separate

worker thread to avoid blocking the Dingo driver (Figure 5.6b). In the current implemen-

tation, the kernel-global worker thread is used for this purpose (via theschedule_work

mechanism).

5.2.4 Selectively reintroducing multithreading

One limitation of the event-based model is that it allows at most one event handler to run

at a time and therefore prevents the program from exploitingmultiprocessor parallelism.

Most I/O devices handle data at much slower rates than the CPUand can be easily saturated

by a single processor core. Therefore this limitation is notan issue for the vast majority of

drivers. As we will see in Section 5.4.3, a careful implementation of the event model enables

event-based drivers to achieve the same I/O throughput and latency as multithreaded drivers.

However, there exist devices, such as 10Gb Ethernet or InfiniBand controllers, designed
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Figure 5.5: Handling of synchronous and asynchronous requests sent by the Linux kernel to

a Dingo driver. Solid arrows represent method invocations;dashed arrows represent returns

from method invocations; zig-zag arrows represent interrupt notifications from the device.

for very high throughput and low latency, whose performanceon multiprocessor systems

may suffer from request serialisation. Evaluation presented in Section 5.4.3 has shown that

the main source of performance overhead in Dingo drivers forsuch devices is cache bounc-

ing of the spinlock variable used to synchronise access to the driver request queue (see Sec-

tion 5.4.3). Although in experiments discussed in Section 5.4.3 event-based drivers perform

well even for these devices, it is desirable to allow driver developers to use multithreading

when absolutely necessary.

High-performance devices are designed to minimise contention and avoid synchronisa-

tion in the data path. As a result, the synchronisation complexity in their drivers is concen-

trated in the control path, whereas the data path is free of synchronisation operations. Based

on this observation, I introduce a hybrid model in Dingo, which allows concurrency among

data requests but not control requests. In this model, all control methods are serialised with
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Figure 5.6: Handling of requests sent by a Dingo driver to theLinux kernel.

respect to each other and to data methods. However, multipledata methods are allowed to

execute concurrently. If there exist race conditions in thedata path, they must be handled

by the driver developer in the conventional Linux way, usingspinlocks (the use of blocking

synchronisation primitives is not allowed).

The driver implementer can choose whether the driver shouldrun in the fully serialised

mode or in the hybrid mode. Drivers running in the hybrid modebenefit from the advantages

of the event-based model without experiencing any added overhead of serialisation in the

data path.

The distinction between data and control methods is drawn bythe protocol designer who

labels methods that can be sent or received concurrently with theconcurrent keyword.

We have implemented both modes for the InfiniBand driver described in Section 5.4.

Our original implementation was fully serialised. We foundthat no changes to the driver

were needed to run it in the hybrid mode, since the data path ofthe driver did not require

any synchronisation.

Support for the hybrid model required only minimal changes to the Dingo runtime
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framework. The mutex protecting access to the driver was replaced by a read-write lock.

Concurrent requests acquire the lock in the read mode; all other requests acquire the lock in

the write mode.

5.2.5 Comparison with existing architectures

Section 2.5 described two existing I/O framework architectures that simplify concurrency

management in device drivers by serialising driver invocations, namely the Mac OS X IOKit

and the Windows Driver Foundation. The Dingo event-based architecture differs from these

existing solutions in three ways:

1. In Dingo, all driver operations, without exceptions, have non-blocking semantics.

2. With the exception of drivers for a small number of deviceswith extreme performance

requirements, all driver invocations are serialised. Thismeans that no two events can

be delivered to the driver concurrently and under no circumstances does the driver

need to create a parallel thread to perform any of its functions. As a result, all code

in a Dingo driver is guaranteed to execute atomically.

3. As described in Section 5.2.3 and confirmed experimentally in Section 5.4.3, the

Dingo serialisation architecture can be implemented with very low performance over-

head. While I was unable to find performance data for Windows and Mac OS X I/O

frameworks, their architecture [App06,Mic06] clearly leads to performance degrada-

tion due to serialisation on multiprocessor systems.

5.3 Tingu: describing driver software protocols

This section addresses the second shortcoming of the devicedriver architecture in current

OSs, namely the lack of well-defined communication protocols between the driver and the

rest of the kernel.

In Chapter 4 we saw that 20% of driver defects are violations in the ordering or format

of interactions with the OS. A closer study of driver protocols in Linux shows that these

protocols are stateful, i.e., operations that the driver must be prepared to handle and opera-

tions that it is allowed to invoke in a given state are determined by the history of previous

interactions. However, these constraints are not adequately reflected in the OS documenta-

tion, forcing driver developers to guess correct behaviour. For example, details of how to

react to a hot-unplug notification in the driver’s differentstates, or how to handle a shutdown

request that arrives during a transition to the suspend state (and whether such a situation is

even possible), are not easy to find in documentation.

This problem is not specific to Linux. Other systems, including Windows [Mic] and

Mac OS X [App06], define driver interfaces in terms of functions that a driver must imple-

ment and callbacks that a driver may invoke. Such a definitionoften leaves constraints on
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ordering and arguments implicit in the OS implementation. Sample drivers provided with

documentation kits may shed some light on these constraints, but relying on examples as an

ultimate reference is a sure way to introduce bugs.

Therefore, improved OS documentation providing a completeand easy-to-understand

description of the required driver behaviour has the potential to significantly reduce defects

caused by the complexity of OS protocols.

Dingo facilitates the development of such documentation byspecifying the commu-

nication protocols between drivers and the OS using a formallanguage. While informal

descriptions tend to be incomplete and can easily become bulky and inconsistent, a well-

chosen formalism can capture protocol constraints concisely and unambiguously, providing

driver developers with clear instructions regarding the required behaviour.

Additionally, by providing a specification of driver protocols, we enable formal check-

ing of driver correctness, both statically and at runtime. In particular, Section 5.3.3 presents

a solution for automatic runtime checking of device driversagainst protocol specifications.

This is achieved using a runtime observer that intercepts all interactions between the driver

and the OS and detects situations where either the driver or the OS violates the protocol.

The challenge in designing the protocol specification language is to satisfy both expres-

siveness and readability requirements. In order to be useful, driver protocol specifications

must be easily understood by driver developers. This encourages the use of simple vi-

sual formalisms such asfinite state machine (FSM)or Unified Modeling Language (UML)

sequence diagrams [Obj09]. Unfortunately many aspects of driver protocols cannot be ex-

pressed using these simple notations.

One such aspect is the dynamic structure of driver protocols. For instance, the USB

bus transport protocol allows client drivers to create multiple data connections, called pipes,

through the USB bus to their associated devices at runtime. In the ax88772 USB-to-Ethernet

adapter example (Figure 5.1), such functionality is used bythe driver to open several data

and control connections to the device. Each such connectionoperates in parallel with the

others and behaves according to its own protocol.

This example also serves to highlight another complicationcommon to driver protocols,

namely protocol dependencies. In the ax88772 driver, the behaviour of each individual pipe

is dependent on the state of the main USB bus protocol. For instance, no data transactions

can be issued through pipes after the bus has been switched toa low-power mode. Given

that pipes behave according to their own protocols, and thatthis behaviour is dependent

on the behaviour of the USB bus as specified by its own protocol, we require a means to

describe dependencies between different protocols.

Neither the dynamic spawning of concurrent behaviours, northe dependencies among

behaviours can be easily expressed using simple formalismslike FSM.

The search for a formalism that supports both the required expressiveness and read-

ability has led to the development of a new software protocolspecification language called

Tingu. The design of Tingu is driven by experience in specifying and implementing real
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Figure 5.7: The use of Tingu protocol specifications.

driver interfaces. In particular, a construct is only introduced to the language if it has proven

necessary for modelling the behaviour of several types of drivers and can not be expressed

easily using other constructs.

Tingu has both a textual and visual component. The textual component is used to declare

elements of a protocol, such as data types and methods. The visual component is used

to specify protocol behaviour using a subset of the Statecharts [Har87] syntax extended

with several new constructs that provide support for dynamic port spawning and protocol

dependencies. With dynamic spawning one can specify a behaviour that leads to creation

of a new port at runtime. Protocol dependencies define methodordering constraints across

multiple protocols. This is achieved by allowing several protocols to constrain occurrences

of the same method: the method can only be invoked when it is permitted by all involved

protocols.

Figure 5.7 summarises the use of Tingu protocol specifications. Their primary purpose

is to serve as part of the OS driver framework documentation providing intuitive guidelines

to driver programmers. Tingu specifications are provided asinput to the Tingu compiler,

which generates C header files containing prototypes of driver interface methods. The com-

piler also generates runtime observers for Dingo drivers, which allow automatic checking

of protocol compliance at runtime.

5.3.1 Introduction to Tingu by example

This section introduces the syntax and semantics of the Tingu language using the example

of the ax88772 driver and its protocols.

Component The top-level entity in the Tingu language is the component,which

describes the OS interface of a device driver by listing its ports. Fig-
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component ax88772

{

ports :

Lifecycle lc;

PowerManagement pm<lc/lc>;

EthernetController eth<lc/lc,pm/pm>;

USBInterfaceClient usb<lc/lc,pm/pm>;

Timer ctrlTimer;

};

Figure 5.8: Tingu declaration of the ax88772 driver component.

ure 5.8 shows the Tingu specification of the ax88772 driver (Figure 5.1). Ev-

ery line in the ports section declares one port of the driver using the

<protocol_name> <port_name>[’<’<port_substitutions>’ >’] syntax.

The optionalport_substitutions clause is explained later.

Protocols A protocol specification declares methods to be exported andimported by a

driver that implements the given protocol along with constraints on the ordering, timing,

and arguments of method invocations.

A protocol describes common behaviour of all drivers that implement or use the func-

tionality described by the protocol. For example, all Ethernet controller drivers must im-

plement theEthernetController protocol, whereas all drivers for USB devices must

use theUSBInterfaceClient protocol to access the device.

Dingo protocols are OS-specific. For instance, theEthernetController protocol

defined as part of the Dingo framework for Linux is closely modeled after the native Linux

Ethernet driver interface, which is substantially different from corresponding interfaces in

other OSs.

An alternative approach would be to define OS-independent protocols, which would

enable the development of portable device drivers. Coming up with protocols that would

reconcile differences among various OSs while permitting efficient implementation is a hard

problem and is beyond the scope of this thesis.

A Dingo protocol is obtained from the corresponding Linux protocol (specified infor-

mally in the Linux documentation and source code) by replacing all blocking operations

with request/completion method pairs, as described in Section 5.2. In some cases, addi-

tional minor changes were introduced in order to make the protocol easier to understand

and implement.

Figure 5.9 shows the declaration of theLifecycle protocol. This protocol defines ini-

tialisation and shutdown requests that must be implementedby all Dingo drivers in Linux.

The methods section of the protocol declaration lists protocol methodsand their signa-
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protocol Lifecycle

{

methods :

/*Probe and initialise the device*/

in probe();

/*Initialisation completed successfully*/

out probeComplete();

/*Initialisation failed*/

out probeFailed(error_t error);

/*Stop the device and release all resources held by the driver*/

in stop();

/*Deinitialisation complete*/

out stopComplete();

/*Hot-unplug notification*/

in unplugged();

transitions :

import(format=rhapsody, location="LifecycleSM@ioprot ocols.sbs");

}

Figure 5.9: TheLifecycle protocol declaration.

tures. Method declarations are similar to function declarations in C, but without a return

type and with the addition of a direction specifier. By default, method arguments are passed

from the caller to the callee. Theout qualifier in front of an argument declaration denotes

an argument used to return a value from the callee to the caller.

The transitions section describes the format and location of the protocol state

machine, which defines legal sequences of method invocations.

Figure 5.10 shows the state machine of theLifecycle protocol. Transitions of this

state machine are triggered by method invocations between the driver and the OS, with

question marks (“?”) in trigger names denoting incoming invocations (the OS calling the

driver) and exclamation marks (“!”) denoting outgoing invocations (the driver calling the

OS). The protocol state machine is interpreted as follows: any method invocation that trig-

gers a valid state transition complies with the protocol specification. An invocation that

does not trigger any valid transitions violates the protocol specification.

A compact representation of complex protocols is achieved by organising states into

a hierarchy—a feature provided by Statecharts. Several primitive states can be placed in-

side another state, called super-state. A transition originating from a super-state (e.g., the

?unplugged transition in Figure 5.10) is enabled when the state machineis in any of its

internal states.
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init

connected

starting [5s]

running

!probeComplete

stopping [5s]

?stop

?probe

disconnected [5s]

?unplugged

!stopComplete

!stopComplete

!probeFailed

Figure 5.10: TheLifecycle protocol state machine.

When the driver is created, the protocol state machine is in its initial state, denoted by

a dot and an arrow. The protocol terminates, i.e., no more methods of this protocol can be

invoked, when it reaches one of its final states, denoted by a circled dot.

In Figure 5.10 some states include timeout annotations in square brackets. A protocol

is violated if, after entry into such a state, the given amount of time passes without the

triggering of a transition leading to a different state. Forinstance, the driver is not allowed

to stay in thestarting state indefinitely. It must either complete initialisationor fail

within five seconds after entering the state.

Other features of the Tingu language are illustrated by thePowerManagement proto-

col declared in Figure 5.11. This protocol defines device suspend and resume requests that

must be implemented by all Linux drivers that support power management.

Types The types section of the protocol defines data types to be used in methodargu-

ments and protocol variables declarations. Tingu supportsa subset of the C type system,

including integers, enumerations, structures, and pointers. In addition, it supports a small

number of built-in data types, such as lists and stacks, which will be explained later.

The PowerManagement protocol declares thepower_level_t type (line 4),

which is used to describe four standard device power states.An argument of this type is

passed to thesuspend request (line 13).
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1 protocol PowerManagement

2 {

3 types :

4 enum power_level_t {

5 D0 = 0,

6 D1 = 1,

7 D2 = 2,

8 D3 = 3

9 };

10

11 methods :

12 /*Put the device into a low-power state*/

13 in suspend (power_level_t level);

14 out suspendComplete ();

15

16 /*Resume the device*/

17 in resume ();

18 out resumeComplete ();

19

20 variables :

21 power_level_t power_level;

22

23 dependencies :

24 Lifecycle lc {

25 listens probeComplete;

26 listens probeFailed;

27 listens unplugged;

28 restricts stop;

29 };

30

31 transitions :

32 import(format=rhapsody,

33 location="PowerManagementSM@ioprotocols.sbs");

34 };

Figure 5.11: ThePowerManagement protocol declaration.

Protocol variables Some protocol state information is inconvenient to model us-

ing explicit states and is more naturally described by variables. For example, the

PowerManagement protocol models a device’s current power level using an integer vari-

able calledpower_level (line 21).
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running

init

full_power

!lc.probeComplete

?lc.stop

!lc.probeFailed

suspending [5s]

?suspend [$level>D0]/
power_level = $level

resuming [5s]

!resumeComplete

suspended

!suspendComplete

?resume

?suspend
[$level > power_level]/
power_level = $level

?lc.stop

?lc.unplugged

Figure 5.12: ThePowerManagement protocol state machine.

Protocol dependencies The PowerManagement protocol also illustrates the use of

protocol dependencies. When dealing with power management, a device cannot be sus-

pended until it has completed initialisation. This rule canbe expressed as a dependency be-

tween theLifecycle andPowerManagement protocols: ThePowerManagement

state machine may acceptsuspend requests only after theprobeComplete transition

of theLifecycle protocol. This is shown in Figure 5.12 with the transition from init

to full_power .

ThePowerManagement protocol declaration listsLifecycle methods used in the

power management state machine in thedependencies section (Figure 5.11, line 23).

Line 24 states that any driver implementing thePowerManagement protocol must also

provide theLifecycle protocol through a port namedlc . This port name is used to refer

to lifecycle methods from the power management state machine. The actual port name may

be different. The mapping between expected and actual port names is established in the

component declaration (see expressions in angle brackets in Figure 5.8).

The restricts and listens keywords (Figure 5.11, lines 25–28) describe two

types of protocol dependencies. Therestricts dependency means that the method is

only allowed to be called if it triggers a state transition inboth its main protocol (i.e., the

protocol that declares the method in itsmethods section) and the dependent protocol.

The listens dependency means that the dependent protocol may react to the method

invocation but does not restrict its possible occurrences.

The restricts dependency is useful in simplifying driver protocols to reduce the

amount of concurrency that the driver must handle. For example, the power management

state machine only allows thelc.stop request infull_power andsuspended states,
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but not in intermediatesuspending and resuming states. This guarantees that the

driver never receives astop request while handling a power management request.

Note that the native Linux driver interface does not providethis guarantee, rather it is en-

forced in the Dingo runtime framework by introducing additional synchronisation between

power management and lifecycle requests. This way, some of the complexity is shifted from

the device driver into the framework. This kind of improvement is enabled as a byproduct

of defining behavioural constraints on device drivers explicitly and formally.

Transition guards and actions A protocol state transition can include an optional guard

and action. The guard is a boolean expression over protocol variables and method arguments

that must be satisfied when the transition is taken. The action consists of one or more

statements that specify how protocol variables are updatedwhen the given transition is

taken. Consider, for example, the transition from statefull_power to suspending in

Figure 5.12. The guard expression in square brackets specifies that thelevel argument

of the suspend method must be greater than theD0 constant, corresponding to the zero

power saving mode (’$’-sign before an identifier denotes method argument). The action

associated with the transition updates the value of thepower_level variable to reflect

the new power state.

Tingu guards and actions use a subset of the C syntax, limitedto assignment, arithmeti-

cal, and logical expressions. No control structures, such as loops, branches, or function

calls, are allowed. The primary motivation for this restriction is to preserve the simplicity

and visual appeal of protocol specifications.

Dynamic port spawning With dynamic spawning one can specify a behaviour that leads

to creation of a new port at runtime. I illustrate this feature using the example of the

USBInterfaceClient protocol, which describes the service provided by the USB bus

framework. As mentioned above, USB data transfers are performed via USB data pipes.

The behaviour of an individual pipe is specified by theUSBPipeClient protocol. Since

the USB bus allocates these pipes dynamically, the driver determines which pipes it will use

at runtime.

The relevant fragments of theUSBInterfaceClient protocol declaration are

shown in Figure 5.13. Theports section (line 3) lists ports that can be created by the

USBInterfaceClient protocol at runtime. These ports are calledsubportsof the

main port that implements theUSBInterfaceClient protocol. The identifier in square

brackets (line 4) is the data type used to index dynamically spawned subport instances;

in this case USB pipes are indexed by their endpoint address.The port substitution ex-

pression in angle brackets binds dependencies of a subport to ports that are visible in the

namespace of theUSBInterfaceClient protocol. In particular,self refers to the

USBInterfaceClient port itself.

Thespawns clause in line 10 states that a new pipe is created when the driver invokes
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1 protocol USBInterfaceClient

2 {

3 ports :

4 USBPipeClient pipe[usb_endpoint_addr_t]

5 <self/iface,lc/lc,pm/pm>;

6

7 methods :

8 ...

9 out pipeOpen(usb_endpoint_addr_t address,

10 usb_xfer_type_t type) spawns pipe;

11

12 ...

13 };

Figure 5.13: A fragment of theUSBInterfaceClient protocol declaration.

the pipeOpen method. The generated C function prototype for this method defines an

additional argument that takes a pointer to the newly allocated port. When the driver invokes

this method, the USB framework allocates a USB pipe and bindsit to the provided port, so

that the driver can immediately start using the pipe throughthis port.

The dynamic port spawning behaviour must also be reflected inthe protocol state ma-

chine. Figure 5.14 shows the state machine of theUSBInterfaceClient protocol. The

new operator in the highlighted transition indicates that thepipeOpen method creates

an instance of thepipe subport; the index of the new subport is equal to theaddress

argument of the method.

Abstract data types Many device driver protocols allow the driver to handle multiple

outstanding I/O requests. These protocols define constraints such as: the driver (or the

OS) must complete requests in the FIFO order, or the driver must complete all outstanding

requests before terminating. Modelling these constraintsrequires the protocol specification

to incorporate a model of the request queue. To this end, the Tingu type system includes the

list abstract data type (ADT).

For instance, theUSBPipeClient protocol uses a list variable to model the queue of

outstanding USB transfer requests. The variable declaration is shown in Figure 5.15. New

transfers are added to the tail of the queue, completed transfers are removed from the head

of the queue. To this end, Tingu defines a set of standard list manipulation operations that

can be applied to list variables.

Figure 5.16 shows a single transition of theUSBPipeClient state machine that

illustrates the use of thetransfers variable. It specifies that a pipe must com-

plete transfers in the FIFO order by asserting that the transfer request completed by the

!transferComplete method must be the same as the one pointed to by the head of the
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on

altsetting_selecting [5s]

suspended enabled

!altsettingSelect

?altsettingSelectComplete

!pm.suspendComplete

?pm.resume

!pipeOpen/
new pipe ($address)

?altsettingSelectFailed

?lc.unplugged!lc.stopComplete !lc.probeFailed

init

?lc.probe

Figure 5.14: TheUSBInterfaceClient protocol state machine.

protocol USBPipeClient

{

...

variables :

list<dingo_urb * > transfers;

...

};

Figure 5.15: A fragment of theUSBPipeClient protocol declaration.

transfers queue.

Note that protocol variables describe the state of the interaction between the driver and

the OS rather than the internal driver or OS state. In the above example, thetransfers

variable helps specify the USB framework behaviour that thedriver can rely upon. Neither

the driver nor the framework is required to store a USB transfer list to implement this be-

pipe_running

?transferComplete
[$request == transfers.first ()]/
transfers.pop_front ()

Figure 5.16: A fragment of theUSBPipeClient protocol state machine.
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haviour. In practice, the USB framework simply forwards USBtransfer requests to the USB

controller and relies on the controller to complete them in the FIFO order.

Currently, the only supported ADTs are lists and sets. OtherADTs, such as queues

and stacks, can be added as required. Tingu does not currently provide a facility to specify

user-defined ADTs, therefore support for new ADTs must be built into the Tingu compiler.

5.3.2 Discussion

Tingu protocol state machines do not model return-from-method events. This means that

a Tingu protocol cannot specify when a method invocation must occur with respect to the

completion of another method. For instance, the protocol state machine in Figure 5.10

states that the call to theprobeComplete method must occur after the invocation of the

probe method, but does not specify whether it should happen beforeor after theprobe

method returns. The correct interpretation of this specification is that both behaviours are

allowed. The driver may complete device initialisation inside theprobe method and notify

the OS by invokingprobeComplete before returning fromprobe . Alternatively, if the

device initialisation involves waiting for a timeout or an interrupt from the device, then the

driver returns fromprobe and completes the initialisation later, in the context of a different

method.

Most driver operations share the same property: depending on the device interface they

may or may not be able to complete immediately. Therefore, explicitly modelling return

events would not help specify additional useful constraints in Tingu while making specifi-

cations larger and harder to understand.

One aspect of the driver interface currently not captured byTingu protocols is I/O buffer

management. Linux and other OSs define complex APIs for manipulating I/O buffers, in-

cluding operations for cloning, merging, padding buffers,etc. These interfaces do not fit

well into the state machine framework of Tingu. Rather they can be formalised using ADTs

or a related formalism. While Tingu does provide limited support for ADTs, a full descrip-

tion of such interfaces written using the present version ofthe language would lead to bulky

unintuitive specifications, which would defeat the purposeof Tingu. As such, these APIs

continue to be specified using C header files and informal documentation.

This completes the overview of the Tingu language. Completesyntax of the language

is described in Appendix A. Appendix B presents several examples of Tingu protocol spec-

ifications.

5.3.3 Detecting protocol violations at runtime

Tingu specifications help driver developers avoid protocolviolations, but do not eliminate

them completely, since the developer may still make an errorin the implementation of a

protocol, even if the protocol is clearly defined.

The use of a formal language to specify driver protocols opens up the possibility to
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explore new techniques to verify protocol compliance of a driver, in addition to providing

a reference to driver writers. One avenue that I have explored in this project is runtime

verification, i.e., automatic validation of the driver behaviour against protocol specifications

at runtime.

The Tingu compiler fully automates runtime verification by generating a driverprotocol

observerfrom the Tingu specification of its ports. The generated observer can be attached

transparently to the driver. It intercepts all method invocations exchanged by the driver

and keeps track of the state of all its protocols. Whenever the driver or the OS performs

an illegal operation or fails to perform an operation withinthe time interval specified by a

timeout state, the observer notifies the OS about the failureand outputs the current state of

all driver protocols and the sequence of events leading to the failure.

Protocol observers have proved useful in testing and debugging device drivers during the

development cycle. They can also be combined with any of the fault isolation and recovery

solutions described in Section 3 to enhance the resilience of a production system to driver

failures.

Another promising research direction that falls beyond thescope of this thesis is static

verification of drivers against protocol specifications. One way to achieve this is to translate

Tingu into a language supported by an existing model checker[ECCH00,CFH05,BBC+06].

Such translation is possible because these languages incorporate similar concepts to Tingu,

but using textual rather than visual syntax. However, static analysis of drivers has not been

investigated in this thesis, therefore no experimental evidence proving or disproving the

feasibility of this approach has been obtained. In particular, it is unclear whether existing

model checkers are sufficiently powerful to validate complex behaviours captured by Tingu

protocols.

5.3.4 From protocols to implementation

Tingu protocols specify the externally visible driver behaviour and do not enforce any par-

ticular internal structure. In practice, however, the driver developer will typically closely

follow the structure of the specification, maintaining correspondence between the driver

code and protocol states. In this approach, driver protocolspecifications are viewed as the

first approximation of the driver design, which is refined into the implementation by adding

device interaction code.

In principle, protocol specifications could be used to automatically generate skeleton

code for the driver. However, Dingo currently does not provide tools for this. The driver

developer must implement all driver methods manually, using protocol specifications as

guidelines.

I illustrate this approach to driver development using an excerpt from the ax88772

driver implementation. Figure 5.17 and Figure 5.18 show a fragment of the

EthernetController protocol that describes the packet transmission interfaceof an



88CHAPTER 5. DEVICE DRIVER ARCHITECTURE FOR IMPROVED RELIABILITY

transmit

disabled

enable [5s]?enable

disable [5s]
!disableComplete

enabled

txq_stalled !txPacketDone

txq_running

!txStartQueue !txStopQueue

?txPacket !txPacketDone

!txPacketAbort

!enableComplete

?disable

1 2

7

8 9

10 11

12

5

34

disconnected
?lc.unplugged !lc.stopComplete

6

Figure 5.17: A fragment of theEthernetController protocol state machine. Num-

bers above transition labels are for reference only and are not part of the protocol specifica-

tion.

Ethernet driver and a simplified version of the corresponding fragment of the ax88772 driver

code.

The protocol We focus on the state labeledtxq_running . According to Figure 5.17, in

this state the driver must be prepared to handle one of the following requests from the OS:

txPacket instructing the driver to queue a packet for transmission,disable request-

ing the driver to disable the device receive and transmit circuitry, andlc.unplugged

notifying the driver about a hot-unplug event. It is allowedto invoke one of the fol-

lowing methods: txPacketDone to notify the OS about successful transmission of a

packet,txPacketAbort to report an error that occurred while sending a packet, and

txStopQueue to prevent the OS from sending new packets until more buffer space be-

comes available in the controller.

The implementation During initialisation (not shown in the listing), the driver calls two

reactive functions, thus spawning two C-with-events language threads, one of which handles

packet reception and the other packet transmission. Figure5.18 shows the fragment of the

transmission thread, which implements its behaviour in thetxq_running state.

In accordance with the protocol specification, when the driver arrives in this state, it

pauses, waiting for one of the enabled external requests. Asdiscussed in Section 5.2.1,

waiting in Dingo drivers is implemented using theAWAIT construct. However,AWAIT

can only wait for events, which are language-level entitiesinternal to the driver. It does

not allow waiting for an interface method invocation. The solution is to transform method

invocations into events. This is illustrated by the implementation of thetxPacket method

(line 46 in Figure 5.18), which simply emits thetxPacket event.
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1 reactive txLoop(ax88772 * drv)

2 {

3 ...

4 AWAIT(txPacket,txDisable,txUnplugged,

5 pipeXferComplete)

6 {

7 IF(txPacket){ /*transition #10*/

8 /*start packet xfer over USB*/

9 ...

10

11 if( /*out of buffer space?*/) {

12 /*transition #9*/

13 eth->txStopQueue(eth);

14 };

15 }

16 ELIF(txDisable){ /*transition #3*/

17 /*abort outstanding USB xfers*/

18 pipe->abort(pipe);

19

20 /*wait for the abort to complete*/

21 AWAIT(pipeAbortComplete);

22 EMIT(txDisableComplete);

23 }

24 ELIF(txUnplugged){ /*transition #5*/

25 /*wait for the USB pipe to abort

26 all outstanding transfers*/

27 AWAIT(pipeAbortComplete);

28 EMIT(txUnpluggedComplete);

29 }

30 /*USB xfer complete*/

31 ELIF(pipeXferComplete){

32 if( /*transfer successful?*/)

33 /*transition #11*/

34 eth->txPacketDone(eth,

35 pipeXferComplete.pkt);

36 else

37 /*transition #12*/

38 eth->txPacketAbort(eth,

39 pipeXferComplete.pkt);

40 };

41 };

42 ...

43 };

44/*Driver methods called by the OS*/

45

46 reactive txPacket(

47 PEthernetController * eth,

48 sk_buff * packet)

49 {

50 txPacket.packet = packet;

51 EMIT(txPacket);

52 };

53

54 reactive disable(

55 PEthernetController * eth)

56 {

57 EMIT (txDisable);

58 AWAIT (txDisableComplete);

59 EMIT (rxDisable);

60 AWAIT (rxDisableComplete);

61

62 /*disable the controller*/

63 ...

64

65 /*transition #4*/

66 eth->disableComplete (eth);

67 };

68

69 reactive unplugged(

70 PLifecycle * lc)

71 {

72 EMIT (txUnplugged);

73 AWAIT (txUnpluggedComplete);

74 EMIT (rxUnplugged);

75 AWAIT (rxUnpluggedComplete);

76

77 /*release all resources*/

78 ...

79

80 /*transition #6*/

81 lc->stopComplete (lc);

82 };

Figure 5.18: A fragment of the ax88772 driver.
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The txLoop thread waits for this and other enabled requests using theAWAITstate-

ment in line 4. Since the driver participates in several different protocols, it must be prepared

to handle method invocations belonging to all its protocols. In this example, the last event

(pipeXferComplete ) in theAWAITstatement corresponds to aUSBPipeClient pro-

tocol method, which is called when the USB data pipe completes transferring packet data

to the controller.

The rest of thetxLoop listing shows how the driver handles each input event

and indicates the correspondence between methods exchanged by the driver through the

EthernetController protocol and state transitions in Figure 5.17.

Consider, for example, how the driver handles thedisable request. The implementa-

tion of thedisable method emits the (line 54)txDisable event and then waits for the

txDisableComplete event (line 58), which is generated bytxLoop after all outstand-

ing USB transfers have been aborted (line 22). Lines 59–60 perform a similar interaction

with the receive thread. After both transmit and receive threads have been notified, it is

safe to disable the controller (line 62). Finally, thedisable method sends a completion

notification to the OS in line 64. This illustrates the use of events to synchronise different

concurrent activities inside the driver.

Theunplugged method (line 69) implements similar logic for the hot-unplug notifica-

tion: after notifying the receive and the transmit threads that the device has been unplugged,

it releases all remaining resources held by the driver and sends astopComplete notifi-

cation to the OS.

The implementation of thetxLoop method illustrates the effect of the Dingo archi-

tecture on the internal structure of device drivers. In a conventional driver, the logic im-

plemented by this method would be scattered among multiple handlers, making it harder to

understand and maintain. The improved structure in Figure 5.18 is enabled by three features

of Dingo: the event-based architecture, which guarantees atomicity of driver invocations,

the C-with-events preprocessor, which allows event-driven logic to be expressed sequen-

tially, and the Tingu protocol specification language, which explicitly enumerated events

that the driver must be prepared to handle or generated in every state.

5.4 Evaluation

This section evaluates the Dingo driver architecture with respect to its impact on driver

reliability and performance.

The evaluation is based on two Dingo drivers that I implemented for Linux: the ax88772

100Mb/s USB-to-Ethernet adapter driver described in the previous sections and a Mellanox

InfiniHostTM III Ex 10Gb/s dual-port InfiniBand controller driver. The ax88772 adapter is

representative, in terms of complexity and performance, ofthe majority of I/O devices found

in general-purpose computer systems. In contrast, the InfiniHost controller is an example

of a complex high-end device supporting extremely low-latency and high-bandwidth I/O
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Number of synchronisation objects Number of critical sections

Linux Dingo Linux Dingo

AX88772 8 2 19 2

InfiniHost 24 6 51 10

Table 5.2: The use of synchronisation primitives by Linux and Dingo drivers.

transfers.

Both Dingo drivers are based on the corresponding native Linux drivers, which allows

direct comparison between the two implementations.

5.4.1 Code complexity

Side-by-side comparison of the Dingo drivers and their Linux counterparts shows that Dingo

drivers implement the complete functionality of Linux drivers without increase in code size

or complexity. In particular, the use of C with events effectively addresses the stack-ripping

problem: whenever a Linux driver performs a blocking call towait for an I/O completion

or a timeout, the Dingo driver achieves the same effect usingtheAWAITconstruct.

By enforcing atomicity of driver invocations, Dingo dramatically reduces the amount

of synchronisation code in drivers. As shown in Section 5.3.4, event-based drivers need

to synchronise tasks that span multiple method invocations, but situations where such syn-

chronisation is necessary are uncommon, compared to preemptively multithreaded drivers.

Table 5.2 summarises the use of synchronisation primitivesin Linux and Dingo drivers.

Synchronisation primitives used by Linux drivers include mutexes, semaphores, spinlocks,

wait queues, completions, etc. In Dingo drivers synchronisation is based on events, as seen

in Section 5.3.4. The table shows the total number of synchronisation objects used by the

Linux and Dingo versions of the ax88772 and InfiniHost drivers, as well as the total number

of critical code sections protected by these objects.

5.4.2 Reliability

At this stage it is difficult to directly measure the effect ofthe Dingo architecture on the rate

of defects in drivers. Only a few Dingo drivers have been created, and they have not been

used for a sufficiently long time to gather a statistically significant sample of defects.

Therefore, I took an indirect approach to measuring the impact of Dingo on driver re-

liability. I analysed the Dingo ax88772 and InfiniHost drivers against a sample of defects

found in similar Linux drivers. For every defect studied, I determined whether an analogous

defect could be reproduced in a Dingo driver. Some defects simply cannot occur in Dingo,

for example, most race conditions cannot be reproduced due to the event-atomicity guaran-

tee. Likewise, deadlocks caused by invoking a blocking operation in the interrupt context

are not expressible in Dingo. Furthermore, Dingo protocolsrule out some request sequences
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Eliminated Reduced Unchanged

by design likelihood likelihood

Concurrency faults 27 2 0

S/W prot. violations 9 11 12

Total 36 13 12

Table 5.3: Categorisation of faults based on their potential occurrence in Dingo.

that can occur in Linux drivers along with defects introduced when handling them. This was

illustrated using the in Section 5.3.1 when discussing protocol dependencies in the context

of thePowerManagement protocol.

For those defects that can be reproduced in Dingo, I established whether the incorrect

behaviour caused by the defect is explicitly forbidden by driver protocols. While Dingo

does not eliminate these defects, the probability of introducing them is reduced compared

to Linux drivers due to the presence of a clear and complete specification of the protocol. If,

however, a protocol violation defect slips into the driver implementation, it can be detected

using runtime verification, as discussed in Section 5.3.3.

I used defects from the four USB-to-Ethernet adapter drivers used in the study of Linux

driver defects (Table 4.1) and analysed them against the Dingo implementation of the

ax88772 driver. I also used the 123 bugs found in the Linux InfiniHost driver and analysed

them against the Dingo version of the same driver. Of the 201 bugs found in these drivers,

I selected the 61 that belonged to the types of defects that Dingo is targeting, namely con-

currency defects (29) and defects caused by the complexity of OS protocols (32) and that

were applicable to the ax88772 and InfiniHost drivers (some Ethernet driver bugs were not

applicable to the ax88772 driver due to differences in the device interface).

The results of the evaluation are summarised in Table 5.3. Ofthe 61 selected defects, 36

fell in the category of defects not expressible in Dingo. Of the remaining possible defects

13 were OS protocol violations whose likelihood is reduced in Dingo. Being manually in-

troduced in the corresponding Dingo driver, these defects could be identified by the runtime

failure detector during testing.

Finally, 12 defects were deemed equally likely to occur in Dingo drivers and native

Linux drivers. These defects violated OS protocol constraints that were not captured by the

Tingu specifications. Three of these defects were violations of buffer management proto-

cols. As discussed in Section 5.3.2, Tingu does not currently provide means to specify these

protocols.

The remaining 9 defects were related to incorrect use of OS data structures. Most of

these defects occurred in the InfiniHost driver. This driverimplements several types of

objects, such as request and response queues, protection domains, user contexts, etc. The

InfiniBand driver protocol defines requests, which allow theOS to query the state of these

objects. In response to a query, the driver must return a correctly initialised object descrip-

tor. Formalising the requirement that each field of the descriptor is set to a valid value in
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Tingu requires adding complex guard expressions to all appropriate protocol state transi-

tions. Complex transition labels tend to clutter the specification and compromise its clarity,

thus defeating the primary purpose of Tingu; therefore I chose to leave these constraints

unspecified.

This example highlights the trade-off between clarity and scalability, which is inherent

to visual formalisms.

5.4.3 Performance2

We evaluated the performance overhead of the Dingo driver model on the ax88772 and

InfiniHost drivers using the Netperf [Net] benchmark suite.All benchmarks were run using

a Linux 2.6.27 kernel on an 8-way (4 physical CPUs with 2 hardware threads each) Itanium

2 1.7GHz with 8GB of RAM.

In all experiments in this section, the Netperf server was run with default arguments on

the machine with the Dingo driver under test. The Netperf client was running on another

machine with the following arguments:

netperf -H<server-ip-addr> -p <server-port> -t <benchmar k>

-c -C -l 60 - -m 32K

wherebenchmark is one ofUDP_RR, UDP_STREAM, or TCP_STREAM. The -l 60

argument sets the time of the run to 60 seconds. The-c and -C arguments enable CPU

utilisation calculations on both the server and the client.CPU utilisation numbers returned

by Netperf on the multiprocessor system turned out very imprecise; therefore we computed

CPU utilisation during the netperf run using the OProfile tool [OPr]. Finally, the-m 32K

option sets the transfer size to 32768 bytes (this option is only used in stream benchmarks).

For the ax88772 driver we measured latency and throughput for a varying number of

concurrent network connections. The latency test measuredthe average round-trip latency

of a 1-byte packet. The throughput test measured the throughput achieved by unidirectional

transfers of 32-kilobyte data blocks.

Figure 5.19 shows results of the latency test. The Dingo driver achieved latency within

4% of its Linux counterpart, while introducing a small CPU overhead due to the proto-

col translation and request queuing inside the Dingo framework. Importantly, this overhead

does not increase while going from 1 to 32 clients on a multiprocessor system. The through-

put benchmark (Figure 5.20) showed no significantdifference in performance between the

drivers.

The InfiniHost driver was used as the second example due to itsextreme performance

requirements. The InfiniBand interconnect architecture isdesigned for very high throughput

and low latency. Despite the use of zero-copy techniques, itstill puts substantial pressure on

the CPU, especially for small transfers. Furthermore, InfiniBand supports traffic isolation

among multiple concurrent connections; therefore the InfiniBand stack in Linux is designed

2The performance evaluation described in this section was carried out in collaboration with Dr. Peter Chubb.
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Figure 5.19: ax88772 UDP latency results. The top graph shows aggregate CPU utilisation

over all connections (ranging from 0% to 800% on the 8-way system). The bottom graph

shows average UDP echo latency across all connections.

to avoid synchronisation among data streams.

We compared the performance of the native Linux driver and the Dingo driver running

in the fully serialised and hybrid modes. We used the IP-over-InfiniBand Linux module

to send IP traffic through the InfiniBand link, and measured throughput and latency with

Netperf. To achieve traffic isolation, we configured 32 independent network interfaces, one

for each client, on top of the InfiniHost controller.

As shown in Figure 5.21, all three versions of the driver achieve the same latency. The

serialised Dingo driver shows a small increase in CPU utilisation. In throughput bench-

marks (Figure 5.22), the Dingo driver in the serialised modeshowed 10% throughput degra-
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Figure 5.20: ax88772 UDP throughput results. The top graph shows aggregate CPU utili-

sation over all connections. The bottom graph shows aggregate UDP throughput.

dation in the worst case, and less than 3% throughput degradation and no CPU overhead in

the hybrid mode (in the points where the hybrid driver consumes more CPU than the native

one, it sustains proportionally higher throughput). In allcases the performance of Dingo

drivers scaled as well as the native Linux driver. This showsthat the Dingo hybrid mode

allows drivers to take full advantage of multiprocessing capabilities.
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Figure 5.21: InfiniHost UDP latency benchmark results. The top graph shows aggregate

CPU utilisation; the bottom graph shows average UDP echo latency.
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Figure 5.22: InfiniHost TCP throughput benchmark results. The top graph shows aggregate

CPU utilisation; the bottom graph shows aggregate TCP throughput.
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We used the OProfile [OPr] tool to identify the source of the CPU overhead in the se-

rialised Dingo driver. We found that most of the extra CPU cycles were spent in acquiring

the spinlock that protects the Dingo request queue, although the lock was not actually con-

tended. This means that the overhead is caused by cache bouncing of the spinlock variable,

as the lock is being repeatedly acquired by each of the 4 CPUs.

These experimental results indicate that for the ax88772 and Infinihost drivers, which

are representative of a broad class of drivers with medium-to-high performance require-

ments, the reliability improvement offered by the Dingo architecture does not come at the

cost of performance.

5.5 Conclusions

This chapter proposed several improvements to the device driver architecture and develop-

ment methodology aimed to turn existing OSs into a more driver-friendly environment and

reduce defects caused by the complexity of the driver-OS interface. First, it showed that the

concurrency model based on events allows a reduction of the amount of non-determinism

that the driver has to handle and therefore eliminates the majority of concurrency-related

defects. Importantly, this is achieved with only a small impact on the performance. It fur-

ther showed that the stack ripping problem arising from the use of the event-based model

can be effectively addressed using a simple language extension.

Second, it presented a rigorous approach to defining interaction protocols between

drivers and the OS that enables clear and precise specification of the required driver be-

haviour through the use of a visual formalism based on finite state machines. Examples

presented throughout this chapter and in Appendix B show that Tingu is capable of captur-

ing complex protocols in a compact specification that can be readily understood by software

engineers.

While in this thesis Tingu is primarily used to formalise existing driver protocols, it is

also suitable for designing new protocols. Development of aprotocol for a new family of

drivers is a difficult task that proceeds in many iterations and requires a deep understanding

of relevant hardware specifications as well as driver and OS design issues. The use of Tingu

ensures that the result of this effort is not lost in the bowels of the OS code but is preserved

as a structured specification that conveys a great deal of knowledge about driver behaviour

in a compact form. In this way, Tingu helps close the communication gap between OS and

driver developers.



Chapter 6

Automatic device driver synthesis

with Termite

The Dingo architecture reduces the number of device driver defects by taking a formal

approach to modelling the interface between the driver and the OS. In this chapter I extend

this approach to formally specify both the OS and the device interfaces of the driver. The

resulting specifications exhaustively describe the required driver behaviour and can be used

to synthesise a complete driver implementation automatically. Driver synthesis has the

potential to dramatically reduce the impact of human error on driver reliability and to cut

down on development costs.

6.1 Motivation

The conventional, manual, driver development process is based on two sets of documen-

tation: the device documentation that describes the software interface of the device and

the OS documentation that describes OS services that must beimplemented and used by

the driver. Together these documents define the required correct driver behaviour. The job

of the driver programmer is to map OS requests into sequencesof device interactions—a

straightforward, yet error-prone task.

In this chapter I show that this task can be automated. To thisend, both the device and

the OS interfaces must be specified formally. Each specification describes possible interac-

tions across the respective interface and relates them to the third specification that defines

common behaviours of all devices of the given class. These specifications are processed by

a tool called Termite, which generates a complete driver implementation in C that satisfies

both specifications.

This work builds on the work on formalising device driver protocols presented in Chap-

ter 5. While Tingu OS protocol specifications do not in themselves provide sufficient infor-

mation for driver synthesis, they are an important step towards a complete formalisation of

driver behaviour as presented below.

99
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Separating device description from OS-related details is akey aspect of the proposed

approach. It allows the people with the most appropriate skills and knowledge to develop

specifications: device protocol specifications can be developed by device manufacturers,

and OS protocol specifications by the OS developers who have intimate knowledge of the

OS and the driver support it provides.

In a hand-written device driver, interactions with the device and with the OS are inter-

mingled, leading to drivers that are harder to write and harder to maintain. Termite speci-

fications each deal with a single concern, and thus can be simpler to understand and debug

than a full-blown driver.

Device protocol specifications are independent of any OS, sodrivers for different OSs

can be synthesised from a single specification developed by adevice manufacturer, thus

avoiding penalising less popular OSs with poor-quality drivers. A further benefit of device

and OS separation is that any change in the OS need only be expressed in the OS-protocol

specification in order to re-generate all drivers for that OS. This is particularly interesting

for Linux, which frequently changes its device driver interfaces from release to release.

Generating code from formal specifications reduces the incidence of programming er-

rors in drivers. Assuming that the synthesis tool is correct, synthesised code will be free

of many types of defects, including memory management and concurrency-related defects,

missing return value checks, etc. A defect in a driver can occur only as a result of an error

in the specification. The likelihood of errors due to incorrect OS protocol specifications is

reduced because these specifications are shared by many drivers and are therefore subject

to extensive testing.

In contrast, a device specification is developed for a particular device and is only used in

synthesising drivers for this device for a small number of OSs. Due to the low-level nature

of device protocols, their specifications tend to be more complex than OS specifications and

are therefore more likely to contain errors. One avenue for future research is to explore

the use of model checking techniques to establish formal correspondence between the ac-

tual device behaviour, as defined in its register-transfer-level description, and the Termite

specification. While model checking may not be able to guarantee equivalence between

the two specifications, it may be useful in finding and eliminating many discrepancies be-

tween them, thus substantially increasing the level of confidence that the resulting device

specification is correct. The feasibility of this approach is demonstrated by the success of

hardware model checking tools like VCEGAR [CJK04] and UCLID[AS04].

Errors in device specifications can be reduced by using modelchecking techniques

to establish formal correspondence between the actual device behaviour, as defined in its

register-transfer-level description, and the Termite specification. However, this capability is

not yet supported in Termite.

The separation of device and OS interface specifications sets Termite apart from the pre-

vious approaches to automatic driver synthesis surveyed inSection 3.6 [WMB03, ZZC03,

KSF00, OOJ98]. These previous techniques rely on the driverdeveloper to create a com-
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plete model of the driver behaviour in the form of communicating state machines written

in a high-level language. This model is then compiled into a low-level implementation lan-

guage like C. While the use of a high-level domain-specific language offers some reliability

benefits, it still requires the developer to construct the driver algorithm manually. In con-

trast, Termite derives the driver algorithm automaticallybased on the model of the device

and the OS.

While the above discussion is concerned with the technical implications of automatic

driver synthesis, the real-world success of this approach depends on device manufacturers

and OS developers adopting it.

For device manufacturers, the proposed approach has the potential to reduce driver de-

velopment effort while increasing driver quality. Furthermore, once developed, a driver

specification will allow drivers to be synthesised for any supported OS, thus increasing the

OS support for the device.

For OS developers, the quality and reputation of their OS depends greatly on the quality

of its device drivers: major OS vendors suffer serious financial and image damage because

of faulty drivers [GGP06]. Driver quality can be improved byproviding and encourag-

ing the use of tools for automatic driver synthesis as part ofdriver development toolk-

its. Since Termite drivers can co-exist with conventional hand-written drivers, migration to

automatically-generated drivers can be implemented gradually.

Another concern for OS developers is that acceptance and success of their OS depends

largely on compatibility with a wide range of devices. Sincedevice protocol specifications

are OS independent, providing support for driver synthesisallows the reuse of all exist-

ing Termite device protocol specifications, leading to potential increases in an operating

system’s base of compatible devices.

6.2 Overview of driver synthesis

Termite generates an implementation of a driver based on a formal specification of its de-

vice and OS protocols. The device protocol specification describes the programming model

of the device, including its software-visible states and behaviours. The OS protocol spec-

ification defines services that the driver must provide to therest of the system, as well as

OS services available to the driver. Given these specifications, Termite produces a driver

implementation that translates any valid sequence of OS requests into a sequence of device

commands.

This is similar to the task accomplished by a driver developer when writing the driver

by hand. In contrast to automatic driver synthesis, however, manual development relies on

informal device and OS documentation rather than on formal specifications: The device

protocol description is found in the device data sheet, whereas the OS protocol is docu-

mented in the driver developer’s manual and in the form of comments in the OS source

code.
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In Termite, the device and the OS interfaces are specified independently and are com-

prised of different kinds of objects: the device protocol consists of hardware registers and

interrupt lines, whereas the OS interface is a collection ofsoftware entrypoints and call-

backs. How can Termite establish a mapping between the two interfaces, while keeping the

associated protocol specifications independent?

The following solution is inspired by conventional driver development practices. Con-

sider, for example, the task of writing a Linux driver for theRTL8139D Ethernet con-

troller [Rea05]. Linux requires all Ethernet drivers to implement thehard_start_xmit

entrypoint described in the Linux driver developer’s manual [CRKH05]:

int ( * hard_start_xmit) (...);

Method that initiates thetransmission of a packet.

In order to implement this function, the driver developer consults with the RTL8139D de-

vice data sheet [Rea05], which describes the transmit operation of the controller as follows:

Setting bit 13 of the TSD register triggers thetransmission of a packet, whose

address is contained in the TSAD register and whose size is given by bits 0-12

of the TSD register.

While the two documents were written independently by different authors, both of them

refer to the act ofpacket transmission, which is the common behaviour of all Ethernet

controller devices and is independent of the specific devicearchitecture and OS personality.

It allows the driver developer to relate the two specifications and to correctly implement the

hard_start_xmit function by setting the appropriate device registers.

To generalise this example, both the device and the OS specifications refer to actions

performed by the device in the external physical world, e.g., transmission of a network

packet, writing a block of data to the disk, or drawing a pixelon the screen. The device

specification uses these actions to describe how the device reacts to various software com-

mands. Likewise, the OS specification mentions external device actions when describing

the semantics of OS requests.

Together, the set of such external actions characterises a class of similar devices, such

as Ethernet controllers or SCSI disks, and is both device andOS-independent. In Termite,

these actions are formalised in a separate device-class specification, which is provided to

the synthesis tool along with the device and OS specifications.

Figure 6.1 shows a high-level view of the synthesis process.The following subsections

elaborate on each of the three specifications involved in driver synthesis.

6.2.1 Device-class specifications

An informal description of a device class can usually be found in the relevant I/O protocol

standard. For example, the Ethernet LAN standard, maintained by the IEEE 802.3 working

group [IEE], describes common behaviours of Ethernet controller devices, including packet
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Figure 6.1: Driver synthesis with Termite. Solid arrows indicate inputs and outputs of the

synthesis tool; dashed arrows indicate references from thedevice and OS specifications to

the device-class specification.

transmission and reception, link status detection, speed autonegotiation, etc. Other I/O

protocol standards include SCSI, USB, AC’97, IEEE 1394, SD,etc.

Such a standard can be used to derive a formal Termite device-class specification for

the given type of devices. For interoperability reasons thestandard must be agreed upon by

all device and OS vendors; therefore a device-class specification based on it is guaranteed

to be free of any device or OS dependencies. At the same time, standards are designed to

allow freedom of implementation. In particular, they allowhardware optimisations, such as

packet buffering and vectored I/O. Therefore, using the standard as the basis for the device-

class specification ensures that the specification remains compatible with both basic and

advanced implementations of the standard.

In Termite, device-class functionality is formalised as a set of events. The majority of

events correspond to the various types of interactions between the device and its external

physical environment, as described by the standard. The Ethernet controller device class,

for example, includes such events as packet transmission, completion of autonegotiation,

and link status change.

The remaining events describe changes to internal device configuration settings. Many

of these settings are defined by widely adopted standards. For example, all Ethernet con-

trollers are required to support retrieving and changing ofthe controller MAC address.

Other settings are only supported by a subset of devices or even a single device. For in-

stance, while most Ethernet controllers implement some form of multicast filters, the exact

operation and format of these filters varies across devices.Device manufacturers imple-

ment such settings in order to differentiate their productsfrom the competition; therefore

it is important that Termite is capable of generating drivers that support these advanced

capabilities.

Three options are available in Termite for including non-standard device capabilities in
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device-class specifications. First, if the given capability is shared by several devices, it can

be included in the common device-class specification as an optional feature that need not be

supported by all implementations. Alternatively, if this capability is unique to the device,

the device manufacturer has to develop an extended version of the device-class specification

describing the given capability. The extension must be strictly incremental, so that it can be

combined with an existing OS protocol specification that is not aware of the new function.

The device manufacturer must also develop an extended OS protocol specification in order

to enable access to this function in a specific OS. Finally, separate device-class and OS

protocol specifications must be created in order to synthesise a driver for a one-of-a-kind

device whose functionality cannot be described as a superset of any existing device class.

One important concern related to device-class specifications is determining who should

develop and maintain these specifications. Since many of these specifications must be

shared by all device and OS vendors, they should ideally be developed by an independent

party that would ensure that the specification faithfully reflects the appropriate I/O protocol

standard and is free of device or OS-specific features. One possibility is to delegate this

task to the regulatory body responsible for maintaining therelevant I/O standard. Alterna-

tively, the device-class specification can be developed by aconsortium of OS and device

manufacturers.

6.2.2 Device specifications

The device specification models the software view of the device behaviour. It describes

device registers accessible to the driver and device reactions to writing or reading of the

registers. A device’s reaction depends on its current register values and state, e.g., whether

the device has been initialised, is busy handling another request, etc. The device reaction

may include actions such as updating register values, generating interrupts, and performing

one or more external actions defined in the device-class specification.

A device specification can be constructed in several ways. First, it can be derived from

informal device documentation. Hardware vendors often release detailed data sheets, de-

scribing the interface and operation of the device. Such a data sheet is intended to provide

sufficient information to enable a third party to develop a driver for the device.

Figure 6.2 shows a specification of the transmit command of the RTL8139D device

derived from its data sheet (for now, we write the specification in English, rather than in the

formal Termite language, which will be introduced in Section 6.4). Here, steps 1, 3, and

4 represent actions of the device protocol, whereas the packet transfer performed in step 2

is a device-class event. The latter cannot be observed directly by the software, but can be

controlled indirectly. Specifically, the driver can initiate packet transfer by setting bit 13 of

the TSD register and is notified of the transfer completion byan interrupt and a flag in the

status register.

The problem with this approach to obtaining device specifications is that informal de-



6.2. OVERVIEW OF DRIVER SYNTHESIS 105

1. The TSD register is updated by the software.

2. If bit 13 of the TSD register changed from 0 to 1, the device performs a packet transfer.

The physical address and size of the packet are determined byTSD and TSAD registers.

3. The device sets a flag in the interrupt status register to signal successful completion of

the transfer.

4. An interrupt signal is generated.

Figure 6.2: Specification of the transmit operation of the RTL8139D controller derived from

its data sheet.

To transmit a network packet:

1. Write the packet address to the TSAD register;

2. Write the TSD register, storing the packet size in bits 0 to12 to and setting bit 13 to 1;

3. Wait for an interrupt from the controller;

4. Read the interrupt status register to make sure that the transfer was successful;

5. Packet transfer complete.

Figure 6.3: Specification of the transmit operation of the RTL8139D controller derived from

a reference driver implementation.

vice documentation seldom undergoes adequate quality assurance. As a result, it tends to

be incomplete and inaccurate. A specification derived from such a data sheet is likely to

reproduce these defects, in addition to extra ones introduced in the process of formalisation.

Another approach to the construction of a device specification is to distil it from an ex-

isting driver implementation provided by the device vendoror a third party. The source code

of the driver defines sequences of commands that must be issued to the driver in order to

perform a specific operation. A Termite specification of the device is obtained by separating

these device control sequences from OS-specific details.

Figure 6.3 shows a specification of the RTL8139D transmit operation extracted from

the source code of the Linux driver for this device. While this specification is functionally

equivalent to the one in Figure 6.2, it is substantially different in style. The specification

obtained from the data sheet describes how the device reactsto software commands in

different states, but does not explicitly define the order inwhich these commands should be

issued to achieve a particular goal. In contrast, the specification derived from the existing

driver source code specifies an explicit command sequence. The Termite synthesis tool,

described here, can handle both types of specifications.

The main drawback of this approach to constructing device specifications is that it relies

on someone to develop at least one driver for the device manually and thus contradicts our

goal of eventually replacing manual driver development with automatic synthesis. Besides,
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similarly to informal documentation, a device driver may contain errors, which are carried

over to the resulting specification. However, the likelihood of such errors in a well-tested

driver is much lower.

The third way to construct a device specification is to deriveit from theregister-transfer

level (RTL)description of the device written in ahardware description language (HDL).

This requires abstracting away most of the internal logic and modelling only interface mod-

ules, responsible for interaction with the host CPU.

Since the RTL description is used as the source for generating the actual device cir-

cuit, it constitutes an accurate and complete model of the device operation. Therefore, this

method of obtaining device specifications is the preferred one. Furthermore, since the RTL

description has well-defined formal semantics, one could potentially use model checking

techniques to verify that the resulting Termite specification constitutes a faithful abstraction

of the device behaviour, thus eliminating errors introduced during manual abstraction. I

have not implemented support for such model checking yet.

Many I/O devices contain a general-purpose processor or a simple microcontroller ca-

pable of executing programs stored in the device memory. Such programs are known as

device firmware. The behavioural specification of such a device cannot be obtained solely

from its RTL description, but needs to be extracted from the combination of RTL and the

firmware code.

The main limitation of this approach to obtaining device specifications is that it requires

access to the RTL description of the device and its firmware, which are usually part of the

device manufacturer’s intellectual property. Therefore,the device manufacturer is in the

best position to produce such device specifications.

6.2.3 OS specifications

The OS protocol specification defines OS requests that must behandled by the driver, the

ordering in which these request can occur and how the driver should respond to each type

of request. To this end, it defines a state machine, where eachtransition corresponds to a

driver invocation by the OS, an OS callback made by the driver, or a device-class event.

Any of these operations is only allowed to happen if it triggers a valid state transition in the

state machine.

This is similar to Tingu OS protocol specifications, the key difference being that Tingu

specifications, as described in Chapter 5, specify the ordering of invocations exchanged be-

tween the driver and the OS without defining the semantics of these operations. In contrast,

Termite OS protocol state machines describe the semantics of OS requests in terms of their

external effect, i.e. in terms of device-class events that must be generated in response to the

request.

Consider, for example, the fragment of the protocol betweenthe Linux kernel and an

Ethernet driver specified in Figure 6.4. This specification states that the driver must respond
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1. The OS sends ahard_start_xmit request to the driver;

2. Eventually, the device completes the transfer of the packet, passed as an argument to

hard_start_xmit ;

3. The driver calls thedev_kfree_skb_any function to notify the OS of the packet

completion.

Figure 6.4: A fragment of the Ethernet controller driver protocol specification.

to thehard_start_xmit request by completing the transfer of the network packet spec-

ified in the request. The transfer of a packet is a device-class event. The exact mechanism

of generating this event is described in the device specification; the OS specification simply

states that the event must occur for thehard_start_xmit request to be satisfied.

The specification in Figure 6.4 imposes both safety and liveness constraints on the

driver. Safety ensures that the driver does not violate the prescribed ordering of operations,

e.g., it is only allowed to send a packet after receiving an appropriate request. Liveness

forces certain events to eventually happen, thus guaranteeing forward progress. In this ex-

ample, after receiving the transmit request, the driver must eventually transfer the packet.

As discussed in Chapter 5, a driver interacts with the OS through several protocols—

one for each service provided or used by the driver. Termite allows each OS protocol to be

defined independently, in a separate specification. Multiple protocols can then be combined

in a driver declaration given to Termite.

6.2.4 The synthesis process

The goal of the Termite synthesis tool is to generate a driverimplementation that complies

with all relevant protocol specifications. Such an implementation must satisfy the following

requirements:

1. Safety. The driver must not violate the specified ordering of operations. If the driver

issues a device command which raises a device-class event, this event must be al-

lowed in the OS protocol specification in the current state, i.e. the driver should only

perform external actions when allowed by the OS protocol. Likewise, every OS call-

back performed by the driver must correspond to a transitionin the OS protocol state

machine.

2. Liveness. The driver must be able to meet all its goals: whenever the OSprotocol

state machine is in a state where an event or one of a group of events is required to

eventually happen, the driver must guarantee the occurrence of this event within a

finite number of steps.

The driver synthesis problem can be formalised as a two-player game [Tho95] between

the driver as one player and its environment, which is comprised of the device and the OS,
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as the other. The players participate in the game by exchanging commands and responses

across driver interfaces. Each player directly controls a subset of interactions: the OS con-

trols requests sent to the driver, the driver controls commands sent to the device and OS

callbacks, and the device controls responses to software commands. Rules of the game de-

fine legal sequences of interactions between the players andare given by the device and OS

protocol specifications (safety). The driver’s game objective is to complete any OS request

in a finite number of steps (liveness).

The Termite synthesis algorithm computes a winning strategy on behalf of the driver.

A winning strategy must guarantee that the driver will achieve its objectives, regardless

of how the device and the OS behave, as long as their behaviourremains within rules.

The formulation of the problem as a game enables us to employ existing game-theoretic

techniques in computing the driver strategy. Details of theTermite synthesis algorithm are

presented in Section 6.6.

The resulting strategy constitutes a state machine, where in every state the driver either

performs an action, e.g., writes a device register or invokes an OS callback, or waits for an

input from the environment, e.g., a completion interrupt from the device, or a call from the

OS. This state machine is translated into C code, which can becompiled and loaded in the

OS kernel just like a conventional, manually developed driver.

6.3 A trivial example

I illustrate the driver synthesis methodology using the example of a driver for a hypothetical

trivial network controller device. This example serves to clarify the concepts introduced

above. The specification language and the synthesis algorithm used to generate realistic

device drivers are presented in the following sections.

The network controller is capable of transferring data overthe network, one bit at a

time. Its software interface consists of a control register, set to 1 or 0 to switch the device

on and off respectively, and a data register, where the software can write a bit of data to be

transmitted over the wire (Figure 6.5a).

For the sake of the example, assume that this device represents a class of similar trivial

network controller devices. The device-class specification consists of a single event,sent .

The event is generated every time the controller sends a bit of data. The semantics of this

event do not depend on a specific register layout or OS personality, and can therefore be

used in both the device and the OS protocols without violating the separation of concerns

between the protocols.

Figure 6.5b and Figure 6.5c specify the device and the OS protocols of the driver to be

synthesised respectively. State transitions in Figure 6.5represent interactions between the

driver, the device, and the OS and occurrences of device-class events.

According to the device specification in Figure 6.5b, the only command allowed in the

initial state of the device protocol is writing 1 (ctrlWrite(1) ) to the control register to
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(a) Controller
registers

0=off
1=on

data

ctrl

(b) Controller interface state machine

!sendComplete

?send sent

(c) OS interface state machine
init completesending

!ctrlWrite(0)

!ctrlWrite(1)

!dataWrite/
sent

off on

Figure 6.5: Specification of a trivial network controller driver.

switch the device on. Afterwards, the driver may either write a value to the data register

(dataWrite ), sending it on the network, as denoted by the occurrence of thesent event,

or write 0 to the control register (ctrlWrite(0) ), returning the device to the off state.1

The OS protocol (Figure 6.5c) consists of asend command from the OS, in response

to which the driver must send the data on the network and deliver a sendComplete

notification to the OS.

Two transitions in Figure 6.5c have timeout labels. Timeoutlabels provide a simple

way to define goals for the driver. If one of the driver protocols is in a state that has one or

more outgoing transitions with a timeout label, the driver is not allowed to stay in this state

indefinitely but must eventually leave it via a timeout transition.

The synthesis algorithm starts by computing the parallel product of the two state ma-

chines in Figure 6.5 resulting in a new state machine that describes all legal behaviours

of the system consisting of the driver, the device, and the OS(Figure 6.6). A state of the

product state machine corresponds to a pair of states in the original input state machines,

e.g., the initial state of the product state machine corresponds to the pair of initial states

<off,init> . In the product, actions that belong to different protocolsoccur indepen-

dently, whereas thesent event shared by the two protocols only occurs when allowed

by both input state machines. Timeout labels are transferred from the input FSMs to the

corresponding transitions of the product state machine.

The product state machine defines the rules of the game between the driver, the device,

and the OS. The next step is to find a winning strategy on behalfof the driver among all

behaviours allowed by the product state machine. If such a strategy exists, it can be obtained

from the product state machine by eliminating all transitions that do not lead to the goal.

1For clarity of presentation, the actual value written to thedata register is ignored.
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sent
!dataWrite/

?send

!ctrlWrite(1)

!ctrlWrite(0)!ctrlWrite(0)!ctrlWrite(0)

!ctrlWrite(1) !ctrlWrite(1)

!sendComplete

!sendComplete

?send
<off,sending><off,init> <off,complete>

<on,sending> <on,complete><on,init>

Figure 6.6: Product state machine representing combined constraints of the two driver pro-

tocols.

?send

!ctrlWrite(1)

!sendComplete

?send !dataWrite

Figure 6.7: Synthesised driver algorithm.

The algorithm for computing such a strategy will be presented in Section 6.6.

A winning strategy for the state machine in Figure 6.6 is shown in Figure 6.7. It is

easy to see that this state machine implements the expected correct driver behaviour: upon

receiving a send request from the OS, it switches the controller on (!ctrlWrite(1) ),

transmits the data (!dataWrite ), and sends a completion notification to the OS

(!sendComplete ), leaving the driver ready for the next request with the device pow-

ered on. The OS specification did not include powering down the device, so theoff state

becomes unreachable after the first time a message is sent.

The final step is to generate code to implement the state machine representing the cal-

culated winning strategy. This step will be described in Section 6.6.

6.4 The Termite specification language

Device, OS, and device-class specifications in Termite are developed using the Termite

specification language. This section outlines requirements that drove the design of the lan-

guage and presents its syntax and semantics.

The Termite specification language must be suitable for modelling the behaviour of
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complex I/O devices, containing multiple functional units. Such a system cannot be feasibly

described by explicitly enumerating its states (as was donein the above example). A high-

level language, providing constructs to express hierarchical composition of communicating

state machines, is required.

The language should also provide flexible data definition andmanipulation facilities.

Examples of data in Termite specifications include device registers, DMA buffers, and op-

erating system I/O request descriptors.

Some existing languages satisfy these requirements. In particular, hardware description

languages are well-suited for describing device behaviour, and are sufficiently general to

model arbitrary state-machine-based systems. At the moment, however, Termite does not

provide an HDL frontend.

The previous chapter presented the Tingu language designedspecifically for writing

driver protocol specifications. Tingu provides facilitiesfor dealing with data and concur-

rency and is thus a natural candidate for the Termite specification language. The main limi-

tation of Tingu is that it relies on a visual formalism to describe the behavioural part of driver

protocols. While Statecharts allow clear and concise specification of simple protocols, they

quickly hit their limit when dealing with more complex behaviours. Even specifying driver-

OS protocols using Statecharts required sacrificing completeness for readability in some

cases (see Section 5.4). Device protocols tend to be more complex than OS protocols and

cannot be practicably specified using Statecharts.

Therefore, device and OS protocol state machines in Termiteare described using a tex-

tual algebraic notation rather than a visual language. Other elements of the Tingu syntax,

including components, protocols, methods, variables, anddependencies, are reused unmod-

ified, with one extension: Termite defines a new type of methodto model device-class

events, in addition toin andout methods. Device-class events represent internal device

state transitions that are not observable at the driver interface, therefore these events are

declared using theinternal keyword. Termite currently does not allow synthesising

drivers that spawn new ports at runtime; therefore subport declarations are not allowed in

Termite protocol specifications. In summary, the Termite protocol specification language

differs from Tingu in the following ways:

• In Termite, protocol state machines (i.e., thetransitions section of the protocol

specification) are expressed using the algebraic formalismpresented below instead of

Statecharts.

• Termite supports theinternal method qualifier, in addition toin andout quali-

fiers.

• Termite does not support subport declarations.

The rest of this section introduces the formalism used to define protocol state machines

in Termite. The formalism is based on the LOTOS process calculus [LOT89]. A protocol
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process FOO

t1; t2; FOO

endproc

FOO

t1

t2

Figure 6.8: A simple Termite process and the corresponding state machine.

state machine consists of transitions combined into processes. A transition is triggered by

a protocol method invocation or an occurrence of a device-class event. A process describes

valid sequences of transitions.

A simple process is a sequence of transitions named after itsinitial state. For example,

Figure 6.8 shows a process that allows transitionst1 andt2 to occur before returning to

the initial stateFOO. An individual transition in a process has the following syntax:

<transition> ::= <trigger> "[" <guard> "]" "/" <action> ":t imed"

with optional <guard> , <action> , and timed components. Here,<trigger> ,

<guard> , and<action> follow the syntax defined for Tingu state transition labels (see

Section 5.3 and Section A.2).

The trigger can be either a protocol method or one of two special triggers: await

and timeout . Theawait trigger denotes a transition that is taken as soon as its guard

evaluates to truth, without waiting for a particular methodto be invoked. Thetimeout

transition is triggered after the amount of time specified byits argument. It can be used to

model time-dependent device and OS behaviours.

The guard specifies a predicate on protocol variables and method arguments that must

hold for the transition to be enabled. The action defines how protocol variables are updated

when the transition is taken.

Thetimed keyword is used to specify liveness requirements of the protocol: whenever

the state machine is in a state with one or more enabled timed transitions, one of these

transitions must eventually be taken. If the timed transition corresponds to an outbound or

internal method, then it is the responsibility of the driverto invoke this method or force

the corresponding device-class event to occur; otherwise,the other side of the protocol (the

device or the OS) guarantees that it will invoke the corresponding method of the driver.

Processes are composed out of individual transitions usingsequential and parallel com-

position operators which are listed in Table 6.1 and described in more detail below. The

complete syntax of Termite processes inBackus-Naur Form (BNF)is presented in Sec-

tion A.4.

Deadlock The deadlock process (denotedstop ) cannot perform any transitions and

never terminates.
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Name Syntax Semantics Description

Deadlock stop Inactive process

Termination exit
e

Successful termination

Action prefixing t; P P
t A process that performs transition t and

then behaves as process P

Choice P1 [] P2
P1 P2

A process that behaves either as process P1

or as process P2

Conditional if[cond]P1[]else P2
cond

P1 P2

true false
A process that behaves as P1 if cond holds

or as P2 otherwise

Sequential compo-

sition
P1 >> P2

exit
P1 P2 Start process P2 after P1 terminates

Preemption P1 [> P2 P1 P2
t Execution of P1 is interrupted when the

first transition of P2 occurs

Parallel composi-

tion
P1|[m1...mn]|P2 P1 P2

m1

mn

P1&P2 run concurrently, synchronising on

methods m1..mn, i.e., one of these methods

can only occur when it triggers a state tran-

sition in both processes

Interleaving P1|||P2 P1 P2
P1&P2 run concurrently; transitions can ar-

bitrarily interleave

Named process process P...endproc A process that can be instantiated by name

Table 6.1: Termite process syntax. Circles denote individual states. Squares denote entire state machines, aka

processes.

Termination The purpose of theexit process is solely to perform successful termination,

after which it behaves like the deadlock processstop. Formally,

exit
e
−→ stop

wheree is the successful termination event. The above notation states that the left-hand

side process (exit ) can perform a transition labelede and then behave as the right-hand

side process (stop ).

Similarly to the deadlock process, the termination processis not capable of performing

any externally visible actions. The difference betweenexit andstop processes is in how

they compose with other processes, as shown below.

Action prefixing The action prefixing operator defines a process that performsa specified

transition and then behaves as another processP :

t; P
t
−→ P
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Choice The choice operatorP1[]P2 defines a process that can behave as either processP1

or processP2. The choice is resolved at the instance when the process performs its first

transition. If this transition belongs toP1 then the choice process must continue behaving

asP1; otherwise, if it is a transition defined inP2 then the choice process continues asP2.

Termite does not allow non-deterministic choice when bothP1 andP2 contain the same

initial transition. Formally,

P1
t1
−→ P1′

P1[]P2
t1
−→ P1′

P2
t2
−→ P2′

P1[]P2
t2
−→ P2′

The first of the above clauses states that ifP1 is capable of performing transitiont1 and

transforming into processP1′ then processP1[]P2 is capable of the same behaviour. The

second clause is analogous forP2.

Conditional The conditional operator alters the process’s behaviour based on the protocol

variable values:

(expr) ∧ (P1
µ1
−→ P1′)

(if(expr)P1[]else P2)
µ1
−→ P1′

(¬expr) ∧ (P2
µ2
−→ P2′)

(if(expr)P1[]else P2)
µ2
−→ P2′

whereµi is either a transition or a successful termination event.

Sequential composition The sequential composition operator executes two processes se-

quentially, with the second one starting execution as soon as the first one terminates suc-

cessfully:

P1
t
−→ P1′

(P1 >> P2)
t
−→ (P1′ >> P2)

(P1
e
−→ stop) ∧ (P2

µ
−→ P2′)

(P1 >> P2)
µ
−→ P2′

Preemption The preemption operator aborts the execution of a process when another

(preempting) process performs a transition:

P1
t
−→ P1′

(P1[> P2)
t
−→ (P1′[> P2)

P1
e
−→ stop

(P1[> P2)
e
−→ stop

P2
µ
−→ P2′

(P1[> P2)
µ
−→ P2′

To avoid nondeterminism, Termite does not allow the preempting and the preempted pro-

cesses to have transitions with the same trigger enabled simultaneously.

Parallel composition The parallel composition operator models concurrent execution of

two processes. Concurrency here means that the parallel composition can perform an action

that either component is ready to perform. The parallel processes synchronise on a subset

of methods. One of these methods can only be invoked if both processes are ready for it.

When the method is invoked, it triggers a state transition inboth processes. The effect of

the parallel composition operator is defined by the following rules:

P1
t1
−→ P1′, t1 = trig1[g1]/a1, trig1 /∈ {m1...mn}

(P1|[m1...mn]|P2)
t1
−→ (P1′|[m1...m2]|P2)
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If the first process can perform transitiont1whose label consists of triggertrig1, guardg1,

and actiona1, wheretrig1 is not one of the methods in the synchronisation set{m1...mn},

then the composition can perform the same transition. The second process remains in its

initial state.

Similar rule holds for the second process (parallel composition is commutative):

P2
t2
−→ P2′, t2 = trig2[g2]/a2, trig2 /∈ {m1...mn}

(P1|[m1...mn]|P2)
t2
−→ (P1|[m1...m2]|P2′)

(P1
t1
−→ P1′) ∧ (P2

t2
−→ P2′), t1 = trig[g1]/a1, t2 = trig[g2/a2], trig ∈ {m1...mn}

(P1|[m1...mn]|P2)
trig[g1∧g2]/{a1;a2;}
−−−−−−−−−−−−→ (P1′|[m1...mn]|P2′)

If both processes are ready to perform transitions with the same trigger and this trigger

belongs to the synchronisation set, then the parallel composition can perform a transition

with the same trigger. This transition is guarded by the conjunction of the original guards

and its effect on protocol variables is defined as the concatenation of the original actions:

{a1; a2; }. Note that the commutativity of parallel composition requires thata1 anda2 are

commutative.

Finally, the parallel composition successfully terminates when both constituent pro-

cesses terminate:
(P1

e
−→ stop) ∧ (P2

e
−→ stop)

(P1|[m1...mn]|P2)
e
−→ stop

Interleaving Interleaving is a special case of parallel composition where the synchroni-

sation set is empty:

P1|||P2 ≡ P1|[]|P2

Named process A named process is declared as follows:

process <process-name>

<behavioural-expression>

endproc

where behavioural-expression is written using the constructs presented above.

Once declared, the process can be instantiated by name and used with any of the above

operators (in place ofP, P1, or P2).

This feature facilitates modular specifications and behaviour reuse. Most importantly, it

extends the expressive power of the language by allowing recursive behaviours, such as the

one in Figure 6.8.

6.4.1 Restrictions on device-class specifications

As mentioned above, the Termite specification language is used to develop all three spec-

ifications involved in driver synthesis: the device protocols specification, the OS protocol
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Figure 6.9: SD host controller device.

specification and the device-class specification. While theOS and the device protocol speci-

fications can use the complete expressive power of the language, device-class specifications

are subject to the following restrictions:

1. A device-class specification defines events that are either internal to the device or

occur at the boundary between the device and its external physical environment. In

the Termite specification language such events must be declared as methods with

the internal specifier to denote the fact that they cannot be directly observed at

the software interface of the device. Thus, device-class specifications only contain

internal methods.

2. A device-class specification defines common behaviours ofa class of devices but does

not define the ordering in which these behaviours are allowedto occur. As such, it

may not havetransitions , variables , anddependencies sections.

The second restriction reflects a limitation of the present Termite implementation. In

principle, associating ordering constraints with device-class events is a good idea, since it

would enable separate validation of device and OS protocols: any correct device or OS

protocol state machine must refine the behaviour defined by the device-class specification.

However, such validation has not been implemented.

6.5 A realistic example

This section illustrates the various concepts introduced in the previous sections using a com-

plete Termite specification of a driver for aSecure Digital (SD)host controller device. This

device was chosen since it is simple enough to allow a concisedescription, yet represents a

real device allowing us to show what Termite specifications for real hardware look like.

6.5.1 Overview

An SD host controller acts as a bridge between the host CPU andan SD card device con-

nected to the SD bus (Figure 6.9). The SD bus architecture is host-centric with the host con-

troller issuing commands on the bus and the SD card executingthe commands and sending

responses back to the host controller.

This example targets an open-source SD host controller implementation published by

the OpenCores project [Edv]. The device protocol specification presented here has been
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os:SDHostOS

dev:SDHostOpenCores
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Figure 6.10: SD host controller driver and its ports.

component sdhc_opencores

{

ports :

SDHostClass class;

SDHostOS os<class/class>;

SDHostOpenCores dev<class/class>;

};

Figure 6.11: The SD host controller driver component specification.

manually derived from the register-transfer level VerilogHDL design of the controller.

Figure 6.10 shows the architectural view of the driver that must be synthesised. The

driver implements two ports: one for interaction with the OSand one for interaction with

the device. This architecture assumes that the host CPU can read and write device registers

directly, so the driver does not need to use a bus transport service to access the device.

The Termite declaration of the driver is shown in Figure 6.11. It lists the three specifica-

tions that the driver must comply with: the SD host controller device-class specification and

the OS and the device protocol specifications. The device class is modelled as a separate

protocol that only contains internal methods representingdevice-class events. The device

and the OS protocols both declare dependencies on the device-class protocol, which allows

establishing the relative ordering of interface method invocations and device-class events.

The following subsections consider each of the three protocols in detail.

In order to keep the example concise, I have chosen not to model all of the device and OS

features. In particular, in modelling the controller and the SD bus behaviour I specify sim-

plified SD command and response formats and abstract away theSD error recovery, power

management, and hot plugging behaviours. Likewise, I definea simplified OS protocol,

which is loosely based on the analogous protocol in Linux, but does not support advanced

configuration options and multiple-block data transfers.
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Note that results for synthesising drivers from unabridgeddevice specifications are pre-

sented in Section 6.8.

6.5.2 The device-class specification

As mentioned in Section 6.2, a device-class specification must capture common external

behaviour of a family of similar devices. For SD host controller devices, the common

behaviour is defined in the SD bus specification [SD 06], maintained by the SD Association.

According to this specification, the controller operates byissuing SD commands, con-

sisting of a 6-bit command index and a 32-bit argument, on thebus. Upon completion of the

command, the card sends back a 32-bit response. Two commandsinvolve an additional data

transfer stage that follows the response: the block read command is followed by the transfer

of a 512-byte block from the card; the block write command is followed by the transfer of

a 512-byte block to the card. The argument of both commands isthe block address in the

card memory.

The controller also manages several bus configuration parameters, of which we model

just one—the bus clock frequency. The frequency can be modified by applying a divisor to

the basic clock.

Figure 6.12 shows the specification of the SD host controllerdevice class. It is defined

as an protocol with only internal methods (corresponding todevice-class events). The first

two events (lines 19 and 21) are generated when the device is turned on and ready for use

and when it is inactive respectively. The remaining events describe command and data

transfers and bus frequency change operations outlined above.

Since the device class only defines the set of events shared between the OS and the

device specifications and does not impose constraints on theordering of these events, a

device-class specification does not define a state machine.

6.5.3 The OS protocol specification

The OS protocol specification (Figure 6.13) describes the service that an SD host con-

troller driver must provide to the OS. It declares data typesexchanged between the OS

and the driver (lines 3–15), protocol methods, including OSrequests and driver responses

(lines 16–33), device-class events whose occurrence is restricted by the protocol (lines 33–

42), variables used to describe the state of the protocol (lines 43–46), and the protocol state

machine (starting in line 47).

The protocol state machine defines the driver’s required reactions to requests in terms

of device-class events that must occur before the driver sends a completion notification

to the OS. This pattern is illustrated, for instance, in lines 48–50, which specify how the

driver must handle aprobe request from the OS. Before replying to this request in line 50,

the driver must ensure that theclass.on event in line 49 occurs. This event refers to

the on event defined in the device-class specification (Section 6.5.2). In other words, the
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1 protocol SDHostClass

2 {

3 types :

4 /*SD error conditions*/

5 enum sdh_status_t {

6 SDH_SUCCESS = 0, /* success */

7 SDH_ECRC = 1, /* CRC error */

8 SDH_ETIMEOUT = 2 /* timeout */

9 };

10 /*SD command attributes*/

11 struct sdh_cmd_t {

12 unsigned<6> index; /*cmd index*/

13 unsigned<32> arg; /*argument*/

14 bool data; /*command with data?*/

15 bool response; /*response expected?*/

16 };

17 methods :

18 /*Device initialized*/

19 internal on();

20 /*Device inactive*/

21 internal off();

22 /*Successful completion of a command stage*/

23 internal commandOK(sdh_cmd_t command, unsigned<32> response);

24 /*Command stage failed*/

25 internal commandError(sdh_cmd_t command, sdh_status_t status);

26 /*Successful completion of a data stage*/

27 internal blockTransferOK(

28 paddr_t mem_addr, //host address of the block

29 unsigned<32> card_addr); //card address

30 /*Data transfer failed*/

31 internal blockTransferError(

32 paddr_t mem_addr,

33 unsigned<32> card_addr,

34 sdh_status_t status);

35 /*Bus frequency changed*/

36 internal busClockChange(u32 divisor);

37 };

Figure 6.12: The SD host controller device-class specification.

precondition for delivering theprobeComplete notification to the OS is that the device is

successfully initialised. Note that the state machine doesnot describe how this precondition

is satisfied. This information is part of the device specification, considered below.

After completing the initialisation, the protocol state machine executes theREQUESTS



120 CHAPTER 6. AUTOMATIC DEVICE DRIVER SYNTHESIS WITH TERMITE

1 protocol SDHostOS

2 {

3 types :

4 struct sdhc_request_t {

5 unsigned<32> opcode; /*cmd index*/

6 unsigned<32> arg; /*cmd argument*/

7 bool response; /*response present*/

8 bool data_present; /*data stage present*/

9 paddr_t block; /*block address*/

10 };

11 struct sdhc_response_t {

12 int<32> cmd_status; /*cmd stage status*/

13 unsigned<32> response; /*response from card*/

14 int<32> data_status; /*data stage status*/

15 };

16 methods :

17 /*Probe and initialise the controller*/

18 in probe ();

19 out probeComplete (int<32> status);

20

21 /*Shut down the device and terminate the driver*/

22 in remove ();

23 out removeComplete ();

24

25 /*Issue a command on the bus, followed by a data

26 transfer stage (if the command involves one)*/

27 in request (sdhc_request_t request);

28 out requestComplete (sdhc_response_t response);

29

30 /*Change the bus clock frequency*/

31 in setClock (unsigned<32> divisor);

32 out setClockComplete ();

33 dependencies :

34 SDHostClass class {

35 restricts on;

36 restricts off;

37 restricts commandOK;

38 restricts commandError;

39 restricts blockTransferOK;

40 restricts blockTransferError;

41 restricts busClockChange;

42 };

Figure 6.13: The SD host controller driver OS protocol specification (continued on the next

page).
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43 variables :

44 unsigned<32> m_reqDiv; /*requested divisor*/

45 sdhc_request_t m_request;

46 sdhc_response_t m_response;

47 transitions :

48 probe;

49 class. on:timed ;

50 probeComplete[$status==0]:timed ;

51 REQUESTS

52

53 where

54

55 process REQUESTS

56 /*A remove request*/

57 remove;

58 /*The driver must switch the device off

59 before calling the completion method*/

60 class. off:timed ;

61 removeComplete:timed ;

62 /*The protocol state machine terminates*/

63 exit

64 []

65 /*Command without a data transfer stage*/

66 request[$request.data_present==false]

67 /m_request=$request;

68 (

69 class. commandOK

70 [($command.index==m_request.opcode)&&

71 ($command.arg==m_request.arg)&&

72 ($command.response==m_request.response)&&

73 ($command.data==false)]

74 /{m_response.cmd_status=0;

75 m_response.response=$response;}:timed ;

76 requestComplete[$response==m_response]:timed ;

77 REQUESTS

78 []

79 class. commandError

80 /{m_response.cmd_status=$status;

81 m_response.response=0;}:timed ;

82 requestComplete[$response==m_response]:timed ;

83 REQUESTS

84 )

Figure 6.13: The SD host controller driver OS protocol specification (continued).
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85 []

86 /*Command 17 (block read request) and command 24

87 (block write request) are handled similarly*/

88 request[($request.data_present==true)&&

89 (($request.opcode==17)||($request.opcode==24))]

90 /m_request=$request;

91 (

92 /*Command stage completes successfully*/

93 class. commandOK[($command.index==m_request.opcode)&&

94 ($command.arg==m_request.arg)&&

95 ($command.response==m_request.response)&&

96 ($command.data==true)]

97 /{m_response.cmd_status=0;

98 m_response.response=$response;}:timed ;

99 (

100 /*Data transfer stage completes successfully*/

101 class. blockTransferOK[$mem_addr==m_request.block]

102 /m_response.data_status=0 : timed ;

103 requestComplete[$response==m_response]:timed ;

104 REQUESTS

105 []

106 /*Data transfer fails*/

107 class. blockTransferError/m_response.data_status=$status;

108 requestComplete[$response==m_response]:timed ;

109 REQUESTS

110 )

111 []

112 /*Command stage fails*/

113 class. commandError/{m_response.cmd_status=$status;

114 m_response.response=0;

115 m_response.data_status=0;};

116 requestComplete[$response==m_response]:timed ;

117 REQUESTS

118 )

119 []

120 /*A setClock request*/

121 setClock/m_reqDiv=$divisor;

122 /*The driver must change the bus clock divisor to the

123 requested value before calling the completion method*/

124 class. busClockChange[$divisor==m_reqDiv]:timed ;

125 setClockComplete:timed ;

126 REQUESTS

127 endproc

128 };

Figure 6.13: The SD host controller driver OS protocol specification (the end).
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process (line 55). In its initial state, this process performs a choice between incoming

requests defined in lines 57, 66, 88, and 121 using the choice operator[] (lines 64, 85, and

119). This means that the driver must wait for the OS to call one of these methods.

We consider one of the four requests in detail in order to illustrate the use of protocol

variables and transition guards in OS specifications. Line 66 describes a request to issue

an SD command without a data transfer stage. Upon receiving the request, the request

structure is copied to them_request variable. The state machine defines two possible

outcomes of this request: either the device successfully completes the command (line 69)

or the command completes with an error (line 79). The guard inlines 70–73 states that the

command transferred on the bus must correspond to the one requested by the OS. In case

of success, the response received from the SD card is saved inthem_response variable

(line 75) and delivered to the OS by calling therequestComplete method (line 76). If

the command fails, the driver stores the error code in them_response variable (line 80)

and reports the failure to the OS via therequestComplete method (line 82).

Handling of the other requests is explained using comments in Figure 6.13. Note that

for a command with a data stage the driver must also wait for the data transfer to complete

(lines 101–103) before signalling success.

6.5.4 The device protocol specification2

While the OS protocol specification determines the structure of the driver by defining re-

quests that it must handle in every state, the device protocol specification reflects the struc-

ture and operation of the device hardware.

Figure 6.14 shows the internal architecture of the device inquestion, as defined in its

HDL specification and Table 6.2 describes its registers. Thedevice supports the bus mas-

tering capability and uses DMA to transfer data blocks to andfrom the host memory. It is

connected to an interrupt line, which is used to signal the completion of command and data

stages to the driver.

The interface logic of the controller consists of the register file, the Command Master

module, responsible for issuing commands without a data stage, the Data Master module,

which handles block transfer commands, the BD module, whichbuffers block descriptors

before passing them to the Data Master, and the Clock Dividermodule, which controls the

SD bus clock.

The Termite specification of the device is shown in Figure 6.15. Ellipses are used

throughout the specification to indicate omission of code fragments; the complete speci-

fication is given in Appendix C.

The types section describes the structure of device registers (only the command regis-

ter is shown) and the data structure used to represent block descriptors inside the device

2The OpenCores SD controller device protocol specification presented in this section was completed in

collaboration with Balachandra Mirla.
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Figure 6.14: The OpenCores SD host controller device architecture.

(line 11). The methods section declares methods comprisingthe interface between the

driver and the device. These include register read and writemethods (lines 18–20) and the

interrupt method (line 21). Theout specifier of the method argument in line 19 indicates

that the value of this argument is returned by the method.

Interface variables (lines 34–41) describe internal device registers and signals that influ-

ence the device’s software-observable behaviour. Them_command_reg variable models

the content of the command register of the device. Them_new_commandvariable models

the internal signal that notifies the Command Master about a new command issued through

the argument register, while them_data_command variable indicates whether the new

command will be followed by a data transfer stage. Them_commandvariable describes

the command currently being handled by the Command Master. Finally, m_tx_descr and

m_rx_descr represent block descriptors stored inside theBDmodule.

The device protocol state machine has been manually derivedfrom the RTL design

of the device in the Verilog HDL which is used to synthesise the device hardware. The

structure of the state machine reflects the device architecture shown in Figure 6.14 and its

behaviour models the device’s reactions to software commands. The order in which these

software commands are issued by the driver is determined automatically by the synthesis

algorithm. In some cases, however, the device protocol state machine specifies an explicit

sequence of commands that must be issued to the device in a certain state. For example, the

state transitions in lines 43–44 force the driver to reset the device, by writing a 1 followed

by a 0 to the reset register, before issuing any other commands.

This is necessary due to a limitation of the current Termite synthesis algorithm, namely,

it requires the values of all protocol variables to be known in any state. This assumption

requires the device to behave deterministically with respect to commands issued by the

software, i.e., the state of the device must be completely determined by the sequence of

commands issued by the driver. This assumption does not holdin the initial state of the

device protocol, since at this point the device registers may have arbitrary values. The
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Register: ARGUMENT (Command arg) Size: 32 Access: RW

[31:0] CMDA Command argument value

Register: COMMAND (Command) Size: 16 Access: RW

[15:10] CMDI Command index

[9:2] RESERVED Reserved

[1:0] RTS Response type

00: No response

01: Response

Register: STATUS (Card status) Size: 16 Access: R

[15:1] RESERVED Reserved

0 CICMD Command inhibit

Register: RESPONSE (Command response) Size: 32 Access: R

[31:0] CRSP Response from the card

Register: RESET (Software reset) Size: 8 Access: RW

[31:0] RESERVED Reserved

0 SRST Software reset

Register: ISR (Normal intr status) Size: 16 Access: RW

15 EI Error interrupt

[14:1] RESERVED Reserved

0 CC Command complete

Register: EISR (Error intr status) Size: 16 Access: RW

[31:2] RESERVED Reserved

1 CCRC CRC error

0 CTE Command timeout

Register: DIVISOR (Clock divisor) Size: 8 Access: RW

[7:0] CLKD Clock divisor

Register: BDSTATUS (Buffer descr status) Size: 16 Access: R

[15:8] FBRX Free RX descriptors

[7:0] FBTX Free TX descriptors

Register: DISR (Data intr status) Size: 16 Access: RW

[15:2] RESERVED Reserved

1 TRE Transmission error

0 TRS Transmission successful

Register: BDRX (RX buffer descriptor) Size: 32 Access: W

[31:0] BDRX

Register: BDTX (TX buffer descriptor) Size: 32 Access: W

[31:0] BDTX

Table 6.2: SD host controller registers.

problem is overcome by issuing a sequence of commands that bring the device to a known

state. In this example, writing 1 to the software reset register resets all device registers to
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their known default values (lines 43).

Once the reset is complete, the device is ready to handle commands, as indicated by

the on device-class event in line 45. Line 46 invokes theSDHOSTprocess (line 49),

which describes normal operation of the device. This process consists of four concur-

rent subprocesses, corresponding to four device modules inFigure 6.14: REGISTERS,

COMMAND_MASTER, DATA_MASTER, andCLOCK_DIVIDER(lines 50–54). These sub-

processes communicate via variables, which can be read and updated by any process. In

addition,COMMAND_MASTERandDATA_MASTERsynchronise on theoff device-class

event. This means that the event can only occur when it is enabled in both processes, i.e.,

the device becomes inactive when both the Command and the Data Master are inactive.

The preemption operator in line 55 specifies that writing 1 tothe reset register (line 56)

interrupts normal device operation and resets all registers to their default values. A subse-

quent writing of 0 to this register (line 58) resumes device operation from the clean state.

We illustrate how device registers are modelled using the argument register as an ex-

ample. Reading the register (line 69) returns its current value. The effect of writing to this

register depends on the state of the command inhibit flag (theCICMDfield of the status

register). If the flag is set, meaning that the Command Masteris currently busy handling a

command (line 72), a write to this register updates the register value, but does not trigger

any signals. A write to the argument register when the flag is not set (line 75) triggers the

m_new_commandsignal (line 77) and sets the command inhibit flag (line 79).

Them_new_commandsignal wakes up the Command Master waiting for this signal in

line 85. It uses values in theCOMMANDandARGUMENTregisters to form an SD command

(lines 86–88) and sends it over the bus. Upon completion of the command, it raises an

interrupt (line 91). The outcome of the command is reflected in the interrupt status registers

(ISR andEISR) and the response register. This is another situation wherethe assumption

of deterministic device behaviour is violated, since the exact device state is not known to

the software until it reads the values of these registers. Therefore, the device protocol state

machine specifies a sequence of register reads required to restore the determinism invariant

(lines 92–94). Lines 95–96 acknowledge the interrupt by setting the interrupt status registers

to zero. Lines 97–112 generate thecommandOKor commandError device-class event,

depending on whether the command was successful or not; theyalso reset the command

inhibit flag, indicating that the Command Master is ready to handle another command.
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1 protocol SDHostOpenCores

2 {

3 types :

4 /* device registers */

5 struct command_reg {

6 unsigned<2> RTS;

7 unsigned<8> RESERVED;

8 unsigned<6> CMDI;

9 };

10 ...

11 struct block_descr {

12 unsigned<32> mem_addr; /*memory address*/

13 unsigned<32> card_addr; /*card address*/

14 };

15

16 methods :

17 /*register read/write methods */

18 out write_command_reg (command_reg v);

19 out read_command_reg (out command_reg v);

20 ...

21 in irq ();

22

23 dependencies :

24 SDHostClass class {

25 restricts on;

26 restricts off;

27 restricts commandOK;

28 restricts commandError;

29 restricts blockTransferOK;

30 restricts blockTransferError;

31 restricts busClockChange;

32 };

33

34 variables :

35 command_reg m_command_reg;

36 ...

37 unsigned<1> m_new_command;

38 unsigned<1> m_data_command;

39 sdhost_command_t m_command;

40 block_descr m_tx_descr;

41 block_descr m_rx_descr;

Figure 6.15: The OpenCores SD host controller device specification(continued).
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42 transitions :

43 write_reset_reg[$v.SRST==1]/{m_comand_reg=0;m_status_reg=0;...};

44 write_reset_reg[$v.SRST==0];

45 class. on;

46 SDHOST

47 where

48

49 process SDHOST

50 (REGISTERS

51 |||

52 (COMMAND_MASTER |[class. off]| DATA_MASTER)

53 |||

54 CLOCK_DIVIDER)

55 [>

56 write_reset_reg[$v.SRST == 1]/{m_comand_reg=0;

57 m_status_reg=0; ...};

58 write_reset_reg[$v.SRST==0];

59 SDHOST

60 endproc

61

62 process CLOCK_DIVIDER

63 write_clock_div_reg/m_clock_div_reg=$v;

64 class. busClockChange[$divisor==m_clock_div_reg.CLKD];

65 CLOCK_DIVIDER

66 endproc

67

68 process REGISTERS

69 read_argument_reg[$v==m_argument_reg];

70 REGISTERS

71 []

72 write_argument_reg[m_status_reg.CICMD==1]/m_argument_reg=$v;

73 REGISTERS

74 []

75 write_argument_reg[m_status_reg.CICMD==0]

76 /{m_argument_reg=$v;

77 m_new_command=1;

78 m_data_command=0;

79 m_status_reg.CICMD=1;};

80 REGISTERS

81 []

82 ...

83 endproc

Figure 6.15: The OpenCores SD host controller device specification(continued on the next

page).
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84 process COMMAND_MASTER

85 await[m_new_command==1]

86 /{m_command.index=m_command_reg.CMDI;

87 m_command.arg=m_argument_reg.CMDA;

88 m_command.response=m_command_reg.RTS;

89 m_command.data=m_data_command;

90 m_new_command=0;};

91 irq : timed ;

92 read_isr_reg/m_isr_reg=$v : timed ;

93 read_eisr_reg/m_eisr_reg=$v : timed ;

94 read_response_reg/m_response_reg=$v : timed ;

95 write_isr_reg[$v==0] : timed ;

96 write_eisr_reg[$v==0] : timed ;

97 (

98 if[m_isr_reg.CC == 1]

99 class. commandOK

100 [($command==m_command) &&

101 ($response==m_response_reg.CRSP)]

102 /m_status_reg.CICMD=0 : timed ;

103 COMMAND_MASTER

104 []

105 else

106 class. commandError

107 [($command==m_command) &&

108 ($status==(m_eisr_reg.CCRC ?

109 SDH_CMD_ECRC : SDH_CMD_ETIMEOUT))]

110 /m_status_reg.CICMD=0 : timed ;

111 COMMAND_MASTER

112 )

113 []

114 class. off;

115 exit

116 endproc

117

118 process DATA_MASTER

119 ...

120 endproc

Figure 6.15: The OpenCores SD host controller device specification(continued).
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1

2

?os.request[$request.data_present==false]
/os.m_request=$request;

3

!dev.write_command_reg(
  {.RTS=os.m_request.response
    .RESERVED=0,

.CMDI=os.m_request.opcode})

4

!dev.write_argument_reg({.CMDA=os.m_request.arg})

5

?dev.irq()

6

!dev.read_isr_reg()/dev.m_isr_reg=$v

7

!dev.read_response_reg/dev.m_response_reg=$v

8

!dev.read_eisr_reg()/dev.m_eisr_reg=$v

9

!dev.write_isr_reg(0)

10

!dev.write_eisr_reg(0)

13

else

/{os.m_response.cmd_status=dev.m_eisr_reg.CCRC?

os.m_response.response=0;}

if[dev.m_isr_reg.CC==1]

/{os.m_response.cmd_status=0;
os.m_response.response=

!os.requestComplete(os.m_response)

dev.m_response_reg.CRSP;}

SDH_CMD_ECRC : SDH_CMD_ETIMEOUT;

12

11

class.commandError

class.commandOK

Figure 6.16: A fragment of the SD host controller driver state machine generated by Ter-

mite. Exclamation marks denote method invocations performed by the driver; question

marks denote driver methods invoked from the environment. OS protocol methods are

shown in bold font; device protocol methods are in normal font; device-class events are in

italics.

6.5.5 The driver state machine

The Termite synthesis algorithm combines the device and theOS protocol specifications

and produces a driver state machine which defines the driver’s reactions to OS requests and

device interrupts. The algorithm for constructing such a state machine will be presented in

Section 6.6. Figure 6.16 shows a fragment of the resulting state machine responsible for

handling SD commands without a data stage.

In the initial state (state 1), the driver waits for a requestfrom the OS.
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If this request satisfies the guard of the transition from state 1 to state 2

([$request.data_present==false] ), then this transition is taken.

According to the OS protocol specification, either thecommandOK or the

commandError device-class event must occur before the driver can send a completion

notification to the OS (Figure 6.13, lines 69 and 79). To achieve this goal, the driver state

machine performs the following sequence of device interactions: it issues the command

specified in the request to the device through the command andargument registers (transi-

tions2 → 3 and3 → 4), waits for an interrupt from the device (transition4 → 5), reads the

interrupt status registers and the response register (transitions5 → 6, 6 → 7, and7 → 8),

and acknowledges the interrupt (transitions8 → 9 and9 → 10). If the command completed

without an error (transition10 → 11), thecommandOKdevice-class event occurs (transi-

tion 11 → 13); otherwise (transition10 → 12), the commandError event occurs. In

either case, the fields of them_response variable of the OS protocol are set to reflect the

status of the command. Finally, the driver invokes the OS completion callback (13 → 1).

6.6 The synthesis algorithm

As outlined in Section 6.3, the Termite synthesis algorithmproceeds in three steps. In

the first step, it computes the parallel product of all driverprotocol state machines, which

represents all legal (safe) behaviours of the driver. In thesecond step, it finds a winning

strategy among all legal behaviours, which guarantees liveness, i.e. ensures that the driver

achieves its goals in any state. In the third step, the winning strategy is translated into a

driver implementation in C.

In the trivial example presented in Section 6.3, states of individual protocol state ma-

chines and their product were enumerated explicitly. This is infeasible when dealing with

realistic device and OS protocols. Therefore Termite relies on a compact symbolic repre-

sentation of protocol state machines as described below.

6.6.1 Symbolic representation of protocol state machines

The symbolic representation of a protocol state machine defines the state space of the pro-

tocol in terms of state variables. Protocol state transitions are specified in terms of symbolic

constraints on the values of protocol variables in the source and destination states.

Formally, a protocol state machine is a tuple

P = 〈S, i,M,G, T 〉

whereS = V1 × ... × Vn is the state space formed by the Cartesian product of the domains

of state variables;i ∈ S is the initial variables assignment;M = Min ∪ Mout ∪ Mint is the

set of protocol methods, comprised of inbound, outbound andinternal methods;G ⊂ S× S

is the goal relation;T ⊂ M+ × Guards × Actions is the state transition relation.
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M+ represents the set of protocol methods extended with thenil method, which denotes a

transition without a trigger:M+ = M ∪ {nil}. Guards andActions are the sets of all

Tingu guard and action expressions respectively.

For every methodm ∈ M+, we define two operators:Dom() and Range().

Dom(m) returns the domain of the method, i.e., the set of its input arguments assignments;

Range(m) returns the range of the method, i.e., the set of its output arguments (arguments

declared with theout qualifier) assignments. If the method does not have any inputor out-

put arguments, then the corresponding operator returns a set consisting of a single element:

{∅} (not an empty set∅).

Each elementt ∈ T of the transition relation has the following form:

T = 〈m, g, a〉

wherem ∈ M+ is the trigger of the transition;g : S × Dom(m) × Range(m) 7→

{true, false} is the guard, which determines whether the transition is enabled based on its

source state and method arguments;a : S × Dom(m) × Range(m) 7→ S is the action,

which computes the new values of state variables based on their values in the source state

and method arguments.

The transition relationT can be partitioned into uncontrollable and controllable transi-

tions: T = Tu ∪ Tc. Uncontrollable transitions are triggered by incoming method invoca-

tions from the environment (m ∈ Min). The driver may wait for such a transition to occur

but it cannot force a specific method to be invoked at a specificinstance. Uncontrollable

transitions are further subdivided in timed and untimed ones: Tu = Tu_timed ∪ Tu_untimed.

Controllable transitions include outgoing method invocations, device-class events andnil-

transitions (m ∈ Mout∪Mint∪{nil}). When the driver is in a state where such a transition

is enabled, it can force the transition to be taken.

The goal relation maps each states ∈ S into a set of states that must be reached froms

to satisfy the protocol liveness requirements. The goal setcan be empty, meaning that the

protocol does not define any goals in the given state.

Guard, action, and goal relations are defined in terms of symbolic expressions written

using the Termite syntax (Section A.2).

A Termite protocol specification is converted into the symbolic representation as fol-

lows. First, the protocol state machine in the Termite specification language is expanded

into a flat state machine by applying the rules given in Section 6.4 to each Termite operator.

Second, each state of the resulting flat state machine is assigned a unique integer number

from the range{1..num_states}. A new protocol variablestate is introduced to model

the current state of the protocol. Thus, the state spaceS of the resulting state machine is

comprised of the original protocol variable domains and thedomain of thestate variable:

S = V1 × ... × Vnum_vars × {1..num_states}.

The initial statei is computed by assigning thestate variable to the initial protocol state

and setting all other state variables to zero.



6.6. THE SYNTHESIS ALGORITHM 133

The setM of protocol methods consists of all methods listed in the Termite protocol

specification, including dependencies.

The transitions and goals relations are computed as follows. For each state transition

〈s1,m[g]/a, s2〉 of the flat state machine (wheres1 ands2 are the source and the target states

of the transition andm[g]/a is the Termite transition label), the corresponding transition is

added to the transition relation:T := T ∪ {t}. The transitiont has the same trigger as the

original transition (m); its guard is obtained from the original guard by adding a predicate

on the value of thestate variable (state == s1), and its action is obtained from the original

action by adding a statement that updates the value of thestate variable (state = s2):

t = 〈m, g ∧ (state == s1), {a; state = s2; }〉

If the original transition is timed (i.e., the transition label contains the:timed key-

word) then the goal relation is extended with a new goal:

G := G ∪ {〈σ1, σ2〉| σ1 � (state == s1), σ2 � (state == s2)}

where� denotes the “satisfies” relation. This means that in a state that satisfies the symbolic

constraintstate == s1, the goal set includes all states that satisfy the constraint state ==

s2.

6.6.2 Computing the product state machine

Given the set{P1, ..., Pk} of driver protocols, Termite computes their parallel product

P = P1 ‖ ... ‖ Pk. The parallel product of two protocol state machines,P1 =

〈S1, i1,M1, G1, T1〉 andP2 = 〈S2, i2,M2, G2, T2〉 is computed as

P1 ‖ P2 = 〈S1 × S2 , 〈i1, i2〉 , M1 ∪ M2 , G , T 〉

whereG andT are defined by the following rules.

Goals are carried over from the multipliers to the product:

〈σ1, σ2〉 ∈ G1

∀σ′
1, σ

′
2 ∈ S2 : 〈〈σ1, σ

′
1〉, 〈σ2, σ

′
2〉〉 ∈ G

〈σ1, σ2〉 ∈ G2

∀σ′
1, σ

′
2 ∈ S1 : 〈〈σ′

1, σ1〉, 〈σ′
2, σ2〉〉 ∈ G

P1 transitions that are not synchronised withP2 are carried over to the product state

machine:
t = 〈m, g, a〉 ∈ T1, m /∈ M2

〈m, gS2
, aS2

〉 ∈ T

wheregS2
andaS2

are extensions of the transition guard and action to the state space of

protocolP2 defined as:

gS2
(σ1, σ2, in, out) = g(σ1, in, out)

aS2
(σ1, σ2, in, out) = 〈a(σ1, in, out), σ2〉
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whereσ1 ∈ S1, σ2 ∈ S2, in ∈ Dom(m), out ∈ Range(m).

Similarly, for P2 transitions:

t = 〈m, g, a〉 ∈ T2, m /∈ M1

〈m, gS1
, aS1

〉 ∈ T

gS1
(σ1, σ2, in, out) = g(σ2, in, out)

aS1
(σ1, σ2, in, out) = 〈σ1, a(σ2, in, out)〉

Finally, transitions with common triggers are synchronised:

t1 = 〈m, g1, a1〉 ∈ T1, t2 = 〈m, g2, a2〉 ∈ T2, m ∈ M1 ∩ M2

〈m, g1S2
∧ g2S1

, a〉 ∈ T

a(σ1, σ2, in, out) = 〈a1(σ1, in, out), a2(σ2, in, out)〉

6.6.3 Computing the strategy

The core part of the synthesis algorithm is the procedure that, given the symbolic product

of driver protocol state machinesP = 〈S, i, M, G, T 〉, computes a driver strategy. In

a nutshell, for every reachable state of the product, this procedure computes the behaviour

that guarantees that the driver will achieve one of the goalsdefined in this state, in any

environment that conforms with protocol specifications.

Since the product state machine contains transitions controlled by the driver (outgoing

method invocations) as well as transitions controlled by the environment (incoming driver

method invocations by the OS or the device), the problem of computing a driver strategy

can be formulated as a two-player reachability game problem[Tho95]. A basic algorithm

for solving such games is described by Thomas [Tho95]. Givenan origin state and a set

of goal states, the algorithm recursively computes thecontrollable predecessorset, i.e. the

set of all states from which the goal can be reached in one step. This includes states where

the driver can trigger a transition (by invoking the corresponding OS or device method)

that will take it to the goal, as well as states where any legalmethod invocation from the

environment takes the driver to the goal. This results in a reachability graph containing all

states and transitions of the product state machine from which there exists a strategy leading

to the goal. The algorithm terminates when the origin state is added to the graph or when

a fix point is reached. In the former case, the reachability graph contains the strategy that

the driver must follow to achieve the goal from the origin state. For every state between

the origin and the goal, this strategy prescribes that the driver must either perform a specific

method invocation or wait for a method invocation from the environment. In the latter case

(a fix point is reached), a winning strategy does not exist andthe algorithm returns a failure.

Termite implements a variation of this algorithm based on the following heuristic: any

path in the product state machine leading from the origin state to the goal is likely to be

extensible to a complete winning strategy. This means that if there exists a sequence of

driver commands and device responses leading to the goal then this sequence is likely to
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belong to a complete strategy that incorporates any valid device responses, not just those

included in the sequence. If this is the case then such strategy can be found by extending

the initial sequence with all valid device responses.

If this heuristic holds, it allows constructing a winning strategy faster, since finding a

single path to the goal is computationally easier than building the reachability graph.

If the heuristic fails and the initial sequence cannot be extended to a complete strategy,

the algorithm should backtrack and find another initial sequence. Such a backtrack was not

required in any of the drivers that have been synthesised so far; therefore it is currently not

implemented, meaning that theoretically Termite may fail to find a winning strategy even if

one exists.

6.6.3.1 Formal representation of the driver strategy

The driver strategy computed by Termite constitutes a directed graph where every node

corresponds to a subset of the product state spaceS. These subsets only cover states that

are reachable by the driver and may overlap. Edges of the graph represent transitions of

the product state machine. There are two types of edges: controllable edges labeled with a

controllable transition and uncontrollable edges labeledwith an uncontrollable transition.

The graph is constructed in such a way that every node has either only uncontrollable

or only controllable outgoing edges, or no edges at all. Whenthe driver reaches a node

with only uncontrollable actions (called an uncontrollable node), it stops, waiting for a

method invocation from the environment. In a node with only controllable edges (control-

lable node), the driver performs a method invocation corresponding to one of the edges.

All controllable edges in a node are guaranteed to have transitions with mutually exclusive

guards, so that exactly one transition is enabled in the node, hence the driver behaviour is

deterministic. Upon reaching an edge without outgoing edges, the driver terminates.

The strategy graph has a designated initial node, which corresponds to the initial state

of the product state machine.

Formally, the driver strategy graph is represented as a tuple:

〈N, i, E〉

N ⊂ 2S is the set of nodes, where each node corresponds to a subset ofstates of the product

state machine,i ∈ N is the initial node,E = Eu ∪ Ec is the set of edges, which consists of

uncontrollable edgesEu and controllable edgesEc.

An uncontrollable edge is defined by its source and target nodes and the corresponding

transition in the product state machine.Eu ⊂ N × Tu × N.

A controllable edge is defined by its source and target nodes,the corresponding tran-

sition in the product state machine, and a function that computes input arguments of the

transition trigger given the current values of state variables: Ec ⊂ N × Tc × (S 7→ •) × N,

where(S 7→ •) denotes the set of all functions overS.
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The strategy computed by the Termite synthesis algorithm guarantees that the driver

satisfies both safety and liveness requirements in a well-behaved environment.

Safety means that behaviours generated by the strategy comply with driver protocol

specifications, namely: (1) any path in the strategy graph corresponds to a valid trace of the

product state machine and (2) given a node in the strategy graph with only uncontrollable

outgoing edges and a corresponding state of the product state machine, for every uncon-

trollable transition enabled in the state there exists an edge in the node labeled with this

transition.

Liveness means that, whenever in a state with a goal, the driver eventually reaches one

of the states in the goal set by following the behaviour prescribed by the graph.

Finally, a well-behaved environment must satisfy the following requirements: (1) any

method invoked by the environment triggers a valid state transition in the product state ma-

chine (safety), (2) whenever the driver is in a state with oneor more timed uncontrollable

transitions, the environment will eventually trigger one of the uncontrollable transitions en-

abled in this state (liveness), (3) if a timed uncontrolled transition becomes enabled infinitely

often, it will eventually be taken (fairness).

6.6.3.2 Algorithm for computing the driver strategy

Figure 6.17 defines some helper functions used in computing the strategy. Figure 6.18

shows the main body of the algorithm that computes the driverstrategy.

TheStrategy procedure The procedure explores the state space of the driver incremen-

tally. It maintains the set of reachable strategy nodes thathave been added to the graph but

the behaviour in which has not been determined yet. On every iteration it selects one of

these nodes and computes the driver behaviour in this node. This may result in one or more

edges being added to the node and one or more new nodes being added to the graph. The

algorithm terminates either when the set of unexplored nodes becomes empty (success) or

when the algorithm is unable to determine behaviour in a node.

The initial node of the strategy graph consists of a single state i (line 2). This initial

node is added to the set of graph nodesN and the set of unexplored nodesU. Lines 5–

21 describe the main loop of the algorithm. Line 6 removes a node from the set of un-

explored nodes. If there arenil-transitions enabled in the corresponding states of the

product state machine (line 7), then one of them must be taken(such transitions corre-

spond toif/else and await Termite operators, which must be executed as soon as

they become enabled). Lines 8–10 add edges for all suchnil-transitions to the graph. The

AddControllableTransition procedure, described below, adds an edge labeled with

transitiont to nodes. The last argument of the procedure is the function used to compute

transition arguments. Sincenil-transitions have no arguments, functionf∅, which maps

any input to{∅}, is used here.
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Inputs:

• P = 〈S, i, M, G, T 〉—symbolic product of driver protocol state machines

• s ⊂ S

• t = 〈m, g, a〉 ∈ T

• f : S 7→ Dom(m)

The set of goals defined ins:

Goals(s) = {σ ∈ S| ∃ σ′ ∈ s : 〈σ′, σ〉 ∈ G}

The set of source states where transitiont is enabled:

Source(t) = {σ ∈ S| ∃ x ∈ Dom(m), y ∈ Range(m) : g(σ, x, y) = true}

The image ofs under transitiont is the set of all states that can be reached by taking thet

transition from a state ins:

Image(t, s) = {σ ∈ S| ∃ σ′ ∈ s, x ∈ Dom(m), y ∈ Range(m) :

(g(σ′, x, y) = true) ∧ (a(σ′, x, y) = σ)}

The image ofs under transitiont and functionf is the set of all states that can be reached by

takingt from a state ins, with input arguments oft computed usingf :

ImageF (t, s, f) = {σ ∈ S| ∃ σ′ ∈ s, y ∈ Range(m) :

(g(σ′, f(σ′), y) = true) ∧ (a(σ′, f(σ′), y) = σ)}

The set ofnil-transitions ins:

Tnil(s) = {t = 〈nil, g, a〉| s ∩ Source(t) 6= ∅}

The set of inbound-method transitions ins:

Tin(s) = {t = 〈m, g, a〉| (m ∈ Min) ∧ (s ∩ Source(t) 6= ∅)}

Figure 6.17: Helper functions used in computing the driver strategy.

Line 11 checks whether there are any goals defined ins. If not then in this node the

driver simply waits for invocations from the environment (lines 12–14). Otherwise, the

MoveToGoal procedure is used to determine behaviour in the node. If it finds a path to

the goal, it adds the corresponding edges in nodes and returnstrue. Otherwise, it returns

false and the synthesis algorithm fails (line 17).

The AddControllableTransition procedure Figure 6.19 presents the

AddControllableTransition procedure. Line 2 checks whether the set of states

obtained by taking transitiont with input arguments computed usingf from s has already

been added to the graph. If so, then an edge froms to this existing node is added to the
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1: procedureStrategy(P )

Input : P = 〈S, i, M, G, T 〉—the product of driver protocol state machines

Output : 〈N, i, E〉—computed driver strategy

Returns : true—strategy computed successfully;false—failed to compute strategy

2: i := {i}

3: N := {i}

4: U := {i}

5: while U 6= ∅ do

6: s := Remove(U) // Remove an element fromU

7: if Tnil(s) 6= ∅ then

8: for all t ∈ Tnil(s) do

9: AddControllableTransition(s, t, f∅)

10: end for

11: else ifGoals(s) = ∅ then

12: for all t ∈ Tin(s) do

13: AddUncontrollableTransition(s, t)

14: end for

15: else

16: res := MoveToGoal(s, Goals(s))

17: if res = false then

18: return false

19: end if

20: end if

21: end while

22: return true

23: end procedure

Figure 6.18: The main Termite algorithm for computing the driver strategy.

graph. Otherwise (line 4), the new node is first added to the set of graph nodes (line 6)

and to the set of unexplored nodes (line 7) and then a transition froms to the new nodes is

added to the graph (line 8).

TheAddUncontrollableTransition procedure This procedure (Figure 6.20) is sim-

ilar, except the target of the transition is computed using theImage function, which returns

the set of states obtained by taking transitiont from s with all possible argument values.

TheMoveToGoal procedure TheMoveToGoal procedure finds a path from a source

set of states to a goal set. The sought path must consist of only controllable transitions and

timed uncontrollable transitions (i.e., transitions thatthe driver can trigger itself or that
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1: procedureAddControllableTransition((s, t, f))

Inputs : s ⊂ S, t = 〈m, g, a〉 ∈ Tc, f : S 7→ Dom(m)

2: if ∃ s2 ∈ N : ImageF (t, s, f) = s2 then

3: Ec := Ec ∪ {〈s, t, f, s2〉}

4: else

5: s2 := ImageF (t, s, f)

6: N := N ∪ {s2}

7: U := U ∪ {s2}

8: Ec := Ec ∪ {〈s, t, f, s2〉}

9: end if

10: end procedure

Figure 6.19: TheAddControllableTransition procedure.

1: procedureAddUncontrollableTransition(s, t)

Inputs : s ⊂ S, t = 〈m, g, a〉 ∈ Tu

2: if ∃ s2 ∈ N : Image(t, s) = s2 then

3: Eu := Eu ∪ {〈s, t, s2〉}

4: else

5: s2 := Image(t, s)

6: N := N ∪ {s2}

7: U := U ∪ {s2}

8: Eu := Eu ∪ {〈s, t, s2〉}

9: end if

10: end procedure

Figure 6.20: TheAddUncontrollableTransition procedure.

are guaranteed to be eventually triggered by the environment). To this end, it constructs a

reachability tree to the goal (Figure 6.21). The root of the tree is the goal set. Each node

in the tree represents a set of states from which there existsa transition to a node one step

closer to the root. The transition is represented by the edgethat connects the two nodes.

In constructing the reachability tree, theMoveToGoal algorithm relies on two aux-

iliary procedures:UPre andCPre. Given a set of statess and a timed uncontrollable

transitiont, theUPre procedure computes the predecessorŝ of s undert (Figure 6.21).

The predecessor is the set of all states from which transition t triggered with any arguments

leads to a state ins:

UPre(s, t) = {σ ∈ S| (σ ∈ Source(t)) ∧ (Image(t, {σ}) ⊂ s)}

TheCPre procedure takes a set of statess′ and a controllable transitiont′ and computes

the predecessor̂s′ of s′ undert′, i.e., a set of states where there exists a functionf such
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s2

s1

s

ŝ=UPre(s,t)

t∊Tutimedŝ

<t'∊T ,f>c

s'

ŝ'

<ŝ',f>=CPre(s',t')

layers[0]layers[l]layers[l+1]

Figure 6.21: Example of a reachability tree from the source set s1 to the goal sets2 con-

structed by theMoveToGoal procedure.

that transitiont′ triggered with arguments computed withf leads tos′. The procedure

returns both the computed setŝ′ and the functionf . Formally, the tuple〈̂s′, f〉 returned by

CPre(s′, t′) satisfies the condition:

ImageF (t′, ŝ′, f) ⊂ s′

The implementation ofCPre andUPre is described in Section 6.6.4.

TheMoveToGoal procedure (Figure 6.22) starts by creating the root node of the tree

(line 2). The main iteration of the algorithm (lines 4–33) adds a new tree layer and checks

whether the source sets1 belongs to one of the new nodes. To this end it iterates through

all nodes in the previous layer (line 5). For each node, it first enumerates all timed uncon-

trollable transitions (line 6) and computes the predecessor of the node under each transition

(line 7). If the predecessor is not empty and is not containedin one of existing nodes (line 8),

then it is added to the tree. Line 10 checks whether the sourcesets1 is contained within the

predecessor set. If so, a path from the source to the goal has been found, which determines

the behaviour of the driver ins1. Since the first transition in the path is an uncontrollable

transition, the driver should wait for an input from the environment. Hence all enabled un-

controlled transitions must be added to the strategy graph node corresponding to the source

set. This is accomplished by lines 11–13 before returning fromMoveToGoal in line 14.

If a solution has not been found in the previous step, the algorithm enumerates or

controllable transitions and computes the predecessor of the node under each transition

(line 19). If the predecessor is not empty and is not contained in one of existing nodes
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1: procedureMoveToGoal(s1, s2)

Inputs : s1 ⊂ S, s2 ⊂ S

2: layers[0] := {s2}

3: l := 0

4: loop

5: for all s ∈ layers[l] do

6: for all t ∈ Tu_timed do

7: pre := UPre(s, t)

8: if (pre 6= ∅) ∧ (Find(layers, pre) = false) then

9: layers[l + 1] := layers[l + 1] ∪ {pre}

10: if s1 ∈ pre then

11: for all t′ ∈ Tin(s1) do

12: AddUncontrollableTransition(s1, t
′)

13: end for

14: return true

15: end if

16: end if

17: end for

18: for all t ∈ Tc do

19: 〈pre, f〉 := CPre(s, t)

20: if (pre 6= ∅) ∧ (Find(layers, pre) = ∅) then

21: layers[l + 1] := layers[l + 1] ∪ {pre}

22: if s1 ∈ pre then

23: AddControllableTransition(s, t, f)

24: return true

25: end if

26: end if

27: end for

28: end for

29: if layers[l + 1] = ∅ then

30: return false

31: end if

32: l := l + 1

33: end loop

34: end procedure

Figure 6.22: TheMoveToGoal procedure.

(line 20), then it is added to the tree. If the new node contains the source set (line 22), then a

controllable edge corresponding to transitiont and functionf is added to the strategy graph.
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The algorithm terminates when either a solution is found or the reachability tree is

complete (no new nodes have been added at the last iteration)(line 29). In the latter case,

the algorithm returns a failure.

6.6.4 Computing the strategy symbolically

All operations involved in computing the driver strategy are performed symbolically. To

this end, driver states and state transitions are represented and manipulated in the form

of symbolic constraints on state variables and method arguments. For instance, given the

following transition of the product state machine:

t = m[(v1 == 1)&&(a1 == v2)]/v3 = a1

wherev1, v2, andv3 are state variables anda1 is an argument of methodm, the correspond-

ing symbolic constraint is:

(v1 == 1) ∧ (a1 == v2) ∧ (v′3 == a1) ∧ (v′1 == v1) ∧ (v′2 == v2)

Here,v′1, v′2, andv′3 represent values of state variables in the target state of the transition.

The first three clauses in the above expression are derived directly from transition guard

and action; the fourth and fifth clauses(v′1 == v1) ∧ (v′2 == v2) are derived from the

fact that the transition does not modify variablesv1 andv2, hence their values are the same

in the source and the target state. In general, any state transition can be represented as a

boolean formula over predicates, which are written as Termite expressions. Termite stores

these formulae inDisjunctive Normal Form (DNF).

All operations involved in computing the driver strategy, including functions in Fig-

ure 6.17 andCPre andUPre procedures are performed symbolically. For instance, the

image of sets described by constraintv2 == 0 under transitiont can be computed as

follows:

Image(t, s) = {< v′1, v
′
2, v

′
3 > |∃v1, v2, v3, a1 :

(v2 == 0) ∧ ((v1 == 1) ∧ (a1 == v2) ∧ (v′3 == a1) ∧ (v′1 == v1) ∧ (v′2 == v2))} =

{< v′1, v
′
2, v

′
3 > | (v′1 == 1) ∧ (v′2 == 0) ∧ (v′3 == 0)}

In general, computing theImage function and other above-listed operations requires

solving first-order logic equations over Termite expressions. In principle, anysatisfiability

modulo theories (SMT)solver [BT07,BPT07] can be used for this purpose.

Currently, Termite implements its own simple solver. The current implementation of the

solver is limited to dealing with Termite expression of the form (x1 == x2), (x1! = x2),

(x1 == C), and(x1! = C) (wherex1 andx2 are state variables or method arguments

andC is a constant) and their boolean combinations. If it encounters an assignment that is

not expressible via such constraints, e.g.,x1 = x2 + x3, it assumes that the value ofx1

is undefined. This assumption is conservative: if a driver strategy can be found under this
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assumption, this strategy is correct. It may, however, prevent Termite from finding a strategy

if one exists. For example, a transition whose guard dependson the value ofx1 can never be

added to the strategy, which may lead to a failure to find a winning strategy. In practice, this

problem is overcome by structuring Termite specifications to avoid the use of such variables

in transition guards, which requires extra effort on the part of the specification developer.

This limitation is not intrinsic to the Termite approach andcan be addressed by the use of a

more powerful solver.

6.6.5 Generating code

The last step of the synthesis process is translating the driver strategy computed in the previ-

ous step into C. The resulting driver implementation consists of a C structure that describes

the state of the driver, a constructor function that createsand initialises an instance of this

structure, and a number of entry points, one for each incoming interface method. The state

structure contains a field representing every driver state variable, including variables de-

clared in each driver protocol, extra variables introducedto model the state of each protocol

state machine, and anode variable that identifies the current node of the strategy graph.

The implementation of a driver entrypoint is generated as follows. It first checks the

value of thenode variable to identify the uncontrollable edge that corresponds to the given

incoming method invocation. It then updates state variables as defined by the action asso-

ciated with the edge. If the edge leads to a controllable node, the driver chooses an edge in

that node whose guard evaluates to truth and takes the corresponding transition by invoking

the associated method. Otherwise, the driver returns from the entry point to wait for the

next incoming method call.

The resulting driver follows the Dingo architecture and is designed to run within the

Dingo runtime framework. In particular, it expects all method invocations to be serialised

and never blocks inside a method. The Termite driver synthesis methodology and algorithm

are not, however, inherently dependent on the Dingo architecture and can be adapted to

generate drivers for other driver frameworks, e.g., nativeLinux or Windows drivers. Such an

adaptation would involve extending the protocol specification language to model concurrent

driver invocations and modifying the synthesis algorithm to generate synchronisation code

to ensure safe execution of the driver in a multithreaded environment.

6.7 Debugging synthesised drivers3

Automatic driver synthesis allows reducing the number of software defects in drivers but

does not eliminate them completely. Defects in a synthesised driver can be caused by errors

in one of the input specifications or in the synthesis tool. Anerror in the specification means

that the actual device or OS behaviour deviates from the specification in one of the following

3The Termite debugger tool presented in this section was developed in collaboration with John Keys.
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ways:

• The device or the OS invokes a driver method in a state where this operation is not

allowed by the specification.

• The device or the OS invokes a driver method with arguments that do not satisfy the

guard condition associated with the corresponding state transition in the specification.

• The device or the OS does not perform a driver invocation thatcorresponds to a timed

transition in the specification (i.e., must occur eventually).

• The device or the OS does not correctly handle an invocation from the driver that is

permitted by the specification, e.g., crashes or misbehavesin some other way.

An error in the synthesis tool can result in a driver implementation that violates one of

its protocol specifications in one of the following ways:

• The driver performs illegal invocations of device or OS methods, i.e., invokes a

method that is not allowed by the appropriate protocol specification in the current

state or provides method arguments that violate the guard condition of the corre-

sponding transition.

• The driver does not handle legal method invocations from thedevice or the OS, i.e.,

the synthesised driver state machine does not define a transition for a method even

though it is permitted by the appropriate protocol specification in the given state.

• The driver fails to achieve some of its goals.

The practical utility of automatic driver synthesis depends on the availability of debug-

ging tools that will help detect and eliminate such errors. One possibility is to use conven-

tional debugging techniques on the synthesised C driver; however debugging automatically

generated code is notoriously difficult.

Fortunately, source-level debugging is rarely necessary for Termite drivers. Along with

the implementation of the driver in C, Termite also outputs the state machine of the driver,

similar to the one shown in Figure 6.16, which can be viewed asthe implementation of

the driver in a high-level language. By observing the execution of the driver at the state-

machine level, one can easily spot situations where either the driver or its environment

violates protocol specifications.

We have implemented such a state-machine-level debugger for Termite. In order to

enable debugging, the driver must be synthesised with an option that forces the synthesis

tool to inject debugger callouts in the driver code. At runtime, these callouts are activated

by passing a special argument to the driver kernel module.

The debugger front-end runs on a separate machine and communicates with the de-

bugged driver via a serial port. It provides a graphical userinterface that visualises the
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driver state machine and the current state of the driver. Similarly to conventional debug-

gers, the Termite debugger interacts with the driver in three situations. First, the user may

single-step the driver, in which case the driver stops aftereach state transition. Second, the

user may set breakpoints on one or more states of the driver state machine and let the driver

run until it hits one of the breakpoints. Third, the driver stops and notifies the debugger

whenever it receives an illegal method invocation from the environment.

In each case, the driver sends a message containing information about the last transi-

tion and values of driver state variables to the debugger andwaits for a response from the

debugger before continuing execution.

The debugger visualises the data received from the driver and allows the user to set ad-

ditional breakpoints before issuing a step or run command. Figure 6.23 shows a screenshot

of the Termite debugger stopped at a breakpoint. The debugger window contains a fragment

of the driver state machine. The breakpoint state and the last transition taken by the driver

before entering this state are highlighted. The status lineat the top of the window shows

identifiers of the current and the previous states, the name of the method that triggered the

transition and the values of method arguments.

The current implementation of the debugger is missing some useful features that would

further simplify error diagnostics. In particular, it doesnot relate the current state of the

driver state machine to the corresponding states of the device and OS protocol state ma-

chines. Such functionality can be easily added to the debugger, since the mapping between

driver states and protocol states is maintained during driver synthesis and can be stored

along with the driver state machine.

6.8 Evaluation4

In this section I report on the experience in applying Termite to synthesise drivers for real,

non-trivial devices, measure the performance of the synthesised drivers, and evaluate the

reusability of Termite device specifications across different OSs.

6.8.1 Synthesising drivers for real devices

We have used Termite to synthesise two device drivers for Linux: a driver for the Ricoh

r5c822 SD host controller (a full-featured analogue of the SD host controller described in

Section 6.5) and a driver for the ASIX ax88772 100Mb/s USB-to-Ethernet adapter described

in Chapter 5. These drivers occupy the middle range of the driver complexity spectrum. In

particular, they support most features found in modern devices, including power manage-

ment, request queueing, and DMA (with the ax88772 driver using DMA indirectly via the

USB host controller). Unlike more complex devices, they usesimple DMA descriptor for-

mats and support a limited range of configuration options. Since the two devices belong to

4The evaluation presented in this section was completed in collaboration with Dr. Peter Chubb.
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SD Ethernet

Native Linux driver 1174 1200

Device protocol 653 463

OS protocol (SD/Ethernet) 378 213

Bus protocol (PCI/USB) 263 96

Synthesised driver 4667 2620

Table 6.3: Size in lines of code, excluding comments, of the r5c822 and ax88772 driver

implementations in Linux, their Termite specifications, and the synthesised drivers.

different device classes and attach to different buses (PCIand USB), these examples cover

a broad spectrum of issues involved in driver synthesis.

Both devices are based on proprietary designs, so we did not have access to their RTL

descriptions. The r5c822 controller implements a standardised SD host controller archi-

tecture whose detailed informal description is publicly available [SD 07]. This description

provided sufficient information to derive a Termite model ofthe controller interface.

The ax88772 data sheet [ASI08] did not contain sufficient information to derive a Ter-

mite model of the device from it. In particular, it did not provide a complete description

of device initialisation and configuration. For instance, when studying the Linux driver for

this device we discovered a sequence of register reads and writes that the driver performed

during startup. Many of these operations could not be explained based on the information

in the data sheet. However, removing or even reordering any of them resulted in a miscon-

figured device. Therefore, we used the Linux driver for this device as the primary source of

information.

As a result, the two specifications are substantially different in style. As explained in

Section 6.2.2, specifications derived from device documentation tend to be declarative in

nature: they describe how the device responds to various software commands, but do not

enforce a particular ordering of these commands, which mustbe computed during driver

synthesis based on the goals that the driver must achieve in different states. In contrast,

specifications based on existing driver code are more constructive: they define sequences of

commands and device reactions that must be issued to generate a specific device-class event

(e.g., to complete and SD command or transfer a network packet).

Table 6.3 compares the size of Termite specifications to the manual implementation of

equivalent drivers in the Linux kernel tree. Although line counts are not a reliable complex-

ity measure, especially when comparing code written in different languages, note that for

both drivers the device specification, which is the only partthat needs to be developed per

device, is significantly smaller than the native Linux driver. The last line of the table shows

that the synthesised drivers are several times larger than the manual implementations. This

is one area for future improvement.

In one case we were unable to completely specify the device inTermite: the ax88772
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driver must implement pre- and post-processing of network buffers exchanged with the

device in order to append and remove an extra header that the device expects in each packet.

Termite currently does not provide facilities to specify constraints on the content of memory

buffers. DMA buffers are currently represented using theirvirtual and physical addresses

and size, which allows passing unmodified buffers between the device and the OS, but not

performing any transformations on them. We therefore implemented this functionality in C

and made it available to the device protocol via two methods:rxFixup and txFixup .

The total size of these functions is 110 lines of C code, or less than 10% of the size of the

native Linux implementation of this driver.

Synthesis took 2 minutes for the ax88772 driver and 2 hours 26minutes for the r5c822

driver on a 2GHz AMD Opteron machine with 8GB of RAM. This difference is due to the

different styles of the two device specifications. The ax88772 specification, derived from an

existing driver, only contains useful execution paths thatlead to the occurrence of device-

class events. In contrast, the more declarative r5c822 specification allows a large number

of possible command sequences, which the synthesis algorithm must explore to find the

meaningful ones that lead to the goal.

6.8.2 Performance

We compared the performance of the synthesised drivers against that of equivalent native

Linux drivers. Benchmarks described in this section were run on a 2GHz Centrino Duo

machine. We disabled one of the cores in order to allow precise CPU accounting. For the

SD bus controller driver we ran a locally developed benchmark that performs a sequence

of raw (unbuffered) reads from an SD card connected to the controller. We measured CPU

usage and achieved bandwidth for different block sizes. In all cases, the throughput and

CPU usage of the synthesised driver differed from that of thenative Linux driver by less

than 1%.

The USB-to-Ethernet controller is more interesting from the performance perspective,

as it is capable of generating high CPU loads, especially when handling small transfers.

Figure 6.24 compares throughput and CPU utilisation achieved by the synthesised and

native drivers under the Netperf [Net] TCP_STREAM benchmark. In these experiments,

the Netperf server was run with default arguments on the machine with the synthesised

driver under test. The Netperf client was running on anothermachine with the following

arguments:

netperf -H<server-ip-addr> -p <server-port> -t TCP_STREA M -c

-C -l 60 - -m <transfer-size>

Where the-l 60 argument sets the time of the run to 60 seconds. The-c and -C

arguments enable CPU utilisation calculations on both the server and the client. The-m

option sets the transfer size.

According to Figure 6.24, both drivers showed virtually identical performance even
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Figure 6.24: ax88772 TCP throughput benchmark results. Thetop graph shows CPU utili-

sation; the bottom graph shows achieved throughput.

under the heaviest loads induced by a large number of small packets.

These results are reassuring, as they indicate that automatically synthesized drivers can

achieve performance comparable to manually developed ones.

6.8.3 Reusing device specifications5

In order to validate the claim that device specifications canbe reused across different OSs,

we synthesised a FreeBSD r5c822 driver from the same device specification that was used

to generate the Linux version of the driver. To this end we developed specifications for

the FreeBSD versions of the SD host controller driver protocol and the PCI bus transport

protocol. These protocols differ from their Linux counterparts in a number of aspects,

including SD command format, driver initialisation, PCI resource allocation, bus power

5The work described in this section was completed in collaboration with Etienne Le Sueur.
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management, and DMA descriptor allocation. Once these protocols were specified (this

took approximately 6 person-hours, an effort that only needs to be undertaken once for the

given OS), a driver for FreeBSD was generated automaticallyusing the unmodified device

and device-class specifications.

6.9 Limitations and future work

Our experience with Termite has demonstrated the feasibility of driver synthesis for real de-

vices. This section summarises limitations of the current implementation and improvements

required to turn it into a practical solution capable of generating a broad class of drivers.

The front-end Termite currently relies on the device manufacturer or the driver developer

to write a formal specification of the device protocol. Whileoffering substantial advantages

over conventional driver development in terms of code structure, size, reuse, and quality

assurance, this approach still requires substantial manual effort. This effort can be avoided

by automatically distilling a Termite model of the device from its RTL description. Imple-

menting support for this is the key area of the continuing research on driver synthesis.

The synthesis algorithm Several limitations of the current synthesis algorithm compli-

cate modelling. These include the assumption of deterministic device behaviour described

in Section 6.5.4, and the lack of support for complex constraints on variables in the symbolic

execution engine (Section 6.6.4).

In addition, Termite currently only allows the manipulation of memory buffers via calls

to C functions (Section 6.8.1). In order to reduce the reliance on manually written code,

support for the specification of constraints on the memory buffer layout (fragmentation,

alignment, etc.) and content (headers, paddings, etc.) needs to be added to Termite. This

way, one will only have to use C to implement more complex datatransformations, such as

hashing or encryption.

Termite does not support drivers that require dynamic resource allocation. In some

cases, resource allocation is performed by the Dingo runtime framework. For example,

when a USB device driver sends a request to the device, the framework allocates a new

USB request structure. Most of the remaining allocation operations performed by drivers

are related to the management of DMA buffers. Support for these operations must be added

as part of the buffer management extension described in the previous paragraph.

Finally, the Termite synthesis algorithm needs further improvement to reduce the syn-

thesis time and support more complex devices with larger state spaces. One promising

approach is to use counterexample-guided abstraction refinement, which allows a reduction

of the size of the state space to be explored by dynamically identifying relevant state infor-

mation. This technique has been successfully applied in model checking and has also been

shown to work for two-player games [HJM03].
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The overall approach The Termite approach to driver synthesis relies on the distinctive

state-machine-like structure of device drivers and its relation to the structure of the I/O

device. Some new devices, such as high-end GPUs and network processors do not fit into

this model. These devices are built around a general-purpose CPU, often running a separate

instance of a general-purpose OS. They are controlled by uploading programs that execute

on the device’s CPU and communicate with the host CPU via the I/O bus. Modelling such

devices and generating software for them is beyond the reachof Termite.

6.10 Conclusions

Device driver synthesis is a promising approach to solving the driver reliability problem.

In this chapter I have demonstrated the feasibility of this approach by describing a driver

synthesis methodology and its implementation. The ultimate goal of this work is to create a

viable alternative to current manual driver development practices, leading to better quality

drivers. The key factor in achieving this is to make driver synthesis attractive to device

vendors by providing easy-to-use and efficient languages and tools for it.



152 CHAPTER 6. AUTOMATIC DEVICE DRIVER SYNTHESIS WITH TERMITE



Chapter 7

Conclusions

Software defects in device drivers are the leading source ofinstability in current OSs. This

dissertation has demonstrated that many driver defects canbe avoided with the help of

an improved device driver architecture and development process. This improvement is

achieved by taking an approach based on identifying and eliminating the root causes of

the driver reliability problems, as opposed to focusing on their symptoms.

In particular, I showed that many driver defects are provoked by the complex and poorly

defined interfaces between the driver and the OS. This problem is addressed by abandon-

ing the conventional multithreaded model of computation enforced by most OSs on device

drivers in favour of a more disciplined event-based model and by documenting OS proto-

cols using a formal visual language. In addition to helping driver developers avoid defects

in drivers, this approach enables automatic verification ofdriver behaviour against protocol

specifications. In particular, I demonstrated an implementation that performs such verifi-

cation at runtime using automatically generated protocol observers. Static verification of

protocol compliance is part of the future work.

The formal approach to modelling the device driver behaviour leads to a radically new

method of driver construction, which consists of automatically generating the implementa-

tion of the driver based on a formal model of its device and OS protocols. This approach

has the potential to dramatically reduce driver development effort while increasing driver

quality.

In this dissertation I have demonstrated the feasibility ofautomatic driver synthesis for

real non-trivial devices. Further research is necessary inorder to turn the results of this work

into a practical driver synthesis tool. Open problems include automatically deriving device

protocol specifications from the RTL description of the device, specifying and synthesising

behaviours that involve memory buffer manipulation, and improving the synthesis algorithm

to deal with more complex devices.
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Appendix A

The syntax of the Tingu and Termite

protocol specification languages

This appendix describes the complete syntax of the Tingu andTermite protocol specification

languages. The two languages use common syntax for declaring components, protocols,

types, methods, variables, and dependencies. The main difference is that Tingu specifies

behavioural constraints of the protocol using Statecharts, while Termite uses a textual for-

malism based on the LOTOS process calculus.

Section A.1 provides aBackus-Naur Form (BNF)specification of the common part of

the Tingu and Termite syntax. Section A.2 describes the syntax of state transition labels used

in both Tingu and Termite specifications. Section A.3 describes the subset of the Statecharts

visual syntax used in Tingu protocol state machines specifications. Finally, Section A.4

describes the Termite process syntax.

A.1 Component, protocol, and type declarations

A tingu specification consists of zero or more specification items, where every item is a

type, protocol, or component declaration.

<tingu-spec> ::=

| <tingu-spec> <spec-item>

<spec-item> ::= <type-decl>

| <protocol-decl>

| <component-decl>

A.1.1 Common definitions

A Tingu identifier is a string of alphanumeric characters andunderscore, beginning with a

letter or an underscore.

<identifier> ::= [a-zA-Z_][a-zA-Z0-9_] *
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A quoted string:

<quoted-string> ::= \"([^\"\t\n] * )\"

Identifiers are used as component, protocol, method, argument, type, port names, etc.

<component-name> ::= <identifier>

<protocol-name> ::= <identifier>

<port-name> ::= <identifier>

<type-name> ::= <identifier>

<method-name> ::= <identifier>

<arg-name> ::= <identifier>

<var-name> ::= <identifier>

<enumerator-name> ::= <identifier>

<struct-field-name> ::= <identifier>

<function-name> ::= <identifier>

<process-name> ::= <identifier>

A type specifier is the name of an existing type, a pointer to anexisting type, or a fixed-width

integer type specifier. Type specifiers are used in method argument declarations, variable

declarations, and type declarations.

<type-specifier> ::= <type-name>

| <type-name> " * "

| <int-type-specifier>

A fixed-width integer type specifier consists of the “int” or “unsigned” keyword followed

by the type width (in bits) in angle brackets.

<int-type-specifier> ::= "int" "<" <int-constant> ">"

| "unsigned" "<" <int-constant> ">"

Port substitution lists are used in component port declarations and protocol subport decla-

rations.

<port-substitution-list> ::= "<" <port-subst>

<port-subst-list-tail> ">"

<port-subst-list-tail> ::=

| <port-subst-list-tail> "," <port-subst>

A port substitution consists of the path to the substitutingport and the substituted port name,

separated by a “/”. A path is a sequence of “.”-separated portnames or the “self” keyword.

<port-subst> ::= <port-path> "/" <port-name>

<port-path> ::= <port-name> <port-path-tail>

| "self"

<port-path-tail> ::=

| <port-path-tail> "." <port-name>
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A.1.2 Types

A type declaration is an enumeration declaration, a structure declaration, and integer type

declaration, an opaque type declaration, or a pointer type declaration.

<type-decl> ::= <enum-decl>

| <struct-decl>

| <int-decl>

| <opaque-decl>

| <ptr-decl>

Enumeration declarations follow the C syntax.

<enum-decl> ::= "enum" <type-name> "{" <enum-list> "}"

<enum-list> ::=

| <enumerator> <enum-list-tail>

<enum-list-tail> ::=

| <enum-list-tail> "," <enumerator>

<enumerator> ::= <enumerator-name> "=" <int-constant>

Structure declarations follow the C syntax.

<struct-decl> ::= "struct" <type-name> "{"<struct-field -list>"}"

<struct-field-list> ::=

| <struct-field-spec> <struct-field-list>

<struct-field-spec> ::= <type-specifier> <struct-field -name> ";"

An integer type declaration consists of an integer type specifier (Section A.1.1) followed by

the type name

<int-decl> : <int-type-specifier> <type-name>

An opaque type declaration consists of the “opaque” keywordfollowed by the type name.

<opaque-decl> ::= "opaque" <type-name>

| "opaque" "struct" <type-name>

| "opaque" "union" <type-name>

| "opaque" "enum" <type-name>

A pointer type declaration consists of the base type name, a “*”, and the pointer type name.

<ptr-decl> ::= <type-name> " * " <type-name>

A.1.3 Protocols

A protocol declaration consists of a “protocol” keyword, protocol name and a list of protocol

sections in curly braces.
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<protocol-decl> ::= "protocol" <protocol-name>

"{" <protocol-sections> "}" ";"

<protocol-sections> ::=

| <protocol-sections> <protocol-section>

A protocol section is a types section, a methods section, a dependencies section, a variables

section, a ports section, or a transitions section.

<protocol-section> ::= <type-section>

| <method-section>

| <dependency-section>

| <variable-section>

| <port-section>

| <transition-section>

A types section consists of a “types:” keyword followed by type declarations (Sec-

tion A.1.2).

<type-section> ::= "types" ":" <type-decls>

<type-decls> ::=

| <type-decls> <type-decl> ";"

A methods section consists of a “methods:” keyword followedby method declarations.

<method-section> ::= "methods" ":" <method-decls>

<method-decls> ::=

| <method-decls> <method-decl> ";"

A method declaration consists of a direction specifier (“input”, “output”, or “internal”),

method name, argument list, an optional method attribute, and an optional spawn clause,

which specifies sub-ports that are spawned by this method (the “internal” keyword and

method attributes are only used in the Termite version of theprotocol specification lan-

guage).

<method-decl> ::= "in" <method-signature>

| "out" <method-signature>

| "internal" <method-signature>

<method-signature> ::= <method-name> "(" <argument-list > ’)’

<optional-method-attr> <optional-spawn>

<optional-method-attr> ::=

| "timed"

| "fallback"

<optional-spawn> ::=

| "spawns" <spawn-list>

<spawn-list> ::= <port-name>
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| <spawn-list> "," <port-name>

<argument-list> ::=

| <argument-decl> <argument-list-tail>

<argument-list-tail> ::=

| <argument-list-tail> "," <argument-decl>

<argument-decl> ::= <optional-arg-attr> <type-specifie r>

<arg-name>

A method argument can have an optional “out” qualifier, meaning that the argument value

must be passed by reference and is modified by the method.

<optional-arg-attr> ::=

| "out"

A dependencies section consists of the “dependencies:” keyword followed followed by

dependency declarations.

<dependency-section> ::= "dependencies" ":" <dependency -decls>

<dependency-decls> ::=

| <dependency-decls> <dependency-decl> ";"

A dependency consists of a protocol name, a port identifier and a list of method dependen-

cies in curly braces. A method dependency consists of the “restricts” or “listens” keyword

followed by the method name followed by the optional “timed”or “fallback” attribute (these

attributes are used in Termite specifications only).

<dependency-decl> ::= <protocol-name> <port-name>

<dependency-body>

<dependency-body> ::= "{" <method-dependency-list> "}"

<method-dependency-list> ::=

| <method-dependency-list>

<method-dependency> ’;’

<method-dependency> ::= "restricts" <method-name>

<optional-method-attr>

| "listens" <method-name>

<optional-method-attr>

A variables section consists of the "variables:" keyword followed by variable declarations.

<variable-section> ::= "variables" ":" <variable-decls>

<variable-decls> ::=

| <variable-decls> <variable-decl> ";"

A variable declaration consists of a type specifier or an ADT specifier and variable name.

<variable-decl> ::= <type-specifier> <var-name>

| <adt-specifier> <var-name>
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An ADT specifier consists of a container name (currently, “list” and “set” are the only

supported containers) followed by a type specifier in angle brackets.

<adt-specifier> ::= <adt-name> "<" <type-specifier> ">"

<adt-name> ::= "list"

<adt-name> ::= "set"

A port section consists of the “ports:” keyword followed by alist of port declarations.

<port-section> ::= "ports" ":" <port-decls>

<port-decls> ::=

| <port-decls> <port-decl>

A port declaration consists of a protocol name, a port name, an optional index type specifier

in square brackets and an optional list of port substitutions (Section A.1.1).

<port-decl> ::= <protocol-name> <port-name>

"[" <optional-type-specifier> "]" ";"

| <protocol-name> <port-name>

"[" <optional-type-specifier> "]"

<port-substitution-list> ";"

<optional-type-specifier> ::=

| <type-specifier>

A transitions section consists of the "transitions:" keyword followed by a state machine

specification. The state machine specification can be eitheran import statement, containing

a reference to an external specification or a program in the Termite specification language

(see Section A.4).

<transition-section> ::= "transitions" ’:’ <import-stat ement>

| "transitions" ’:’ <termite-state-machine>

<import-statement> :: "import" "(" "format" "=" <identifi er> ","

"location" "=" <quoted-string> ")" ";"

A.1.4 Components

A component declaration consists of thecomponent keyword followed by the component

name and a port list in curly braces.

<component-decl> ::= "component" <component-name>

"{" "ports" ":" <component-ports> "}" ";"

<component-ports> ::=

| <component-ports> <component-port>

A component port declaration consists of a protocol name, a port name, and an optional port

substitution list.
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<component-port> ::= <protocol-name> <port-name> ’;’

| <protocol-name> <port-name>

<port-substitution-list> ’;’

A.2 Protocol state transition labels

This section describes the syntax of state transition labels used in both Tingu and Termite

specifications.

A transition label consists of a trigger, a guard, an action,and an optional “timed” keyword,

which is only used in Termite specifications.

<transition> ::= <trigger> <guard> <action> <optional-ti med>

optional-timed ::=

| ":" "timed"

A trigger consists of a method identifier with an optional direction qualifier. The method

identifier is either a local method name that refers to a method of the current protocol or a

dependency method name.

<trigger> ::= "!" <method>

| "?" <method>

| <method>

<method> ::= <method-name>

| <port-name> "." <method-name>

A guard can be empty (transition is always allowed) or consist of an expression in square

brackets.

<guard> ::=

| "[" <expression> "]"

An action can be empty (transition does not modify protocol variable) or consists of a “/”

followed by a statement.

<action> ::=

| "/" <statement>

The simplest expression consists of a single operand, whichcan be a variable name, a

method argument name, an enum, integer, or boolean constant.

<expression> ::= <operand>

<operand> ::= <variable-name>

| "$" <arg-name>

| <enumerator-name>

| <int-constant>

| "true"

| "false"
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Unary, binary, and ternary arithmetic expressions:

<expression> ::= "~" <expression>

| "!" <expression>

| "-" <expression>

| <expression> "||" <expression>

| <expression> "&&" <expression>

| <expression> "==" <expression>

| <expression> "!=" <expression>

| <expression> "+" <expression>

| <expression> "-" <expression>

| <expression> " * " <expression>

| <expression> "/" <expression>

| <expression> "%" <expression>

| <expression> "<<" <expression>

| <expression> ">>" <expression>

| <expression> "|" <expression>

| <expression> "&" <expression>

| <expression> "^" <expression>

| <expression> ">" <expression>

| <expression> ">=" <expression>

| <expression> "<" <expression>

| <expression> "<=" <expression>

| <expression> "?" <expression> ":" <expression>

Parenthesis are used to control the ordering of subexpression evaluation.

<expression> ::= "(" <expression> ")"

Structure field access expression:

<expression> ::= <expression> "." <struct-field-name>

ADT function invocation expression.

<expression> ::= <expression>"."<function-name> "("<ar guments>")"

<arguments> ::=

| <argument-list>

<argument-list> ::= <argument>

| <argument-list> "," <argument>

<argument> ::= <expression>

A statement can consist of a single simple statement or a semicolon-separated list of state-

ments.

<statement> ::= <simple-statement>

<statement> ::= "{" <statement> "}"

<statement> ::= <statement-list>

<statement-list> ::= <statement> ";"
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Figure A.1: Example of a simple statechart.

<statement-list> ::= <statement-list> <statement> ";"

A simple statement is a single expression, an assignment statement, and increment or decre-

ment statement, or a port spawn statement.

<simple-statement> ::= <expression>

| <expression> "=" <expression>

| "++" <expression>

| "--" <expression>

| "new" <port-name> "(" <expression> ")"

A.3 Protocol state machines

The complete Statecharts language defined by Harel [Har87] proved difficult to assign un-

ambiguous formal semantics [vdB94]. Fortunately, most of the problematic Statechart fea-

tures are either irrelevant or non-essential to modelling driver protocols. The subset of the

Statecharts syntax described here can be assigned formal semantics in a simple and natural

way.

Statecharts are state machine diagrams extended with features to model hierarchy and

concurrency. A basic statechart that contains neither hierarchy nor concurrency is just a

finite state machine consisting of a set of states and transitions, with exactly one default

initial state and any number (including zero) of final states(Figure A.1). Execution of a

statechart is triggered by events. In Tingu, events correspond to driver interface method

invocations.

Compact representation of complex behaviours is achieved by organising states into a

hierarchy: several simple states can be placed inside a superstate, which can, in turn, belong



164 APPENDIX A. THE SYNTAX OF TINGU AND TERMITE

s1

s2 t2

s3

t1

s4

s5t4

s6

s7

s8

t5

t3

t6

t7

Figure A.2: Example of a statechart with OR-superstates.

to a higher-level superstate, etc. Two types of superstatesare supported: OR-superstates

and AND-superstates.

OR-superstates are used to cluster states with similar behaviours. Two or more states

that have identical outgoing transitions (i.e., transitions with the same label and target states)

can be placed inside an OR-superstate and the identical transitions can be replaced with

a single transition that originates from the superstate. For example, transitionst3 and

t7 in Figure A.2 define common behaviours for substates of OR-superstatess1 ands4 ,

respectively. The semantics of an OR-superstate is the exclusive or of its substates: when

the statechart is in an OR-superstate, it must be in exactly one of its substates.

An OR-superstate can have a default state (e.g., states2 in Figure A.2). A state tran-

sition that terminates at the superstate boundary enters the superstate via its default state.

An OR-superstate can also contain final states. When a final state is reached, the superstate

is exited through the default exit transition, which is an unlabelled transition originating at

the superstate boundary. There can be at most one default exit transition from a superstate,

and a superstate that has at least one final state is required to have a default exit transition.

Multilevel state transitions that cut through several levels of the state hierarchy are allowed

(e.g.,t3 andt4 in Figure A.2).

If the statechart is too large to fit in a single diagram, a superstate can be collapsed

into a simple state and its content can be moved to a separate diagram. This is illustrated

in Figure A.3, which splits the statechart in Figure A.2 intotwo statecharts. Enter and exit

connectors are introduced in the points where multilevel state transitions cross the boundary

of the collapsed superstate.

An OR-superstate can contain one or more history pseudo-states. When the superstate

is entered through a history pseudo-state, the last configuration of the superstate and all its
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(b) Superstates4 expanded.

Figure A.3: Example of state collapsing.

substates is restored recursively. If this is the first time the superstate has been activated,

the default state is entered. Figure A.4 shows a modified version of the previous example

involving a history pseudostate.

AND-superstates represent concurrent activities. An AND-superstate consists of two or

more regions separated with dashed lines (Figure A.5). All regions of an AND-superstate

are active simultaneously. An individual region behaves like an OR-superstate. A single

event can trigger state transitions in one or more regions inside an AND-superstate, in which

case all state transitions occur simultaneously. Any transition that leaves an AND-superstate

preempts all its internal regions and exits the superstate.For example, both transitionst4

andt5 in Figure A.5 exit superstates1 .
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Figure A.4: Example of a statechart with a history pseudo-state.
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Figure A.5: Example of a statechart with an AND-superstate.

A single event can enable several conflicting transitions, i.e., transitions that lead to

different states. In such a case, the transition with the highest scope is taken (the scope of a

transition is the lowest ancestor of both the source and the target state of the transition). A

well-formed Tingu state machine is not allowed to contain conflicting transitions with the

same scope.

The following Statecharts features are not supported in Tingu: internal events, instanta-

neous states, join and fork connectors, and conditional pseudo-states.
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A.4 Termite processes

A Termite specification of a protocol state machine consistsof a Termite behavioural expres-

sion followed by an optional“where” -clause, which declares named processes referenced

by the behavioural expression.

<termite-state-machine> ::= <behavioural-expression>

| <behavioural-expression>

"where"

<process-decls>

<process-decls> ::=

| <process-decls> <process-decl>

A process declaration consists of the“process” keyword followed by the name of the

process and the specification of its behaviour.

<process-decl> ::= "process" <process-name>

<behavioural-expression>

"endproc"

A behavioural expression is one of the expression types described in Section 6.4. A be-

havioural expression can be taken in parenthesis to controlthe ordering of operators.

<behvaoural-expression> ::= "stop"

| "exit"

| <process-name>

| <prefixing>

| <choice>

| <conditional>

| <sequential>

| <preemption>

| <parallel>

| <interleaving>

| (<behavioural-expression>)

<prefixing> ::= <transition> ";" <behavioural-expressio n>

<choice> ::= <behavioural-expression> "[]"

<behavioural-expression>

<conditional> ::= "if" "[" <expression> "]"

<behavioural-expression>

"else" <behavioural-expression>

<sequential> ::= <behavioural-expression>

">>"

<behavioural-expression>

<preemption> ::= <behavioural-expression>

"[>"

<behavioural-expression>

<parallel> ::= <behavioural-expression>
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"|[" <synchronisation-list> "]|"

<behavioural-expression>

<synchronisation-list> ::= <method-name> <sync-list-ta il>

<sync-list-tail> ::=

| "," <synchronisation-list>

<interleaving> ::= <behavioural-expression> "|||"

<behavioural-expression>



Appendix B

Tingu protocol specification examples

This appendix illustrates the use of the Tingu language using several examples of Tingu

protocol specifications.

B.1 TheLifecycle protocol

TheLifecycle protocol defines initialisation and shutdown requests thatmust be imple-

mented by all Dingo drivers. The protocol specification is shown in Figures B.1 and B.2.

B.1.1 Lifecycle methods

probe - Request to probe and initialise the device. This request isdelivered to the driver

when a new device is discovered on the bus during system startup or at runtime. Upon

receiving this message, the driver can start issuing bus transactions to access the (as defined

by bus-specific protocols).

probeComplete - Signals successful completion of device initialisation.

probeFailed - Unsupported device ot device initialisation failed.

stop - Stop the device and resease all resources held by the driver.

stopComplete - Driver deinitialisation complete. After receiving this notification, the

OS may release bus resources associated with the driver; therefore no device accesses are

allowed afterstopComplete (as defined by bus-specific protocols).

unplugged - The OS notifies the driver that the device has been disconnected from the

bus. The OS guarantees that no further I/O requests will be delivered to the device after an

unplugged event. The driver is not allowed to issue new bus transactions, but may have

to wait for outstanding transactions to terminate, as defined by the appropriate bus protocol.

169
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protocol Lifecycle

{

methods :

in probe();

out probeComplete();

out probeFailed(error_t error);

in stop();

out stopComplete();

in unplugged();

transitions :

import(format=rhapsody, location="LifecycleSM@ioprot ocols.sbs");

}

Figure B.1: TheLifecycle protocol declaration.

init

connected

starting [5s]

running

!probeComplete

stopping [5s]

?stop

?probe

disconnected [5s]

?unplugged

!stopComplete

!stopComplete

!probeFailed

Figure B.2: TheLifecycle protocol state machine.
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B.2 ThePowerManagement protocol

ThePowerManagement protocol defines device suspend and resume requests that must

be implemented by all Linux drivers that support bus-directed power management. Spe-

cific devices can implement their own power saving schemes that are not covered by this

protocol. The protocol specification is shown in Figures B.3and B.4.

B.2.1 PowerManagement methods

suspend - The OS is about to put the entire bus that the device is connected to or just a

subset of devices on the bus, including the current device, in a low-power mode. The driver

must prepare the device for the transfer into the new state, which includes completing any

outstanding requests and saving device context information that will be lost in the low-

power mode. The argument of the request is the target power state, which must correspond

to a lower state than the current one (D0 corresponds to running at full power, D3 corre-

sponds to switching the device power off). The OS guaranteesthat no further I/O requests

will be delivered to the device after asuspend request and until theresumeComplete

notification from the driver (see below), as defined by the appropriate driver protocol, e.g.,

EthernetController or Infiniband .

suspendComplete - The device is ready to be suspended. The OS may switch the

bus to the new power state after the driver calls this method,making certain bus operations

unavailable, as defined by the bus protocol.

resume - The bus is running at full power again. The driver must restore the device state

and prepare for handling OS requests.

resumeComplete - Resume complete; the driver is ready to handle new I/O requests

from the OS.
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protocol PowerManagement

{

types :

enum power_level_t {

D0 = 0,

D1 = 1,

D2 = 2,

D3 = 3

};

methods :

in suspend (power_level_t level);

out suspendComplete ();

in resume ();

out resumeComplete ();

variables :

/* Current device power mode */

power_level_t power_level;

dependencies :

Lifecycle lc {

listens probeComplete;

listens probeFailed;

listens unplugged;

restricts stop;

};

transitions :

import(format=rhapsody,

location="PowerManagementSM@ioprotocols.sbs");

};

Figure B.3: ThePowerManagement protocol declaration.
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running

init

full_power

!lc.probeComplete

?lc.stop

!lc.probeFailed

suspending [5s]

?suspend [$level>D0]/
power_level = $level

resuming [5s]

!resumeComplete

suspended

!suspendComplete

?resume

?suspend
[$level > power_level]/
power_level = $level

?lc.stop

?lc.unplugged

Figure B.4: ThePowerManagement protocol state machine.
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B.3 TheEthernetController protocol

The EthernetController protocol describes the service that an Ethernet controller

driver must provide to the OS. The service allows the OS to send and receive packets via

the network interface implemented by the controller. Drivers that manage multiple network

interfaces must implement an instance of this protocol for every supported interface. The

protocol specification is shown in Figures B.5, B.6, B.7, B.8, and B.9.

B.3.1 EthernetControllermethods

enable - Request to enable receive and transmit circuits inside thecontroller and allocate

any resources required to handle incoming and outgoing network packets. The OS invokes

this method the first time a user process opens a network connection via the given interface.

enableComplete - The controller is enabled. Following this notification, the driver

may start delivering incoming packets to the OS and the OS maystart sending packets via

the driver.

disable - Disable the device transmit and receive circuits. In response to this request, the

driver must abort all outstanding packet transfers and disable device receive and transmit

circuits. No new packets can be sent and received afterdisable

disableComplete - Disable complete.

txStartQueue - Notifies the OS that more space is available in the device transmit

packet queue, so that the OS can send more packets to the drivers.

txStopQueue - Notifies the OS that the device transmit queue is full. The OSwill not

attempt to send new packets until atxStartQueue notification.

txTimeout - Called by the OS networking code when it detects a transmission timeout,

to hint the driver that the device hardware may have locked upand needs a reset.

txPacket - Request to transmit a packet.

txPacketDone - Packet transfer complete.

txPacketAbort - Packet transfer failed.

rxPacketInput - Delivers a packet received from the network to the OS.

linkUp - Network link is up.

linkDown - Notifies the OS about a lack of carrier signal on the wire.

setMacAddress - Request to change the controller MAC address.
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protocol EthernetController

{

types :

opaque sk_buff; // Linux structure describing a network pac ket

methods : in enable ();

in enable ();

out enableComplete ();

in disable ();

out disableComplete ();

out txStartQueue ();

out txStopQueue ();

in txTimeout ();

in txPacket (sk_buff * packet);

out txPacketDone (sk_buff * packet);

out txPacketAbort (sk_buff * packet);

out rxPacketInput (sk_buff * packet);

out linkUp ();

out linkDown ();

in setMacAddress (size_t size, void * buf);

out setMacAddressComplete ();

in getMacAddress (size_t size, void * buf);

out getMacAddressComplete (size_t size);

in setMulticast (u32 mc_flags, size_t mc_count, void * mc_list);

out setMulticastComplete ();

variables :

size_t txCount;

dependencies :

Lifecycle lc {

listens probe;

listens probeComplete;

listens probeFailed;

listens unplugged;

restricts stop;

restricts stopComplete;

};

PowerManagement pm {

restricts suspend;

restricts suspendComplete;

listens resumeComplete;

};

transitions :

import(format=rhapsody,

location="EthernetControllerSM@ioprotocols.sbs");

};

Figure B.5: TheEthernetController protocol declaration.
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setMacAddressComplete - MAC-address change complete.

getMacAddress - Read controller MAC address.

getMacAddressComplete - MAC-address read complete.

setMulticast - Set the list of multicast addresses that the controller should listen to.

setMulticastComplete - Multicast list stored in the device.

B.3.2 TheEthernetController protocol state machine

After completing device initialisation (transition from state starting to running

in Figure B.6), the protocol participates in three concurrent activities described by

link_status , properties , andtx_rx superstates. These activities are interrupted

when the device is unplugged, suspended, or stopped.

The link_status state (Figure B.7) describes how the driver reports link status to

the OS. In the initial state, the driver must determine the current link status and report it

to the OS within 10 seconds. Afterwards, the driver only reports the link status when it

changes.

Theproperties state (Figure B.8) describes the configuration interface ofthe driver,

which consists of three operations: reading the controllerMAC address, modifying the

controller MAC address, and setting the list of multicast addresses that the controller should

listen to.

The tx_rx state (Figure B.9) describes how the driver exchanges network packets

with the OS. The OS must enable the driver before sending or receving packets via the

network interface. Upon receiving anenable request, the driver has 5 seconds to enable

the transmit and receive circuits of the device (theenable state in Figure B.9) and respond

by invoking theenableComplete callback.

The enabled state is split into two parallel regions: the top region describes the

packet transmission protocol; the bottom region describespacket reception. The driver

signals when it’s ready to transmit a packet by calling thetxStartQueue method, which

switches the transmit protocol state machine to thetxq_running state. If the OS en-

queues new packets faster than the controller can transmit them, the hardware buffers inside

the controller will eventually become full. In this case, the driver sends atxStopQueue

notification to the OS to prevent it from sending new packets.

The receive part of the protocol does not support OS-driven flow control and consists of

a singlerxPacketInput method, which delivers an incoming packet to the OS.

Thedisable command interrupts the transmit and receive operations of the driver. In

response to this command, the driver must abort all outstanding packets (thedisable state

in Figure B.9), disable the device and notify the OS via thedisableComple callback.
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init

plugged

stopping

starting

running

link_status tx_rx
suspend

stop

properties

!lc.probeComplete

suspending

suspended

?pm.suspend !pm.suspendComplete

!pm.resumeComplete

?lc.probe

suspend

stop

unplugged

?lc.unplugged

!txPacketAbort/
--txCount

!lc.probeFailed

!lc.stopComplete
[txCount == 0]

!lc.stopComplete

Figure B.6: The top-levelEthernetController protocol state machine.

link_status

phy_off [10s]

link_up
!linkUp

link_down
!linkDown

!linkDown !linkUp

Figure B.7: Thelink_status state of theEthernetController protocol state ma-

chine expanded.
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properties

prop_unchanged

mac_get [5s]

?getMacAddress !getMacAddressComplete

mcast_set [5s]
?setMulticast

!setMulticastComplete

mac_set [5s]

?setMacAddress !setMacAddressComplete

Figure B.8: Theproperties state of theEthernetController protocol state ma-

chine expanded.
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Figure B.9: Thetx_rx state of theEthernetController protocol state machine ex-

panded.
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B.4 TheUSBInterfaceClient protocol

The USBInterfaceClient protocol defines the service provided by the USB bus

framework to a USB device driver. This protocol allows the driver to access a single in-

terface of the device. Multiple-interface devices are typically managed by multiple drivers,

one for each interface of the device. However, a single driver can control multiple USB

interfaces by implementing several ports of typeUSBInterfaceClient . The protocol

specification is shown in Figures B.10 and B.11.

TheUSBInterfaceClient protocol is concerned with selecting the interface con-

figuration and opening USB pipes. The actual USB data transfers occur via pipes whose

behaviour is described by theUSBPipeClient protocol shown in Figures B.12 and B.13.

B.4.1 USBInterfaceClientmethods

altsettingSelect - Choose a different alternate setting for the interface. A USB

interface can support different modes of operation that require different interface configura-

tions. The driver selects the desired configuration by choosing the corresponding alternate

setting. The list of available configurations and their parameters is specified in the device

descriptor accessible through the metadata interface not covered here. Each alternate set-

ting supports a different set of USB endpoints. When a different setting is selected, all

pipes connecting the driver to currently used endpoints areclosed (see the description of the

USBPipeClient protocol below).

altsettingSelectComplete - Alternate setting successfully selected.

altsettingSelectFailed - Alternate setting select failed.

pipeOpen - Open a USB pipe to the specified device endpoint. This methodspawns a

new pipe port, which implements theUSBPipeClient protocol for transferring data

over the pipe. When the driver invokes this method, the USB framework allocates a USB

pipe and binds it to the provided port, so that the driver can immediately start using the pipe

through this port.

B.4.2 USBPipeClient methods

transferStart - Start a USB transfer over the pipe.

transferStalled - USB transfer failed and the pipe was stalled. Outstanding transfers

will not complete and must be aborted. No new transfers can bestarted until the pipe is

resumed.

transferFailed - USB transfer completed with an error; the pay remains operational

and will keep processing outstanding requests.
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protocol USBInterfaceClient

{

types :

unsigned<8> usb_altsetting_num_t;

unsigned<32> usb_endpoint_addr_t;

enum usb_xfer_type_t {

USB_CONTROL = 0,

USB_BULK = 1,

USB_INTERRUPT = 2,

USB_ISOCHRONOUS = 3

};

methods :

out altsettingSelect (usb_altsetting_num_t alternate);

in altsettingSelectComplete ();

in altsettingSelectFailed ();

out pipeOpen (usb_endpoint_addr_t address,

usb_xfer_type_t type) spawns pipe;

dependencies :

Lifecycle lc {

restricts probeFailed;

listens probeComplete;

listens unplugged;

};

PowerManagement pm {

restricts suspendComplete;

listens resume;

};

ports :

USBPipeClient pipe [usb_endpoint_addr_t] <self/iface, l c/lc, pm/pm>;

transitions :

import(format=rhapsody,

location="USBInterfaceClientSM@ioprotocols.sbs");

};

Figure B.10: TheUSBInterfaceClient protocol declaration.

transferComplete - USB transfer completed successfully.

abort - Abort all transfers in the pipe. Used to clear a pipe stall before resuming the pipe

or to flush the pipe without waiting for all transfers to complete before shutting down the

device or switching to a different interface setting.

transferAborted - Transfer aborted as a result of anabort request.
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on

altsetting_selecting [5s]

suspended enabled

!altsettingSelect

?altsettingSelectComplete

!pm.suspendComplete

?pm.resume

!pipeOpen/
new pipe ($address)

?altsettingSelectFailed

?lc.unplugged!lc.stopComplete !lc.probeFailed

init

?lc.probe

Figure B.11: TheUSBInterfaceClient protocol state machine.

abortComplete - Notifies the driver of the completion of anabort operation. Called

after all transfers in the pipe have been aborted.

resume - Resume the pipe after a stall. Can only be called if there areno transfers

remaining in the pipe.

resumeComplete - Notifies the driver of the completion of aresume request.

B.4.3 TheUSBPipeClient protocol state machine

TheUSBPipeClient protocol state machine shown in Figure B.13 has two featuresthat

have not appeared in protocols covered in the previous sections.

The first one is the use of the listabstract data type (ADT)to model the list of out-

standing USB transfers. Thetransfers variable is declares in Figure B.12 as fol-

lows: list<dingo_urb * > transfers; . When a new transfer is started using the

transferStart method, it is added to the back of the list using thepush_back

function. Whenever a transfer is completed using thetransferComplete ,

transferFailed , transferStalled , or transferAborted callback, the proto-

col state machine asserts that the completed transfer must be the same as the one currently

at the head of the transfer list (i.e., transfers must complete in the first-in-first-out order),

and removes the transfer from the list.

Another feature of interest in this protocol is the use of protocol dependencies to syn-

chronise with the parentUSBInterfaceClient protocol. USBInterfaceClient

defines thealtsettingSelect method, which selects an alternate interface configu-
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protocol USBPipeClient

{

types :

opaque dingo_urb; // USB request block

methods :

out transferStart (dingo_urb * request);

in transferStalled (dingo_urb * request);

in transferFailed (dingo_urb * request);

in transferComplete (dingo_urb * request);

out abort ();

in transferAborted (dingo_urb * request);

out resume ();

in resumeComplete ();

in abortComplete ();

variables :

// transfers queued in the pipe

list<dingo_urb * > transfers;

dependencies :

USBInterfaceClient iface {

restricts altsettingSelect;

};

Lifecycle lc {

listens unplugged;

restricts probeFailed;

restricts probeComplete;

};

PowerManagement pm {

restricts suspendComplete;

listens resume;

};

transitions :

import(format=rhapsody,

location="USBPipeClientSM@ioprotocols.sbs");

};

Figure B.12: TheUSBPipeClient protocol declaration.
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ration. Calling this method terminates all active USB pipes. To prevent resource leaks,

the driver is only allowed to invoke this method when there are no outstanding trans-

fers in any of its pipes. In order to express this constraint,the USBPipeClient

protocol declares arestricts dependency on thealtsettingSelect method of

the USBInterfaceClient protocol (see the dependencies section in Figure B.12).

The iface.altsettingSelect transitions in Figure B.13 are guarded by the

transfers.size()==0 expression, which ensures that the pipe is empty when the

corresponding method of the parent protocol is invoked.
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plugged

resuming [?5s]

aborting2 [?10s]

?transferAborted
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pipe_stalled !abort
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!transferStart/
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?transferComplete
[$request == transfers.first ()]/
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?transferFailed
[$request == transfers.last ()]/
transfers.pop_back ()

?transferStalled
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transfers.pop_front ()
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!abort

?abortComplete
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?transferAborted
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[transfers.size () == 0]
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Figure B.13: TheUSBPipeClient protocol state machine.
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B.5 TheInfiniBandController protocol

The InfiniBandController protocol describes the service that an InfiniBand con-

troller driver must provide to the OS. The InfiniBand architecture is designed to enable

high-throughput, low-latency, and low-CPU-overhead communication between computer

systems [Inf08]. This is achieved using high-speed interconnect technology and sophisti-

cated host-side architecture, which supportsremote direct memory access (RDMA), traffic

isolation, and other performance enhancement features. RDMA allows one of the com-

municating hosts to issue a command to read or write a block ofdata in the remote host

memory. The command is completed by the local and remote InfiniBand controllers with-

out interrupting the execution of the remote host and does not require an extra memory copy

operation on either side. Traffic isolation is achieved by providing support for multiple pri-

oritised communication endpoints in the hardware.

In order to allow applications to leverage these mechanisms, the InfiniBand controller

driver must export an interface to a number of hardware objects to the OS. These objects

and relations between them are illustrated by the UML class diagram in Figure B.14.

Queue pairs A queue pair represents an InfiniBand communication endpoint, similar to

a network socket. A queue pair consists of a request queue andresponse queue. The client

writes a command to a request queue in order to initiate communication with the remote

host (e.g., send a message or perform an RDMA write to the remote memory). The response

queue contains memory buffers, which the controller fills with messages received from the

remote endpoint. A queue pair can have a private response queue or share a response queue

with several other queue pairs. In the latter case, a specialobject type, shared response

queue, is used.

Completion queues Completion queues store results of completed request and response

operations. Every queue pair is assigned a request and a response completion queues. De-

pending on application-level needs, this can be the same or different queues. Moreover,

completion queues can be shared among multiple queue pairs.

Protection domains Protection domains is a security mechanism that allows the user to

control which memory regions can be accessed via RDMA operations through a particular

queue pair. A domain consists of a set of host memory regions.Every queue pair is assigned

to a protection domain at the time of creation. The host controller ensures that the remote

endpoint can only access memory regions inside the protection domain of the queue pair.

User contexts InfiniBand controllers are typically designed to allow user-level applica-

tions direct access to the controller, avoiding costly system calls. To this end, an application

can register a user context consisting of memory regions that are mapped to the user address

space, providing direct access to queue pairs and completion queues.
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InfiniBand Controller Driver

User Context
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*
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Figure B.14: Types of objects exported by an InfiniBand controller driver to the OS.
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The specification of theInfiniBandController protocol and its subprotocols

are shown in Figures B.15–B.26. The protocol uses a number ofdata structures declared

opaque. The actual definition of these structures can be found in Linux kernel header files.

B.5.1 InfiniBandControllermethods

advertiseControllerProperties - Advertise InfiniBand device attributes during

initialisation ().

advertisePort - Advertise a physical port of the controller and its attributes. This

method is called by the driver during initialisation once for each port of the device. This

method spawns a new Tingu subport through which the OS controls the physical port via

the IBPort protocol.

queryDevice, queryDeviceFailed, queryDeviceComplete - Query In-

finiBand device attributes.

modifyDevice, modifyDeviceFailed, modifyDeviceComplet e - Modify

device attributes.

allocUContext, allocUContextComplete, allocUContextFa iled -

Allocate a new user context.

freeUContext, freeUContextComplete - Deallocate a user context.

allocPD, allocPDFailed, allocPDComplete - Allocate a new InfiniBand

protection domain. Spawns a new port through which the OS controls new protection do-

main via theIBProtectionDomain protocol.

createCQ, createCQFailed, createCQComplete - Allocate a new comple-

tion queue. Spawns a new port through which the OS controls the completion queue via the

IBCompletionQueue protocol.

catastrophicError - Report a catastrophic device error to the OS.
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protocol InfiniBandController {

types :

opaque struct ib_device_attr;

opaque struct ib_port_attr;

opaque struct dib_udata;

opaque struct ib_ucontext;

opaque struct ib_device;

opaque struct ib_device_modify;

opaque struct vm_area_struct;

opaque struct task_struct;

messages:

out advertiseControllerProperties (ib_device_attr * props, u32 features);

out advertisePort (ib_port_attr * props) spawns hcport;

in queryDevice (ib_device_attr * props);

out queryDeviceFailed (error_t error);

out queryDeviceComplete ();

in modifyDevice (u32 mask, ib_device_modify * props);

out modifyDeviceFailed (error_t error);

out modifyDeviceComplete ();

in allocUContext (dib_udata * udata);

out allocUContextComplete (ib_ucontext * ctx);

out allocUContextFailed (error_t error);

in freeUContext (ib_ucontext * ctx);

out freeUContextComplete ();

in allocPD (ib_ucontext * ctx, dib_udata * udata);

out allocPDFailed (error_t error);

out allocPDComplete () spawns pd;

in createCQ (s32 entries, s32 vector, ib_ucontext * ctx,

dib_udata * udata, task_struct * task);

out createCQFailed (error_t error);

out createCQComplete () spawns cq;

out catastrophicError ();

dependencies :

Lifecycle lc {

listens probe; restricts probeFailed;

restricts probeComplete; restricts stop;};

variables :

set<ib_ucontext * > contexts;

ports :

IBPort hcport [u8] <lc/lc>;

IBProtectionDomain pd [] <lc/lc>;

IBCompletionQueue cq [] <lc/lc>;

transitions :

import(format=rhapsody,location="InfiniBandControll erSM@ioprotocols.sbs");

};

Figure B.15: TheInfiniBandController protocol declaration.
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idle

init

starting

s1

s2

!advertiseControllerProperties

!advertisePort/
new hcport($pnum)

!lc.probeComplete

?lc.probe

ctx_alloc
?allocUContext

!allocUContextFailed

!allocUContextComplete/
contexts.insert($ctx)

cq_create
?createCQ

!createCQFailed

!createCQComplete/new cq

pd_create
?allocPD

!allocPDFailed

!allocPDComplete/new pd

ctx_free
?freeUContext
[contexts.find($ctx)]/
ctx=$ctx

!freeUContextComplete/
contexts.erase(ctx) modify

?modifyDevice

!modifyDeviceFailed

!modifyDeviceComplete

?lc.stop !catastrophicError

!lc.probeFailed

query
?queryDevice

!queryDeviceFailed

!queryDeviceComplete

Figure B.16: TheInfiniBandController protocol state machine.
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B.5.2 IBPort methods

active, error - Report physical port error conditions.

queryPort, queryPortFailed, queryPortComplete - Query port attributes.

modifyPort, modifyPortFailed, modifyPortComplete - Modify port at-

tributes.

queryPKey, queryPKeyFailed, queryPKeyComplete - Retrieve a network

partition key in the partition key table associated with theport.

queryGID, queryGIDFailed, queryGIDComplete - Retrieve port’s global

identifier (the identifier that uniquely identifies the port inside a multicast group).
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protocol IBPort

{

types :

opaque struct ib_port_modify;

opaque union ib_gid;

opaque struct ib_grh;

opaque struct ib_mad;

opaque struct ib_mad_send_buf;

opaque struct ib_wc;

opaque enum ib_wc_status;

ib_mad_send_buf * pib_mad_send_buf;

messages:

out active ();

out error ();

in queryPort (ib_port_attr * props);

out queryPortFailed (error_t error);

out queryPortComplete ();

in modifyPort (s32 mask, ib_port_modify * props);

out modifyPortFailed (error_t error);

out modifyPortComplete ();

in queryPKey (u16 index, u16 * pkey);

out queryPKeyFailed (error_t error);

out queryPKeyComplete ();

in queryGID (s32 index, ib_gid * gid);

out queryGIDFailed (error_t error);

out queryGIDComplete ();

dependencies :

Lifecycle lc {restricts stop;};

transitions :

import(format=rhapsody,location="IBPortSM@ioprotoco ls.sbs");

};

Figure B.17: TheBPort protocol declaration.
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running

events

!error
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!queryPortFailed

!queryPortComplete

?hca.stop

Figure B.18: TheIBPort protocol state machine.



B.5. THEINFINIBANDCONTROLLERPROTOCOL 193

B.5.3 IBProtectionDomainmethods

createQP, createQPFailed, createQPComplete - Allocate a new queue pair

inside the domain. Spawns a new port implementing theIBQueuePair protocol.

getDMAMR, getDMAMRFailed, getDMAMRComplete - Retrieve a memory region

descriptor for a memory region registered with the protection domain.

regUserMR, regUserMRFailed, regUserMRComplete - Add a new user

memory region to the domain.

regPhysMR, regPhysMRFailed, regPhysMRComplete - Add a new physical

memory region to the domain.

deregMR, deregMRComplete - Remove a memory region from the domain.

createSRQ, createSRQFailed, createSRQComplete - Create a new shared

response queue. Spawns a new port implementing theIBSharedRQ protocol.

free, freeComplete - Destroy the protection domain.
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protocol IBProtectionDomain {

types :

opaque struct ib_qp_init_attr;

opaque struct ib_mr;

opaque struct ib_srq_init_attr;

opaque struct ib_phys_buf;

ib_ah * pib_ah;

messages:

in createQP (IBCompletionQueue rcq, IBCompletionQueue scq,

IBSharedRQ srq, ib_qp_init_attr * init_attr,

dib_udata * udata, task_struct * task);

out createQPFailed (error_t error);

out createQPComplete () spawns qp;

in getDMAMR (s32 acc);

out getDMAMRFailed (error_t error);

out getDMAMRComplete (ib_mr * mr);

in regUserMR (u64 start, u64 length, u64 virt_addr,

s32 access_flags, dib_udata * udata);

out regUserMRFailed (error_t error);

out regUserMRComplete (ib_mr * mr);

in regPhysMR (ib_phys_buf * buffer_list, s32 num_phys_buf,

s32 acc, u64 * iova_start);

out regPhysMRFailed (error_t error);

out regPhysMRComplete (ib_mr * mr);

in deregMR (ib_mr * mr);

out deregMRComplete ();

in createSRQ (ib_srq_init_attr * init_attr, dib_udata * udata,

task_struct * task);

out createSRQFailed (error_t error);

out createSRQComplete () spawns srq;

in free ();

out freeComplete ();

dependencies :

Lifecycle lc {restricts stop;};

variables :

set<ib_mr * > mrs;

ports :

IBQueuePair qp[]<self/pd>;

IBSharedRQ srq[]<self/pd>;

transitions :

import(format=rhapsody,location="IBProtectionDomain SM@ioprotocols.sbs");

};

Figure B.19: TheIBProtectionDomain protocol declaration.
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idlecreate_qp
?createQP

!createQPFailed

!createQPComplete/
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?createSRQ

!createSRQFailed
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Figure B.20: TheIBProtectionDomain protocol state machine.
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B.5.4 IBQueuePair methods

initialise, initialiseFailed, initialiseComplete -

recvEnable, recvEnableFailed, recvEnableComplete -

sendEnable, sendEnableFailed, sendEnableComplete -

setErrorState, setErrorStateFailed, setErrorStateComp lete -

reset, resetFailed, resetComplete -

sqDrainStart, sqDrainStartFailed, sqDrainStartComplet e -

sqDrained - The InfiniBand standard defines several states through in which a queue pair

can be during its lifecycle: RESET, READY-TO-RECEIVE, READY-TO-SEND, SEND-

QUEUE-DRAIN, and ERROR. The above methods implement transitions between these

states.

query, queryFailed, queryComplete - Query queue pair attributes.

modify, modifyFailed, modifyComplete - Modify queue pair attributes.

postSend - Post a new send or RDMA request.

postRecv - Post a new receive request.

destroy, destroyComplete - Destory the queue pair.
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protocol IBQueuePair

{

types :

opaque struct ib_qp_attr;

opaque struct ib_qp;

messages:

in initialise (ib_qp_attr * attr, s32 attr_mask, dib_udata * udata);

out initialiseFailed (error_t error);

out initialiseComplete ();

in recvEnable (ib_qp_attr * attr, s32 attr_mask, dib_udata * udata);

out recvEnableFailed (error_t error);

out recvEnableComplete ();

in sendEnable (ib_qp_attr * attr, s32 attr_mask, dib_udata * udata);

out sendEnableFailed (error_t error);

out sendEnableComplete ();

in sqDrainStart (ib_qp_attr * attr, s32 attr_mask, dib_udata * udata);

out sqDrainStartFailed (error_t error);

out sqDrainStartComplete ();

out sqDrained ();

in setErrorState (ib_qp_attr * attr, s32 attr_mask, dib_udata * udata);

out setErrorStateFailed (error_t error);

out setErrorStateComplete ();

in reset (ib_qp_attr * attr, s32 attr_mask, dib_udata * udata);

out resetFailed (error_t error);

out resetComplete ();

in query (ib_qp_attr * attr, s32 attr_mask, ib_qp_init_attr * init_attr);

out queryFailed (error_t error);

out queryComplete ();

in modify (ib_qp_attr * attr, s32 attr_mask, dib_udata * udata);

out modifyFailed (error_t error);

out modifyComplete ();

in postSend (ib_send_wr * wr, pib_send_wr * bad_wr, out error_t error);

in postRecv (ib_recv_wr * wr, pib_recv_wr * bad_wr, out error_t error);

in destroy ();

out destroyComplete ();

dependencies :

IBProtectionDomain pd {restricts free;};

transitions :

import(format=rhapsody,location="IBQueuePairSM@iopr otocols.sbs");

};

Figure B.21: TheIBQueuePair protocol declaration.
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Figure B.22: TheIBQueuePair protocol state machine.
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B.5.5 IBSharedRQ methods

query, queryFailed, queryComplete - Query queue attributes.

modify, modifyFailed, modifyComplete - Modify queue attributes.

postRecv - Post a new receive request.

arm, armFailed, armComplete - Arm the queue to signal to the OS when the

number of queue entries drops below the specified threshold.

limitReached - Notify the OS that the queue has reached the threshold.

error - Report an error.

destroy, destroyComplete - Destory the queue.
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protocol IBSharedRQ

{

types :

opaque struct ib_srq_attr;

opaque enum ib_srq_attr_mask;

opaque struct ib_recv_wr;

opaque struct ib_send_wr;

opaque struct ib_srq;

ib_recv_wr * pib_recv_wr;

ib_send_wr * pib_send_wr;

messages:

in query (ib_srq_attr * srq_attr);

out queryFailed (error_t error);

out queryComplete ();

in modify (ib_srq_attr * attr, ib_srq_attr_mask attr_mask,

dib_udata * udata);

out modifyFailed (error_t error);

out modifyComplete ();

in postRecv (ib_recv_wr * wr, pib_recv_wr * bad_wr,

out error_t error);

in arm (u32 srq_limit);

out armFailed (error_t error);

out armComplete ();

out limitReached ();

out error ();

in destroy ();

out destroyComplete ();

dependencies :

IBProtectionDomain pd {

restricts free;

};

transitions :

import(format=rhapsody,location="IBSharedRQ@ioproto cols.sbs");

};

Figure B.23: TheIBSharedRQ protocol declaration.
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Figure B.24: TheIBSharedRQ protocol state machine.
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B.5.6 IBCompletionQueuemethods

poll - Dequeue the requested number of completion entries.

arm - Arm the completion queue to notify the OS about completed requests added to the

queue.

notify - Notify the OS about completed requests added to the queue.

resize, resizeComplete, resizeFailed - Change the number of entries in

the queue.

error - Report an error.

destroy, destroyComplete - Destroy the queue.
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protocol IBCompletionQueue

{

types :

opaque enum ib_cq_notify_flags;

opaque struct ib_cq;

messages:

in poll (u32 nentries, ib_wc * completions, out int ret);

out notify (u32 nentries);

in arm (ib_cq_notify_flags flags, out error_t err);

in resize (s32 entries, dib_udata * udata);

out resizeComplete ();

out resizeFailed (error_t error);

out error ();

in destroy ();

out destroyComplete ();

dependencies :

Lifecycle lc {

restricts stop;

};

transitions :

import(format=rhapsody,

location="IBCompletionQueueSM@ioprotocols.sbs");

};

Figure B.25: TheIBCompletionQueue protocol declaration.
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Figure B.26: TheIBCompletionQueue protocol state machine.
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Appendix C

The OpenCores SD host controller

device specification

Figure C.1 shows the complete OpenCores SD host controller device [Edv] protocol spec-

ification. The corresponding device-class and OS protocol specifications are given in Sec-

tion 6.5.

205
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protocol SDHostOpenCores

{

types :

/* device registers */

struct command_reg {

unsigned<2> RTS;

unsigned<8> RESERVED;

unsigned<6> CMDI;

};

/* argument register */

struct argument_reg {

unsigned<32> CMDA; // command argument

};

/* card status register */

struct status_reg {

unsigned<1> CICMD; // command inhibit

unsigned<15> RESERVED;// reserved

};

/* command response register */

struct response_reg {

unsigned<32> CRSP; // response of the last command

};

/* software reset reg */

struct reset_reg {

unsigned<1> SRST; // software reset

unsigned<7> RESERVED; // reserved

};

/* normal interrupt status register */

struct isr_reg {

unsigned<1> CC; // command complete

unsigned<14> RESERVED; // reserved

unsigned<1> EI; // error interrupt

};

/* error interrupt status register */

struct eisr_reg {

unsigned<1> CTE; // command timeout

unsigned<1> CCRC; // command CRC error

unsigned<14> RESERVED;// reserved

};

/* clock divider register */

struct clock_div_reg {

unsigned<8> CLKD; // clock divider

};

Figure C.1: The OpenCores SD host controller device specification (continued on the next

page).
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/* BD buffer status register */

struct bd_status_reg {

unsigned<8> FBTX; // free TX buffer descriptors

unsigned<8> FBRX; // free RX buffer descriptors

};

/* data interrupt status register */

struct disr_reg {

unsigned<1> TRS; // transmission successful

unsigned<1> TRE; // transmission error

unsigned<14> RESERVED; // reserved

};

/* RX buffer descriptor register */

struct bdrx_reg {

unsigned<32> BDRX;

};

/* TX buffer descriptor register */

struct bdtx_reg {

unsigned<32> BDTX;

};

struct block_descr {

unsigned<32> mem_addr; //memory address

unsigned<32> card_addr; //card address

};

methods :

/*register read/write methods */

out write_command_reg (command_reg v);

out read_command_reg (out command_reg v);

out write_argument_reg (argument_reg v);

out read_argument_reg (out argument_reg v);

out read_status_reg (out status_reg v);

out read_response_reg (out response_reg v);

out write_reset_reg (reset_reg v);

out read_reset_reg (out reset_reg v);

out write_isr_reg (isr_reg v);

out read_isr_reg (out isr_reg v);

out write_eisr_reg (eisr_reg v);

out read_eisr_reg (out eisr_reg v);

out write_clock_div_reg (clock_div_reg v);

out read_clock_div_reg (out clock_div_reg v);

out read_bd_status_reg (out bd_status_reg v);

out write_disr_reg (disr_reg v);

out read_disr_reg (out disr_reg v);

out write_bdrx_reg (bdrx_reg v);

out write_bdtx_reg (bdtx_reg v);

in irq ();

Figure C.1: The OpenCores SD host controller device specification (continued).
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dependencies :

SDHostClass class {

restricts on;

restricts off;

restricts commandOK;

restricts commandError;

restricts blockTransferOK;

restricts blockTransferError;

restricts busClockChange;

};

variables :

command_reg m_command_reg;

reset_reg m_reset_reg;

argument_reg m_argument_reg;

status_reg m_status_reg;

response_reg m_response_reg;

isr_reg m_isr_reg;

eisr_reg m_eisr_reg;

bd_status_reg m_bd_status_reg;

disr_reg m_disr_reg;

clock_div_reg m_clock_div_reg;

block_descr m_tx_descr;

block_descr m_rx_descr;

block_descr m_curr_descr;

unsigned<1> m_new_command;

unsigned<1> m_data_command;

sdhost_command_t m_command;

transitions :

write_reset_reg[$v.SRST==1]/{m_comand_reg=0;m_statu s_reg=0;...};

write_reset_reg[$v.SRST==0];

class.on;

SDHOST

where

process SDHOST

(REGISTERS

|||

(COMMAND_MASTER |[class.off]| DATA_MASTER)

|||

CLOCK_DIVIDER)

[>

write_reset_reg[$v.SRST == 1]/{m_comand_reg=0;

m_status_reg=0; ...};

write_reset_reg[$v.SRST==0];

SDHOST

endproc

Figure C.1: The OpenCores SD host controller device specification (continued).
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process CLOCK_DIVIDER

write_clock_div_reg/m_clock_div_reg=$v;

class.busClockChange[$divisor==m_clock_div_reg.CLKD ];

CLOCK_DIVIDER

endproc

process REGISTERS

read_argument_reg[$v==m_argument_reg];

REGISTERS

[]

write_argument_reg[m_status_reg.CICMD==1]/m_argumen t_reg=$v;

REGISTERS

[]

write_argument_reg[m_status_reg.CICMD==0]

/{m_argument_reg=$v; m_new_command=1;

m_data_command=0; m_status_reg.CICMD=1;};

REGISTERS

[]

read_reset_reg[$v==m_reset_reg];

REGISTERS

[]

write_command_reg/m_command_reg = $v;

REGISTERS

[]

read_command_reg[$v == m_command_reg];

REGISTERS

[]

read_bd_status_reg[$v == m_bd_status_reg];

REGISTERS

[]

/* two consecutive writes to the BDTX register form

a 64-bit buffer descriptor */

write_bdtx_reg/m_tx_descr.mem_addr = $v.BDTX;

write_bdtx_reg/{m_tx_descr.card_addr = $v.BDTX;

m_bd_status_reg.FBTX = 0;};

REGISTERS

[]

/* two consecutive writes to the BDRX register form

a 64-bit buffer descriptor */

write_bdrx_reg/m_rx_descr.mem_addr = $v.BDRX;

write_bdrx_reg/{m_rx_descr.card_addr = $v.BDRX;

m_bd_status_reg.FBRX = 0;};

REGISTERS

endproc

Figure C.1: The OpenCores SD host controller device specification (continued).
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process COMMAND_MASTER

await[m_new_command==1]

/{m_command.index=m_command_reg.CMDI;

m_command.arg=m_argument_reg.CMDA;

m_command.response=m_command_reg.RTS;

m_command.data=m_data_command;

m_new_command=0;};

irq : timed ;

read_isr_reg/m_isr_reg=$v : timed ;

read_eisr_reg/m_eisr_reg=$v : timed ;

read_response_reg/m_response_reg=$v : timed ;

write_isr_reg[$v==0] : timed ;

write_eisr_reg[$v==0] : timed ;

(

if[m_isr_reg.CC == 1]

class.commandOK

[($command==m_command) &&

($response==m_response_reg.CRSP)]

/m_status_reg.CICMD=0 : timed ;

COMMAND_MASTER

[]

else

class.commandError

[($command==m_command) &&

($status==(m_eisr_reg.CCRC ?

SDH_CMD_ECRC : SDH_CMD_ETIMEOUT))]

/m_status_reg.CICMD=0 : timed ;

COMMAND_MASTER

)

[]

class.off;

exit

endproc

process DATA_MASTER

/* A data transfer is triggered when either the TX or the

RX buffer descriptor is written and the command inhibit

bit is zero (i.e., the command master is not busy) */

Figure C.1: The OpenCores SD host controller device specification (continued).
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(

/* The RX buffer descriptor has been written. Start a

read transfer. The first step is to send command 17 to

the card. To this end, the data master writes command

and argument registers and triggers the command master

by generating the m_new_command signal. The argument

of command 17 is the address of the SD card block to be

written. Thid value is take from thr rx buffer

descriptor (m_rx_descr.card_addr). */

await[(m_bd_status_reg.FBRX == 0) &&

(m_status_reg.CICMD == 0)]

/{m_curr_descr = m_rx_descr;

m_command_reg.CMDI = 17; // issue command 17

m_command_reg.RTS = 1; //expect a response from command

m_argument_reg.CMDA = m_rx_descr.card_addr; // write

// block address to the arg register

m_new_command = 1;

m_data_command = 1;

m_status_reg.CICMD = 1;};

/* The data master then waits for the command master to

complete the command. */

(

await[(m_status_reg.CICMD == 0) && (m_command_ok == 0)];

/* If the command master fails, the data master deadlocks.

The only way to get out of this deadlock is by resetting

the controller (see the DATA_MASTER process above) */

stop

[]

/* If the command went through successfully, ... */

await[(m_status_reg.CICMD == 0) && (m_command_ok == 1)];

/* ...the data master starts a data transfer. Completion

of the transfer is indicated by an interrupt; the

outcome is determined by values in the data interrupt

status register. If the transfer was successful, the

TRS bit is set to 1. In this case, a

blockTransferComplete event is generated. Otherwise, a

blockTransferFailed event is generated. In either case,

the data master also sets the number of available rx

descriptors in the BD status register

(m_bd_status_reg.FBRX) to 1, indicating that it is

ready for the next data transfer. */

irq:timed ;

read_disr_reg/m_disr_reg = $v : timed ;

write_disr_reg :timed ;

Figure C.1: The OpenCores SD host controller device specification (continued).
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(

if[m_disr_reg.TRS == 1]

class.blockTransferComplete

[($mem_addr == m_curr_descr.mem_addr)]

/{m_disr_reg.TRS = 0; m_disr_reg.TRE = 0;

m_bd_status_reg.FBRX = 1;} : timed ;

DATA_MASTER

[]

else

class.blockTransferFailed

[($mem_addr == m_curr_descr.mem_addr) &&

($status == SDH_DATA_ERROR)]

/{m_eisr_reg.CCRC = 0; m_eisr_reg.CTE = 0;

m_bd_status_reg.FBRX = 1;} : timed ;

DATA_MASTER

)

)

)

[]

(

/*Same for TX*/

await[(m_bd_status_reg.FBTX == 0) && (m_status_reg.CICM D == 0)]

/{m_curr_descr = m_tx_descr;

m_command_reg.CMDI = 24; // issue command 24

m_command_reg.RTS = 1;

m_argument_reg.CMDA = m_tx_descr.card_addr;

m_new_command = 1;

m_data_command = 1;

m_status_reg.CICMD = 1;};

(

await[(m_status_reg.CICMD == 0) && (m_command_ok == 0)];

stop

[]

await[(m_status_reg.CICMD == 0) && (m_command_ok == 1)];

irq:timed ;

read_disr_reg/m_disr_reg = $v : timed ;

write_disr_reg :timed ;

Figure C.1: The OpenCores SD host controller device specification (continued).
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(

if[m_disr_reg.TRS == 1]

class.blockTransferComplete

[($mem_addr == m_curr_descr.mem_addr)]

/{m_disr_reg.TRS = 0; m_disr_reg.TRE = 0;

m_bd_status_reg.FBTX = 1; : timed };

DATA_MASTER

[]

else

class.blockTransferFailed

[($mem_addr == m_curr_descr.mem_addr) &&

($status == SDH_DATA_ERROR)]

/{m_eisr_reg.CCRC = 0; m_eisr_reg.CTE = 0;

m_bd_status_reg.FBTX = 1;}: timed ;

DATA_MASTER

)

)

)

[]

class_off;

stop

endproc

Figure C.1: The OpenCores SD host controller device specification (the end).
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