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Abstract

This dissertation is dedicated to the problem of deviceeadrieliability. Software defects
in device drivers constitute the biggest source of failareperating systems, causing sig-
nificant damage through downtime and data loss. Previoesurels on driver reliability has
concentrated on detecting and mitigating defects in exjdirivers using static analysis or
runtime isolation. In contrast, this dissertation presemt approach to reducing the number
of defects through an improved device driver architectue gevelopment process.

In analysing factors that contribute to driver complexitganduce errors, | show that a
large proportion of errors are due to two key shortcomingkéndevice-driver architecture
enforced by current operating systems: poorly-defined conication protocols between
drivers and the operating system, which confuse develapetdead to protocol violations,
and a multithreaded model of computation, which leads toeroms race conditions and
deadlocks. To address the first shortcoming, | propose teribesdriver protocols using
a formal, state-machine based, language, which avoidsisionf and ambiguity and helps
driver writers implement correct behaviour. The seconddds addressed by abandoning
multithreading in drivers in favour of a more disciplinedeet-driven model of computation,
which eliminates most concurrency-related faults. Thegadvements reduce the number
of defects without radically changing the way drivers areetfgped.

In order to further reduce the impact of human error on driediability, | propose to
automate the driver development process by synthesismgniplementation of a driver
from the combination of three formal specifications: a devitass specification that de-
scribes common properties of a class of similar devicesy@eepecification that describes
a concrete representative of the class, and an operatitgnsysterface specification that
describes the communication protocol between the drivdrthe operating system. This
approach allows those with the most appropriate skills amaviedge to develop speci-
fications: device specifications are developed by deviceufaaturers, operating system
specifications by the operating system designers. Theealeléss specification is the only
one that requires understanding of both hardware and seftvetdated issues. However
writing such a specification is a one-off task that only netedbe completed once for a
class of devices.

This approach also facilitates the reuse of specificatiansingle operating-system
specification can be combined with many device specificationsynthesise drivers for
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multiple devices. Likewise, since device specifications iadependent of any operating
system, drivers for different systems can be synthesised & single device specification.
As a result, the likelihood of errors due to incorrect speatfons is reduced because these
specifications are shared by many drivers.

| demonstrate that the proposed techniques can be inctedargo existing operating
systems without sacrificing performance or functionalypbesenting their implementation
in Linux. This implementation allows drivers developedngsthese techniques to coexist
with conventional Linux drivers, providing a gradual mitjoa path to more reliable drivers.
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Chapter 1

Introduction

This dissertation is dedicated to the problem of deviceeadreliability. According to re-
cent studies [GGP06, Mur04], software faults in deviceahdvare responsible for 70% of
operating system (OSailures, making drivers the leading source of instabilitymodern
computer systems.

Several factors contribute to this situation. First, dewitivers are an integral part of
the system software stack, providing critical services tteep system components (e.g.,
network stacks and file systems), as well as to user-leveicagipns. As a result, a failure
of a device driver can trigger a system-wide failure, potdigt causing downtime and data
loss. This is true for both in-kernel drivers and, to a lesksgree, for drivers that execute
as user-level processes.

Second, the quality of driver code is inferior to that of gt components. Writing
a device driver requires profound understanding of bothcgeand OS internals. In prac-
tice, driver developers are usually experts in at most orteefwo areas and are likely to
introduce errors when dealing with the less familiar partthefdriver functionality.

In addition, drivers do not get tested as thoroughly as teeakthe OS. Many corner
cases that may trigger driver defects arise from intertegssiof hardware and software
events that are difficult to reproduce deterministicallyimiy testing. Another problem is
that many drivers are intended to support a range of simdeiceds from a single or multiple
vendors; however it is often impractical to test the drivéthvall supported hardware.

As a result, the density of errors in driver code is an ordenagnitude higher than in
the core parts of the system, e.g., the scheduler or thealimemory manager [CYQD1].

Finally, drivers account for a large fraction of OS code aheréfore have a strong
effect on OS reliability. For example, the total size of a@evidrivers shipped with the
Linux 2.6.27 kernel is 3,448,00ihes of code (LOG)which constitutes 69% of the entire
kernel tree, including all supported file systems, netwatktqrols, and x86-specific code.
Not all drivers run simultaneously on a real system. As anmgta of a representative

1These measurements reflect lines of code, excluding comsinergasured using David A. Wheeler's
SLOCCount tool [Whe] run with default parameters.

1



2 CHAPTER 1. INTRODUCTION

Driver ‘ LOC ‘ ‘ Driver ‘ LOC ‘
ACPI drivers Storage
ACPI processor driver 3804 Generic CDROM driver 2483
ACPI fan driver 268 SCSI CDROM driver 1337
ACPI battery driver 765 SCSI disk driver 1833
ACPI smart battery system driver | 889 Sound
ACPI AC adapter driver 292 Intel HD audio controller driver 1749
ACPI button driver 428 PC speaker driver 103
ACPI PCI slot driver 245 .
_ Video
ACPI system management bus drivier293 Pixart PAC207BCA USB webcam 2031
ACPI video driver 1755 .
ller driver 179 driver
ACPI PATA controller Intel 965 Express graphics card 2409
ACPI dock station driver 558 .
driver
ACPI thermal zone driver 1414 _
: Networking

Interconnect drivers Intel  PRO/Wireless  3945ABG 9077

PCI bus driver 8464 .
adapter driver

Parallel port driver 4730

Broadcom 44xx/47xx Ethernet con- 2169

Secure Digital host controller drivert 1900 .
troller driver

AGP controller driver 4137 . -

PCI hotplug controller driver 2322 Human interface devices

Intel PATA/SATA controller driver 1028 Synaptics mousepad driver 1760
IEEE-1394 OHCI controller driver | 2753 USB HID driver 4450
IEEE-1394 SBP-2 protocol driver | 1746 Other

Sonics Silicon Backplane driver | 1134 | | Intel TCP watchdog timer driver | 734
USB EHCI controller driver 720 Generic parallel printer driver 712
USB UHCI controller driver 851 Total ‘ 71522‘

Table 1.1: Device drivers running on a typical Linux laptop.

configuration, Table 1.1 lists drivers running on the Linagtbp used to typeset this thesis.
The list includes 36 different drivers, comprised of 71,588s of C code, which constitutes

approximately 30% of the entire code running in the kernghissystem. Given the much

higher density of errors in drivers compared to the rest efidrnel, this explains why OS

failure statistics is dominated by device drivers.

Much of the previous research on device driver reliabiligs fiocused on developing
runtime isolation and recovery techniques for drivers. ilea of this approach is to place
device drivers inside hardware or software-enforced ptimte boundaries, making sure that
a faulty driver cannot overwrite memory used by other parth®OS. This forms the basis
for a failure detection and recovery infrastructure resjigle for detecting misbehaving
drivers and preventing failures from propagating througtibe system.

Another common approach consists of detecting errorsatiti by analysing the code
of the driver. This approach is enabled by recent advancesatic analysis and model
checking, which made these techniques applicable to laxagraams written in a low-level



oS

i OS interface

Driver

i Device interface

Device

Figure 1.1: A generalised device-driver architecture.

language.

As will be shown in the related work survey in Chapter 3, wliffering considerable
improvements, both approaches suffer serious limitatidngarticular, runtime isolation
is associated with substantial performance overhead. Muapertantly, in order to make a
runtime failure transparent to the system, one must havatefst driver recovery mecha-
nism in place. Such a mechanism must intercept all intenastbetween the driver and the
OS and keep track of data needed for transparent recovernyrntd out that complex and
poorly defined driver interfaces in current OSs make it hartinplement this in practice.
Static techniques do not involve any runtime overhead; kewealespite many improve-
ments in the area, they are still only capable of finding atéohsubset of driver bugs.

Given that these existing approaches do not fully neutrdlie effect of driver errors, |
claim that a complementary solution that enables the creati drivers with fewer errors
has the potential to greatly improve the device driver amitbehe overall system reliability.

To this end, this dissertation first analyses the root calesekng to driver errors, with
a view of identifying those of them that can be overcome wlith help of an improved
device driver architecture or development process. Bagmeal siudy of a large sample of
real drivers defects, described in Chapter 4, | concludettremajority of these defects
are related to handling the device and the OS interfaceseofitiver (Figure 1.1). Both
interfaces tend to be complex and poorly defined, which s@¥uriver developers and
induces errors. The situation is exacerbated by the comregiteal driver organisation
where interactions with the device and the OS are tightlgrintined, forcing the driver
developer to deal with the complexity of both interfacesudtameously and leading to poor
separation of concerns inside the driver.



4 CHAPTER 1. INTRODUCTION
1.1 Improving OS support for device drivers with Dingo

These findings point to potential areas of improvement. htiqadar, focusing on the OS
interface of the driver, | identify two key shortcomings oig interface, as it is defined
in current systems. First, most operating systems enforoeltithreaded model of com-
putation on device drivers. In this model, the driver mustdia invocations from multiple
concurrent threads, which puts the burden of synchropisath driver developers and leads
to numerous race conditions and deadlocks.

The second problem is the lack of well-defined communicgpi@tocols between dri-
vers and the OS. Modern OSs impose complex constraints cordeging and content of
interactions with device drivers. These constraints agdiaitly defined in the source code
of the system and are not captured in documentation, whickrg#ly focuses on describing
individual driver and OS entry points, while ignoring thposssible orderings. This confuses
developers and leads to protocol violations. MoreoverhasaS evolves, these constraints
may change in subtle ways, often breaking previously codgeers.

In order to address both shortcomings, | propose an imprdesite-driver architec-
ture, called Dingé. In particular, | suggest abandoning multithreading inice\drivers
in favour of a more disciplined event-based model of commrawhich eliminates most
concurrency-related issues. In order to reduce protoasatons, | propose to describe
driver protocols using a visual, state-machine based ukage, called Tingti Tingu speci-
fications serve as documentation, providing easy-to-ugkeljoes to driver developers, thus
avoiding confusion and ambiguity and helping the develsjraplement correct behaviour.

In order to demonstrate that these improvements can bepoed in existing OSs
without sacrificing performance or functionality, | presenLinux-based implementation,
which provides a set of wrappers that make drivers develapedmpliance with the Dingo
interface appear as regular Linux drivers to the rest of #gr@dd. This enables Dingo and
conventional Linux drivers to coexist, providing a gradoagration path to more reliable
drivers. Experimental evaluation of the Dingo driver atebiure shows that it eliminates
most synchronisation errors and reduces the likelihood@atbpol violations, while intro-
ducing negligible performance overhead.

1.2 Automatic device driver synthesis with Termite

Further reduction in the number of errors can be achievel thi¢ help of an improved

driver development process. The task of writing a deviceedritonsists of defining a map-
ping from OS requests into sequences of device commandsdtisly these requests. To
do so, the driver developer relies on two sets of documemtat specification of the de-
vice interface, which describes how device functions cacdmgrolled from software, and a

2The Dingo is Australia’s wild dog.
3Tingu is an Australian aboriginal name for a Dingo cub.
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specification of the OS interface, which describes the ser¥iat the OS expects the driver
to implement, as well as OS services available to the drisemen these two specifications,
the developer derives a driver algorithm that translatgsvalid sequence of OS requests
into a matching sequence of device operations—a straigtufol, yet error-prone task.

In this thesis | demonstrate that this task can be automdtei@velop a tool, called
Termite, that synthesises a driver implementation autimalft based on three formal spec-
ifications: a device-class specification that describesnaomproperties of a class of similar
devices (e.g., Ethernet controllers), a device specifinatiat describes a concrete repre

sentative of the class, and an OS interface specificatiandtébscribes the communication
protocol between the driver and the OS.

Separating the device description from OS-related detad&ey aspect of the proposed
approach to driver synthesis. It allows those with the mppt@priate skills and knowledge
to develop specifications: device interface specificatemesdeveloped by device manufac-
turers, OS interface specifications—by the OS developemshalie intimate knowledge of
the OS and the driver support it provides. The device-clpssification is the only one that
requires understanding of both hardware and softwareecklasues. However writing such
a specification is a one-off task that only needs to be comgblenhce for a class of devices.

The separation of specifications also facilitates theiseeurhe OS specification need
only be developed once for each OS and each device clasghéricombined with many
concrete device specifications to synthesise drivers &selievices. As a result, the likeli-
hood of errors due to incorrect OS interface specificatisrfarther reduced because these
specifications are shared by many drivers. Likewise, siregcd specifications are in-
dependent of any specific OS, drivers for different OSs casyi¢hesised from a single
specification.

With Termite, the problem of writing a correct driver is regd to that of obtaining cor-
rect specifications. The practical utility of this approdsltherefore subject to cooperation
from device and OS manufacturers, who are in the best poditialevelop the respective
specifications. For device manufacturers, the driver ®sithapproach allows for a re-
duction in driver development effort and an increase inairiyuality. Furthermore, once
developed, a driver specification will allow drivers to bethesised for any supported OS,
increasing the compatibility of the device. For OS devetspike quality and reputation of
their OS depends greatly on the quality of its device drivergjor OS vendors suffer seri-
ous financial and image damage because of faulty driverseDguality can be improved
by providing and encouraging the use of tools for automatiedsynthesis as part of driver
development toolkits.

The key components of the driver synthesis methodologyharspecification language
used to describe device and OS interfaces and the synthgsittan that processes these
specifications and generates the driver implementatiop. TEhmite specification language
is a dialect of the Tingu language. It shares most concets Timgu, but uses a textual
rather than visual syntax.



6 CHAPTER 1. INTRODUCTION

The Termite synthesis algorithm is based on game theorydfiher synthesis problem
is formalised as a two-player game between the driver amhitsonment, consisting of the
device and the OS. Rules of the game define constraints ohslegaences of interaction
between the players and are given by the interface speifisatThe objective of the game
is to ensure that the driver will satisfy all OS requests inaell-behaved environment.

| evaluate Termite by using it to synthesise drivers for twal rdevices: an Ethernet
controller and &ecure Digital (SDhost controller. | demonstrate that the performance
of the synthesised drivers is virtually identical to thefpanance of their hand-written
counterparts.

1.3 Contributions

This dissertation makes three main contributions. Fitgieiforms root-cause analysis of
device driver defects and identifies the complexity of theiakeand the OS interfaces of
the driver as the key factors that provoke the majority obesr

Second, it develops a new device driver architecture aimeddaicing errors related
to the interaction between the driver and the OS. This iseaeli by replacing the multi-
threaded model of computation with a more disciplined ev@sied model and by using a
formal visual language to specify the driver-OS interfaleady and unambiguously.

Third, this dissertation proposes a new method of drivesstaotion, which consists
of automatically generating the implementation of the @risased on a formal model of
its device and OS interfaces. This approach has the pdtemtimamatically reduce driver
development effort while increasing driver quality.

The proposed techniques are evaluated in the context ofithe kernel; however the
results of this work are applicable to other OSs and to bottemmel and user-level drivers.

1.4 Chapter outline

The rest of this dissertation is structured as follows. @map provides background infor-
mation about device drivers and driver development. Chapsurveys previous research
on device driver reliability. Chapter 4 carries out roottsa analysis of driver defects by
analysing a sample of real defects found in Linux deviceetsy New approaches to im-
proving the driver reliability are presented in Chapters# &, which describe the Dingo
driver architecture and the Termite driver synthesis nadhagy respectively. Chapter 7
draws conclusions.



Chapter 2

Background

This chapter introduces key notions related to device driged I/O programming.
A device driver is the part of the OS that is responsible fortcmling aninput/output
(I/O) device. In collaboration with other OS subsystems, it falfile following functions:

e Abstraction. The driver hides the complexity of the low-level device paml from
its clients, allowing them to use the device through a setgii-tevel operations. For
example, the low-level device protocol for sending a nekwmacket through a net-
work controller device may involve creating a packet dggoriin memory, writing
the location of the descriptor to a device register, writamgpther device register to
trigger the transfer, and then waiting for a transfer cotigatesignal from the device.
All of these operations occur inside the driver. A clientloé driver sends a packet
simply by calling thesend() function of the driver.

e Unification. By providing a unified interface to a class of similar devijcdsvers
hide the differences between the devices from their cliefigr example, another
network controller may support a different packet desorifprmat and implement
its own set of registers. However, since the drivers for mathtrollers implement
the same interface, their clients remain unaware of thegimdiions. In some cases,
unification requires the driver to perform extensive datecpssing in order to abstract
different levels of hardware implementation. For examyeile conventional dial-up
modems perform all signal processing in hardware, softwaydems delegate most
of the modulation functions to the driver.

e Protection.Access to an I/O device is a sensitive operation, subjetta@XS access
control policy and to physical constraints of the devicee TS enforces the access
control policy by making sure that only authorised applaat can use the driver.

e Multiplexing. The device driver cooperates with the OS in order to enablgipteu
applications to access the device concurrently. For thet pens$, multiplexing is
performed by the OS outside the driver. For instance, in ohaenetwork controller
driver, the OS queues packets obtained from multiple diand delivers them to the

7
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driver one by one. Some types of drivers, however, maintaircfient contexts and
distinguish between requests from multiple clients. Famegle, InfiniBand [Inf08]
controller drivers use this approach to achieve trafficasoh between clients.

2.1 The history of device drivers

The early predecessors of modern device drivers were lf@riilyoutines introduced in the
days of batch processing systems for mainframe computech, & the IBM 709 (1958).

The primary motivation for the use of these routines wasqut@n: a user program was
expected to access its data on the tape via 1/O routinesgrrétn directly, to prevent

corruption of data belonging to the OS or to other jobs in thiel [Ros69]. In the absence
of hardware enforcement mechanisms, this facility onlyrded against accidental rather
than malicious damage.

The reliance on standard software components to perfornmt/f@ased with the intro-
duction of more advanced I/O architectures in later computeg. IBM 7090 (1960). The
most prominent innovation was the use of I/O channels aragrimts, which enabled 1/O
and computation to overlap, the concept currently knowrsgschronous 1/0. While offer-
ing performance benefits, asynchronous 1/0O was much hargeogram than synchronous
I/0. It required buffering data that arrived from the dewdegile the program was executing.
In addition, since at the time computers did not support itaking, it also required pro-
gramming non-trivial interrupt logic, where a reentrartemupt handler routine processed
interrupts from multiple independent sources. Accordm@bsin [Ros69],

the complex routines were required to allow even the sinpigsr program to
take full advantage of the hardware, but writing them wa®heythe capability
of the majority of programmers. This necessitated a setasfdstrd interrupt
processing and 1/O request programs for use by all prograrbg tun in the
system.

Emergence of new types of I/O devices, such as magnetic, disks storage, graphics
engines, etc., emphasised the unification role of deviseidri For example, the IBM 7094
mainframe computer (1962) supported several differerggyyf remote terminals, including
teletypes, IBM 1050 data communication systems, and flexensy and could store data on
two types of storage devices: magnetic tapes and magnetis.dThe CTSS time-sharing
OS used on these machines required all device drivers dcHIlz adapter programs) to
implement one of two standard interfaces. The followingtgtion is taken from a CTSS
technical report [Sal65].

Any character-type device can be attached to the systenobiding an 1/0
adapter program which converts the raw hardware interfatcethe standard
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format of Interface I, which consists of one character/wiarthe character pool
buffer.

There is also another broad class of devices, such as madgesdi, which
work in terms of words, and blocks of words. A second intexfacprovided
for these devices. ... For any input or output device for WHitterface Il
appears to be appropriate, an 1/0 adapter module may bemvtitt perform
the function of matching the hardware characteristics terface Il.

The proliferation of time-sharing computing increaseddieenand to protect hardware
resources of the machine against unauthorised accessled@ihisthe introduction of hard-
ware protection mechanisms, such as the mastetral processing unit (CPUpode in the
GE-635 mainframe (1963) [GE-64]. Among other restrictiomsly the privileged super-
visor running in the master mode was allowed to execute I8fructions. Non-privileged
programs performed 1/O by sending requests to I/O modulésec$upervisor.

Further evolution of device drivers has been driven by hardvirends on the one hand,
and changes in the OS architecture on the other. An exampihedbrmer is the invention
of computer networks and network controller devices, whiarim a separate device cate-
gory, distinct from character and block devices. An exangblehe latter is the switch to
implementing OSs, and hence device drivers, in high-levaliages like C.

2.2 1/O hardware organisation in modern computer systems

Before presenting the device driver architecture in modgerating systems, | give a brief
overview of the hardware that these systems run on. A kegrdifice between peripheral
device organisation in modern computers compared to the machines described in the
previous section is the presence of the 1/O bus hierarchy.

An I/O bus is a subsystem that connects one or more devicég ©GRU. There exist a
variety of /0 buses, providing different trade-offs amamst, performance, functionality,
form-factor, etc. To achieve compatibility with a wide rangf devices and to enable flexi-
ble system configuration, most computer systems contagralypes of buses. Figure 2.1
shows a fragment of a typical desktop or server system, onggfour different buses.

The Front-Side Bus (FSBg&nables communication among the core components of the
system, i.e. CPU(s) and memory. This bus is designed forGadi-to-CPU and CPU-
to-memory transfers. For example, the latest revision @HkiperTransport [Hyp08] FSB
architecture allows point-to-point communication at $3B&7s.

Some FSBs, including HyperTransport, allow direct conioecof high-performance
I/O devices. In most systems, however, devices are corthéata dedicated 1/O bus, in
this case théeripheral Component Interconnect (PQi)s. While being slower than the
FSB, this bus provides sufficient bandwidth for efficient coamication with devices, for
example the currer®Cl Express (PCle2.0 standard [PCI07] supports bandwidth of up to
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Memory Interrupt
controller controller
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(BCM4401)
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Graphics
controller
(GMA950)
USB SATA bus
< USB bus > controller controller < SATA bus >
(EHCI) (AHCI)
i
thernet .
controller SATA disk
(AX88772)

Figure 2.1: I/O bus hierarchy of a typical desktop systemre@ystem components (CPU
and the memory controller) are represented by grey reaang|

16GB/s per device. In addition, it allows longer physicak$ than most FSBs, provides
support for expansion slots and expansion cables, and awodates a large number of
devices organised in a hierarchical topology.

The PCI bus is connected to the FSB through a PCI bus contrélleus controller, or
bridge, is a special device that interfaces with two bugegppears as a client device on the
parent bus and as a host device on the child bus. It receigessts destined to devices on
the child bus via the parent bus protocol and forwards thegaests to their destinations
via the child bus protocol.

In addition to an Ethernet controller and a graphics colaralhe PCI bus in Figure 2.1
hosts two secondary I/O buses. Thriversal Serial Bus (USBjllows easy connection of
a variety of external I/O devices to the computer. Begial AT Attachment (SATAYS is a
specialised bus for storage devices, such as hard diskspéicd|arives.

Each type of bus supports its own protocol and provides its s@t of operations for
communication with devices on the bus. | consider PCl and bigs in some more detail,
since drivers for PCl and USB devices will be used as exantptesighout the thesis.

2.2.1 Peripheral Component Interconnect bus

PCl is a ubiquitous 1/0O bus found in virtually all desktopptiap, and server systems, as
well as in many embedded devices. Since the introductionCifif® 1992, three different
standards have been developed in response to growing parice demands: conventional
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PCI [PCI04], PCI-X [PCI02], and PCle [PCI07]. PCI-X is a fasstersion of conventional

PCI, whereas PCle is based on a very different logical desifjme three standards are
software backwards compatible, i.e., any bus or deviceedideveloped for conventional
PCI will work correctly with a PCI-X or PCle bus controller.

The PCI standard allows the host to communicate with devacethe bus using three
separate address spaces: configuration, memory, and |/€ry Bevice can have one or
more regions in each address space. Mappings of devicensetiothe corresponding
global PCI address space are established during devicegaamtion by the systerBasic
Input/Output System (BIOS) by the OS.

The configuration space contains standard device deswripsed for device enumera-
tion, identification, and configuration. It allows the OS ttett devices on the bus, locate
a driver for each device, and control basic device capgdsitsuch as bus mastering, in a
device-independent way.

Device-specific registers and data buffers that are adtedsbm software are mapped
to the PCI memory space, which is in turn mapped into the physiddress space of the
CPU. When the CPU initiates a load or store transaction orir8i&, which falls into the
address range of the PCI memory space, the PCI controltesiatas this transaction into a
PCIl memory transaction. One of the devices on the bus resegthe load or store address
as belonging to its memory region and responds to the triosac

The use of memory-mapped I/O raises memory ordering isstasebn the device and
the CPU (or CPUs). Even though caching is normally disabbed/© memory, other fea-
tures of modern CPUs, including write reordering and loagtsafation, as well as compiler
optimisations, can cause the device to observe storedisgguthe same or different pro-
cessors out-of-order. Device drivers can enforce ordavimgensitive memory operations
using memory barrier instructions [How].

The PCI I/O space is an obsolete feature, which was origimaifoduced to improve
the integration of the PCI bus into x86-based systems. litiaddo the physical mem-
ory space, x86 family processors can address a 64KB I/O spdue PCI I/O space can
be mapped into the processor I/O space in the same manneg BCthmemory space is
mapped into the processor physical address space. Onepretith this is that non-x86
architectures do not support the I/O space, and can onlgadtke PCI I/O space indirectly
through PCI controller registers. More importantly, th&K84address range is too small to
accommodate all devices in the system. As a result, mostekeviowadays either do not
use the I/O space or define I/O regions as aliases to memadons=g

Normally, configuration, memory, and I/O transactions aniéiated by the PCI bus
controller in response to a request from the CPU, howeverdedtes are also allowed to
initiate bus transactions if they have the bus masteringluiity. This feature is used to
implement thedirect memory access (DMA)echanism, where the device transfers data to
or from the main memory without involvement of the CPU. Testlind, the device starts a
PCIl memory transaction, specifying an address in the PClongspace. This transaction
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is recognised by the PCI controller, which translates i iatmemory transaction on the
FSB.

DMA is crucial for efficient I/O and is supported by all deviceith non-trivial perfor-
mance requirements. The simplest way to implement DMA isstepkthe data exchanged
with the device in a contiguous buffer, which means that ttied must copy data to be
sent to the device into this buffer. High-performance dewiare able to parse complex data
structures that describe multiple buffers comprising onmore data transfers. Such data
structures are called DMA descriptors. This facility canused to reduce the number of
data copies performed in the path from the application talthéce and back.

DMA-capable devices pose potential security issues, singgsbehaving or miscon-
figured device can overwrite system or application data imorg. This is a particularly
pressing problem in virtualised environments where séwataal machines (VMsjunning
on top of avirtual machine monitor (VMMhave direct access to I/O devices. A faulty or
malicious VM can program an I/O device to read or write phglsisemory pages belonging
to another VM, thus violating the isolation enforced by thieM.

To address this problem, recent PCI bus implementatiomspocatenput/output mem-
ory management units (IOMMU#$INt08, Adv00], which provide a mechanism to ensure
that every I/O device can only access memory locations atialto it by the OS. This is
achieved using 1/O page tables that map the device addrass $p the physical address
space. Thus, the IOMMU controls physical memory accessblgevices much like the
conventional MMU controls physical memory accessible toliaptions.

Another type of interaction initiated by the device is aremapt notification, used to re-
port an asynchronous event, such as a DMA transfer completian error condition, to the
CPU. Interrupts are routed from the device to the CPU thrdbglinterrupt controller. The
original PCI specification supported interrupt routing ségparate interrupt pins and traces.
This limited the number of available interrupts and restddnterrupt configurability. The
PCle standard and the latest versions of conventional R@kbince a new interrupt delivery
mechanismmessage signaled interrupts (MSihich allows devices to signal interrupts
using normal memory transactions. It enables devices t@uare number of interrupts
and supports flexible assignment of interrupts to CPUs in lignocessor system.

Regardless of the specific interrupt delivery mechanismd usaftware control of inter-
rupts can be performed at three levels. First, it is possibmmpletely disable the delivery
of all I/O interrupts in the CPU. This facility is primarilysed to achieve atomic execu-
tion of a small fragment of code, without being interruptgdelsternal events. Second, the
interrupt controller provides means to prioritise int@tsiand disable individual interrupt
sources (i.e., interrupts from individual devices or, iseaf MSI, individual interrupts al-
located to the device). The exact mechanisms for doing sdiffeeent for conventional and
MSI interrupts. Third, each device provides its own de\specific interface for enabling
and acknowledging interrupts, which usually consists ataginterrupt control and status
registers in the device’s memory space.
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A typical interrupt handling sequence in Linux proceedsadews:

1. The device sends an interrupt message over the PCI bus.m&bksage is routed
through the PCI controller and the interrupt controller @dventually delivered to
the CPU.

2. The task currently running on the CPU is interrupted amdrobis transferred to the
interrupt handler routine, which invokes the driver for tevice through its interrupt
entry point, also known as the top-half handler.

3. While the top-half handler is running, the delivery of seuent interrupts to the CPU
is postponed until the handler returns. Therefore, thehephandler is required to
return quickly, to allow interrupts from other sources todmdivered. The top-half
handler interacts with the device by reading and writingstegs in its memory space
in order to identify the interrupt cause and clear the inggricondition. If the given
interrupt is level-triggered, meaning that the device kegpnerating the interrupt
signal as long as the condition that triggered the interisiptesent, then clearing the
interrupt condition causes the device to deassert theupeline. This prevents the
CPU from being interrupted immediately after returningnfirthe primary interrupt
handler. If any further long-running processing is requiirié must be scheduled for
execution in the context of a separate task, known as therhdttlf handler. In the
unusual case when the driver is not able to clear the inteowmdition in the device
in the top-half handler (e.g., some delayed processingjisned), it must disable the
interrupt source in the interrupt controller. Otherwidee CPU will be interrupted
immediately after completing the interrupt handler, thamg in a livelock state.

4. The bottom-half handler performs the remaining interpiocessing, e.g., delivers
data returned by the device to the OS and submits new reqoetis device. If the
interrupt source was disabled in the top-half handler, thigom-half handler must
reenable it to allow subsequent interrupts from the device.

2.2.2 Universal Serial Bus

The USB 1.0 specification was released in 1996 and has byrtieedi writing undergone
two major revisions: USB 2.0 [USB00O] and USB 3.0 [USBO08a]. alifdition, a wireless
USB standard [USBO05] was introduced in 2005. The descnrigticthis section applies to
wired USB version 2.0 and earlier.

USB is a host-centric bus, i.e., all transfers to and from Wd8®ces are initiated by the
bus controller. Every USB device implements a humber of camipation endpoints. The
bus controller interacts with the device by writing or reafdata through the endpoints.

The bus controller initiates a transfer by sending a setuigiawhich identifies the
target device and endpoint. This is followed by a series ¢ @ad handshake packets.
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The bus controller broadcasts all packets to all deviceherbus, however only the target
device responds to these packets.

The USB standard defines four types of endpoints and, regpkgcfour types of trans-
fers. Control endpoints are used to enumerate and configaieed. They typically use
short sporadic transfers. Bulk endpoints are used to tgliekchange large amounts of
raw data, such as network packets or disk blocks. Isochsandpoints are best suited for
real-time audio or video streaming. They guarantee acoddSB bandwidth with bounded
latency, but do not provide reliable transfer. If a packetdsdelivered because of a bus er-
ror or software delay, the error is detected on the receider but no retransmission occurs.
Finally, interrupt endpoints are used to notify the hostudlatevice status changes.

USB interrupts are implemented differently from PCl intgrts. Since all USB transfers
are initiated by the bus controller, there is no way for aerfintpt endpoint to notify the
host about an interrupt without being asked for it by the rgroller. Therefore the bus
controller periodically polls interrupt endpoints to chdor an outstanding interrupt.

The USB bus supports a tree topology with USB hubs acting deshand non-hub de-
vices as leaves. The root of the tree is the root hub deviegriated with the bus controller.
A USB hub is able to detect and report to the bus controllemngnrew device is connected
to it. The bus controller notifies the OS about the new devide OS then assigns a USB
bus address (ranging between 1 and 127) to the device, discdevice capabilities, and
allocates a power budget (i.e., how much current the dednedcaw from the bus) to it by
issuing a series of commands to the bus controller and the hub

The mechanism for accessing devices on the USB bus from a@ftis determined by
the bus controller. There exist three standard bus coetralichitecturesOpen Host Con-
troller Interface (OHCI)[OHC99], Universal Host Controller Interface (UHCI)Iint99],
andEnhanced Host Controller Interface (EH{INt02]. All of them rely on the bus con-
troller driver to maintain an in-memory data structure ttascribes a schedule of USB
transfers. This data structure contains pointers to theabdata buffers to be sent to de-
vices on the bus or to be filled with data received from devidée address of this structure
is stored in a bus controller register. The bus controlleraiies over this schedule using
DMA over the PCI bus and executes scheduled transfers inrteeqibed order. Results
of completed transfers (status codes, number of bytes neadtten, etc.) are DMAed to
another in-memory data structure.

Thus, communication with a device on the USB bus is mediayetthds bus controllers
located in the path between the CPU and the device in questidhis case the PCI and
the USB controllers. A software architecture for managing bus hierarchy is presented
in the following section.
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Figure 2.2: Architectural patterns used in the design ofatp®y system I/O frameworks.
Lollipop connectors represent interfaces; the dashedvampresents the communication
path between the driver and the device, consisting of thisvaod bus framework and the
hardware bus hierarchy (not shown in the figure).

2.3 Device drivers in modern operating systems

This section gives an overview of the OS subsystem respenfib managing peripheral
devices, often referred to as the operating system 1/O frnarie While the details of the
I/O framework design vary across different systems, anj staanework must implement
two common architectural patterns shown in Figure 2.2.

The Bus pattern (Figure 2.2(a)) is centred around a bus altertdriver (or simply
“bus driver”), which provides a generic interface to the tnamsport, e.g., PCl or USB.
Internally, it encapsulates the details of a specific bugrotber device interface. The bus
driver is managed by the bus framework, which is respongdrlenumerating devices on
the bus, instantiating a driver for every device, multiihgxthe bus among multiple client
drivers, and tearing down drivers for devices that get diseoted. The bus framework
is implemented once for every type of bus (e.g., PCl or USR)) ianndependent of the
particular bus controller implementation. It presentshealent driver with a high-level
interface to the bus. The Bus pattern is instantiated forye® bus in the system.

To illustrate this pattern, consider a PCI bus driver, wipabvides an interface for raw
access to the PCI configuration, memory, and I/O spaces. Theu’ framework uses the
bus driver to enumerate PCI devices at startup, by readmgahtent of the configuration
space, and creates a driver for every device on the bus. Jida® each client driver with
access to functions to read and write configuration, menerg, I/O regions that belong
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to its device. It may also provide convenience functionsedgrm standard configuration
actions on the device, such as reading device identificatata from the configuration
space.

The Driver pattern (Figure 2.2(b)) consists of a driver fol# device that communi-
cates with the device via the bus transport interface peal/tay the bus framework. It hides
device details, such as the register layout or the format\dAlescriptors supported by the
device and exports a device-class-specific interface wi@at. For example, an Ethernet
controller driver implements functions to send and receitvork packets. The client of
the driver in this case is the network protocol stack. Thes@rpattern is instantiated for
every I/O device in the system, including bus controllerides.

Since this thesis is concerned with the design of deviceedsignd driver interfaces, the
Driver pattern will frequently occur in the following chaps. This pattern can be viewed
as a refinement of the abstract driver architecture intredu Figure 1.1. It decomposes
the OS interface of the driver into two separate interfates:bus client interface and the
device-class interface. It also emphasises the fact thmtremication with the device is
mediated by the bus infrastructure.

The two patterns overlap. If the device driver in the Drivattern is a bus driver, then
its device-class interface is the bus interface from the fattern, and its client is the bus
framework. Figure 2.3 illustrates this overlap by showwg bus drivers stacked on top of
each other.

Thus, when applying these patterns to instantiate an I/@dveork for a specific hard-
ware configuration, the resulting software architecturerars the hardware topology, with
device drivers stacked on top of their corresponding busedsi This is illustrated in Fig-
ure 2.4 using the example of the system in Figure 2.1. Figut@aPRshows an alternative
representation of the same system in the form of a tree, wishcbntrollers in tree nodes
and other devices in leaves. Figure 2.4(b) shows the cametipg software architecture.

Some of the drivers in Figure 2.4(b) are drivers for speciéuice models, e.g., the
BCM4401 Ethernet adapter, while others are generic dritleas can manage analogous
devices from multiple vendors. Examples of the latter asedghneric SCSI disk driver
and the USB EHCI controller driver. This reflects the trendamds device standardisation,
when a regulatory body that defines a family of hardware patoalso defines a standard
architecture for devices that implement this protocol. sTépproach reduces the number
of poorly engineered devices. In addition, it allows hardywaendors to avoid developing
their own drivers: as long as the device complies with thedsed, it can be managed by a
generic driver provided with the OS. Thus, by unifying haadgvinterfaces, standardisation
reduces the number of drivers that need to be developed aimdamad, which leads to
better tested drivers.

Nevertheless, there still remains much diversity amondcesyv In order to maintain
a competitive advantage, many vendors define their ownfaates or extend existing in-
terfaces to achieve better performance. Others try to cwndm development costs by
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Figure 2.3: Superposition of Driver and Bus patterns.

implementing a scaled down or modified version of the stahdiduthe deviation from the
standard is minor, it can be handled as a special case in ti@igalriver. Otherwise, a
separate driver needs to be developed.

2.4 Generic OS services

In order to accomplish their function of managing 1/0O desicmost drivers rely on some
generic (i.e., device-independent) services providedchbyQS, most noticeably, memory
management, timing, and synchronisation services. Thuaddition to the device-class
interface and the bus client interface (Figure 2.2b), tiedinteracts with the OS through
the generic services interface, as shown in Figure 2.5.

2.4.1 Memory management

Most drivers use conventionatalloc -style kernel memory managers to allocate storage
for their internal dynamic data structures. In additiorivehs for devices that support DMA
must manage memory buffers for communication with the devic

The concrete interface for I/O buffer management is OS#pglaowever the function-
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ality provided through this interface can be expressedrimdeof five basic operations.

e Allocate a region of virtual memory with the given size aniyaent. The driver
uses this operation to allocate buffers for data exchangtttie device.

e Pin down the entire region or some of its pages to physical angniThis ensures
that buffers transferred to or from the device are locatdtiémphysical RAM, where
the device is able to access them. In some cases, the driyareaizest that physical
pages for the region are allocated contiguously. This ifulséen the DMA engine
of the device is only capable of dealing with contiguous énsff

e Mark the region as uncacheable, so that reads and writes tegiion are forwarded
directly to the PCI bus and are not intercepted by the CPUeach

e Perform a virtual-to-bus address translation inside anré@on. Since devices are
only capable of issuing load and store operations in the ddeeas space (e.g., the
PCI memory space), buffer pointers passed to the device constin addresses in
this space.

e Perform a physical-to-virtual address translation on afeoireceived from the de-
vice. Devices that deal with multiple data buffers storeqitgl addresses of com-
pleted buffers in memory or register data structures. Thedreads these physical
addresses and converts them to virtual addresses in order &ble to access the
buffers and perform further processing on them (or simplgchthem back to the
0S).
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2.4.2 Timers

There exist two common situations when a device driver needse the OS timer service.
The first one occurs when the driver issues a long-runningneana to the device that

does not generate an interrupt upon completion. For exartipteis the case for the reset
operation in most devices. The device specification defihesupper timing bound for

such operations, which allows the driver to synchronisé Wit device by waiting for the

specified amount of time using the timer service.

Second, timers can be used to detect a device malfuncticem thie device fails to reply
to an I/O request within a certain time frame. A device-sfieeiction, e.g., a reset can then
be taken to return the device to a normal state.

The OS enables time-driven behaviour through asynchroaadssynchronous timer
services. An asynchronous timer invokes a specified cddllfaection when the timeout
expires. A synchronous delay suspends the current threadrémuested amount of time.

2.5 Concurrency and synchronisation in device drivers

Most OS kernels are multithreaded, meaning that all parthefkernel, including de-
vice drivers, must be prepared to handle invocations in dmtext of multiple concurrent
threads. Programming in the multithreaded environmentires careful use of synchroni-
sation primitives to avoid race conditions and deadlocks.

Further complications arise from the fact that in some sgystencluding Linux, driver
entry points can be invoked in the primary interrupt con{ege the discussion of top and
bottom halves in Section 2.2.1). At this time the kernel isrming with interrupts disabled,
hence an attempt to acquire a lock or invoke a potentiallgiitay operation may deadlock
the system. The driver developer must be aware of which dmethods can be invoked
in the interrupt context and structure the driver to avoidcking in these methods. The
only synchronisation primitives that can be safely usedh witerrupts disabled are spin-
locks. Spinlocks are busy locks, suitable for protectin@léiritical code sections against
concurrent access from multiple processors. Whenevekinigpés unavoidable, the driver
must postpone operations that involve blocking to be exetir the bottom half context.
Linux provides two mechanisms for constructing bottom aalvasklets and work queues.
Bottom halves execute in a separate thread, concurrently thé rest of the driver, and
hence must be synchronised with other driver functions.

Operating system /O frameworks provide driver developeith varying degrees of
support for dealing with concurrency. Some systems, instutinux and versions of Win-
dows before Windows Vista, treat device drivers as reguandéd components responsible
for their own synchronisation. Others provide generic syonisation facilities for device
drivers, which shift much of the synchronisation comphgfibm the driver into the frame-
work. Two examples of such facilities are the workloop aetture implemented in the



2.5. CONCURRENCY AND SYNCHRONISATION IN DEVICE DRIVERS 21

Mac OS X IOKit framework [AppO6] and synchronisation scojreshe Windows Driver
Foundation [Mic06].

2.5.1 The Mac OS X workloop architecture

The workloop architecture associates a lock with the estaek of drivers connected to a
single hardware interrupt. For example, a USB host comtrdifiver and drivers for all USB
devices connected to the controller share the same lock. friheework guarantees that
most driver operations are protected by this lock. Otheratmns can optionally acquire
the lock, thus ensuring that their execution is serialiséith wespect to other workloop-
protected operations.

The main limitation of this architecture is that the workdock should not be held for
extended periods of time, since this would delay other retgue the driver and negatively
impact the performance. Furthermore, executing a blociperation in the workloop con-
text can cause a deadlock. Two mechanisms are provided frqmesuch operations out-
side the workloop. First, the driver may temporarily drop tbck before calling a blocking
function or waiting for an I/O completion. When used in thiaywthe workloop effectively
functions as a monitor [Hoa74].

Second, the driver may schedule the blocking operationdecwion in the context of a
separate kernel thread. This approach is used to implemigat €lnctions that are not al-
lowed to block. The helper threads may require access terdstate variables and therefore
need to be synchronised with each other and with other ditiveads. The synchronisation
is achieved using conventional locking primitives such asexes and semaphores.

2.5.2 Windows Driver Foundation synchronisation scopes

The Windows Driver Foundation 1/0 framework was introdugethe Windows Vista OS.
Among other improvements aimed at enabling simpler and madiable drivers, the frame-
work provides configurable support for automatic seriéitigaof driver invocations. The
driver may choose one of the following serialisation scopes

e No scope: any driver entry points can be invoked concurentl

e Queue scope: requests from individual I/O queues are isedalwhile requests from
different queues can be delivered concurrently.

e Device scope: all I/O requests to the driver are serialised.
e Complete serialisation: all I/O requests, interrupts, tamér events are serialised.

Serialised operations are required to complete in a nockbig fashion to avoid dead-
locks and performance degradation. Long-running operstioust be executed in a sepa-
rate thread, outside the serialisation scope and must lmlymised with other operations
using conventional locking primitives.
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Both the Mac OS X workloop mechanism and Windows synchréinisacontexts re-
duce the amount of concurrency that the driver developetdiagndle, but do not eliminate
it completely. Specifically, drivers are responsible fonestuling long-running operations
in the context of separate kernel threads and for synchingntheir execution with the rest
of driver code.

In addition, these serialisation architectures assomate or several coarse-grained
locks with the driver, which can be detrimental to perfore&on multiprocessor systems.
This is the reason why both frameworks allow some flexibilitghoosing which operations
should be serialised, offering configurable trade-off lestwperformance and programming
convenience.

Chapter 5 presents a device driver architecture that omersdooth limitations, i.e.,
it allows complete serialisation of all driver invocatiomsthout significant performance
overhead.

Another example of a driver architecture taking systemagiproach to concurrency
management is thB&niform Driver Interface (UDI)standard [Pro01]. The standard was
developed to enable driver portability across differentsO particular, it specifies that
the driver should be partitioned into one or more regionsodations of every region are
serialised by the UDI framework. It did not, however, spgdibw drivers were expected
to handle blocking operations. The standard has not begutediby the industry and no
production-quality drivers have been developed based ésia result, the architecture and
performance of UDI drivers have not undergone practicaluain.

2.6 Hot plugging

Many modern I/O bus architectures, including PCl and USByatlevices to be connected
and disconnected from the bus at runtime. Device connedidetected by the bus driver,
which notifies the bus framework about the event and repestd identification informa-
tion. The bus framework uses this information to locate axad la driver for the device.

Device disconnection is also detected by the bus drivercliveénds a notification to
the bus framework. Before unloading the device driver, thenEwork notifies it about the
hot-unplug event, giving the driver an opportunity to releany resources that it is holding.
Since the hot-unplug event happens asynchronously totedr ajperations of the driver, the
driver must be prepared to handle this event in any state.

2.7 Power management

Reducing power consumption is an important concern for mostputer systems, from
portable embedded appliances to servers. Peripheraledetyipically account for a large
fraction of the overall power used by the system. Hardwappat for reducing I/O power
consumption can be classified into device-internal poweragament and bus power man-
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agement. Device-internal power management features atlanging the power consump-
tion of the device without changing the power state of itsibtexface. For instance, a hard
drive can be spinned down, which substantially reducesnimuat of power it uses.

Bus power management provides mechanisms to limit the anafyrower the device
can draw from the bus and to put the device in a sleep stateevmhest device functions are
disabled and the device configuration can be partially orpetaly lost. Different sleep
states differ in the amount of power that the device can dramw fthe bus and the time
required to resume normal operation from the given statevelcgpower states correspond
to longer resume times.

Inside the OS /O framework, sleep requests propagate femh devices towards
the root of the bus hierarchy. Leaf devices are suspendddbfised on the OS power-
management policy (e.g., after a period of inactivity). \Wia#l devices on an I/O bus have
been suspended, it is possible to suspend the bus contsligell. Before suspending the
device, the OS notifies the driver about the upcoming susmgwicg it the opportunity to
complete any outstanding operations and save contextiatftion that will be lost after the
transition to the low-power mode.

Resume requests propagate from the bottom to the top ofdbk: ¢he entire hierarchy
of bus drivers must be resumed before resuming a leaf de@isee the device power state
is restored, its driver is notified by the OS, so that it catoresthe saved context and prepare
the device for handling I/O requests.

2.8 Ataxonomy of driver failures

This section sets the stage for the following discussionrivied reliability techniques by
enumerating the various ways in which a driver can misbehavdefinition of incorrect
behaviour, or failure, can only be given in relation to a stdd vantage point, where the
system execution is observed. For example, from the endpesspective, observable fail-
ures include system crashes and hangs, lack of network ctivitye file access errors,
etc. At the other extreme, if we trace the behaviour of theedrat the level of individual
programming language operators, then observable failnchsde type and memory safety
violations, some of which may not even lead to any externafiiple consequences.

The taxonomy of failure proposed here uses the interfacedsst the driver and its
environment, comprised of the OS and the device, as the gargaint. All driver fail-
ures observable at this level can be classified @& protocol violationsdevice protocol
violations andmemory access violations

The OS protocol of a driver defines constraints on the comaation between the driver
and the OS. This communication must be restricted to the timterfaces shown in Fig-
ure 2.5 (i.e., the bus framework interface, the client fiatee, and the generic OS services
interface) and must follow the rules on the ordering, timiagd content of interactions,
associated with each interface. OS protocol violationkiae:
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e Ordering violation. OS protocols tend to be stateful, meaning that the set obpobt
operations that can be performed at a given time dependsednigtory of previous
interactions. For example, a network driver in Linux is nikdwed to feed incoming
packets to the OS before registering its network interfaitie tive TCP/IP layer using
theregister_netdev function.

e Data format violation. Data structures exchanged between the driver and the OS
must follow certain format restrictions, which includetitanvariants, e.g., a linked
list must not contain cycles, as well as invariants that ddpe the context in which
the data structure is used, e.g., an incoming packet pagsaddtwork driver to the
OS must not be empty.

e Access to unauthorised servicesA misbehaving driver may attempt to invoke an
OS function that is not part of its interface or directly afrivileged CPU operation.
For example, an in-kernel driver can call a function that ifiesl page table entries
and is only intended for use inside the virtual memory system

e EXxcessive use of system resourcdsrivers consume system resources, most impor-
tantly physical memory and CPU cycles. In an OS that does mioree resource
allocation limits on device drivers, a buggy or malicioutvelr may consume exces-
sive amount of resources, leading to resource starvatiothigr parts of the system.
Typical errors that cause such failures include memorydgiifinite loops, and mis-
placed spinlocks.

e Temporal failure. A failure of a driver to respond to OS requests in a timely neann
may affect the quality-of-service for both real-time andh#eal-time applications.
In the extreme case of an infinite delay, e.g., due to a deladibe entire system or
its parts may become permanently unavailable.

Any of the above OS protocol violations may lead to arbilyasevere consequences,
including compromised system security and integrity.

Device protocol violations occur when the driver behaves way that violates the
required hardware protocol, and typically result in a fadlof the hardware to provide its
required service. They include:

e Incorrect use of the device state machineln response to an OS request, a device
driver must take the device through a sequence of statesdtingsin the request be-
ing satisfied by the device hardware. An incorrect driverlengentation may fail to
do so. Typical violations include submitting a malformedntnand to the device,
issuing data transfer commands to an incompletely configdesice, failing to cor-
rectly recover the device from a transient hardware fanld iasuing a sequence of
commands that render the device temporarily or permanentigable.
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e DMA violation. The DMA mechanism enables shared-memory communication be-
tween the device and the driver. As mentioned above, thesdboifDMA data struc-
tures can be rather complicated. An error in the manageni¢hése data structures
can cause the device to read incorrect data from the memaoyissue a write trans-
action to a random memory location. In the absence of an IOMBl¢h runaway
DMA transactions can corrupt the system state. Typical Didkated errors include
incorrectly formatting DMA descriptors, forgetting to pbuffers down to physical
memory before passing them to the device, and race consliietween the device
and the driver, e.g., when the driver acknowledges the peoéa block of data from
the device before actually processing the data.

Finally, a memory access violation occurs when the driveenapts to read or write
a memory location that has not been granted to it by the OS, thrgugh an explicit or
implicit memory allocation).
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Chapter 3

Related work

Faulty device drivers have long been recognised as the ftigigeeat to system stability.
A variety of techniques have been proposed for dealing withed errors. This chapter
presents a survey of these techniques and identifies themgshs and limitations.

Existing methods for improving software reliability fafito three major groups: fault
prevention, fault removal, and fault tolerance. The terault’ here refers to an algorithmic
defect in the driver that, when triggered at runtime, cawas&slure. | outline each of the
three approaches below. The following sections descriggethpproaches and their existing
implementations in more detail.

Fault prevention aims to prevent defects from being introduced in the systéamthe
context of device drivers, fault prevention has been aeu@sing two approaches. The first
one consists of developing drivers using high-level prograng languages where certain
types of errors are not expressible. For example, languhgésio not allow direct pointer
manipulation eliminate errors in pointer arithmetic. Tlee@nd approach is to generate a
partial or complete implementation of the driver autorradljcfrom a formal specification
of the required behaviour, thus avoiding the impact of codirrors on the driver reliability.

Fault removal techniques detect and eliminate defects before puttingytkim in pro-
duction use. Early fault detection is performed by the caenpCompiler-aided fault detec-
tion is particularly effective for languages with advantgge systems, such as Haskell and
C#, where many failures can be expressed as type safetyioisa Therefore, several re-
search projects have investigated the use of such langémgegplementing device drivers
and other OS components. Other types of faults can be détadte the help of static
analysis and model checking tools, which analyse the saurb@ary representation of the
driver against a formal specification of some desired ptagzeand identify behaviours that
violate these properties. Finally, automated and mansthteremains the most common
fault removal method for device drivers.

27
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Fault tolerance techniques enable the system to continue normal operatitinei face
of driver failures. A complete fault tolerance solution mimelude fault isolation and re-
covery components. The former is responsible for deteaidgver failure and preventing
it from propagating to the rest of the system. This can beeaeli with the help of hard-
ware protection mechanisms, e.g., themory management unit (MM@yailable in most
modern processors, or using purely software-based taobsid he latter is responsible for
performing compensatory actions, such as reporting aréatlo all existing clients of the
driver and creating a fresh instance of the driver to sem@e clients.

Any single fault prevention, fault removal, or fault tolae technique is capable of
preventing, removing, or tolerating only certain subatassf defects listed in Section 2.8.
Most existing implementations surveyed in this chapter liom several different tech-
niques to achieve better reliability. For example, the Slagty OS [FAH"06] uses
compile-time checking in combination with static analysied runtime fault isolation to
protect against the majority of driver faults.

3.1 Hardware-based fault tolerance

This section surveys fault isolation and recovery techesggthat rely on CPU protection

mechanisms to encapsulate device drivers inside ungedlgrotection domains. An en-
capsulated driver cannot directly invoke privileged CP#trinctions and can only access
memory locations granted to it by the OS. Communication aecthory sharing are medi-

ated by the OS, e.g., through the system call mechanism,aamidecmonitored for ordering

or format violations. Driver protection domains are marthgieilarly to normal user tasks,

in particular, they are subject to OS scheduling, memonycation, and other resource
management policies.

Fault recovery is implemented by destroying the entiregutidn domain and releasing
all resources allocated to it, followed by the creation ofesli copy of the driver in a
new protection domain. Complete failure transparency @adhieved by keeping track
of the state of the driver-OS interaction and brining the riiver instance to the state
preceding the failure. This approach only works for tramsfailures that are unlikely to
occur again after the recovery. Alternatively, the recgvaechanism may simply inform
the OS about the failure, allowing existing users of theeadrio either fail gracefully or to
perform application-specific recovery.

User-level device drivers were pioneered in Michigan TeahBystem [Ale72], an OS
for the IBM System/360 mainframe computer. However thisrapgph has not found wide
acceptance and the majority of OSs nowadays still implerdevice drivers as part of the
privileged kernel.
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3.1.1 Drivers in capability-based computer systems

Early implementations of hardware-based driver isolati@ne found in operating systems
for capability-based computers, such as Plessey 250 [En@&2nbridge CAP [NW77],
and MONADS [Kee78]. These computers were created from tteed@@’s through 70’s,
during the search for hardware mechanisms that would erdfideent and flexible protec-
tion, communication, and data sharing in multitasking emvinents. The concepts behind
capability-based architectures were formulated by DeandsVan Horn [DVH66]. A sys-
tematic description of a number of such architectures wasnddy Levy [Lev84].

Every process in a capability-based system executes irotitext of a capability space,
which contains a list of objects that the process can acCHss.two types of capabilities
are segment capabilities and protected control transfealgtties. A segment capability
allows the process to read, write, or execute the contentofiiguous memory segment. A
protected control transfer capability allows the procesisoke a procedure in a different
capability space.

Protected control transfers are implemented in hardwauet ttzerefore can potentially
provide a more efficieninter-process communication (IP@echanism, compared to con-
ventional OS-mediated communication (in practice, thisasnecessarily the case, as ex-
amplified by the lacklustre performance of the Intel 432 pesor [CGJ88]). This allows
most system services, including device drivers, to be impleed as normal capability-
protected processes, without loss of performance.

In capability-based architectures, I/O device registezg@apped into the system mem-
ory space and can be protected with capabilities, simitarlgther types of resources. A
device driver is granted a capability to the memory regiontaiming device registers. All
other system and application processes access the devineolking services exported by
the driver through protected entry points.

While this isolation architecture can be naturally extehdéh means for runtime mon-
itoring and recovery, to the best of my knowledge, none ofaheve-mentioned systems
provide such mechanisms.

3.1.2 User-level device drivers in microkernel-based sysins

Microkernel-based OSs are built around a small privilegechél, with the majority of sys-
tem services implemented as user-level processes ori¢ibrdn some cases, these include
a user-level implementation of device drivers. Unlike eyst discussed in the previous
section, microkernel-based OSs run on architectures witlientional memory protection
facilities.

There exist three distinct styles of microkernel-based @®itectures. Single-server
systems implement the entire OS personality, includingogedrivers, in a single user-
level server process. Different OS personalities can beatgd by multiple concurrent
servers. A fault in an OS server can bring down the entireesealong with all its clients.
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Multi-server systems decompose an OS personality intoipheilserver processes, each
implementing a single service, such as a file system, a pager,device driver. These
systems enable fault isolation for individual servicedatdost of increased communication
overhead. Finally, library-based OSs implement most ofQeapplication programming
interface (APIin libraries that are linked against user processes. Thistacture localises
the effect of an OS fault to a single application. Sharedisesy such as device drivers,
must still be implemented as separate processes or as préskernel.

The original motivation for the microkernel-based desigamsvput forward by Brinch
Hansen [BH70] during the work on the OS for the RC 4000 computke argued that a
multiuser system should not be restricted to a fixed OS APkdinded set of resource man-
agement policies. Improved flexibility can be achieved bgasing multiple concurrent
OS personalities to the user. These personalities aredwutbp of a policy-free kernel, or
“nucleus”, which plays the role of a “software extension led hardware structure, which
makes the computer more attractive for multiprogramminghe nucleus supports a hi-
erarchical resource management model, where every pratltesates memory and CPU
resources for its children processes from its own resouood prhis model enables both
single-server and multi-server implementations of OSqraatties.

The idea of a policy-free kernel was further refined in the kydS [WCC"74]. Hydra
was designed to facilitate experimental exploration of@&design space, which required
the ability to easily modify existing resource managemetices and to add new types of
resources and policies to the system. These design goaliseg@ highly modular system
structure. To this end, Hydra adopted a multi-server agchire, consisting of a policy-free
kernel and a collection of user-level services, which redith separate protection domains
and were accessible via a protected procedure call mechamiglemented by the kernel.

Both Brinch Hansen’s nucleus and Hydra implemented devioerd as part of the
kernel; however the concepts promoted by these systemgealtatied to user-level driver
architectures in later microkernel-based systems, sudlaat 3 [ABB"86, FGB91] and
L3 [LBB 191, Lie93].

The first versions of Mach featured a hybrid design, with nafgshe OS functional-
ity implemented in the kernel, which was structured as aectibhn of independent threads
interacting via a message-based IPC mechanism. Lategugasiystem components, in-
cluding device drivers, were gradually moved out of the kEfRGB91]. The transition
was simplified by the location transparency of Mach IPC, Wwhiapported uniform com-
munication with kernel, user-level, and even remote pree®s In order to enable access
to I/O devices from the user-level processes, Mach mappeédeleegisters to the address
space of the driver and vectored device interrupts to theedthread.

Curiously enough, the original motivation for moving driseout of the Mach kernel,
cited by Forin et al. [FGB91] was improved performance foigie-server systems, where
the entire OS functionality was implemented in one servecgss, e.g., the UNIX simula-
tion server. Incorporating device drivers into the senlienieated the overhead of switching
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to the kernel on every driver invocation.

The L3 microkernel [LBB 91] followed a different and more principled approach. The
kernel was initially designed to only incorporate a minirsat of mechanisms to enable
user-level implementation of the complete OS functiogalithese mechanisms included
thread creation and scheduling, address space manag@aesigience, interrupt dispatch-
ing, and synchronous IPC. File systems, device drivers,atiner system services were
built on top of the kernel in the multi-server style.

The initial enthusiasm over the microkernel technology wadermined by the failure
to build a high-performance commercial-quality microledrbased OS. The most famous
example is the multi-billion-dollar IBM Workplace OS [FléPproject, which aimed to
build a commercial multi-personality OS on top of Mach, batsielosed when, after four
years of development, it became clear that the project woatdbe able to achieve its
functionality, reliability, and performance objectives.

In retrospect, the failure was caused by the overly amtstigoals set by Workplace
and other microkernel OS projects. Apart from implementogventional OS functions
on top of a microkernel, these systems aimed to provide stjgomultiple personalities,
distribution, persistence, checkpointing, multipro@egsand other features. In pursuing all
these goals, the developers underestimated the comptdititg basic task of building a rea-
sonably efficient OS as a collection of multiple user-levesvers. Microkernel proponents
claimed that by moving functionality out of the kernel, nukernels would automatically
enforce clean system design. In reality, microkernels idembasic mechanisms for modu-
larising the system, but do not help in defining the right medwoundaries and interfaces.
Moreover, by complicating data sharing and increasing tis¢ of communication, they
introduce additional concerns that must be addressed la dopierforming system.

While focusing on the advanced features, designers ofdeseration microkernels
failed to solve the basic problem of providing an efficiertieimprocess communication
mechanism, which is the key to building an efficient OS. In arokernel-based system,
IPC is used for communication between user applicationstaEm®S, as well as for intra-
OS interactions. High IPC cost in Mach and other microkextedl to substantial end-to-
end performance degradation for applications and eventfmaited the designers to move
OS services, including device drivers, back to the kern&NIB194], thus defeating the
reliability improvements offered by the user-level design

Liedtke [Lie93] carried out a detailed analysis of the cast®lved in inter-process
communication, which led him to conclude that the poor IP@gumance in systems like
Mach and L3 was a consequence of the complex semantics oélietexd IPC primitives
and their suboptimal implementation. Based on these fiisdihg reimplemented the L3
IPC mechanism and later constructed a new L4 microkernel9f]i, achieving a 20-fold
performance improvement. Optimisations used in thesemsstincluded reduced data
copy overhead, reduced kernel cache tadslation lookaside buffer (TLBpotprints, and
scheduling optimisations.
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Hartig et al. [HHL"97] demonstrated that the performance of the Linux OS runnin
as a user-level process on top of L4 is within 6-7% of nativeukion kernel compilation
benchmarks. However they do not specifically report thegperance of user-level drivers.
In general, little published data exists on the performaofagevice drivers in microkernel-
based systems. Among available results are those for thePSR0OS [HBB 98], based
on a real-time version of L4 [Hoh02, HLVD3], and for the Fluke microkernel [FH199]
user-level driver framework [VM99]. Both systems use sakganeration microkernels,
however their IPC performance was not optimised to the sageed as in L4. They achieve
I/0 throughput close to that of a monolithic kernel at thetadsaround 100% increase in
CPU utilisation under heavy 1/O loads.

This overhead is due to several factors. First, the costmdlivay interrupts at the user
level involves an extra context switch to the driver procé&sscond, every 1/O request sent
to the driver, as well as a completion notification from th&velrto its client, involves an
extra context switch. Finally, every request and comptetizvolves transfer of data across
process boundaries. Whether it is accomplished by copyingapping, the cost of this
operation is quite high.

Techniques have been proposed to mitigate these overhbagarticular, the cost of
interrupt delivery can be reduced via interrupt rate lingtfMR96] and more aggressive
use of interrupt coalescing (i.e., reducing the numbertefiapts by configuring the device
to generate a single interrupt for multiple completed I/@magions). The overhead induced
by the interaction between the driver and its client can lobeiced by buffering requests
and responses and by passing data via shared memory, asséiddelow. Both interrupt
coalescing and buffering decrease CPU utilisation at teeafdncreased I/O latency. This
tradeoff is acceptable for the majority of devices, whiah @ptimised for throughput rather
than latency.

An efficient buffering mechanism, called rbufs, was progose the Neme-
sis [LMB™96] microkernel-based OS. Nemesis was designed for maal-tirocessing of
multimedia data, therefore efficient data streaming betvilee network controller, the disk,
the graphics card, and the main memory was one of the primesigil goals. The rbufs
mechanism is based on shared memory and asynchronous. &feated memory is used to
exchange data without copying or mapping memory to the vecsiaddress space on ev-
ery transfer. An asynchronous event is a communicationifwen provided by the kernel,
which increments a value in the receiving process’s addpase and makes the process
runnable if it was waiting for the event, without blockingeteending process. It does not
involve any data transfer and therefore allows efficientleny@ntation.

With rbufs, one can establish a communication channel ®tw&o processes, consist-
ing of a shared memory region and a pair of circular buffetge $hared memory region is
used to store data buffers exchanged by the two procesdeswritable by the data origi-
nator and read-only to the receiver. The circular buffese aéside in shared memory and
are used to queue transfer descriptors. The master pragkiss initiates the transfer (it
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can be either the originator or the receiver), writes refjdescriptors to the first circular
buffer. The slave process reads request descriptors frefirgh buffer and writes response
descriptors to the second buffer. A buffer is writable by wré&ing process and read-only
to the reading process. Each circular buffer has a pair oftesfgannels associated with it.
These are used to communicate head and tail pointers betheevriter and the reader of
the buffer.

Rbufs preserve strong isolation of the communicating meeg, while avoiding copy-
ing and reducing the number of context switches, which esagbod performance for
user-level device drivers under I/O-intensive workloddafortunately, none of the Neme-
sis publications show concrete device driver performangebers.

In summary, microkernel-based systems allow the isolatibdevice drivers inside
user-level processes at the cost of significant CPU overhegproaches to reducing
this overhead have been proposed, including optimised Hflities and performance
tuning (e.g., interrupt coalescing). Nevertheless, dfter decades of active research no
microkernel-based OS has demonstrated a user-level désiex framework whose per-
formance would be close to that of a monolithic system.

User-level device drivers rely on OS protection mechanigntetect and isolate mem-
ory access violations and a subset of OS protocol violatismsh as access to unauthorised
services and excessive resource allocation (see Sec8pn®2complete fault tolerance so-
lution is required to also detect other types of failure angrovide mechanisms for failure
recovery. While all of the systems discussed above pointitthe possibility of construct-
ing such facilities, none of them has demonstrated a worikimmementation.

Recently, an attempt at building a complete driver religbiinfrastructure for the
MINIX 3 [HBG *06] microkernel-based OS was undertaken by Herder et alGHB)].
They extended fault isolation facilities available in goas systems with a limited form of
temporal failure detection based on heartbeat messagesidition, MINIX 3 isolates the
most severe form of device protocol violations using an IOMM

MINIX 3 also implements an original approach to fault reagMey outsourcing the task
of restoring the state of the failed driver to its clients [&B07]. The OS simply creates a
new copy of the driver and reconnects it to the client. Thentlis notified about the failure
and can take compensatory actions to conceal the failune diser applications. The ratio-
nale behind this design is that the client often containa dequired for recovery and hence
can implement recovery without the overhead of runtime teoinig. For instance, the file
system stores pending disk operations and can reissue theame of the disk driver failure.
As another example, a network protocol stack handles n&teanmtroller driver failures by
detecting and retransmitting lost packets as part of the pi©®col; applications that use
unreliable protocols, like UDP, implement applicatioresific mechanisms for tolerating
lost packets.

A number of microkernels and similar systems were not cal/@reéhe above survey,
because, despite their adherence to microkernel desigoifdds, they implement drivers
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as part of the kernel. These include V [Che84], Accent [RR81 Cache kernel [CD94],
Amoeba [TKRB91], early versions of Chorus [RA&8], Exokernels [EKO95] and others.
Among currently active microkernels that support useel@rivers are both commercial
microkernels, such as OKL4 [OKL], QNX [Don00], and INTEGRITGre] and academic
systems like seL4 [EDEO07], MINIX3 [HBG06], and Nexus [SWSSO05].

3.1.3 Device driver isolation in monolithic OSs

Research on user-level device drivers in microkerneldbagstems inspired the use of sim-
ilar isolation techniques in conventional monolithic O8sa monolithic system, the client
of the driver, e.g., the TCP/IP stack or the file system blaglet, is usually located in
the kernel. This is in contrast to microkernel-based systesinere both the driver and its
client execute as user-level processes. Interaction leetthe kernel and a user-level pro-
cess involves fewer context switches than IPC between twogsses, and hence can in
principle be faster. In practice, however, current moh@iOSs are not optimised for such
interaction and would require massive design effort to anpnt it efficiently.

User-level device drivers in Linux The communication overhead can be mitigated us-
ing buffering techniques, similar to those described in pevious section. Leslie et
al. [LCFD*05] implemented this approach using an rbufs-like commatinia mechanism.
Their performance evaluation shows up to 7% throughputadkgion and up to 17% CPU
overhead, compared to in-kernel drivers, for hard disk aighlBt Ethernet controllers.
These encouraging results were obtained at the cost ofisedd/O latency, which was not
measured in the paper.

Nooks The Nooks system, developed by Swift et al. [SBLO3], adds prgrmrotection to
kernel-mode drivers in Linux. Drivers are encapsulatedight-weight protection do-
mains, called nooks. A nook executes in the kernel mode asddaal access to all kernel
memory, but can only write to its private heap and to devicenorg regions. Communica-
tion between a nook and the rest of the kernel is mediatedédtoks isolation manager,
which intercepts all function calls in both directions andkas sure that the driver can
safely write data structures passed to it by reference. ihashieved by either maintain-
ing a synchronised copy of the data structure inside the nodly forwarding every write
access to the data structure to the kernel.

The isolation manager detects three types of driver fatuiéegal memory accesses,
data format violations, and temporal failures. lllegal nogynaccesses are detected using
hardware protection mechanisms. Data format violatiomsdmtected by validating pa-
rameters passed by the driver to the kernel. Finally, teaiffailures are detected using
timeouts.

The isolation manager also keeps track of all kernel obgidsated or accessed by the
driver. In case of a driver failure, the Nooks recovery mamagleases all kernel resources
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held by the driver, creates and initialises a new instandbefiriver. This basic recovery
scheme ensures that the system remains in a consistenaftéatthe failure; however ex-
isting users of the driver observe the failure, since thgial copy of the driver becomes
unavailable and its state is lost.

Nooks was later extended to support fully transparent megousing a mechanism
called shadow drivers [SABLO4]. A shadow driver is a shimttizaattached to an in-
stance of a Nooks driver and passively intercepts its conization with the OS, recording
information required to recover the driver in case of a faluAt the time of recovery, the
shadow driver attaches to the new driver instance and segttththe active mode, where it
generates a sequence of requests that recreate the statedaf/er before the failure. Dur-
ing this time, all requests sent to the driver by the OS arekald. OS calls issued by the
driver are either handled by the shadow driver or forwardettié¢ OS. Once the recovery is
complete, the shadow driver switches back to the passiveenfliadow drivers are device
independent and need to be developed once for a class okdevic

One issue with Nooks is the complexity of implementing ttedason and recovery in-
frastructure. An isolation manager is required to undesthe semantics of all driver-OS
interactions in order to perform argument validation anmucéyonise shared data structures.
Likewise, a shadow driver in the active mode assumes theofalee OS and must correctly
implement the semantics of all OS functions used by the dr&imce a Linux driver has ac-
cess to a large number of internal kernel functions, Nookime components are required
to incorporate semantics of a substantial subset of theekanierface. While the feasibility
of this approach has been demonstrated on a small numbeivefgjrbuilding a complete
and robust solution appears to be problematic due to theasideomplexity of this subset.

Another limitation of the Nooks architecture is the sigrafit performance overhead
induced by frequent protection boundary crossings. Limiwets perform a large number of
kernel calls, all of which must be intercepted and forwarttetthe kernel. For example, the
reported overhead for the Intel Pro/1000 Gigabit Etherdapter driver is 10% throughput
degradation and up to 80% increase in CPU utilisation.

Microdrivers  The Microdrivers [GRB 08] architecture offers a tradeoff between safety
and performance by executing non-performance-criticetspe the driver at the user level.
This includes management and configuration functions, ivdwcount for 65% of the driver
code. The kernel-mode portion contains performancecatitiata path functions.

An existing Linux driver can be turned into a microdriver y@matically partitioning it
into user and kernel-mode components. To this end, the pseifies a set of performance-
critical driver entrypoints that must execute in the kermfebtatic analysis tool determines
driver functions that are transitively called from thesdrgpoints. The resulting set of
functions is included in the kernel-mode part of the micigel, the remaining code will
execute in the user mode. Data structures shared betweddthel and the user part
are replicated and synchronised using a mechanism sirpiklaietone implemented in the
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Nooks isolation manager. The current implementation ofrotidvers does not support
fault recovery; however the authors point out that the Naeksvery infrastructure can be
easily adapted to this purpose.

The Microdrivers architecture was further enhanced in thedd[RS09] project. Decaf
provides a mechanism for manually converting the uset-lpggion of a microdriver to
the Java programming language. This enables the drivekécatdvantage of the Java type
and memory safety properties. The conversion is performectimentally, on a function-
by-function basis. Data sharing and communication betwberC and the Java parts of
the driver is managed by another instantiation of the igmiatnanager mechanism, which
marshals method arguments and maintains synchronisedscopishared data structures
across language boundaries.

Microdrivers improve driver safety while introducing niggghle performance overhead.
The main limitation of this approach is that a significanttjwor of the driver remains in the
kernel.

User-level drivers in mainstream products Due to performance problems and complex-
ity associated with user-level device drivers, mainstregsiems are slow to move in this
direction. At the moment, most major OSs, including Windplisux and Mac OS X pro-
vide only a limited support for implementing certain typdsddvers, such as drivers for
USB-based storage and webcam devices, at user level [Nelk€?7, App06].

3.1.4 User-level device drivers in paravirtualised system

In recent years user-level device drivers have found newicgpions in the context of the
virtualisation technology. Specifically, they come intayln configurations where mul-
tiple virtual machines share the hardware resources of éise dystem. In such settings,
access to /O devices from a guest OS can be enabled usingotwoaehes. The first ap-
proach, implemented for instance in VMWare [SVL01], is @evvirtualisation, where the
VMM intercepts all I/O operations issued by the guest OS andlates the behaviour of
the device as if it was exclusively owned by the guest. Thelatad device does not have
to be the same as the actual physical device connected tosheThe advantage of device
virtualisation is that it does not require any changes tajiest OS. It is, however, associ-
ated with very high performance overhead and thereforeatdy@used in applications that
require high 1/O throughput.

The second approach is device paravirtualisation. Theigl&apresent the guest OS
with an I/O interface that differs from the actual hardwarteiface, but can be efficiently
implemented in the hypervisor. The guest OS must be extenidbdirivers that handle this
interface. Thus, paravirtualisation is not fully transparto the guest.

Device paravirtualisation has been implemented, for tstain the Xen [BDFE03]
VMM. Xen consists of a small privileged hypervisor (not kelia microkernel [HWF05]),
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which hosts multiple guest OSs running with user-level ifgges. Only one guest has
direct access to I/O hardware. It runs an instance of Linthickvcontains drivers for all

peripheral devices. This dedicated guest is called Domdi@ther guests use the devices
via Domain0. To this end they contain stub drivers, whichegp@as normal device drivers
to the guest OS, but internally communicate with Domainfheathan the actual hardware.

Communication with drivers in DomainO involves control addta transfer across
process boundaries, which poses the same performanceem®lals user-level drivers in
microkernel-based systems. Not surprisingly, Xen adésesisese problems using tech-
niques borrowed from microkernels. Specifically, it impkarts a communication mech-
anisms that uses circular buffers in shared memory and heymous notifications in a
manner similar to rbufs.

Nevertheless, the performance overhead of paravirtti@isaemains quite high, gen-
erating up to 300% increase in CPU utilisation in the worstecaf handling a stream of
incoming data packets [MST05]. Menon et al. [MCZ06] and Santos et al. [STJP08] have
proposed a number of optimisations that reduce this ovdrtte87% and to as low as 25%
for network controllers that support multiple receive gegulagar-Cavilla [LCTSdL0O7] et
al. obtained similar encouraging results for paravirsedi graphics adapters.

Hartig et al. [HLM™03] implemented device paravirtualisation in their wortdear-
chitecture, using the L4 Fiasco [Hoh02] microkernel as ahyigor. Unlike Xen, where all
drivers reside in the Linux kernel running in DomainO, therkbmrse architecture encapsu-
lates every driver in its own protection domain. Reuse oftéxg Linux drivers is enabled
by an emulation library that is linked against device disvweroviding them with the illusion
of running inside the Linux kernel. The CPU overhead of deparavirtualisation in the
workhorse architecture runs up to 200% for network devices.

LeVasseur et al. [LUSGO04] implemented a similar architectuon top of
L4::Pistachio [Sys03], but instead of using an emulatidmaliy they run each driver in-
side a separate virtualised instance of Linux. They rep&fiG% CPU overhead.

3.2 Software-based fault isolation

Software fault isolation (SFI) enables safe execution efusted modules in the application
or kernel address space, without relying on hardware giotecechanisms. The safety
properties enforced by SFl include memory safety and cbinrosfer safety (i.e., the mod-
ule can only invoke a pre-defined subset of kernel entry ppif8FI operates at the binary
code level and therefore can be applied to programs writtdovi-level languages like C

or Assembly.

SFlwas first proposed by Wahbe et al. [WLAG93] and was orlggingsed to isolate un-
trusted extensions for user-level programs. Wahbe’s impfgation performs binary code
transformation on the untrusted module, inserting runtainecks that cannot be circum-
vented by the module. To perform these checks efficientstrictions are imposed on the
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application memory layout. The address space of the apiplicés divided into contigu-
ous segments so that all addresses within a segment shargue yattern of upper bits.
An untrusted module is only allowed to execute code in itseceegment and access data
in its data segment. Immediate control transfer instrasticas well as immediate loads
and stores can be statically checked to comply with thessti@ints. Indirect jumps and
memory accesses are modified to use a small subset of regisétrare not loaded by the
untrusted code, but only by inserted code, which applies m&sk to the address, ensuring
that it falls into the right segment.

Inter-module communication is mediated by trusted stultimes. The code segment
of a module contains an indirection table of jump instrutsi®o stub routines. These jump
instructions provide the only way to transfer control odésthe module. Stub routines
implement control transfer and argument marshalling tactiilee module.

Performance results reported by Wahbe et al. show that 8Fdases CPU utilisation
by up to 39%. One drawback of this architecture is that it dicapes data sharing between
modules. Sharing can only be implemented at the page grigulaing memory remap-
ping. Another limitation is that this solution relies on a3 load and store architecture
and cannot be easily extended to CISC architectures, imgjudB6.

Both limitations are overcome in the XFI [EAWG6] architecture, which enforces mem-
ory safety and control flow integrity without imposing angtrictions on the memory lay-
out. Control-flow integrity is enforced using static anédyand runtime guards. In order
to statically guarantee the integrity of data that influentte control flow, such as function
return addresses, the program execution stack is spliisimoped stack, which stores all
such sensitive data and can never be accessed using conaddredses, and an allocation
stack, which stores all other stack data.

Memory safety is enforced using runtime guards, which yetlifat every computed
memory access falls into one of contiguous memory regiosigaad to the untrusted mod-
ule. The cost of the check depends on the number of availagiens, which can vary
at runtime. Control-flow integrity properties enforced biénsure that memory access
guards cannot be circumvented.

The overhead of XFI on various application benchmarks ikiwit25%. In particular, it
was applied to two Windows kernel drivers; however both efthwere drivers for pseudo-
devices implemented in software, so these results may nmefoesentative of real hardware
drivers.

The Vino [SESS96] OS uses the MiSFIT [SS98] SFI architectoiigolate and recover
from failures in kernel extensions. MiSFIT implements santechniques to those intro-
duced by Wahbe et al., but adapts them to the IA&R2ruction set architecture (ISA).ike
Wahbe’s SFI architecture, MiSFIT does not allow data sloghhietween modules. Access to
OS data structures is performed via trusted accessor @nsctiVino detects the following
types of failure: memory safety violations and control flewegrity violations (using MiS-
FIT), livelocks and deadlocks (using timeouts), and resedroarding (using per-module
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resource accounting).

Vino supports a transactional model of computation for &kaxtensions, using trans-
action rollback as the fault recovery mechanism. Everydation of an extension starts a
new transaction. Whenever a transaction calls an OS fundtiat modifies the state of a
kernel object, the maodification is recorded in the transadilog and the object is locked
until the transaction commits or aborts. For each such mwufahction, Vino provides an
undo function, which reverts its effect. If a transactiorb due to an extension failure,
Vino calls all undo functions from its log and unloads theltipextension. While the Vino
fault tolerance mechanism can in principle be adjusted ppsu recovery from driver fail-
ures, this has not been implemented.

The main limitations of the Vino architecture are its vergthiperformance overhead
(more than a factor of 10 for some extensions), and the rexapgint to implement an undo
function for every mutator function callable from extemsp which increases kernel size
and complexity.

3.3 Fault removal using static analysis

Static analysis tools detect software defects by analy#iegsource or binary code of
the program, without actually executing it. Recent improeats in static analysis tech-
nigques have led to the development of tools, like Metal [EQCGHSLAM [BBC*06], and
Blast [BHIMO07], capable of detecting many common errorsewick drivers written in C
and C++. This section surveys some of these improvements.

Early static analysis tools, such as Lint [Joh77], perfatmsgntactic analysis of the
program in search of common programming bugs, such as padiinitialised variables
or passing a wrong number of arguments to a function. Moshedd checks have been
integrated into modern compilers.

Much more powerful analyses become possible with the hetpaafel checking tech-
nigues. Model checking refers to verifying a formal modehafystem against a specifica-
tion of its required properties. The model is usually writia a formal language, such as
Promela [Hol03] or LOTOS [LOT89]. The specification can besmporal logic [Pnu77]
formula or a program in the same language. In both cases itedefionstraints on the
ordering of a subset of operations performed by the modeteradtively, the property
specification can be incorporated into the system modeldridim of assertions, in which
case it describes a subset of illegal system states. A mbeeker explores all possible
executions of the model and reports if any of them violategbecification. In order to
efficiently explore very large state spaces encounteredahworld problems, most model
checkers use symbolic methods, which manipulate comptespeesentations of the state
space, e.g., in the form oftanary decision diagram (BDD)Bry86].

Some model checkers, including Metal, SLAM, and Blast ojged@ectly on the source
code of the system, rather than on its formal model. Thisaaagr allows checking prop-
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erties of the system without having to manually construetrttodel. However, it is harder
to implement than conventional model checking. Any nowidtiprogram has an enormous
state space, which cannot be explored using brute-forémipees. In conventional model
checking, the user who builds the model of the system altsteagay any state informa-
tion that is not essential to its correctness with respethéoproperties of interest. If the
resulting model is too complex for the model checker to exgleithin available time and
memory resources, the user relaxes the abstraction to tslk&cieptible to formal analysis.
If the model is too abstract, i.e., is missing informatioguieed to establish its correctness,
the user refines it by adding the missing details.

Source-level model checkers must choose the right abistnastthout human involve-
ment. The simplest approach, implemented for instance italVis to use a fixed abstrac-
tion. This may result in a high rate of false positives, egglrcwhen checking complex
properties. Another solution is to use counterexampléapliiabstraction refinement algo-
rithms [CGJ 03] to adjust the abstraction automatically. Such algorgtstart with com-
puting a very rough approximation of the program behaviétor example, they may ab-
stract away all program variables and assume that any progranch can always be taken.
Next, the algorithm checks whether the desired propertgshfar this abstract model and,
if it does not, it attempts to produce a counterexample th@ates the property. If such a
counterexample exists for the original program, the atoriterminates, otherwise it re-
fines the model to avoid the spurious counterexample. Theepgoiterates until a valid
counterexample is found or the model is shown to satisfy tbpenty.

One problem that arises when applying model checking atdhece code level is the
need to deal with complex semantics of programming languaghis is particularly dif-
ficult for system programming languages, which do not emfdype and memory safety
and allow explicit pointer manipulation. The memory statgpmgrams written in such
languages cannot be represented by a set of typed valuesumtthenmodelled as an array
of bytes. Furthermore, multiple pointers inside the prograay point to the same memory
location. Such aliases cannot always be reliably identifieaking it hard to reason about
the memory state of the program. In practice a good apprdimaan often be obtained
using alias analysis [Das00].

In applying model checking to device drivers, an importamsjion is: what properties
should be checked? Modern model checking techniques salenith the size of the
analysed program, but are highly sensitive to the compl@ftiproperties that this program
is checked against. Complex properties, which depend ge lanbsets of the program
state variables, reduce the effectiveness of abstraaamiques, forcing fixed abstractions
to yield large numbers of false positives, and increasirgyriimtime of algorithms that
use abstraction refinement. Hence, the best results cantdieaxb by capturing the most
common driver errors using simple properties.

Such properties can be generic or specific to device drividie.Metal model checker
has been successfully used in detecting generic errorssiersycode [CYC01]. Some
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examples of rules checked by Metal are: “release acquirekkjodo not double-acquire
locks”, “do not dereference user pointers”, and “check piédly NULL pointers returned
from routine”. While these rules are applicable to all kécmmponents, Metal found 3 to
7 times more errors per line of code in device drivers conmpéoethe rest of the kernel,
which illustrates the relatively poor quality of the driverde.

Driver-specific properties describe rules of the kernel Ad?ldevice drivers and are
used to detect OS protocol violations (see Section 2.8).SI#M model checker and the
commercial SDV [BCLRO04] tool based on it have been used teaiehany such viola-
tions in Windows device drivers. Examples of rules checke@bAM are: “drivers do not
return STATUS_PENDING if loCompleteRequest has been daltéf a driver calls an-
other driver that is lower in the stack, then the dispatchineueturns the same status that
was returned by the lower driver”, and “drivers mark I/O resjupackets as pending while
queuing them”. SLAM allows users to specify additional sulesing a domain-specific
language [BRO1].

Input to the SLAM model checker consists of the source codbefiriver, rules to be
checked, and a model of the OS environment. The last compsitealates the order and
arguments with which the OS invokes driver entry points, al as behaviour of OS APIs
invoked by device drivers.

The developers of SLAM report that one of the main probleney #ncountered was
the absence of well-defined OS API rules. According to Badllet

“The rules for these APIs were hard to get right. Often, keemperts in these
areas would disagree with one another about subtle poirtseinules. As a
result, we would develop a rule and have to iterate many tiwits experts,
showing them errors found by SFV and then refining the ruldhéferrors
were false. This took a tremendous amount of time and eriergy.

The lack of well-defined rules constitutes a problem not datymodel checking, but also
for manual driver development, since in the absence of a defaition of correct behaviour
writing correct drivers is problematic.

Other examples of static analysis tools that check dripec#ic properties include Coc-
cinelle [PLHMO08] and Carburizer [KRS09]. Coccinelle adskes the problem of collateral
evolution in Linux device drivers [PLMO06], where changesdmdo internal kernel inter-
faces introduce errors in previously correct drivers. Qualte provides a language to spec-
ify such changes and a static analysis tool that identifiegtions in the driver source code
that need to be updated and generates a source patch thatrieris the necessary updates.

Carburizer is an automatic driver hardening tool that dstsituations where the driver
makes assumptions about device behaviour that can congatmisafety and inserts code
to fix these situations.

Unfortunately, existing literature on model checking fewite drivers does not discuss
limitations of the approach. In particular, both SLAM and tilereport large numbers of
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errors found by checking simple rules, including the ontsdcabove, however they do not
give examples of more complex properties that cannot baesftlg validated using these
tools.

Compared to runtime isolation techniques discussed inrthaqus sections, static anal-
ysis has the advantage of finding errors without introducimgime overhead. On the other
hand, static analysis only finds a subset of errors that caleteeted at runtime. For exam-
ple, memory safety of a C program cannot be checked staticall

In some cases, synergy between the two approaches is gosdilel CCured [NCHO05]
system uses static analysis to check memory safety of as loadyand store instructions
as possible and relies on SFI to check the remaining onesndinel This way, fewer
runtime checks are required compared to conventional Skthweduces the runtime cost
of isolation.

3.4 Language-based fault prevention and fault tolerance teh-
niques for device drivers

High-level programming languages impose syntactic ancaséimrestrictions on the pro-
gram, making certain types of errors impossible or diffitalexpress and allowing other
errors to be detected by the compiler or the language runtime

Memory safety is the most important property that can bereatbusing language sup-
port. In low-level languages, like C, which allow explicibipter manipulation, proving
memory safety is undecidable. Languages that disallowi@xpbinter manipulation elim-
inate invalid memory accesses due to incorrect pointehragtic. Type-safe languages
additionally allow memory safety violations resulting rincunsafe type casting to be de-
tected by the compiler. Finally, languages with automatiitagye management eliminate
memory allocation errors, such as use after free and doudde &nd enable the detection
of array boundary violations using a combination of comfiilee and runtime checks. A
combination of these techniques guarantees memory safety.

For performance reasons, most OSs are written in low-lewvegjuages. The increasing
complexity of system software encourages the use of moranaed software development
technology, including high-level languages. The rest of lection surveys research on the
use of high-level languages for operating system and ingodatt device driver develop-
ment.

Historical systems The use of high-level languages in OS development was piedee
the Burroughs B5000 series of computers [Org73]. The B5@@afufed a stack-oriented
architecture, which enabled efficient execution of prograwritten in high-level languages.
All system and application software for BS000 was develapedligol.

An Algol-based programming language, called Mesa, was as&@rox PARC to de-
velop the Pilot [RDH80] OS for personal computers, including device driverssigro-
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grams are structured as collections of modules, with mobalendaries enforced by the
compiler. The next version of the Mesa language, called &ZBH86], supported auto-
matic storage management through garbage collection. r@etaused to develop an OS
of the same name.

Lisp machines [Mo087,Dus88, Deu73] are a family of compatehitectures designed
for efficient execution of Lisp programs. The entire softvatack running on these com-
puters, including device drivers, was developed in Lisp.

Java OSs Java is a popular object-oriented virtual-machine-basetage-collected pro-
gramming language. Several research and commercial O8$9ban implemented in Java.
These systems do not support hardware-based memory jwatand only run applications
written in Java.

JavaOS [Mad96] from Sun is based on a bare-metal impleniemtat the Java VM.
Apart from the language run-time, the entire OS, includiagice drivers, is written in Java.
All processes in JavaOS share a single object namespaceddsign makes it difficult to
implement security and resource isolation.

KaffeOS [BHLOO] and JX [GKBO01] address this problem by conibg the Java run-
time with traditional OS isolation techniques based on esses. A process is a unit of
resource accounting. Every process uses a private gadudigeted heap for memory al-
location. Process boundaries are enforced by an extendgddge runtime, without using
MMU-based protection. JX supports inter-process comnatfigic via remote procedure in-
vocations. Since processes have separate heaps, invoaggionents must be copied to the
callee’s heap. KaffeOS allows processes to create shasgd bed populate them with code
and data. Communicating processes interact by acces@rghttied heap. The prototype
implementation of KaffeOS runs on top of Linux, with devicévdrs implemented inside
the Linux kernel. In contrast, JX runs directly on the hartevdrivers are implemented in
Java and can take advantage of JX protection facilities.

An important limitation of Java-based OSs is that they only programs written in
Java, which limits their use to narrow application domaiis.addition, the use of Java
incurs high performance overhead. JX reports 50% slowdawfil@ system benchmarks,
compared to Linux.

House House [HILTO05] is an experimental OS developed in Hasketining on top of

a bare-metal implementation of the Haskell runtime. Inipalar, House device drivers
are written in Haskell. Unlike Java-based OSs, House carpragrams written in any
programming language inside hardware protection dom&akability benefits of Haskell
are not limited to type and memory safety. Being a purely fional programming lan-
guage, Haskell facilitates formal reasoning about progoahmviour. House uses a version
of Haskell that supports code annotations with formal Idgitnulae [Kie02]. These an-
notations can be used as the basis for checking programctiogss using static analysis,
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theorem proving, testing, or manual code inspection. Famgte, in case of device drivers,
properties of interest include device and OS protocol caanpé. Although the approach
looks promising, no actual evidence of applying formal tegbes to verifying the House
OS have been published so far.

Vault Language support can be used to enforce higher-level pgrepehan memory
safety. In Section 3.3 we saw that checking even simple O®gubrules in C-like lan-
guages requires complex algorithms and involves manuaviention to identify false pos-
itives. Incorporating these rules in a language type systeables much more efficient
decision procedures.

This approach was implemented in the Vault [DF01] systengiamming language. In
Vault, software protocols are specified by associating afsetates with a data type and
annotating functions with pre- and post-conditions déseg how the function changes the
states of its arguments. The programmer must explicitlypkegck of the state of every
program variable by including the state of the variable,téndeclaration. Furthermore,
he must explicitly mark all aliases to the same variable.sWmry, the compiler is able to
verify protocol compliance by performing only local typeecking, e.g., it must check that
arguments passed to a function satisfy its preconditions.

Vault has been used to develop Windows 2000 device drivdrsrerthe Vault type sys-
tem allowed enforcing resource management rules betweedriver and the kernel. An
example of such arule is: for every 1/0O request received fitoerOS the driver either com-
pletes the request immediately by calling te€ompleteRequest  function or passes
the request down the driver stack by calling th€allDriver function, or marks the
request for delayed processing usloylarkirpPending

A major drawback of the Vault approach is that it puts sulighburden on the pro-
grammer. In essence, it requires the programmer to incatgpa proof of protocol com-
pliance in the source code of the program. In addition, Vanly keeps track of statically
allocated resources. When dealing with dynamic data strest the program must use
anonymisation operations to prevent the compiler from kegprack of variable states,
thus suppressing static protocol enforcement.

SafeDrive The SafeDrive [ZCA06] system aims to improve the reliability of device
drivers written in C by making the C language more secure efinds a simple language
extension that allows adding size annotations to pointeesy protecting the driver code
against out-of-bound memory reads and writes. These aimweaare enforced via a com-
bination of static and runtime checks. SafeDrive does ramktmemory deallocation and
hence does not protect against dangling pointer dereferenc
SafeDrive also provides a mechanism for recovering faudtyicd drivers, similar to

lightweight transactions mechanism in Vino: the SafeDriwatime keeps track of changes
made by the driver to the system state and applies compepdahztions upon failure.
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The reported overhead of SafeDrive, in terms of CPU utibisatis 23% in the worst

case.

Cyclone The Cyclone programming language [JM@] is a dialect of C that uses a
combination of language extensions, compile-time, andmesupport to achieve type and
memory safety. Cyclone language extensions include taggemshs, fat pointers, region-
based memory allocation, and data-flow annotations. Theésastons enable compile-time
checking of many pointer operations. More complex checkgarformed at runtime.

One interesting feature of the language is that it supparts hechanisms for safe
memory reclamation: garbage collection and data-flow aiwots. The former supports
automatic memory management at the cost of some perfornuseckead, while the latter
requires additional manual effort, but does not incur anygomance overhead.

Cyclone shares most of the C syntax and uses the C callingntian and data structure
layout, which makes it easy to integrate modules writtengi§€iyclone into an OS kernel

written in C.

Several systems, including STP [PW\WB] and OKE [BS02], have used Cyclone as
the basis for the construction of safe kernel extensionsy Bmhance the type and memory
safety facilities of Cyclone with additional mechanismattinable safe sharing of kernel
data structures, restricted access to kernel servicesgcanrtobl over the use of CPU, and

other runtime resources.

In addition to high CPU overhead (up to 300% for CPU-inteasixorkloads), a major
drawback of Cyclone is its heavy reliance on manual anratatiwhich complicate the use
of the language.

Singularity The Singularity [FAH 06] OS combines the advantages of most of the
language-based techniques described above. The entieensigswritten in the Sing# lan-
guage, with type and memory safety being enforced by the#Singpiler and virtual ma-
chine. User-level programs written in unsafe languagesidganside hardware protection
domains. Protection and resource isolation among OS coemp®are achieved by running
every component, including device drivers, as a separdtwase-isolated process with its
own private heap. Inter-process communication is limitechessages exchanged through
typed channels, with data passed through a shared nonggacbtlected heap. Similar to
Vault, Sing# allows the formal specification of a channelsnenunication protocol and
the static enforcement of protocol compliance. Furtheen&ingularity drivers can use
Sing# facilities for specifying program invariants to falize and statically enforce device
protocol constraints.
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3.5 Preventing and tolerating device protocol violations

Most driver reliability techniques surveyed in the preiaections deal with memory ac-
cess violations and OS protocol violations. This sectiagtdbes techniques for preventing
and tolerating device protocol violations.

Modern I/O bus architectures provide hardware supportdolating the most severe
failures in the form of an IOMMU (see Section 2.2.1). An IOMMan be used to prevent
device drivers within a single OS from accidentally oveting kernel or application state
by programming the device to perform a DMA transfer to an lidi@cation [BYMK 06,
Lin]. In a virtualised environment, an IOMMU allows the VMM protect guest OSs from
erroneous or malicious 1/0 operations issued by other gyB¥MK ~06, WRCO08].

Willmann et al. [WRCO08] evaluated the impact of using an IOMMn the system per-
formance. They found that creating a single-use mappingvery 1/O transaction increases
CPU utilisation by 30% for 1/0O-intensive workloads. Thissokiead can be significantly re-
duced by reusing mappings.

Williams et al. WRW"08] developed a purely software-based replacement for QMM
for the Nexus [SWSSO05] microkernel-based OS. Their salutionsists of a Reference
Validation Mechanism (RVM), which intercepts and validagl device register accesses
issued by the driver. The RVM recognises when the driver gangis the device for a
DMA operation and checks whether memory regions pointedytéhk provided DMA
descriptor are owned by the driver. The RVM is configured gevice using a Device
Safety Specification (DSS), which describes the registanutof the device and its DMA
protocol. The RVM is located in the kernel and cannot be ameented by device drivers,
which run at the user level. The RVM has modest impact on |/@dbédth and latency
and introduces a CPU utilisation overhead of around 30%. ki limitation of this
architecture is the requirement to develop a safety spatidit for every supported device.

Several domain-specific languages have been developedplifgi the implementa-
tion of the low-level device interface of a driver, inclugibevil [MRC*00], NDL [CE04],
HAIL [SYKIO05], and Laddie [Wit08]. These languages allowatirative specification of
the device register and memory layouts. They also provideansto formally define valid
sequences of register accesses in the form of finite stateinescor temporal logic for-
mulae. The driver developer creates such specificatiorsdbas informal documentation
provided by the device manufacturer, usually in the form dégice datasheet.

Given these specifications, the language compiler gerseds¢ce accessor functions
in C or C++. These functions encapsulate bit-level aritleseaind low-level protocols
involved in using device registers. Constraints that calmeocencapsulated inside a single
function are enforced at runtime by adding appropriate kchéo accessor functions. For
example, a check may assert that a given function is onlykewovhen the device is in
a certain state. In principle, these constraints could lbdsenforced using static analysis;
however none of the above systems has implemented thisagbpro
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3.6 Fault prevention through automatic device driver syntlesis

A radical approach to improving device driver reliabilitgresists of automatically generat-
ing the driver implementation based on a formal specificatitits required behaviour. The
specification is written in a high-level domain-specificdange and is therefore expected to
contain much fewer defects than manually developed drivaraddition, the specification
is more readily susceptible to formal analysis than loveléy code, which allows further
reduction of errors due to incorrect specification.

There exist two approaches to automatic driver synthesisiware/software co-design
and standalone synthesis. In the co-design approach [BC[; the designer specifies
the structure and behaviour of the system in the form of comaating finite state ma-
chines. Once this abstract specification has been validaied simulation or formal veri-
fication, the designer may choose which components of thgrisbould be implemented
in hardware and which in software. The hardware componeatgenerated in the form of
field-programmable gate array (FPG#&prapplication-specific integrated circuit (ASIE)
whereas the software components are translated into agondgra low-level programming
language.

Existing co-design techniques are intended for generaiimgle embedded microcon-
trollers and their drivers. Furthermore, they do not supfs-based drivers, i.e., drivers
generated using these techniques run without OS supporitlbavwninimal real-time ker-
nel. These limitations are not inherent to the co-desigrhodlogy and may be overcome
in the future, making it a promising approach to improving tluality of device drivers.

In the standalone synthesis approach [WMB03,ZZC03, KSBQJ98], the device and
its drivers are developed separately. Devices are usuabigded using dardware de-
scription language (HDL)however the driver developer does not typically have actes
the HDL specification. Instead, the device manufacturetigids an informal description
of the device interface in the form of a datasheet and sanogle. Based on this documenta-
tion, the driver developer creates a formal specificatia@river using a domain-specific
language. The data definition part of the specification deseregister and memory lay-
outs of the device, similarly to Devil and related languag&he behavioural part of the
specification describes the functionality of the driverhie form of communicating finite
state machines. This specification is automatically tegadl into a driver implementation
in C or another programming language.

This approach has several advantages over implementirdyitteg in the conventional
way. First, communicating state machines capture the oigkaviour more naturally than
procedural or functional languages. A device driver is se@se a controller for the device
state machine. Its state and operation reflect state anatapenf the device and can be
most naturally modelled as another state machine. Secpedifisation languages used
for driver synthesis have simpler semantics than C (mainly @ their simpler memory
models) and are therefore easier to verify formally. Fongxa, Wang and Malik [WMO3]
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statically check properties like termination and deadlfsekdom. More complex checks,
such as adherence to OS protocols can also be checked iipfEjtmwever no such results
have been reported in the literature. Finally, a formal gjpation can abstract away some
low-level implementation details, such as CPU endiannkss,access method, OS API
for timers and interrupts, etc. These details can be addatebgynthesis tool. It should

be noted that similar advantages can be achieved in coomahtilrivers by wrapping the

corresponding functionality in library functions.

Practical merits and limitations of standalone driver bgsts tools are not yet fully
understood. Published results are based on early progtyse simple embedded devices
as examples, and do not report any performance results. riNeless, it is a promising
approach that deserves further exploration.

3.7 Conclusions

Techniques surveyed in this chapter prevent, detect, dathte many types of software
defects. However, all of them have serious limitations. antipular, runtime fault isola-
tion, based on either hardware or software mechanismsdintes substantial performance
overhead. While, in principle, it can be used to isolate awdver all types of memory ac-
cess and OS protocol violations, in practice the lack of \defined driver-OS protocols in
modern systems complicate the implementation of the isoland recovery infrastructure.

Static analysis techniques do not introduce performaneshead; however they are
only capable of detecting a limited class of errors. The# issalso complicated by the
ambiguity of OS protocols, which makes it difficult to iddgtproperties that the driver
should be checked against.

Prevention and isolation techniques for device protocolations rely on the driver
developer to create a formal specification of the devicerfaxte, based on an informal
device datasheet. Errors introduced at this stage canradtbeted automatically and lead
to software defects in the driver.

In summary, existing solutions do not provide full protentagainst driver bugs. There-
fore, an approach that helps driver developers producerbaitie, containing fewer bugs,
has the potential to improve both driver and overall systelmlility. The remainder of this
thesis presents such an approach.



Chapter 4

Root-cause analysis of driver defects

This thesis aims to develop an improved device driver agchire and development process
that will enable driver writers to create drivers with fewdefects. To achieve this, we must
first identify root causes of defects in existing drivers,,ithe aspects of driver develop-
ment that introduce complexity and provoke errors. Thigbtdrgpresents suchraot-cause
analysis (RCA)

Software RCA [Car98,MJHS90] involves understanding huimatmaviour and is there-
fore difficult to formalise. It relies on informal analysi§ a large number of defects by
the developers, who are in the best position to determinghgha particular defect is pro-
voked by ambiguous requirements, inadequate documemtatimmplexity of a particular
algorithm or interface, a flow in the development methodglag whether it is an unforced
coding error.

The result of this analysis is documented and added to theesoepository along with
the fix for the error. Unfortunately, neither device mantiiaers nor OS vendors make
this information publicly available. One notable excepti@re open-source systems like
Linux and FreeBSD, where a complete development histocjyding detailed explanation
of most software patches and the defects that they elimimafecely accessible. In par-
ticular, the study of driver defects presented in this chiafg based on the Linux kernel
development repository [Bit].

Other approaches to software defect analysis include sttali defects mod-
elling [MIO87] and the Orthogonal Defect Classification hwology [CBC 92]. These
approaches are guantitative in nature. They rely on prestbfijieneric defect classifications
and only require superficial analysis of every particulaiede As such, they are much
easier to implement in industrial settings compared to Ri&Apnly provide limited infor-
mation about types of defects that occur in a particulamsof product. Since our goal is
to develop in-depth understanding of defects that are fpégidevice drivers, we rely on
the more laborious RCA methodology.

49
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Name Description ‘ LOC ‘ Defects ‘
USB drivers
rti8150 rtIl8150 USB-to-Ethernet adapter 827 16
catc el1210a USB-to-Ethernet adapter | 710 2
kaweth ki5kusb101 USB-to-Ethernet adapter 925 15
usb net generic USB network driver 914 45
usb hub USB hub 2234 67
usb serial | USB-to-serial converter 989 50
usb storagg USB Mass Storage devices 1864 23
IEEE 1394 drivers
eth1394 generic ieee1394 Ethernet driver 1413 22
shp2 sbp-2 transport protocol 1713 46
PCI drivers
mthca InfiniHost InfiniBand adapter 11718| 123
bnx2 bnx2 Ethernet adapter 5412 51
i810 fb i810 frame buffer device 2920 16
cmipci cmi8338 soundcard 2260 22

Total | 33899| 498 |

Table 4.1: Linux device drivers used in the study of drivefedts. The table shows the
size of each driver in lines-of-code and the number of defaind in the driver during the
period covered by the source repaository.

4.1 Methodology

| selected 13 device drivers for the study (Table 4.1), agnbinmake the selection as diverse
as possible, to ensure that it provides a representativpleashdriver defects. In partic-
ular, I consider drivers for different device classes, sastEthernet controllers, storage
devices, video and audio adapters, an InfiniBand host dtertra USB hub, and a USB-
to-serial converter. These devices are connected to thevizothree different 1/0 buses:
USB, IEEE 1394 (FireWire), and PCI. Furthermore, the selbctevices cover the entire
complexity spectrum, from simple devices, e.g., the CATReEtet controller, to high-end
ones, represented by the Mellanox InfiniBand controller.

This selection contains 4 drivers for similar USB-to-Etiedradapter devices (top 4
entries in Table 4.1). The defect statistics for these dsivéll be used in the evaluation of
the Dingo architecture presented in Chapter 5.

In order to identify the root causes of defects in the setkdtevers, | analysed the com-
plete history of updates made to their source code duringifagear period from 2002 to
2008 (which is the complete period covered by the repogitdrgnly considered updates
that fixed incorrect behaviours and ignored all other chanmgeluding performance opti-
misations, functionality extensions, and modificationkdep the driver up-to-date with the
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evolving kernel API.

Each update was analysed to understand the exact defecisatidressed, how these
defects were fixed, and what factors provoked them. Thigrimidion was obtained based
on the source code of the driver, the patch file that implestettie update, and the de-
veloper's comments attached to it. In all, | analysed 49&cisf This does not include a
small number of defects (less than 5%) that were not doclwedesiearly enough to estab-
lish their precise nature. All the defects covered by thdystmere classified into four broad
categories, based on the root cause of the defect:

1. Defects caused by the complexity of device protoddiese defects occur if the driver
developer does not fully understand the details of the soévinterface of the device
or fails to correctly express them in the driver code.

2. Defects caused by the complexity of OS protocdleese defects occur when the
driver incorrectly implements or uses one of its interfasith the OS (Figure 2.5).

3. Concurrency defectsThese defects include race conditions and deadlocks due to
incorrect handling of multiple threads of control inside tiriver.

4. Generic programming faultsThis category includes defects that are not specific to
device drivers. This includes defects related to the uselofvdevel programming
language or to the inherent complexity of implementing géasoftware component.

This taxonomy is similar to the taxonomy of failures presenin Section 2.8. The
principle difference is that failures represent incorreehaviours observable at runtime,
whereas defects represent algorithmic errors that mayecaugime failures. The corre-
spondence between defects and failures is not one-to-omiefekt in the implementation
of the OS interface may cause an OS protocol violation; hewiynay also cause a mem-
ory access violation. The latter may happen, for instari¢keidriver programmer does not
expect a certain OS request to occur in a particular statéremdfore does not allocate the
memory resources required to handle the request. Likewisencurrency bug may lead to
a race between two threads executing inside the driver,hnd@ao manifest itself as invalid
ordering of device or OS invocations or in a memory accedls. faugeneral, any type of
defect can lead to any type of failure.

Table 4.2 summarises the results of the study by showinguhbar of defects of each
type found in each driver. Defects caused by the complexijewice protocols comprise
the biggest group, with the remaining defects distributezhly among the three other cat-
egories.

4.2 Example

Before going into a detailed discussion of the various tygfafefects, consider an example
of how a Linux driver defect is analysed and classified intadigular category.
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Driver Total defects Root cause

Device prot.  OS protocol )

. , Concurrency  Generic

complexity complexity
rti8150 16 3 2 7 4
catc 2 1 0 1 0
kaweth 15 1 2 8 4
usb net 45 16 9 6 14
usb hub 67 27 16 13 11
usb serial 50 2 17 13 18
usb storage 23 7 5 10 1
eth1394 22 6 6 4
sbp2 46 18 10 12 6
mthca 123 52 22 11 38
bnx2 51 35 4 5 7
i810 fb 16 4 5 2 5
cmipci 22 17 3 1 1
Total 498 | 189 (38%) 101 (20%) 93 (19%) 115 (23%),

Table 4.2: Classified counts of driver defects. The maximeaith row are highlighted.

The defect in question was found in revision 1.142 of the
drivers/usb/storage/ushb.c file, which belongs to the USB storage driver,
and was fixed in revision 1.143. The following comment by tlwher of the driver
describes the problem:

The problem was introduced recently along with autosus-
pend support. Since usb_stor_scan_thread() now calls
usb_autopm_put_interface() before exiting, we can't simply
leave the scanning thread running after a disconnect; we wais until the
thread exits. This is solved by adding a new struct compietiiothe private
data structure.

The first step in analysing the defect involves studying theee code of the driver to
understand its overall structure and in particular pattted to the defect.

The USB storage driver is a unified driver for a range of USB sr&ierage devices
such as flash drives, hard drives, and SD card readers. All dexices are required by
the USB mass storage class specification [USB08b] to sugip@8mall Computer System
Interface (SCSIgommand set. Therefore the USB storage driver uses the USBamsport
interface to access the device and exports the SCSI hostedeldiss interface to the Linux
kernel (Figure 4.1).

During initialisation, the driver registers itself as a SG®st driver and spawns
a separate kernel thread to carry out SCSI-device scanninghe thread func-
tion (usb_stor_scan_thread() ) runs holding a power management lock on
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Figure 4.1: Linux USB storage driver interfaces.

the underlying USB interface. This is required to make surat tthe device is
not automatically suspended while being scanned. The Isckeleased using the
usb_autopm_put_interface() Linux function before returning from the thread
function.

The race condition mentioned in the defect description weclif the driver was shut
down (e.g., because the device was disconnected from theduSBwhile the scanning
was in progress. The disconnect handler callsstsi _host_put() function in the
Linux SCSl layer, which unregisters the SCSI host and deatés the data structure holding
the driver’s private state. Address of this data structarpassed to thasb_autopm-
_put_interface() function when it is invoked by the scanning thread, whichultss
in an invalid memory access. The error is fixed by simply wagitior the scanning thread
to terminate before callingcsi_host_put()

At this point it is clear that the defect was provoked by theptexity of dealing with
concurrency inside the driver. This is also confirmed by th&har’'s description of the
defect, which suggests that the confusion was caused gatissenchronisation issues.

4.3 Defects caused by the complexity of device protocols

This and the following sections discuss specific types oédsfthat fall into each of the
four categories. In particular, defects related to the derity of device protocols can be
further classified into the following groups.

Value defects The driver and the device exchange data, including deviserigors, con-
figuration commands, and I/O transfer descriptors, via nmrgrand registers. Defects re-
lated to handling of device data include endianness elirasirect use of register bit fields,
sending invalid data values to the device, and incorreatigrpreting values received from
the device.
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For example, when configuring a newly connected device, BB hub driver retrieves
a device descriptor, which specifies device capabilitied supported configurations. In
interpreting the device descriptor, the hub driver madelsefassumption that the num-
ber of USB interfaces supported by the device in each cordigur must be greater than
zero. However, the assumption contradicted the USB speatitfit and could result in a
misconfigured device.

Ordering defects In order to correctly control the device, the driver mustkémck of
the internal state of the device state machine. Errors ogben the programmer’s mental
model of this state machine diverges from its actual implaatéon. These errors may lead
to the driver issuing a sequence of commands to the devitdaitmto meet its intended
goal or even leaves the device in an invalid state.

A representative example of such a defect occurred in the hi&Bdriver, which er-
roneously tried to resume a suspended hub port when a newederis connected to it.
However, the resume command is not allowed in this stateedime suspended status of
the port is automatically cleared once there is a new coimmecThe error returned by the
resume command prevented Linux from using the given hub port

Timing defects Device state transitions can be triggered by the passagabtime. The
driver simulates such transitions using timeouts. Fargptd put a timeout statement in the
appropriate place or using an incorrect timeout value &yiko lead to failure of subsequent
commands issued to the device.

For instance, the USB hub specification mandates a delayeihdb port connection
sequence after the device attached to the port has beenaresdtefore any commands
are issued to it; however the hub driver implementation iigdahis requirement and at-
tempted control transfers with the device immediatelyratset, resulting in unpredictable
outcomes.

Dataraces The device and the driver may engage in shared-memory coiatiom us-
ing DMA and memory-mapped I/O. Access to shared memory nsgisynchronised using
interrupts, device registers, and memory barriers. Imobmuse of synchronisation can lead
to a race between the driver and the device.

For instance, the bnx2 network controller driver contaiae@ce condition where the
driver acknowledged packets in the device receive ringreeéetually processing them.
The device could overwrite the corresponding entries inrithg with new ones, causing
lost packets and memory leaks.

Table 4.3 shows statistics for the various types of defemtised by the complexity of
device protocols.
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Type of defect | # defects| Relative frequency

Value defects 116 61%
Ordering defectg 52 28%
Timing defects 15 8%
Data races 6 3%
Total 189 | 100% |

Table 4.3: Defects caused by the complexity of device pmtoc

4.4 Defects caused by the complexity of OS protocols

Defects related to the complexity of OS protocols can besiflad into ordering and value
defects. Ordering defects occur when the driver developsumderstands or fails to cor-
rectly implement rules on the ordering of invocations exgw by the driver and the OS.
As a result, he may either invoke OS functions in the wrongoat incorrectly handle an
unexpected invocation from the OS.

Different classes of drivers implement similar interfagéth the OS, which enables
further classification of ordering defects. For instanagy driver must implement ini-
tialisation, shutdown, power management, and data traogkerations. Accordingly, we
distinguish the following types of ordering defects.

Defects in the implementation of initialisation, shutdown and configuration protocols
These protocols define sequences of invocations exchaygée driver and the OS during
device initialisation, shutdown, and configuration. Thislides establishing a connection
with the underlying bus driver, allocating bus resourcegired to access the device, reg-
istering the device-class interface with the OS, respandinconfiguration requests, and
handling of shutdown requests and hot unplug events.

One example of arelated defect was found in the USB storagerdburing startup, the
driver first called thescsi_add_host() function to register itself as a SCSI host driver
and then thescsi_set_device() function, which associates the underlying device
with the SCSI host. The Linux SCSI layer, however, assumatstiie SCSI host already
has a device associated with it wheesi_add_host() is called, and in some cases
attempts to access the device immediately, leading toegeillmemory access and a kernel
panic.

Defects in the implementation of the data protocol During normal operation, the driver
exchanges streams of I/O requests and responses with thedQiSeaunderlying bus driver.
This is the most frequently used and therefore the most tighly tested part of the driver
functionality. Nevertheless, it may still contain defeetdich typically manifest themselves
in uncommon corner-case situations.

For instance, one such defect occurred in the rtI8150 USBthernet adapter driver
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Figure 4.2: A defect in the rtl8150 controller driver.

when the driver tried to cancel an outstanding USB transfey. (because the transfer timed
out). To this end, the driver called thalink_urb() function, which attempts to cancel
the transfer immediately, but if it is not possible because transfer is currently being
handled by the USB controller, it schedules the transfedéderred cancellation and returns
to the caller. When the transfer is finally cancelled, the U@Bhework calls a completion
callback provided by the driver. In the rtI8150 driver thisutd happen after the driver
terminated and all its state was deallocated, which caulmeddmpletion callback to crash
the kernel. Figure 4.2a shows the possible sequence caatiens between the driver and
the OS that was not correctly handled by the driver.

The fixed version of the driver replaced the call tmlink_urb() with
Kill_urb() , Which always cancels the transfer before returning evehisf requires
blocking, as shown in Figure 4.2b.

Defects in the implementation of resource ownership protagls The Linux kernel uses
reference counting to control the life time of various reses. The driver may obtain a
reference to a resource either explicitly, by calling anrapien that increments its reference
count, or implicitly, by receiving a pointer to the given ebj in a request. Forgetting to
release a reference to an object or trying to access thetabighout holding a reference to
it may result in a resource leak or a kernel crash.
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Type of defect # defects| Relative frequency

Ordering defects

Initialisation, shutdown and config. protocols 21 21%
Data protocols 9 9%
Resource ownership protocols 8 8%
Power management protocol 8 8%
Subtotal 46 46%
Value defects
Incorrect use of OS data structures 48 48%
Returning invalid error code 7 7%
Subtotal 55 55%
Total 101 100%

Table 4.4: Defects caused by the complexity of OS protocols.

Defects in the implementation of the power management protol These defects are
related to the interaction between the driver and the OSidurandling of device suspend
and wakeup requests.

For example, the following defect found in the suspend fioncdf the cmi8338 sound-
card driver prevented the driver from correctly resuming dlevice after the suspension.
During the suspend sequence, the driver calledpitieset power_state() func-
tion, provided by the Linux PCI framework, to remove powemfrthe corresponding PCI
slot, followed by a call to theci_save state() function, which stores the content
of the device’s PCI configuration registers in memory. Therition was to restore the
configuration registers during wakeup. However, being kedoin this order the func-
tions did not produce the expected result, since the comtietite configuration registers
was lost once the power was removed from the device and trerdie values stored by
pci_save_state() were bogus.

The top part of Table 4.4 shows statistics for the varioussygf ordering defects.

We distinguish two types of value defects in the impleménadf the driver-OS inter-
face:

Incorrect use of OS data structures The driver and the OS exchange and share data,
including device descriptors and I/O request descriptéialing to properly allocate and
initialise fields of a data structure before passing it to@®or incorrectly interpreting data
received from the OS may lead to severe runtime consequences

An example of such defect occurred in thert_query  function of the InfiniHost
InfiniBand controller driver. This function returns a pogstriptor, which describes prop-
erties of a physical port of the controller. The functiondédito initialise the field of the
descriptor which reports maximal data segment size sugghday the port, preventing the
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OS from correctly using the port.

Returning invalid error code This type of defect includes situations where the driver
fails to correctly report the status of an I/O operation ® @S, e.q., it indicates successful
completion of a failed request or returns a status code thes dot correctly reflect the
cause of the error.

Statistics of value defects are shown in the bottom part bfeTd.4.

4.5 Concurrency defects

As mentioned in Section 2.5, a device driver can be invokethéncontext of multiple
concurrent threads. Defects related to concurrency cafalsified based on the types of
concurrent activities that cause the given race conditiateadlock.

Races and deadlocks in the data path These defects result in incorrect synchronisation
between functions responsible for streaming data to and fhe device. For example, the
bnx2 Ethernet controller driver contained a race conditietween the function that queued
a new packet in the transmit ring and the interrupt handktr rdimoved completed packets
from the ring. Both functions accessed common hardwarestaiatures and could leave
them in an inconsistent state, blocking the transmit opmeratf the controller.

Races and deadlocks in the configuration path These defects result in incorrect syn-
chronisation among initialisation, shutdown, and configion functions and between these
functions and data path functions. The latter occur whewltiver gets a configuration or a
shutdown request while handling a stream of data request®xample, a race between the
packet transfer and the shutdown functions of the rtI815@{tt5Ethernet adapter driver
could cause the driver to keep sending packets to the ctantiafter the controller was
disabled.

Races and deadlocks in the power management functionsThese defects result in incor-
rect synchronisation between power management functiocsay of the above functions
(i.e., configuration and data path functions). For examgptace in the bnx2 driver between
the device suspend function and the data path function nsgide for resetting the con-
troller when a packet transfer timed out could cause theraolbert to be suspended while
the reset operation was in progress.

Races and deadlocks in the hot unplug handler Hot unplug events occur asyn-
chronously to all other driver activities, which makes thparticularly difficult to handle

correctly. For example, a hot unplug event may occur whitedbvice is being suspended.
While unlikely, such a situation is possible, for instantthée user unplugs a USB device
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immediately after closing the laptop lid. In Section 4.2 ve&vsanother example of a hot
unplug race, which occurred when the driver received a disect notification before the
device was completely initialised.

Calling a blocking function in an atomic context These defects occur when the driver
calls a potentially blocking OS function while running inetlprimary interrupt context.
Usually this happens if the programmer does not realisettigagiven driver entry point
can be invoked from the primary interrupt handler or when desdhot realise that the OS
service that he uses can block.

For example, one such defect was introduced when fixing tberriect use of the
unlink_urb() function described in Section 4.4. One instanceunlfink_urb()
invocation that was replaced wikill_urb() was located in the transmit timeout han-
dler function. This handler is invoked by the Linux kernetlie context of a timer interrupt
and is therefore not allowed to block. Calling tkid_urb() function from this han-
dler could deadlock the kernel. Ironically, the defect wddrassed by changing the call
to kill_urb() to unlink_urb() , thus reintroducing the original defect described in
Section 4.4.

Using uninitialised synchronisation primitives Drivers rely on various types of syn-

chronisation primitives, such as mutexes, semaphorespletions, etc., to avoid race con-
ditions. Linux requires every synchronisation object tdarigalised before use, using the

appropriate initialisation function or macro. Forgettiiogdo this may cause a kernel crash
or deadlock.

Imbalanced locks Every successful acquisition of a mutex or a semaphore naubab
anced by the appropriate release operation. Forgettinglg¢ase the lock is likely to result
in a deadlock.

Calling OS services without appropriate locks Some kernel services require the caller
to acquire a specific lock before using the service. For itgtacalls to the Linux SCSI
layer must be protected by a lock associated with the SCSidtngture. Forgetting to
acquire this lock created a race condition in the USB stodhiyer.

Table 4.5 provides statistics for the various types of comricy-related defects. It
shows that most of these defects are provoked by eventsappeh relatively infrequently,
such as a a hot-unplug notification or a configuration reqgtiestarrives concurrently with
another configuration or data request.
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Type of defect # defects| Relative frequency
Races and deadlocks in the configuration path 29 31%

Races and deadlocks in the hot-unplug handler 26 28%
Calling a blocking function in an atomic context 21 23%

Races and deadlocks in the data path 7 8%

Races and deadlocks in power management functions 5 5%

Using uninitialised synchronisation primitives 2 2%
Imbalanced locks 2 2%

Calling OS services without appropriate locks 1 1%

Total | 93 | 100%

Table 4.5: Concurrency defects.

Type of defect # defects‘ Relative frequency ‘
Control flow defects 62 54%
Memory allocation errors 30 26%

Typos 5 4%

Missing return-value checks 16 14%
Arithmetic errors 2 2%

Total 115 100%

Table 4.6: Generic defects.

4.6 Generic programming faults

This category of defects includes common coding errorsh siscmemory allocation er-
rors (memory leaks, use-after-free, double-free, etgpdy missing function return-status
checks, arithmetic errors, and control-flow defects thanoabe attributed to handling of
either device or OS protocols. Table 4.6 shows statisticthfese defects.

4.7 Limitations of the study

Several factors limit the representativeness and accuwhdje results produced by the
study presented in this chapter. First of all, the study @alysiders Linux drivers. Statis-
tics of driver defects in other systems, in particular Wiwdand Mac OS, would provide
a more general picture. For example, since Windows driversypically developed by the
device vendor, it is logical to expect defects related todivam the device interface to be
less common and defects related to handling the OS intetéeloe more common in Win-
dows drivers than in Linux drivers. Unfortunately, thessteys use closed development
processes, which do not allow free access to their sourae ood to mention the complete
development history. Therefore, the study was limited terepource systems, of which
Linux is the most important representative.
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Second, the study does not take into account the severityhalf/sed defects, i.e.,
whether the given defect leads to a system crash, a permangainsient device failure,
degraded performance, etc. In many cases, the only reliahjeo establish possible conse-
guences of the defect is by means of an experiment. Howesdorming such experiments
for a sufficiently large subset of defects covered by theystuak infeasible within the scope
of the thesis project. Besides, many defects can lead terliit failures in different scenar-
ios, which makes exhaustive analysis even harder.

Third, in analysing defects related to the complexity of @ device interfaces, it
would be helpful to distinguish four different situationd) the defect was introduced be-
cause the required behaviour was not described in the ajgi®gpecification (the device
datasheet or OS API documentation), (2) the specificatiom inaccurate, (3) the devel-
oper did not understand the specification, and (4) the dpeelanderstood the required
behaviour, but failed to implement it correctly. This kinflamalysis would have provided
additional useful input for the study. Unfortunately, mdsiver patches in Linux do not
contain sufficient information to perform this analysis.

Fourth, this study does not account for the interplay betwdferent root causes. In a
device driver, interaction with the device, interactiortwthe OS, and synchronisation are
closely intertwined. Therefore, it is likely that reducitige complexity of one of these tasks
will lead to the reduction of all types of defects.

Finally, the study was focused on technical problems cgudiiver defects and did not
take into account other factors, such as potential probienie driver development process
and various social factors (e.g., communication betweggldpers).

4.8 Conclusions

Despite the above limitations, the study provides usefuifigs that help to direct the
efforts in improving driver reliability to where they arekdily to achieve the most impact.
Figure 4.3 represents the main results of the study by shpthim relative frequency of the
four categories of driver defects.

Firstly, the study has established that defects causedebgatimplexity of device proto-
cols comprise the biggest group of driver defects (FiguBd. 4This is an expected result,
since managing the device is the primary purpose of any delriger and therefore it is nat-
ural that much of the driver complexity is concentrated ia tiode responsible for device
interaction.

More surprisingly, defects related to the interaction etw the driver and the OS,
namely, defects caused by the complexity of OS protocolscandurrency defects, are as
common as device-related defects. These defects can iptitebe reduced via a better
design of the driver-OS interface. The next chapter presemé approach to constructing
such an improved interface.

Figure 4.4 compares the relative frequency of differentetypf defects in USB,
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Figure 4.3: Relative frequency of the four categories ofeirdefects.
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Figure 4.4: Summary of defects by bus.

IEEE 1394, and PCI drivers. It shows that OS-related defeesmuch more common in
USB and IEEE 1394 drivers than in PCI drivers. Unlike the P@,HJSB and IEEE 1394
buses are not memory mapped. Communication with the devicased on message pass-
ing. Even simple operations, such as reading or writingaewegisters are accomplished
by preparing and sending a message to the device and waitirayreply message. This
complicates the bus transport interface provided by the @Bicreases the amount of
concurrency that the driver must handle, since reply message delivered asynchronously
by a separate kernel thread.

In the rest of this thesis | develop techniques to mitigatdhed the root causes identi-
fied in this study. In particular, the following chapter centrates on improving the design
of the driver-OS interface to reduce defects related to @wweocy and OS protocol com-
plexity. The automatic driver synthesis approach develop&hapter 6 eliminates generic
programming faults and substantially reduces device pobidefects.



Chapter 5

Device driver architecture for
Improved reliability

The driver defect study presented in the previous chapterdvaaled areas where better OS
support could improve driver reliability. In particular twcategories of defects are directly
related to how the driver interacts with the OS: defects edusy the complexity of OS
protocols and concurrency defects. Together, these defeostitute 39% of the defects in
our study, and are clearly a significant source of problemdrigers.

In this chapter | propose a new device driver architectuatled Dingo, that simplifies
interaction with the OS and allows driver developers to foon the main task of a driver:
controlling the hardware. Dingo achieves this via two inyaments over traditional driver
architectures. First, Dingo reduces the amount of cononayréhat the driver must handle
by replacing the driver’'s traditional multithreaded modélcomputation with an event-
based model. This model eliminates the majority of concwnyeelated driver defects
without impacting the performance. Second, Dingo providdsrmal language, called
Tingu, for describing software protocols between devideetds and the OS, which avoids
confusion and ambiguity, and helps driver writers avoidedef in the implementation of
these protocols.

Dingo does not attempt to provide solutions to deal with ttheotypes of defects iden-
tified (i.e., defects caused by the complexity of devicequols and generic programming
faults). These defects are provoked by factors that lie heybe influence of the OS and
will be addressed as part of the automatic driver synthggisoach presented in Chapter 6.

| present an implementation of the Dingo architecture irukinwhich consists of a set
of wrappers that make drivers developed in compliance waighingo interface appear as
regular Linux drivers to the rest of the kernel. This enaldé®yo and conventional Linux
drivers to coexist, providing a gradual migration path toren@liable drivers. Experimen-
tal evaluation of the Dingo driver architecture shows thatiminates most synchronisation
errors and reduces the likelihood of protocol violationsilevintroducing negligible per-
formance overhead.

63
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Figure 5.1: Dingo driver for the ax88772 USB-to-Etherneadr and its ports. White
squares at the driver boundaries indicate ports.

5.1 Overview of Dingo

A Dingo driver is a software object that communicates with @S over ports. A port is a
bidirectional communication point that defines a set of mé#hthat must be implemented
by the driver and the OS. Every driver interface shown in Fagai5 is represented by one
or several Dingo ports.

Execution of a driver is triggered by invoking a method tlglowne of its ports. Dingo
guarantees atomicity of driver invocations, i.e., at maost method of the driver can be
running at a time.

Each driver port is associated with a protocol, which spesifi behavioural contract
between the driver and the OS. It defines the methods thateamvbked over that port
as well as constraints on the ordering, timing, and argusnehinvocations. Protocols are
specified as part of the OS driver framework and describecgsrthat different types of
device drivers must provide to the OS as well as servicesigedvby the OS to device
drivers.

When implementing a device driver, the developer declasgzarts and chooses a pro-
tocol for each port among those supported by the OS. He mestgfovide an implemen-
tation of all incoming methods associated with the drivposts.

Figure 5.1 shows the Dingo driver for the ax88772 USB-toeftkt adapter, its ports,
and the parts of the OS that the driver interacts with. Theedmprovides services to the
OS vialifecycle , PowerManagement andEthernetController protocols. It
uses thdJSBInterfaceClient protocol exported by the USB bus framework, and the
Timer protocol exported by the OS timer service. In the figure, gamthis labeled with
the name of the porlq , pm etc.) and the name of the protocol that it implements.

The Dingo architecture can be implemented as a self-caddds driver framework or
it can be built as an extension of an existing driver framdwproviding an improved inter-
face for developing device drivers within that frameworke Wave implemented the latter



5.2. AN EVENT-BASED ARCHITECTURE FOR DRIVERS 65

approach in Linux by constructing adapters between theittmg@iaded driver interfaces de-
fined by Linux and the Dingo protocols. This approach allowsdd and native Linux
drivers to coexist in the same system, offering a gradualati@n path to more reliable
device drivers.

5.2 An event-based architecture for drivers

The concurrency problems highlighted in Chapter 4 are nimjugnto device drivers. In a
multithreaded environment, concurrent activities irgavie at the instruction level, leading
to non-determinism and the explosion of the number of ptsgkecutions. As a result,
many programmers are generally ineffective in dealing whtieads, which makes multi-
threading the leading source of bugs in a variety of apptioat

An alternative to multithreaded concurrency is event-dasancurrency. In the event
model, a program executes as a series of event-handlegerei by events from the en-
vironment. Reactions to events are atomic; concurrencygliieged by interleaving events
belonging to different activities. Thus, the event modelaees instruction-level interleav-
ing with event-level interleaving. Event serialisatioragantees that the state of the program
observed at the start of an event can be modified only by therevent handler. This sim-
plifies reasoning about the program behaviour and reduegsatential for race conditions
and deadlocks.

Comparison of threads versus events has been the subjedtiofyl debate in the sys-
tems community [LN78, AHT 02, vBCBO03]. The main point of consensus in this debate is
that different applications may favour different models.

One observation in favour of an event-based approach feerdriis that modern de-
vice drivers are already partially event-based for perforoe reasons. In particular, the
handling of all performance-critical 1/0 requests is spitb two or more event handlers:
upon receiving a request, the driver adds it to the hardwaerig and returns control to
the caller immediately, without waiting for the request timplete. Later, it receives a
completion event from the device and invokes a completidibaek provided by the OS.
Such asynchronous handling of requests enables improvEsipance by parallelizing I/O
and computation. This interaction pattern of splittingdenminning operations into request
and completion steps is typical for event-based systemss, Mahile current drivers do not
fully exploit the advantages of the event-based model styie of programming is already
familiar to driver developers.

Below | present an event-based architecture for deviceedriand show that it elimi-
nates most concurrency-related defects and can be implethena way that neither com-
plicates driver development nor incurs a performance pgnahus it should be the pre-
ferred model.

In the Dingo event-based architecture events are deliverétke driver by invoking its
methods through ports. Typical events include configunadiod data transfer requests from
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the client and interrupt notifications delivered by the basfework on behalf of the device.
Methods are executed in @atomic and non-blockingmanner. The atomicity guarantee
means that no new method invocation can begin while a previoethod is running. This
prohibits simultaneous invocations of the driver by diffier threads, as well as recursive
calls from the same thread. Note that the atomicity comdtidoes not prevent the driver
from being invoked from different threads or different CRies, as long as all invocations
are serialised.

Inside the body of the method the driver may perform compmnand invoke OS meth-
ods through ports. It is not allowed to block or busy wait, dee such behaviour would
delay the delivery of subsequent events.

This event-based design affects driver development in tagsw First, since Dingo
serialises execution of the driver at the method level ethi®ino need for synchronisation
among concurrent message handlers. Therefore, Dingorsliienot use spinlocks, mu-
texes, wait queues, or other thread-based synchronisationitives. However, the driver
may have to synchronise tasks that span multiple methoaatians. For example, when
handling two long-running 1/O requests that use the sanweare resource, the driver must
ensure that execution of the second request begins aftfirdheequest completes. This is
typically achieved by tracking the status of the shareduesousing a state variable. As
will be shown in Section 5.4, the number of cases where sucbhsgnisation is required
is much smaller than in multithreaded drivers. The eveselarchitecture also simplifies
the use of I/O memory barriers. In particular, barriers traler accesses to I/O memory
from different CPUs can be moved out from the driver into tla@fework. On architectures
that require barriers to order I/O memory accesses on aestiglJ, the programmer is still
responsible for correctly placing such barriers.

Second, since the driver is not allowed to block, there is ay for it to freeze its ex-
ecution waiting for an event, such as a timeout or a hardwaegrupt. Instead, the driver
has to return from the current method and later resume e@geduatthe context of the cor-
responding event-handler method. Driver interfaces mestdsigned to take into account
this constraint. Specifically, any driver interface opierathat may involve waiting must be
split into a request method provided by the driver and a cetignl callback method pro-
vided by the OS. The driver may invoke the completion caliaom the request method,
if it is able to process the request immediately, or from heoevent-handler method, if the
request requires waiting for external events.

Splitting a single operation into a chain of completions nead to complex and un-
maintainable code—the effect known as stack ripping [A8Z]. Figure 5.2 illustrates the
problem by comparing a stylised implementation of fiebe()  function in a conven-
tional Linux driver and equivalent non-blocking Dingo drivcode.

Theprobe() function initialises the device hardware. The Linux vensa the func-
tion writes configuration settings into the device configioraregisters and then waits for
the device to complete internal initialisation by waitirgg L0 milliseconds and then check-
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1int probe(...) { 1void probe(...) {

2

3

4

5

/*Wite config registers*/ 2 [+*Wite config registersx/
3
4 timer->setTimeout(timer,10);
do { s driver->state = PROBE_TIMEOUT;
msleep (10); 6 return;
/ *Read status registersx/ 7}
8

} while ( /*conditionx/); svoid timeout(...) {

return O; 10 switch(driver->state) {
1 case PROBE_TIMEOUT:
12 / *Read status registersx/
13
14 if ( /+xconditionx/)
15 Ic->probeComplete(Ic);
16 else
17 timer->setTimeout(timer,10);
18 break;
19
20 }
21}

(a) Linux (b) Dingo

Figure 5.2: The stack ripping problem in event-based dsivkisting (a) shows a blocking
implementation of the probe request in a conventional Lidtxer. Listing (b) shows
equivalent non-blocking Dingo code.

ing values in device status registers. The last steps aferpexd in a loop until the status
registers indicate that the initialisation has completed.

In Dingo, the equivalent behaviour is spread across twedrivethods. Therobe()
method writes the configuration registers and then calls¢tifimeout() method of the
OS timer service to schedule a 10-millisecond timeout @iheHere, theimer variable
is a pointer to a port of the driver (see Figure 5.1), whichassed as the first argument to
all methods invoked through the port. Before returning fribie method, the driver sets its
state variable toPROBE_TIMEOUTline 5).

When the timeout expires, the OS notifies the driver via ttheeout() method.
This method picks up the logical flow of execution where thethoé that called
setTimeout() dropped it. SincesetTimeout() can be called from multiple places
in the driver, the value of thetate variable is used for disambiguation (line 10). The
driver reads the values of status registers in lines 12 arah@ixhecks whether the hard-
ware initialisation has completed in line 14. If the checkaeds, then the driver signals
the completion of the probe request to the OS by callingptisbeComplete  method of
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ireactive probe(...) {
2 [/+*Wite config registers=/
3

4

5 do {

6 timer->setTimeout(timer,10);

7 AWAIT(timeout);

8 / *Read status registersx/

10} while ( /*conditionx/);
11 return O;

Figure 5.3: Implementation of the probe method (Figure Gsg the extended C syntax.

thelc port (Figure 5.1). Otherwise, it schedules another tim¢iog 17).

The problem with this implementation is that it obfuscaties logical control flow,
requires the introduction of an auxiliary variable, andvisce as long as the equivalent
Linux code. The cause of the problem is that by splitting afiom into multiple fragments
we lose compiler support for automatic stack managementrauahanisms that rely on it,
such as control structures and local variables. The raeguttbmplexity can easily exceed
the complexity of synchronisation, thus cancelling out ddeantages of the event-based
architecture.

Fortunately, one can combine an event-based model of catigutwith automatic
stack management. One way to achieve this has been dentedsiyethe Tame [KKKO07],
and Clarity [CCJRO07] projects, both of which developed Qjlzage extensions providing
event-based programs with a sequential style of programmin

We have implemented a similar approach in Dingo. Our langweagension, described
in Section 5.2.1, provides several constructs that enahleracontrol logic to be expressed
in the natural sequential way, avoiding stack ripping. Tkem®sion is implemented by
a simple source-to-source translator described in Seét@2. Using this extension, the
example in Figure 5.2b can be rewritten as shown in Figure Bhg AWAIT statement in
line 7 stops the logical execution flow until the timeout éveccurs. It expands into code
that saves the current execution context of pinebe() method and returns control to
the OS. When the timeout event is generated, it restoresxdmion context and resumes
execution from the line followindAWAIT.

The use of the language extension is optional. Many drivensain only a few blocking
operations and so stack ripping does not constitute a sgpimiblem for them. For example,
this is the case for most PCl-based device drivers. Suclerdrivan be written in pure C.
In contrast, all USB drivers use blocking extensively, simwery interaction with a USB
device requires waiting for a response message. The ontyigabway to implement such
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drivers in Dingo is using the extended version of C preseh&taw.

5.2.1 C with events

The proposed C language extension allows a programmer tegxpvent-based program
logic in a sequential way by providing first-class conssuot event-based communication.
It introduces the notion of a reactive function in additiombrmal C functions. A reactive
function executes in a separate logical thread of contrdl @an send and receive (react
to) events from other threads. Both events and threads ragedge-level objects and are
distinct from Linux kernel threads and driver interface rege

Unlike kernel threads, which are scheduled preemptivalygliage threads are sched-
uled cooperatively. Only one language thread inside theeddan be runnable at a time. A
switch to another thread can only occur when the currenathbéocks waiting for an event.
Thus, this form of multithreading preserves the atomicftgx@cution offered by the Dingo
architecture.

A driver method can be declared as a reactive function. Wheln a method is invoked
by the kernel, a new language thread is spawned and keepsiegega the context of the in-
voking kernel thread until blocking waiting for an event. rilg its execution the language
thread may emit one or more events, waking up other languagads inside the driver.
These threads are activated one by one until all of them bedotked when there are no
more outstanding events. At this point, control is returteethe invoking kernel thread.
Thus, while the driver can internally spawn multiple langeighreads, all these threads ex-
ecute in the context of a single kernel thread, the one thairintly invoking the driver.
This implementation results in a hybrid model of computatichere language threads in-
side the driver are scheduled cooperatively with respesatt other, but preemptively with
respect to regular kernel threads.

Table 5.1 lists the new constructs in C with events. BMENTSstatement declares a
new event variable. The first argument is the hame of thehlarithe remaining arguments
describe event arguments, which describe the content ofwet. Like normal C vari-
ables, events can be declared within any local or globalesempl passed as arguments to
functions. In addition, they can be useddMIT, AWAIT, andCALL constructs described
below. Events are implemented as C structures whose fietdsspond to event arguments.
TheEVENT_TYPEtatement declares a C type whose instances are events.

Thereactive  keyword is used to declare a reactive function. Invokinghsaiéunc-
tion creates a language thread, which terminates asynmlisnto the calling language
thread, therefore a reactive function cannot have a reyye t

The EMIT statement emits an event. Event parameters must be set loaltbe in
advance EMIT does not indicate the recipient of the event; any languagathcan request
to receive the event usil§WAIT. The same event can be emitted multiple times; however
once it is marked as emitted, subsequektiT's have no effect until the event is received
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‘ Syntax ‘ Description
EVENT(name, t1 f1,..., tn fn) Event instance declaration
EVENT_TYPE(name, t1 fi,..., tn fn) Event type declaration
reactive f(...){...} Reactive function declaration
EMIT(e) Emit an event
AWAIT(el,...,en) Wait for one of several events
IF(el)...ELIF(e2)...ELSE Check which event has been received
CALL(f(...),e) {f(...); AWAIT(e);}

Table 5.1: C with events syntax.
by a thread.

The AWAIT statement blocks the language thread waiting for one outgrbap of
events. Note thaAWAIT waits for specific event instances rather than for types ehts/
If one of the specified events is already marked as emittedthtead continues without
blocking. In the current implementation, only one thread ba waiting for an event. It
is the programmer’s responsibility to make sure that no twedads await the same event.
ThelF...ELIF...ELSE construct is used to determine the event received by the last
AWAIT issued by the thread. ArgumentsIéf andELIF clauses are evaluated in order
and if one of them is marked as emitted, the correspondingchri taken. Otherwise, the
ELSEbranch is taken.

The CALL statement implements a common pattern of calling a reafiivetion and
waiting for a completion event from it.

5.2.2 Implementation of C with events

The source-to-source translator that handles C with eveintgluces two new types of run-

time objects in the generated C code: continuations and®véncontinuation is a data

structure that represents the state of a reactive fundtiairig blocked waiting for an event.

It stores the values of its local variables and the prograumta. It also contains a trampo-
line function that restarts the execution of the reactivecfion from the state described by
the continuation.

As mentioned above, an event is a C structure that contaigrst @arameters. It also
contains two fields used by the generated code: a flag indicathether the event is in
the in-flight state (i.e., has been emitted but has not yet loledivered) and a pointer to
the continuation of a reactive function awaiting this evenie latter can be NULL if no
function is waiting for the given event at the instance wties issued.

The EMIT statement marks the event as emitted and puts it on the eueneq The
AWAIT statement checks whether one of the events listed as itsyarga has been emitted
and, if so, removes it from the queue and continues execthimdollowing instructions.
Otherwise, it allocates a new continuation and saves the sfdhe function in it. It stores
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the address of this continuation in all events that the foncis waiting for. Finally, it
invokes the dispatcher function to determine which thrdamlikl run next. To this end, the
dispatcher selects the first event in the queue that has mgatibn associated with it and
activates this continuation.

C-with-events language threads run on the stack of the Lkairel thread that has
invoked the driver. When a language thread blocks, the sfatke currently executing
reactive function is saved in a continuation, which is aled from the heap, and another
language thread is selected to run on the same stack. Whenateno more runnable
threads inside the driver (i.e., all threads are blockdd dispatcher returns control to the
kernel thread that invoked the driver. Execution of theelriesumes with the next methods
invocation.

Note that blocking of a language thread does not cause th&ltimead in the context
of which the driver is running to block. Instead, control isnediately passed either to
another language thread or back to the Linux thread. Thugrdnvocations can be safely
performed in any context, e.g., while the calling threaddklimg a lock or is executing in
a primary interrupt handler, without introducing the ridkacdeadlock.

5.2.3 Dingo on Linuxt

This section presents our implementation of the Dingo matframework for Linux. The
framework is designed to allow driver developers to takeaathge of the Dingo architec-
ture when writing new device drivers, while being able to existing drivers without any
changes. To this end, the framework is designed as a colteofi adapters that perform
the translation between Linux and Dingo driver interfaCHsese adapters are attached to a
Dingo driver at runtime, making it appear as a normal Linuxeirto the rest of the system
(Figure 5.4).

Linux and Dingo driver interfaces differ in two aspects. sEirLinux interfaces al-
low multithreading, whereas Dingo requires all driver ications to be serialised. Sec-
ond, Linux driver interfaces include both asynchronous symthronous methods, whereas
Dingo interfaces are completely asynchronous. An asymcu® method may return con-
trol to the caller before the I/O operation started by thishrod completes. The completion
of the operation is signalled via a separate callback fanctiA synchronous method al-
ways completes the requested operation before returnitigetoaller, which may involve
blocking.

In order to translate between Linux's and Dingo’s driveeifdces, the Dingo frame-
work associates a queue and a mutex with each driver. Thedgiased to serialise requests
delivered to the driver. Access to the queue is protected ¢pirdock. The mutex is used
to ensure that at most one thread can enter the driver. Asegpudelivered to the driver as
follows. The Linux thread performing the request placesréggiest on the queue. Then it

1The implementation described in this section was develapedllaboration with Dr. Peter Chubb.
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[limer service adapte] [ USB bus adapter
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Figure 5.4: Dingo interface adapters using the exampleeo&it88772 controller driver.

attempts to acquire the mutex. If this succeeds, then itelgegiand delivers all requests in
the queue to the driver, one by one. Otherwise, the callirgathrelies on the thread that is
currently holding the driver lock to deliver the request.

Further behaviour of the requesting thread depends on whdie request is syn-
chronous or asynchronous. In the former case, the reqgettiead blocks waiting for
a completion notification from the driver, which may requivaiting for a response from
the device (Figure 5.5a). In the latter case, control isrnetd to the caller immediately and
the driver response is delivered to the kernel by invokireyahpropriate callback function
(Figure 5.5b).

Figure 5.6 shows how the framework handles requests seheliyihgo driver to Linux.

If Linux handles this type of request asynchronously, thenrequest is simply forwarded
to the kernel and later the response is forwarded to therdiiigure 5.6a). Otherwise, if
the corresponding Linux function may block then the requasst be handled in a separate
worker thread to avoid blocking the Dingo driver (Figurel§.6In the current implemen-
tation, the kernel-global worker thread is used for thigppse (via theschedule_work

mechanism).

5.2.4 Selectively reintroducing multithreading

One limitation of the event-based model is that it allows astone event handler to run
at a time and therefore prevents the program from explottimidtiprocessor parallelism.
Most I/O devices handle data at much slower rates than thea@@dan be easily saturated
by a single processor core. Therefore this limitation isamissue for the vast majority of
drivers. As we will see in Section 5.4.3, a careful implenaéinh of the event model enables
event-based drivers to achieve the same I/O throughpubéernldy as multithreaded drivers.
However, there exist devices, such as 10Gb Ethernet orBafid controllers, designed
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Figure 5.5: Handling of synchronous and asynchronous stggent by the Linux kernel to
a Dingo driver. Solid arrows represent method invocatiolashed arrows represent returns
from method invocations; zig-zag arrows represent ingmeotifications from the device.

for very high throughput and low latency, whose performaocemultiprocessor systems

may suffer from request serialisation. Evaluation presgitt Section 5.4.3 has shown that
the main source of performance overhead in Dingo driversdoh devices is cache bounc-
ing of the spinlock variable used to synchronise acces<tdilrer request queue (see Sec-
tion 5.4.3). Although in experiments discussed in SectidnFevent-based drivers perform

well even for these devices, it is desirable to allow drivevelopers to use multithreading

when absolutely necessary.

High-performance devices are designed to minimise capteaind avoid synchronisa-
tion in the data path. As a result, the synchronisation cerityl in their drivers is concen-
trated in the control path, whereas the data path is freermfrspnisation operations. Based
on this observation, | introduce a hybrid model in Dingo, ethallows concurrency among
data requests but not control requests. In this model, atrabmethods are serialised with
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Figure 5.6: Handling of requests sent by a Dingo driver toLtinex kernel.

respect to each other and to data methods. However, mutiiiiemethods are allowed to
execute concurrently. If there exist race conditions indag& path, they must be handled
by the driver developer in the conventional Linux way, usspinlocks (the use of blocking
synchronisation primitives is not allowed).

The driver implementer can choose whether the driver shauidn the fully serialised
mode or in the hybrid mode. Drivers running in the hybrid mbdeefit from the advantages
of the event-based model without experiencing any addethewad of serialisation in the
data path.

The distinction between data and control methods is dravthdprotocol designer who
labels methods that can be sent or received concurrentytiéiconcurrent  keyword.

We have implemented both modes for the InfiniBand driver iilesd in Section 5.4.
Our original implementation was fully serialised. We fouét no changes to the driver
were needed to run it in the hybrid mode, since the data patheodiriver did not require
any synchronisation.

Support for the hybrid model required only minimal changeghe Dingo runtime
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framework. The mutex protecting access to the driver wakacep by a read-write lock.
Concurrent requests acquire the lock in the read mode;tal oequests acquire the lock in
the write mode.

5.2.5 Comparison with existing architectures

Section 2.5 described two existing 1/0 framework architees that simplify concurrency
management in device drivers by serialising driver inviocest, namely the Mac OS X IOKit
and the Windows Driver Foundation. The Dingo event-baselii@cture differs from these
existing solutions in three ways:

1. In Dingo, all driver operations, without exceptions, @aon-blocking semantics.

2. With the exception of drivers for a small number of devistith extreme performance
requirements, all driver invocations are serialised. Timsans that no two events can
be delivered to the driver concurrently and under no cirdantes does the driver
need to create a parallel thread to perform any of its funstidAs a result, all code
in a Dingo driver is guaranteed to execute atomically.

3. As described in Section 5.2.3 and confirmed experimgniallSection 5.4.3, the
Dingo serialisation architecture can be implemented wétty Vow performance over-
head. While | was unable to find performance data for WindawgsMac OS X I/O
frameworks, their architecture [App06, Mic06] clearlydisao performance degrada-
tion due to serialisation on multiprocessor systems.

5.3 Tingu: describing driver software protocols

This section addresses the second shortcoming of the deési@s architecture in current
OSs, namely the lack of well-defined communication protedatween the driver and the
rest of the kernel.

In Chapter 4 we saw that 20% of driver defects are violatiorthé ordering or format
of interactions with the OS. A closer study of driver protiscim Linux shows that these
protocols are stateful, i.e., operations that the drivestrbe prepared to handle and opera-
tions that it is allowed to invoke in a given state are detagdiby the history of previous
interactions. However, these constraints are not addguaftected in the OS documenta-
tion, forcing driver developers to guess correct behavidiar example, details of how to
react to a hot-unplug notification in the driver’s differatdites, or how to handle a shutdown
request that arrives during a transition to the suspend &ad whether such a situation is
even possible), are not easy to find in documentation.

This problem is not specific to Linux. Other systems, inahgdivindows [Mic] and
Mac OS X [App06], define driver interfaces in terms of funaosahat a driver must imple-
ment and callbacks that a driver may invoke. Such a definigiten leaves constraints on
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ordering and arguments implicit in the OS implementatioam§le drivers provided with
documentation kits may shed some light on these constréintselying on examples as an
ultimate reference is a sure way to introduce bugs.

Therefore, improved OS documentation providing a compieie easy-to-understand
description of the required driver behaviour has the pa@ktd significantly reduce defects
caused by the complexity of OS protocols.

Dingo facilitates the development of such documentatiorsppgcifying the commu-
nication protocols between drivers and the OS using a fotamguage. While informal
descriptions tend to be incomplete and can easily beconky lnld inconsistent, a well-
chosen formalism can capture protocol constraints colycsel unambiguously, providing
driver developers with clear instructions regarding trguneed behaviour.

Additionally, by providing a specification of driver protas, we enable formal check-
ing of driver correctness, both statically and at runtinmeparticular, Section 5.3.3 presents
a solution for automatic runtime checking of device drivagainst protocol specifications.
This is achieved using a runtime observer that interceptatatactions between the driver
and the OS and detects situations where either the driviiedd§ violates the protocol.

The challenge in designing the protocol specification laiggus to satisfy both expres-
siveness and readability requirements. In order to be Lsiiuer protocol specifications
must be easily understood by driver developers. This eagesr the use of simple vi-
sual formalisms such dgite state machine (FSMyr Unified Modeling Language (UML)
sequence diagrams [Obj09]. Unfortunately many aspectsiwdrdorotocols cannot be ex-
pressed using these simple notations.

One such aspect is the dynamic structure of driver protocets instance, the USB
bus transport protocol allows client drivers to create ipldtdata connections, called pipes,
through the USB bus to their associated devices at runtimhelax88772 USB-to-Ethernet
adapter example (Figure 5.1), such functionality is usethbydriver to open several data
and control connections to the device. Each such conneoperates in parallel with the
others and behaves according to its own protocol.

This example also serves to highlight another complicatmmnmon to driver protocols,
namely protocol dependencies. In the ax88772 driver, thawseur of each individual pipe
is dependent on the state of the main USB bus protocol. Ftarios, no data transactions
can be issued through pipes after the bus has been switclzetbwpower mode. Given
that pipes behave according to their own protocols, andttigtbehaviour is dependent
on the behaviour of the USB bus as specified by its own protagelrequire a means to
describe dependencies between different protocols.

Neither the dynamic spawning of concurrent behaviours tin@mdependencies among
behaviours can be easily expressed using simple formalikelESM.

The search for a formalism that supports both the requirgulessiveness and read-
ability has led to the development of a new software protgpekification language called
Tingu. The design of Tingu is driven by experience in spéagyand implementing real
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Figure 5.7: The use of Tingu protocol specifications.

driver interfaces. In particular, a construct is only idlnged to the language if it has proven
necessary for modelling the behaviour of several typesieédr and can not be expressed
easily using other constructs.

Tingu has both a textual and visual component. The textuapoment is used to declare
elements of a protocol, such as data types and methods. ¥hal iomponent is used
to specify protocol behaviour using a subset of the Statexlielar87] syntax extended
with several new constructs that provide support for dyrgpairt spawning and protocol
dependencies. With dynamic spawning one can specify a lmhathat leads to creation
of a new port at runtime. Protocol dependencies define maitagting constraints across
multiple protocols. This is achieved by allowing severaitpcols to constrain occurrences
of the same method: the method can only be invoked when itrigified by all involved
protocols.

Figure 5.7 summarises the use of Tingu protocol specifieatid heir primary purpose
is to serve as part of the OS driver framework documentatiomigng intuitive guidelines
to driver programmers. Tingu specifications are providethpst to the Tingu compiler,
which generates C header files containing prototypes ofdniterface methods. The com-
piler also generates runtime observers for Dingo drivetsclvallow automatic checking
of protocol compliance at runtime.

5.3.1 Introduction to Tingu by example

This section introduces the syntax and semantics of theuTlangguage using the example
of the ax88772 driver and its protocols.

Component The top-level entity in the Tingu language is the componemhich
describes the OS interface of a device driver by listing itertp Fig-
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component ax88772

{

ports :
Lifecycle Ic;

PowerManagement pm<ic/ic>;
EthernetController eth<lc/lc,pm/pm>;
USBInterfaceClient usb<lc/lc,pm/pm>;
Timer ctrlTimer;

Figure 5.8: Tingu declaration of the ax88772 driver compbne

ure 5.8 shows the Tingu specification of the ax88772 driveguiié 5.1). Ev-
ery line in the ports section declares one port of the driver using the
<protocol_name> <port_name>['<’<port_substitutions>’ > syntax.
The optionalport_substitutions clause is explained later.

Protocols A protocol specification declares methods to be exportedirmpdrted by a
driver that implements the given protocol along with coaistis on the ordering, timing,
and arguments of method invocations.

A protocol describes common behaviour of all drivers thatlement or use the func-
tionality described by the protocol. For example, all Ettetrcontroller drivers must im-

plement theethernetController protocol, whereas all drivers for USB devices must
use theJSBInterfaceClient protocol to access the device.
Dingo protocols are OS-specific. For instance, EtieernetController protocol

defined as part of the Dingo framework for Linux is closely maled after the native Linux
Ethernet driver interface, which is substantially diffegré&om corresponding interfaces in
other OSs.

An alternative approach would be to define OS-independestbeols, which would
enable the development of portable device drivers. Commwyith protocols that would
reconcile differences among various OSs while permittifigient implementation is a hard
problem and is beyond the scope of this thesis.

A Dingo protocol is obtained from the corresponding Linuwtpcol (specified infor-
mally in the Linux documentation and source code) by reptacll blocking operations
with request/completion method pairs, as described ini@eét2. In some cases, addi-
tional minor changes were introduced in order to make théopob easier to understand
and implement.

Figure 5.9 shows the declaration of thiéecycle  protocol. This protocol defines ini-
tialisation and shutdown requests that must be implemdntedl Dingo drivers in Linux.
The methods section of the protocol declaration lists protocol methadd their signa-
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protocol Lifecycle
{

methods :
/«Probe and initialise the devicex/
in_ probe();
/+Initialisation conpleted successfully*/
out probeComplete();
/+Initialisation fail edx/
out probeFailed(error_t error);

/+Stop the device and release all resources held by the driverx/
in_ stop();

/«Deinitialisation conpletex/

out stopComplete();

[ *Hot -unpl ug notificationx/
in_ unplugged();

transitions :
import(format=rhapsody, location="LifecycleSM@ioprot ocols.sbs");

Figure 5.9: Thd.ifecycle  protocol declaration.

tures. Method declarations are similar to function detlana in C, but without a return
type and with the addition of a direction specifier. By defamethod arguments are passed
from the caller to the callee. Thmut qualifier in front of an argument declaration denotes
an argument used to return a value from the callee to thercalle

The transitions section describes the format and location of the protoctkest
machine, which defines legal sequences of method invocation

Figure 5.10 shows the state machine of ltifecycle  protocol. Transitions of this
state machine are triggered by method invocations betwesmriver and the OS, with
question marks (“?") in trigger names denoting incomingoirations (the OS calling the
driver) and exclamation marks (“I") denoting outgoing ications (the driver calling the
0OS). The protocol state machine is interpreted as followg:raethod invocation that trig-
gers a valid state transition complies with the protocolc#fmation. An invocation that
does not trigger any valid transitions violates the protepecification.

A compact representation of complex protocols is achiewedrganising states into
a hierarchy—a feature provided by Statecharts. Sevenalitpré states can be placed in-
side another state, called super-state. A transitionratgig from a super-state (e.g., the
?unplugged transition in Figure 5.10) is enabled when the state madkiireany of its
internal states.
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Figure 5.10: The.ifecycle  protocol state machine.

When the driver is created, the protocol state machine isimitial state, denoted by
a dot and an arrow. The protocol terminates, i.e., no moréaastof this protocol can be
invoked, when it reaches one of its final states, denoted lirglad dot.

In Figure 5.10 some states include timeout annotationsuaregbrackets. A protocol
is violated if, after entry into such a state, the given amafrtime passes without the
triggering of a transition leading to a different state. Fmtance, the driver is not allowed
to stay in thestarting state indefinitely. It must either complete initialisation fail
within five seconds after entering the state.

Other features of the Tingu language are illustrated bytheerManagement proto-
col declared in Figure 5.11. This protocol defines devicpengd and resume requests that
must be implemented by all Linux drivers that support powanagement.

Types Thetypes section of the protocol defines data types to be used in metignd
ments and protocol variables declarations. Tingu supodsbset of the C type system,
including integers, enumerations, structures, and paintie addition, it supports a small
number of built-in data types, such as lists and stacks, whitt be explained later.

The PowerManagement protocol declares th@ower_level _t type (line 4),
which is used to describe four standard device power st&asargument of this type is
passed to theuspend request (line 13).
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protocol PowerManagement

{
types :
enum power_level_t {
DO = 0,
D1 = 1,
D2 = 2,
D3 =3
¥
methods :
/+*Put the device into a | ow power statex/
in_ suspend (power_level_t level);
out suspendComplete ();
/ *Resume t he devicex*/
in_ resume ();
out resumeComplete ();
variables  :
power_level_t power_level;
dependencies :
Lifecycle Ic {
listens probeComplete;
listens probeFailed,;
listens unplugged;
restricts stop;
h
transitions  :
import(format=rhapsody,
location="PowerManagementSM@ioprotocols.sbs");
h

Figure 5.11: Thd?owerManagement protocol declaration.

Protocol variables Some protocol state information is inconvenient to model us
ing explicit states and is more naturally described by Wdem For example, the
PowerManagement protocol models a device’s current power level using argietteari-
able callecbower_level (line 21).
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Figure 5.12: Thd?owerManagement protocol state machine.

Protocol dependencies The PowerManagement protocol also illustrates the use of
protocol dependencies. When dealing with power managemaetévice cannot be sus-
pended until it has completed initialisation. This rule t&nexpressed as a dependency be-
tween thelLifecycle and PowerManagement protocols: ThePowerManagement
state machine may accegtispend requests only after therobeComplete transition

of theLifecycle  protocol. This is shown in Figure 5.12 with the transitioanfrinit

to full_power

ThePowerManagement protocol declaration listeifecycle  methods used in the
power management state machine in dependencies section (Figure 5.11, line 23).
Line 24 states that any driver implementing fhewerManagement protocol must also
provide thelLifecycle  protocol through a port naméd . This port name is used to refer
to lifecycle methods from the power management state machine actual port name may
be different. The mapping between expected and actual ponea is established in the
component declaration (see expressions in angle brackEigure 5.8).

The restricts andlistens  keywords (Figure 5.11, lines 25-28) describe two
types of protocol dependencies. Tiwsstricts dependency means that the method is
only allowed to be called if it triggers a state transitiorbioth its main protocol (i.e., the
protocol that declares the method in iteethods section) and the dependent protocol.
Thelistens  dependency means that the dependent protocol may react tmdthod
invocation but does not restrict its possible occurrences.

The restricts dependency is useful in simplifying driver protocols toued the
amount of concurrency that the driver must handle. For exantipe power management
state machine only allows the.stop  request irfull_power andsuspended states,
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but not in intermediatesuspending andresuming states. This guarantees that the
driver never receives stop request while handling a power management request.

Note that the native Linux driver interface does not provtde guarantee, rather itis en-
forced in the Dingo runtime framework by introducing addlital synchronisation between
power management and lifecycle requests. This way, sonteafamplexity is shifted from
the device driver into the framework. This kind of improvarhes enabled as a byproduct
of defining behavioural constraints on device drivers eighji and formally.

Transition guards and actions A protocol state transition can include an optional guard
and action. The guard is a boolean expression over protaciables and method arguments
that must be satisfied when the transition is taken. The ma@nsists of one or more
statements that specify how protocol variables are updatezh the given transition is
taken. Consider, for example, the transition from statie power  to suspending in
Figure 5.12. The guard expression in square brackets sgetifat thdevel argument
of thesuspend method must be greater than the constant, corresponding to the zero
power saving mode ('$-sign before an identifier denoteshmetargument). The action
associated with the transition updates the value ofpthwer_level  variable to reflect
the new power state.

Tingu guards and actions use a subset of the C syntax, litdtagsignment, arithmeti-
cal, and logical expressions. No control structures, sicloa@ps, branches, or function
calls, are allowed. The primary motivation for this regtdn is to preserve the simplicity
and visual appeal of protocol specifications.

Dynamic port spawning With dynamic spawning one can specify a behaviour that leads
to creation of a new port at runtime. | illustrate this featwsing the example of the
USBInterfaceClient protocol, which describes the service provided by the US8 bu
framework. As mentioned above, USB data transfers are ipeei via USB data pipes.
The behaviour of an individual pipe is specified by th&BPipeClient  protocol. Since

the USB bus allocates these pipes dynamically, the driterieénes which pipes it will use

at runtime.

The relevant fragments of thelSBInterfaceClient protocol declaration are
shown in Figure 5.13. Thports section (line 3) lists ports that can be created by the
USBInterfaceClient protocol at runtime. These ports are calleabportsof the
main port that implements tHéSBInterfaceClient protocol. The identifier in square
brackets (line 4) is the data type used to index dynamicalgwsied subport instances;
in this case USB pipes are indexed by their endpoint addréks. port substitution ex-
pression in angle brackets binds dependencies of a sulgppdrts that are visible in the
namespace of thelSBInterfaceClient protocol. In particularself refers to the
USBiInterfaceClient port itself.

Thespawns clause in line 10 states that a new pipe is created when ther dinvokes
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1 protocol USBInterfaceClient

2{
3 ports :
4 USBPipeClient pipe[usb_endpoint_addr_t]
5 <selffiface,Ic/lc,pm/pm>;
6
7 methods :
8
9 out pipeOpen(usb_endpoint_addr_t address,
10 usb_xfer_type_t type) spawns pipe;
11
12
13};
Figure 5.13: A fragment of theSBInterfaceClient protocol declaration.

the pipeOpen method. The generated C function prototype for this methefthds an
additional argument that takes a pointer to the newly altport. When the driver invokes
this method, the USB framework allocates a USB pipe and hLirtdghe provided port, so
that the driver can immediately start using the pipe thratngghport.

The dynamic port spawning behaviour must also be reflectéaeiprotocol state ma-
chine. Figure 5.14 shows the state machine ofiB&InterfaceClient protocol. The
new operator in the highlighted transition indicates that fliigeOpen method creates
an instance of th@ipe subport; the index of the new subport is equal to dlderess
argument of the method.

Abstract data types Many device driver protocols allow the driver to handle ripldt
outstanding 1/O requests. These protocols define conttrairch as: the driver (or the
OS) must complete requests in the FIFO order, or the drivest samplete all outstanding
requests before terminating. Modelling these constragusires the protocol specification
to incorporate a model of the request queue. To this end,ittgai Type system includes the
list abstract data type (ADT)

For instance, th&JSBPipeClient  protocol uses a list variable to model the queue of
outstanding USB transfer requests. The variable deateraishown in Figure 5.15. New
transfers are added to the tail of the queue, completedférarare removed from the head
of the queue. To this end, Tingu defines a set of standard &sipulation operations that
can be applied to list variables.

Figure 5.16 shows a single transition of thksBPipeClient  state machine that
illustrates the use of théransfers variable. It specifies that a pipe must com-
plete transfers in the FIFO order by asserting that the fieansquest completed by the
ItransferComplete method must be the same as the one pointed to by the head of the
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v

init

?lc.probe

on

IpipeOpen/
new pipe ($address)

suspended ?pm.resume enabled ?altsettingSelectComplete
Ipm.suspendComplete
laltsettingSelect ?altsettingSelectFailed
gltsetting_selecting [5s]

llc.stopComplete %?Ic.unplugged llc.probeFailed

Figure 5.14: TheaJSBInterfaceClient protocol state machine.

protocol USBPipeClient
{

variables :
list<dingo_urb *> transfers;

Figure 5.15: A fragment of theSBPipeClient  protocol declaration.

transfers queue.

85

Note that protocol variables describe the state of thediotem between the driver and

the OS rather than the internal driver or OS state. In the @leaample, théransfers

variable helps specify the USB framework behaviour thatitieer can rely upon. Neither

the driver nor the framework is required to store a USB tranks$t to implement this be-

?transferComplete
[$request == transfers.first ()])/
transfers.pop_front ()

N

pipe_running

Figure 5.16: A fragment of theSBPipeClient  protocol state machine.
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haviour. In practice, the USB framework simply forwards UtEhsfer requests to the USB
controller and relies on the controller to complete thenhmEIFO order.

Currently, the only supported ADTs are lists and sets. OR&ieFs, such as queues
and stacks, can be added as required. Tingu does not curpeotide a facility to specify
user-defined ADTS, therefore support for new ADTs must bk imio the Tingu compiler.

5.3.2 Discussion

Tingu protocol state machines do not model return-fromhoeétevents. This means that
a Tingu protocol cannot specify when a method invocationtroasur with respect to the
completion of another method. For instance, the protoatkestachine in Figure 5.10
states that the call to thmobeComplete method must occur after the invocation of the
probe method, but does not specify whether it should happen befoadter theprobe
method returns. The correct interpretation of this spetifin is that both behaviours are
allowed. The driver may complete device initialisationidiestheprobe method and notify
the OS by invokingprobeComplete  before returning fronprobe . Alternatively, if the
device initialisation involves waiting for a timeout or arterrupt from the device, then the
driver returns fronprobe and completes the initialisation later, in the context oiffecent
method.

Most driver operations share the same property: dependinlgeodevice interface they
may or may not be able to complete immediately. Thereforpli@ty modelling return
events would not help specify additional useful constmintTingu while making specifi-
cations larger and harder to understand.

One aspect of the driver interface currently not capturedibgu protocols is I/O buffer
management. Linux and other OSs define complex APIs for méatipg 1/0 buffers, in-
cluding operations for cloning, merging, padding buffers,. These interfaces do not fit
well into the state machine framework of Tingu. Rather they lbe formalised using ADTs
or a related formalism. While Tingu does provide limited goi for ADTs, a full descrip-
tion of such interfaces written using the present versiah@fanguage would lead to bulky
unintuitive specifications, which would defeat the purpogdingu. As such, these APIs
continue to be specified using C header files and informal dectation.

This completes the overview of the Tingu language. Compgigax of the language
is described in Appendix A. Appendix B presents several gtasof Tingu protocol spec-
ifications.

5.3.3 Detecting protocol violations at runtime

Tingu specifications help driver developers avoid protagolations, but do not eliminate
them completely, since the developer may still make an énrdine implementation of a
protocol, even if the protocol is clearly defined.

The use of a formal language to specify driver protocols spgm the possibility to
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explore new techniques to verify protocol compliance of igety in addition to providing
a reference to driver writers. One avenue that | have exglorehis project is runtime
verification, i.e., automatic validation of the driver belwair against protocol specifications
at runtime.

The Tingu compiler fully automates runtime verification ngrating a driveprotocol
observerfrom the Tingu specification of its ports. The generated nlesecan be attached
transparently to the driver. It intercepts all method iratiins exchanged by the driver
and keeps track of the state of all its protocols. Wheneverdtiver or the OS performs
an illegal operation or fails to perform an operation withie time interval specified by a
timeout state, the observer notifies the OS about the fadlndeoutputs the current state of
all driver protocols and the sequence of events leadingetdditure.

Protocol observers have proved useful in testing and dehggigvice drivers during the
development cycle. They can also be combined with any ofahk isolation and recovery
solutions described in Section 3 to enhance the resiliehegpooduction system to driver
failures.

Another promising research direction that falls beyondst@pe of this thesis is static
verification of drivers against protocol specifications.e@vay to achieve this is to translate
Tingu into a language supported by an existing model chg&e€H00, CFH05,BBC06].
Such translation is possible because these languagepdmater similar concepts to Tingu,
but using textual rather than visual syntax. However, ctatialysis of drivers has not been
investigated in this thesis, therefore no experimentallenge proving or disproving the
feasibility of this approach has been obtained. In paiGut is unclear whether existing
model checkers are sufficiently powerful to validate comflehaviours captured by Tingu
protocols.

5.3.4 From protocols to implementation

Tingu protocols specify the externally visible driver beleair and do not enforce any par-
ticular internal structure. In practice, however, the drideveloper will typically closely
follow the structure of the specification, maintaining espondence between the driver
code and protocol states. In this approach, driver protsgpetifications are viewed as the
first approximation of the driver design, which is refineditite implementation by adding
device interaction code.

In principle, protocol specifications could be used to awtcally generate skeleton
code for the driver. However, Dingo currently does not paeviools for this. The driver
developer must implement all driver methods manually, gigirotocol specifications as
guidelines.

| illustrate this approach to driver development using aoeept from the ax88772
driver implementation. Figure 5.17 and Figure 5.18 show agrfrent of the
EthernetController protocol that describes the packet transmission interddiamn
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f transmit )
1 2 enabled
?enable | enaple [5s]|'enableComplete :
7
: txq_stalled )!txPacketDone
disabled i 9
y ltxStartQueue 1txStopQueue
10 : : 11
4 disable [5s]|q__3 ?txPacket xq_runnlngj!txpackemone
!disableComplete ?disable 12 u
ltxPacketAbort
S disconnected 46@
?lc.unplugged llc.stopComplete
Figure 5.17: A fragment of th&thernetController protocol state machine. Num-

bers above transition labels are for reference only andatrpanrt of the protocol specifica-
tion.

Ethernet driver and a simplified version of the correspogpfliagment of the ax88772 driver
code.

The protocol We focus on the state labeledy_running . According to Figure 5.17, in
this state the driver must be prepared to handle one of thenwfiolg requests from the OS:
txPacket instructing the driver to queue a packet for transmisstisable request-

ing the driver to disable the device receive and transmdudiry, andlc.unplugged
notifying the driver about a hot-unplug event. It is allowtdinvoke one of the fol-
lowing methods:txPacketDone to notify the OS about successful transmission of a
packet,txPacketAbort  to report an error that occurred while sending a packet, and
txStopQueue to prevent the OS from sending new packets until more buffaces be-
comes available in the controller.

The implementation During initialisation (not shown in the listing), the drivealls two
reactive functions, thus spawning two C-with-events laggthreads, one of which handles
packet reception and the other packet transmission. Figa&shows the fragment of the
transmission thread, which implements its behaviour irttgerunning  state.

In accordance with the protocol specification, when theedrarrives in this state, it
pauses, waiting for one of the enabled external requestsdigssissed in Section 5.2.1,
waiting in Dingo drivers is implemented using tA&VAIT construct. HoweverAWAIT
can only wait for events, which are language-level entiiigsrnal to the driver. It does
not allow waiting for an interface method invocation. Théusion is to transform method
invocations into events. This isillustrated by the impleta¢ion of thetxPacket method
(line 46 in Figure 5.18), which simply emits tivePacket event.
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1reactive txLoop(ax88772 * drv)

2{

3

4 AWAIT(txPacket,txDisable,txUnplugged,

5 pipeXferComplete)

s |

7 IF(txPacket){ /+transition #10*/

8 [*start packet xfer over USBx/

9

10

1 if(t /+xout of buffer space?+/) {

12 /[+transition #9*/

13 eth->txStopQueue(eth);

14 h

15 }

16 ELIF(txDisable){ /[+transition #3*/
17 [ *abort outstandi ng USB xfersx/
18 pipe->abort(pipe);

19

20 /+wait for the abort to conpletex/
21 AWAIT (pipeAbortComplete);

22 EMIT(txDisableComplete);

23 }

24 ELIF(txUnplugged){ /+transition #5+/
25 /+wait for the USB pipe to abort
26 al | outstanding transfers=*/

27 AWAIT (pipeAbortComplete);

28 EMIT(txUnpluggedComplete);

29 }

30 [ *USB xfer conpl etex/
31 ELIF(pipeXferComplete){

32 if( /+transfer successful ?+/)
33 [+transition #11x/
34 eth->txPacketDone(eth,
35 pipeXferComplete.pkt);
36 else

37 /[+transition #12x/
38 eth->txPacketAbort(eth,
39 pipeXferComplete.pkt);
40 >

a }

42 .

43};

42/ *Driver methods called by the OS+/
45

ssreactive txPacket(

47 PEthernetController * eth,
4s sk _buff * packet)

49 {

so txPacket.packet = packet;

51 EMIT(txPacket);

52};

53

sareactive disable(

55 PEthernetController * eth)
56 {

57 EMIT (txDisable);

ss  AWAIT (txDisableComplete);

ss EMIT (rxDisable);

o  AWAIT (rxDisableComplete);

61

62 [*disable the controllerx/
63

64

es [/*transition #4x/

es eth->disableComplete (eth);

67},

68

eoreactive unplugged(

70 PLifecycle * Ic)

71{

72 EMIT (txUnplugged);

73 AWAIT (txUnpluggedComplete);
72 EMIT (rxUnplugged);

75 AWAIT (rxUnpluggedComplete);
76

77 [+release all resourcesx/
78

79

sgo [xtransition #6+/

g1 lc->stopComplete (Ic);

82};

Figure 5.18: A fragment of the ax88772 driver.
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ThetxLoop thread waits for this and other enabled requests usind\WWAIT state-
mentin line 4. Since the driver participates in severakd#ht protocols, it must be prepared
to handle method invocations belonging to all its protoctisthis example, the last event
(pipeXferComplete  )intheAWAITstatement corresponds tJ&BPipeClient  pro-
tocol method, which is called when the USB data pipe comgletnsferring packet data
to the controller.

The rest of thetxLoop listing shows how the driver handles each input event
and indicates the correspondence between methods exchapgee driver through the
EthernetController protocol and state transitions in Figure 5.17.

Consider, for example, how the driver handlesdisable request. The implementa-
tion of thedisable method emits the (line 54xDisable  event and then waits for the
txDisableComplete event (line 58), which is generated tby.oop after all outstand-
ing USB transfers have been aborted (line 22). Lines 59-6@nme a similar interaction
with the receive thread. After both transmit and receivedds have been notified, it is
safe to disable the controller (line 62). Finally, thisable method sends a completion
notification to the OS in line 64. This illustrates the use wdérgs to synchronise different
concurrent activities inside the driver.

Theunplugged method (line 69) implements similar logic for the hot-urgphotifica-
tion: after notifying the receive and the transmit thredudg the device has been unplugged,
it releases all remaining resources held by the driver andssastopComplete  notifi-
cation to the OS.

The implementation of thexLoop method illustrates the effect of the Dingo archi-
tecture on the internal structure of device drivers. In aveational driver, the logic im-
plemented by this method would be scattered among multgelllers, making it harder to
understand and maintain. The improved structure in Figur@ is enabled by three features
of Dingo: the event-based architecture, which guarantemsieity of driver invocations,
the C-with-events preprocessor, which allows event-driiagic to be expressed sequen-
tially, and the Tingu protocol specification language, wahéxplicitly enumerated events
that the driver must be prepared to handle or generated iy stage.

5.4 Evaluation

This section evaluates the Dingo driver architecture wébpect to its impact on driver
reliability and performance.

The evaluation is based on two Dingo drivers that | impleraemior Linux: the ax88772
100Mb/s USB-to-Ethernet adapter driver described in tlegipus sections and a Mellanox
InfiniHost™ |1l Ex 10Gb/s dual-port InfiniBand controller driver. The88772 adapter is
representative, in terms of complexity and performanc#é@majority of I/O devices found
in general-purpose computer systems. In contrast, theitiafgt controller is an example
of a complex high-end device supporting extremely lowdageand high-bandwidth 1/0O



5.4. EVALUATION 91

Number of synchronisation objects| Number of critical sections
Linux Dingo Linux Dingo
AX88772 8 2 19 2
InfiniHost 24 6 51 10

Table 5.2: The use of synchronisation primitives by Linug &ingo drivers.

transfers.
Both Dingo drivers are based on the corresponding nativexd. drivers, which allows
direct comparison between the two implementations.

5.4.1 Code complexity

Side-by-side comparison of the Dingo drivers and their kioounterparts shows that Dingo
drivers implement the complete functionality of Linux d¥re without increase in code size
or complexity. In particular, the use of C with events efifiadly addresses the stack-ripping
problem: whenever a Linux driver performs a blocking calluait for an I/O completion
or a timeout, the Dingo driver achieves the same effect usiedWAIT construct.

By enforcing atomicity of driver invocations, Dingo drantally reduces the amount
of synchronisation code in drivers. As shown in Section4.8vent-based drivers need
to synchronise tasks that span multiple method invocatibuissituations where such syn-
chronisation is necessary are uncommon, compared to pteelypnultithreaded drivers.
Table 5.2 summarises the use of synchronisation primiiivdsnux and Dingo drivers.
Synchronisation primitives used by Linux drivers includatexes, semaphores, spinlocks,
wait gueues, completions, etc. In Dingo drivers synchiatios is based on events, as seen
in Section 5.3.4. The table shows the total number of symisation objects used by the
Linux and Dingo versions of the ax88772 and InfiniHost disyexs well as the total number
of critical code sections protected by these objects.

5.4.2 Reliability

At this stage it is difficult to directly measure the effectloé Dingo architecture on the rate
of defects in drivers. Only a few Dingo drivers have beenteaand they have not been
used for a sufficiently long time to gather a statisticallyngiicant sample of defects.
Therefore, | took an indirect approach to measuring the anp&Dingo on driver re-
liability. 1 analysed the Dingo ax88772 and InfiniHost drivegainst a sample of defects
found in similar Linux drivers. For every defect studiedetekrmined whether an analogous
defect could be reproduced in a Dingo driver. Some defestplgicannot occur in Dingo,
for example, most race conditions cannot be reproducedadiine tevent-atomicity guaran-
tee. Likewise, deadlocks caused by invoking a blocking aipemn in the interrupt context
are not expressible in Dingo. Furthermore, Dingo protondks out some request sequences



92CHAPTER 5. DEVICE DRIVER ARCHITECTURE FOR IMPROVED RELIABITY

Eliminated | Reduced | Unchanged
by design | likelihood | likelihood
Concurrency faults 27 2 0
S/W prot. violations 9 11 12
Total 36 13 12

Table 5.3: Categorisation of faults based on their potkatieurrence in Dingo.

that can occur in Linux drivers along with defects introdiieghen handling them. This was
illustrated using the in Section 5.3.1 when discussinggmaitdependencies in the context
of the PowerManagement protocol.

For those defects that can be reproduced in Dingo, | estadolisvhether the incorrect
behaviour caused by the defect is explicitly forbidden biyedrprotocols. While Dingo
does not eliminate these defects, the probability of intoing them is reduced compared
to Linux drivers due to the presence of a clear and completeifspation of the protocol. If,
however, a protocol violation defect slips into the drivaplementation, it can be detected
using runtime verification, as discussed in Section 5.3.3.

| used defects from the four USB-to-Ethernet adapter dsiused in the study of Linux
driver defects (Table 4.1) and analysed them against thgdimplementation of the
ax88772 driver. | also used the 123 bugs found in the LinuxiHdfst driver and analysed
them against the Dingo version of the same driver. Of the 2@k lfound in these drivers,
| selected the 61 that belonged to the types of defects thidis targeting, namely con-
currency defects (29) and defects caused by the compleki®Saprotocols (32) and that
were applicable to the ax88772 and InfiniHost drivers (sothefBet driver bugs were not
applicable to the ax88772 driver due to differences in thecdeinterface).

The results of the evaluation are summarised in Table 5.8h&81 selected defects, 36
fell in the category of defects not expressible in Dingo. & temaining possible defects
13 were OS protocol violations whose likelihood is reduge®ingo. Being manually in-
troduced in the corresponding Dingo driver, these defemiitddoe identified by the runtime
failure detector during testing.

Finally, 12 defects were deemed equally likely to occur imdai drivers and native
Linux drivers. These defects violated OS protocol constsaihat were not captured by the
Tingu specifications. Three of these defects were violatmhbuffer management proto-
cols. As discussed in Section 5.3.2, Tingu does not cugr@ntivide means to specify these
protocols.

The remaining 9 defects were related to incorrect use of @& steuctures. Most of
these defects occurred in the InfiniHost driver. This driveplements several types of
objects, such as request and response queues, protecti@ingdo user contexts, etc. The
InfiniBand driver protocol defines requests, which allow @f to query the state of these
objects. In response to a query, the driver must return a&ctbyrinitialised object descrip-
tor. Formalising the requirement that each field of the dpsaris set to a valid value in
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Tingu requires adding complex guard expressions to all@pjate protocol state transi-
tions. Complex transition labels tend to clutter the spea&ifon and compromise its clarity,
thus defeating the primary purpose of Tingu; therefore Isehty leave these constraints
unspecified.

This example highlights the trade-off between clarity acaability, which is inherent
to visual formalisms.

5.4.3 Performancé

We evaluated the performance overhead of the Dingo drivateinon the ax88772 and
InfiniHost drivers using the Netperf [Net] benchmark suié.benchmarks were run using
a Linux 2.6.27 kernel on an 8-way (4 physical CPUs with 2 haméwhreads each) Itanium
2 1.7GHz with 8GB of RAM.

In all experiments in this section, the Netperf server waswith default arguments on
the machine with the Dingo driver under test. The Netpedntliwas running on another
machine with the following arguments:
netperf -H<server-ip-addr> -p <server-port> -t <benchmar k>
-c -C -1 60 - -m 32K
wherebenchmark is one ofUDP_RRUDP_STREAMr TCP_STREAMThe -l 60
argument sets the time of the run to 60 seconds. -thend-C arguments enable CPU
utilisation calculations on both the server and the cli€@®RU utilisation numbers returned
by Netperf on the multiprocessor system turned out very @uige; therefore we computed
CPU utilisation during the netperf run using the OProfild {@Pr]. Finally, the-m 32K
option sets the transfer size to 32768 bytes (this optionliswsed in stream benchmarks).

For the ax88772 driver we measured latency and throughpwt f@rying number of
concurrent network connections. The latency test meagsheedverage round-trip latency
of a 1-byte packet. The throughput test measured the thpptgtthieved by unidirectional
transfers of 32-kilobyte data blocks.

Figure 5.19 shows results of the latency test. The Dingedachieved latency within
4% of its Linux counterpart, while introducing a small CPUedwead due to the proto-
col translation and request queuing inside the Dingo fraonkewmportantly, this overhead
does not increase while going from 1 to 32 clients on a mutpssor system. The through-
put benchmark (Figure 5.20) showed no significantdiffeeeimcperformance between the
drivers.

The InfiniHost driver was used as the second example due éxtitsme performance
requirements. The InfiniBand interconnect architectudesgned for very high throughput
and low latency. Despite the use of zero-copy techniquesl|liputs substantial pressure on
the CPU, especially for small transfers. Furthermore, iB&ind supports traffic isolation
among multiple concurrent connections; therefore theilBéind stack in Linux is designed

2The performance evaluation described in this section waigdaout in collaboration with Dr. Peter Chubb.
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Figure 5.19: ax88772 UDP latency results. The top graph staggregate CPU utilisation
over all connections (ranging from 0% to 800% on the 8-wayesy¥ The bottom graph
shows average UDP echo latency across all connections.

to avoid synchronisation among data streams.

We compared the performance of the native Linux driver ardingo driver running
in the fully serialised and hybrid modes. We used the IP-éw@niBand Linux module
to send IP traffic through the InfiniBand link, and measuredughput and latency with
Netperf. To achieve traffic isolation, we configured 32 irelegient network interfaces, one
for each client, on top of the InfiniHost controller.

As shown in Figure 5.21, all three versions of the driver eshithe same latency. The
serialised Dingo driver shows a small increase in CPU atilim. In throughput bench-
marks (Figure 5.22), the Dingo driver in the serialised mslt®ved 10% throughput degra-
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Figure 5.20: ax88772 UDP throughput results. The top graplwvs aggregate CPU utili-
sation over all connections. The bottom graph shows agtgédiaP throughput.

dation in the worst case, and less than 3% throughput detipadad no CPU overhead in
the hybrid mode (in the points where the hybrid driver conssitore CPU than the native
one, it sustains proportionally higher throughput). Incabkes the performance of Dingo
drivers scaled as well as the native Linux driver. This shtves the Dingo hybrid mode

allows drivers to take full advantage of multiprocessingatalities.
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Figure 5.21: InfiniHost UDP latency benchmark results. Tdge draph shows aggregate
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We used the OProfile [OPr] tool to identify the source of theJQ®Rerhead in the se-
rialised Dingo driver. We found that most of the extra CPUIegavere spent in acquiring
the spinlock that protects the Dingo request queue, althdlg lock was not actually con-
tended. This means that the overhead is caused by cacheitgofithe spinlock variable,
as the lock is being repeatedly acquired by each of the 4 CPUs.

These experimental results indicate that for the ax887 &2lainihost drivers, which
are representative of a broad class of drivers with medodmgh performance require-
ments, the reliability improvement offered by the Dingohidtrecture does not come at the
cost of performance.

5.5 Conclusions

This chapter proposed several improvements to the devieer drchitecture and develop-
ment methodology aimed to turn existing OSs into a more dfivendly environment and
reduce defects caused by the complexity of the driver-CSfante. First, it showed that the
concurrency model based on events allows a reduction ofrttwaiat of non-determinism
that the driver has to handle and therefore eliminates therityaof concurrency-related
defects. Importantly, this is achieved with only a small &@opon the performance. It fur-
ther showed that the stack ripping problem arising from the of the event-based model
can be effectively addressed using a simple language éatens

Second, it presented a rigorous approach to defining irtteraprotocols between
drivers and the OS that enables clear and precise spedificatithe required driver be-
haviour through the use of a visual formalism based on finaeesmachines. Examples
presented throughout this chapter and in Appendix B showTiingu is capable of captur-
ing complex protocols in a compact specification that careadity understood by software
engineers.

While in this thesis Tingu is primarily used to formalise skig driver protocols, it is
also suitable for designing new protocols. Development pfcgocol for a new family of
drivers is a difficult task that proceeds in many iterationd eequires a deep understanding
of relevant hardware specifications as well as driver and €8d issues. The use of Tingu
ensures that the result of this effort is not lost in the bevedlthe OS code but is preserved
as a structured specification that conveys a great deal oflkdge about driver behaviour
in a compact form. In this way, Tingu helps close the commatioa gap between OS and
driver developers.



Chapter 6

Automatic device driver synthesis
with Termite

The Dingo architecture reduces the number of device drieéeats by taking a formal
approach to modelling the interface between the driver BadS. In this chapter | extend
this approach to formally specify both the OS and the deviterfaces of the driver. The
resulting specifications exhaustively describe the reguilriver behaviour and can be used
to synthesise a complete driver implementation automticdriver synthesis has the
potential to dramatically reduce the impact of human errodover reliability and to cut
down on development costs.

6.1 Motivation

The conventional, manual, driver development process ssedan two sets of documen-
tation: the device documentation that describes the softuwaerface of the device and
the OS documentation that describes OS services that mustdiemented and used by
the driver. Together these documents define the requiredatatriver behaviour. The job
of the driver programmer is to map OS requests into sequesfodsvice interactions—a
straightforward, yet error-prone task.

In this chapter | show that this task can be automated. Teetids both the device and
the OS interfaces must be specified formally. Each spedditaescribes possible interac-
tions across the respective interface and relates thenetthifd specification that defines
common behaviours of all devices of the given class. Theseifggations are processed by
a tool called Termite, which generates a complete driveiémpntation in C that satisfies
both specifications.

This work builds on the work on formalising device driver fmeols presented in Chap-
ter 5. While Tingu OS protocol specifications do not in thelwessprovide sufficient infor-
mation for driver synthesis, they are an important step td&a complete formalisation of
driver behaviour as presented below.

99
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Separating device description from OS-related detailskeyaaspect of the proposed
approach. It allows the people with the most appropriatbss&nd knowledge to develop
specifications: device protocol specifications can be dgeel by device manufacturers,
and OS protocol specifications by the OS developers who miveate knowledge of the
OS and the driver support it provides.

In a hand-written device driver, interactions with the devand with the OS are inter-
mingled, leading to drivers that are harder to write and &atd maintain. Termite speci-
fications each deal with a single concern, and thus can bdesingounderstand and debug
than a full-blown driver.

Device protocol specifications are independent of any O8yisers for different OSs
can be synthesised from a single specification developed dgvige manufacturer, thus
avoiding penalising less popular OSs with poor-qualityehs. A further benefit of device
and OS separation is that any change in the OS need only besseprin the OS-protocol
specification in order to re-generate all drivers for that Os is particularly interesting
for Linux, which frequently changes its device driver ifidl@es from release to release.

Generating code from formal specifications reduces thelémge of programming er-
rors in drivers. Assuming that the synthesis tool is correghthesised code will be free
of many types of defects, including memory management andwoency-related defects,
missing return value checks, etc. A defect in a driver camooaly as a result of an error
in the specification. The likelihood of errors due to incotr®S protocol specifications is
reduced because these specifications are shared by maeagsdaivd are therefore subject
to extensive testing.

In contrast, a device specification is developed for a paeticdevice and is only used in
synthesising drivers for this device for a small number o60Bue to the low-level nature
of device protocols, their specifications tend to be morefterthan OS specifications and
are therefore more likely to contain errors. One avenue dturé research is to explore
the use of model checking techniques to establish formaéspondence between the ac-
tual device behaviour, as defined in its register-transfest description, and the Termite
specification. While model checking may not be able to guemequivalence between
the two specifications, it may be useful in finding and elirtimamany discrepancies be-
tween them, thus substantially increasing the level of demite that the resulting device
specification is correct. The feasibility of this approastdemonstrated by the success of
hardware model checking tools like VCEGAR [CJK04] and UCI[A304].

Errors in device specifications can be reduced by using mciuetking techniques
to establish formal correspondence between the actuatel®eéhaviour, as defined in its
register-transfer-level description, and the TermitecHEmation. However, this capability is
not yet supported in Termite.

The separation of device and OS interface specificatiossTeemite apart from the pre-
vious approaches to automatic driver synthesis survey&kation 3.6 [WMB03, ZZC03,
KSF00, 00J98]. These previous techniques rely on the ddeeeloper to create a com-
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plete model of the driver behaviour in the form of commurniggistate machines written
in a high-level language. This model is then compiled intove:level implementation lan-
guage like C. While the use of a high-level domain-specifigilsage offers some reliability
benefits, it still requires the developer to construct theedralgorithm manually. In con-
trast, Termite derives the driver algorithm automaticéised on the model of the device
and the OS.

While the above discussion is concerned with the technioglications of automatic
driver synthesis, the real-world success of this approagiedds on device manufacturers
and OS developers adopting it.

For device manufacturers, the proposed approach has thetiabto reduce driver de-
velopment effort while increasing driver quality. Furthmare, once developed, a driver
specification will allow drivers to be synthesised for anpported OS, thus increasing the
OS support for the device.

For OS developers, the quality and reputation of their O®ddp greatly on the quality
of its device drivers: major OS vendors suffer serious fir@rand image damage because
of faulty drivers [GGPO06]. Driver quality can be improved pyoviding and encourag-
ing the use of tools for automatic driver synthesis as pamrifer development toolk-
its. Since Termite drivers can co-exist with conventiored-written drivers, migration to
automatically-generated drivers can be implemented gitbdu

Another concern for OS developers is that acceptance amgssiof their OS depends
largely on compatibility with a wide range of devices. Sinlevice protocol specifications
are OS independent, providing support for driver synthallevs the reuse of all exist-
ing Termite device protocol specifications, leading to pt& increases in an operating
system'’s base of compatible devices.

6.2 Overview of driver synthesis

Termite generates an implementation of a driver based omaafcspecification of its de-
vice and OS protocols. The device protocol specificatiormigss the programming model
of the device, including its software-visible states anbaweours. The OS protocol spec-
ification defines services that the driver must provide tords of the system, as well as
OS services available to the driver. Given these specificatiTermite produces a driver
implementation that translates any valid sequence of O%estg into a sequence of device
commands.

This is similar to the task accomplished by a driver devalapigen writing the driver
by hand. In contrast to automatic driver synthesis, howewanual development relies on
informal device and OS documentation rather than on formpatifications: The device
protocol description is found in the device data sheet, edmwithe OS protocol is docu-
mented in the driver developer’s manual and in the form of memts in the OS source
code.
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In Termite, the device and the OS interfaces are specifiegpgntently and are com-
prised of different kinds of objects: the device protocahsists of hardware registers and
interrupt lines, whereas the OS interface is a collectiosaffware entrypoints and call-
backs. How can Termite establish a mapping between the tedaces, while keeping the
associated protocol specifications independent?

The following solution is inspired by conventional driveswvetlopment practices. Con-
sider, for example, the task of writing a Linux driver for tRFL8139D Ethernet con-
troller [Rea05]. Linux requires all Ethernet drivers to ilmment thehard_start_xmit
entrypoint described in the Linux driver developer’s mariG&RKHO5]:

int ( *hard_start_xmit) (...);
Method that initiates thTansmission of a packet

In order to implement this function, the driver developensuts with the RTL8139D de-
vice data sheet [Rea05], which describes the transmit tiperaf the controller as follows:

Setting bit 13 of the TSD register triggers ttiansmission of a packetvhose
address is contained in the TSAD register and whose sizeeés ¢y bits 0-12
of the TSD register.

While the two documents were written independently by déffee authors, both of them
refer to the act ofacket transmissignwhich is the common behaviour of all Ethernet
controller devices and is independent of the specific deaickitecture and OS personality.
It allows the driver developer to relate the two specifiaadiand to correctly implement the
hard_start_xmit function by setting the appropriate device registers.

To generalise this example, both the device and the OS gsiifis refer to actions
performed by the device in the external physical world,,am@nsmission of a network
packet, writing a block of data to the disk, or drawing a pigalthe screen. The device
specification uses these actions to describe how the dexaodsrto various software com-
mands. Likewise, the OS specification mentions externaldeactions when describing
the semantics of OS requests.

Together, the set of such external actions characteris&sa af similar devices, such
as Ethernet controllers or SCSI disks, and is both deviceQfindependent. In Termite,
these actions are formalised in a separate device-clasffisagion, which is provided to
the synthesis tool along with the device and OS specification

Figure 6.1 shows a high-level view of the synthesis proc&hs.following subsections
elaborate on each of the three specifications involved ireddynthesis.

6.2.1 Device-class specifications

An informal description of a device class can usually be tbimthe relevant I/O protocol
standard. For example, the Ethernet LAN standard, maimdaiy the IEEE 802.3 working
group [IEE], describes common behaviours of Ethernet oliatrdevices, including packet
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Figure 6.1: Driver synthesis with Termite. Solid arrowsigade inputs and outputs of the
synthesis tool; dashed arrows indicate references frorddkiee and OS specifications to
the device-class specification.

transmission and reception, link status detection, spegahagotiation, etc. Other 1/O
protocol standards include SCSI, USB, AC'97, IEEE 1394, &D,

Such a standard can be used to derive a formal Termite deldss-specification for
the given type of devices. For interoperability reasonssthadard must be agreed upon by
all device and OS vendors; therefore a device-class spa@ificbased on it is guaranteed
to be free of any device or OS dependencies. At the same tianejards are designed to
allow freedom of implementation. In particular, they allbardware optimisations, such as
packet buffering and vectored I/O. Therefore, using thedsed as the basis for the device-
class specification ensures that the specification remaimgpatible with both basic and
advanced implementations of the standard.

In Termite, device-class functionality is formalised asbadf events. The majority of
events correspond to the various types of interactions dmvthe device and its external
physical environment, as described by the standard. Therfighcontroller device class,
for example, includes such events as packet transmissionpletion of autonegotiation,
and link status change.

The remaining events describe changes to internal devitkgooation settings. Many
of these settings are defined by widely adopted standardsexample, all Ethernet con-
trollers are required to support retrieving and changinghef controller MAC address.
Other settings are only supported by a subset of devicesenr &\wsingle device. For in-
stance, while most Ethernet controllers implement somm fofrmulticast filters, the exact
operation and format of these filters varies across deviGes/zice manufacturers imple-
ment such settings in order to differentiate their proddicien the competition; therefore
it is important that Termite is capable of generating dsvirat support these advanced
capabilities.

Three options are available in Termite for including nosmslard device capabilities in
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device-class specifications. First, if the given capapititshared by several devices, it can
be included in the common device-class specification as tongh feature that need not be
supported by all implementations. Alternatively, if thispability is unique to the device,
the device manufacturer has to develop an extended verkiba device-class specification
describing the given capability. The extension must betstrincremental, so that it can be
combined with an existing OS protocol specification thatasaware of the new function.
The device manufacturer must also develop an extended Q& ptapecification in order
to enable access to this function in a specific OS. Finallpasde device-class and OS
protocol specifications must be created in order to syrghesidriver for a one-of-a-kind
device whose functionality cannot be described as a suparaay existing device class.

One important concern related to device-class specifitaidetermining who should
develop and maintain these specifications. Since many ektlkpecifications must be
shared by all device and OS vendors, they should ideally belaged by an independent
party that would ensure that the specification faithfullffeets the appropriate /O protocol
standard and is free of device or OS-specific features. Ossilplity is to delegate this
task to the regulatory body responsible for maintainingrthevant 1/0O standard. Alterna-
tively, the device-class specification can be developed bgrsortium of OS and device
manufacturers.

6.2.2 Device specifications

The device specification models the software view of the aetiehaviour. It describes
device registers accessible to the driver and device oeacto writing or reading of the
registers. A device’s reaction depends on its current texgiglues and state, e.g., whether
the device has been initialised, is busy handling anothirast, etc. The device reaction
may include actions such as updating register values, gemgiinterrupts, and performing
one or more external actions defined in the device-classfsagion.

A device specification can be constructed in several wayst, i can be derived from
informal device documentation. Hardware vendors ofteeass detailed data sheets, de-
scribing the interface and operation of the device. Sucha slzet is intended to provide
sufficient information to enable a third party to develop iaeltrfor the device.

Figure 6.2 shows a specification of the transmit command ®fRfL8139D device
derived from its data sheet (for now, we write the specifigath English, rather than in the
formal Termite language, which will be introduced in Seat®4). Here, steps 1, 3, and
4 represent actions of the device protocol, whereas thespaeinsfer performed in step 2
is a device-class event. The latter cannot be observedilgilgcthe software, but can be
controlled indirectly. Specifically, the driver can iniiapacket transfer by setting bit 13 of
the TSD register and is notified of the transfer completiormabynterrupt and a flag in the
status register.

The problem with this approach to obtaining device spedifioa is that informal de-
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1. The TSD register is updated by the software.

2. If bit 13 of the TSD register changed from 0 to 1, the deviedgrms a packet transfey.
The physical address and size of the packet are determin€8Dyand TSAD registers.

=

3. The device sets a flag in the interrupt status registemgrasisuccessful completion ¢
the transfer.

4. Aninterrupt signal is generated.

Figure 6.2: Specification of the transmit operation of th&. 839D controller derived from
its data sheet.

To transmit a network packet:
1. Write the packet address to the TSAD register;
2. Write the TSD register, storing the packet size in bits 02do and setting bit 13 to 1;
3. Wait for an interrupt from the controller;

4. Read the interrupt status register to make sure thatahefer was successful;

5. Packet transfer complete.

Figure 6.3: Specification of the transmit operation of th&. 839D controller derived from
a reference driver implementation.

vice documentation seldom undergoes adequate qualityasmsy As a result, it tends to
be incomplete and inaccurate. A specification derived fraghs data sheet is likely to
reproduce these defects, in addition to extra ones intemtlircthe process of formalisation.

Another approach to the construction of a device specifindt to distil it from an ex-
isting driver implementation provided by the device venoioa third party. The source code
of the driver defines sequences of commands that must bedissube driver in order to
perform a specific operation. A Termite specification of tbeide is obtained by separating
these device control sequences from OS-specific details.

Figure 6.3 shows a specification of the RTL8139D transmitajen extracted from
the source code of the Linux driver for this device. Whilestbpecification is functionally
equivalent to the one in Figure 6.2, it is substantiallyatiint in style. The specification
obtained from the data sheet describes how the device reasisftware commands in
different states, but does not explicitly define the ordexlich these commands should be
issued to achieve a particular goal. In contrast, the spatidin derived from the existing
driver source code specifies an explicit command sequenbe. T€rmite synthesis tool,
described here, can handle both types of specifications.

The main drawback of this approach to constructing devieeifipations is that it relies
on someone to develop at least one driver for the device nilgraral thus contradicts our
goal of eventually replacing manual driver developmenhwiitomatic synthesis. Besides,
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similarly to informal documentation, a device driver maytan errors, which are carried
over to the resulting specification. However, the likelidaaf such errors in a well-tested
driver is much lower.

The third way to construct a device specification is to detifr®m theregister-transfer
level (RTL)description of the device written in lzardware description language (HDL)
This requires abstracting away most of the internal logit rodelling only interface mod-
ules, responsible for interaction with the host CPU.

Since the RTL description is used as the source for gengrétim actual device cir-
cuit, it constitutes an accurate and complete model of thied®peration. Therefore, this
method of obtaining device specifications is the prefermel ¢-urthermore, since the RTL
description has well-defined formal semantics, one coutdrg@lly use model checking
techniques to verify that the resulting Termite specifaratonstitutes a faithful abstraction
of the device behaviour, thus eliminating errors introdudeirring manual abstraction. |
have not implemented support for such model checking yet.

Many 1/O devices contain a general-purpose processor anplasimicrocontroller ca-
pable of executing programs stored in the device memoryh uagrams are known as
device firmware. The behavioural specification of such aadegannot be obtained solely
from its RTL description, but needs to be extracted from thialgination of RTL and the
firmware code.

The main limitation of this approach to obtaining devicedfieations is that it requires
access to the RTL description of the device and its firmwalechvare usually part of the
device manufacturer’s intellectual property. Therefdhe device manufacturer is in the
best position to produce such device specifications.

6.2.3 OS specifications

The OS protocol specification defines OS requests that musameied by the driver, the
ordering in which these request can occur and how the drivauld respond to each type
of request. To this end, it defines a state machine, whereteautsition corresponds to a
driver invocation by the OS, an OS callback made by the drioea device-class event.
Any of these operations is only allowed to happen if it trigge valid state transition in the
state machine.

This is similar to Tingu OS protocol specifications, the kéfedence being that Tingu
specifications, as described in Chapter 5, specify the imglef invocations exchanged be-
tween the driver and the OS without defining the semantickexfd operations. In contrast,
Termite OS protocol state machines describe the sematfiti@S cequests in terms of their
external effect, i.e. in terms of device-class events thagtrhe generated in response to the
request.

Consider, for example, the fragment of the protocol betwibenLinux kernel and an
Ethernet driver specified in Figure 6.4. This specificatimbes that the driver must respond
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1. The OS sendslrard_start xmit request to the driver;

2. Eventually the device completes the transfer of the packet, passed agyament to
hard_start_xmit ;

—

3. The driver calls thalev_kfree_skb_any  function to notify the OS of the packe

completion.

Figure 6.4: A fragment of the Ethernet controller drivertpoml specification.

to thehard_start_xmit request by completing the transfer of the network packet-spe
ified in the request. The transfer of a packet is a devices@asnt. The exact mechanism
of generating this event is described in the device spetiditethe OS specification simply
states that the event must occur for teed_start_xmit request to be satisfied.

The specification in Figure 6.4 imposes both safety and dégenconstraints on the
driver. Safety ensures that the driver does not violate thegpibed ordering of operations,
e.g., it is only allowed to send a packet after receiving gor@priate request. Liveness
forces certain events to eventually happen, thus guaiagtéarward progress. In this ex-
ample, after receiving the transmit request, the drivertrausntually transfer the packet.

As discussed in Chapter 5, a driver interacts with the OQutjitraseveral protocols—
one for each service provided or used by the driver. Ternlibeva each OS protocol to be
defined independently, in a separate specification. Malfipbtocols can then be combined

in a driver declaration given to Termite.

6.2.4 The synthesis process

The goal of the Termite synthesis tool is to generate a dimplementation that complies
with all relevant protocol specifications. Such an impletagaon must satisfy the following
requirements:

1. Safety. The driver must not violate the specified ordering of operat If the driver
issues a device command which raises a device-class elenevent must be al-
lowed in the OS protocol specification in the current stage,the driver should only
perform external actions when allowed by the OS protocdtebise, every OS call-
back performed by the driver must correspond to a transitidhe OS protocol state

machine.

2. Liveness The driver must be able to meet all its goals: whenever thgp@®col
state machine is in a state where an event or one of a groupenfseis required to
eventually happen, the driver must guarantee the occwerehthis event within a
finite number of steps.

The driver synthesis problem can be formalised as a twoeplggme [Tho95] between
the driver as one player and its environment, which is coseglriof the device and the OS,
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as the other. The players participate in the game by exchgr@immands and responses
across driver interfaces. Each player directly controlslesst of interactions: the OS con-
trols requests sent to the driver, the driver controls comiaasent to the device and OS
callbacks, and the device controls responses to softwanenemds. Rules of the game de-
fine legal sequences of interactions between the playeraramgiven by the device and OS
protocol specifications (safety). The driver's game olijeds to complete any OS request
in a finite number of steps (liveness).

The Termite synthesis algorithm computes a winning styategbehalf of the driver.
A winning strategy must guarantee that the driver will ackiés objectives, regardless
of how the device and the OS behave, as long as their behargomains within rules.
The formulation of the problem as a game enables us to empistirg) game-theoretic
techniques in computing the driver strategy. Details offteemite synthesis algorithm are
presented in Section 6.6.

The resulting strategy constitutes a state machine, whexedry state the driver either
performs an action, e.g., writes a device register or ing@e OS callback, or waits for an
input from the environment, e.g., a completion interruptvrthe device, or a call from the
OS. This state machine is translated into C code, which carofmpiled and loaded in the
OS kernel just like a conventional, manually developedeatriv

6.3 A trivial example

I illustrate the driver synthesis methodology using theneple of a driver for a hypothetical
trivial network controller device. This example serves larify the concepts introduced
above. The specification language and the synthesis digoutitsed to generate realistic
device drivers are presented in the following sections.

The network controller is capable of transferring data dber network, one bit at a
time. Its software interface consists of a control regjsiet to 1 or 0 to switch the device
on and off respectively, and a data register, where the aoétwan write a bit of data to be
transmitted over the wire (Figure 6.5a).

For the sake of the example, assume that this device repsesefass of similar trivial
network controller devices. The device-class specificatinsists of a single eversent .
The event is generated every time the controller sends & diata. The semantics of this
event do not depend on a specific register layout or OS pdigpreand can therefore be
used in both the device and the OS protocols without vialative separation of concerns
between the protocols.

Figure 6.5b and Figure 6.5c specify the device and the O9qwitst of the driver to be
synthesised respectively. State transitions in FiguradpBesent interactions between the
driver, the device, and the OS and occurrences of devigs-eleents.

According to the device specification in Figure 6.5b, theyamdmmand allowed in the
initial state of the device protocol is writing ttfiWrite(1) ) to the control register to
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IctriWrite(1)
ctrl 1=on off on _
O=off . ldataWrite/
data sent
IctriWrite(0)
(a) Controller (b) Controller interface state machine

registers

IsendComplete

?send /" O\ sent

”Q NVACH

init sending complete
(c) OS interface state machine

Figure 6.5: Specification of a trivial network controlleiar.

switch the device on. Afterwards, the driver may either evetvalue to the data register
(dataWrite ), sending it on the network, as denoted by the occurrendeesknt event,
or write 0 to the control registectrWrite(0) ), returning the device to the off state.
The OS protocol (Figure 6.5c) consists okend command from the OS, in response
to which the driver must send the data on the network and eteisendComplete
notification to the OS.

Two transitions in Figure 6.5¢ have timeout labels. Timdabels provide a simple
way to define goals for the driver. If one of the driver protsds in a state that has one or
more outgoing transitions with a timeout label, the driveendt allowed to stay in this state
indefinitely but must eventually leave it via a timeout triéing.

The synthesis algorithm starts by computing the paralletipet of the two state ma-
chines in Figure 6.5 resulting in a new state machine thatries all legal behaviours
of the system consisting of the driver, the device, and thgdgure 6.6). A state of the
product state machine corresponds to a pair of states inribimal input state machines,
e.g., the initial state of the product state machine comegdp to the pair of initial states
<off,init> . In the product, actions that belong to different protocmisur indepen-
dently, whereas theent event shared by the two protocols only occurs when allowed
by both input state machines. Timeout labels are transfdrmam the input FSMs to the
corresponding transitions of the product state machine.

The product state machine defines the rules of the game hetivedriver, the device,
and the OS. The next step is to find a winning strategy on beffdtie driver among all
behaviours allowed by the product state machine. If suctatesly exists, it can be obtained
from the product state machine by eliminating all transsidhat do not lead to the goal.

YFor clarity of presentation, the actual value written todlaga register is ignored.
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IsendComplete

IdataWrite/

<on,sending> <on,complete

<on,init>
IsendComplete

Figure 6.6: Product state machine representing combinestraints of the two driver pro-

{ > ?send

IctriWrite(1)

tocols.

?send IdataWrite

IsendComplete

Figure 6.7: Synthesised driver algorithm.

The algorithm for computing such a strategy will be presgimeSection 6.6.

A winning strategy for the state machine in Figure 6.6 is smamwFigure 6.7. It is
easy to see that this state machine implements the expemtexttcdriver behaviour: upon
receiving a send request from the OS, it switches the cdatroh (ctrlWrite(1) )s
transmits the dataldataWrite ), and sends a completion notification to the OS
('sendComplete ), leaving the driver ready for the next request with the devpow-
ered on. The OS specification did not include powering dovwendievice, so theff state
becomes unreachable after the first time a message is sent.

The final step is to generate code to implement the state macbpresenting the cal-
culated winning strategy. This step will be described inti®ed.6.

6.4 The Termite specification language

Device, OS, and device-class specifications in Termite axeldped using the Termite
specification language. This section outlines requiremtrat drove the design of the lan-
guage and presents its syntax and semantics.

The Termite specification language must be suitable for ffingethe behaviour of
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complex I/O devices, containing multiple functional uni&ich a system cannot be feasibly
described by explicitly enumerating its states (as was doitee above example). A high-
level language, providing constructs to express hieraattiomposition of communicating
state machines, is required.

The language should also provide flexible data definition madipulation facilities.
Examples of data in Termite specifications include devigisters, DMA buffers, and op-
erating system I/O request descriptors.

Some existing languages satisfy these requirements. ficydar, hardware description
languages are well-suited for describing device behayiand are sufficiently general to
model arbitrary state-machine-based systems. At the mprhewever, Termite does not
provide an HDL frontend.

The previous chapter presented the Tingu language desgpexifically for writing
driver protocol specifications. Tingu provides facilitifes dealing with data and concur-
rency and is thus a natural candidate for the Termite spatditlanguage. The main limi-
tation of Tingu is that it relies on a visual formalism to deise the behavioural part of driver
protocols. While Statecharts allow clear and concise fipatiobn of simple protocols, they
quickly hit their limit when dealing with more complex beliewrs. Even specifying driver-
OS protocols using Statecharts required sacrificing caimpdss for readability in some
cases (see Section 5.4). Device protocols tend to be morplerrthan OS protocols and
cannot be practicably specified using Statecharts.

Therefore, device and OS protocol state machines in Teangtelescribed using a tex-
tual algebraic notation rather than a visual language. IGileenents of the Tingu syntax,
including components, protocols, methods, variables d@peéndencies, are reused unmod-
ified, with one extension: Termite defines a new type of mettwochodel device-class
events, in addition tin andout methods. Device-class events represent internal device
state transitions that are not observable at the driverfate, therefore these events are
declared using thénternal keyword. Termite currently does not allow synthesising
drivers that spawn new ports at runtime; therefore subpextagations are not allowed in
Termite protocol specifications. In summary, the Termitatqol specification language
differs from Tingu in the following ways:

¢ In Termite, protocol state machines (i.e., thensitions section of the protocol
specification) are expressed using the algebraic formaliesented below instead of
Statecharts.

e Termite supports thinternal method qualifier, in addition tom andout quali-
fiers.

e Termite does not support subport declarations.

The rest of this section introduces the formalism used tmdegdiotocol state machines
in Termite. The formalism is based on the LOTOS process kadduOT89]. A protocol
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process FOO

tL; t2; FOO —»

endproc

Figure 6.8: A simple Termite process and the corresponditg snachine.

state machine consists of transitions combined into peasesA transition is triggered by
a protocol method invocation or an occurrence of a deviasscévent. A process describes
valid sequences of transitions.

A simple process is a sequence of transitions named afteititd state. For example,
Figure 6.8 shows a process that allows transitidnsandt2 to occur before returning to
the initial stateFOQ An individual transition in a process has the following &yn

<transition> := <trigger> "[" <guard> "' "/" <action> "t imed"

with optional <guard> , <action> , andtimed components. Herextrigger>
<guard> , and<action> follow the syntax defined for Tingu state transition labalsg
Section 5.3 and Section A.2).

The trigger can be either a protocol method or one of two gpdggers: await
andtimeout . Theawait trigger denotes a transition that is taken as soon as itglguar
evaluates to truth, without waiting for a particular methodbe invoked. Thedimeout
transition is triggered after the amount of time specifiedtdyargument. It can be used to
model time-dependent device and OS behaviours.

The guard specifies a predicate on protocol variables andadetrguments that must
hold for the transition to be enabled. The action defines hmtopol variables are updated
when the transition is taken.

Thetimed keyword is used to specify liveness requirements of theopodt whenever
the state machine is in a state with one or more enabled tinaeditions, one of these
transitions must eventually be taken. If the timed traosittorresponds to an outbound or
internal method, then it is the responsibility of the driverinvoke this method or force
the corresponding device-class event to occur; othenthigegther side of the protocol (the
device or the OS) guarantees that it will invoke the corradpa method of the driver.

Processes are composed out of individual transitions s&ggential and parallel com-
position operators which are listed in Table 6.1 and desdrib more detail below. The
complete syntax of Termite processesBackus-Naur Form (BNFjs presented in Sec-
tion A.4.

Deadlock The deadlock process (denotetbp ) cannot perform any transitions and
never terminates.
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Name Syntax Semantics Description
Deadlock stop Inactive process
Termination exit Successful termination

_ . A process that performs transition t and
Action prefixing t, P
then behaves as process P

. A process that behaves either as process P1
Choice P1 ] P2
or as process P2

A process that behaves as P1 if cond holds

Conditional iffcond]P1[Jelse P2 _
or as P2 otherwise

Sequential compo-

PL >> P2 Start process P2 after P1 terminates

sition
Execution of P1 is interrupted when the
first transition of P2 occurs

Preemption P1 [> P2

P1&P2 run concurrently, synchronising on
Parallel composi- ml methods m1..mn, i.e., one of these methods
, P1|[mL...mn]|P2 o
tion can only occur when it triggers a state tran-
sition in both processes
P1&P2 run concurrently; transitions can ar-
Interleavin P1|||P2 H P2
g i - - bitrarily interleave

Named process process P...endproc A process that can be instantiated by name

Table 6.1: Termite process syntax. Circles denote indalidtates. Squares denote entire state machines, aka
processes.

Termination The purpose of thexit process is solely to perform successful termination,
after which it behaves like the deadlock processp. Formally,

exit > stop

wheree is the successful termination event. The above notatidesstaat the left-hand
side processeit ) can perform a transition labeledand then behave as the right-hand
side processstop ).

Similarly to the deadlock process, the termination processt capable of performing
any externally visible actions. The difference betweetit andstop processes is in how
they compose with other processes, as shown below.

Action prefixing The action prefixing operator defines a process that perfarspecified
transition and then behaves as another progess

t;P 5P
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Choice The choice operatdri[|P2 defines a process that can behave as either pracess
or procesP2. The choice is resolved at the instance when the processrperfits first
transition. If this transition belongs w1 then the choice process must continue behaving
asP1; otherwise, if it is a transition defined e then the choice process continuesPas
Termite does not allow non-deterministic choice when Hathand P2 contain the same
initial transition. Formally,

t1 t2

p1 2 p1/ p2 2 po
p1[jp2 XL p1/ p1[jp2 2 p2/

The first of the above clauses states thatiifis capable of performing transitiott and
transforming into procesB1’ then proces®1[|P2 is capable of the same behaviour. The
second clause is analogous fa.

Conditional The conditional operator alters the process’s behaviosgdban the protocol

variable values:

(expr) A (P1 25 P1) (—expr) A (P2 £2 P2/)
(if (expr)P1[Jelse P2) X5 p1/ (if (expr)P1[Jelse P2) £ p2/

wherey; is either a transition or a successful termination event.

Sequential composition The sequential composition operator executes two progegese
quentially, with the second one starting execution as saotha first one terminates suc-
cessfully:

P15 Pt/ (P12 stop) A (P2 £ P2))
(P1 >> P2) = (P1/ >> P2) (P1 >> P2) & p

Preemption The preemption operator aborts the execution of a process w@hother
(preempting) process performs a transition:
P1 = p1’ P13 stop p2 £ po
(P1[> P2) = (P[> P2) (P1[>P2) = stop (P1[> P2) £ P2

To avoid nondeterminism, Termite does not allow the preemgpnd the preempted pro-
cesses to have transitions with the same trigger enabladtaimeously.

Parallel composition The parallel composition operator models concurrent ei@twf
two processes. Concurrency here means that the parall@lasition can perform an action
that either component is ready to perform. The parallel ggses synchronise on a subset
of methods. One of these methods can only be invoked if baibgsses are ready for it.
When the method is invoked, it triggers a state transitiohdth processes. The effect of
the parallel composition operator is defined by the follaywiales:

P1 25 P1/) t1 = trigi[gl]/al, trigl ¢ {ml..mn}
(P1|[m1..mn]|P2) 2 (P1/|[m1...m2][P2)
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If the first process can perform transitioh whose label consists of triggerig1, guardgi,
and actionra1, wheretrigi is not one of the methods in the synchronisation{set..mn},
then the composition can perform the same transition. Thergeprocess remains in its
initial state.

Similar rule holds for the second process (parallel comijmwsis commutative):

P2 22 P2/, t2 = trig2[g2]/a2, trig2 ¢ {ml..mn}
(P1|[m1..mn]|P2) 2 (P1|[m1...m2][P2)

(P15 P1/) A (P2 22 P2)), t1 = trig[gl]/al, t2 = trig[g2/a2], trig € {ml..mn}
triglging2]/{at;a2;}

(P1/|[m1...mn||P2")

(P1|[m1...mn]|P2)

If both processes are ready to perform transitions with #maestrigger and this trigger
belongs to the synchronisation set, then the parallel csitipo can perform a transition
with the same trigger. This transition is guarded by the woction of the original guards
and its effect on protocol variables is defined as the cone#iten of the original actions:
{al;a2;}. Note that the commutativity of parallel composition regsithatal anda2 are
commutative.

Finally, the parallel composition successfully termisatehen both constituent pro-

cesses terminate:
(P13 stop) A (P2 % stop)

(P1|[m1...mn]|P2) % stop

Interleaving Interleaving is a special case of parallel composition whbe synchroni-

sation set is empty:
P1|||P2 = P1|[]|P2

Named process A named process is declared as follows:

process <process-name>
<behavioural-expression>
endproc

where behavioural-expression is written using the constructs presented above.
Once declared, the process can be instantiated by name addmith any of the above
operators (in place df, P1, orp2).

This feature facilitates modular specifications and bahavieuse. Most importantly, it
extends the expressive power of the language by allowingsae behaviours, such as the

one in Figure 6.8.

6.4.1 Restrictions on device-class specifications

As mentioned above, the Termite specification languagedd ts develop all three spec-
ifications involved in driver synthesis: the device protscspecification, the OS protocol
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SD bus

SD
<:> card

wnmn:. Local bus

e

SD host

CPU
controller

Figure 6.9: SD host controller device.

specification and the device-class specification. Whil&xBeand the device protocol speci-
fications can use the complete expressive power of the |geguavice-class specifications
are subject to the following restrictions:

1. A device-class specification defines events that arereiiernal to the device or
occur at the boundary between the device and its externaligdiyenvironment. In
the Termite specification language such events must berddcts methods with
the internal specifier to denote the fact that they cannot be directly roseat
the software interface of the device. Thus, device-clasgifipations only contain
internal methods.

2. Adevice-class specification defines common behaviowasaiss of devices but does
not define the ordering in which these behaviours are allowestcur. As such, it
may not havdransitions ,variables , anddependencies sections.

The second restriction reflects a limitation of the presesrimite implementation. In
principle, associating ordering constraints with deuitass events is a good idea, since it
would enable separate validation of device and OS protocoty correct device or OS
protocol state machine must refine the behaviour defineddyehice-class specification.
However, such validation has not been implemented.

6.5 A realistic example

This section illustrates the various concepts introdunete previous sections using a com-
plete Termite specification of a driver fofSecure Digital (SDhost controller device. This
device was chosen since it is simple enough to allow a comigseription, yet represents a
real device allowing us to show what Termite specificatiargéal hardware look like.

6.5.1 Overview

An SD host controller acts as a bridge between the host CPlaar&D card device con-
nected to the SD bus (Figure 6.9). The SD bus architecturmesisdentric with the host con-
troller issuing commands on the bus and the SD card exectlititngommands and sending
responses back to the host controller.

This example targets an open-source SD host controllereimgnhtation published by
the OpenCores project [Edv]. The device protocol specifingpresented here has been
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SD bus framework

lLos:SDHostOS

Ll

OpenCores
SD host controller driver
1
I'Jdev:SDHostOpenCores
Software
Hardware

OpenCores
SD host controller

Figure 6.10: SD host controller driver and its ports.

component sdhc_opencores

{

ports :
SDHostClass class;

SDHostOS os<class/class>;
SDHostOpenCores dev<class/class>;

Figure 6.11: The SD host controller driver component syatifin.

manually derived from the register-transfer level VerildBL design of the controller.

Figure 6.10 shows the architectural view of the driver thastrbe synthesised. The
driver implements two ports: one for interaction with the &%®l one for interaction with
the device. This architecture assumes that the host CPUeedrand write device registers
directly, so the driver does not need to use a bus transpwitedo access the device.

The Termite declaration of the driver is shown in Figure 6I11lists the three specifica-
tions that the driver must comply with: the SD host contraflevice-class specification and
the OS and the device protocol specifications. The devis ¢éamodelled as a separate
protocol that only contains internal methods representiegjce-class events. The device
and the OS protocols both declare dependencies on the dda&sprotocol, which allows
establishing the relative ordering of interface metho@aations and device-class events.

The following subsections consider each of the three potédo detail.

In order to keep the example concise, | have chosen not tolrathdéthe device and OS
features. In particular, in modelling the controller and 8D bus behaviour | specify sim-
plified SD command and response formats and abstract aw&[ilezror recovery, power
management, and hot plugging behaviours. Likewise, | defisenplified OS protocol,
which is loosely based on the analogous protocol in Linux,does not support advanced
configuration options and multiple-block data transfers.
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Note that results for synthesising drivers from unabriddedice specifications are pre-
sented in Section 6.8.

6.5.2 The device-class specification

As mentioned in Section 6.2, a device-class specificatiost roapture common external
behaviour of a family of similar devices. For SD host conéoldevices, the common
behaviour is defined in the SD bus specification [SD 06], nadied by the SD Association.

According to this specification, the controller operatesdsying SD commands, con-
sisting of a 6-bit command index and a 32-bit argument, ortise Upon completion of the
command, the card sends back a 32-bit response. Two comnmanti®& an additional data
transfer stage that follows the response: the block readramd is followed by the transfer
of a 512-byte block from the card; the block write commandlfofved by the transfer of
a 512-byte block to the card. The argument of both commantteiblock address in the
card memory.

The controller also manages several bus configuration peesisy of which we model
just one—the bus clock frequency. The frequency can be neddify applying a divisor to
the basic clock.

Figure 6.12 shows the specification of the SD host controiésiice class. It is defined
as an protocol with only internal methods (correspondindeice-class events). The first
two events (lines 19 and 21) are generated when the devioenisd on and ready for use
and when it is inactive respectively. The remaining evemscdbe command and data
transfers and bus frequency change operations outlinegabo

Since the device class only defines the set of events shategdrethe OS and the
device specifications and does not impose constraints onrthering of these events, a
device-class specification does not define a state machine.

6.5.3 The OS protocol specification

The OS protocol specification (Figure 6.13) describes thmeicge that an SD host con-
troller driver must provide to the OS. It declares data typreshanged between the OS
and the driver (lines 3-15), protocol methods, including ®@uests and driver responses
(lines 16—33), device-class events whose occurrencetigcted by the protocol (lines 33—
42), variables used to describe the state of the protoec@q##3—46), and the protocol state
machine (starting in line 47).

The protocol state machine defines the driver’s requiredtiges to requests in terms
of device-class events that must occur before the driveissencompletion notification
to the OS. This pattern is illustrated, for instance, indid8-50, which specify how the
driver must handle probe request from the OS. Before replying to this request in libg 5
the driver must ensure that tlibass.on  event in line 49 occurs. This event refers to
theon event defined in the device-class specification (Sectior2)s.Bn other words, the
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1 protocol SDHostClass

2{

stypes :

4 [*SD error conditions*/
s enum sdh_status_t {

6 SDH_SUCCESS = 0, /* success */

7 SDH_ECRC =1, /~ CRCerror =*/
8 SDH_ETIMEOUT = 2 [+ tinmeout =/

s }

10 [/*SD conmand attri butesx*/
1 struct  sdh_cmd_t {

12 unsigned<6> index; /+cmd i ndexx/

13 unsigned<32> arg; / =ar gunment =/

14 bool data; /+*command wit h data?x/
15 bool response; [ *response expect ed?x/
6 )

17methods :

18 [*Device initialized*/

19 internal on();

20 [*Device inactivex/

21 internal of f();

22 [ *Successful conpletion of a command stagex/

23 internal commandOK(sdh_cmd_t command, unsigned<32> response);
2« [ +*Conmand stage fail ed*/

25 internal commandEr r or (sdh_cmd_t command, sdh_status_t status);
26 [/ *Successful conpletion of a data stage*/

27 internal bl ockTr ansf er OK(

28 paddr_t mem_addr, /Ihost address of the block

29 unsigned<32> card_addr); //card address

30 [/+Data transfer failed*/

a1 internal bl ockTransfer Error(

32 paddr_t mem_addr,

33 unsigned<32> card_addr,

34 sdh_status_t status);

s [/ *Bus frequency changedx/

3 internal busC ockChange(u32 divisor);

a7}

Figure 6.12: The SD host controller device-class spedcifioat

precondition for delivering thprobeComplete notification to the OS is that the device is
successfully initialised. Note that the state machine adoéslescribe how this precondition
is satisfied. This information is part of the device spediiirg considered below.

After completing the initialisation, the protocol statechie executes thREQUESTS
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1 protocol SDHostOS

2{

stypes :

4 struct  sdhc_request t {

5 unsigned<32> opcode; /+*cmd i ndexx/

6 unsigned<32> arg; /+cmd ar gunent =/

7 bool response; / *response presentx*/

8 bool data_ present; /*data stage presentx/
9 paddr_t block; /*bl ock address*/
10}

11 struct  sdhc_response t {

12 int<32> cmd_status; /+cmd stage statusx/
13 unsigned<32> response; /*response from cardx/
14 int<32> data_status; /+data stage statusx/
15}

1smethods :

17 [/*Probe and initialise the controllerx*/

18

probe ();

19 ut probeConpl et e (int<32> status);

20

~

21 *Shut down the device and terninate the driverx/

5

22 renove ();

ut renmoveConpl ete ();

o

23

24
s [*lssue a conmand on the bus, followed by a data
26 transfer stage (if the command invol ves one)*/

27 request (sdhc_request t request);

26 out request Conpl et e (sdhc_response_t response);

29

30 [/*Change the bus clock frequency=*/

31 set O ock (unsigned<32> divisor);

32 ut setd ockConpl ete ();

ssdependencies :
s«  SDHostClass cl ass {

35 restricts on;

36 restricts of f;

37 restricts comandOK;

38 restricts conmandErr or;

39 restricts bl ockTr ansf er OK;

40 restricts bl ockTr ansferError;
a restricts busC ockChange;

2 )

Figure 6.13: The SD host controller driver OS protocol sfeation (continued on the next
page)
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azvariables  :

42 unsigned<32> m_reqDiv; /=*requested divisorx*/
45 sdhc_request_t m_request;

46 sdhc_response_t m_response;
a7transitions :

48 probe;

4 cl ass.on:timed ;

so  probeConpl et e[$status==0]:timed _____;
51 REQUESTS

52

sswhere

54

55 process REQUESTS

56 /*A renove request=*/

57 remove;

58 /*The driver must switch the device off

59 before calling the conpletion methodx/

60 cl ass. of f :timed _;

61 renoveConpl et eitimed

62 /*The protocol state machine tern natesx/

63 exit

|

65 /+*Command w t hout a data transfer stagex/

66 request [$request.data_present==false]

67 /m_request=$request;

68 (

69 cl ass. commandX

70 [($command.index==m_request.opcode)&&

71 ($command.arg==m_request.arg)&&

72 ($command.response==m_request.response)&&

7 ($command.data==false)]

74 {m_response.cmd_status=0;

75 m_response.response=$response;}itimed _ ;
76 request Conpl et e[$response==m_response]:timed _____;
77 REQUESTS

78 I

79 cl ass. conmandEr r or

80 {m_response.cmd_status=$status;

81 m_response.response=0;}itimed_____ ;

82 request Conpl et e[$response==m_response]:itimed _____;
83 REQUESTS

84 )

Figure 6.13: The SD host controller driver OS protocol sfeation (continued)
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85 ]

86 /*Command 17 (bl ock read request) and command 24

87 (block wite request) are handled sinilarlyx/

88 request [($request.data_present==true)&&

89 (($request.opcode==17)||($request.opcode==24))]

90 /m_request=$request;

91 (

92 / *Command stage conpl etes successful | y*/

93 cl ass. conmmandOK[($command.index==m_request.opcode)&&

94 ($command.arg==m_request.arg)&&

95 ($command.response==m_request.response)&&
96 ($command.data==true)]

97 {m_response.cmd_status=0;

98 m_response.response=$response;}.timed _ ;
99 (

100 /+Data transfer stage conpl etes successful | yx/

101 cl ass. bl ockTr ansf er OK[$mem_addr==m_request.block]

102 /m_response.data_status=0 : timed __ ;
103 r equest Conpl et e[$response==m_response]:itimed _____;

104 REQUESTS

105 1

106 /+Data transfer fail s/

107 cl ass. bl ockTr ansf er Er r or/m_response.data_status=$status;
108 r equest Conpl et e[$response==m_response]:itimed _____;

109 REQUESTS

110 )

111 1

112 /*Command stage fail s*/

113 cl ass. conmandEr r or /{m_response.cmd_status=$status;

114 m_response.response=0;

115 m_response.data_status=0;};

116 request Conpl et e[$response==m_response]:itimed _____;

117 REQUESTS

118 )

19 ]

120 /*A set d ock request*/

121 set C ock/m_reqDiv=$divisor;

122 /+*The driver nmust change the bus clock divisor to the
123 requested val ue before calling the conpletion nmethod*/
124 cl ass. busd ockChange[$divisor==m_reqgDiv]itimed ___;

125 set C ockConpl et e:timed
126 REQUESTS
127 endproc

128};

Figure 6.13: The SD host controller driver OS protocol sfieation (the end)
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process (line 55). In its initial state, this process penf®ra choice between incoming
requests defined in lines 57, 66, 88, and 121 using the chpemtwr]] (lines 64, 85, and
119). This means that the driver must wait for the OS to cadl ofithese methods.

We consider one of the four requests in detail in order ttithte the use of protocol
variables and transition guards in OS specifications. L@ &scribes a request to issue
an SD command without a data transfer stage. Upon receiiegequest, the request
structure is copied to the_request variable. The state machine defines two possible
outcomes of this request: either the device successfullyptetes the command (line 69)
or the command completes with an error (line 79). The gualihés 70—73 states that the
command transferred on the bus must correspond to the onestegl by the OS. In case
of success, the response received from the SD card is savlkdrm response variable
(line 75) and delivered to the OS by calling ttejuestComplete  method (line 76). If
the command fails, the driver stores the error code imtheesponse variable (line 80)
and reports the failure to the OS via tteuestComplete  method (line 82).

Handling of the other requests is explained using commenisgure 6.13. Note that
for a command with a data stage the driver must also wait fodtta transfer to complete
(lines 101-103) before signalling success.

6.5.4 The device protocol specificatiod

While the OS protocol specification determines the striectifrthe driver by defining re-
guests that it must handle in every state, the device prbspazification reflects the struc-
ture and operation of the device hardware.

Figure 6.14 shows the internal architecture of the devioguiestion, as defined in its
HDL specification and Table 6.2 describes its registers. ddwice supports the bus mas-
tering capability and uses DMA to transfer data blocks to fmooh the host memory. It is
connected to an interrupt line, which is used to signal thregietion of command and data
stages to the driver.

The interface logic of the controller consists of the reggidile, the Command Master
module, responsible for issuing commands without a dagesthe Data Master module,
which handles block transfer commands, the BD module, whidfers block descriptors
before passing them to the Data Master, and the Clock Dividmtule, which controls the
SD bus clock.

The Termite specification of the device is shown in Figures6.Ellipses are used
throughout the specification to indicate omission of codgriments; the complete speci-
fication is given in Appendix C.

The types section describes the structure of device regigealy the command regis-
ter is shown) and the data structure used to represent blestridtors inside the device

2The OpenCores SD controller device protocol specificati@msgnted in this section was completed in
collaboration with Balachandra Mirla.
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Registers Command Master : :
ARGUMENT > 1 1
COMMAND > | |
STATUS . |
RESPONSE . o
ISR 1 2
EISR | - |
Host X S
i © SD bus
iface
J | [RESET | < :4
) b~
Clock Divider : L=
2
Ko}
Data Master 1 a 1
DISR X a
BDSTATUS ] | |
T
BT 1 <>, |
>| X
1
BD 1 1

Figure 6.14: The OpenCores SD host controller device atthite.

(line 11). The methods section declares methods comprisiegnterface between the
driver and the device. These include register read and wrdtihods (lines 18—20) and the
interrupt method (line 21). Theut specifier of the method argument in line 19 indicates
that the value of this argument is returned by the method.

Interface variables (lines 34—41) describe internal dexegisters and signals that influ-
ence the device’s software-observable behaviour. itheommand_reg variable models
the content of the command register of the device. Mhaeew_commandvariable models
the internal signal that notifies the Command Master aboetnagommand issued through
the argument register, while thm_data command variable indicates whether the new
command will be followed by a data transfer stage. Tiecommandvariable describes
the command currently being handled by the Command Mastallf; m_tx_descr and
m_rx_descr represent block descriptors stored insideBfitamodule.

The device protocol state machine has been manually defieed the RTL design
of the device in the Verilog HDL which is used to synthesise tlevice hardware. The
structure of the state machine reflects the device architeshown in Figure 6.14 and its
behaviour models the device’s reactions to software condsiamhe order in which these
software commands are issued by the driver is determinadraatically by the synthesis
algorithm. In some cases, however, the device protoca staichine specifies an explicit
sequence of commands that must be issued to the device itamncate. For example, the
state transitions in lines 43—44 force the driver to resetdvice, by writing a 1 followed
by a 0 to the reset register, before issuing any other comsaand

This is necessary due to a limitation of the current Termyitdtsesis algorithm, namely,
it requires the values of all protocol variables to be knowmany state. This assumption
requires the device to behave deterministically with respe commands issued by the
software, i.e., the state of the device must be completetgroiéned by the sequence of
commands issued by the driver. This assumption does notihdltk initial state of the
device protocol, since at this point the device registery heve arbitrary values. The
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Register: ARGUMENT (Command arg) Size: 32 Access: RW
[31:0] ‘ CMDA ‘ Command argument value
Register: COMMAND (Command) Size: 16 Access: RW
[15:10] | CMDI Command index
[9:2] RESERVED | Reserved
[1:0] RTS Response type

00: No response

01: Response
Register: STATUS (Card status) Size: 16 Access: R
[15:1] | RESERVED | Reserved
0 CICMD Command inhibit
Register: RESPONSE (Command response) Size: 32 Access: R
[31:0] ‘ CRSP ‘ Response from the card
Register: RESET (Software reset) Size: 8 Access: RW
[31:0] | RESERVED | Reserved
0 SRST Software reset
Register: ISR (Normal intr status) Size: 16 Access: RW
15 El Error interrupt
[14:1] | RESERVED | Reserved
0 CcC Command complete
Register: EISR (Error intr status) Size: 16 Access: RW
[31:2] | RESERVED | Reserved
1 CCRC CRC error
0 CTE Command timeout
Register: DIVISOR (Clock divisor) Size: 8 Access: RW
[7:0] ‘ CLKD ‘ Clock divisor
Register: BDSTATUS (Buffer descr status) Size: 16 Access: R
[15:8] | FBRX Free RX descriptors
[7:0] FBTX Free TX descriptors
Register: DISR (Data intr status) Size: 16 Access: RW
[15:2] | RESERVED | Reserved
1 TRE Transmission error
0 TRS Transmission successful
Register: BDRX (RX buffer descriptor) Size: 32 Access: W
[31:0] | BDRX |
Register: BDTX (TX buffer descriptor) Size: 32 Access: W
[31:0] | BDTX |

Table 6.2: SD host controller registers.

problem is overcome by issuing a sequence of commands tihgtthe device to a known
state. In this example, writing 1 to the software reset tegisesets all device registers to
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their known default values (lines 43).

Once the reset is complete, the device is ready to handle emasn as indicated by
the on device-class event in line 45. Line 46 invokes BBHOSTprocess (line 49),
which describes normal operation of the device. This p®aemnsists of four concur-
rent subprocesses, corresponding to four device modul&sgime 6.14: REGISTERS
COMMAND_MASTHERTA MASTERandCLOCK_DIVIDER(lines 50-54). These sub-
processes communicate via variables, which can be read@fatad by any process. In
addition, COMMAND_MASTEBRIDATA_MASTERynchronise on theff device-class
event. This means that the event can only occur when it isleda both processes, i.e.,
the device becomes inactive when both the Command and tlzeNledter are inactive.

The preemption operator in line 55 specifies that writing thioreset register (line 56)
interrupts normal device operation and resets all regigtetheir default values. A subse-
quent writing of O to this register (line 58) resumes deviperation from the clean state.

We illustrate how device registers are modelled using tigeraent register as an ex-
ample. Reading the register (line 69) returns its currehteval he effect of writing to this
register depends on the state of the command inhibit flag@@MDfield of the status
register). If the flag is set, meaning that the Command Masteurrently busy handling a
command (line 72), a write to this register updates the tegislue, but does not trigger
any signals. A write to the argument register when the flagtsset (line 75) triggers the
m_new_commandsignal (line 77) and sets the command inhibit flag (line 79).

Them_new_commandsignal wakes up the Command Master waiting for this signal in
line 85. It uses values in tHeOMMAN&NdARGUMENIEgisters to form an SD command
(lines 86—88) and sends it over the bus. Upon completion efchmmand, it raises an
interrupt (line 91). The outcome of the command is refleatetthé interrupt status registers
(ISR andEISR) and the response register. This is another situation wherassumption
of deterministic device behaviour is violated, since thaatxdevice state is not known to
the software until it reads the values of these registersréffbre, the device protocol state
machine specifies a sequence of register reads requiresttoae¢he determinism invariant
(lines 92-94). Lines 95-96 acknowledge the interrupt biyrgethe interrupt status registers
to zero. Lines 97-112 generate ttemmandOKor commandError device-class event,
depending on whether the command was successful or not;ateeyreset the command
inhibit flag, indicating that the Command Master is readydadie another command.
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1 protocol SDHostOpenCores

2{

atypes :

4 [+ device registers =/

s struct  command_reg {

6 unsigned<2> RTS;

7 unsigned<8> RESERVED;
8 unsigned<6> CMDI;

9 }

10

11 struct  block_descr {

12 unsigned<32> mem_addr; /=menory addr ess*/
13 unsigned<32> card_addr; /+card addressx/
u }

15

s methods :

17 [*register read/wite nethods */
18 out wite_conmand_reg (command_reg v);
19 out read_command_reg (out command_reg v);

20

2o in_irqg ()
22

2sdependencies :
2« SDHostClass cl ass {

25 restricts on;

26 restricts of f;

27 restricts conmandCK;

28 restricts conmandErr or;

29 restricts bl ockTr ansf er OK;

30 restricts bl ockTransferError;
31 restricts busCl ockChange;

2 }

33

savariables  :

s command_reg m_command_reg;
36

37 unsigned<l1> m_new_command;
s unsigned<l> m_data_command,
39 sdhost_command_t m_command;
40 block_descr m_tx_descr;

41 block_descr m_rx_descr;

Figure 6.15: The OpenCores SD host controller device spatifin(continued)
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s2transitions :

43

44

45

46

47

48

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

7

78

79

80

81

82

write_reset_reg[$v.SRST==1]/{m_comand_reg=0;m_status_reg=0;...};
wite reset reg[$v.SRST==0];
cl ass. on;
SDHOST
where

process SDHOST
(REGISTERS

Il
(COMMAND_MASTER ¢l ass. of f ]| DATA_MASTER)

Il
CLOCK_DIVIDER)
>
wite reset reg[$v.SRST == 1]/{m_comand_reg=0;
m_status_reg=0; ...};
write_reset_reg[$v.SRST==0];
SDHOST
endproc

process CLOCK_DIVIDER
write_clock_div_reg/m_clock_div_reg=$v;
cl ass. busC ockChange[$divisor==m_clock_div_reg.CLKD];
CLOCK_DIVIDER

endproc

process REGISTERS
read_ar gurment _r eg[$v==m_argument_req];
REGISTERS
I
wri t e_argunment _r eg[m_status_reg.CICMD==1]/m_argument_reg=%v;
REGISTERS
I
write_argument _reg[m_status_reg.CICMD==0]
/{m_argument_reg=%v;
m_new_command=1;
m_data_command=0;
m_status_reg.CICMD=1;};
REGISTERS
I

endproc

Figure 6.15: The OpenCores SD host controller device spatiiin(continued on the next
page)
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6.5. A REALISTIC EXAMPLE

process COMMAND_MASTER
awai t [m_new_command==1]
Am_command.index=m_command_reg.CMDI;
m_command.arg=m_argument_reg.CMDA,;
m_command.response=m_command_reg.RTS;
m_command.data=m_data_command;
m_new_command=0;};
irqg : timed ;
read_i sr_reg/m_isr_reg=$v : timed _ ;
read_ei sr_reg/m_eisr_reg=$v : timed _ ;
read_response_reg/m_response_reg=%v : timed _ ;
wite isr_reg[$v==0] : timed _;
write_eisr_reg[$v==0] : timed _;
(
iffm_isr_reqg.CC == 1]
cl ass. commandCK
[($command==m_command) &&
($response==m_response_reg.CRSP)]
/m_status_reg.CICMD=0 : timed _;
COMMAND_MASTER
I
else
cl ass. conmandEr r or
[(fcommand==m_command) &&
($status==(m_eisr_reg.CCRC ?
SDH_CMD_ECRC : SDH_CMD_ETIMEOUT))]
/m_status_reg.CICMD=0 : timed _;
COMMAND_MASTER

cl ass. of f;
exit
endproc

process DATA_MASTER
endproc

Figure 6.15: The OpenCores SD host controller device spatiidin(continued)
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los.requestComplete(os.m_response)

?0s.request[$request.data_present==false]
/os.m_request=$request;

ldev.write_command_reg(
{.RTS=0s.m_request.response
.RESERVED=0,
.CMDI=0s.m_request.opcode})

ldev.write_argument_reg({.CMDA=0s.m_request.arg})

ldev.write_isr_reg(0)
class.commandOK
/{os.m_response.cmd_status=0;

| i i 0S.m_response.response=
dev.write_eisr_reg(0) dev.m_response_reg.CRSP;}

iffdev.m_isr_reg.CC==1]

class.commandError

/{os.m_response.cmd_status=dev.m_eisr_reg.CCRC?
SDH_CMD_ECRC : SDH_CMD_ETIMEOUT;
0s.m_response.response=0;}

Figure 6.16: A fragment of the SD host controller driver statachine generated by Ter-
mite. Exclamation marks denote method invocations perariny the driver; question
marks denote driver methods invoked from the environmen§ ptbtocol methods are
shown in bold font; device protocol methods are in normat;fdevice-class events are in
italics.

6.5.5 The driver state machine

The Termite synthesis algorithm combines the device andDtBerotocol specifications
and produces a driver state machine which defines the drikgattions to OS requests and
device interrupts. The algorithm for constructing suchatestnachine will be presented in
Section 6.6. Figure 6.16 shows a fragment of the resultiatg shachine responsible for
handling SD commands without a data stage.

In the initial state (state 1), the driver waits for a requdstm the OS.
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If this request satisfies the guard of the transition fromtestd to state 2
([$request.data_present==false] ), then this transition is taken.

According to the OS protocol specification, either tlemmandOK or the
commandError device-class event must occur before the driver can sendnaletion
notification to the OS (Figure 6.13, lines 69 and 79). To aahtbis goal, the driver state
machine performs the following sequence of device inteyast it issues the command
specified in the request to the device through the command@nuoinent registers (transi-
tions2 — 3 and3 — 4), waits for an interrupt from the device (transitidn— 5), reads the
interrupt status registers and the response registesiias5 — 6,6 — 7, and7 — 8),
and acknowledges the interrupt (transitigns> 9 and9 — 10). If the command completed
without an error (transition0 — 11), thecommandOKdevice-class event occurs (transi-
tion 11 — 13); otherwise (transitiol0 — 12), the commandError event occurs. In
either case, the fields of the_response variable of the OS protocol are set to reflect the
status of the command. Finally, the driver invokes the OSptetion callback (3 — 1).

6.6 The synthesis algorithm

As outlined in Section 6.3, the Termite synthesis algoritbraceeds in three steps. In
the first step, it computes the parallel product of all drigestocol state machines, which

represents all legal (safe) behaviours of the driver. Insineond step, it finds a winning

strategy among all legal behaviours, which guaranteesds® i.e. ensures that the driver
achieves its goals in any state. In the third step, the winstnategy is translated into a
driver implementation in C.

In the trivial example presented in Section 6.3, states dividual protocol state ma-
chines and their product were enumerated explicitly. Thisfeasible when dealing with
realistic device and OS protocols. Therefore Termite setie a compact symbolic repre-
sentation of protocol state machines as described below.

6.6.1 Symbolic representation of protocol state machines

The symbolic representation of a protocol state machineeethe state space of the pro-

tocol in terms of state variables. Protocol state transitiare specified in terms of symbolic

constraints on the values of protocol variables in the soara destination states.
Formally, a protocol state machine is a tuple

P=(S,i,M,G,T)

whereS = 17 x ... x V, is the state space formed by the Cartesian product of theidema
of state variableg; € S is the initial variables assignmemf = M;,, U M+ U M, is the
set of protocol methods, comprised of inbound, outboundrardhal methodsiy € Sx S

is the goal relationI” C M™T x Guards x Actions is the state transition relation.
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M represents the set of protocol methods extended withihmethod, which denotes a
transition without a triggerM ™ = M U {nil}. Guards and Actions are the sets of all
Tingu guard and action expressions respectively.

For every methodn € MT™, we define two operators:Dom() and Range().
Dom(m) returns the domain of the method, i.e., the set of its inpyti@ents assignments;
Range(m) returns the range of the method, i.e., the set of its outgutraents (arguments
declared with theut qualifier) assignments. If the method does not have any ioipoiit-
put arguments, then the corresponding operator returnscamssisting of a single element:
{@} (not an empty sep).

Each element € T of the transition relation has the following form:

T = (m,g,a)

wherem € M™ is the trigger of the transitiony : S x Dom(m) x Range(m)
{true, false} is the guard, which determines whether the transition iblexabased on its
source state and method argumeiats; S x Dom(m) x Range(m) — S is the action,
which computes the new values of state variables based ornvttlees in the source state
and method arguments.

The transition relatio” can be partitioned into uncontrollable and controllabéensi-
tions: T = T,, U T.. Uncontrollable transitions are triggered by incoming Imoet invoca-
tions from the environment{ € M;,). The driver may wait for such a transition to occur
but it cannot force a specific method to be invoked at a spdoi§iance. Uncontrollable
transitions are further subdivided in timed and untimedsofig = T, timed U Toy_untimed-
Controllable transitions include outgoing method invamag, device-class events and-
transitions (n € M, U M;,,: U{nil}). When the driver is in a state where such a transition
is enabled, it can force the transition to be taken.

The goal relation maps each state S into a set of states that must be reached from
to satisfy the protocol liveness requirements. The goataetbe empty, meaning that the
protocol does not define any goals in the given state.

Guard, action, and goal relations are defined in terms of sfimbxpressions written
using the Termite syntax (Section A.2).

A Termite protocol specification is converted into the sylitbrepresentation as fol-
lows. First, the protocol state machine in the Termite dedion language is expanded
into a flat state machine by applying the rules given in Sadid to each Termite operator.
Second, each state of the resulting flat state machine ign@sba unique integer number
from the range{1..num_states}. A new protocol variablestate is introduced to model
the current state of the protocol. Thus, the state spacéthe resulting state machine is
comprised of the original protocol variable domains anddbmnain of thestate variable:

S =Vi X ... X Voum_vars X {1..num_states}.

The initial state is computed by assigning tlseate variable to the initial protocol state

and setting all other state variables to zero.
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The setM of protocol methods consists of all methods listed in themier protocol
specification, including dependencies.

The transitions and goals relations are computed as folléws each state transition
(s1,mlg]/a, s2) of the flat state machine (whesgands, are the source and the target states
of the transition andn[g]/a is the Termite transition label), the corresponding trémsiis
added to the transition relatioff: := 7' U {¢}. The transitiort has the same trigger as the
original transition {n); its guard is obtained from the original guard by adding edprate
on the value of thetate variable gtate == s1), and its action is obtained from the original
action by adding a statement that updates the value oftttie variable Gtate = s5):

t = (m,g A (state == s1),{a; state = s9; })

If the original transition is timed (i.e., the transitiorbkd contains thetimed key-
word) then the goal relation is extended with a new goal:

G := GU{(01,09)| 01 F (state == s1), o9 F (state == s3)}

whereE= denotes the “satisfies” relation. This means that in a dtatesttisfies the symbolic
constraintstate == s1, the goal set includes all states that satisfy the constsaine ==

S92.

6.6.2 Computing the product state machine

Given the set{ Py, ..., P} of driver protocols, Termite computes their parallel produ
P = P, || ... || P.. The parallel product of two protocol state machinéy, =
<Sl,i1,M1,G1,T1> andP, = <52,i2,M2,G2,T2> is Computed as

P || P2:<51XSQ, (’L'l,i2>, My UM, , G, T>

whereG andT are defined by the following rules.
Goals are carried over from the multipliers to the product:

(01,02) € Gy
Vo, o € Sy i ((01,01),(02,0%)) € G

(01,02) € Gy
Vo, o € S1: ((0],01),(0h,02)) € G
P; transitions that are not synchronised with are carried over to the product state

machine:
= <m7g7a> € T17 m ¢ M2

<m7 952, a52> eT
wheregg, andag, are extensions of the transition guard and action to the stadice of

protocol P, defined as:
9s, (01, 09,10, 0ut) = g(o1,in, out)

as, (01, 02,in,out) = (a(o1,in,out), og)
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whereo; € S1, o2 € Sa, in € Dom(m), out € Range(m).
Similarly, for P, transitions:

t= <m>g>a> € T2> m¢ Ml
<m> ST a51> eT

9s, (01, 09,10, 0ut) = g(o9,in, out)
as, (01,092, in,out) = (o1, a0y, in, out))
Finally, transitions with common triggers are synchrodise

ty = (m,g1,a1) € Ty, to = (m,g2,a2) € Tp, m € My N M,
<m> 9152 /\92517 CL> erT

a(o1,09,in,out) = (a1 (o1, in,out), az(oe,in,out))

6.6.3 Computing the strategy

The core part of the synthesis algorithm is the procedure g¢fizen the symbolic product
of driver protocol state machind® = (S, i, M, G, T), computes a driver strategy. In
a nutshell, for every reachable state of the product, tlosgmiure computes the behaviour
that guarantees that the driver will achieve one of the gdafed in this state, in any
environment that conforms with protocol specifications.

Since the product state machine contains transitions aéedrby the driver (outgoing
method invocations) as well as transitions controlled &yahvironment (incoming driver
method invocations by the OS or the device), the problem ofpeding a driver strategy
can be formulated as a two-player reachability game proljlgm95]. A basic algorithm
for solving such games is described by Thomas [Tho95]. Garewrigin state and a set
of goal states, the algorithm recursively computescihigtrollable predecessaet, i.e. the
set of all states from which the goal can be reached in one $tap includes states where
the driver can trigger a transition (by invoking the cor@sging OS or device method)
that will take it to the goal, as well as states where any legethod invocation from the
environment takes the driver to the goal. This results inaahability graph containing all
states and transitions of the product state machine frorahwthiere exists a strategy leading
to the goal. The algorithm terminates when the origin stai@dded to the graph or when
a fix point is reached. In the former case, the reachabiligplyrcontains the strategy that
the driver must follow to achieve the goal from the origintstaFor every state between
the origin and the goal, this strategy prescribes that tiveidmust either perform a specific
method invocation or wait for a method invocation from theiemmment. In the latter case
(afix point is reached), a winning strategy does not existthaalgorithm returns a failure.

Termite implements a variation of this algorithm based anftilowing heuristic: any
path in the product state machine leading from the origitesta the goal is likely to be
extensible to a complete winning strategy. This means fhhiere exists a sequence of
driver commands and device responses leading to the gaathieesequence is likely to
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belong to a complete strategy that incorporates any valitdaesponses, not just those
included in the sequence. If this is the case then such gyraten be found by extending
the initial sequence with all valid device responses.

If this heuristic holds, it allows constructing a winningategy faster, since finding a
single path to the goal is computationally easier than mgldhe reachability graph.

If the heuristic fails and the initial sequence cannot beraéd to a complete strategy,
the algorithm should backtrack and find another initial gsge. Such a backtrack was not
required in any of the drivers that have been synthesisedrstherefore it is currently not
implemented, meaning that theoretically Termite may fafind a winning strategy even if
one exists.

6.6.3.1 Formal representation of the driver strategy

The driver strategy computed by Termite constitutes a ticegraph where every node
corresponds to a subset of the product state sfacEhese subsets only cover states that
are reachable by the driver and may overlap. Edges of thehgegresent transitions of
the product state machine. There are two types of edgesiotlabte edges labeled with a
controllable transition and uncontrollable edges labal#d an uncontrollable transition.

The graph is constructed in such a way that every node haar @ittly uncontrollable
or only controllable outgoing edges, or no edges at all. Whendriver reaches a node
with only uncontrollable actions (called an uncontrolalriode), it stops, waiting for a
method invocation from the environment. In a node with ordpteollable edges (control-
lable node), the driver performs a method invocation cpeding to one of the edges.
All controllable edges in a node are guaranteed to haveiti@ms with mutually exclusive
guards, so that exactly one transition is enabled in the ,noglece the driver behaviour is
deterministic. Upon reaching an edge without outgoing edtee driver terminates.

The strategy graph has a designated initial node, whiclespands to the initial state
of the product state machine.

Formally, the driver strategy graph is represented as atupl

(N, i, E)

N c 29 is the set of nodes, where each node corresponds to a sulssatesfof the product
state maching, € N is the initial nodeE = E,, U E. is the set of edges, which consists of
uncontrollable edgeB,, and controllable edgés..

An uncontrollable edge is defined by its source and targe¢sadd the corresponding
transition in the product state machifie, ¢ N x T,, x N,

A controllable edge is defined by its source and target natiesgorresponding tran-
sition in the product state machine, and a function that edepinput arguments of the
transition trigger given the current values of state vdeisitiE, C N x T, x (S +— o) x N,
where(S — o) denotes the set of all functions ovgr
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The strategy computed by the Termite synthesis algoritharaguees that the driver
satisfies both safety and liveness requirements in a whbnm environment.

Safety means that behaviours generated by the strategylycavith driver protocol
specifications, namely: (1) any path in the strategy graptesponds to a valid trace of the
product state machine and (2) given a node in the strategghgréth only uncontrollable
outgoing edges and a corresponding state of the produet siathine, for every uncon-
trollable transition enabled in the state there exists agead the node labeled with this
transition.

Liveness means that, whenever in a state with a goal, therdrixentually reaches one
of the states in the goal set by following the behaviour pibed by the graph.

Finally, a well-behaved environment must satisfy the felltg requirements: (1) any
method invoked by the environment triggers a valid statesiteon in the product state ma-
chine (safety), (2) whenever the driver is in a state with onmore timed uncontrollable
transitions, the environment will eventually trigger orfélee uncontrollable transitions en-
abled in this state (liveness), (3) if atimed uncontroligshsition becomes enabled infinitely
often, it will eventually be taken (fairness).

6.6.3.2 Algorithm for computing the driver strategy

Figure 6.17 defines some helper functions used in computiagstrategy. Figure 6.18
shows the main body of the algorithm that computes the dsirategy.

The Strategy procedure The procedure explores the state space of the driver increme
tally. It maintains the set of reachable strategy nodeshaat been added to the graph but
the behaviour in which has not been determined yet. On evergtion it selects one of
these nodes and computes the driver behaviour in this ndds nTay result in one or more
edges being added to the node and one or more new nodes bedied tacthe graph. The
algorithm terminates either when the set of unexplored sit@deomes empty (success) or
when the algorithm is unable to determine behaviour in a node

The initial node of the strategy graph consists of a singitest(line 2). This initial
node is added to the set of graph nodlesand the set of unexplored nod®s Lines 5—
21 describe the main loop of the algorithm. Line 6 removes @erfoom the set of un-
explored nodes. If there ameil-transitions enabled in the corresponding states of the
product state machine (line 7), then one of them must be tékech transitions corre-
spond toif/else and await Termite operators, which must be executed as soon as
they become enabled). Lines 8-10 add edges for all suctransitions to the graph. The
AddControllableTransition procedure, described below, adds an edge labeled with
transitiont to nodes. The last argument of the procedure is the function used rfgpate
transition arguments. Sinoel-transitions have no arguments, functifg, which maps
any input to{@}, is used here.
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Inputs:
e P=(S, i, M, G, T)—symbolic product of driver protocol state machines
esCS
o t=(m,g,a) €T
o f:S5— Dom(m)
The set of goals defined in
Goals(s) ={c € S|Fo’' €s: (0¢/,0) € G}
The set of source states where transiticmenabled:
Source(t) = {o € S| 3z € Dom(m),y € Range(m) : g(o,z,y) = true}

The image ofs under transitiort is the set of all states that can be reached by taking the
transition from a state is

Image(t,s) = {o € S| 3o’ € s, € Dom(m),y € Range(m) :
(9(o”, z,y) = true) A(a(o”, z,y) = o)}

The image ok under transitiont and functionf is the set of all states that can be reached by
takingt from a state irs, with input arguments of computed using':

ImageF(t,s, f) = {o € S| 30’ €5,y € Range(m) :
(9(o’, f(0"),y) = true) A (a(o”, f(o”),y) = o)}
The set ofil-transitions ins:
Thi(s) = {t = (nil, g,a)| sN Source(t) # @}

The set of inbound-method transitionssin

Tin(s) = {t = (m, g,a)| (m € M;p) A (sN Source(t) # @)}

Figure 6.17: Helper functions used in computing the drivextegy.

Line 11 checks whether there are any goals defined il not then in this node the
driver simply waits for invocations from the environmeniné@s 12-14). Otherwise, the
MoveToGoal procedure is used to determine behaviour in the node. Ifdsfanpath to
the goal, it adds the corresponding edges in noded returngrue. Otherwise, it returns
false and the synthesis algorithm fails (line 17).

The AddControllableTransition procedure Figure 6.19 presents the
AddControllableTransition procedure. Line 2 checks whether the set of states
obtained by taking transitiohwith input arguments computed usirfgfrom s has already
been added to the graph. If so, then an edge fsdmthis existing node is added to the
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1: procedure Strategy(P)
Input : P = (S, i, M, G, T)—the product of driver protocol state machines
Output : (N, i, E)—computed driver strategy
Returns : true—strategy computed successfullf;lse—failed to compute strategy
2 i:={i}
3 N:={i}
4 U :={i}
5: while U # @ do
6 s := Remove(U) // Remove an element frofid
7 if T,.1(s) # @ then
8 forall t € T),;(s) do
9 AddControllableTransition(s, ¢, f)

10: end for

11: else ifGoals(s) = @ then

12: forall t € T;,(s) do

13: AddUncontrollableTransition(s, t)
14: end for

15: else

16: res := MoveToGoal(s, Goals(s))
17: if res = false then

18: return false

19: end if

20: end if

21: end while
22: return true
23: end procedure

Figure 6.18: The main Termite algorithm for computing thieeir strategy.

graph. Otherwise (line 4), the new node is first added to thefsgraph nodes (line 6)
and to the set of unexplored nodes (line 7) and then a tranditomss to the new nodes is
added to the graph (line 8).

The AddUncontrollableTransition procedure This procedure (Figure 6.20) is sim-
ilar, except the target of the transition is computed usiey tnage function, which returns
the set of states obtained by taking transittdrom s with all possible argument values.

The MoveToGoal procedure TheMoveToGoal procedure finds a path from a source
set of states to a goal set. The sought path must consistytontrollable transitions and
timed uncontrollable transitions (i.e., transitions tha driver can trigger itself or that
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1: procedure AddControllableTransition((s, ¢, f))
Inputs: sC S, t = (m,g,a) € T,, f: S — Dom(m)

2 if 3s2 € N: ImageF(t,s, f) = so then
3 E. :=E.U{(s,t, f,s2)}

4 else

5: sg := I'mageF (t,s, f)

6 N:=NU{s2}

7 U:=UU{s2}

8 E.:=E . U{(s,t, f,s2)}

9 end if

10: end procedure

Figure 6.19: TheAddControllableTransition procedure.

(I

: procedure AddUncontrollableTransition(s, t)
Inputs: sC S, t = (m,g,a) € Ty,

2: if 389 € N: I'mage(t,s) = so then
3: E, :=E, U{(s,t,s2)}

4: else

5: s9 := I'mage(t,s)

6: N:=NU{sa2}

7: U:=UU{sa2}

8: E, :=E, U{(s,t,s2)}

o: end if

10: end procedure

Figure 6.20: TheAddUncontrollableTransition procedure.

are guaranteed to be eventually triggered by the envirotyméa this end, it constructs a
reachability tree to the goal (Figure 6.21). The root of tlee tis the goal set. Each node
in the tree represents a set of states from which there exisgsition to a node one step
closer to the root. The transition is represented by the dtgeconnects the two nodes.

In constructing the reachability tree, tdoveToGoal algorithm relies on two aux-
iliary procedures:UPre and CPre. Given a set of statesand a timed uncontrollable
transitiont, the UPre procedure computes the predecessof s undert (Figure 6.21).
The predecessor is the set of all states from which trandgitinggered with any arguments
leads to a state ist

UPre(s,t) = {o € S| (o € Source(t)) N (Image(t,{c}) Cs)}

TheCPre procedure takes a set of stateand a controllable transitiortand computes
the predecessd¥ of ' undert/, i.e., a set of states where there exists a funcfisuch
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layers[I+1] : layers][l] : - layers[0]

Figure 6.21: Example of a reachability tree from the souetesto the goal set, con-
structed by théMoveToGoal procedure.

that transitiont’ triggered with arguments computed wifhleads tos’. The procedure
returns both the computed sétand the functionf. Formally, the tuple§’, f) returned by
CPre(s,t') satisfies the condition:

ImageF(t',§, f) C§

The implementation o€ Pre andUPre is described in Section 6.6.4.

The MoveToGoal procedure (Figure 6.22) starts by creating the root nodeeofree
(line 2). The main iteration of the algorithm (lines 4-33adh new tree layer and checks
whether the source set belongs to one of the new nodes. To this end it iterates throug
all nodes in the previous layer (line 5). For each node, it Ermimerates all timed uncon-
trollable transitions (line 6) and computes the predegesfsine node under each transition
(line 7). If the predecessor is not empty and is not contaimede of existing nodes (line 8),
then it is added to the tree. Line 10 checks whether the s@atse is contained within the
predecessor set. If so, a path from the source to the goaldeasfound, which determines
the behaviour of the driver ig;. Since the first transition in the path is an uncontrollable
transition, the driver should wait for an input from the eaoviment. Hence all enabled un-
controlled transitions must be added to the strategy grage norresponding to the source
set. This is accomplished by lines 11-13 before returniojmMoveToGoal in line 14.

If a solution has not been found in the previous step, theritigo enumerates or
controllable transitions and computes the predecessoneohbde under each transition
(line 19). If the predecessor is not empty and is not conthineone of existing nodes
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1: procedure MoveToGoal(s{, s2)

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

2
3
4
5:
6
7
8
9

Inputs: s1 C S, s C S
layers[0] := {s2}
l1:=0
loop

for all s € layers[l] do
forall t € T, timea dO
pre := UPre(s, )
if (pre # @) A (Find(layers, pre) = false) then
layers[l + 1] := layers[l + 1] U {pre}
if s1 € prethen
forall ¢ € T;,(s1) do
AddUncontrollableTransition(s, t')
end for
return true
end if
end if
end for
forall t € T. do
(pre, f) := CPre(s,t)
if (pre # @) A (Find(layers, pre) = @) then
layers[l + 1] := layers[l + 1] U {pre}
if s1 € prethen
AddControllableTransition(s, ¢, f)
return true
end if
end if
end for
end for
if layers[l + 1] = @ then
return false
end if
l=1+1

end loop

34: end procedure

Figure 6.22: ThéMloveToGoal procedure.

(line 20), then it is added to the tree. If the new node costtie source set (line 22), then a

controllable edge corresponding to transitiand functionf is added to the strategy graph.
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The algorithm terminates when either a solution is foundher teachability tree is
complete (no new nodes have been added at the last iteréifiem®9). In the latter case,
the algorithm returns a failure.

6.6.4 Computing the strategy symbolically

All operations involved in computing the driver strategy @erformed symbolically. To
this end, driver states and state transitions are repexseamid manipulated in the form
of symbolic constraints on state variables and method aggtsn For instance, given the
following transition of the product state machine:

t =m[(v; == 1)&&(a1 == v2)|/v3 = a1

whereuvy, vy, andvg are state variables ang is an argument of methad, the correspond-
ing symbolic constraint is:

(v1 == 1) A (a1 == v2) A (v == a1) A (v] == v1) A (v == vg)

Here, v}, v5, andvj represent values of state variables in the target stateedfainsition.
The first three clauses in the above expression are derivedtlgli from transition guard
and action; the fourth and fifth clausés, == v1) A (v, == wvy) are derived from the
fact that the transition does not modify variablgsandwvs, hence their values are the same
in the source and the target state. In general, any statsitteencan be represented as a
boolean formula over predicates, which are written as Teredpressions. Termite stores
these formulae iisjunctive Normal Form (DNF)

All operations involved in computing the driver strategycluding functions in Fig-
ure 6.17 andCPre and UPre procedures are performed symbolically. For instance, the
image of sets described by constraint, == 0 under transitiorn: can be computed as
follows:

Image(t,s) = {< v}, v5,v5 > |Fvy,ve,v3,0a7 :
(02 ==0) A (1 == 1) A (a1 == v2) A (v == a1) A (v == v1) A (vy == v3))} =

{< i, vh,vh > | (v] == 1) A (v == 0) A (v ==0)}

In general, computing thémage function and other above-listed operations requires
solving first-order logic equations over Termite expressian principle, anysatisfiability
modulo theories (SMTolver [BT07,BPT07] can be used for this purpose.

Currently, Termite implements its own simple solver. Theent implementation of the
solver is limited to dealing with Termite expression of tenfi (x1 == x3), (z1! = z9),

(r1 == C), and(z1! = C) (wherex; andx, are state variables or method arguments
andCis a constant) and their boolean combinations. If it encensnén assignment that is
not expressible via such constraints, exg.,= x5 + x3, it assumes that the value of

is undefined. This assumption is conservative: if a drivextegy can be found under this
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assumption, this strategy is correct. It may, however,gmeVermite from finding a strategy
if one exists. For example, a transition whose guard depemtise value of:; can never be
added to the strategy, which may lead to a failure to find a imgnetrategy. In practice, this
problem is overcome by structuring Termite specificatianavbid the use of such variables
in transition guards, which requires extra effort on the pathe specification developer.
This limitation is not intrinsic to the Termite approach asah be addressed by the use of a
more powerful solver.

6.6.5 Generating code

The last step of the synthesis process is translating therdsirategy computed in the previ-
ous step into C. The resulting driver implementation caasi§a C structure that describes
the state of the driver, a constructor function that creat&binitialises an instance of this
structure, and a number of entry points, one for each incgrmierface method. The state
structure contains a field representing every driver stat@able, including variables de-
clared in each driver protocol, extra variables introdutbechodel the state of each protocol
state machine, andreode variable that identifies the current node of the strategplyra

The implementation of a driver entrypoint is generated devis. It first checks the
value of thenode variable to identify the uncontrollable edge that corresjsoto the given
incoming method invocation. It then updates state variabkedefined by the action asso-
ciated with the edge. If the edge leads to a controllable nibwedriver chooses an edge in
that node whose guard evaluates to truth and takes the pon@isg transition by invoking
the associated method. Otherwise, the driver returns ftarentry point to wait for the
next incoming method call.

The resulting driver follows the Dingo architecture and ésidned to run within the
Dingo runtime framework. In particular, it expects all matdhinvocations to be serialised
and never blocks inside a method. The Termite driver syighmasthodology and algorithm
are not, however, inherently dependent on the Dingo aicthite and can be adapted to
generate drivers for other driver framewaorks, e.g., ndtimex or Windows drivers. Such an
adaptation would involve extending the protocol specificatanguage to model concurrent
driver invocations and modifying the synthesis algorittingénerate synchronisation code
to ensure safe execution of the driver in a multithreadedr@mment.

6.7 Debugging synthesised drivers

Automatic driver synthesis allows reducing the number dfvgre defects in drivers but
does not eliminate them completely. Defects in a synthdsisiger can be caused by errors
in one of the input specifications or in the synthesis tool.efwor in the specification means
that the actual device or OS behaviour deviates from thefsgaon in one of the following

3The Termite debugger tool presented in this section wadajese in collaboration with John Keys.
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ways:

e The device or the OS invokes a driver method in a state whéegeration is not
allowed by the specification.

e The device or the OS invokes a driver method with argumeratisdb not satisfy the
guard condition associated with the corresponding statssition in the specification.

e The device or the OS does not perform a driver invocationdbatsponds to a timed
transition in the specification (i.e., must occur eventgall

e The device or the OS does not correctly handle an invocatimm the driver that is
permitted by the specification, e.g., crashes or misbetiav@sme other way.

An error in the synthesis tool can result in a driver impletagan that violates one of
its protocol specifications in one of the following ways:

e The driver performs illegal invocations of device or OS noely i.e., invokes a
method that is not allowed by the appropriate protocol $adion in the current
state or provides method arguments that violate the guanditian of the corre-
sponding transition.

e The driver does not handle legal method invocations frondthace or the OS, i.e.,
the synthesised driver state machine does not define attoan&ir a method even
though it is permitted by the appropriate protocol spedificain the given state.

e The driver fails to achieve some of its goals.

The practical utility of automatic driver synthesis deped the availability of debug-
ging tools that will help detect and eliminate such errorae@ossibility is to use conven-
tional debugging techniques on the synthesised C drivevetier debugging automatically
generated code is notoriously difficult.

Fortunately, source-level debugging is rarely necessarydrmite drivers. Along with
the implementation of the driver in C, Termite also outphts $tate machine of the driver,
similar to the one shown in Figure 6.16, which can be viewethasmplementation of
the driver in a high-level language. By observing the exeautbf the driver at the state-
machine level, one can easily spot situations where eitierdtiver or its environment
violates protocol specifications.

We have implemented such a state-machine-level debuggédrefmite. In order to
enable debugging, the driver must be synthesised with darotitat forces the synthesis
tool to inject debugger callouts in the driver code. At romdj these callouts are activated
by passing a special argument to the driver kernel module.

The debugger front-end runs on a separate machine and cdoatamwith the de-
bugged driver via a serial port. It provides a graphical ustarface that visualises the
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driver state machine and the current state of the driver.il&iymnto conventional debug-
gers, the Termite debugger interacts with the driver indlwituations. First, the user may
single-step the driver, in which case the driver stops &éeh state transition. Second, the
user may set breakpoints on one or more states of the draterrstachine and let the driver
run until it hits one of the breakpoints. Third, the driveod and notifies the debugger
whenever it receives an illegal method invocation from thdrenment.

In each case, the driver sends a message containing infonretiout the last transi-
tion and values of driver state variables to the debuggemaits for a response from the
debugger before continuing execution.

The debugger visualises the data received from the driveeaflows the user to set ad-
ditional breakpoints before issuing a step or run commaiglreé 6.23 shows a screenshot
of the Termite debugger stopped at a breakpoint. The debwggdow contains a fragment
of the driver state machine. The breakpoint state and theréassition taken by the driver
before entering this state are highlighted. The statusdirthe top of the window shows
identifiers of the current and the previous states, the ndrtteeanethod that triggered the
transition and the values of method arguments.

The current implementation of the debugger is missing sasséulifeatures that would
further simplify error diagnostics. In particular, it doest relate the current state of the
driver state machine to the corresponding states of theeel@nd OS protocol state ma-
chines. Such functionality can be easily added to the dedrugmce the mapping between
driver states and protocol states is maintained duringedisynthesis and can be stored
along with the driver state machine.

6.8 Evaluatiort

In this section | report on the experience in applying Teent synthesise drivers for real,
non-trivial devices, measure the performance of the sgighd drivers, and evaluate the
reusability of Termite device specifications across diffe¢rOSs.

6.8.1 Synthesising drivers for real devices

We have used Termite to synthesise two device drivers fomdtira driver for the Ricoh
r5¢822 SD host controller (a full-featured analogue of tBel®st controller described in
Section 6.5) and a driver for the ASIX ax88772 100Mb/s USHethernet adapter described
in Chapter 5. These drivers occupy the middle range of theddomplexity spectrum. In
particular, they support most features found in modernadsyiincluding power manage-
ment, request queueing, and DMA (with the ax88772 drivengu§IMA indirectly via the
USB host controller). Unlike more complex devices, they sisgple DMA descriptor for-
mats and support a limited range of configuration optionscé&the two devices belong to

“The evaluation presented in this section was completedliabzation with Dr. Peter Chubb.
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‘ SD ‘Ethernet

Native Linux driver 1174 1200
Device protocol 653 463
OS protocol (SD/Ethernet) 378 213
Bus protocol (PCI/USB) | 263 96

Synthesised driver 4667 2620

Table 6.3: Size in lines of code, excluding comments, of 8822 and ax88772 driver
implementations in Linux, their Termite specificationsgdine synthesised drivers.

different device classes and attach to different buses érE@IUSB), these examples cover
a broad spectrum of issues involved in driver synthesis.

Both devices are based on proprietary designs, so we didavetdiccess to their RTL
descriptions. The r5¢822 controller implements a stansaddSD host controller archi-
tecture whose detailed informal description is publiclgitable [SD 07]. This description
provided sufficient information to derive a Termite modetlod controller interface.

The ax88772 data sheet [ASI08] did not contain sufficierarimiation to derive a Ter-
mite model of the device from it. In particular, it did not pide a complete description
of device initialisation and configuration. For instancéien studying the Linux driver for
this device we discovered a sequence of register reads ared Wrat the driver performed
during startup. Many of these operations could not be empthbased on the information
in the data sheet. However, removing or even reordering athyem resulted in a miscon-
figured device. Therefore, we used the Linux driver for tld@gide as the primary source of
information.

As a result, the two specifications are substantially diffieéin style. As explained in
Section 6.2.2, specifications derived from device docuatimt tend to be declarative in
nature: they describe how the device responds to variowwae commands, but do not
enforce a particular ordering of these commands, which inestomputed during driver
synthesis based on the goals that the driver must achievifenedt states. In contrast,
specifications based on existing driver code are more aariste: they define sequences of
commands and device reactions that must be issued to geaespécific device-class event
(e.g., to complete and SD command or transfer a network packe

Table 6.3 compares the size of Termite specifications to #euad implementation of
equivalent drivers in the Linux kernel tree. Although liruats are not a reliable complex-
ity measure, especially when comparing code written iredsfit languages, note that for
both drivers the device specification, which is the only plaat needs to be developed per
device, is significantly smaller than the native Linux drivEhe last line of the table shows
that the synthesised drivers are several times larger Hemmanual implementations. This
is one area for future improvement.

In one case we were unable to completely specify the devidermite: the ax88772
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driver must implement pre- and post-processing of netwariftebs exchanged with the
device in order to append and remove an extra header thagwtieedexpects in each packet.
Termite currently does not provide facilities to specifyistraints on the content of memory
buffers. DMA buffers are currently represented using th@tual and physical addresses
and size, which allows passing unmodified buffers betweerdévice and the OS, but not
performing any transformations on them. We therefore imgleted this functionality in C

and made it available to the device protocol via two methegBixup andtxFixup

The total size of these functions is 110 lines of C code, ar fkan 10% of the size of the
native Linux implementation of this driver.

Synthesis took 2 minutes for the ax88772 driver and 2 houmsigétes for the r5¢822
driver on a 2GHz AMD Opteron machine with 8GB of RAM. This éifénce is due to the
different styles of the two device specifications. The ax@B3pecification, derived from an
existing driver, only contains useful execution paths thatl to the occurrence of device-
class events. In contrast, the more declarative r5¢c824fgadion allows a large number
of possible command sequences, which the synthesis dgoritust explore to find the
meaningful ones that lead to the goal.

6.8.2 Performance

We compared the performance of the synthesised driverssighiat of equivalent native
Linux drivers. Benchmarks described in this section werean a 2GHz Centrino Duo
machine. We disabled one of the cores in order to allow pee€RBU accounting. For the
SD bus controller driver we ran a locally developed benchntlaat performs a sequence
of raw (unbuffered) reads from an SD card connected to theat@r. We measured CPU
usage and achieved bandwidth for different block sizes.lllnases, the throughput and
CPU usage of the synthesised driver differed from that ofndé/e Linux driver by less
than 1%.

The USB-to-Ethernet controller is more interesting frora grerformance perspective,
as it is capable of generating high CPU loads, especiallynwtandling small transfers.
Figure 6.24 compares throughput and CPU utilisation aelidwy the synthesised and
native drivers under the Netperf [Net] TCP_STREAM benchmdn these experiments,
the Netperf server was run with default arguments on the machith the synthesised
driver under test. The Netperf client was running on anothachine with the following
arguments:
netperf -H<server-ip-addr> -p <server-port> -t TCP_STREA M -c
-C -l 60 - -m <transfer-size>
Where the-l 60 argument sets the time of the run to 60 seconds. -theand-C
arguments enable CPU utilisation calculations on both émees and the client. Thanm
option sets the transfer size.

According to Figure 6.24, both drivers showed virtuallyrileal performance even
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Figure 6.24: ax88772 TCP throughput benchmark results.tdpgraph shows CPU utili-
sation; the bottom graph shows achieved throughput.

under the heaviest loads induced by a large number of snekea
These results are reassuring, as they indicate that autathasynthesized drivers can
achieve performance comparable to manually developed ones

6.8.3 Reusing device specificatiohs

In order to validate the claim that device specifications lmameused across different OSs,
we synthesised a FreeBSD r5¢822 driver from the same depémfigation that was used
to generate the Linux version of the driver. To this end weettigped specifications for
the FreeBSD versions of the SD host controller driver protand the PCI bus transport
protocol. These protocols differ from their Linux countans in a number of aspects,
including SD command format, driver initialisation, PCkoairce allocation, bus power

5The work described in this section was completed in collation with Etienne Le Sueur.
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management, and DMA descriptor allocation. Once theseogotd were specified (this
took approximately 6 person-hours, an effort that only sgede undertaken once for the
given OS), a driver for FreeBSD was generated automaticailyg the unmodified device
and device-class specifications.

6.9 Limitations and future work

Our experience with Termite has demonstrated the fedgibflidriver synthesis for real de-
vices. This section summarises limitations of the curneqtiémentation and improvements
required to turn it into a practical solution capable of gatiag a broad class of drivers.

The front-end  Termite currently relies on the device manufacturer or thveddeveloper
to write a formal specification of the device protocol. Whiféering substantial advantages
over conventional driver development in terms of code $tingg size, reuse, and quality
assurance, this approach still requires substantial nhaffoat. This effort can be avoided
by automatically distilling a Termite model of the devicerfr its RTL description. Imple-
menting support for this is the key area of the continuingaesh on driver synthesis.

The synthesis algorithm Several limitations of the current synthesis algorithm ptm
cate modelling. These include the assumption of detertigrdgvice behaviour described
in Section 6.5.4, and the lack of support for complex coirgsan variables in the symbolic
execution engine (Section 6.6.4).

In addition, Termite currently only allows the manipulatiof memory buffers via calls
to C functions (Section 6.8.1). In order to reduce the reltlaon manually written code,
support for the specification of constraints on the memotffebdiayout (fragmentation,
alignment, etc.) and content (headers, paddings, etcgsneebe added to Termite. This
way, one will only have to use C to implement more complex tlaasformations, such as
hashing or encryption.

Termite does not support drivers that require dynamic nesoallocation. In some
cases, resource allocation is performed by the Dingo runfirmmework. For example,
when a USB device driver sends a request to the device, theetvark allocates a new
USB request structure. Most of the remaining allocationrajens performed by drivers
are related to the management of DMA buffers. Support fadhmerations must be added
as part of the buffer management extension described inréwéopis paragraph.

Finally, the Termite synthesis algorithm needs furtherriompment to reduce the syn-
thesis time and support more complex devices with largee Spaces. One promising
approach is to use counterexample-guided abstractiorenaéint, which allows a reduction
of the size of the state space to be explored by dynamicadigtifying relevant state infor-
mation. This technique has been successfully applied iretradtecking and has also been
shown to work for two-player games [HIMO03].
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The overall approach The Termite approach to driver synthesis relies on thendititie
state-machine-like structure of device drivers and itatieh to the structure of the 1/O
device. Some new devices, such as high-end GPUs and netwamrssors do not fit into
this model. These devices are built around a general-par@&dJ, often running a separate
instance of a general-purpose OS. They are controlled adplg programs that execute
on the device’s CPU and communicate with the host CPU via/@édulis. Modelling such
devices and generating software for them is beyond the refabérmite.

6.10 Conclusions

Device driver synthesis is a promising approach to solvirgdriver reliability problem.
In this chapter | have demonstrated the feasibility of tigpraach by describing a driver
synthesis methodology and its implementation. The uléngaial of this work is to create a
viable alternative to current manual driver developmeactices, leading to better quality
drivers. The key factor in achieving this is to make driventbgsis attractive to device
vendors by providing easy-to-use and efficient languagddauis for it.
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Chapter 7

Conclusions

Software defects in device drivers are the leading sourdestdbility in current OSs. This
dissertation has demonstrated that many driver defectdeaavoided with the help of
an improved device driver architecture and developmentgz® This improvement is
achieved by taking an approach based on identifying andireiing the root causes of
the driver reliability problems, as opposed to focusinglairtsymptoms.

In particular, | showed that many driver defects are proddikgthe complex and poorly
defined interfaces between the driver and the OS. This proldeaddressed by abandon-
ing the conventional multithreaded model of computatiofoered by most OSs on device
drivers in favour of a more disciplined event-based modell fayydocumenting OS proto-
cols using a formal visual language. In addition to helpinget developers avoid defects
in drivers, this approach enables automatic verificatiodrivier behaviour against protocol
specifications. In particular, | demonstrated an implego that performs such verifi-
cation at runtime using automatically generated prototaleovers. Static verification of
protocol compliance is part of the future work.

The formal approach to modelling the device driver behavieads to a radically new
method of driver construction, which consists of autonadiycgenerating the implementa-
tion of the driver based on a formal model of its device and @fogols. This approach
has the potential to dramatically reduce driver developneéfiort while increasing driver
quality.

In this dissertation | have demonstrated the feasibilitautbomatic driver synthesis for
real non-trivial devices. Further research is necessamyder to turn the results of this work
into a practical driver synthesis tool. Open problems idelautomatically deriving device
protocol specifications from the RTL description of the deyispecifying and synthesising
behaviours that involve memory buffer manipulation, angrioving the synthesis algorithm
to deal with more complex devices.
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Appendix A

The syntax of the Tingu and Termite
protocol specification languages

This appendix describes the complete syntax of the Tingrandite protocol specification
languages. The two languages use common syntax for deglesimponents, protocols,
types, methods, variables, and dependencies. The maardtiffe is that Tingu specifies
behavioural constraints of the protocol using Statechartdle Termite uses a textual for-
malism based on the LOTOS process calculus.

Section A.1 provides Backus-Naur Form (BNF3pecification of the common part of
the Tingu and Termite syntax. Section A.2 describes theagyoftstate transition labels used
in both Tingu and Termite specifications. Section A.3 déssithe subset of the Statecharts
visual syntax used in Tingu protocol state machines spatifics. Finally, Section A.4
describes the Termite process syntax.

A.1 Component, protocol, and type declarations

A tingu specification consists of zero or more specificatims, where every item is a
type, protocol, or component declaration.

<tingu-spec> ::=

| <tingu-spec> <spec-item>
<spec-item> := <type-decl>

| <protocol-decl>

| <component-decl>

A.1.1 Common definitions

A Tingu identifier is a string of alphanumeric characters anderscore, beginning with a
letter or an underscore.

<identifier> := [a-zA-Z_][a-zA-Z0-9 ] *
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A quoted string:

<quoted-string> ::= \"(["\"\t\n] *)\"

Identifiers are used as component, protocol, method, angtitype, port names, etc.

<component-name> ::= <identifier>
<protocol-name> ::= <identifier>
<port-name> ::= <identifier>
<type-name> := <identifier>
<method-name> ::= <identifier>
<arg-name> ;= <identifier>
<var-name> := <identifier>
<enumerator-name> ::= <identifier>
<struct-field-name> ::= <identifier>
<identifier>
<identifier>

<function-name> ::

<process-name> .

A type specifier is the name of an existing type, a pointer texasting type, or a fixed-width
integer type specifier. Type specifiers are used in methaghagt declarations, variable
declarations, and type declarations.
<type-specifier> ::= <type-name>

| <type-name> " *"

| <int-type-specifier>

A fixed-width integer type specifier consists of the “int” arrfsigned” keyword followed
by the type width (in bits) in angle brackets.

<int-type-specifier> ::= "int" "<" <int-constant> ">"
| "unsigned" "<" <int-constant> ">"

Port substitution lists are used in component port dedtaratand protocol subport decla-
rations.
<port-substitution-list> ::= "<" <port-subst>
<port-subst-list-tail> ">"
<port-subst-list-tail> ::=
| <port-subst-list-tail> "," <port-subst>

A port substitution consists of the path to the substituing and the substituted port name,
separated by a “/". A path is a sequence of “."-separatedraortes or the “self” keyword.

<port-subst> ::= <port-path> "/* <port-name>
<port-path> ::= <port-name> <port-path-tail>
| "Self"

<port-path-tail> ::=
| <port-path-tail> "." <port-name>
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A.1.2 Types

A type declaration is an enumeration declaration, a straafeclaration, and integer type
declaration, an opaque type declaration, or a pointer tgotadation.

<type-decl> ::= <enum-decl>
| <struct-decl>
| <int-decl>
| <opaque-decl>
| <ptr-decl>

Enumeration declarations follow the C syntax.

<enum-decl> := "enum" <type-name> "{" <enum-list> "}"
<enum-list> ::=
| <enumerator> <enum-list-tail>
<enum-list-tail> ::=
| <enum-list-tail> "," <enumerator>
<enumerator> ::= <enumerator-name> "=" <int-constant>

Structure declarations follow the C syntax.

<struct-decl> ::= "struct" <type-name> "{"<struct-field -list>"}"
<struct-field-list> ::=

| <struct-field-spec> <struct-field-list>
<struct-field-spec> ::= <type-specifier> <struct-field -name> ;"

An integer type declaration consists of an integer typeifipe¢Section A.1.1) followed by
the type name

<int-decl> : <int-type-specifier> <type-name>

An opaque type declaration consists of the “opaque” keyvatdwed by the type name.

<opaque-decl> ::= "opaque" <type-name>
| "opaque" "struct" <type-name>
| "opaque" "union" <type-name>
| "opaque" "enum" <type-name>

A pointer type declaration consists of the base type nam#, arid the pointer type name.

<ptr-decl> ::= <type-name> " *" <type-name>

A.1.3 Protocols

A protocol declaration consists of a “protocol” keywordptmcol name and a list of protocol
sections in curly braces.
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<protocol-decl> ::= "protocol" <protocol-name>
"{" <protocol-sections> "}"* ;"
<protocol-sections> ::=
| <protocol-sections> <protocol-section>

A protocol section is a types section, a methods sectionpardiencies section, a variables
section, a ports section, or a transitions section.

<protocol-section> ::= <type-section>

| <method-section>
<dependency-section>
<variable-section>
<port-section>
<transition-section>

A types section consists of a “types:” keyword followed bydydeclarations (Sec-
tion A.1.2).

<type-section> ::= "types
<type-decls> ::=

<type-decls>

| <type'deC|S> <type_decl> ll;ll

A methods section consists of a “methods:” keyword follovegdnethod declarations.

<method-section> ::= "methods" ":" <method-decls>
<method-decls> ::=
| <method-decls> <method-decl> ";"

A method declaration consists of a direction specifier ({irip“output”, or “internal”),
method name, argument list, an optional method attribuid,am optional spawn clause,
which specifies sub-ports that are spawned by this methad“{thernal” keyword and
method attributes are only used in the Termite version ofpifedocol specification lan-

guage).

<method-decl> ::= "in" <method-signature>
| "out" <method-signature>
| "internal" <method-signature>
<method-signature> ::= <method-name> "(" <argument-list >y
<optional-method-attr> <optional-spawn>

<optional-method-attr> ::=
| "timed"
| “fallback"

<optional-spawn> ::=
| "spawns" <spawn-list>
<spawn-list> := <port-name>



A.1. COMPONENT, PROTOCOL, AND TYPE DECLARATIONS 159
| <spawn-list> "," <port-name>

<argument-list> ::=
| <argument-decl> <argument-list-tail>
<argument-list-tail> ::=
| <argument-list-tail> "," <argument-decl>
<argument-decl> ::= <optional-arg-attr> <type-specifie r>
<arg-name>

A method argument can have an optional “out” qualifier, meguhat the argument value
must be passed by reference and is modified by the method.

<optional-arg-attr> ::=
I Iloutll

A dependencies section consists of the “dependencies:Wakely followed followed by
dependency declarations.

<dependency-section> ::= "dependencies" ":" <dependency -decls>
<dependency-decls> ::=
| <dependency-decls> <dependency-decl> ";"

A dependency consists of a protocol name, a port identifidragist of method dependen-
cies in curly braces. A method dependency consists of therices” or “listens” keyword
followed by the method name followed by the optional “timed™fallback” attribute (these
attributes are used in Termite specifications only).

<dependency-decl> ::= <protocol-name> <port-name>
<dependency-body>

<dependency-body> ::= "{" <method-dependency-list> "}"

<method-dependency-list> ::

| <method-dependency-list>
<method-dependency> ’;’
<method-dependency> ::= "restricts" <method-name>
<optional-method-attr>
| "listens" <method-name>
<optional-method-attr>

A variables section consists of the "variables:" keywoitbfeed by variable declarations.

<variable-section> ::= "variables" ":" <variable-decls>
<variable-decls> ::=
| <variable-decls> <variable-decl> ";"

A variable declaration consists of a type specifier or an Apdcifier and variable name.

<variable-decl> ::= <type-specifier> <var-name>
| <adt-specifier> <var-name>
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An ADT specifier consists of a container name (currentlyst®liand “set” are the only
supported containers) followed by a type specifier in anghehets.

<adt-specifier> ::= <adt-name> "<" <type-specifier> ">"
<adt-name> := "list"
<adt-name> := "set"

A port section consists of the “ports:” keyword followed byist of port declarations.

<port-section> ::= "ports" ":" <port-decls>
<port-decls> ::=
| <port-decls> <port-decl>

A port declaration consists of a protocol name, a port namepéional index type specifier
in square brackets and an optional list of port substitgti@ection A.1.1).

<port-decl> ::= <protocol-name> <port-name>
"[' <optional-type-specifier> "" ;"
| <protocol-name> <port-name>
“[* <optional-type-specifier> "I"
<port-substitution-list> ";"
<optional-type-specifier> ::=
| <type-specifier>

A transitions section consists of the "transitions:" keyvfollowed by a state machine
specification. The state machine specification can be athénport statement, containing
a reference to an external specification or a program in thmife specification language
(see Section A.4).

<transition-section> ::= "transitions" '’ <import-stat ement>
| "transitions" '’ <termite-state-machine>
<import-statement> :: "import" "("* "format" "=" <identifi er> ""
"location" "=" <quoted-string> ")" ";"

A.1.4 Components

A component declaration consists of tmmponent keyword followed by the component
name and a port list in curly braces.

<component-decl> ::= "component' <component-name>

"{" "ports" ":" <component-ports> "}" ;"
<component-ports> ::=

| <component-ports> <component-port>

A component port declaration consists of a protocol namertrgame, and an optional port
substitution list.
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<component-port> ::= <protocol-name> <port-name> '}
| <protocol-name> <port-name>
<port-substitution-list> ’;

A.2 Protocol state transition labels

This section describes the syntax of state transition $abséd in both Tingu and Termite
specifications.

A transition label consists of a trigger, a guard, an actom an optional “timed” keyword,
which is only used in Termite specifications.
<transition> := <trigger> <guard> <action> <optional-ti med>
optional-timed ::=

| ™" "timed"

A trigger consists of a method identifier with an optionalediion qualifier. The method
identifier is either a local method name that refers to a metifdhe current protocol or a
dependency method name.

<trigger> ::= "I" <method>
| "?" <method>
| <method>
<method> ::= <method-name>
| <port-name> "." <method-name>

A guard can be empty (transition is always allowed) or cdrii@n expression in square
brackets.

<guard> :=
| "[" <expression> "]"

An action can be empty (transition does not modify protocoiable) or consists of a “/”
followed by a statement.

<action> =
| “/" <statement>

The simplest expression consists of a single operand, wtachbe a variable name, a
method argument name, an enum, integer, or boolean constant

<expression> := <operand>
<operand> := <variable-name>
| "$" <arg-name>
| <enumerator-name>
| <int-constant>
| "true"
| “false"
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Unary, binary, and ternary arithmetic expressions:

<expression> ;= "~"

<expression>
<expression>
<expression>
<expression>
<expression>
<expression>
<expression>
<expression>

<expression>
<expression>
<expression>
<expression>
<expression>
<expression>
<expression>
<expression>
<expression>

<expression>

<expression>
<expression>

"||" <expression>
"&&" <expression>
"==" <expression>
"I=" <expression>
"+" <expression>

<expression>
" x" <expression>
"I" <expression>
"%" <expression>
"<<" <expression>
">>" <expression>
"|" <expression>
"&" <expression>
"N <expression>
">" <expression>
">=" <expression>
"<" <expression>
"<=" <expression>

|
|
|
|
|
|
|
|
|
|
| <expression>
|
|
|
|
|
|
|
|
|
|

<expression> "?" <expression> <expression>

Parenthesis are used to control the ordering of subexpressaluation.

<expression> := "(" <expression> ")"

Structure field access expression:

<expression> := <expression> <struct-field-name>

ADT function invocation expression.

<expression> := <expression>"."<function-name> "("<ar guments>")"

<arguments> =
| <argument-list>

<argument-list> ::= <argument>

| <argument-list> "," <argument>

<argument> = <expression>

A statement can consist of a single simple statement or acedaniseparated list of state-

ments.

<statement> ::= <simple-statement>
<statement> ::= "{" <statement> "}"
<statement> := <statement-list>

<statement-list> ::= <statement>
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1

t1 sl 2

s2 t3 s3

t5 t4

Figure A.1: Example of a simple statechart.

<statement-list> ::= <statement-list> <statement> ";"

A simple statement is a single expression, an assignmdaiwat, and increment or decre-
ment statement, or a port spawn statement.

<simple-statement> ::= <expression>
| <expression> "=" <expression>
| "++" <expression>
| "--" <expression>
| "new" <port-name> "(" <expression> ")"

A.3 Protocol state machines

The complete Statecharts language defined by Harel [Har@vggd difficult to assign un-
ambiguous formal semantics [vdB94]. Fortunately, moshefgroblematic Statechart fea-
tures are either irrelevant or non-essential to modelliriggd protocols. The subset of the
Statecharts syntax described here can be assigned formahses in a simple and natural
way.

Statecharts are state machine diagrams extended withrdeatumodel hierarchy and
concurrency. A basic statechart that contains neitheratdby nor concurrency is just a
finite state machine consisting of a set of states and transjtwith exactly one default
initial state and any number (including zero) of final stfegure A.1). Execution of a
statechart is triggered by events. In Tingu, events coores$o driver interface method
invocations.

Compact representation of complex behaviours is achieyaatdanising states into a
hierarchy: several simple states can be placed inside astafse which can, in turn, belong
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sl s4

t1 t6

s3 t3 s6

t7 s7

- J

Figure A.2: Example of a statechart with OR-superstates.

to a higher-level superstate, etc. Two types of superstagesupported: OR-superstates
and AND-superstates.

OR-superstates are used to cluster states with similavlmelia. Two or more states
that have identical outgoing transitions (i.e., transisiavith the same label and target states)
can be placed inside an OR-superstate and the identicalittcenrs can be replaced with
a single transition that originates from the superstater @xample, transition$3 and
t7 in Figure A.2 define common behaviours for substates of Qferstiates1 ands4,
respectively. The semantics of an OR-superstate is thegxelor of its substates: when
the statechart is in an OR-superstate, it must be in exan#yobits substates.

An OR-superstate can have a default state (e.g., staia Figure A.2). A state tran-
sition that terminates at the superstate boundary entersuperstate via its default state.
An OR-superstate can also contain final states. When a fatal istreached, the superstate
is exited through the default exit transition, which is amaielled transition originating at
the superstate boundary. There can be at most one defatitagdition from a superstate,
and a superstate that has at least one final state is reqailevé a default exit transition.
Multilevel state transitions that cut through several e\ the state hierarchy are allowed
(e.g.,t3 andt4 in Figure A.2).

If the statechart is too large to fit in a single diagram, a sstpée can be collapsed
into a simple state and its content can be moved to a sepasgpewh. This is illustrated
in Figure A.3, which splits the statechart in Figure A.2 iti@ statecharts. Enter and exit
connectors are introduced in the points where multilexakegtransitions cross the boundary
of the collapsed superstate.

An OR-superstate can contain one or more history pseudesst#/hen the superstate
is entered through a history pseudo-state, the last coafigarof the superstate and all its



A.3. PROTOCOL STATE MACHINES 165

!

sl
: s4
—® —
] exitl
t1 >
s3 t3
——0)
enterl
i
t7
(a) The main statechart.
4 54 N\
t4 s5
e
exitl
t6
s6
O >
enterl )
s7
T t5
s8
o—>
- J

(b) Superstate4 expanded.

Figure A.3: Example of state collapsing.

substates is restored recursively. If this is the first tilme superstate has been activated,
the default state is entered. Figure A.4 shows a modifiedores the previous example
involving a history pseudostate.

AND-superstates represent concurrent activities. An Adliperstate consists of two or
more regions separated with dashed lines (Figure A.5). effians of an AND-superstate
are active simultaneously. An individual region behavke An OR-superstate. A single
event can trigger state transitions in one or more regisidéman AND-superstate, in which
case all state transitions occur simultaneously. Any tti@nsthat leaves an AND-superstate
preempts all its internal regions and exits the superstde example, both transitiorig
andt5 in Figure A.5 exit superstatel .
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Figure A.4: Example of a statechart with a history pseudtest

E

t6

Figure A.5: Example of a statechart with an AND-superstate.

A single event can enable several conflicting transitiores, transitions that lead to

different states. In such a case, the transition with thbdsgscope is taken (the scope of a

transition is the lowest ancestor of both the source anddtyet state of the transition). A

well-formed Tingu state machine is not allowed to containflicting transitions with the

same scope.

The following Statecharts features are not supported igtiitnternal events, instanta-

neous states, join and fork connectors, and conditionaldusstates.
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A.4 Termite processes

A Termite specification of a protocol state machine consittsTermite behavioural expres-
sion followed by an optiondlwhere” -clause, which declares named processes referenced
by the behavioural expression.

<termite-state-machine> ::= <behavioural-expression>
| <behavioural-expression>
"where"
<process-decls>
<process-decls> ::=
| <process-decls> <process-decl>

A process declaration consists of tirocess”  keyword followed by the name of the
process and the specification of its behaviour.

<process-decl> ::= "process" <process-name>
<behavioural-expression>
"endproc”

A behavioural expression is one of the expression typesribescin Section 6.4. A be-
havioural expression can be taken in parenthesis to cah&ardering of operators.

<behvaoural-expression> ::= "stop"

"exit"
<process-name>
<prefixing>
<choice>
<conditional>
<sequential>
<preemption>
<parallel>
<interleaving>

(<behavioural-expression>)
<prefixing> ::= <transition> ";" <behavioural-expressio n>
<choice> := <behavioural-expression> "[]"
<behavioural-expression>
<conditional> ::= "if* "[" <expression> "]"
<behavioural-expression>
"else" <behavioural-expression>
<sequential> ::= <behavioural-expression>
e sh
<behavioural-expression>
<preemption> := <behavioural-expression>
">
<behavioural-expression>
<parallel> ::= <behavioural-expression>
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“II" <synchronisation-list> "]|"
<behavioural-expression>
<synchronisation-list> ::= <method-name> <sync-list-ta i>
<sync-list-tail> ::=
| "," <synchronisation-list>
<interleaving> ::= <behavioural-expression> "|||"
<behavioural-expression>



Appendix B

Tingu protocol specification examples

This appendix illustrates the use of the Tingu languageguseveral examples of Tingu
protocol specifications.

B.1 Theli fecycl e protocol

ThelLifecycle  protocol defines initialisation and shutdown requestsiat be imple-
mented by all Dingo drivers. The protocol specification isvgh in Figures B.1 and B.2.

B.1.1 Lifecycl e methods

probe - Request to probe and initialise the device. This requesdtlisered to the driver
when a new device is discovered on the bus during systenugtartat runtime. Upon
receiving this message, the driver can start issuing basdrions to access the (as defined
by bus-specific protocols).

probeComplete - Signals successful completion of device initialisation.
probeFailed - Unsupported device ot device initialisation failed.
stop - Stop the device and resease all resources held by the.driver

stopComplete - Driver deinitialisation complete. After receiving thistification, the
OS may release bus resources associated with the driveefdhe no device accesses are
allowed afterstopComplete (as defined by bus-specific protocols).

unplugged - The OS notifies the driver that the device has been discéethémom the
bus. The OS guarantees that no further I/O requests will lieded to the device after an
unplugged event. The driver is not allowed to issue new bus transagtibat may have
to wait for outstanding transactions to terminate, as definyethe appropriate bus protocol.

169
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protocol Lifecycle
{

methods :
in_ probe();
out probeComplete();
out probeFailed(error_t error);

in_ stop();
out stopComplete();

in_ unplugged();

transitions :
import(format=rhapsody, location="LifecycleSM@ioprot ocols.sbs");

Figure B.1: Thelifecycle  protocol declaration.

!

init

?probe

connected

starting [5s] !probeFaiIeci o

IprobeComplete

?unplugged

running

?stop

disconnected [5s]

stopping [5s]
| |

\ J

IstopComplete

O)
IstopComplete

Figure B.2: Thelifecycle  protocol state machine.
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B.2 ThePower Managenent protocol

The PowerManagement protocol defines device suspend and resume requests thiat mus
be implemented by all Linux drivers that support bus-dedcpower management. Spe-
cific devices can implement their own power saving schemaisate not covered by this
protocol. The protocol specification is shown in Figures &8 B.4.

B.2.1 Power Managenent methods

suspend - The OS is about to put the entire bus that the device is coaddo or just a
subset of devices on the bus, including the current dewvica Jow-power mode. The driver
must prepare the device for the transfer into the new stateshwncludes completing any
outstanding requests and saving device context informatiat will be lost in the low-
power mode. The argument of the request is the target poatey; sthich must correspond
to a lower state than the current one (DO corresponds to mgreti full power, D3 corre-
sponds to switching the device power off). The OS guararttesso further I/O requests
will be delivered to the device aftersmuspend request and until theesumeComplete
notification from the driver (see below), as defined by therayppate driver protocol, e.g.,
EthernetController or Infiniband

suspendComplete - The device is ready to be suspended. The OS may switch the
bus to the new power state after the driver calls this methwdking certain bus operations
unavailable, as defined by the bus protocol.

resume - The bus is running at full power again. The driver must nestbe device state
and prepare for handling OS requests.

resumeComplete - Resume complete; the driver is ready to handle new I/O tque
from the OS.
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protocol PowerManagement

{

types :
enum power_level _t {

DO = 0,
D1 =
D2
D3

1
25
3

methods :
in_ suspend (power_level_t level);
out suspendComplete ();

i resume ();

out resumeComplete ();

variables :
[+ Current device power node =/
power_level_t power_level,

dependencies :
Lifecycle Ic {

listens probeComplete;
listens probeFailed,;
listens unplugged;
restricts stop;

¥

transitions :

import(format=rhapsody,
location="PowerManagementSM@ioprotocols.sbs");

Figure B.3: ThePowerManagement protocol declaration.
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!

running
e—» init llc.probeFailed O
2
llc.probeComplete, ?suspend [$level>D0]/

power_level = $Ievel= suspending [5s]

C ?|c.stop | full_power

?suspend
IresumeComplete [$level > power_level]/ IsuspendComplete
power_level = $level

v
resuming [5s] suspended

?resume é
?lc.stop
?Ic.unplugged %

Figure B.4: ThdPowerManagement protocol state machine.
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B.3 TheEt her net Control | er protocol

The EthernetController protocol describes the service that an Ethernet controller
driver must provide to the OS. The service allows the OS tadl sem receive packets via
the network interface implemented by the controller. Dnvihat manage multiple network
interfaces must implement an instance of this protocol f@ne supported interface. The
protocol specification is shown in Figures B.5, B.6, B.7,,Bu8d B.9.

B.3.1 Et her net Control | er methods

enable - Request to enable receive and transmit circuits insidedh&oller and allocate
any resources required to handle incoming and outgoingarktpackets. The OS invokes
this method the first time a user process opens a network choneia the given interface.

enableComplete - The controller is enabled. Following this notificationgttriver
may start delivering incoming packets to the OS and the OSstaay sending packets via
the driver.

disable - Disable the device transmit and receive circuits. In raspdo this request, the
driver must abort all outstanding packet transfers andotisdevice receive and transmit
circuits. No new packets can be sent and received ditable

disableComplete - Disable complete.

txStartQueue - Notifies the OS that more space is available in the deviaesini
packet queue, so that the OS can send more packets to thiesdrive

txStopQueue - Notifies the OS that the device transmit queue is full. Thew@iBnot
attempt to send new packets untiix&startQueue  notification.

txTimeout - Called by the OS networking code when it detects a transpmiggneout,
to hint the driver that the device hardware may have lockedngpneeds a reset.

txPacket - Request to transmit a packet.

txPacketDone - Packet transfer complete.

txPacketAbort - Packet transfer failed.

rxPacketinput - Delivers a packet received from the network to the OS.
linkUp - Network link is up.

linkDown - Notifies the OS about a lack of carrier signal on the wire.

setMacAddress - Reguest to change the controller MAC address.
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protocol EthernetController

{
types :

opaque sk_buff; // Linux structure describing a network pac

methods : in__

5

o |5 |©
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o
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= |5 |o
5 |3 ‘c
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o
C
=

o
c
—

o
oy
—

o
C
=

o
C
=

5

o
ey
—

SR E
2

o
—
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variables  :

enable ();

enable ();

enableComplete ();

disable ();

disableComplete ();

txStartQueue ();

txStopQueue ();

txTimeout ();

txPacket (sk_buff * packet);

txPacketDone (sk_buff * packet);
txPacketAbort (sk_buff * packet);
rxPacketlnput (sk_buff * packet);

linkUp ();

linkDown ();

setMacAddress (size t size, void *  buf);
setMacAddressComplete ();

getMacAddress (size_t size, void *  buf);
getMacAddressComplete (size_t size);
setMulticast (u32 mc_flags, size_t mc_count, void
setMulticastComplete ();

size_t txCount;

dependencies :
Lifecycle Ic {

listens
listens
listens
listens
restricts
restricts

h

probe;
probeComplete;
probeFailed,;
unplugged;
stop;
stopComplete;

PowerManagement pm {

restricts
restricts
listens

3

suspend;
suspendComplete;
resumeComplete;

transitions :

import(format=rhapsody,

location="EthernetControllerSM@ioprotocols.sbs");

ket

* mc_list);

Figure B.5: TheEthernetController protocol declaration.
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setMacAddressComplete - MAC-address change complete.

getMacAddress - Read controller MAC address.

getMacAddressComplete - MAC-address read complete.
setMulticast - Set the list of multicast addresses that the controlleukhlisten to.
setMulticastComplete - Multicast list stored in the device.

B.3.2 TheEt her net Contr ol | er protocol state machine

After completing device initialisation (transition frontase starting to running

in Figure B.6), the protocol participates in three conautrractivities described by
link_status , properties  , andtx_rx superstates. These activities are interrupted
when the device is unplugged, suspended, or stopped.

Thelink_status state (Figure B.7) describes how the driver reports linkust&o
the OS. In the initial state, the driver must determine theeru link status and report it
to the OS within 10 seconds. Afterwards, the driver only repthe link status when it
changes.

Theproperties  state (Figure B.8) describes the configuration interfadbefiriver,
which consists of three operations: reading the contrd&C address, modifying the
controller MAC address, and setting the list of multicastradses that the controller should
listen to.

Thetx_rx state (Figure B.9) describes how the driver exchanges mietpackets
with the OS. The OS must enable the driver before sendingamviieg packets via the
network interface. Upon receiving @mable request, the driver has 5 seconds to enable
the transmit and receive circuits of the device @hable state in Figure B.9) and respond
by invoking theenableComplete callback.

The enabled state is split into two parallel regions: the top region dibss the
packet transmission protocol; the bottom region descriimsket reception. The driver
signals when it's ready to transmit a packet by callingtdt®tartQueue  method, which
switches the transmit protocol state machine totitg running  state. If the OS en-
queues new packets faster than the controller can transenit,ithe hardware buffers inside
the controller will eventually become full. In this casee ttiriver sends &StopQueue
notification to the OS to prevent it from sending new packets.

The receive part of the protocol does not support OS-drivem ¢ontrol and consists of
a singlerxPacketinput method, which delivers an incoming packet to the OS.

Thedisable command interrupts the transmit and receive operationseodtiver. In
response to this command, the driver must abort all outstgnmhckets (thelisable state
in Figure B.9), disable the device and notify the OS viadisableComple callback.
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?lc.probe
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status‘ ‘ tx_rx
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®
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Figure B.6: The top-levetthernetController

vy
unplugged

llc.stopComplete

ltxPacketAbort/
--txCount

@

llc.stopComplete
[txCount == 0]

link_status

llinkUp

llinkDown linkUp

phy_off [10s]

link_down
llinkDown

Figure B.7: Thdink_status state of theEthernetController
chine expanded.

protocol state machine.

protocol state ma-
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properties

mac_get [5s]

?getMacAddress

lgetMacAddressComplete

?setMulticast

pro

p_unchanged

?setMacAddress

IsetMacAddressComplete

mac_set [5s]

mcast_set [5s]
setMulticastComplet

Figure B.8: Theproperties

state of theEthernetController

protocol state ma-

chine expanded.

tx_rx

?enable

disabled

ldisableComple
[txCount == 0]

?pm.suspend | ?ic.stop

M

enable [5s]

lenableComplete

enabled

ItxPacketDone

disable [5s] ?disable

[txCount>0)/
--txCount

ItxStartQueue

?txPacket/
++txCount

ltxPacketDone
[txCount>0]/
--txCount

ltxPacketAbort/--txCount

?txTimeout

ItxPacketAbort
[txCount>0]/
--txCount

txq_stalled

ItxStopQueue

txg_running
?txTimeout

ItxPacketAbort
[txCount>0]/
-txCount

IrxPacketinput

rxg_running

suspend  stop

Figure B.9: Thex_rx state of theEthernetController

panded.

protocol state machine ex-
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B.4 TheUSBI nt erfaced i ent protocol

The USBInterfaceClient protocol defines the service provided by the USB bus
framework to a USB device driver. This protocol allows théseir to access a single in-
terface of the device. Multiple-interface devices aredgfly managed by multiple drivers,
one for each interface of the device. However, a single dicam control multiple USB
interfaces by implementing several ports of typ8BInterfaceClient . The protocol
specification is shown in Figures B.10 and B.11.

The USBInterfaceClient protocol is concerned with selecting the interface con-
figuration and opening USB pipes. The actual USB data tremsfecur via pipes whose
behaviour is described by théSBPipeClient  protocol shown in Figures B.12 and B.13.

B.4.1 USBI nterfaced i ent methods

altsettingSelect - Choose a different alternate setting for the interface. 2BU
interface can support different modes of operation thatireglifferent interface configura-
tions. The driver selects the desired configuration by dngathe corresponding alternate
setting. The list of available configurations and their pagters is specified in the device
descriptor accessible through the metadata interfaceavaetred here. Each alternate set-
ting supports a different set of USB endpoints. When a difiersetting is selected, all
pipes connecting the driver to currently used endpointslased (see the description of the
USBPipeClient  protocol below).

altsettingSelectComplete - Alternate setting successfully selected.
altsettingSelectFailed - Alternate setting select failed.

pipeOpen - Open a USB pipe to the specified device endpoint. This mespasvns a
new pipe port, which implements th&JSBPipeClient  protocol for transferring data
over the pipe. When the driver invokes this method, the USB&work allocates a USB
pipe and binds it to the provided port, so that the driver camédiately start using the pipe
through this port.

B.4.2 USBPi ped i ent methods

transferStart - Start a USB transfer over the pipe.

transferStalled - USB transfer failed and the pipe was stalled. Outstandamsters
will not complete and must be aborted. No new transfers castdnted until the pipe is
resumed.

transferFailed - USB transfer completed with an error; the pay remains dizeral
and will keep processing outstanding requests.
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protocol USBiInterfaceClient

{
types :
unsigned<8> usb_altsetting_num_t;
unsigned<32> usb_endpoint_addr _t;
enum usb_xfer_type t {
USB_CONTROL = 0,
USB_BULK = 1,
USB_INTERRUPT = 2,
USB_ISOCHRONOUS = 3
%
methods :

out altsettingSelect (usb_altsetting_num_t alternate);

n_altsettingSelectComplete ();
in_altsettingSelectFailed ();
out pipeOpen (usb_endpoint_addr_t address,

usb_xfer_type_t type) spawns pipe;
dependencies :
Lifecycle Ic {
restricts probeFailed;
listens probeComplete;
listens unplugged;
h
PowerManagement pm {
restricts suspendComplete;
listens resume;
¥
ports :
USBPipeClient pipe [usb_endpoint_addr_f] <self/iface, | c/lc, pm/pm>;
transitions :

import(format=rhapsody,
location="USBlInterfaceClientSM@ioprotocols.sbs");

Figure B.10: TheJSBInterfaceClient protocol declaration.

transferComplete - USB transfer completed successfully.

abort - Abort all transfers in the pipe. Used to clear a pipe staibl@eresuming the pipe
or to flush the pipe without waiting for all transfers to coetel before shutting down the
device or switching to a different interface setting.

transferAborted - Transfer aborted as a result ofalnort request.
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v

init

?lc.probe

on

IpipeOpen/
new pipe ($address)

v N

suspended ?pm.resume enabled ?altsettingSelectComplete
Ipm.suspendComplete
laltsettingSelect ?altsettingSelectFailed
| gltsetting_selecting [5s] |

\ v
llc.stopComplete ?lc.unplugged | !lc.probeFailed
(J
Figure B.11: TheJSBInterfaceClient protocol state machine.
abortComplete - Notifies the driver of the completion of aabort operation. Called

after all transfers in the pipe have been aborted.

resume - Resume the pipe after a stall. Can only be called if therenaréransfers
remaining in the pipe.

resumeComplete - Notifies the driver of the completion ofrasume request.

B.4.3 TheUSBPi peC i ent protocol state machine

TheUSBPIipeClient  protocol state machine shown in Figure B.13 has two feattnagts
have not appeared in protocols covered in the previousosecti

The first one is the use of the liabstract data type (ADT) model the list of out-
standing USB transfers. Theansfers  variable is declares in Figure B.12 as fol-
lows: list<dingo_urb *> transfers; . When a new transfer is started using the
transferStart method, it is added to the back of the list using thesh_back
function. Whenever a transfer is completed using tiiansferComplete :
transferFailed , transferStalled , ortransferAborted callback, the proto-
col state machine asserts that the completed transfer raubelsame as the one currently
at the head of the transfer list (i.e., transfers must cotaptethe first-in-first-out order),
and removes the transfer from the list.

Another feature of interest in this protocol is the use oftprol dependencies to syn-
chronise with the pareriSBInterfaceClient protocol. USBInterfaceClient
defines thealtsettingSelect method, which selects an alternate interface configu-
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protocol USBPipeClient

{

types :
opaque dingo_urb; // USB request block

methods :
out transferStart (dingo_urb * request);
in_ transferStalled (dingo_urb * request);
in_ transferFailed (dingo_urb * request);
in_ transferComplete (dingo_urb * request);
out abort ();
in_ transferAborted (dingo_urb * request);
out resume ();
in_ resumeComplete ();
in_ abortComplete ();

variables :

/I transfers queued in __ the pipe
list<dingo_urb *> transfers;

dependencies :
USBInterfaceClient iface {

restricts altsettingSelect;

2

Lifecycle Ic {
listens unplugged;
restricts probeFailed,;
restricts probeComplete;

2

PowerManagement pm {
restricts suspendComplete;
listens resume;

2

transitions :

import(format=rhapsody,

location="USBPipeClientSM@ioprotocols.sbs");

Figure B.12: ThéJSBPipeClient protocol declaration.
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ration. Calling this method terminates all active USB pip@® prevent resource leaks,
the driver is only allowed to invoke this method when there mno outstanding trans-
fers in any of its pipes. In order to express this constraihe USBPipeClient

protocol declares aestricts dependency on thaltsettingSelect method of

the USBInterfaceClient protocol (see the dependencies section in Figure B.12).
The iface.altsettingSelect transitions in Figure B.13 are guarded by the
transfers.size()==0 expression, which ensures that the pipe is empty when the

corresponding method of the parent protocol is invoked.
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B.5 Thel nfi ni BandContr ol | er protocol

The InfiniBandController protocol describes the service that an InfiniBand con-
troller driver must provide to the OS. The InfiniBand arctitee is designed to enable
high-throughput, low-latency, and low-CPU-overhead camitation between computer
systems [InfO8]. This is achieved using high-speed intemeot technology and sophisti-
cated host-side architecture, which suppeetsote direct memory access (RDMAffic
isolation, and other performance enhancement featuresv/ARBllows one of the com-
municating hosts to issue a command to read or write a blodat# in the remote host
memory. The command is completed by the local and remoteiBaivd controllers with-
out interrupting the execution of the remote host and doesagiire an extra memory copy
operation on either side. Traffic isolation is achieved byvjuling support for multiple pri-
oritised communication endpoints in the hardware.

In order to allow applications to leverage these mechanignesinfiniBand controller
driver must export an interface to a number of hardware ¢bjecthe OS. These objects
and relations between them are illustrated by the UML cléagrdm in Figure B.14.

Queue pairs A queue pair represents an InfiniBand communication endpsimilar to

a network socket. A queue pair consists of a request queuseapdnse queue. The client
writes a command to a request queue in order to initiate camuation with the remote
host (e.g., send a message or perform an RDMA write to theteememory). The response
queue contains memory buffers, which the controller fillfwmessages received from the
remote endpoint. A queue pair can have a private response queshare a response queue
with several other queue pairs. In the latter case, a spebjatt type, shared response
queue, is used.

Completion queues Completion queues store results of completed request apomee
operations. Every queue pair is assigned a request and@nsespompletion queues. De-
pending on application-level needs, this can be the saméferesht queues. Moreover,
completion queues can be shared among multiple queue pairs.

Protection domains Protection domains is a security mechanism that allows $ee 10
control which memory regions can be accessed via RDMA ojpeiathrough a particular
queue pair. A domain consists of a set of host memory regiewesty queue pair is assigned
to a protection domain at the time of creation. The host ofletrensures that the remote
endpoint can only access memory regions inside the protedttmain of the queue pair.

User contexts InfiniBand controllers are typically designed to allow ubmrel applica-
tions direct access to the controller, avoiding costlyaystalls. To this end, an application
can register a user context consisting of memory regiorisateamapped to the user address
space, providing direct access to queue pairs and complgtieues.
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InfiniBand Controller Driver 1
1 1
— k>———

*

User Context

0,1

0,1

*

*
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Completion Queue

InfiniBand Port

*
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*

*

Memory Region

Shared Response Queue

Queue Pair

0,1

rcvCQ

sndCQ

Figure B.14: Types of objects exported by an InfiniBand aalgr driver to the OS.




B.5. THEI NFI NI BANDCONTROLLER PROTOCOL 187

The specification of thénfiniBandController protocol and its subprotocols
are shown in Figures B.15-B.26. The protocol uses a numbdataf structures declared
opaque. The actual definition of these structures can bealfrubinux kernel header files.

B.5.1 | nfini BandControl | er methods

advertiseControllerProperties - Advertise InfiniBand device attributes during
initialisation ().

advertisePort - Advertise a physical port of the controller and its atttéss This
method is called by the driver during initialisation once éach port of the device. This
method spawns a new Tingu subport through which the OS derttre physical port via
thelBPort protocol.

queryDevice, queryDeviceFailed, queryDeviceComplete - Query In-
finiBand device attributes.

modifyDevice, modifyDeviceFailed, modifyDeviceComplet e - Modify
device attributes.

allocUContext, allocUContextComplete, allocUContextFa iled -
Allocate a new user context.

freeUContext, freeUContextComplete - Deallocate a user context.

allocPD, allocPDFailed, allocPDComplete - Allocate a new InfiniBand
protection domain. Spawns a new port through which the O&asmew protection do-
main via thelBProtectionDomain protocol.

createCQ, createCQFailed, createCQComplete - Allocate a new comple-
tion queue. Spawns a new port through which the OS contrelsdmpletion queue via the
IBCompletionQueue  protocol.

catastrophicError - Report a catastrophic device error to the OS.
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protocol InfiniBandController {

types :
opaque struct ib_device_attr;
opaque struct ib_port_attr;
opaque struct dib_udata;
opaque struct ib_ucontext;
opaque struct ib_device;
opaque struct ib_device_maodify;
opaque struct vm_area_struct;
opaque struct task_struct;
messages:
out advertiseControllerProperties (ib_device_attr

out advertisePort (ib_port_attr * props) spawns

5

queryDevice (ib_device_attr * props);

o
c
—

queryDeviceFailed (error_t error);
queryDeviceComplete ();
modifyDevice (u32 mask, ib_device_modify

o
c
—

=

o
c
=1

modifyDeviceFailed (error_t error);

o
c
—

modifyDeviceComplete ();

5|

allocUContext (dib_udata * udata);

o
c
=1

o
c
=1

allocUContextFailed (error_t error);

5

freeUContext (ib_ucontext *  Ctx);

o
c
—

freeUContextComplete ();

=

allocPD (ib_ucontext * Cctx, dib_udata *

o
c
=1

allocPDFailed (error_t error);

o
c
=1

allocPDComplete () spawns pd;

5|

createCQ (s32 entries, s32 vector, ib_ucontext
dib_udata * udata, task_struct
ut createCQFailed (error_t error);

o

ut createCQComplete () spawns cq;

o |o

ut catastrophicError ();

dependencies :
Lifecycle Ic {

listens probe; restricts probeFailed,;
restricts probeComplete; restricts stop;};
variables  :

set<ib_ucontext * > contexts;

ports :
IBPort hcport [u8] <lc/lc>;
IBProtectionDomain pd [] <lc/lc>;
IBCompletionQueue cq [] <lc/lc>;

transitions :
import(format=rhapsody,location="InfiniBandControll

Figure B.15: ThdnfiniBandController

allocUContextComplete (ib_ucontext *  Ctx);

* props, u32 features);

hcport;

* props);

udata);

* CtX,

*  task);

erSM@ioprotocols.sbs");

protocol declaration.
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Figure B.16: ThdnfiniBandController protocol state machine.
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B.5.2 | BPort methods

active, error - Report physical port error conditions.

queryPort, queryPortFailed, queryPortComplete - Query port attributes.
modifyPort, modifyPortFailed, modifyPortComplete - Modify port at-
tributes.

queryPKey, queryPKeyFailed, queryPKeyComplete - Retrieve a network

partition key in the partition key table associated with piogt.

queryGID, queryGIDFailed, queryGIDComplete - Retrieve port’s global
identifier (the identifier that uniquely identifies the parside a multicast group).
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protocol IBPort

{
types :
opaque
opaque
opaque
opaque
opaque
opaque
opaque

ib_mad__

messages:

struct ib_port_modify;

union ib_gid;

struct ib_grh;

struct ib_mad;

struct ib_mad_send_buf;
struct ib_wc;

enum ib_wc_status;

send_buf * pib_mad_send_buf;

out active ();
out error ();

5

o
c
—

o
oy
—

=1

o
c
—

o
c
—

5

o
C
=

o
C
—

=

o
c
—

o
—

u

queryPort (ib_port_attr *  props);
queryPortFailed (error_t error);
queryPortComplete ();

modifyPort (s32 mask, ib_port_modify
modifyPortFailed (error_t error);
modifyPortComplete ();

queryPKey (ul6 index, ul6 * pkey);
queryPKeyFailed (error_t error);
queryPKeyComplete ();

queryGID (s32 index, ib_gid * gid);
queryGIDFailed (error_t error);
queryGIDComplete ();

dependencies :
Lifecycle Ic {restricts stop;};

transitions :

* props);

import(format=rhapsody,location="IBPortSM@ioprotoco

Figure B.17: TheBPort protocol declaration.

Is.sbs");
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running |

‘ query_port

‘ ?queryPort IqueryPortComplete

‘ IqueryPortFailed
lerror

‘ ?queryPKey , ?modifyPort ;

query_pkey queries modify_port
ovents ‘ !queryPKeyFailed ImodifyPortFailed

‘ lqueryPKeyComplete ImodifyPortComplete
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?hca.stop
) 4

Figure B.18: ThdBPort

®

protocol state machine.
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B.5.3 | BProt ecti onDomai n methods
createQP, createQPFailed, createQPComplete - Allocate a new queue pair
inside the domain. Spawns a new port implementingBt@ueuePair protocol.

getDMAMR, getDMAMRFailed, getDMAMRComplete - Retrieve a memory region
descriptor for a memory region registered with the protectiomain.

regUserMR, regUserMRFailed, reguserMRComplete - Add a new user
memory region to the domain.

regPhysMR, regPhysMRFailed, regPhysMRComplete - Add a new physical
memory region to the domain.

deregMR, deregMRComplete - Remove a memory region from the domain.

createSRQ, createSRQFailed, createSRQComplete - Create a new shared
response queue. Spawns a new port implementingB8baredRQ protocol.

free, freeComplete - Destroy the protection domain.
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protocol IBProtectionDomain {

types :
opaque struct ib_qgp_init_attr;
opaque struct ib_mr;
opaque struct ib_srq_init_attr;
opaque struct ib_phys_buf;
ib_ah =+ pib_ah;

messages:

in_ createQP (IBCompletionQueue rcq, IBCompletionQueue scq,

IBSharedRQ srq, ib_gp_init_attr * init_attr,
dib_udata *udata, task_struct *  task);

out createQPFailed (error_t error);

out createQPComplete () spawns ap;

in getbMAMR (s32 acc);

out getDMAMRFailed (error_t error);

out getbMAMRComplete (ib_mr * mr);

in_ regUserMR (u64 start, ué4 length, u64 virt_addr,
s32 access_flags, dib_udata * udata);

out regUserMRFailed (error_t error);

out regUserMRComplete (ib_mr * Mmr);

in_ regPhysMR (ib_phys_buf = puffer_list, s32 num_phys_buf,
s32 acc, ué4 =iova_start);

out regPhysMRFailed (error_t error);

out regPhysMRComplete (ib_mr * Mmr);

in_ deregMR (ib_mr * mr);

out deregMRComplete ();

in_ createSRQ (ib_srq_init_attr *init_attr, dib_udata * udata,
task_struct * task);

out createSRQFailed (error_t error);

out createSRQComplete () spawns srq;

in_ free ();

out freeComplete ();

dependencies :
Lifecycle Ic {restricts stop;};
variables :
set<ib_mr *> mrs;
ports :
IBQueuePair gp[]<self/pd>;
IBSharedRQ srq[]<self/pd>;
transitions :
import(format=rhapsody,location="IBProtectionDomain

Figure B.19: ThdBProtectionDomain

SM@ioprotocols.sbs");

protocol declaration.
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PcreateQP - ?createSRQ
create_gp idle create_srq
IcreateQPFailed IcreateSRQFailed
IcreateQPComplete/
new gp IcreateSRQComplete/
neq srq

?0etDMAMR

get_mr .
lgetDMAMRFailed

| ?regPhysMR

'getDMAMRComplete/ : reg u mr
mrs.insert($mr) IregPhysMRFailed g_u_
?regUserMR IregPhysMRComplete/

reg_u_mr mrs.insert($mr)
IregUserMRFailed
IregUserMRComplete/
mrs.insert($mr)
?deregMR['mrs.find($mr)]

dereg_mr mrs.erase(mr)
lderegMRComplete

?free[mrs.size()==0]
destroy
IfreeComplete
Figure B.20: ThdBProtectionDomain protocol state machine.
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B.5.4 | BQueuePai r methods

initialise, initialiseFailed, initialiseComplete -
recvEnable, recvEnableFailed, recvEnableComplete -
sendEnable, sendEnableFailed, sendEnableComplete -
setErrorState, setErrorStateFailed, setErrorStateComp lete -
reset, resetFailed, resetComplete -

sqDrainStart, sqgDrainStartFailed, sqgDrainStartComplet e-

sqDrained - The InfiniBand standard defines several states throughiichvenqueue pair
can be during its lifecycle: RESET, READY-TO-RECEIVE, REXDO-SEND, SEND-
QUEUE-DRAIN, and ERROR. The above methods implement ttans between these
states.

query, gueryFailed, queryComplete - Query queue pair attributes.
modify, modifyFailed, modifyComplete - Modify queue pair attributes.
postSend - Post a new send or RDMA request.

postRecv - Post a new receive request.

destroy, destroyComplete - Destory the queue pair.



B.5. THEI NFI NI BANDCONTROLLER PROTOCOL 197
protocol IBQueuePair
{
types :
opaque struct ib_qgp_attr;
opaque struct ib_qgp;
messages:
in_initialise (ib_gp_attr * attr, s32 attr_mask, dib_udata * udata);
out initialiseFailed (error_t error);
out initialiseComplete ();
in_ recvEnable (ib_gp_attr * attr, s32 attr_mask, dib_udata * udata);
out recvEnableFailed (error_t error);
out recvEnableComplete ();
in_ sendEnable (ib_gp_attr * attr, s32 attr_mask, dib_udata * udata);
out sendEnableFailed (error_t error);
out sendEnableComplete ();
in_ sgDrainStart (ib_gp_attr * attr, s32 attr_mask, dib_udata * udata);
out sqgDrainStartFailed (error_t error);
out sgDrainStartComplete ();
out sqgDrained ();
in_ setErrorState (ib_qp_attr * attr, s32 attr_mask, dib_udata * udata);
out setErrorStateFailed (error_t error);
out setErrorStateComplete ();
in_ reset (ib_qp_attr * attr, s32 attr_mask, dib_udata * udata);
out resetFailed (error_t error);
out resetComplete ();
in_ query (ib_qp_attr *attr, s32 attr_mask, ib_qp_init_attr *  init_attr);
out queryFailed (error_t error);
out queryComplete ();
in_ modify (ib_qp_attr * attr, s32 attr_mask, dib_udata * udata);
out modifyFailed (error_t error);
out modifyComplete ();
in_ postSend (ib_send_wr * wr, pib_send_wr * bad _wr, out  error_t error);
in_ postRecv (ib_recv_wr * wr, pib_recv_wr * bad _wr, out  error_t error);
in_ destroy ();
out destroyComplete ();

dependencies :

IBProtectionDomain pd {restricts free;};
transitions :
import(format=rhapsody,location="IBQueuePairSM@iopr otocols.sbs");

Figure B.21: ThdBQueuePair protocol declaration.
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qp_running
error “reset errror_reset IresetComplete reset
< ?initialise initialising
IresetFailed
S IresetComplete * linitialiseFailed
IsetErrorStateComplete
in_state b

resetting B IresetFailed
- ’@ linitialiseComplete
initialised
?reset ?rcvEnable rcv_enable
set_error ?setErrorState
IsetErrorStateFailed !rcvEnableFailed ————
>® IrcvEnableComplete
ready_to_rcv
2postRcv Yo ?sndEnable snd_enable
IsndEnableFailed
IsndError
g C)
?postSnd IsndEnableComplete
ready_to_snd
?sqDrainStart |  drain_start
IsndEnableComplete T IsqDrainStartFailed |
IsndError
- IsqDrainStartComplete
sq_drain
IsqDrained
T ¥
snd_enable2 ; sg_drained !modifyComplete
— IsndEnableFailed g C_j>< W
H ImodifyFailed
5
?sndEnable modify
J
?destroy

Figure B.22: ThdBQueuePair

gp_destroying

!destroyComplete

protocol state machine.
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B.5.5 | BShar edRQmethods

query, queryFailed, queryComplete - Query queue attributes.
modify, modifyFailed, modifyComplete - Modify queue attributes.
postRecv - Posta new receive request.

arm, armFailed, armComplete - Arm the queue to signal to the OS when the
number of queue entries drops below the specified threshold.

limitReached - Notify the OS that the queue has reached the threshold.
error - Report an error.

destroy, destroyComplete - Destory the queue.
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protocol _ IBSharedRQ
{
types :
opaque struct ib_srq_attr;
opaque enum ib_srq_attr_mask;
opaque struct ib_recv_wr;
opaque struct ib_send_wr;
opaque struct ib_srq;
ib_recv_wr  * pib_recv_wr;
ib_send_wr * pib_send_wr;
messages:
query (ib_srqg_attr *srg_attr);
queryFailed (error_t error);

5

o
[
—

o
C
—

queryComplete ();

modify (ib_srqg_attr +attr, ib_srq_attr_mask attr_mask,
dib_udata *udata);

modifyFailed (error_t error);

modifyComplete ();

postRecv (ib_recv_wr * wr, pib_recv_wr * bad_wr,

5|

‘O
[
—

o
C
—

out error_t error);
arm (u32 srg_limit);
armFailed (error_t error);

5

o
C
=

o
C
—

armComplete ();
limitReached ();
error ();

destroy ();

ut destroyComplete ();

dependencies :
IBProtectionDomain pd {

_.OO
Lo d ~—+

(@)

restricts free;
2
transitions :
import(format=rhapsody,location="IBSharedRQ@ioproto cols.sbs");

Figure B.23: ThdBSharedRQ protocol declaration.



B.5. THEI NFI NI BANDCONTROLLERPROTOCOL 201
no_error
: idle )
ImodifyComplete
modify
modifyFailed : llimitReached
f 2modify armed not_armed
A 2query ?postRcv
ey 'queryFailed larmFailed
IqueryComplete s - g
arming
larmComplete ?arm
lerror
?destroy ?destroy
error
?destroy
destroying

édestroyComplete

Figure B.24: ThdBSharedRQ protocol state machine.
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B.5.6 | BConpl eti onQueue methods

poll - Dequeue the requested number of completion entries.

arm - Arm the completion queue to notify the OS about completeplests added to the
queue.

notify - Notify the OS about completed requests added to the queue.

resize, resizeComplete, resizeFailed - Change the number of entries in
the queue.

error - Report an error.

destroy, destroyComplete - Destroy the queue.
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protocol IBCompletionQueue

{

types :
opaque enum ib_cq_notify_flags;
opaque struct ib_cq;

messages:
in_ poll (u32 nentries, ib_wc * completions, out____ int ret);
out notify (u32 nentries);
in_ arm (ib_cq_notify flags flags, out ___error_t err);
in_ resize (s32 entries, dib_udata * udata);
out resizeComplete ();
out resizeFailed (error_t error);
out error ();
in_ destroy ();
out destroyComplete ();

dependencies :
Lifecycle Ic {

restricts stop;

—

transitions :
import(format=rhapsody,
location="IBCompletionQueueSM@ioprotocols.shs");

Figure B.25: ThdBCompletionQueue protocol declaration.

Inotify
Qi m ?resize
no_error resize
?poll ?arm
A lresizeComplete
IresizeFailed
lerror
?destroy
error
destroying
?destroy

ldestroyComplete

Figure B.26: ThdBCompletionQueue protocol state machine.



204 APPENDIX B. TINGU PROTOCOL SPECIFICATION EXAMPLES



Appendix C

The OpenCores SD host controller
device specification

Figure C.1 shows the complete OpenCores SD host contradiécel [Edv] protocol spec-
ification. The corresponding device-class and OS protqoetifications are given in Sec-
tion 6.5.

205
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protocol SDHostOpenCores

{

types :
/* device registers =/

struct  command_reg {
unsigned<2> RTS;
unsigned<8> RESERVED;
unsigned<6> CMDI;
¥
[+ argument register =*/
struct  argument_reg {
unsigned<32> CMDA,; /I command argument
¥
[+ card status register */
struct  status_reg {
unsigned<1> CICMD; /I command inhibit
unsigned<15> RESERVED;// reserved
¥
[+ conmmand response register */
struct  response_reg {
unsigned<32> CRSP; // response of the last command
¥
[+ software reset reg */
struct  reset_reg {
unsigned<1> SRST; /I software reset
unsigned<7> RESERVED; // reserved
¥
/+* normal interrupt status register =/
struct  isr_reg {

unsigned<1> CC; /[ command complete
unsigned<14> RESERVED; // reserved
unsigned<1> El, /I error interrupt

h
[+ error interrupt status register =*/
struct  eisr_reg {

unsigned<1> CTE; /I command timeout
unsigned<1> CCRC; /I command CRC error
unsigned<14> RESERVED;// reserved

¥
[+ clock divider register */
struct  clock div_reg {
unsigned<8> CLKD; /I clock divider

h

Figure C.1: The OpenCores SD host controller device spatiit(continued on the next
page)
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/+= BD buffer status register =/
struct  bd_status_reg {
unsigned<8> FBTX; /I free TX buffer descriptors
unsigned<8> FBRX; /I free RX buffer descriptors
h
[+ data interrupt status register =/
struct  disr_reg {

unsigned<1> TRS; /I transmission successful
unsigned<1> TRE; /I transmission error
unsigned<14> RESERVED; /I reserved

h
/+ RX buffer descriptor register =/
struct  bdrx_reg {
unsigned<32> BDRX;
h
[+ TX buffer descriptor register =/
struct  bdtx_reg {
unsigned<32> BDTX;
h
struct  block_descr {
unsigned<32> mem_addr; //memory address
unsigned<32> card_addr; //card address
h
methods :
/+*register read/wite methods */
out write_command_reg (command_reg V);
out read _command_reg (out _ command_reg V);
out write_argument_reg (argument_reg Vv);

out read_argument_reg (out argument_reg Vv);
out read_status reg (out status_reg v);
out read_response_reg (out response_reg V);

out write_reset _reg (reset reg Vv);

out read reset reg (out __ reset reg V);

out write_isr_reg (isr_reg Vv);

out read isr_reg (out ___ isr_reg v);

out write_eisr_reg (eisr_reg v);

out read eisr_reg (out __ eisr_reg V);

out write_clock_div_reg (clock_div_reg v);

out read clock_div_reg (out __ clock_div_reg v);
out read bd status reg (out _ bd_status reg v);
out write_disr_reg (disr_reg v);

out read _disr_reg (out ___ disr_reg v);

out write_bdrx_reg (bdrx_reg v);

out write_bdtx_reg (bdtx_reg v);

in_irg ();

Figure C.1: The OpenCores SD host controller device spatiific(continued)
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dependencies :
SDHostClass class {

restricts on;
restricts off;
restricts commandOK;
restricts commandError;
restricts blockTransferOK;
restricts blockTransferError;
restricts busClockChange;
2
variables :

command_reg m_command_reg;
reset_reg m_reset_reg;
argument_reg m_argument_reg;
status_reg m_status_reg;
response_reg m_response_reg;
isr_reg m_isr_reg;
eisr_reg m_eisr_reg;
bd_status reg m_bd_status_reg;
disr_reg m_disr_reg;
clock_div_reg m_clock_div_reg;
block_descr m_tx_descr;
block_descr m_rx_descr;
block_descr m_curr_descr;
unsigned<1> m_new_command;
unsigned<1> m_data_command,;
sdhost_command_t m_command,

transitions :
write_reset_reg[$v.SRST==1]/{m_comand_reg=0;m_statu s_reg=0;...};
write_reset_reg[$v.SRST==0];
class.on;
SDHOST

where
process SDHOST
(REGISTERS

Il
(COMMAND_MASTER |[class.off] DATA_MASTER)

Il
CLOCK_DIVIDER)
[>
write_reset_reg[$v.SRST == 1])/{m_comand_reg=0;
m_status_reg=0; ...};
write_reset_reg[$v.SRST==0];
SDHOST

endproc

Figure C.1: The OpenCores SD host controller device spatiific(continued)
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process CLOCK_DIVIDER
write_clock_div_reg/m_clock_div_reg=%$v;
class.busClockChange[$divisor==m_clock_div_reg.CLKD 1
CLOCK_DIVIDER

endproc

process REGISTERS

read_argument_reg[$v==m_argument_req];
REGISTERS

I
write_argument_reg[m_status_reg.CICMD==1])/m_argumen t_reg=%v;
REGISTERS

I
write_argument_reg[m_status_reg.CICMD==0]

A{m_argument_reg=%v; m_new_command=1;
m_data_command=0; m_status_reg.CICMD=1;};

REGISTERS

I
read_reset_reg[$v==m_reset_req];
REGISTERS

I

write_command_reg/m_command_reg = $v;

REGISTERS

I
read_command_reg[$v == m_command_reg];
REGISTERS

I
read_bd_status_reg[$v == m_bd_status_req];
REGISTERS

I

/* two consecutive wites to the BDTX register form
a 64-bit buffer descriptor =*/
write_bdtx_reg/m_tx_descr.mem_addr = $v.BDTX;
write_bdtx_reg/{m_tx_descr.card_addr = $v.BDTX;
m_bd_status_reg.FBTX = 0;};

REGISTERS
I
/+* two consecutive wites to the BDRX register form
a 64-bit buffer descriptor =*/

write_bdrx_reg/m_rx_descr.mem_addr = $v.BDRX;

write_bdrx_reg/{m_rx_descr.card_addr = $v.BDRX;
m_bd_status_reg.FBRX = 0;};

REGISTERS

endproc

Figure C.1: The OpenCores SD host controller device spatiifit(continued)
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process COMMAND_MASTER
awaitim_new_command==1]
Am_command.index=m_command_reg.CMDI;
m_command.arg=m_argument_redg.CMDA,;
m_command.response=m_command_reg.RTS;
m_command.data=m_data_command;
m_new_command=0;};
irg : timed
read_isr_reg/m_isr_reg=%v : timed
read_eisr_reg/m_eisr_reg=$v : timed _  ;
read_response_reg/m_response_reg=$v : timed __ ;
write_isr_reg[$v==0] : timed
write_eisr_reg[$v==0] : timed
(
iffm_isr_reg.CC == 1]
class.commandOK
[($command==m_command) &&
($response==m_response_reg.CRSP)]
/m_status_reg.CICMD=0 : timed __;
COMMAND_MASTER
I
else
class.commandError
[($command==m_command) &&
($status==(m_eisr_reg.CCRC ?
SDH_CMD_ECRC : SDH_CMD_ETIMEOUT))]
/m_status_reg.CICMD=0 : timed _;
COMMAND_MASTER

I

class.off;
exit
endproc

process DATA_MASTER

/+* A data transfer is triggered when either the TX or the
RX buffer descriptor is witten and the conmand i nhi bit
bit is zero (i.e., the conmand master is not busy) =/

Figure C.1: The OpenCores SD host controller device spatiifit(continued)
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[+ The RX buffer descriptor has been witten. Start a
read transfer. The first step is to send conmand 17 to
the card. To this end, the data nmaster wites comand
and argunent registers and triggers the comand naster
by generating the mnew comand signal. The argunent
of command 17 is the address of the SD card block to be
witten. Thid value is take fromthr rx buffer
descriptor (mrx_descr.card_addr). =*/

await[(m_bd_status_reg.FBRX == 0) &&

(m_status_reg.CICMD == 0)]

Am_curr_descr = m_rx_descr;
m_command_reg.CMDI = 17; // issue command 17
m_command_reg.RTS = 1; //lexpect a response from command
m_argument_reg.CMDA = m_rx_descr.card_addr; // write

/I block address to the arg register

m_new_command = 1,
m_data_command = 1;
m_status_reg.CICMD = 1;};

/+* The data master then waits for the command master to
conpl ete the command. =/

await[(m_status_reg.CICMD == 0) && (m_command_ok == 0)];

[+ If the command master fails, the data master deadl ocks.
The only way to get out of this deadlock is by resetting
the controller (see the DATA MASTER process above) */

stop

I

[+ |If the command went through successfully, ... x/
await[(m_status_reg.CICMD == 0) && (m_command_ok == 1)];
[+ ...the data master starts a data transfer. Conpletion

of the transfer is indicated by an interrupt; the
outcone is determined by values in the data interrupt
status register. |If the transfer was successful, the
TRS bit is set to 1. 1In this case, a
bl ockTransfer Conpl ete event is generated. Oherw se, a
bl ockTransfer Fail ed event is generated. In either case,
the data naster al so sets the nunber of available rx
descriptors in the BD status register
(mbd_status_reg. FBRX) to 1, indicating that it is
ready for the next data transfer. =*/

irg:timed __;

read_disr_reg/m_disr_reg = $v : timed

write_disr_reg :timed

Figure C.1: The OpenCores SD host controller device spatiific(continued)
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ifflm_disr_reg.TRS == 1]
class.blockTransferComplete
[($mem_addr == m_curr_descr.mem_addr)]
A{m_disr_reg. TRS = 0; m_disr_reg.TRE = 0;
m_bd_status_reg.FBRX = 1;} : timed _ ;
DATA_MASTER

else
class.blockTransferFailed
[(Bmem_addr == m_curr_descr.mem_addr) &&
($status == SDH_DATA_ERROR)]
/{m_eisr_reg.CCRC = 0; m_eisr_reqg.CTE = 0;
m_bd_status_reg.FBRX = 1;} : timed
DATA_MASTER

I

[ *Same for TXx/
await[(m_bd_status_reg.FBTX == 0) && (m_status reg.CICM D == 0)]
Am_curr_descr = m_tx_descr;

m_command_reg.CMDI = 24; // issue command 24

m_command_reg.RTS = 1;

m_argument_reg.CMDA = m_tx_descr.card_addr;

m_new_command = 1,

m_data_command = 1;

m_status_reg.CICMD

Lk

await[(m_status_reg.CICMD == 0) && (m_command_ok == 0)];
stop

I
await[(m_status_reg.CICMD == 0) && (m_command_ok == 1)];
irg;timed ___;
read_disr_reg/m_disr reg = $v : timed _
write_disr_reg :timed___

Figure C.1: The OpenCores SD host controller device spatiific(continued)
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iffm_disr_reg.TRS == 1]
class.blockTransferComplete
[($mem_addr == m_curr_descr.mem_addr)]
Am_disr_reg.TRS = 0; m_disr_reg.TRE = 0;
m_bd_status_reg.FBTX = 1; : timed __ };
DATA_MASTER
I
else
class.blockTransferFailed
[($mem_addr == m_curr_descr.mem_addr) &&
($status == SDH_DATA_ERROR)]
Am_eisr_reg.CCRC = 0; m_eisr_reg.CTE = 0;
m_bd_status_reg.FBTX = 1;}: timed__ ;
DATA_MASTER

class_off;
stop

endproc

Figure C.1: The OpenCores SD host controller device spatiic(the end)
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