
Translation Validation for
Verified, Efficient and Timely

Operating Systems

Thomas Sewell

School of Computer Science and Engineering

University of New South Wales
Sydney, Australia

Submitted in ful�lment of the requirements for the degree of
Doctor of Philosophy

November 2017



2

‘I hereby declare that this submission is my own work and to
the best of my knowledge it contains no materials previously
published or written by another person, or substantial propor-
tions of material which have been accepted for the award of
any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in
the thesis. Any contribution made to the research by others,
with whom I have worked at UNSW or elsewhere, is explicitly
acknowledged in the thesis. I also declare that the intellectual
content of this thesis is the product of my own work, except
to the extent that assistance from others in the project’s de-
sign and conception or in style, presentation and linguistic
expression is acknowledged.’

Signed:

Date:

In light of the above, let me add a note about authorship. In the following chapters I
will follow the same convention that I do in the related papers, and always say “we did”
instead of “I did”, rather than carefully delineate where my path has joined or diverged
with the paths of others.

I will always be indebted to those I have worked with. Nevertheless, the SydTV ap-
proach and software described in this thesis is almost exclusively my work. The exception
is the contribution of Felix Kam, whose undergraduate thesis I supervised during my time
as a PhD candidate. His contribution will be clari�ed in Chapter 3. The SydTV approach
also makes use of an independent tool written by Magnus Myreen, with whom I have
collaborated closely in the past. In this text I will describe his work in outline but not
claim it as a contribution.

This text incorporates sections of prior publications listed on the next page, which
my co-authors Gerwin Klein, Magnus Myreen, Felix Kam and Gernot Heiser have helped
to edit.



3

This thesis incorporates these core publications:

• Thomas Sewell. Formal replay of translation validation for highly optimised C:
Work in progress. In Veri�cation and Program Transformation, Vienna, Austria, July
2014

• Thomas Sewell, Felix Kam, and Gernot Heiser. Complete, high-assurance determi-
nation of loop bounds and infeasible paths for WCET analysis. In RTAS, Vienna,
Austria, Apr 2016

• Thomas Sewell, Felix Kam, and Gernot Heiser. High-assurance timing analysis for
a high-assurance real-time OS. Real-Time Syst., 53:812–853, Sep 2017

This thesis will also make reference to, but not directly build on, other work in which
I have participated during the period of my PhD work:

• Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell,
Rafal Kolanski, and Gernot Heiser. Comprehensive formal veri�cation of an OS
microkernel. Trans. Comp. Syst., 32(1):2:1–2:70, Feb 2014

• Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam
O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas Sewell, Joseph
Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and Gernot Heiser. Cogent:
Verifying high-assurance �le system implementations. In ASPLOS, pages 175–188,
Atlanta, GA, USA, Apr 2016

• Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth Lim, Toby
Murray, Yutaka Nagashima, Thomas Sewell, and Gerwin Klein. Re�nement through
restraint: Bringing down the cost of veri�cation. In ICFP, Nara, Japan, Sep 2016

• Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell, Zilin Chen,
Liam O’Connor, Toby Murray, Gabriele Keller, and Gerwin Klein. A framework for
the automatic formal veri�cation of re�nement from Cogent to C. In ITP, Nancy,
France, Aug 2016



4

Finally, this thesis will make reference to, but not claim any contributions of, prior
work of mine from before my PhD candidature, especially the �rst here:

• Thomas Sewell, Magnus Myreen, and Gerwin Klein. Translation validation for a
veri�ed OS kernel. In PLDI, pages 471–481, Seattle, Washington, USA, Jun 2013

• Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David Cock, and
Michael Norrish. Mind the gap: A veri�cation framework for low-level C. In
TPHOLs, pages 500–515, Munich, Germany, Aug 2009

• Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal veri�cation of an
OS kernel. In SOSP, pages 207–220, Big Sky, MT, USA, Oct 2009

• Sascha Böhme, Anthony CJ Fox, Thomas Sewell, and Tjark Weber. Reconstruction
of Z3’s bit-vector proofs in HOL4 and Isabelle/HOL. In International Conference on
Certi�ed Programs and Proofs, pages 183–198. Springer, 2011

• Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June Andronick,
and Gerwin Klein. seL4 enforces integrity. In ITP, pages 325–340, Nijmegen, The
Netherlands, Aug 2011



5

Abstract

Computer software is typically written in one language and then trans-
lated out of that language into the native binary languages of the ma-
chines the software will run on. Most operating systems, for instance,
are written in the low-level language C and translated by a C com-
piler. Translation validation is the act of checking that this translation
is correct. This dissertation presents an approach and framework for
validating the translation of C programs, and three experiments which
test the approach.

Our validation approach consists of three components, a frontend, a
backend and a core, which broadly mirrors the design of the C compiler.
The three experiments in this dissertation exercise these three compo-
nents. Each of these components produces a formal proof of re�nement,
and these re�nement proofs compose to produce a proof that the binary
is a re�nement of the source semantics. This notion of re�nement can
then compose with correctness proofs for a C program, resulting in a
veri�ed binary. Throughout this work, our case study of interest will be
the seL4 veri�ed operating system kernel [KEH+09], compiled for the
ARM instruction-set architecture, for which we will produce a veri�ed
e�cient binary.

The thesis of this work is that our translation validation approach o�ers
us great �exibility. We can quickly produce veri�ed binaries produced
via many complex transformations without speci�cally addressing each
such transformation. We can adapt our frontend to handle low-level
source code which does not strictly respect the rules of the C language
it is written in. We can also retarget our backend to address important
timing concerns as well as correctness ones.
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1 Introduction

1.1 The SydTV Translation Validation Approach

Translation validation is the act of checking that the translation of a computer program is
correct. This dissertation presents an approach for validating the translation of C programs,
and three experiments which test the approach. This approach is exempli�ed by a software
tool developed in this work. It is time to give the software a name, and so we will dub it
the Sydney Translation Validation suite, SydTV for short.

The main function of SydTV is to produce a proof of re�nement. This re�nement is
divided into three component proofs, which we sketch in Figure 1.1. These proofs are
performed by di�erent components of SydTV in three di�erent logical environments.
The three proof steps are connected by two intermediate representations of the program.
These shared representations are expressed in a common interchange language, SydTV-GL,
which we designed to have a simple known semantics that can be expressed in all three
logical environments.

Both the C language and the ARM processors we are interested in have a number of
complex features which are not strictly necessary. By contrast, SydTV-GL is designed to
be as simple as possible. The main function of the frontend is to reduce the complexities of
the C language to a simpler SydTV-GL representation, and prove this reduction was sound.
This component is implemented within the Isabelle/HOL theorem prover [NPW02], to
connect to the existing Tuch/Norrish C semantics [TKN07] and the C-to-Isabelle parser
used in a number of program veri�cation projects. The main function of the backend
is to eliminate complexities of the ARM architecture and function calling convention,
recovering a structured program. For the backend, we make use of Myreen’s method of
decompilation into logic [MGS08,MGS12]. This is implemented within the HOL4 theorem
prover, and connects to the Cambridge validated ARM semantics [FM10].

The core component of our approach, SydTV-GL-re�ne, is a custom standalone tool
which is backed by a suite of SMT solvers. The key function of SydTV-GL-re�ne is to
discover a proof of re�nement between two programs which are semantically related
but may be structurally quite di�erent. The discovered proofs are also checked within
SydTV-GL-re�ne.

While all of the components of SydTV perform translation validation, the nature of
the problem varies substantially. The outer components address the ideal version of the
translation validation problem, where the translation has been deliberately structured
to be easy to validate. The inner SydTV-GL-re�ne component, however, must handle

11
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Figure 1.1: Tools and artefacts of SydTV

the challenging variant of translation validation where nothing at all is known about
the relationship between the two target programs except that one ought to be a valid
translation of the other.

1.2 Experiments

In addition to developing SydTV, we test our approach through three broad experiments,
which the three major chapters of this dissertation will explore.

In our �rst experiment, we test the primary function of SydTV, producing a re�nement
proof in a challenging setting. We aim to produce a completely veri�ed seL4 binary when
it is compiled with complex loop optimisations. This mostly exercises the design and
implementation of the SydTV-GL-re�ne component, which we will explain in detail.

Our second experiment applies SydTV to a task for which it was not originally designed.
To reason about the execution time of programs, we link SydTV to the Chronos timing
tool [LLMR07]. We extend SydTV-GL-re�ne to establish timing relevant information, such
as bounds on the number of iterations possible in loops. By making use of additional
information passed through by the user from the Isabelle-based frontend, we create a rich
environment for proving that a binary executes within essential deadlines.

In our �nal experiment, we revisit the theoretical foundations of the SydTV approach,
replicating elements of the SydTV-GL-re�ne logic within the theorem prover Isabelle/HOL.
In this work we con�rm that the basic reasoning principles of SydTV-GL-re�ne are
sound, but also discover that our theoretical foundation is more complex that we thought,
including connections to variants of the axiom of choice.
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1.3 Contributions

The implementation of SydTV builds on a previous nameless prototype, which we built
in a previous project. In that work, we showed it was possible to verify a key subset
of the compiled seL4 binary [SMK13] when major optimisations were disabled. SydTV
inherits its structural design from that prototype, which had the same division across three
components, and also included a predecessor of SydTV-GL. To clarify the contribution of
this work, we will from time to time make comparisons between elements of SydTV and
their corresponding features in the earlier prototype.

Speci�cally, the contributions of this work are:

• A model-guided SMT-based search process for producing a translation validation
proof which handles substantial optimisations and does not assume any knowledge
about the way the binary representation was produced from the source program.

• Careful tuning of the proof discovery process to handle exotic cases, improve
performance and ensure complete coverage on sizeable binaries.

• A case study in applying the whole validation process to produce an e�cient veri�ed
OS binary.

• Discovery of minor defects in the well-publicised seL4 veri�cation, adjustments to
the C veri�cation environment, and re-veri�cation.

• A novel approach to the WCET (worst-case execution time) analysis problem, in
which a translation validation suite and a sofware veri�cation environment are
used in high-assurance timing analysis.

• Improvements to the timing behaviour of the seL4 kernel by replacing a crucial
operation with a preemptible counterpart, and re-veri�cation of the adjusted kernel.

• Thorough validation of the formal underpinnings of the approach, including modest
contributions to the relevant theory.
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2 Proving Re�nement

The main function of SydTV is to prove re�nement between the source and binary
semantics of a program. Together with a veri�ed source program, this gives us a veri�ed
binary. Various proof approaches can produce such veri�ed source programs, including
the the seL4 C re�nement approach [WKS+09], the AutoCorres tool [GLAK14], and the
proof framework of the Cogent language [OCR+16, RLN+16]. These approaches give us
various veri�ed programs of interest, including of course the seL4 microkernel [KEH+09],
algorithms from the LEDA framework [MN89, NRM14], and �lesystems implemented in
Cogent [AHC+16].

Each of these programs has been veri�ed against the Tuch/Norrish C semantics
[TKN07], using the C-to-Isabelle parser to produce a formal model of the program in
Isabelle/HOL.1 The various proof approaches connect the C semantics “upward” to higher
level properties. The re�nement proof produced by SydTV connects to these same seman-
tics “downwards”, and links down to the actual semantics of the binary program.

Crucially, the high-level and low-level proofs “meet” at the C semantics. Firstly, this
ensures that the correctness conditions which the high-level proofs check are exactly those
which the low-level proofs may assume. Secondly, we avoid questions about whether
all tools agree on the interpretation of the C standard. Indeed, not all experts agree on
the interpretation of the C standard. It is not even important whether the compiler and
C-to-Isabelle parser are “correct” with regard to any particular understanding of the C
standard, as long as they agree closely enough that the binary of interest can be shown to
have the properties that the C program was veri�ed against.

The proof of re�nement produced by SydTV is split into three component re�nement
proofs, as shown previously in Figure 1.1. While the proofs are performed in di�erent tools
and there is not a single end-to-end theorem in any one of them, the re�nement proofs all
logically compose. We could, for instance, hypothesise in Isabelle/HOL the results which
we show in HOL4 and SydTV-GL-re�ne, and derive from those hypotheses a correctness
property for the machine code.

While all three proof components of SydTV are important, this chapter will focus
on the central proof in SydTV-GL-re�ne, which is the most challenging aspect. The
conversion from the Isabelle/HOL representation produced by the C-to-Isabelle parser
is the easiest aspect, although it raises a number of theoretical questions which we will
return to in Chapter 4. The decompilation is performed by a special-purpose decompiler

1The parser is available as part of the o�cial L4.veri�ed distribution:
https://github.com/seL4/l4v/blob/master/tools/c-parser/
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component, which forms part of SydTV. This decompiler is one of a family of related
tools maintained by Myreen [MGS08, MGS12], customized to support this project. For the
purposes of this PhD discussion we will treat the decompiler as a separate work, sketch
its function, and leave discussion of its design to another document.

The proof approach of SydTV-GL-re�ne itself has several major components. As
recommended by Pnueli et al, in the original formulation of translation validation [PSS98],
we divide SydTV-GL-re�ne into a search process and a check process, with the search
process discovering a proof script which the checker then validates. Both the search
process and the check process proceed by reducing questions about programs expressed
in SydTV-GL to SMT problems. This reduction is divided into two phases, which we will
outline shortly. The search process is also supported by a static analysis component.

This chapter will explore the design of SydTV-GL-re�ne, working our way from the
high-level proof structure to implementation speci�cs, and then describe the results of
our case study in applying the tool to the seL4 binary. The structure of proof scripts, and
the way they are converted to SMT proof obligations, is introduced in Section 2.1. The
way the search process discovers proof scripts is introduced in Section 2.2. Additional
features required to reason about the decompiled binary programs are introduced in
Section 2.3, and �ne-tuning needed to cover di�cult cases is discussed in Section 2.4.
Section 2.5 describes our case study in applying the toolset to the seL4 binary, and the
adjustments to the seL4 veri�cation that were necessary to complete this work, with the
performance results of the case study discussed in Section 2.6. Related work in the �eld of
translation validation is examined in Section 2.7, and Section 2.7.1 speci�cally compares
to the approach of veri�ed compilers.

2.1 Structure of SydTV-GL-refine Correctness Proofs

The three components of SydTV cooperate to produce a proof of re�nement between
the C source semantics and the binary code. The outer components reduce the semantic
complexities of the C language and the ARM architecture to a uniform representation in
the language SydTV-GL. This section focuses on the inner component SydTV-GL-re�ne,
and the structure of the re�nement proofs that it checks.

However, while the aim of the section is to focus on SydTV-GL-re�ne, we begin by
describing the inputs to SydTV-GL-re�ne, that is, the expected behaviour of the other two
tools.

2.1.1 Conversion from C Semantics to SydTV-GL

Let us begin by examining the pseudo-compilation process which converts functions in
the Isabelle C model into SydTV-GL. This also serves as an introduction to SydTV-GL.
SydTV-GL stands for SydTV Graph Language, because the primary idea of the conversion
is to replace complex language control �ow rules with an explicit control �ow graph.

This conversion is best illustrated with an example. Consider the function find, shown
in Figure 2.1. To convert the C statements to the graph language, we number them all,
with the steps from statement to statement becoming the edges of a labelled directed
graph. Each node of the graph has a statement component as well as an address. The
special label Ret represents the return point of the function.

The graph consists of three types of nodes. Conditional nodes are used to pick between
execution paths, and correspond closely to decisions made by if and while statements
in C. Basic nodes represent normal statements, and update the value of some variables
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   struct node *
   find (struct tree *t, int k) {
1    struct node *p = t->trunk;
2    while (p) {
3      if (p->key == k)
4        return p;
5      else if (p->key < k)
6        p = p->right;
       else
7        p = p->left;
     }
8    return NULL;
   }
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1: p := Mem[t + 4];

2: p == 0 ?

8: ret := 0
3: Mem[p] == k ?

4: ret := p;
5: Mem[p] < k ?

6: p := Mem[p + 4];
7: p := Mem[p + 8];
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Figure 2.1: Example Conversion of Structure and Statements to Graph Language

with the result of some calculations. Call nodes are used to represent function calls, which
are distinguished from other statements. A number of restrictions enforced by the C-to-
Isabelle parser assist us in this conversion, for instance, function calls may be embedded
in other expressions only in very limited ways, and statements with multiple e�ects are
forbidden.

The conversion also simpli�es the expressions of the C language. SydTV-GL has only
named variables, no globals, so memory must be treated as a normal variable, accessed and
updated with special operators. The only numeric types available are n-bit machine words,
for any length n, and there are no container types. Pointers become 32-bit words, and
address operations of various kinds are replaced with the relevant arithmetic. Insofar as C
can be seen as a portable assembler, the conversion makes this explicit. Some examples
are given in Figure 2.1, with implicit memory accesses becoming explicit, and implicit
addressing within structures becoming explicit arithmetic on addresses.

Local variables of structure and array type are also replaced by collections of local
variables representing their �elds. Assignments of structure type are expanded into a
sequence of assignments for each �eld. Reads and writes of global variables become reads
and writes of memory, at symbolic addresses which are later instantiated by reading the
symbol table of the binary. The expressions that remain are entirely machine compatible:
operations such as 32-bit addition and multiplication, left and right shifts, signed and
unsigned less-than, and �nally memory access and update of 32-bit and 8-bit values.

The C-to-Isabelle parser uses the Tuch memory semantics [Tuc08] to encode memory
accesses. It is a theorem of this semantics that a memory write of an aggregate type
is equivalent to a write of each of its �elds, but only if the aggregate type contains no
padding. Padding creates a number of headaches for us. Rather than solving the padding
problem in general, we require the input C source to avoid it, which is usually easy for
the programmer to ensure. For instance, we can easily remove the use of padding in the
seL4 sources, as we discuss in Section 2.5.2.

The complication is that C is not merely a portable assembler. The C standard mandates
a number of restrictions on the way various operations may be used, and these cannot
all be encoded using machine types. One simple restriction is that arithmetic on signed
operands may not over�ow, and another is that dereferenced pointers must be aligned
and nonzero. To ensure the standard is followed, the C-to-Isabelle parser inserts a number
of Guard statements into its output. A Guard statement wraps another statement with
some condition, and the condition is added as a veri�cation obligation in any proof about
the inner statement.

The statement which accesses p->right in Figure 2.1, for instance, will be wrapped in
a guard in Isabelle, which checks that p in not NULL. The graph conversion then translates
the guard statement into a condition node with one of the outbound edges pointing to
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the special label Err. Both the C and graph variants of these guards were omitted from
Figure 2.1 for clarity.

The guards that addresses are non-zero and aligned, and that arithmetic is non-
over�owing, can themselves be represented with concrete machine arithmetic. This means
that all the expressions and variables used in SydTV-GL can themselves be translated
into SMT equivalents. The exception to this relates to the strict-aliasing rule of the C
standard. This rule says that any given memory address may not be in use with two
di�erent incompatible types. This rule is occasionally broken in low-level programming,
but usually holds, and is important in enabling many performance optimisations. To
address this, we include in SydTV-GL a small number of types and operators from the
Tuch memory semantics [Tuc08] in Isabelle/HOL. These operators permit assertions
which declare that a typed pointer is valid. We return to the details of this encoding in
Section 2.1.12.

The semantics of the graph language are straightforward to formalise in Isabelle/HOL
or HOL4. The node types are introduced as datatype constructors Basic, Cond and Call.
A single step starting from a Basic node updates local variables, and starting from a Cond
node decides between two possible successor labels. The Call nodes create a new stack
frame, with a new graph and new local variables, and steps from the Ret and Err labels
fold the current stack frame into the previous one. The semantics of execution are given
by the transitive closure of this single-step relation.

We revisit the conversion from Isabelle/HOL to SydTV-GL in Chapter 4, including a
detailed presentation of the above semantics in (Section 4.2).

2.1.2 Decompiling Compiler Output into Logic

The lowest-level re�nement proof we perform relates the semantics of the compiled binary
into a SydTV-GL representation. This is accomplished by a decompiler tool, one of a family
of such decompilers maintained by Myreen [MGS08, MGS12]. The decompiler variant
included in SydTV targets SydTV-GL directly, producing SydTV-GL representations of
each instruction in the binary and a proof in HOL4 that the binary semantics re�ne those
of the SydTV-GL bodies.

This proof connects our work in SydTV-GL-re�ne down to the Cambridge ARM
semantics. It is important to note that the accuracy of these processor semantics has been
exhaustively validated by testing the processor model alongside real silicon [FM10]. This
gives us great con�dence that we are proving results that directly relate to the real-world
semantics of our programs.

The way the SydTV decompiler represents stack accesses has substantial implications
for SydTV-GL-re�ne, which we will return to in Section 2.3.

2.1.3 Proof Scripts in SydTV-GL-refine

Each of the three re�nement proofs in SydTV is decomposed into one proof per function.
The check process of SydTV-GL-re�ne checks one proof script for each named function
in the binary. Any other functions called will be treated as black boxes, speci�ed only by
their corresponding re�nement theorem.

The proof script for each function consists of a problem space, together with a tree
of proof rules. The proof rules are named Restrict, Split, CaseSplit and Leaf. These
rules give structure to the proof, reducing the re�nement problem to a number of proof
obligations. The heavy lifting is then done by converting proof obligations on the problem
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space into SMT problems. We will describe these proof components as the proof checker
sees them.

We also include a more detailed example, and a sketch of the way its correctness proof
would be produced, in Section 4.4.2.

The proof rules will, together, reduce the problem of re�nement for a pair of pro-
grams in SydTV-GL to a collection of speci�c proof obligations. These obligations can
be addressed by conversion to SMT. This forms a reduction of an undecidable problem
(re�nement in a Turing-complete language) to a problem for which SMT solvers are
e�cient decision procedures. The proof checker aims to be a complete decision procedure
for checking proof scripts. Given a correct proof script, the checker should always verify
re�nement. In practice, the checker may sometimes time out because the complexity of
the problem defeats the SMT solvers, but it should not decide against a correct proof
script.2 By comparison, the discovery of the proof script by the search process, which we
will describe in Section 2.2, is heuristic, and may fail because we have not yet adequately
addressed particular kinds of compiler strategies.

2.1.4 Function Pairings

The SydTV-GL-re�ne re�nement proof proceeds one function at a time. For each function,
we prove a correctness theorem. Within the proof of each function, other functions are
speci�ed only by their correctness theorem.

The �rst complication in SydTV-GL-re�ne is that the function call graphs of the C
and binary may di�er. The compiler has a choice at every C call site whether to generate
a binary function call or to include (“inline”) the body of the called function. If the called
function is marked static in C, and it is inlined at all call sites, then it may not appear
under its name in the binary at all.

For this reason, many functions that exist in the C SydTV-GL representation have no
counterpart in the binary SydTV-GL artefact. This also sometimes happens the other way
around, when the compiler may, on rare occasions, generate an anonymous function with
no known counterpart in C. More frequently, the compiler may generate “clone” functions
which implement a named C function in some sense but do not promise to implement
those functions in the usual way. We discuss the issue of clones at length in Section 2.5.7.

Thus, the function-by-function breakdown is really a breakdown by function pairings.
The �rst step for SydTV-GL-re�ne is to generate the list of function pairings. A function
pair names the C and binary SydTV-GL functions, and speci�es the statement of their
correctness theorem.

The correctness theorems are all stated as an implication, with a premise relating the
input values and a conclusion relating the output values. Functions in SydTV-GL have an
arbitrary length list of named input and output values, which may di�er between the paired
functions. For instance, all binary SydTV-GL functions produced by the SydTV decompiler
have the same list of inputs and outputs, which includes all the CPU registers, the stack
and main memory. The input and output relations specify the connection between these
values.

The input and output relations are mostly speci�ed by the architecture calling con-
vention. For instance, according to the ARM speci�cation, a C function of two arguments,
x and y, will be paired to a binary function, where the input relation for these arguments

2There is an issue with stack equalities which we discuss in Section 2.3, which speci�cally makes the
checker incomplete.
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is that xinit(C) = r0init(BIN) and yinit(C) = r1init(BIN). Input relations in SydTV-GL-
re�ne pairings are always a list of equalities, where each side of each equality is a variable
expression that can be evaluated using either the binary or C input variables.

The output relations are also a conjunction of equalities. Output equations may either
link output variables to each other, or link output variables to input variables. This allows
the output relation to specify return value relations, e.g. retvRet(C) = r0Ret(BIN), as
well as callee saved values, e.g. r6Ret(BIN) = r6init(BIN).

2.1.5 Inlining and The Problem Space

The �rst step in building a proof script is to establish a problem space, a shared graph
namespace into which the binary and C bodies of the function of interest are copied. The
problem space is free to be modi�ed, in particular by inlining function calls. The search
process attempts to inline su�ciently that the two function graphs in the problem space
can be proven equivalent with the remaining function calls treated as black boxes.

Inlining is done on the binary side of the problem whenever the called function does
not match any C function, that is, is not part of any pairing.

Inlining is done on the C side of the problem at any call site which is reachable
and which is not paired with a function that appears on the binary side of the problem.
This simple heuristic might fail in the presence of selective inlining, where a C function
contains two call sites for the one function and the compiler made di�erent decisions
about inlining. The heuristic could also potentially inline far too much source code in the
case where a function designated “pure” or “const” was dropped because its result was
ignored. This heuristic has, however, worked well at the optimisation levels -O1 and -O2
for which we have extensively tested it.

This heuristic makes use of the syntax of the binary function, and considers the
semantics of the C function alone to decide reachability. It does not make use of the
semantic link between the functions yet. This design decision was made to allow us to
perform all inlining before doing more complex analysis, e.g. comparing the semantics of
loops.

The problem space produced after inlining is included in the proof script, and the
SydTV-GL-re�ne checker trusts that this problem space can be derived from the functions
of interest. To be truly skeptical, the checker could attempt to replay the inlining procedure
itself. We have an incomplete project to replay the re�nement proofs of SydTV-GL-re�ne
within the Isabelle/HOL theorem prover, which will require an o�cial check of this phase.
We discuss our progress on that replay project in Section 4.4.

2.1.6 Conversion to SMT

The search and checker processes both use SMT solvers extensively to make judgements
about the C and binary execution. These executions will form a sequence of visits to nodes
in the problem space graph. The items of interest for a given node n will be the values
of variables, should n be visited, at the point in execution that n is reached, and also the
conditions under which n is reached. The �nal objective of the proof process is to reason
about the values of returned variables should Ret be reached, and the conditions under
which Err is reached.

These valuations and conditions can be represented in the SMT logic. Figure 2.2 shows
nearly all of the steps of interest. The boxes show the path condition and variable values
immediately before execution of each node. The input variables at the entry point, for
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1. y := x + 1

2. y < 3 ?

3. x := y - 12

4. z = f (x, y)

Tr
ue

False

pathc = True
x = xi

pathc = True
x = xi

y = xi + 1

pathc = (xi + 1) < 3
x = xi

y = xi + 1

pathc = (xi + 1) < 3 ∨ (xi + 1) ≮ 3
x = if (xi + 1) < 3 then (xi + 1) - 12 else xi

y = xi + 1

Figure 2.2: Example Conversion to SMT

instance xi, become SMT unknowns. The path condition at the entry point is simply true.
Basic nodes, such as 1 and 3, update the variable state with values taken from the existing
variable state substituted into their expression, for instance, at node 1, x+ 1 is evaluated
as xi + 1, and this is used to update the value of y. Condition nodes, such as 2, substitute
their expression and add it to the path condition, such as the path condition at 3. When
paths converge, such as at 4, the path condition to the node is the union of the conditions
on each path, and the variable values are constructed using if-then-else expressions — if
the path via 3 was taken, x has the value from 3, otherwise from 2.

Conveniently omitted from Figure 2.2 was the variable state after calling function f
at 4. The return values are named, for instance z_after_4 , and become additional SMT
unknowns. The SMT conversion process notes that a call to f took these input values and
returned the named output values (recall that inputs and outputs include global objects
like memory). If f is a part of a function pairing, and if at a later point the paired function
f ′ is also exported to SMT, then the conversion process will instantiate the correctness
condition of f/f ′ for these inputs and outputs.

Figure 2.2 is inaccurate in that it is fully expanded. The expressions computed at
nodes 1 and 2 would have been given names using SMTLIB2’s de�nition feature, for
instance y_after_1 = xi + 1, cond_at_2 = y_after_1 < 3. This addresses the problem
we already see at node 4, where the expressions are becoming larger and larger.

This process does not handle loops, and the generalisation will be discussed in Sec-
tion 2.1.8.

The values here are all encoded in the SMTLIB2 QF_ABV logic (quanti�er-free formu-
lae over arrays and bit-vectors). The variables and registers are all bit-vectors, typically
32-bit but any bit width is supported. Memory is represented as an SMTLIB array. We
have two choices how to encode memory, either as an array of bytes, mapping 32-bit to
8-bit vectors, or as an array of words, mapping 30-bit to 32-bit vectors. Since the vast
majority of loads and stores on our 32-bit architecture are aligned 32-bit accesses, the latter
representation usually performs better. This tradeo� is explored further in Section 2.4.5.

Some values cannot be directly encoded, for instance the heap type description and
pointer validity assertions described earlier. During this conversion of graph visits to
SMT problems, SydTV-GL-re�ne proceeds as though the SMT logic contained additional
types and operators. A second phase then reduces the SMT problems to equisatis�able
problems containing only types and operators of the QF_ABV logic. This second module
is e�ectively a stronger SMT solver, supporting additional theories of pointer validity
and stack preservation. The encoding of the theory of pointer validity is discussed in
Section 2.1.12, and the theory of stack equalities is discussed in Section 2.3.2.
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2.1.7 Simple Cases and the Leaf Rule

With the problem space established, and a process available for converting variable values
and path conditions to SMT expressions, the proof checker explores the proof tree. The
initial assumptions will be the input equalities given by the function pairing of the function
we are examining, for example, x = r0, y = r1 etc.

The main objective is to show that the output equalities of the function pairing hold
on the output variables, should the arcs to the Ret label be reached. It may be assumed in
proving this that the path to the Err label is never taken on the C side. It must also be
shown that the path to Err is never taken on the binary side.

The Leaf rule instructs the proof checker to attempt to prove these �nal goals imme-
diately, by converting the values of variables at Ret and the path conditions to Err into
SMT values and checking that the negation of the required propositions is unsatis�able.

2.1.8 Path Restrictions and the Restrict Rule

The conversion of variables and path conditions to SMT depends on the node of interest
being reachable via some �nite collection of paths. This is impossible for points which are
reachable via a loop, which may be reachable after any number of loop iterations.

Consider a C function containing a single loop of this form:

for (i = 0; i < 4; i ++) { ...}

The compiler may well fully unroll this loop in the binary, since only 4 copies are
needed, making the binary loop-free. The proof script for this function pair must somehow
address this.

The SMT conversion process cannot describe in general the state at a node in a loop,
but it can describe the 1st, 2nd or n-th visit to that node, for small values of n. The path
condition for the 5th visit to the head of the loop described here can be converted to SMT,
and the key observation is that this condition is always false.

The Restrict rule names a node and a bound n, and instructs the proof checker to
check that the path condition to the n-th visit to that node is unsatis�able by SMT. The
proof checker then introduces a restriction, which asserts that this node is visited less than
n times. This restriction is used in the SMT conversion process, promoting the semantic
limit into a syntactic one. The SMT conversion process can now cover more of the nodes
of the graph.

Restrict proof script nodes have a single child, which continues the proof with the
new restriction in force. In the case described, the subproof may be the Leaf rule, which,
with the restriction available, can reason about Ret and Err and �nish the proof.

2.1.9 Split Induction

The Split rule is used to handle cases that cannot be �nitely enumerated. The rule names
a C split point c_sp, a binary split point b_sp, an equality predicate P and a bound n.
Roughly speaking, the checker will prove by induction that for each visit to b_sp along the
binary execution path, c_sp is also visited with the variable state related by P . Formally,
we de�ne c_pci to be the condition that c_sp is visited at least i times, b_pci similarly,
and |P |i to be condition that the predicate P holds on the values of the variables at the
i-th visit to c_sp and b_sp respectively. De�ne Ii to be the property that b_pci implies
both c_pci and |P |i. The checker shows ∀i > 0. Ii by n-ary induction, that is, by proving
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I1, I2, . . . In directly and also that the induction hypotheses Ii, Ii+1, . . . Ii+n−1 and i > 0
imply Ii+n.

Having established that the sequence of visits to b_sp is matched at c_sp, we consider
three cases on the length of the sequence. If the sequence is in�nite, then the binary
execution and C execution are both non-terminating, and this is a valid re�nement. The
sequence may also contain at least n elements, in which case there exists some i ≥ 0 and
the sequence ends with the elements i, i+1 . . . i+n−1. Finally, the sequence may contain
less than n elements. The proof script considers the latter two cases via two subproofs,
which are children of the Split node in the proof tree. We call the case with≥ n iterations
the looping case. In the looping proof, a new variable i and new hypotheses are introduced:
b_pci+n−1, ¬b_pci+n, Ii, Ii+1, . . . Ii+n−1. In the non-looping case, the new hypothesis is
¬b_pcn. In each case it is expected that the subproof will begin with two Restrict rules
which use these hypotheses to restrict the number of visits into some �nite set. In the
looping case, the set of possible visit counts will be of the form {x | i ≤ x < i+ k} rather
than {x | x < k}. This is an alternative form of the Restrict rule.

Some slight generalisations to this induction are needed. The Split rule may concern
a subsequence of visits to the nodes on either side. A C sequence starting o�set of 2 means
that we ignore the �rst two visits to b_sp, so b_pci is the condition that b_sp is visited at
least i+ 2 times, and |P |i is computed on the variable state at the second visit after the
i-th visit, etc. This may be needed to handle various optimisations which a�ect the initial
few iterations of a loop, including a case where the binary sequence is shorter than the C
sequence because some iterations have been unpacked entirely. In a more dramatic case, a
C sequence step width of 2 means that we only consider every second visit to the C split
point, for instance relating visits 1, 3, 5. . . in the C loop to visits 1, 2, 3. . . in the binary loop.
This case is needed for loops unrolled by the compiler, which we will discuss at length in
Section 2.4.1. Starting o�sets and larger step widths are also allowed on the binary side.

In addition, the predicate P may be a function not only of the variable states at the
respective i-th visits, but also of the value i and the variable states at the �rst visit. If a C
variable is incremented by 1 each iteration, it is simplest to record that it is i− 1 more
than its �rst valuation.

2.1.10 Case Division

The CaseSplit rule names a particular node, and considers the case where that node is
visited and the case where it is not. It has two children, one proof for each case.

This is the simplest of our structuring rules. The checker performs no checks related
to the rule, but adds a new hypothesis to each case, the truth and the negation of the path
condition of interest.

There are two reasons for theCaseSplit rule to be used in proof scripts. The �rst reason
is for simple performance. Many programs themselves have a case-division structure, with
a toplevel if or switch statement, jump-table or similar. An ideal proof can divide the
problem into the relevant cases, and then use Restrict rules to eliminate the unreachable
syntax on both the C and binary side of the problem. This may substantially reduce the
complexity of the extracted SMT problems.

The second reason for the CaseSplit rule is to handle the complexities of unrolled
loops. We will return to this issue in Section 2.4.1.
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2.1.11 Prototype Proofs

The proof format of SydTV-GL-re�ne is largely inherited from the former prototype,
which also had proof scripts containing Restrict, Split and Leaf rules. The two new
features both relate to the unrolled loop problem we have alluded to, the �rst being the
inclusion of the “step width” parameters in the Split rule, and the second new feature
being the CaseSplit rule itself.

2.1.12 SMT Theory Extensions

The SMT conversion process described in Section 2.1.6 eliminates the graph structure
of SydTV-GL programs, resulting in a problem with a speci�c collection of unknowns
and a number of assertions about them, an SMT problem. The operators and constants
of SydTV-GL are also replaced with their equivalents in the SMTLIB2 QF_ABV logic
(quanti�er-free formulae over arrays and bit-vectors). Most of the language elements of
SydTV-GL encode directly into QF_ABV.

However, some of the types and operators of SydTV-GL do not have any direct
equivalents in SMTLIB2 QF_ABV. The SMT conversion process of Section 2.1.6 does not
directly address this problem. Instead, it proceeds as though the QF_ABV logic contained
additional types and operators. When the problem is ready to be passed to the SMT solver,
a second phase adjusts the problem into a logically equivalent problem with the additional
types and operators removed.

Through this second phase, SydTV-GL-re�ne is really implementing an SMT logic
in its own right. SMT stands for “satis�ability modulo theories”. The theories are the
collections of types and operators on which the satis�ability problems can be stated. The
theories are all backed by a decision procedure which can both discover satisfying models
and refute unsatis�able hypotheses. Many theories can be implemented by reducing to
other theories, or to the base problem of boolean satis�ability. For instance, the theory of
arrays over bit-vectors is typically addressed by reducing to the theory of bit-vectors, a
reduction we will describe in detail in Section 2.3.2. SydTV-GL-re�ne is e�ectively building
a richer SMT logic on top of QF_ABV, with a decision procedure based on reducing to
standard QF_ABV.

Some of the additional types and operators encode easily. SydTV-GL has a type of
memory, which can be accessed with various word lengths, e.g. 8-bit and 32-bit loads and
stores. As we have already mentioned, we have a choice whether to represent memory as
principally 8-bit or 32-bit. Once we have made this choice, the loads and stores can be
encoded as compound operations of QF_ABV.

Other additional operators include the CPU-provided bitwise operations to count
leading zeroes and reverse the order of a bit-vector. These are not SMTLIB2 builtins, but are
easy to de�ne for each bit-vector length for which they are used. SydTV-GL also contains a
type of ”symbols”, string constants which support equality comparisons. SydTV-GL-re�ne
maintains a global table of known symbols, giving each encountered symbol a unique
number, and encoding the symbols in QF_ABV as a 32-bit encoding of that number.

SydTV-GL-re�ne implements two more challenging theories, the theory of pointer
validity, and the theory of stack equality. The stack equality issue is speci�c to the binary
aspect of the problem, and is discussed in Section 2.3.2.

The theory of pointer validity is needed to handle the strict-aliasing rule of the C
standard. This allows the compiler to assume that a given memory address is not in use
with two di�erent incompatible types. In systems code, programmers occasionally break
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this assumption, but most code conforms to it.
To substantiate the strict-aliasing rule, we make use of the heap type validity predicate

from the Tuch memory model [Tuc08]. This is the strongest pointer validity operator
in the Tuch model. In Isabelle/HOL, the predicate takes the form htd|=tp, where htd is
a heap type descriptor object, and p is a pointer to some C type. This notion of pointer
validity has the properties we require, requiring any address in memory to be in use with
at most one top-level type, but permitting the �elds within an aggregate object to be
valid pointer targets also. The details of how the heap type descriptor and operator are
implemented are discussed in detail by Tuch [Tuc08].

The Isabelle/HOL formulation of pointer validity via |=t depends on Isabelle’s ad-hoc
polymorphism, where the type of a pointer p also encodes the type of object it points to as
a phantom type parameter. For our purposes, we reformulate the predicate in Isabelle/HOL
using a new predicate pvalid which makes the type parameter explicit:

htd|=t(p :: τ ptr) = pvalid htd TYPE(τ) (ptr_val p)

The ptr_val operator on the right extracts the address from the pointer object in
the Tuch semantics, discarding the phantom knowledge of the type τ . We make the
type parameter explicit in the syntax TYPE(τ). This syntax is itself based on ad-hoc
polymorphism and a phantom type, but the details of this are not important for these
purposes.

We add the pvalid operator to SydTV-GL, also adding a type HTD of heap type
descriptors, and a “type of types” to encode TYPE(τ). We include the global HTD as an
explict argument and return value of all the C SydTV-GL functions, the same way memory
is treated. We also supply details of the layout of structures in C, a type constructor for
named C structs, and a type constructor for arrays of other types, but we provide no
operators for any of these types. We use the additional C types only in the “type of types”
as arguments to pvalid.

SydTV-GL-re�ne cannot export the pvalid operator into any equivalent in any SMT
theory. Instead, each time it encounters a pvalid expression, it introduces a new boolean
unknown, e.g. pvalid1, pvalid2.

The essential task is to make use of the key theorem about pvalid:

pvalid htd τ p pvalid htd τ ′ p′
{x | p ≤ x < p+ size(τ)} ∩ {x | p′ ≤ x < p′ + size(τ ′)} = {}

∨ p′ − p ∈ subtype_o�sets(τ ′, τ)
∨ p− p′ ∈ subtype_o�sets(τ, τ ′)

This theorem tells us that two pointers valid in the same heap type descriptor must
either be totally disjoint, or one must point into a subtype (a �eld) of the other.

This general fact reduces to a simpler SMT form, such as pvalid1 ∧ pvalid2 −→
p+ size(τ)− 1 < p′ ∨ p′ + size(τ ′)− 1 < p for disjoint types τ , τ ′. We produce all such
theorems, a possibly quadratic expansion. The largest group of pvalid assertions which
involve the same heap type description which we have seen so far had size 20.

SydTV-GL-re�ne does not fully implement the theory of pvalid and HTD objects. In
principle the theory should also include a mechanism for proving HTD objects equal.
Furthermore, the C program may need to adjust the HTD value, to add new valid pointers
or invalidate old ones. SydTV-GL needs to contain operators for adjusting the HTD value,
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but SydTV-GL-re�ne does not provide any support for reasoning about the relationship
between pvalid predicates before and after the adjustments.

The reason that SydTV-GL-re�ne does not implement more of the HTD theory is
that we can assume that SydTV-GL-re�ne will always be assuming pointer validity facts
and never trying to prove them. The pvalid predicates will appear as assertions in the C
SydTV-GL bodies, but not in normal expressions or anywhere in the binary functions. If
we wanted to use SydTV-GL-re�ne to prove re�nement relations between C programs,
however, we would have to extend this mechanism.

This support for pointer validity operators is inherited largely unchanged from our
former prototype. SydTV-GL-re�ne includes one major change to the former handling
of pointer validity. The change concerns the way arrays are treated, and has signi�cant
implications for our experiment with seL4, which we discuss in Section 2.5.5.

2.2 Proof Search

We have seen in Section 2.1 how proof scripts are structured in SydTV-GL-re�ne, decom-
posed by Restrict, Split and CaseSplit rules as necessary to handle nontrivial control
�ow.

The most complex component of SydTV-GL-re�ne is the search process, which must
discover these proof scripts. This section explores the various strategies used by the search
process to build components of proof scripts.

2.2.1 Easy Cases

Discovering some Restrict and CaseSplit rules can be done by straightforward heuristics.
For instance, if the problem contains a loop on one side and not the other, clearly it has
been fully expanded on the other side of the problem, or is unreachable. We must �nd
a loop bound and use a Restrict rule (an unreachable loop has a bound of zero). Loop
bounds can be discovered naïvely in this case since we are always searching for modest
loop bounds (less than 50).

CaseSplit rules can also sometimes be discovered straightforwardly. If the problem
can be decomposed based on early control �ow decisions in both the function graphs, and
if there is little shared code between the divided subproblems, then a CaseSplit rule is
appropriate. To decide whether the code shared between subproblems is too substantial,
we estimate its di�culty using a simple heuristic that counts nodes, function calls, and
particularly loops.

2.2.2 Discovering Split relations

Discovering Split rules, however, is more involved. A Split rule centers on a split relation,
which relates a sequence of visits to some binary node to a sequence of visits to a C
counterpart. The path-conditions must be related, and the variables will be related by a
series of equalities. We discover split relations through a model-guided validation process.
Suppose we have a binary loop for which we need to �nd a split. The �rst step is to �nd
candidate split relations which match at their �rst three subsequence visits.

Suppose we were looking for a split relation which matches the entire sequence of
visits to a pair of loop nodes. We could test the �rst three visits in any such relation with
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reference to the variable values in the �rst three iterations of the relevant loops.3 To do
this, we expand the graph problem into an SMT problem which includes representations
of the path conditions and variables at all visits to nodes of the loop up to and including
the third iteration.

We can think of this �nite SMT problem as looking into the (potentially in�nite) loop
behaviour through a “window” with a width of 3. Using a minimal SMT window gives the
fastest SMT solver performance. For some loops with large complex bodies, using small
window sizes is necessary to avoid solver failures and timeouts. If the discovery process
fails, we can expand this window.

To match a binary node, we must explain the values of all relevant variables (registers)
through split equations. A simple static analysis pass helps us here, by discovering which
variables are irrelevant, which variables are constant through the loop, and which variables
are changed only by some constant increment resulting in a linear series. The constant
and linear variables (registers) can be explained by relating their n-th valuations to their
initial valuations. All remaining variables (registers) must be explained by relating them
to a matching C value.

We repeatedly pick a possible split relation. The �rst such relation will be an arbitrary
choice of a binary and C loop node, in which all relevant binary variables (registers) are
equated with any available C variable of related type. It is highly unlikely this will be a
valid split relation. We request an SMT model in which the binary loop is entered, but the
split relation fails to hold at the �rst three instances, either because they are exited during
di�erent iterations or because the equations fail to hold.

The solver either responds with the assertion that these constraints are unsatis�able,
and we have found a split relation that holds for three steps, or the solver responds with a
satisfying model. These models are crucial, because they narrow the search substantially,
eliminating many more path-condition equalities and variable equalities than just the
ones we have explicitly tested. We can then continue with a new potentially valid split
relation, informed by the data we have seen.

This process continues until either a split relation is found, or we run out of split
candidates. If a split relation is found, we test its inductive step. This requires building a
new SMT problem, and is far more expensive than the other tests, which is why we only
attempt it once we are con�dent that the relation holds for a few steps.

If we run out of split candidates, we can include more by expanding the SMT repre-
sentation window. The initial bound we picked was 3. Increasing this bound allows us to
test more split relations which match on more complex subsequences. With 4 iterations
present, we can test split relations with a starting o�set, whose subsequences begin at
the second visit. From 5 iterations, we can test split relations involving a step width of
two, that is their subsequences include every other visit on one side or both. Increasing
the SMT problem sizes can substantially increase the solving time, which is why we start
with smaller and simpler queries. We continue expanding until a split is found, up to a
maximum window size of 8, after which we declare failure.

Before we expand the window, we try one other strategy. If there are multiple possible
paths into the loop, we pick the most common one in the models we have found. We then
rerun the search for this window size, under the assumption that this entry path is taken.
We can reuse the models where this path is in fact taken. If this restricted search results
in a split relation, it is su�cient evidence that we need to perform a CaseSplit on the

3If the loop contains internal conditional structure, there is a di�erence between the “third visit” to a node
and the “potential visit in the third iteration”. We mean the latter. The di�erence is irrelevant, however, since
we will only ever try to split a loop at nodes that are unconditionally visited in each iteration of the loop.
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possible entry paths before discovering the relevant Split rules.
This search process is novel to SydTV, and had no equivalent in the former prototype.

2.2.3 More Complex Unmatched Loops

We have noted that a fully expanded C loop can be easily detected if there is no loop in
the binary. A more complex case involves a C function with two loops in sequence, and a
binary function with one loop. It is clear that one of these two loops has been expanded,
but which one?

The split discovery process needs to represent a “window” of the �rst few iterations of
a loop to do its job. Suppose in the above example that it was the �rst of the sequential C
loops that was expanded and the second one that matches the binary loop. The split process
cannot represent iterations of the second loop until the �rst loop has been restricted. This
would lead the split process to fail.

More generally, in a case where both functions have several loops, it might not even
be obvious that any of the C functions had been expanded. Nonetheless, it is impor-
tant to detect any expansion before attempting the split discovery process described in
Section 2.2.2.

To avoid split failures, SydTV-GL-re�ne applies two tests to the set of loops that can
be represented, before attempting split discovery.

The �rst test is to check that each of these loops can iterate at least eight times. The
path condition to the start of the eighth loop iteration is tested, and, if unsatis�able, it must
be possible to handle this loop by expanding with a Restr rule rather than by discovering
a split. This test may report false positives, loops with small bounds that nonetheless have
matching counterparts. However, the matching loop will also have a small bound, which
should be discovered, resulting in a correct but possibly ine�cient proof.

The number eight in the �rst test was arrived at by trial and error. We don’t want to
test higher numbers, because of the risk of highly ine�cient proofs. Setting the test any
lower has lead to complex search failures.

The second test is whether any of the loops is independent. A loop is considered
independent if it is possible to iterate through that loop for eight iterations without
visiting any potentially matching loop for more than one iteration. If a loop is independent
in this sense, then we can assume that no split relation will hold for that loop. We can
then search for a loop bound, possibly much higher than eight. This test is quite e�ective
in distinguishing expanded C loops from those with matching binary bodies.

2.3 Binary-Specific Features of SydTV-GL-refine

SydTV-GL-re�ne is mostly a generic framework for proving re�nement relations between
functions expressed in SydTV-GL, with signi�cant support for handling loops. In priciple,
SydTV-GL is a uniform language which represents C and binary programs in the same
syntax, with the tools that generate SydTV-GL representations responsible for eliminating
C-speci�c and binary-speci�c features.

In practice, SydTV-GL-re�ne contains a number of features that are speci�c to the C
and binary sides of the problem. We have already discussed the pointer validity operators
that are unique to the C representation. Far more of the implementation of SydTV-GL-
re�ne is dedicated speci�cally to reasoning about the binary, and nearly all of the binary-
speci�c logic concerns the stack.
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The stack is a region of memory used by the compiler to store temporary values.
Each function allocates itself a region called a stack frame for this purpose. On the ARM
architecture, the stack grows downwards, with new stack frames allocated at lower
addresses than the parent stack frames. The stack is under compiler control, with the
layout and contents of each stack frame unknown to SydTV-GL-re�ne.

The stack causes di�culties because it needs to be seen both as a region of memory
and as a collection of variables. When there are more C variables in scope that can be
kept in machine registers, some variables must be saved to the stack and retreived later.
It would be attractive to treat these save slots as variables themselves, much like the C
variables and the machine registers appear in SydTV-GL. Such a treatment would allow
the standard static analysis of SydTV-GL-re�ne to track values as they moved between
registers and stack slots, for instance.

Unfortunately this clean abstraction of the stack is fragile, and can break down entirely,
for instance when arrays in the stack frame are accessed at unknown o�sets. Instead, we
treat the stack principally as a region of memory, accessed with the real stack addresses.
This approach is robust, but requires dedicated mechanisms for reasoning about the
in-memory stack representation at various places in SydTV-GL-re�ne.

The following subsections address various aspects of this issue.
All the stack handling of SydTV-GL-re�ne is new, with the former prototype depending

on the decompiler to abstract away the stack in the fragile manner described above.

2.3.1 Binary Functions in SydTV-GL

SydTV includes a variant of Myreen’s decompilation approach [MGS08, MGS12], which
runs in the HOL4 logic environment to produce a SydTV-GL representation of the binary
semantics. This decompiler variant was produced by Myreen to support SydTV. This
decompiler is actually simpler than previous incarnations of the concept, because it tries to
do less abstraction, particularly with regard to the stack. The lack of complex abstractions
also makes it the most robust decompiler in the family.

Unlike previous decompiler instances, which produced output functions with similar
signatures to the matching C functions, the SydTV decompiler produces functions which
all share the same signature. All functions take as arguments all the CPU registers r0, r1
etc, in addition to main memory, the stack, and some extra special-purpose objects. The
stack is represented as a complete 32-bit memory, and accessed with the same addresses
as actually used in the binary.

The decompiler does detect which memory accesses are stack accesses and which ones
are heap accesses by tracking information �ow from the stack pointer register carefully.
This allows the decompiler to produce output functions which manipulate two di�erent
memories, the stack and the heap.

The SydTV decompiler produces output functions natively in SydTV-GL. Supporting
the SydTV-GL format natively simpli�es our proof chain and our claim of its correctness,
and is largely self-explanatory.

The reason that the decompiled functions all have the same signature is to avoid issues
with fragile abstractions. The calling convention speci�es that each function must return
some registers unchanged. It would be nice to avoid explicitly returning these registers in
SydTV-GL, and instead leave the registers as they were at each call site. Unfortunately, to
make this simpli�cation, the decompiler would have to prove that the registers are not
changed. Since the callee function typically preserves the registers by saving them to the
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stack and then retreiving them, this would require the decompiler to fully analyse all stack
accesses, a problem which is as fragile as fully abstracting the stack.

The decompiled functions also faithfully follow the control �ow graph of the binary
in their SydTV-GL representation. The binary functions actually use the same instruction
addresses4 as the function bodies in the binary.

2.3.2 Handling the Stack in SydTV-GL-refine

The binary SydTV-GL functions processed by SydTV-GL-re�ne represent the stack the
same way as the rest of memory. Like memory, the entire stack is passed to each function
as an argument and returned to the parent as a return value. If a function stores values
to its stack frame so that it can call another function, and then fetches them again, the
values are fetched from the returned stack object, but we need to be able to prove that the
values have not changed.

The stack grows downwards in the ARM architecture, with the current end of the
stack stored in the register sp/r13 at all times. The architecture mandates that r13 must
be decremented before new stack slots can be used. We need to prove, in SydTV-GL-re�ne,
that each function preserves the stack frames of its parents. This can be de�ned as an
output relation:

∀x ≥ r13before. stackafter[x] = stackbefore[x]

This simple speci�cation needs to be slightly adjusted by details from the calling
convention. If there are too many arguments to �t in registers, the remaining arguments
are pushed onto the stack by the calling function, but are considered part of the callee’s
stack frame and may be modi�ed. If the return value is too large to �t in the (single) return
register, instead a pointer to a return address is passed as an extra argument, and the
addresses it points to will be on the stack but may be modi�ed. Our C subset does not
permit taking the addresses of local variables, so apart from these cases a function cannot
manipulate pointers into the stack.

These details can be addressed. The more serious problem is that this constraint cannot
be encoded into the quanti�er free SMT logic QF_ABV which we are using. There also
exist SMT logics extended with quanti�ers, but there are good reasons we avoid using
them. Logics with quanti�ers are supported by far fewer solver implementations, and
typically see far worse performance. Instead we wish to encode this stack preservation
property directly into the well-supported SMT logic QF_ABV.

Lemmas on Demand

To explain how our solution works, we have to recap a little. The QF_ABV logic is already
in some sense a hybrid, a quanti�er free logic of bitvectors extended with the implicitly
quanti�ed theory of extensional arrays. The extensional property of arrays would be
expressed in other logics by quanti�cation:

∀a b. a = b ⇐⇒ (∀x. a[x] = b[x])

4Some binary instructions require multiple SydTV-GL nodes to represent, in which case the �rst SydTV-GL
node will have the binary instruction’s address and the others will have small odd-numbered addresses which
cannot be addresses of binary instructions.
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Instead of introducing this quanti�ed formula, the solver simulates it via two di�erent
mechanisms. Firstly, to make use of array equalities that are believed to be true, the solver
instantiates this weaker theorem on demand:

∀a b x y. a = b −→ x = y −→ a[x] = b[y]

Secondly, to prove array equalities, or equivalently, to handle the case where array
equalities are believed to be false, the solver introduces a witness value. The witness value
wa,b for the equality a = b is some value where the arrays di�er, if such a value exists.
This adds the additional theorem:

a = b ⇐⇒ a[wa,b] = b[wa,b]

We say above that the solver instantiates a theorem on demand. The solver could
simply instantiate this theorem for any four variables a, b, x, y whenever a[x] and b[y]
appear in the problem. This would produce the correct results, however, it would result in
a quadratic expansion in the size of the problem within the SMT solver.

Instead, these theorems are introduced only when intermediate states of the solver
suggest that a = b and x = y are likely. This approach is called the system of lemmas on
demand [BB08] and is known to be crucially important to SMT performance on the theory
of arrays. A similar strategy can be applied to the related SMT theory of uninterpreted
functions.

The Theory of Stack Equalities

As a �rst step, we can introduce a stack equality operator stackeq(spa, sta, spb, stb) into
SydTV-GL. This represents equality between two stack representations a and b, each
including a stack pointer and a stack memory. We want to de�ne stack equality to mean
that the stack pointers are equal and all addresses above the stack pointers are equal also:

stackeq(spa, sta, spb, stb) ⇐⇒ spa = spb ∧ (∀x ≥ spa.sta[x] = stb[x])

We cannot supply this de�nition in QF_ABV. Instead we implement within SydTV-
GL-re�ne an SMT solver for the theory QF_ABV extended with stack equalities, a logic
we will call QF_ABVSt. We implement the theory of stack equalities by reducing problems
which contain stackeq operators to problems in pure QF_ABV. This is done in addition to
other theory extensions, such as pointer validity, which we discussed in Section 2.1.12. We
will call the starting problem, including the stackeq operators, the “QF_ABVSt problem”,
and the resulting problem the “QF_ABV problem”.

For each stackeq operator application in the QF_ABVSt problem, we de�ne a fresh
boolean unknown in the QF_ABV problem, named stackeq1, stackeq2, etc. We also
introduce a witness value, stackeqw1, stackeqw2, etc, which we use to mimic the witness
strategy for array equalities.

The witness value is de�ned to be some value above the stack pointers where the
stacks di�er, if such a value exists, or otherwise any value above the stack pointers. The
stack equality witness has the analagous characterising theorem to the memory equality
witness, that the stacks will be equal if they are equal at the witness value:

stackeq(spa, sta, spb, stb) ⇐⇒ spa = spb
∧ sta[wspa,sta,spb,stb ] = stb[wspa,sta,spb,stb ]
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This fact reduces to a simpler representation in QF_ABV:

stackeq1 ⇐⇒ spa = spb ∧ sta[stackeqw1] = stb[stackeqw2]

We also know unconditionally that the witness value is above the stack pointers:

wspa,sta,spb,stb ≥ spa ∧ wspa,sta,spb,stb ≥ spb

This witness mechanism gives the solver exactly the information it needs to prove
stack equalities.

Half Arrays

We also need to instantiate this theorem for making use of stack equalities:

∀spa sta spb stb x. stackeq(spa, sta, spb, stb) −→ x ≥ spa −→ sta[x] = stb[x]

We have thought of two ways to make use of the above theorem, and implemented
one of them. The naïve solution, which we did not pursue, is to instantiate the theorem
exhaustively. For every value x which is used to address an array value sta which also
appears in a stack equality, we would assert the fact:

stackeq(spa, sta, spb, stb) −→ x ≥ spa −→ sta[x] = stb[x]

This would be logically su�cient, however, it results in a quadratic expansion in
the size of the QF_ABV problem with respect to the size of the QF_ABVSt problem. We
strongly suspect that it will degrade SMT solving time, since the solver will have to adjust
models repeatedly to ensure they satisfy many pointless equalities.

We would prefer to approximate the “lemmas on demand” approach. But this requires
the SMT solver to decide when to instantiate equalities. The solver will instantiate array
equalities on demand, but we want to specify equality only on half memories. The solution
we have adopted is to “cut” some stack variables in half, so that we can assert equality
only on the relevant half.

We examine the QF_ABVSt problem and look for array-typed unknowns which appear
on the right hand side of stackeq predicates. For each of these unknowns in the QF_ABVSt
problem we introduce two array-typed unknowns in the QF_ABVSt problem, a “top”
memory and a “bottom” memory. To convert expressions to QF_ABV, we initially replace
all instances of the original unknown with a four-way tuple, which consists of the top
memory, the bottom memory, a division point, and a sequence number. The division point
will be the stack pointer value from the right hand side of the stackeq predicate.

This results in a syntactically invalid SMT problem. We now adjust each expression
that can enclose such a tuple (topa, bota, diva, seqa). Loads from this split memory become
SMT if-then-else operations, loading from topa if the target address x satis�es x ≥ diva,
and from bota otherwise. Stores to split memories are adjusted into new tuples, with the
same division point and two if-then-else operations, the top memory being updated only
if x ≥ diva, etc.

Where tuples appear on a side of an if-then-else operator, because paths converge in
the binary graph, the result is itself a tuple. The top, bottom and division components are
produced as if-then-else operators in the same way. The sequence number is the maximum
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of the two argument sequence numbers. If an if-then-else operator combines a regular
memory with a tuple, we consider the top and bottom components of the regular memory
to be the memory itself, the sequence number to be zero, and pick the same division point
to reduce syntax.

Since the right hand side of the stack equality stackeq(spa, sta, spb, stb) is adjusted
with stb becoming a split memory (topb, botb, divb, seqb), we can provide useful informa-
tion about this split equality in the QF_ABV problem:

stackeq1 −→ spa = spb −→ spa = diva −→ spb = divb −→ topa = topb

The SMT solver can then produce the consequences of the equality topa = topb on
demand. These equalities should only be relevant when stb was accessed above stb in the
QF_ABVSt problem, since otherwise the access will interact with botb rather than topb.

For these equations to be su�cient, it must be possible to divide the right hand sides
of all stackeq predicates in this way. It happens that stackeq predicates will nearly always
apply to otherwise unknown stack values, including the stacks returned from function
calls and introduced in induction proofs after an unknown number of loop iterations.
There is an exception involving k-induction for k > 1, because a stack equality is assumed
at multiple iterations in proving the inductive case. It happens to be the case that the extra
stack equalities are redundant (but not the other assumptions of the k-induction) and can
be discarded.

It is also required that no array appears in both stack equalities and regular equalities.
We are fortunate that this is the case. The decompiler divides memory accesses between
the heap and the stack ahead of time. We always use regular array equality to reason
about the heap and stack equality to reason about the stack.

This approach expands the QF_ABV problem by a constant factor compared to the
QF_ABVSt problem. Each operator site in the QF_ABVSt problem can result in at most
one amendment, which adds a constant amount of syntax. The additional if-then-else
operators are expected to mostly be straightforward for the SMT solver, since most stack
addresses are at constant o�sets to each other, making the condition trivially true or false.

Correctness of the Half Array Model

This approach of dividing stack memories is intuitively correct, because the construction
ensures that the bottom part of each “top” memory is never accessed in normal expressions.
Thus it should be OK to specify that the whole top memory is equal to some other value,
even though that statement is logically stronger.

Let us sketch a proof that indeed the QF_ABV problem is equisatis�able to the
QF_ABVSt problem. We can prove equisatis�ability by showing a mapping that con-
verts a satisfying model of each problem into a satisfying model of the other. We will see
in the sketch proof that this conversion doesn’t always work, and that we must impose
some constraints on the representation. The constraints are:

• All stack equalities in the QF_ABVSt problem have a single SMT unknown rather
than a compound expression as their right hand side memory. These unknowns are
converted into split representations in the QF_ABV problem.

• Each SMT unknown appears in the right hand side of at most one stack equality.
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• If the left hand side of a stack equality is split in the process of converting to the
QF_ABV problem, then the resulting sequence number is strictly lower than the
sequence number on the right hand side.

• The division point of the split representation of the right-hand side of a stack
equality must equal the relevant stack pointer.

• Normal equalities involving split representations are not possible.

To convert a model of the QF_ABV problem back into a model of the QF_ABVSt
problem, we must merge each of the top and bottom memory pairs back into a single
memory. We do so in such a way as the load operations produce the same result, that is,
the merged memory has contents from the top memory at addresses above the division
point, and contents from the bottom memory at addresses below the division point. The
load, store and if-then-else operations can be con�rmed to have the same e�ect before
and after the merging.

The stack equalities that were false in the QF_ABV model were false at their witness
addresses. We can use these witness addresses to instantiate the quanti�ed de�nition
of stack equality that exists in the QF_ABVSt problem. Performing this instantiation
produces evidence the stack equalities were also false in the QF_ABVSt model.

The stack equalities that were true in the QF_ABV model are also true in the QF_ABVSt
model. We assume that the stack equalities relate a tuple representation on the right hand
side to either a plain memory on the left hand side or a tuple representation with the same
division point. All addresses relevant to the stack equality will be accessed from the top
component of the right hand side and the top or whole component of the left hand side.
These components are equal, thus the stack equality holds.

To convert QF_ABVSt models to QF_ABV models, we must invent data. Some arrays
of the QF_ABVSt model must be converted to a pair of arrays in the QF_ABV model. The
bottom such memory is straightforward to build, since it only appears in the QF_ABV
problem in branches of if-then-else expressions, where the branch ensures that only the
relevant contents matter. We set the relevant contents to be the same as the QF_ABVSt
memory, and the irrelevant contents to zero.

The top memories are more interesting. They appear in exactly one equality expression
in the QF_ABV problem, the one which corresponds to the stack equality they appear in
in the QF_ABVSt problem. We set their relevant contents to be the same as the QF_ABVSt
memory, ensuring that all explicit accesses get the matching result. If the QF_ABVSt stack
equality was false, then we can set the irrelevant contents of the top memory to zero. The
stack equality must be false at some relevant address. We use that address as the witness
value. The array equality is false for the same reason, although this isn’t even strictly
relevant.

For all the top memories whose stack equalities are true, we must set their irrelevant
contents to equal the matching contents from the left hand side. The top (or whole)
component of the left hand side will be either another such unknown with a lower
sequence number, or an expression built on top of one via if-then-else or array stores.
Note we can already evaluate all the if-then-else conditions, since they evaluate in the
both models without needing the irrelevant data, and the store operations can’t get to the
irrelevant data either. We pick the irrelevant contents in sequence order, to clarify that
we can always pick concrete values without problems of cycles or solving simultaneous
equations.5

5The sequence numbers are probably not necessary, and can be replaced with a more complex argument
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The constraints we have given are thus su�cient to ensure that the QF_ABV and
QF_ABVSt problems are equivalent. Most of these constraints are syntactic, and are
checked during the SMT export process. The exporter stores, for instance, a table of stack
equalities indexed by the top memory on the right hand side, so that it can check that
each top variable only appears on one right hand side.

The constraint that cannot be easily checked is that the division points are equal to the
stack pointers. The right hand side division point is picked accordingly, but the equality
on the left hand side is a semantic truth, not a syntactic one. Instead of trying to establish
this at export time, we make it a premise of theorem that establishes the array equality (it
is already written that way in the most recent theorem above). This extra premise means
that the QF_ABV and QF_ABVSt problem are not entirely equisatis�able. If we have to
divide sequential stacks at di�erent split points, we may lose information.

Impact of Constraints

The constraints were picked because they are easy to satisfy in almost every case. Since we
do not allow dynamic stack allocation (via the problematic alloca function or variable-
size local arrays), the compiler knows the maximum stack frame size for each function. To
save on instructions and cycles, the compiler always adjusts the stack pointer to reserve
the whole stack frame at the start of each function and to restore it at the end. We have
never seen an instance of the compiler trying to save on stack consumption by shrinking
its stack frame before making a function call, although it is conceivably worthwhile
in some circumstances. This means that the current stack pointer (ARM requires r13
to always contain this value) is unchanged in the body of the function and always the
correct division point. The sequence numbers simply count monotonically the number of
unknowns produced by the SMT export process.

The way the stack is used is sketched in Figure 2.3. A binary function f initially creates
a stack frame, and slowly populates it with data. When function g is called, the newly
returned stack is related to the previous one via the stack equality predicate. Return values
may also be known to correspond to those from C. Otherwise nothing is known about this
new value. Likewise after an unknown n number of loop iterations, a new stack variable
is introduced. The stack equality predicate is used to establish that the majority of the
stack is preserved, and this is speci�cally downgraded at stack slots that may be updated
during the loop.

We treat some stack equalities specially to ensure the constraints will be met. For
instance, a typical proof obligation is that the function we are analysing returns the
stack to its parent with the parent’s stack frame unchanged. We need to prove this stack
equality with the witness equation from before, but we do not need to characterise the
implications of this equality. We do not produce the QF_ABV equation which speci�es the
consequences of this equality, and we do not count this equality towards the restriction
that each unknown appears on the right hand side of only one equality.

In the case of k-induction where k > 1, we begin the inductive proof with k instances
of the induction hypotheses. This might include k di�erent stack equalities, which might
have the same stack on the right hand side, breaking the syntactic constraints. We solve
this problem by discarding all but the �rst such equality entirely. This is done before
conversion of the QF_ABVSt problem to QF_ABV. Discarding these assumptions is always
sound but not always equisatis�able, however, this has never been a limitation in practice.

about the graph of dependencies of these unknowns, which have only one outbound edge once if-then-else
operators are resolved, leading to either equality cycles or paths to known data.
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Function f

Function g

n-iteration

stackeq

stackeq

Figure 2.3: Example stack use of function f.

The most serious downside of this stack equality approach is that it limits inlining.
In our former prototype, when the compiler invented a function with no C counterpart,
we could often handle that case by just inlining its semantics into its call sites. In SydTV-
GL-re�ne, however, this breaks our assumption about the stack frame being uniform. In
the composed problem with the inlining performed, the binary program moves its stack
pointer up and down more than once. If another function call occurs within the body of
the function that was inlined, the returned stack will need a di�erent division point to
other stacks within the resulting problem. Our problems with functions introduced by the
compiler are discussed further in Section 2.5.7.

2.3.3 Stack Use Bounds

Before comparing any functions, SydTV-GL-re�ne �rst computes maximum bounds on
stack use for all functions. This is not a feature we originally intended to implement, but
it is more or less required.

The stack equality predicate above tells us that functions preserve the contents of the
stack for addresses {x. x ≥ sp}. A function f will typically decrement the stack pointer
sp to make space for its stack frame before calling other functions g, h.

We encountered a number of simple SMT counterexamples where the initial stack
pointer sp is very close to zero, and thus f’s stack frame wraps around to the end of the
address space. When g is called, it preserves addresses above the new value of sp, which
does not cover all of f’s stack frame.

We must assume that the starting stack pointer is not so absurdly small. However, if
g assumes that sp ≥ n for some n, then f must assume that sp ≥ n+ szf, where szf is
the size of f’s stack frame.

To avoid these simple counterexamples, we most solve a substantial problem. The
minimum stack bounds, e.g. n for g, must be a conservative bound on the possible stack
use of each function and its callees.
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We could try to avoid the issue by picking a very approximate bound, for example
1 MiB times the potential function call depth. Computing function call depth is trivial
unless recursion is present. Avoiding the issue would be reasonable for many programs,
for which stack use bounds are not a serious concern. For example, a program running in
a 64-bit address space with virtual memory can easily allocate stack space so large that
only unbounded recursion would exhaust it.

The program of interest in our case study, seL4, strongly motivates us to take this issue
seriously and compute tight bounds on stack consumption. Firstly, seL4 allocates its stack
conservatively to avoid wasting physical memory, allocating 64 KiB per kernel stack on
most platforms. Secondly, seL4 makes use of some recursion. Limiting recursion is complex
in any case, and the maximum bound on stack consumption is an important correctness
concern, so we decided that it was important to compute accurate stack bounds.

We assume that sp is greater than the stack bound in the input relation for each
function pair (see Section 2.1.4). This means that the stack bound calculation must be
performed by SydTV-GL-re�ne before any other proof steps. Our initial implementation
used SMT models to calculate the expected stack consumption between the entry pointer
of a binary function and the call sites within it. However, since stack bounds must be
computed before doing anything else, we switched to a faster implementation in which
SydTV-GL-re�ne performs simple static analysis to determine the constant o�sets added
to the stack pointer.

Discovering Recursion Bounds

We also implement a simple calculation for discovering recursion bounds, which works
for small bounds. Our design was motivated by the two simple instances of recursion
that exist in seL4.6 Both cases involve a cleanup routine with two modes of operation,
distinguished by a boolean argument, which can (indirectly) recurse to themselves. The
recursion can be broken by considering each cleanup routine to be two di�erent functions
depending on the boolean argument. There has been a long-running discussion amongst
the seL4 developers as to whether these functions should be split in the source code, which
would simplify this kind of automatic analysis of the system but lead to code duplication
in both the source and binary.

We detect this style of limited recursion. We can imagine an approach to this problem
would be to take a recursive function f and inline its recursion sites. The general instance
of f can only recurse into the special case with the given boolean argument. Inside the
inlined special case, the call to f should now be semantically unreachable. If we keep
inlining at recursion sites whose path conditions are satis�able, we should eventually
reach this limit.

For technical reasons, we don’t actually use the inlining mechanism. Instead we create
a problem space (a mutable space containing function bodies which we introduced in
Section 2.1.5). Instead of inlining a new copy of f at a call site, we add a copy of f as an
additional function in the problem space, and assert equalities to link the variables passed
into this function from the call site and returned out. Again, we repeatedly add these
functions until the joint path condition needed to recurse again becomes unsatis�able.

Once all recursion sites are unreachable, we know the recursion bound. We need
to characterise it, however. We can ask the SMT solver for a satisfying model in which
the maximum amount of recursion occurs. In our example, this will require the boolean

6Speci�cally, in the C implementation of seL4. The Haskell prototype and Isabelle/HOL speci�cations are
functional programs, and use recursion extensively.
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parameter (e.g. y) to be set one way in the outer copy of f (e.g. y = 1) and another way
in the inner copy (e.g. y = 0). We can check in SMT that y = 0 is necessary in the inner
copy of f for recursion to occur. This means we can characterise the inner copy by the
property y = 0.

We can generalise this approach directly to mutual recursion. We can also handle
small enumerations, for instance by treating y = 0, y = 1 and y = 2 all as special cases
of f .

We will refer to these distinguishing equalities, such as y = 0, as recursion identi�ers.
We can use recursion identi�ers for f to treat f(y=0) and f(y 6=0) as di�erent functions.
When we recompute the call graph with this distinction, it will become acyclic.

We can compute stack use bounds for all functions in the new acyclic call graph.
Finally we compute a stack bound for f using an if-then-else expression which depends
on whether y = 0.

For the moment, we only detect recursion identi�ers which are equality expressions
between a function call argument and a constant. We could generalise this approach to a
far more powerful one by detecting other kinds of identifying expressions. The recursion
identi�ers are really Craig interpolants [Cra57, L+59] of the unsatis�ability proof which
shows that further recursion was impossible. We could discover more general identifying
expressions by installing an interpolant-generating SMT solver such as SMTInterpol
[CHN12] or iZ3 [McM11].

The above approach of using Craig interpolants to summarise the meaning of functions
has been used extensively in the �eld of model checking [McM05,SFS11,CMB14]. A similar
approach has also been applied directly in the Reve project [KKU16], which produces
proofs of equivalence between di�erent implementations of C programs.

Another possible improvement would be to discover numeric recursion identi�ers as
well as booleans. This would be far more e�cient in simple cases where, say, a recursive
argument must decrease by 1 in each recursive call. This calculation about recursion is
very similar to calculations that are done to establish loop bounds, for instance for WCET
(worst-case execution time) analysis. We have previously experimented with computing
loop bounds as an extension to SydTV-GL-re�ne (we will discuss this in Chapter 3), and
could possibly reuse that mechanism here to compute larger recursion bounds e�ciently.

We have discovered that the stack bound analysis is more reliable if SydTV-GL-re�ne
initially computes these recursion identi�ers on the C functions, and then converts them
into binary recursion identi�ers via the calling convention. This is partly for convenience,
because of a case where a function has su�ciently many arguments that the boolean
parameter of interest is itself initially stored on the stack. More generally, we use the
C representation because some correctness information is present there which might
be implicit, concealed by complexity, or missing entirely in the binary. This is one of
the advantages of handling stack concerns in SydTV-GL-re�ne. The competing design
where the decompiler abstracts the stack would require the decompiler to perform the
same calculation without the C semantics as a guide, unless we created a more complex
exchange of analyses between SydTV-GL-re�ne and the decompiler.

2.3.4 Static Analysis for Stack Slots

Loops in the binary must be handled by the split relation discovery process outlined in
Section 2.2.2. This process depends on static analysis to divide variables into 4 groups:

1. variables out of scope
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2. variables constant throughout a loop

3. variables modi�ed by a constant o�set, forming a linear series through loop itera-
tions

4. remaining loop variables to be matched in the split relation

The usual static analysis can be applied to both the C and binary functions, and will
compute which registers are in scope. However the stack is a single variable, which will
simply be discovered to be in scope. We require more �ne-grained information about the
status of various stack slots.

In particular, when a loop includes a function call, it is likely that live variables of the
loop will be saved to the stack frame at the function call site. This may include variables
which form linear sequences, which we need to detect.

We extend the static analysis component of SydTV-GL-re�ne to allow some functions
to request custom static analysis, and add a stack-aware variant of the loop analysis for
handling our binary functions. This stack-aware variant reuses the stack pointer o�set
calculation needed to compute stack bounds (see Section 2.3.3). Instead of computing
linear adjustments to the stack pointer itself, it computes the di�erence between various
stack access addresses and the initial stack pointer. These are used to identify which stack
slot is being used in each stack access. For functions with large return values, the function
is also supplied with a pointer to a return region in its parent’s stack frame, and some
stack accesses are at o�sets from the return pointer instead, which we also detect.

We can then adjust the function to produce a new representation, still expressed in
SydTV-GL, with nodes manipulating stack slots as named variables. The new variables
have generated names like “(StackO�set, -42)”. The explicit accesses to the stack object
disappear. The standard static analysis suite can then analyse this new representation
to compute which registers and stack slots are in scope at any point, and how they are
adjusted by loop iterations. Finally, we map this analysis back to memory accesses on the
stack object.

We mentioned at the start of this section that it would be attractive to adjust the
program into an abstraction where stack slots became regular variables. Unfortunately
such an abstraction is fragile. However, we seem to have contradicted ourselves, having
just introduced such an abstraction. The di�erence here is that we o�er no proof that this
abstracted representation captures the semantics of the concrete stack operations. We
only need enough accuracy to extract a useful static analysis.

This stack slot abstraction is only run for functions which contain loops, and only
needs to succeed for accesses that occur during loops. We can, and do, handle failure cases
where the live loop slots are correctly calculated but later parts of the problem cannot be
properly analysed.

The static analysis module is not a trusted component of SydTV-GL-re�ne. It supports
the split discovery process, which is then checked by the proof script checker. We have
encountered a number of cases where inaccurate analysis lead to later failures. This
analysis is quite complex, and we suspect that further bugs remain which simply have
not lead to failures yet.

2.4 Fine Tuning

The process of producing SydTV, starting with a prototype, took over 3 years and was a
substantial software development e�ort. The major features and the design of SydTV have
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been introduced already, however, a large fraction of the work was done in �ne tuning.
By repeatedly attempting the re�nement proof, and carefully examining failures and

counterexamples, we tuned the implementation to ensure that our case study would
succeed.

In this section we discuss a number of speci�c investigations that led to slight amend-
ments to SydTV. This includes something of a rogues’ gallery of especially problematic
functions, and a toolkit of countermeasures.

2.4.1 String Comparison: Accelerating Split Discovery

A key optimisation in SydTV the linear sequence optimisation, which is best explained
with an example. The strncmp string comparison function from seL4 is a good example.
Standalone operating system binaries such as seL4 cannot depend on an external standard
library, and so have their own implementation of standard functions such as strncmp.
This implementation of strncmp is a straightforward byte-by-byte procedure. A more
complex optimisation which tries to use a word-by-word comparison is possible, but only
justi�ed if long strings are expected.

int PURE
strncmp(const char* s1, const char* s2, int n)
{

word_t i;
int diff;

for (i = 0; i < n; i++) {
diff = ((unsigned char*)s1)[i] - ((unsigned char*)s2)[i];
if (diff != 0 || s1[i] == ’\0’) {

return diff;
}

}

return 0;
}

While the original authors have chosen a straightforward implementation, know-
ing that the number of loop iterations will be low anyway, the compiler doesn’t know
this. The compiler (GCC 4.5.1 with optimisation setting -O2) produces quite a complex
implementation with the aim of reducing the number of cycles spent testing the bound
condition i < n. The approximate structure of the source and this implementation is
shown in Figure 2.4. The many additional paths which go “around” the loop to the tail of
this function exist because the compiler has produced special-case implementations of the
�rst two loop iterations, including their loop exit conditions. The compiler also decides
where to enter the loop based on the parity of the argument n.

We suspect that some of this complexity is unnecessary. We think that a simpler but
equally e�cient implementation exists, which initially checks the parity and positivity
of n, but performs all other tests within the loop body. However, implementing compiler
optimisations is a di�cult business, and we have not investigated whether there is a good
reason for the compiler to behave the way it does.

The proof we are seeking begins with a CaseSplit rule which picks between the two
possible entry paths to the loop. This is roughly equivalent to a case division on the parity
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Figure 2.4: Simpli�ed control-�ow of source and implementation of strncmp.
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of n. Each case then proceeds with a Split rule. In each case, the split relation matches
the sequence of visits to the �rst address in the binary loop to a subsequence visits to
the �rst statement of the body of the C loop. When n was even, the subsequence of visits
includes the 2nd, 4th, 6th iteration etc. In the odd case, the match is to the 3rd, 5th, 7th
iteration etc.

The challenge is to discover these split relations e�ciently, using the split relation
discovery process that was outlined in Section 2.2.2. We have highlighted the strncmp
function because it is a pathological case for the discovery process as we �rst implemented
it. The discovery process would run for several hours before failing due to an SMT
solver timeout. In investigating this pathological case, we discovered three signi�cant
improvements which we introduce below.

2.4.2 Loops Without Variables

The key challenge of the strncmp loop is that, from the perspective of the split relation
discovery process, it has no variables. The discovery process (outlined in Section 2.2.2)
tries to match binary variables (registers) to C variables, but excludes linear series. The
strncmp loop is a good illustration of why linear series are excluded. The C loop has a
single variable i being adjusted. The compiled implementation instead allocates three
registers to tracking the linear series i, s1 + i and s2 + i. The loop body contains
arithmetic to increment each of these registers by 2.

It is not even necessary that the compiled binary contain any register which tracks
i. Another valid implementation would track s1 + i, s2 + i, and the number of bytes
remaining to be compared n - i.

In principle the discovery process could use some kind of linear algebra to discover
that r3 = s1 + i. This is quite complex to implement. It is much easier to derive a
characterising formula for r3 by static analysis, discovering that r3i − 2i is constant
where i is the iteration count. That is, the current value of r3 equals its value i iterations
previously plus 2i. This information, together with information from the initial cycles
which establishes that initially r3 = s1, will allow the inductive proof to succeed.

However, once we exclude these linear series variables, the strncmp loop doesn’t
appear to be computing anything. This is unusual. It is quite common for loops to involve
linear counters, but usually there is some kind of data �ow from them to other variables,
or to the contents of memory, possibly via the arguments to function calls. This loop is
computing nothing other than the �rst value of i which will cause the loop to exit.

The absence of any data variables starves the model-guided discovery process of
information. Normally the satisfying model returned by the SMT solver will be queried for
the values of some binary registers. It is unlikely that two di�erent 32-bit values within
an SMT model will be equal by coincidence.7 A small number of satisfying models should
exclude these coincidences and narrow the search to split relations that make some kind
of sense. In the strncmp case, however, the only relevant information content of the SMT
models is 1-bit information about which paths are reached. These variables are not even
independent of each other, since the exit conditions of later iterations only matter if the
loop was continued in the early iterations.

7It is possible that the solver has some default value, e.g. 0, which it tends to use in satisfying models.
This does not appear to be the case for the solvers we are using. In addition, the queries we are making
tend to require variables to be distinct. For instance, a satisfying model in which a linked-list following loop
continues for two iterations and then exits will require distinct values for all the pointers in the list.
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2.4.3 Partially Recovering Linear Sequences

The key insight which helped us �x the strncmp performance problem was that we should
think about data �ow. We mentioned data �ow above in Section 2.4.2. The C version of the
strncmp loop uses the linear counter i as a data source, with intermediate subexpressions
s1 + i, s2 + i, i < n etc. Data �ows through these to eventually be used in memory
lookups and the loop exit conditions, which we can think of as data sinks.

The key observation is that the linear sequence data must �ow somewhere (or else the
compiler will remove the calculation entirely). The data can �ow through intermediate
linear calculations for some while. It might then �ow on to non-linear calculations in
registers, or to data sinks such as memory accesses and function call parameters. In our
previously-pathological case with no non-linear calculations, this information must �ow
to data sinks. In general, memory accesses and function calls are more common than
non-linear arithmetic, and linear values will often �ow towards these data sinks.

The compiler has the option of rearranging the arithmetic involved in the intermediate
calculations. However once the data sinks are reached, the values passed are likely to be
exactly the same. For instance, in strncmp, the addresses of the memory accesses will
match in the two loops. Not only will they match, but the nature of the match is revealing.

We can discover by static analysis the points in the loops where memory accesses are
performed with addresses that form a linear sequence. There are two such accesses in
the C loop s1[i] and s2[i], at the same statement. There are four such accesses in the
binary loop because of the unrolling. We pick one of these binary accesses, and ask the
SMT solver for a satisfying model in which this loop point is reached.

The solver responds with a model in which, for instance, the accesses s1[i] and s2[i]
are performed at addresses 0xbc001244 and 0xe0f34541 in the �rst C loop iteration.
The binary access we have chosen to examine is performed at address 0xe0f34543 in
the �rst instance. We also know that the C addresses increase by 1 in each iteration, and
the binary address by 2. It is now clear exactly what kind of split relation we should be
looking for. The binary loop iterations loosely correspond to every second C iteration,
starting from the third one.

Clearly this kind of split relation causes the accesses to agree within this model. We
check whether this match is necessary, by seeking a model where this �rst binary access
is not equal to the third access s2[i]. This hypothesis is satis�able, in the case where the
alternative loop entry path is taken, and the binary iterations correspond to di�erent C
iterations. This suggests that a CaseSplit rule should be used.

We use this approach to discover CaseSplit rules and quickly narrow the search
space for split relations down to ones which agree with the loop unrolling structure. This
approach does not give us enough information to manufacture a split relation, as the loop
points in which the data sinks appear may not be good choices as loop splits in any case.
So we still need to discover a split relation using the usual algorithm, but we can skip over
the usual process of slowly expanding the discovery window and excluding simple split
relations until the relevant split relations are present.

This process, the linear sequence matching process, is attempted before any split
discovery is tried. To clarify the process:

• Linear sequences in all relevant loops are calculated by static analysis. This includes
some tricky cases, such as 16-bit linear sequences which are computed within 32-bit
registers by repeated addition and truncation.

• Linear sub-expressions, i.e. expressions computed by applying certain kinds of
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arithmetic to linear variables, are also computed.

• Linear sequences of interest are identi�ed. These are linear sub-expressions which
are passed into “data sinks”. Data sinks include memory accesses (the addresses,
and the updated values) and function call arguments.

• For each binary linear sequence of interest which has at least one matching C
sequence of interest, we attempt to:

– Request an SMT model where the data sink point is visited.
– Match the value to an early value within one of the C sequences of interest,

and the o�set amount to a multiple of the relevant C o�set amount.
– Check whether this subsequence match must always be the case.
– If this subsequence match is always the case, inform the split discovery process

that it should focus on split relations which agree with this match.
– If this match is not always the case, check whether it is always the case under

the assumption that the loop entry path seen in the initial model is taken.
– If the match holds under path assumptions, derive a CaseSplit rule which

distinguishes between these cases.

2.4.4 Duplicate Splits

Another simpler optimisation was discovered in re�ecting on the strncmp performance
problem. This is to avoid testing “duplicate” split relations. Recall from Section 2.4.2 that a
key challenge in strncmp is the small amount of information derived from SMT models
which refute split relations. This is partly because the information content of the split
relations themselves is low: normally split relations must match a list of variables, but
here this list is empty.

For this reason a number of split pairings will generate the same SMT problem. In
principle, we can save time by detecting this case and skipping duplicate considerations.
However, if a satisfying model refutes one of these duplicated split relations, it will refute
all of them. Likewise if a split relation is endorsed by testing, it doesn’t matter which of
the duplicates was picked. The problem is with split relations that are found to hold in
their �rst three iterations, but which fail to hold when tested in their inductive step. When
an inductive step fails to prove, we also record failures for all similar split relations that
generate the same initial SMT problem, even if the inductive step problem was slightly
di�erent.

This adjustment actually makes no di�erence for strncmp, since no inductive steps
fail to prove. It did, however, instantly solve a signi�cant performance problem in a very
similar function. Like strncmp, the other function does not have any non-linear variables.
It scans a small array for the �rst available entry. The key di�erence which leads to the
performance issue is that the size of the array is known. This means that the inequality
exit condition, the equivalent of i < n in strncmp, cannot be true in the early iterations.
The same issue could appear if strncmp was inlined into a context in which the value of
n was known.

Since the exit condition is deactivated in the early iterations, and there are no non-
linear variables, the split discovery process has literally zero data to work with, and must
test every candidate split until it �nds one for which induction works. Repeatedly building
SMT problems to test broadly equivalent inductive steps can consume CPU hours.
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2.4.5 Variable Width Memory Access

The C language, and the CPU architecture itself, can access memory at 8-bit, 16-bit and
32-bit widths. We map this into the SMTLIB2 array logic by picking one of these widths
to be “normal” and emulating the others. When we developed the prototype that SydTV
builds on, we found that a 32-bit focused encoding was the most e�cient. Memory is
represented as an array of words, i.e. an SMTLIB2 array with 30-bit indices and 32-bit
values. The usual word-length reads and writes become array accesses and updates. Reads
and writes of 16-bit and 8-bit values are encoded by reading or writing the containing
32-bit word and performing bitvector arithmetic as necessary.

Picking a good encoding is important because the performance of SMT solvers on
problems extracted from realistic programs is known to be highly sensitive to the way the
array theory is used. The extensionality theorem for arrays, which says that if A = B
and x = y then A[x] = B[y], can be naïvely instantiated for any pair of memory accesses
A[x] and B[y] in the problem. This can lead to a quadratic increase in the underlying
SMT/SAT problem size, which modern SMT solvers take great pains to avoid [BB08]. A
32-bit encoding leads to one SMT array access per memory access, whereas the more
obvious 8-bit encoding would require 4 SMT array accesses per word-length access, and
require the SMT solver to instantiate more array theorems.

We also broadly expect that a program running on a 32-bit machine will perform far
more 32-bit memory accesses than at any other width. We also expect that even when 8-bit
and 16-bit values appear in structures and stack frames, they do so within structures that
are 32-bit aligned. Direct 8-bit and 16-bit accesses within aligned structures are equivalent
to accesses of the word they are contained in, and indeed the compiler might adjust one
into the other.

The counterexample to this logic is strncmp. We initially know nothing about the
alignment of the values s1 and s2. If we use a 32-bit encoding, the access to the �rst byte
of s1 is encoded as a case division between the four possible alignment cases of s1. At the
inductive step, there are four alignment cases for s1, four for s2, and another four for the
inductive value of i,8 and the simple argument that the C and binary loops are equivalent
becomes lost in a 64-way case division to establish what they are actually doing. This
leads to long delays and SMT solver timeouts for otherwise simple problems. With an
8-bit memory representation, however, the relationship between di�erent encodings of
strncmp becomes clear and straightforward.

Fortunately the SMT export mechanism was designed so that the particular SMT
memory representation could be replaced easily. This choice was initially made globally in
the source code of SydTV-GL-re�ne, but with a few adjustments the choice can be made
once per SMT problem. The remaining question is how to decide between representations.
There might exist a reliable way to make this decision, but instead, we chose to build
further on an existing experiment, allowing us to avoid making a decision at all.

Instead of trying to pick an optimal SMT solver implementation and memory rep-
resentation, SydTV-GL-re�ne passes di�cult SMT problems to a number of di�erent
solver processes running in parallel. SMT solvers are used by SydTV-GL-re�ne in both
“incremental” and “o�ine” mode, the di�erence being that “incremental” solvers can
perform multiple queries whereas “o�ine” solvers run one dedicated process per query.
“Incremental” mode o�ers lower overheads when solving many simple problems, but
is only supported by some SMT solvers, whereas “o�ine” mode is universal and o�ers
better performance for di�cult problems. SydTV-GL-re�ne seeks �rst seeks a solution

8 Arguably there are only 2 cases here because of the unrolling.
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in incremental mode, and after a short delay (con�gurable, but usually 2 seconds) runs a
dedicated “o�ine” solver. Our previous prototype switched between solvers in the same
way. In addition, however, SydTV-GL-re�ne can be con�gured to run multiple “o�ine”
solvers at this point, taking the result from the fastest one.

Having parallel solvers allows us to run solvers with quite di�erent implementations
on the same problem, and exploit the advantages of both, at the cost of using up CPU
time. We can also simultaneously test the same problem in both 8-bit and 32-bit memory
representations. The two representations are syntactically di�erent but logically equivalent.
We need to take a little care in the way SydTV-GL-re�ne handles SMT problems to make
sure we keep intermediate representations generic until we know which solver we are
sending them to, but this is only a little work in practice. The implementation allows us
to use parallel solvers with di�erent representations for both sat/unsat queries and model
extraction.

2.4.6 Overflows in Split Induction and k-Induction

The debug facility of SydTV can tabulate the memory activity that occurs in an SMT
counterexample. This allowed us to quickly understand many failures. One interesting
such failure involved an initialisation function for interrupt states in seL4. We will not go
through its code here, the function walks a global array and zeroes values.

The proof search for this function failed in a pathological way. Many split candidates
were discovered, and the inductive proof for each one failed. We pick one arbitrarily
and investigate its counterexample. We see a clear linear sequence of array updates in
the debug trace. The early iterations match, but at the inductive step, the memory write
addresses have diverged. This suggests that something might be wrong with the linear
sequence static analysis, however it is correct.

The problem is that interrupt identi�ers are known to be small values on this particular
ARM platform, and so a 16-bit integer i is used to represent them, and to iterate through
them. The compiler uses a 32-bit register r3 to store i. The compiler would typically
increment r3 and then zero its upper 16 bits to simulate a 16-bit increment of i. The usual
static analysis for linear sequences includes cases which detect various ways that bitwise
operations can be used to encode this calculation.

However, the size of the global array is known to be small enough that i never
over�ows. Thus the compiler can forget about simulating 16-bit arithmetic, and increment
r3 normally. The linear sequence analysis correctly detects the sequences in both variables,
but they are a 16-bit and 32-bit sequence respectively. The inductive counterexample
involves a case where more than 216 iterations have occured.

We need to strengthen the statement which we prove by induction, to clarify that
over�ow of i is impossible. SydTV-GL-re�ne did detect a linear sequence match in the
memory access addresses in this case, using the optimisation discussed in Section 2.4.3.
We considered adding a facility to SydTV-GL-re�ne that addresses the speci�c case where
a pair of matching linear sequences iterate on values of di�erent widths. This turned out
to be fairly involved, however, and targets a very narrow case.

Instead we reused a module which we had previously added to SydTV-GL-re�ne in
work on estimating execution time. We discuss that work in Chapter 3, and also else-
where [SKH16]. This module examines loop exit conditions and guesses some additional
inequalities that might be provable by induction, then quickly tests the induction for each
of these inequalities. Those inequalities aided our execution-time work in discovering
loop bounds. In this case, one of the candidate inequalities is that i is less that the size of
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the global array. This inequality indeed can be proven by induction, and it implies that
the iteration count is less than 216, and thus solves the problem in the inductive proof.

We have adjusted the split discovery process to to load this additional module, discover
these additional inequalities, and try to make use of them whenever a split induction
proof fails.

This adjustment allows SydTV-GL-re�ne to discover a valid proof for this function.
It is interesting to ask why explicit loop bounds were not needed in other functions,

given that the compiler knows how to compute them and use them in optimisations. The
looping condition is typically encoded as i < NUM in the C code. We prove split relations
using k-induction where k defaults to 2. The premises of the inductive case include two
related visits to the respective split points. The path between these two previous split
points includes a test of i < NUM which must have succeeded. This means that the proof
process knows that the previous i satis�ed i < NUM “for free”.

The compiler frequently encodes i < NUM by equality tests r3 != NUM instead. Prov-
ing that this is safe requires discovering that the �nal iteration of the C loop must have
i = NUM. We usually get this information “for free”, but in this case the di�erence in
precision loses the information again. We know that the bottom 16 bits of r3 are equal to
NUM, but lose information about the full value of the register.

The inequality module guesses from the fact that r3 != NUM is tested in a loop exit
condition that r3 < NUM is a candidate invariant of the loop. With this invariant proven,
the upper bits of r3 are also known to be zero, and thus i and r3 is recaptured.

2.4.7 The Sequential Fixed-Length Loop Problem

The last problematic function which we speci�cally investigated is part of seL4’s boot
sequence. It helps initialise a collection of things. Its source contains two loops of its own,
with one more inlined from a call to memzero. The search process discovers a split for
the �rst loop, and then fails to �nd a split at the next loop. We left this problem until last,
because the failure manifests only after a complete split search failure, a slow process.

When we examine the debug memory trace for one of the models generated during
the failed split discovery process, we can clearly see that the second C loop does not match
any binary loop. Instead, a linear pattern of 16 memory accesses are performed explicitly
at di�erent binary instructions.

The compiler always has this option of fully unpacking loops with small well-known
bounds. For example, a for loop counting from 0 to 5 might be replaced with 6 copies
of its body. SydTV-GL-re�ne detects bounds of 8 or lower directly, and can also detect
“independent” loops, which can be iterated on one side of the problem without any loop
iterating more than once on the other side of the problem. We discussed these checks in
Section 2.2.3.

The problem is that each of the loops in this particular function executes for a known
number of iterations. The three loops also execute unconditionally in the C function. The
independence test won’t work here, because it’s not possible for one loop to execute but
not another. Once again, we have found a special case that starves our tools of information.

We could address this issue by explicitly looking for higher loop bounds. We mentioned
in Section 2.2.3 that it is undesirable to discover such bounds unconditionally, as it might
substantially degrade performance. We could also consider searching for higher bounds
incrementally as the loop discovery process fails and expands its search window. This
would address this issue eventually, but the downside is that the discovery process can be
slow to fail.
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When we examined this problem by hand, it was clear from the debug memory
trace what the problem was. The sequence of writes we saw in the second C loop, which
matched a sequence outside any binary loop, clari�ed that the second C loop was expanded.
The linear sequence optimisation described in Section 2.4.3 already identi�es the linear
sequences of C write addresses, and tries to match it against binary loops, discovering no
matches.

We adjust this linear sequence mechanism to also note the expressions of interest
outside of loops. When we generate a model, it contains a concrete value and o�set for
each interesting linear sequence on the C side of the problem. We can quickly generate the
�rst 100 values, and check which appear on the binary side outside of loops. In this case a
sequence of 16 values appear at distinct binary addresses. Whenever such a sequence of
length 5 or more is discovered, we adjust SydTV-GL-re�ne to check for a loop bound for
the relevant loop.

With this adjustment in place, the bound of 16 is found, the split discovery process
then succeeds, and the problematic function is handled.

2.5 Verifying the seL4 binary

We now turn our attention to our case study, using SydTV to verify the compiled binary
of seL4.

We have tried, wherever practical, to solve problems of translation validation by
improving SydTV rather than by imposing restrictions on the source code or the compiler.
Nonetheless, in several cases we found that the best way to proceed was to make slight
amendments to the seL4 source rather than handle pathological cases in SydTV. This
section discusses these amendments, and hopefully gives some insight into how much
work is required to produce a veri�ed binary using SydTV.

2.5.1 Strengthening Guards

We have said before that the C semantics are produced in Isabelle/HOL by the C-to-Isabelle
parser, and exported into a SydTV-GL representation. This is a slight simpli�cation. In fact
we �rst produce a slightly adjusted variant of the original C semantics, where in particular
we strengthen some guards and add others. We have adjusted the seL4 veri�cation proofs
to target this adjusted representation rather than the original. We also prove a (trivial)
re�nement proof which establishes that the original C semantics re�ne the adjusted ones.

Figure 2.5 shows the various Isabelle representations of the seL4 kernel together. The C
semantics is converted �rst to its Isabelle encoding, then to an adjusted form with stronger
guards, and �nally to SydTV-GL. The adjusted form is the target of the re�nement proof
which connects to the higher-level veri�cation of seL4. The re�nement chain completes
in two directions. We prove that the SydTV-GL semantics re�nes the higher-level models,
and also that the original semantics of the C-to-Isabelle parser does also. The former
re�nement connects to the binary semantics, the latter re�nement means we preserve the
original seL4 veri�cation result [KEH+09] also.

The main adjustment made in the conversion involves the pointer validity guard that
is asserted at every memory access. The parser supports various possible con�gurations
for this guard. Unfortunately, we need to use both the strongest and the weakest settings.
To permit the compiler to make use of the strict-aliasing rule, we must make the strong
pointer validity assertion which strictly excludes the pointer being aliased by other types.
These “strong” validity checks are the pvalid checks discussed in Section 2.1.12. However,
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Figure 2.5: Multiple C representations in the re�nement chain.

the memory copying and zeroing operations done in seL4 are performed word by word
rather than byte by byte, which is technically invalid against the C standard. We need to
use weak pointer validity checks within these functions to be able to prove them correct.
We use the weak mode of the parser, then strengthen the guards at every other point. This
workaround dates back to our previous work with our former prototype.

We plan to adjust the C-to-Isabelle parser with more �ne-grained con�guration
mechanisms. We will then retire this mechanism, and export the original C semantics
directly.

2.5.2 Padding Etcetera

Cases where the compiler has a genuine choice create di�culties for SydTV. One such case
involves writes to structures which contain padding. In principle the C-to-Isabelle parser
could include a nondeterministic choice operator, where the outcome for the padding
bytes is unknown. This would require adding nondeterminism to SydTV-GL, resulting in
a quanti�ed choice within SydTV-GL-re�ne. It would also require substantial adjustment
to the Tuch memory semantics [Tuc08]. In short, these padding decisions are deeply
undesirable.

Instead we eliminated all padding in the seL4 source code. It is not uncommon for
embedded systems to avoid padding anyway.

The most common cause of padding was C enumeration constants. The C standard
defers to the architecture standard on the default type of such constants, and the ARM
reference speci�es that the compiler should pick the smallest type available. This led to
padding in a number of structures.
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The common idiom in C headers is to create an enumeration, and then immediately
give the enumeration type a shorter name via typedef. We adjusted all such typedefs,
keeping the enumeration but having the short name be a synonym for uint32_t rather
than the enumeration type. The enumeration constants still have their own types, but are
always fetched and stored within full length words. This eliminates nearly all padding.
There is a slight memory cost in a small number of structure types, but most structure
types remain the same size.

The remaining padding can be eliminated by adding dummy �elds, or using larger
�eld widths than required, in a handful of structure de�nitions.

We also adjusted a function to make it syntactically obvious that a structure it manipu-
lates and then returns is fully initialised. In the C standard this is a semantic restriction, not
a syntactic one. A standard conforming function may appear to contain a path along which
a �eld of a structure is used uninitialised, as long as that path is semantically impossible.
We could try to supply this information to SydTV-GL-re�ne by adding layers of additional
guards, but it is far easier to supply a pointless initialiser in the source function.

Both of these changes, the padding changes and the initialiser changes, date back to
our previous work and former prototype.

2.5.3 Nested Loops

A signi�cant feature that is missing in SydTV is support for nested loops. This is largely
because we haven’t had a strong enough reason to support them. The veri�ed source code
of seL4, for instance, contains no nested loops.

The unveri�ed initialisation code, however, contained a small number of nested
loops, as did an unveri�ed hardware interface function. Moreover, when compiling with
optimisation �ag -O2, the compiler introduces a number of nested loops via inlining.

The �rst step we took in addressing this problem is to prevent the compiler introducing
nested loops this way. GCC allows us to intervene in its selective inlining process. Func-
tions marked with __attribute__((noinline)) should not be inlined under normal
circumstances. We use this attribute in three places to prevent the compiler inlining a
function into a loop body and creating a nested loop.

We also use the same attribute to prevent the compiler inlining a member of a trio
of mutually recursive functions. This is because the mechanism for handling recursion
bounds which we discussed in Section 2.3.3 tries to map recursion limits from C to the
binary, and inlining of recursive calls confuses the mapping.

We make larger refactors to remove the two remaining nested loops. In one case, we
move the inner loop into a function call, and again order the compiler not to inline it. In
another, we adjust a loop which calls a custom function followed by memzero. We don’t
want to forbid inlining of memzero, because it is used in many places and specialising its
loop to a given length can improve the code. Instead, we move the memzero call within
the custom function, a modest refactor which the seL4 developers were happy to accept.

2.5.4 The End of the Line

We also mark the halt function as not to be inlined, and specify to GCC that it never
returns with __attribute__((__noreturn__)). The halt function exists in the seL4
source and binary, but the formal veri�cation establishes that it is never called. The actual
implementation enters an in�nite loop.
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The reason for adding the attribute is that, with optimisation �ag -O2, the compiler
inlines halt at most of its call sites. This is despite the fact that halt is clearly an in�nite
loop, which suggests that optimising for performance might be futile. Requiring that halt
not be inlined actually saves instructions, an improvement to the implementation. Saving
instructions, especially branch instructions, will (very slightly) improve instruction cache
and branch predictor utilisation, and thus performance.

The halt function is also a unique function for the analysis. The C-to-Isabelle parser
has been told to ignore the body of the halt function. This is also done for some machine
interface functions as well. Instead, the parser is given an axiomatised speci�cation to use
for the function. In the case of halt, however, the axiomatised speci�cation has the empty
set for its precondition, that is, it requires that halt is never called. Since halt is not
given a normal body by the C-to-Isabelle parser, it is left underspeci�ed in the SydTV-GL
C representation also, and cannot be inlined. SydTV-GL-re�ne gives up whenever the
inlining of the binary is impossible because of underspeci�cation in C.

We could probably adjust the inlining heuristic to cope with this case, and then try to
prove that all the inlined loops were unreachable, however the adjustment to the C code
was desirable for performance anyway.

The fact that halt is marked non returning needs to be handled carefully. The compiler
knows that paths that follow halt are unreachable, and may omit code we expect to be
present. For instance, stack pointer may never be returned to its starting value. We
know from the veri�cation that halt is unreachable. To make this information more
directly available to SydTV-GL-re�ne, we add a guard in the guard strengthening phase
(see Section 2.5.1). We guard all call sites to halt, making it even more explicit in the
veri�cation that they are unreachable.

This is not the only performance improvement that has resulted from the translation
validation work. When reading a debug trace, we noted that the compiler was issuing
instructions to discover the addresses of objects in the globals section, and realised that
a number of const markers were missing. These markers have now been added, save a
handful of instructions, and presumably save a number of cycles from some operations.

2.5.5 The Array O�set Validity Constraint

The largest change we make concerns the validity guards produced by the C-to-Isabelle
parser when a pointer value is used as an array.

Consider this trivial function:

int
f (int *p) {

int x = p[42];
return x;

}

The existing C-to-Isabelle parser would encode this memory access by �rst construct-
ing the address of this array element (&(p[42]) or (p + 42)) and then accessing it. It
would also produce a pointer validity guard to ensure that &(p[42]) was a valid pointer
to an integer. We could easily amend the parser to also check that p was a valid pointer to
an integer also.

The C standard, however, asserts more. The compiler may assume not only that p and
&(p[42]) are valid, but that there exists a contiguous array which includes both of them
and the space in between.
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This issue lead to complex counterexamples involving some message functions of the
kernel. These copy values between various message bu�ers, each of which is an array
of unsigned int. One such bu�er x->buf is enclosed within a larger structure, and
another y is handled simply as a pointer to unsigned int. In principle y might point
to some part of x->buf, but then a large constant o�set is used y[OFFSET] which is
larger than the size of x->buf. The compiler then concludes that x->buf and y are totally
disjoint, and any accesses can be reordered.

We need to assert, in our trivial function f, that there exists an array that covers both
p and &(p[42]). Up until we encountered this issue, there was no support within the
Tuch memory semantics for such assertions.

An Assertion

It is easy enough to de�ne a predicate which can be asserted in this case. We de�ne a
validity principle pvalidarith for pointer arithmetic, by appealing to the existence of the
containing array:

pvalidarith htd τ p n = (∃p′ N i j. pvalid htd (τ [N ]) p′

∧ p = &(p′[i])
∧ &(p[n]) = &(p′[j])
∧ i < N ∧ j < N ∧ 0 ≤ i ∧ 0 ≤ j)

The predicate pvalidarith htd τ p n declares that it is correct to perform arithmetic
on pointer p, moving it by o�set n, when p is a pointer to type τ , given the heap type
description htd. The heap type descriptors and the pvalid operator were introduced in
Section 2.1.12. The de�nition of pvalidarith htd τ p n says that there exists a speci�c array
pointer of size N which is valid in the normal sense, and from which both p and p+ n
are o�sets.

The above de�nition is for presentation only. The actual Isabelle/HOL de�nition is
more complicated, because there is no mechanism in higher-order logic which allows us
to quantify on an number N and produce from it a type τ [N ]. To do the equivalent of the
above, we have to dig into several layers of the de�nition of the Tuch memory semantics,
and construct the type information that characterises τ [N ] without actually constructing
the type.

Provenance

A confusing technicality in the C standard concerns the case where the address &(p[42])
is computed but not dereferenced. According to the C standard, a pointer derived from
an array pointer is valid for dereferencing if it points within the array, and valid for
arithmetic if it points within the array or to the �rst address outside the array. This
permits a well-known idiom where a function iterates a pointer over an array and detects
the stopping condition by comparing the pointer to this boundary address.

This boundary confusion becomes important in a case where two arrays int[] x and
int[] y are known to be side by side. The pointer to the start of y is also the boundary
address for x. This single value is valid for arithmetic and access when considered as the
pointer to the start of y, but as the boundary pointer of x it is only valid for arithmetic.
The same value would appear to have di�erent semantics depending on where it came
from. This is called the issue of pointer provenance.
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The provenance issue has been discussed in detail by others [HER15,Kre15,MML+16].
At the time of writing, this issue has recently been considered by the ISO/IEC working
group (JTC1/SC22/WG14) which o�ciates over the C standard. In their October 2016
meeting, the group agreed in principle with a proposed amendment by Memarian et
al [MS16] which would clarify the standard further, but further rounds of discussion are
expected before any judgement is made.

Our solution to this problem is to largely ignore it. We de�ne a “strong” form and a
“weak” form of the pvalidarith operator from before. The version shown in the formula
above is the “strong” form. When pointer o�sets are constructed to be immediately
dereferenced in the same statement, we use the strong form. When o�sets are computed
but not dereferenced, we use the weak form, which is the same but permitting equality
j ≤ N . We only consider whether the value is immediately dereferenced, and do not
bother tracking the provenance of the resulting pointer further.

Authors discussing the provenance issue claim that there are example situations in
which real compilers such as GCC use this provenenance information to make valuable
optimisations [MS16]. However, the examples which we have personally understood up
to this point are all somewhat arti�cial, and seem unlikely to appear in practice. We will
continue to avoid the issue as long as we can.

Exporting to SydTV-GL

We have not yet amended the C-to-Isabelle parser to produce the pvalidarith predicate.
Instead, for the time being, we add it as an additional assertion via the guard strengthening
phase (see Section 2.5.1).

The de�nition of pvalidarith above includes an existential quanti�er, which we do
not wish to appear in SydTV-GL-re�ne. Instead of unfolding the de�nition, we add an
additional operator to SydTV-GL. To reduce complexity, we add a slightly di�erent operator
parrayvalid, which is essentially the same as pvalidarith in the case where the o�set is
positive:

parrayvalid htd τ p sz = (∃p′ N i. pvalid htd (τ [N ]) p′

∧ p = &(p′[i])
∧ i+ sz < N)

pvalidarith htd τ p n = ((n = 0 ∧ parrayvalid htd τ p 1)
∨(n ∧ parrayvalid htd τ p n)
∨(n < 0 ∧ parrayvalid htd τ (&(p[−n])) (−n)

This predicate parrayvalid htd τ p n declares that there is an array of elements of
type τ , including at least the pointer p and the next n elements, within the heap type
description htd.

We now have two predicates that specify an array of constant size, parrayvalidhtd τ p n
and pvalid htd (τ [n]) p. Their semantics is subtly di�erent. The pvalid assertion speci�es
a closed array starting at p. This array may be a �eld of a bigger structure, but it may not
be a subarray of a larger array with the same type. The parrayvalid assertion speci�es an
open chunk of array, which might be part of a bigger array.
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Proving Distinctness

We mentioned the open/closed distinction above, because our next task after including
the parrayvalid operator in SydTV-GL is to support it in SydTV-GL-re�ne. We need to
use this operator to prove addresses are distinct.

We mentioned in Section 2.1.12 that each pair of pvalid assertions on the same htd
generate an extra assertion that we feed to the SMT solver. If pointers p and p′ are both
valid, we assert that either:

1. p equals p′ (same address and types).

2. p and p′ are totally disjoint, with the structures they point at having no common
byte.

3. p points at a �eld within the aggregate structure p′.

4. vice-versa, p′ points within p.

We can generalise each of these notions to cover either kind of point validity operator,
array or otherwise. When we say that p points at a �eld within an aggregate structure p′,
an open array chunk may point at any subarray of any �eld of the aggregate structure p′,
or may be directly a subarray of p′ itself.

We also add one more case:

• p and p′ are both open array chunks, and they share at least one element.

Verifying the Assertions

The next task was to prove the new assertions in the seL4 veri�cation. This turned into
a major proof e�ort, because as originally stated, the new assertions were not true. The
heap type descriptor object is “ghost data” in the C semantics. It is always available as a
global object. Specially formatted comments in the C source are interpreted by the C-to-
Isabelle parser as update operations on the available types. The seL4 Retype operation,
which is called to create new objects, includes updates to the descriptor object. When
Retype created some new array objects, including new capability table objects, it updated
the descriptor to contain each new capability storage slot, but not to include the array
structure which contained them.

Perhaps it was not such a surprise that the array was not created, since the Tuch
semantics initially lacked any mechanism to create it. There is an operator for retyping
to make a given pointer valid, including pointers to arrays of any given constant length.
This does not help us with dynamic length arrays. Once again, we need to dig into some
levels of the Tuch semantics to de�ne a new retype operator which can create arrays of
variable length.

The existing proof of correctness of seL4 involves three levels, connected by re�nement
proofs. Validity of pointers being used in C is usually proven by appeal to the validity of
pointers being used at the other levels, as the re�nement proof steps through the programs
together. This reasoning does not directly apply to array pointers, which are represented
in a somewhat complex way in the other two models of seL4. To permit a similar approach,
we adjust the intermediate seL4 model to check some pointer o�set properties that will be
relevant to prove validity of the C pointers. We must also adjust the state relation between
the C heap and the speci�cation’s memory model to ensure that arrays exist in C when
they are expected from the memory model.
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Finally, the real work is to return to the proofs about the Retype operation, and prove
that the new kinds of pointer updates preserve all the invariants, and also that the new
arrays in the heap type descriptor are preserved when necessary by all the existing updates.
This was the hardest part of the array assertion change, with the �nal change adding over
1600 lines and removing over 1400 lines from the Retype theory alone. This region of the
seL4 veri�cation has previously been described as somewhat aesthetically unpleasant.

In total, this proof e�ort requires the addition of 758 and removal of 785 lines from the
correctness proof of the intermediate speci�cation, and the addition of 3985 and removal
of 2614 lines from the C/intermediate re�nement proof. This project took 7 weeks of work,
despite us already having substantial relevant experience.

2.5.6 Additional Adjustments

We also made some further minor adjustments to the seL4 source to address minor issues
with the translation validation.

We suppressed inlining in two cases, to avoid the creation of two monster functions.
The �rst of these functions would accumulate nearly all of the seL4 boot sequence into
a single function body. The other would accumulate nearly all of seL4’s user-callable
architecture-speci�c operations in a single function body. The monolithic architecture-
speci�c function would then contain 1531 instructions, about 10% of the instructions in
the kernel, 14 di�erent loops, and code from 106 additional C functions, copied into a total
of 326 inline sites.

Each of these monster functions can be divided into a few large functions with re-
quests to suppress inlining (we discussed using such requests to prevent nested loops
in Section 2.5.3). We needed 3 source annotations to break up each of these monster
functions, 6 annotations in all.

The largest subfunction of the architecture-speci�c function, for instance, contains
879 instructions, 8 loops, and code from 61 additional functions inlined at 218 sites. This
might sound like a minor adjustment, but signi�cant amounts of proof time can be saved
by reducing the number of loops present in any single large problem. Performing this
division, however, added 169 instructions to the binary to support the three call sites. This
overhead is unfortunate, but we think acceptable.

Another minor adjustment involved an unveri�ed boot-time function of seL4 which
checked a hardware-provided value against the constant 0xf « 28. This left shift results
in a sign change, which is forbidden by the C standard, and so this function would be
impossible to verify.

This function unconditionally results in unde�ned behaviour according to the C
standard. The guards produced by the C-to-Isabelle parser are unsatis�able, and in the
SydTV-GL representation, the Err address must be reached. Since SydTV-GL-re�ne
assumes that Err is not reached for most checks, any binary function could be proven
to re�ne this C function. This is exactly what the C standard means when it says this
behaviour is unde�ned, the compiler can provide whatever implementation it wants. It
also clari�es why these guards are so important to check.

We detected this case because we have a safeguard in SydTV-GL-re�ne which checks
that the various guards are together satis�able. This was �rst introduced to help �nd a
bug in the handling of the array pointer validity constant we introduced in Section 2.5.5,
and seems to be a worthwhile case to detect generally.

Having detected the problem, it is very easy to amend 0xf « 28 to the correct syntax
0xful « 28.
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2.5.7 The Clone Problem

The proof of re�nement performed by SydTV-GL-re�ne is decomposed by function pairing,
as we discussed in Section 2.1.4. In the cases we analyse, the vast majority of binary
functions are members of pairings, whereas many C functions are marked static inline
and do not have binary counterparts.

The exception to this case involves “clone” functions. A clone function is an additional
private symbol in the binary, with a symbol name such as isRunnable.clone.132. Thi
function is a special-purpose implementation of the C function isRunnable. The compiler
does not give it the canonical symbol name isRunnable, because the compiler does not
wish to claim that this is an implementation of isRunnable in the usual sense. The clone
might make some assumptions about its arguments, or about its calling environment, or
might violate the usual calling convention.

The advantage of cloning is that it provides an intermediate alternative to function
inlining. Inlining the body of a function allows the compiler to eliminate the overhead of
the function call, and also to specialise the body of the function to its particular arguments.
The downside of inlining is that it may lead to code duplication. Cloning may allow
specialised implementations to be shared between call sites. The overhead of the function
call cannot be entirely avoided, but it can be reduced by specialising the calling convention
to �t the call sites.

The problem for SydTV-GL-re�ne is that clones cannot be paired against the functions
they were generated from. There probably exists some input/output relation that makes
isRunnable.clone.132 a re�nement of isRunnable, but we do not know what it is.
The obvious way to proceed is to inline isRunnable.clone.132 in all proofs about
functions in which it is called. The problem, as discussed in Section 2.3.2, is that the way
we handle stack equality does not permit binary functions to be inlined into re�nement
problems.

We work around this problem by using the GCC attribute __attribute__((noclone))
to prevent the creation of problematic clone functions. This attribute prevents the compiler
from emitting a clone copy of the given function.

Clone functions do not appear in the binary when seL4 is built with GCC 4.5.1 and
optimisation �ag -O1. With -O2, we see a single clone function, and so eliminating it
with this override seems a reasonable alternative to revisiting the problem of SMT stack
representation. With optimisation �ag -O3, we see an additional �ve clone functions,
three of which are problematic. At the higher optimisation setting, the compiler is more
willing to expand the binary by creating clones of existing functions. Clone functions that
make no function calls themselves are not a problem. Once again, we address these three
problematic functions with the no-cloning attribute.

When we build the kernel with �ag -Os (“optimise for binary size”), however, there are
96 clone functions. This is for the opposite reason to -O3. The compiler is now extremely
reluctant to expand the binary by inlining multiple copies of functions. This includes a
great many functions marked static inline in the seL4 headers. We have not yet come
up with a workaround for this case.

We also add the no-cloning attribute to functions we have previously marked no-inline
(see Section 2.5.3, Section 2.5.4, Section 2.5.6). This adds a further 11 no-clone requests,
for a total of 15. It is no help to us if the compiler avoids inlining a function, but produces
a clone body for it that we must inline at the problem level anyway.

This level of workarounds is su�cient for the time being, although it leaves us no
satisfactory way to address the -Os binary. It is clear that we need to �nd a more durable
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solution to the clone problem in the near future.

2.6 Evaluation and Discussion

2.6.1 Results

We have run the SydTV-GL-re�ne analysis on the seL4 binary, as produced by GCC with
optimisations levels -O1 and -O2.

For GCC -O1 SydTV-GL-re�ne reports the results:

• 268 function pairings are checked

• a further 16 are skipped9

• no proof failures

• the slowest problem took 69052.05s (19:10:52)

• the total time taken is 160312.37s (1 day, 20:31:52)

For GCC -O2 SydTV-GL-re�ne reports:

• 258 function pairings are checked

• a further 16 are skipped

• there are 3 failures

• the slowest problem took 67734.66s (18:48:54)

• the total time taken is 382531.45s (4 days, 10:15:31)

There were three failures in our �nal -O2 proof run. Two of them we know how to
address, but the remaining one involves an SMT solver timeout and may require further
source-level workarounds. We are con�dent we will produce a completely veri�ed binary
in the very near future.

These times are clocked on a virtual machine controlling 16 Intel Xeon E5-2640
cores running at 2.40 GHz. The high core count allows us to run �ve SMT solvers in
parallel for di�cult problems. These include CVC4 [BCD+11], SONOLAR [PVL11] and
Yices2 [Dut14]. The SMTLIB2 [BST10] shared input language allows us to interact with
these tools uniformly.

We have previously used Z3 [dMB08] in our experiments, but an incompatibility with
the standard libraries available in our VM causes it to run unreliably. It is extremely useful
to us that the SMTLIB2 [BST10] standard input format allows us to switch out SMT solvers
to address various issues, including trivial ones.

These long execution times are an issue. To produce accurate times, we ran the
whole experiment sequentially on an otherwise unloaded machine. We can split the work
between parallel workers to save some time. In addition, the vast majority of problems
are solved fairly quickly. The fastest 90% of the -O1 problems are �nished in 9425.68s
(2:37:6), 5.9% of the total running time. For -O2, the fastest 90% take 17356.87s (4:49:16).
The remaining di�cult problems account for nearly all the running time. While working

9These are machine interface functions and other assembly stubs which do not have C bodies to compare
to.
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Figure 2.6: Correlation of problem size, loop count, loop node count, and proof size to
analysis time.

on the tool we typically focus on these faster examples for testing. It is possible that
further improvements to SydTV or SMT solvers may lead to substantially faster analysis
times for the very di�cult problems.

2.6.2 Correlations for Proof Time

Clearly the time taken for SydTV-GL-re�ne to verify a function depends enormously on
the function involved. Many of the slowest functions have numerous cases and loops.
Figure 2.6 shows the correlation between analysis time and various obvious factors. These
include the number of nodes in the problem representation, the number of loops present
(counted across both the source and binary), the total number of nodes in those loops, and
the number of rules in the resulting proof script.

The y-axes of the graphs in Figure 2.6 are logarithmically scaled because the variation
of analysis time is so substantial. Clearly the larger problems with more loops dominate
the analysis.

2.6.3 Benefit of Model Guidance

We have claimed that the model-guided split discovery approach of SydTV-GL-re�ne
saves analysis time, because candidate pairings that do not have to match are unlikely
to match by accident in satisfying models. Figure 2.7 shows the decay in the number
candidate loop pairings after successive SMT queries. The decay is shown for 16 randomly
selected example problems. In each case, the results are shown with the search window
set correctly, so that the process ends with a candidate pairing being discovered.

The y-axes are once again scaled logarithmically, since the number of candidate
pairings in some problems is so high. The roughly linear downward trend we see at the
start of most of these arcs represents exponential decay, which we regard as success.
Without this exponential decay, many more SMT queries would be necessary to eliminate
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Figure 2.7: Decay of the number of candidate loop pairings with successive SMT queries.

GCC -O1 GCC -O2
Window size 3: 32 / 62 (51.6%) 4 / 15 (26.7%)
Window size 4: 3 / 4 (75.0%) 1 / 2 (50.0%)
Window size 5: n/a 17 / 18 (94.4%)
Window size 6: n/a 8 / 12 (66.7%)
Window size 7: n/a 45 / 57 (78.9%)

Table 2.1: Hit rate of the linear sequence optimisation.

all the invalid pairings.
Many of these arcs stabilise with a substantial number of candidate pairings remaining,

suggesting that most of these candidates will survive further iterations. This is quite likely
the case. There may be many potential candidate pairings which are all valid for any
problem.

2.6.4 Benefit of Linear Sequences

The linear sequence mechanism accelerates the process of split discovery by narrowing
the search to the correct pairing type and search window size.

The linear sequence optimisation applies frequently, and applies especially frequently
in problems which require wider search windows (e.g. unrolled loops).

With GCC -O1, the vast majority of loops can be matched without expanding the search
window. A small number require a sequence o�set. The linear sequence optimisation
succeeds fairly frequently. Table 2.1 clari�es the number of loop problems that the linear
sequence optimisation produces data for. With GCC -O2, the number of loop problems
that require window expansion is substantial. Crucially, the linear sequence optimisation
applies to the majority of problems that require deep expansion.

Figure 2.8 gives some suggestion as to the value of the linear sequence optimisation.
It once again graphs the decay in the number of candidate splits after a number of SMT
queries. Instead of graphing a number of independent problems at the correct search width,
however, this graph shows the repeated analysis of the strncmp problem at di�erent
search widths if the linear sequence optimisation is deactivated.

This graph shows the substantial value of the linear sequence analysis. By picking
only the correct search window, the discovery process can reduce the number of SMT
queries required from 26 to 6, a 77% reduction.
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Figure 2.8: Decay of the number of candidate loop pairings in strncmp with successive
SMT queries.

2.7 Related Work to Translation Validation

The �eld of translation validation began with two pioneering works. In nearly twenty
years since, dozens of works have tried to ful�l the ambitions of one of these founding
projects.

Translation validation was �rst proposed by Pnueli et al [PSS98], as a pragmatic
alternative to maintaining a veri�ed compiler. Their SIGNAL compiler translates programs
in the SIGNAL synchronous language into implementations in C, and also produces
evidence of correctness, which a separate validator process reads. The validator upgrades
that evidence to a proof of correctness within the TLV [PS96] proof environment.

The second founding work of translation validation is by Necula [Nec00], who applies
the approach of Pnueli et al in a far less formal setting. Necula studied the optimisation
phases of GCC 2.7. The aim of that project was not to produce any formal evidence of
correctness, but rather to quickly and easily increase the general trustworthiness of GCC.
The validators for the various optimisation phases were simple e�cient programs, with an
entire validation pass typically much faster than a complete run of the compiler. Failures
of validation were to be used as bug reports.

Over a decade of translation validation experiments [ZPF+02, ZPG03, GZB05, BSPH07,
SG05, RS09, TSTL09, KLG10, TGM11] have followed. We do not have space to detail the
contributions of all these systems here. Most of these projects aspire to the formal precision
of Pnueli et al, but few achieve it. This is because Pnueli et al had the advantage of a
disciplined compiler for the well structured SIGNAL language. By comparison, performing
translation validation on languages that appear in the wild, such as C [ZPG03, GZB05,
TGM11, STL11], Java [TSTL09], or Simulink [RS09] introduces complications that make it
di�cult to be truly precise.

Instead, translation validation approaches are mostly following Necula’s lead, becom-
ing a best-e�ort strategy rather than a way of ensuring correctness. Many concepts in
computer science have followed this path from formal precision to pragmatic tradeo�s,
with type systems being perhaps the best known example. Some projects aim to do the
reverse, however. For instance, the Vellvm [ZNMZ13] and Alive [LMNR15] projects build
veri�ed optimisation passes, and insert them into the LLVM compiler framework to make
them pragmatically useful in the short term. Perhaps these e�orts will eventually result
in a highly optimising veri�ed compiler.

Real-world translation validation is also a problem that is steadily getting more dif-
�cult. Necula’s original validation for GCC 2.7 focused on algebraic transformations.
When Goldberg et al [GZB05] attempted similar work �ve years later, they discovered
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that C compilers had begun to perform aggressive structural optimisations such as loop
rearrangements which Necula’s approach could never have handled.

Our approach is yet another variation within the space of possible translation valida-
tions. Like Tristan et al [TGM11] in their work on LLVM phases, we do not make use of
any hints from the compiler. Like Ryabtsev [RS09] et al in their work on Simulink, we
target the end-to-end transformation rather than any internal compiler step. Furthermore,
like Pnueli et al’s original work, we do not accept any failures or false positives in the
process.

However, unlike other authors, we handle a well understood subset of the language C
rather than all C code and optimisations that might exist in the wild. Our work is also
strongly grounded in well understood semantics at both ends, rather than focusing on the
compiler’s view of its input and output. At the binary level we connect to the extensively
validated Cambridge ARM semantics, and at the source level we connect to the veri�er’s
view of the C language which has been validated as useful through the existing seL4
proofs.

2.7.1 Producing a Verified Binary

Pnueli et al [PSS98] originally introduced the approach of translation validation as an
alternative to maintaining a veri�ed compiler in their SIGNAL project. In both the SIGNAL
work and ours, the advantage of separating the translator from the certifying step was
�exibility. For the SIGNAL compiler, this mostly meant the �exibility to maintain and
engineer the translator without having to revisit its correctness proof for each minor
change.

In both the SIGNAL work and ours, the objective is to eventually produce a veri�ed
output program. As we have seen above, the �eld of translation validation has expanded
since then, with most works not aiming to actually construct a proof of correctness.

Let us return to the original question. How best should we construct a veri�ed binary?
What can we learn by surveying the various projects in the �eld?

A few projects have produced small veri�ed binaries by reasoning directly over
the semantics of the binary program itself. The �rst veri�ed operating system, Bevier’s
KIT [Bev89], was completely veri�ed in this manner at the assembly level. However, it
measured only a few hundred lines of assembly in total. More recently, Ni et al [NYS07]
veri�ed modern context switching code using the XCAP x86 model. Chlipala [Chl11]
has demonstrated that some of the complexity of this approach can be addressed with
sophisticated automatic reasoning tools.

An alternative to reasoning about the machine semantics by hand is to use a simple
hand-tuned compiler within the proof environment to produce binaries from low-level
functions. Myreen has produced a hand-extensible miniature compiler [MSG09] for this
purpose, and Chlipala’s Bedrock framework [Chl10, Chl13] has taken this concept far
further. These tools are useful for verifying smaller specialised functions, especially those
that perform niche tasks, but it has not yet been demonstrated that they can scale well
enough to manage substantial systems.

The remaining strategies include the use of veri�ed compilers, translation validation,
and certifying compilation or proof carrying code. To the best of our knowledge, the only
recent work on translation validation that aims to produce a veri�ed binary is our own.

Proof carrying code was another approach suggested by Necula [Nec97]. In this
approach, the compiler is not veri�ed but instead produces a certi�cate of correctness. The
Verve project [YH10] uses a hybrid of this approach with hand veri�cation to produce a
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somewhat unusual veri�ed OS. The system consists of a directly veri�ed minimal runtime
system, a certifying type-preserving compiler, and a certi�cate checker built into the
runtime, to ensure type safety. The whole OS is then built above this runtime using a
single language environment.

The Verisoft project [APST10] was the �rst to present a veri�ed low-level component
(a hypervisor) produced by a veri�ed compiler. The project developed a simple minimal
veri�ed compiler for a Pascal-like language with C-like syntax which shared its semantic
framework with the veri�cation environment. While the project clearly showed that
end-to-end theorems to the binary level are feasible, practical considerations such as
performance were not goals of the project.

There are a number of recent practical veri�ed compilers, such as CompCert [Ler09]
and CakeML [KMNO14], as well as veri�ed compiler components [BDP12, ZNMZ13,
LMNR15]. However, given these, there are fewer resulting veri�ed binaries in the world
than we might expect. Merely presenting a veri�ed compiler only addresses half the
problem. To produce veri�ed outputs, the compiler must also provide a useful methodology
for verifying source programs against its semantics.

This is not a trivial task. In the case of the CompCert compiler [Ler09], roughly half a
decade passed between the �rst clear speci�cation of an approach to verifying CompCert-
compiled programs [App11] and the point at which this approach became mature enough
to yield substantial rewards [BPYA15, GSC+16]. This required addressing both technical
issues about the way that programs are represented as well as deeper issues about the
memory model [LABS14] and notion of partial compilation [SBCA15].

Now that this work is mature, sizeable veri�ed programs written against CompCert,
such as an implementation of OpenSSL HMAC [BPYA15] and the CertiKOS [GVF+11,
GSC+16] OS kernel, are beginning to appear. It is really only at this point that we can
begin to say that there is enough literature to meaningfully compare the productivity of
this approach to others.

The CakeML veri�ed compiler [KMNO14] is following the same path. The �rst veri�ed
CakeML program was the compiler itself, but substantial progress has recently been made
on a more productive veri�cation methodology [GMKN17], with the expectation that
more veri�ed programs will now follow quickly. The Standard ML dialect that CakeML
targets is a much higher level language than C, and more amenable to veri�cation, with
known challenges for low-level programming and performance.

2.8 Concluding: A Verified Binary

We have presented the design of SydTV, a translation validation approach capable of
verifying the correctness of compiled binaries even when a diverse collection of complex
loop optimisations are applied.

The speci�c contributions of this work are:

• A model-guided SMT-based split discovery process.

• Extensions to the SMT theory to support pointer validity, pointer arithmetic validity,
and partial array equalities.

• Discovery of important characterising linear sequence information that is not
directly necessary for the search process but greatly improves its e�ciency.

• Additional �ne tuning of the proof discovery process to handle exotic cases.
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• A case study in applying the whole validation to the substantial seL4 source base,
and discovery of necessary adjustments.

• Discovery of missing proof obligations concerning pointer arithmetic in the Tuch/Nor-
rish C semantics and seL4 veri�cation, and signi�cant re-veri�cation work to prove
those obligations.

• Performance analysis of the proof process, highlighting the room that remains for
improvement.

The key result of this work is that we can transfer the essential functional correctness
property of seL4 from the C semantics to the semantics of the binary. This means that we
have robust evidence that the binary conforms to the high level correctness properties
stated in Isabelle/HOL. The C source, its semantic model, and the compiler need no longer
be trusted, enabling the use of o�-the-shelf tool chains in a high-assurance environment.

Running SydTV on our case study requires a modest number of human interventions
and a substantial amount of CPU time. We have detailed these e�orts as a guide to others
interested in using this tool or following a similar approach. We think that we still have
room for improvement in the performance aspects of SydTV, but we are satis�ed with
its coverage. We would also like to reduce the amount of human intervention, which is a
downside of our approach when compared to a veri�ed compiler. However, as we have
outlined in Section 2.7, producing a veri�ed binary is a major human e�ort, even given a
veri�ed compiler. In fact, the �exibility of our approach in allowing us to tweak our source
semantics to �t our target program may well compensate for the overheads of running
the validation process.

The strength of our work is the �exibility by which we can combine a commodity com-
piler, a diversity of SMT solvers, a designed-for-veri�cation C semantics, and a homebrew
proof search procedure to quickly obtain a veri�ed binary.

In conclusion, we are con�dent that the veri�ed seL4 binary we produce with GCC
-O2 in this project is the most e�cient and trustworthy binary yet produced amongst
comparable works.
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3 Real-Time Applications

This chapter closely follows the presentation of the article “High-assurance Timing Analy-
sis for a High-assurance Real-Time OS” (see [SKH17]), which was written in collaboration
with Felix Kam and Gernot Heiser.

Felix contributed substantially to the implementation of this work during his under-
graduate thesis year, developing the SydTV/Chronos connection discussed in Section 3.4.1
and the explicit loop bound search strategy discussed in Section 3.4.2, and supervising
countless experimental runs leading up to the successful experiments we describe here.

3.1 Introduction

Timeliness is a crucial correctness requirent for some software systems. These systems,
like others, must be assured to produce the correct outputs, but must also be assured to
respond within a known period of time. Failing to react in a timely manner may be as
serious a defect as failure to act correctly. Systems with timeliness constraints are called
real-time systems.

Timeliness requires, among other things, sound estimation of worst-case execution
time (WCET). This is nearly always calculated by some kind of static analysis of the
binary code. This introduces a key tension in the problem of WCET estimation. Analysis
of the binary-level program must struggle to recover information that was obvious at the
source level, such as typing information, bounds on some variables, distinctness of some
pointers, etc. Source level analysis, however, has easy access to rich sources of correctness
information, the most valuable being the insights of the software developers themselves.

All WCET analysis must address this question. Should it consider source information?
If so, how can this be converted into precise information about binary-level timing?

This chapter proposes a new approach, based on our translation validation tool SydTV.
SydTV implicitly relates control �ow at the binary and source level, which allows our
WCET analysis to make use of information missing in the binary. We can also manually
intervene in the binary-level analysis by adding information at the source level. We do
this by annotating the source code with extra assertions formatted as special comments.
These comments are ignored by the compiler, but are part of the formal model of the C
program, are proven correct, and may be used by SydTV as additional assumptions.

Our WCET analysis follows the pattern of nearly all others in the literature. Firstly, we
extract a control-�ow graph (CFG) from the binary, which is used to generate candidate
execution paths. The execution time of a path is estimated (conservatively) with the use
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of a micro-architectural model of the hardware. Where paths include loops, we must
determine safe upper bounds on the number of iterations possible in that loop. Many
candidate paths may also be infeasible (the conditions required to follow the path at every
branch are impossible) and these paths should be eliminated from the analysis to avoid an
excessively pessimistic WCET.

We evaluate this WCET approach on our target of interest, the seL4 microkernel
[KEH+09]. By adding a handful of new annotations to seL4, we can discover all loop
bounds necessary to compute seL4’s WCET. We identify a number of operations in
the kernel which make large contributions to WCET. Fortunately there exist system
con�gurations which prevent application code from exercising these operations, leading
to much improved time bounds. We also explore an alternative implementation of one
of these operations, verify that the new implementation is functionally correct, and
demonstrate that incorporating this change can allow more of the kernel API to be used
with acceptable WCET.

Finally, our WCET approach is not limited to functionally-veri�ed code such as seL4.
Any C code that is understood by the C-to-Isabelle parser can be analysed. We do however
need to assume that the C program behaves as the parser expects, including in particular
that it does not contain any unspeci�ed or unde�ned behaviours. The absence of such
behaviours could, for instance, be proven by static analysis.

We make the following key contributions:

• high-assurance construction of the binary control-�ow graph, with a proof of
correctness of all but the �nal simpli�cation (Section 3.4.1).

• WCET analysis supported by a translation-validation framework, allowing C-level
information to be used in computing provable loop bounds and infeasible paths
(Sections 3.4.2–3.4.4);

• computation of all loop bounds needed for WCET of the seL4 kernel, with the
support of source-level assertions, but no manual inspection of the binary program
(Section 3.6.1), and similarly elimination of infeasible paths (Section 3.6.6);

• improvement of the WCET of the seL4 kernel by reimplementing one of its key
operations (Sections 3.5.2 and 3.5.3);

• demonstration that the approach is applicable to code that is not formally veri�ed,
by analysing a subset of the Mälardalen benchmarks (Section 3.6.5);

• further evidence of the �exibility of the SydTV approach, showing that its three
main components can all be easily repurposed into a binary analysis suite.

3.2 Background

This section summarises material on which we build directly. Section 3.3 summarises
other related work from the literature.

3.2.1 Chronos

For WCET analysis we use the Chronos tool [LLMR07], which is based on the implicit path
enumeration technique (IPET), to perform micro-architectural analysis and path analysis.
The attraction of Chronos is its support for instruction and data caches, a �exible approach
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to modeling processor pipelines, and an open-source license. It transforms a simpli�ed CFG,
with loop-bound annotations, into an integer linear program (ILP). We solve this using
an o�-the-shelf ILP solver – IBM’s ILOG CPLEX Optimizer – to produce the estimated
WCET. Infeasible path annotations can generally be expressed as ILP constraints.

We build on previous work by our colleagues, Blackham et al [BSH12], who adapted
Chronos to support certain ARM microarchitectures for the WCET analysis of seL4. While
seL4 can run on a variety of ARM- and x86-based CPUs, presently only the ARM variant
is formally veri�ed (but veri�cation of the x86 version is in progress). Blackham et al
picked the Freescale i.MX 31 for analysis, thanks to its convenient cache pinning feature,
which is unavailable in later ARM processors. The i.MX31 features an ARM1136 CPU
core clocked at 532 MHz, has split L1 instruction and data caches, each 16 KiB in size and
4-way set-associative. The processor uses pseudo random cache-line replacement. The
cache is modeled as a direct-mapped cache with the size of one of the available ways
(4 KiB), based on the pessimistic prediction that the other three ways contain useless data
which is at random never replaced.

Blackham et al [BSH12] carefully validated this model against cycle timing on the real
processor. They concluded that modeling the 4-way cache as 1-way was pessimistic but
sound, never overestimating cycle times. They also discovered that the L2 cache degrades
worst-case times substantially. When it is enabled, the total cycle time to miss all caches
and access main memory increases signi�cantly. In pessimistic calculations such as these,
expected L2 hits are rare, and the time lost outweighs the time saved. We con�gure the
system and the Chronos model to have the L2 cache disabled.

In this work we keep the microarchitecture model unchanged from the work by
Blackham et al. The Freescale i.MX 31 is now an old architecture, however, validating the
timing model on a new architecture requires a lot of experimental work, and is not the
focus of the current project.

3.2.2 The seL4 Operating System Kernel

We have already introduced the seL4 microkernel, and its formal veri�cation. It provides
a minimal set of mechanisms but nonetheless is designed to support a broad spectrum of
use cases, including use as a pure separation kernel, a minimal real-time OS, a hypervisor
supporting multiple Linux instances, a full-blown multi-server OS, or combinations of
these.

Mixed-criticality workloads are a target of particular interest. Such systems consolidate
mission-critical with less critical functionality on a single processor, to save space, weight
and power (SWaP), and improve software and certi�cation re-use [BBB+09]. Examples
include the integrated modular avionics architecture [ARI12], and the integration of
automotive control and convenience functionality with Infotainment [HH08]. These
systems require strong spatial and temporal isolation between partitions, for which
seL4 is designed. The various proofs of the seL4 veri�cation directly address issues of
reliability [KEH+09], spatial security [SWG+11], and information security [MMB+13].

We build on prior work by Blackham et al [BSC+11,BSH12,BH13,BLH14] on perform-
ing WCET analysis for seL4. Discovering a known WCET bound to the kernel is a crucial
step towards supporting real-time and mixed-criticality systems. More work also remains
to be done on seL4’s scheduling model [LH14, LH16].

The kernel executes with interrupts disabled, for (average-case) performance reasons
as well as to simplify its formal veri�cation by limiting concurrency. To achieve reasonable
WCET, preemption points are introduced at strategic points. These need to be used
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Figure 3.1: The seL4 functional correctness stack.

sparingly, as they may substantially increase the code complexity and the proof burden. A
con�gurable preemption limit (presently set to 5) controls how many preemption points a
kernel execution must pass to trigger preemption. Adjusting this limit adjusts the tradeo�
between the worst-case time to switch to a higher-priority task on interrupt and the worst-
case time to complete a complex task in the presence of interruptions. The preemption
model is discussed in detail in Section 3.2.4, and also by Blackham [BSH12].

This preemption mechanism �ts reasonably well with the ILP approach. If we assume
that an interrupt is ready to �re shortly after kernel entry, it follows that the preemption
point function will never be called more than 5 times in a single kernel entry. This is
trivial to encode as a global ILP constraint. This constraint also implicitly bounds those
loops which include a preemption point, meaning we don’t need to calculate bounds for
them. Chronos still requires such a bound, so we use a nonsense bound (109).

To cover the case where an interrupt arrives at an arbitrary point, we must adjust the
ILP problem slightly more. We are interested in the maximum latency between the inter-
rupt arriving and kernel execution completing. This latency would always be increased
by the interrupt arriving one step earlier, except if the presence of the interrupt would
change the behaviour of that step. The only steps at which the interrupt a�ects (our model
of) CPU execution are preemption points. Thus we can handle this case by specifying
that the graph of con�gurations within the ILP may be entered either at the kernel entry
address or immediately after any preemption point.

In addition to producing the �rst WCET analysis for seL4, Blackham et al aggressively
optimised the kernel for latency [BSC+11, BSH12]. Among other measures, this involved
placing additional preemption points in long running operations. These changes and
analysis proved that a variant of the seL4 kernel can achieve interrupt latency competitive
with a single-purpose real-time OS. In contrast, our intention here is to develop a high-
assurance analysis process. Thus we apply our approach to the most recent veri�ed version
of seL4, which lacks these unveri�ed modi�cations. We note that the number of loops
we analyse is signi�cantly larger than in Blackham et al’s previous work, which set the
preemption limit to one.

3.2.3 The seL4 Verification & TV Framework

The WCET analysis we are doing does not stand alone. By adding annotations to the
source code and verifying them in the theorem prover, we build the WCET analysis into
the existing functional correctness stack.

To recap, the veri�cation of seL4 comprises over 200,000 lines of proof script, manually
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written and automatically checked by the theorem prover Isabelle/HOL [NPW02]. The
headline proof is built from multiple proofs of re�nement, seen in Figure 3.1, of which
only the last concerns the C source code. The formal model of the C code in Isabelle/HOL
is produced by the C-to-Isabelle parser [TKN07]. The veri�cation stack is then extended
by SydTV down to binary level.

3.2.4 The seL4 Timing and Preemption Model

The focus of this chapter is determining the WCET of the seL4 kernel under various
assumptions. These time bounds can then be used to answer questions about the execu-
tion time of real-time systems built on top of the kernel. There are various established
approaches to timing analysis for such systems, some of which call for slightly di�erent
worst-case timing measures, including worst-case response time and worst-case interrupt
latency. The WCET of the kernel (under various assumed scenarios) is in fact a su�cient
measurement, thanks to the speci�cs of seL4’s timing model.

Firstly let us clarify that the WCET of the seL4 kernel is known to be �nite. seL4 is an
event-reactive kernel with a single kernel stack. The kernel has no thread of execution of
its own (except during initialisation) and executes in response to speci�c external events.
These events include system calls, hardware interrupts, and user-level faults. Each kernel
entry uses the same kernel stack to call a kernel top-level function, e.g. handleSyscall
for system calls. This C function executes atomically to normal completion, rather than
stopping abruptly (e.g. via longjmp or exit) or being suspended (e.g. via yield). Inter-
rupts are also disabled while these top-level functions are executing. Thus the WCET of
seL4 exists; it is just the maximum WCET of the various entry points.

We can compute the WCET of each of the kernel entry points, of which the system-
call handler will always be by far the greatest contributor. This is because seL4 follows
the microkernel philosophy, and does not fully handle faults or interrupts itself (apart
from some timer interrupts). Instead it despatches messages to user-level handlers, and
the messaging facility of the microkernel is designed to be fast. Some system calls take
much longer to complete, partly because seL4 avoids managing its internal memory
allocation itself, and instead allows user level managers to request major con�guration
changes. To prevent substantial delays to other tasks, these long-running operations
include preemption points.

When a preemption point is reached, seL4 can check for pending interrupts, and if
there are any the current operation is discontinued. A con�gurable preemption limit
adjusts how often the actual interrupt check is performed compared to the number
of preemption-point function calls. Note that the exit process still results in a normal
completion of the top-level handleSyscall function, even though the logical operation
is still incomplete. This was done for veri�cation reasons: the model of C semantics used
to verify seL4 does not allow abrupt stops (e.g. exit) or any form of continuation yielding.
The interrupt is handled as the last step in the execution of handleSyscall, usually
resulting in a context switch to its user level handler. The preempted operation resumes
as a fresh system call the next time the preempted task is scheduled.

In this model of kernel entry and preemption, the execution time of seL4 contributes
to the completion time of some real-time task in three ways:

1. Time spent in the kernel during the task’s timeslices, performing system calls on
behalf of this task. This includes as many attempts as are necessary to complete
any preemptible system calls.
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2. Time spent in the kernel during the task’s timeslices , when the task is being
interrupted. This includes the time overhead of switching to and from any higher
priority tasks which resume as the result of an interrupt. This also includes the
time taken to handle a hardware interrupt and queue a lower priority task to be
scheduled, but not to switch to it.

3. Delays to the start of the thread’s timeslice or to delivery of its interrupts caused by
the kernel executing atomically on behalf of another task (of any priority).

While all of these execution times are important for real-time performance, the �rst
two contributions can be managed by system design. For the �rst point, a critical real-time
thread should obviously avoid expensive system calls that have a major impact on its
WCET. As all the expensive calls involve system recon�gurations, these should not be
needed during steady-state operation of a real-time task. In fact, if needed at all, such
operations should be delegated to a less-critical task that runs in slack time. The kernel
provides mechanisms that support such delegation.

Point two requires that that rates of high-priority interrupts are limited, a standard
assumption in real-time schedulability analysis.

The �nal kind of contribution is the most concerning. The kernel is designed for
a mixed-criticality environment, in which non-real-time and untrusted tasks can make
system calls. If the kernel takes too long to complete or preempt some of these system calls,
it may substantially degrade real-time performance. The countermeasure is to limit which
kernel operations can be performed by untrusted tasks; we will discuss the limits this
imposes on system design in Section 3.2.5. The WCET �gures we report for unconstrained
systems assume that an interrupt which will release a high-priority task happens just as
the kernel began the longest-running operation.

3.2.5 Using seL4 Security Features to Limit WCET

Long-running operations in the seL4 kernel may substantially degrade the real-time
performance of the system. The ideal solution is to eliminate all such long-running
operations, and analyse the system afterwards to prove they no longer exist. As an
alternative, if we identify a small number of problematic operations, we can try to restrict
their use.

Use of the seL4 API is restricted through its capability-based security model. Tasks
require capabilities to individual kernel objects to perform operations on those objects.
This system can be used to constrain the set of objects a task may ever use [SWG+11], for
instance to create spatial separation between tasks. However, the only way to prevent a
task performing a particular operation is to ensure it never has the appropriate capabilities.

This has implications for system design. The simplest way for a trusted supervisor
to initialise the system is to distribute capabilities to untyped memory regions, which
the client tasks may then use to create kernel objects of any type. This will typically
permit client tasks to perform any kind of operation. The opposite approach is to keep
all untyped capabilities in the control of the trusted supervisor or other trusted tasks,
requiring untrusted clients to receive resources only via trusted channels. This ensures
that access to complex operations can be carefully controlled. However, the downside of
this approach is that it requires more complexity within the trusted components, especially
if they must coordinate with clients to dynamically recon�gure the system. The trusted
components may themselves need to be veri�ed, so reducing their complexity is highly
desirable.
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Hardware support for binary virtualisation is now commonplace, and provides a
useful compromise. A guest OS running within a virtual machine (VM) environment may
dynamically recon�gure its virtual environment while the external con�guration of the
VM remains static. The static environment can be created by the trusted supervisor, which
can then provide minimal support to the guest OS, while the guest OS may run arbitrarily
complex legacy software environments. An seL4 variant supporting such virtualisation
extensions exists, and its veri�cation has commenced. More work remains to be done to
consider the impact of such a platform on our timing analysis.

Another compromise we will consider is an object size limit. A task with a capability
to an untyped memory range may create any object, as long as it �ts within the untyped
memory range. The initial supervisor can enforce a limit on the size of untyped memory
ranges by �rst dividing the initial untyped memory objects before distributing them. Once
divided, the untyped ranges cannot be combined again. This simple restriction permits
tasks access to most of the kernel’s API but prevents some problematic cases involving
very large objects.

This gives us a number of hypothetical system con�gurations:

• A static system, where all con�guration decisions must be made at startup, before
entering real-time mode. User tasks may only use system calls to exchange messages.
Various simple embedded systems running on seL4 use a static con�guration. Vari-
ous separation kernels [Rus81], including Quest-V in separating mode [LWM13] and
MASK [MWT02], would enforce similar static restrictions. Virtualisation improves
the usefulness of this con�guration.

• A closed system, where user tasks are not given access to untyped capabilities, and
may not create or delete kernel objects. Unlike in the static case, tasks may have
capabilities to manipulate their address spaces. This use case was evaluated by
Blackham et al [BSC+11] in their previous WCET analysis of seL4.

• A general system, where all operations are permitted.

• A system with an object size limit, as discussed above. All objects and capabilities
in the system are known to �t within the maximum object size. We prove some
assertions to support this con�guration, which we will discuss in Section 3.5.1.

• A managed system design has been considered, where untrusted tasks have few
capabilities themselves, but request additional operations via trusted proxies. This
design is the most general, allowing the proxy to add any additional constraints
to the kernel API. This approach may be useful in the future in implementing
mixed-criticality systems on seL4. We will revisit the implications of such a system
for timing analysis once a working example exists.

3.2.6 Verifying Preemptible seL4 Operations

The abort style of preemption used in seL4 (see Section 3.2.4) was chosen to simplify
veri�cation. No matter what style of preemption is chosen, the veri�cation of a preemptible
operation must consider three concerns:

1. Correctness: the usual requirement that the preemptible operation is functionally
correct.
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2. Non-interference: other operations that are running must not interfere with the
safety and correctness of the operation.

3. Progress: the preemptible operation must eventually run to completion.

In most approaches to concurrency veri�cation, it is the non-interference concern
that is most complex. The key advantage of the abort style is that it avoids all concerns
about interference. There is no need to calculate the atomic components of preemptible
operations, instead, all kernel entries are fully atomic. There is no need to calculate what
variables and references an operation has in scope while preempted, or consider the impact
on these references when objects are updated or deleted elsewhere. Instead, a preempted
operation will forget all references, and will rediscover its target objects and recheck its
preconditions when it resumes.

These advantages make the veri�cation of an abort-style preemptible operation
straightforward. Compared to the veri�cation of a non-preemptible operation, the only
additional requirement is that the system is consistent (all system invariants hold) at each
possible preemption point.

The downside of the abort style is that it complicates the design of preemptible opera-
tions. These operations must completely reestablish their working state when resumed
after preemption, which might have substantial performance costs for long-running oper-
ations that are frequently preempted. The operations must also be designed to make it
possible at all to discover how much work has already been completed. For instance, in
this work, we add a preemption point to an operation which zeroes a range of memory.
There is no e�cient way to examine a partly-zeroed range of memory and decide where
to resume the operation; information about progress must somehow be tracked in another
object. Our solution to this problem is discussed in Section 3.5.2.

3.3 Related Work

3.3.1 WCET Analysis

WCET analysis is a broad �eld of research with a vast wealth of literature. The �eld has
been broadly surveyed by Wilhelm et al. [WEE+08], and we refer the reader to their
summary for a more comprehensive overview.

Standard strategies for WCET analysis include hierarchical timing decomposition
[PK89, PS91], explicit path enumeration [LS98, HAWH99], and implicit path enumeration
[LM95, BR06]. We reuse the Chronos tool [LLMR07] in this work, which follows the
implicit approach.

Whichever core WCET approach is chosen, the analysis requires additional loop
bound and path information, usually discovered by static analysis, frequently supported
by user annotations. There is a vast diversity of possible static analysis approaches to this
problem, and again we refer the reader to Wilhelm et al’s survey [WEE+08]. In recent
years, Rieder at al. have shown that it is straight-forward to determine some loop counts
at the C level though model checking [RPW08]. Other authors use abstract interpretation,
polytope modeling and symbolic summation to compute loop bounds on high-level source
code [LCFM09, BHHK10]. These source level loop bounds must then be mapped to the
compiled binary, for instance via a trusted compiler with predictable loop optimisation
behaviour. We would like to avoid trusting the compiler as far as possible.

The aiT WCET analyser uses data�ow analysis to identify loop variables and loop
bounds for simple a�ne loops in binary programs [CM07]. The SWEET toolchain [GESL06]
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uses abstract execution to compute loop bounds on binaries, and is aided by tight inte-
gration with the compiler toolchain, which improves the knowledge of memory aliasing,
but this again implies relying on the compiler. The r-TuBound tool [KKZ11] uses pattern-
based recurrence solving and program �ow re�nement to compute loop bounds, and also
requires tight compiler integration.

Some of the same techniques are used for eliminating infeasible paths, e.g. abstract
execution [GESL06, FHL+01], with the same limitations as for loop-count determination.
The earlier WCET analysis of seL4 used binary-level model checking [BH13] to automati-
cally compute loop bounds and validate manually speci�ed infeasible paths. The CAMUS
algorithm was also used for automating infeasible path detection [BLH14]. However, this
work was inherently limited to information that could be inferred from an analysis of
the binary, and failed to determine or prove loop bounds that required pointer aliasing
analysis.

3.3.2 Using Formal Approaches for Timing

In this work we reuse our formal veri�cation apparatus to support our WCET analysis.
While most WCET approaches are based on static analysis tools such as abstract interpre-
tation [EaJGBL07,KZV09], we are aware of few other projects which address the questions
of timing and functional correctness using the same apparatus.

The ambition of combining veri�cation and WCET analysis was suggested by Prantl et
al [PKK+09], who propose interpreting source-level timing annotations as hypotheses to
be proven rather than knowledge to be assumed. The associated static analysis must verify
the user’s beliefs about the system’s timing behaviour. This replaces the most error-prone
aspect of the WCET analysis with a formally veri�ed foundation. The challenge which
remains is to discover some sound static analysis which is su�cient for verifying whatever
annotations the user supplies.

Our analysis also interprets annotations/assertions as hypotheses to be proven (see
Section 3.5.1). In our case the assertions are simple logical expressions, as used in Floyd
or Hoare style program veri�cation [Flo67, Hoa69]. It is the task of our WCET analysis
to derive temporal properties from these simple stateful assertions. A more feature-rich
version of this approach was suggested by Lisper [Lis05]. In their survey of WCET anno-
tation styles, Kirner et al. [KKP+11] place this style in their “other approaches” category.
It is interesting that this approach is considered unusual, while for us, approaching WCET
analysis coming from formal veri�cation makes the approach seem entirely natural. Per-
haps this is because user-supplied assertions may require user-supported interactive
veri�cation. We are accustomed to doing such veri�cation, but others may consider it
prohibitively expensive.

The CerCo “Certi�ed Complexity” project [AAB+13, AARG12] set out to produce a
compiler that would produce provably correct binaries together with provably correct
speci�cations of their execution time. The project followed in the footsteps of the Com-
pCert certifying compiler [Ler09], building a compiler directly within a formal apparatus
complete with proofs of correct translation and timing equivalence. The resulting execu-
tion time contracts can be extremely precise, especially since the project mostly targets
simple microprocessors with predictable timing behaviour. Unfortunately this design
makes compiler optimisations particularly complex to implement.
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3.3.3 Verification

This chapter discusses the design and veri�cation of a simple preemptible algorithm (see
Section 3.5.2), with substantial design e�ort put into simplifying veri�cation. Preemptible
and concurrent algorithms have been of great interest to the �eld of formal veri�cation for
some while. This is partly because the veri�cation of preemptible algorithms is challenging
[Sch10,ALM15] and the veri�cation of fully concurrent algorithms is extremely challenging
[dRdBH+01, FFS07, CS10, TVD14, GHE15].

Operating system kernels are also an attractive target for formal veri�cation, given
their small size and critical importance. Starting with UCLA Secure UNIX [WKP80] and
the KIT OS [Bev89], a number of OS veri�cation projects have been attempted, of which
Klein [Kle09] has written a detailed overview. In addition to seL4 [KEH+09], recent
projects include the Verisoft project [APST10], the Verve kernel [YH10] and the CertiKOS
project [GSC+16].

Of these projects, the Verisoft and CertiKOS project are implemented in a similar
manner to seL4, using restricted C-like languages, whereas Verve experiments with much
higher-level language features. Using a high-level language simpli�es producing a veri�ed
OS, but probably means that the timing behaviour of the system will be too unpredictable
for real-time applications. The initial Verisoft project made very di�erent simplifying
design decisions. The project sought to develop and verify a complete system stack,
including silicon architecture, operating system, compiler and end-user applications. To
accomplish this, Verisoft implemented simpli�ed versions of all of these layers, which
introduces performance issues that would be an impediment in real-time use. The recent
CertiKOS project has similar goals and design to seL4, and also tackles multicore design
issues. Timing analysis for CertiKOS, including analysis of inter-core timing issues, would
be an interesting and challenging project.

3.4 WCET Analysis

The design of the WCET analysis process is shown in Figure 3.2. We extend SydTV-GL-
re�ne with new modules to extract the control-�ow graph (CFG) of the binary, and to
provably discover loop bounds. Chronos then reduces the WCET problem to an inte-
ger linear program. We solve the ILP and pass the worst-case path of execution to the
infeasible-path module to be refuted. Given any refutations, we �nd a new worst-case
path, continuing until the candidate path cannot be refuted.

This repeated process of examining a candidate worst-case path and refuting infeasible
ones was performed by hand in some of our former work [BSC+11], and generally re�ects
the “counterexample guided” approach to static analysis [CGJ+03, HJM03]. The approach
has also previously been used by Knoop et al [KKZ13].

The rest of this section explains the various components in detail.

3.4.1 CFG Conversion

In general, reconstructing a safe and precise binary CFG is di�cult and error prone due
to indirect branches [BHV11, KZV09]. In the previous analysis of seL4, the CFG was
reconstructed from seL4’s binary using symbolic execution [BSC+11]. The soundness of
the CFG so obtained, and thus the resulting WCET estimation, depended on the correctness
of the symbolic execution analysis.
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Figure 3.2: Overview of data�ow in the analysis.

We now present a high-assurance approach to construction of the CFG. The decompiler
generates the graph-language representation of the binary program, together with a proof
(in HOL4) that the representation is accurate. The representation consists of a collection of
graphs, one per function, with both the semantics and the binary control �ow embedded
in the graph, and with function calls treated specially.

It is important for this project that each function in the decompiled program is struc-
turally identical to the control-�ow-graph of the relevant function in the binary, including
sharing the same instruction addresses. To aid us in this work, Myreen adjusted the
decompiler slightly to ensure that this was the case.

Chronos, in contrast, expects a single CFG in which function-call and -return edges
are treated specially. The two representations are logically equivalent, and we perform
the conversion automatically. The conversion also gathers instructions into basic blocks
and removes some formal features, such as assertions, that are not relevant to the binary
control �ow.

In principle, the conversion could be done inside the decompiler, and we could for-
malise the meaning of the CFG and prove it captured the control paths of the binary.
However, this makes the relationship between the decompiler and SydTV-GL-re�ne
framework more complicated, and we leave this to future work. Instead we perform the
simpli�cation inside a module of SydTV-GL-re�ne for now. While this means that the
CFG is not proved correct, it is still highly trustworthy, since the most di�cult phases
have been performed with proof.

3.4.2 Discovering and Proving Loop Bounds

We employ two primary strategies for discovering loop bounds on the binary. Both reuse
existing features of SydTV-GL-re�ne. The �rst constructs an explicit model of all possible
iterations of the loop, while the second abstracts over the e�ect of loop iteration.

Consider this simple looping program:

for (i = 0; i < BOUND; i ++) {
x += val[i];
/* ... */

}

The explicit strategy for discovering a loop bound is to have the SydTV-GL-re�ne
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export an SMT model1 of the program including values of i, x, etc, for each iteration
of the loop up to some bound. The model includes state variables for each step in the
program, and also a path condition. Loop bounds can be tested by testing the satis�ability
of various path conditions, e.g. a bound of 5 will hold if the path condition of the �rst step
of the 6th iteration of the body of the loop is unsatis�able.

This approach is simple and fairly general. We can analyse complex loops by con-
sidering, in SMT, all possible paths through them. However the size of the SMT model
expands linearly with the size of the hypothetical bound. As SMT solving is, in general,
exponential in the size of the problem, this approach is limited to loops with small bounds.
In practice we have been able to �nd bounds up to 128 this way.

If we suppose BOUND in the loop above is 1024, the explicit approach would be imprac-
tical. However, it is intuitively clear that this simple loop stops after 1024 steps, because
variable i equals the number of iterations (minus 1) and must be less than 1024. The
abstract strategy replicates this intuition.

For this strategy we have the SydTV-GL-re�ne generate an SMT model for proof of
loop equalitites by induction. This includes all the program up to and including the �rst
iteration of the loop, and then fast-forwards to some symbolic n-th iteration, and includes
the next iteration or two after that. The variable state at the n-th iteration is unknown.
In the above example we can prove that i is one less than the iteration count at every
iteration. We prove that it is true in the initial iteration, and then, assuming that it is true
at the symbolic iteration n, we prove it is true at iteration n+ 1. This is a valid form of
proof by induction, and is closely related to the split induction done by SydTV-GL-re�ne
for matching related loops in the source and binary (see Section 2.1.9).

This strategy applies equally well at the binary level. Consider this disassembled
binary code fragment:

e1a00004 mov r0, r4
ebfffffe bl 0 <f>
e2844004 add r4, r4, #4
e3540c01 cmp r4, #256 ; 0x100
1afffffa bne 4568 <test+0x8>

This code is a loop which increments register r4 by 4 at every iteration. We can prove
by induction in the above manner that the expression r4−4n is a constant, where n is the
iteration count as above.2 We reuse the SydTV-GL-re�ne static analysis which discovers
these linear series (see Section 2.3.4).

The above example is complicated by the looping condition, which is r4 != 256
rather than r4 < 256. We show the additional invariant r4 < 256 by induction. The
abstract strategy contains a feature for guessing inequalities of this form that may be
invariants. It assembles these inequalities by inspecting the linear series and the loop exit
conditions, and then discovers which of its guesses can be proved by induction. In this
example, the proof requires the knowledge that the initial value of r4 was less than 256
and divisible by 4.

Once we have the inequality r4 < 256, the loop bound of 64 can be proved easily.
Any larger bound will also succeed, which is convenient, because it allows us to re�ne any

1In this chapter we use “SMT model” to mean a set of de�nitions in the SMT language, used to phrase a
satis�ability query, rather than a satisfying model of such a query.

2This expression is constant at each address in the loop. If the initial value of r4 were 4, the expression
would be evaluate to the constant 0 whenever execution was at the �rst two instructions, but 4 after the add
instruction.
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bound we guess down to the best possible bound by means of a binary search. The SMT
model does not change from query to query during this search, only the hypothesis that
�xes n to some constant. SMT solvers supporting incremental mode can answer these
questions very rapidly.

These two strategies do all the work of �nding loop bounds, but as presented are not
powerful enough for all loops. We extend them in three ways to cover the remaining cases:
(i) using C information, (ii) using call-stack information, and (iii) moving the problem to
the C side.

The �rst extension, using C information, exploits correctness conditions in the C
program while reasoning about the binary. This works because the re�nement proof
created by SydTV-GL-re�ne establishes that each call to a binary symbol in the trace of
execution of a binary program has a matching C function call in a matching trace of C
execution.

Consider, for instance, these C and binary snippets:

int
f (int x, int y) {

x += 12;
/* ... */
return 2;

}

0000f428 <f>:
f428: e92d4038 push {r3, r4, r5, lr}
f42c: e1a05001 mov r5, r1
f430: e280400c add r4, r0, #12

...
f464: e3a00002 mov r0, #2
f468: e8bd4038 pop {r3, r4, r5, lr}
f46c: e12fff1e bx lr

The calling convention relates visits to the two functions f. A binary trace in which
address 0xf428 is visited three times will be matched by a C trace in which f is called at
least three times, with the register values r0, r1matching the C values x, y at the respective
calls.3 This is established by SydTV-GL-re�ne, so the WCET analysis can consider this C
execution trace simultaneously with the binary execution trace. Concretely this means
that SMT problems will contain models of both binary f and the matching C f. The
correctness conditions of the C f will be taken as assumptions. The x += 12 line in f
above, for instance, tells us that adding 12 to either x or r0 must not cause a signed
over�ow.

The second extension, use of call-stack information, is useful in the case where the
bound on a loop in a function is conditional on that function’s arguments. Common
examples include memset and memcpy, which take a size parameter, n, which determines
how many bytes to loop over. To bound the loop in memset, we must look at the values
given to n at each of its call sites. We might in fact have to consider all possible call stacks
that can lead to memset. Concretely this means that the SMT model will also include a

3The story is a little more complex. Some calls to f in the source code may not be present in the binary
thanks to inlining, and functions which are known not to inspect memory may be moved across memory
updates, or each other. A more accurate explanation is that SydTV-GL-re�ne establishes a collection of
pairings, and proves that the binary trace has a matching C trace which matches calls across these pairings.



78 CHAPTER 3. REAL-TIME APPLICATIONS

model of the calling function up to the call site, and the input values to memset will be
asserted equal to the argument values at the call site. This additional information then
feeds into the two core strategies above.

The �nal extension, moving the problem to the C side, maximises the use of SydTV-
GL-re�ne, by asking it to relate the binary loop to some loop in the C program. If SydTV-
GL-re�ne can prove a synchronizing loop relation, that implies a relation between the
C bound and the binary bound. The explicit and abstract strategy can then be applied
to the C loop to discover its bound. It is convenient that both programs are expressed in
SydTV-GL, so we can use exactly the same apparatus. Finding the C bound will sometimes
be easier because data�ow is more obvious in C. It also ensures that assertions placed in
the body of the C loop will be directly available in computing the loop bound.

By default the apparatus will set up an SMT model which includes the target function
and the matching C function. If the function is called at a unique site, we also include its
parent and its parent’s matching C function. If no bound is found directly, we try to infer
a bound from C. If this also fails, we add further call stack information as necessary, by
considering all possible call stacks that can lead to our loop of interest.

3.4.3 Refuting Infeasible Paths

Refuting an impossible execution path amounts to expressing the conditions that must be
satis�ed for the execution to follow that path, and testing whether all those conditions are
simultaneously satis�able. SydTV-GL-re�ne about path conditions by converting them
into boolean propositions in the underlying SMT logic. It is then straightforward to have
the SMT solver test whether a collection of path conditions is possible.

To narrow the search space, we only attempt to refute path combinations that appear
in a candidate execution trace. The �nal ILP solution produced by running Chronos and
CPLEX speci�es the number of visits to each basic block, and the number of transitions
from each basic block to its possible successors. Since some basic blocks will be visited
many times, with multiple visits to their various successors, we may not be able to
reconstruct a unique ordering of all blocks in the execution. Instead, we collect a number
of smaller arcs of basic blocks that must have been visited together in a single call to a
function. We can also link some of these arcs with arcs that must have occurred in their
calling context.

The refutation process then considers each of these arc sections, and checks whether
they are simultaneously satis�able as described above. If the combination is unsatis�able,
we reduce it to a single minimal unsatis�able combination, and export an ILP constraint
equivalent to this refutation.

This approach is simpler than the previous analysis of seL4, which considered much
larger sets of path conditions and used the CAMUS algorithm to �nd all minimal con�icts
[BLH14]. The trade-o� is that, after eliminating refuted paths, we have to re-iterate the
process on the next candidate ILP solution. We believe this approach will usually be more
e�cient, since the candidate solutions will probably converge on the actual critical path
quickly and we will consider only a small fraction of the path combinations of the binary.
There is however the possibility, which we have not yet encountered, that the cost of
repeated ILP solving will outweigh the bene�ts of this approach.
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3.4.4 Manual intervention: Using the C model

The techniques described in the two preceding subsections discover loop bounds and
refute infeasible paths automatically. In cases where these fail, we can manually add (and
prove) relevant properties at the C level. Besides the assurance gained by the formal,
machine-checked proofs, our ability to leverage properties that can be established at
the C level is a powerful tool that most distinguishes our approach from previous work,
including former work on seL4 [BLH14].

In Section 3.4.2 we discussed how C correctness conditions, such as integer non-
over�ow, can be assumed in the WCET process, by constructing simultaneous SMT
models of the C and binary programs. Manual assertions added to the C program appear
in exactly the same manner as these standard assertions arising from the C standard.
However, the manual assertions we supply can be directly related to the WCET problem.

For ordinary (application) programs, such as the Mälardalen benchmarks, we assume
that the source conforms to the C standard, speci�cally that it is free of unspeci�ed or
unde�ned behaviour. This allows SydTV-GL-re�ne to assume some pointer-validity and
non-aliasing conditions which derive from the C standard, but would be hard to discover
from the binary alone. While this implies a potentially incorrect WCET for non-standard
conformant programs, standard conformance is essential for safety-critical code, and can
(and should!) be veri�ed with model-checking tools. In fact, industry safety standards,
such as MISRA-C [MIS12], which is mandatory in the transport industry, impose much
stronger restrictions.

Additionally, the C-to-Isabelle parser provides syntax for annotations in the form of
specially-formatted comments, which add assertions to the C model. This feature is used
occasionally in seL4 for technical reasons to do with the existing veri�cation. We can reuse
this mechanism to explicitly assert facts which we know will be of use to the loop-bound
and infeasible-path modules. The assertions create proof obligations in the existing proofs,
which must be discharged, typically by extending the hand-written Isabelle proofs about
the kernel. We will describe our changes to the kernel, and its veri�cation, in the following
section.

This same mechanism can be used for application code, if an assertion can be known
with certainty (eg. by proving it through model checking).

3.5 Improving seL4 WCET

The seL4 kernel is designed for a number of use cases, including a minimal real-time OS.
While the kernel’s design broadly supports this use case, a number of non-preemptible
operations are known to have long running times, which is a problem for timeliness. It was
previously shown that by adding further preemption points to the kernel we can reduce
its WCET to a level competitive with a comparable real-time OS [BSH12]. Unfortunately
these modi�cations increase the complexity of some operations dramatically, impacting
average-case performance and complicating veri�cation.

This section describes two modi�cations we have made to veri�ed seL4 to improve
its WCET bound. Firstly, we add a number of assertions to the source code, supporting
our WCET analysis as described above. These changes have all been incorporated into
the o�cial veri�ed seL4 as of its release at version 2.1. Secondly, we pick one of the
preemption points added in the previous work [BSH12], adapt it to the current kernel
design, and adjust the formal veri�cation accordingly. This is a signi�cant step toward
competitive WCET for the veri�ed seL4 kernel.
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3.5.1 Assertions

We add 23 source assertions to the kernel source to support the WCET analysis. With
these manual interventions, we can calculate and prove all loop bounds4 in the seL4 kernel
binary, and eliminate the WCET-limiting infeasible paths. We add assertions of �ve kinds.

1. We add an assertion that the “length” �eld of a temporary object is at maximum 16.
This information actually exists in the binary, but to �nd it the WCET process would
have to track this information across several function calls. Instead, we propagate
this information through the preconditions of several proofs about the C program.
While manual, this process is not particularly di�cult.

• There are 4 annotations of this kind.

2. We assert that each iteration of a lookup process resolves at least one bit of the
requested lookup key. The kernel uses a guarded page table [Lie94] for storing user
capabilities, in which each level of the table resolves a user-con�gured number of
bits. It is an existing proved kernel invariant that all tables are con�gured to resolve
a positive number of bits, thus, the loop terminates. The assertion is trivial to prove
from this invariant. Thus, the assertion transports the invariant into the language
of the WCET apparatus.

• There is 1 annotation of this kind.

3. We assert that a capability cleanup operation performed during the exchange of
so-called reply capabilities cannot trigger an expensive recursive object cleanup.
Capability removal is the trigger for all object cleanup in seL4, however, this cleanup
operation targets a dedicated reply slot which can only contain reply capabilities.
This is the same information that we have in previous work provided to the compiler
to improve optimisation [SBH13].

• This requires 7 annotations, six at the call sites of the capability cleanup
operation, and one within the operation.

4. We assert that the number of bytes to be zeroed in a call to memzero is divisible
by 4 (the word length on our 32-bit platform). This implementation of memzero
writes words at a time and decrements the work remaining by the word length. The
stopping condition is that the work remaining is zero, which requires divisibility to
be reached.

• This is the only annotation of this kind.

5. We assert that various objects are smaller than a con�gurable maximum size param-
eter. We do not specify in the seL4 source code what this parameter is. In particular
we establish that a number of zeroing and cache-cleaning operations cover fewer
bytes than this maximum size.

• There are 10 annotations of this kind.

The �nal assertion above is needed to address a WCET issue with the present veri�ed
kernel version. The seL4 kernel allows a user level memory manager to use the largest

4Some loops in the binary are preemptible and do not have bounds.
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available super-page objects (16 MiB) if it has access to su�ciently large blocks of con-
tiguous memory. Zeroing or cache-cleaning these pages are very long running operations.
The (trusted) initial user-level resource manager can avoid this issue, by intentionally
fragmenting all large memory regions down to chunks of some given size.

This fragmentation may add modest overheads. Subsequent resource managers will
have to perform more operations, and cannot employ super-pages. However this will not
create any further complications for application code.

We argue that the initial manager can ensure a size limit. To formalise this argument,
we prove as an invariant across all kernel operations that all objects are smaller than
the con�gurable size limit, which establishes the assertions. This invariant holds for any
given size limit, onwards from the �rst point in time that it is true. Thus, once the initial
resource manager con�gures the system appropriately, the invariant remains true for the
system lifetime. The resource manager may choose what size limit to set. For the WCET
analysis, we will assume a particular value for the limit, in this case 64 KiB.

This con�gurable value, and our assertion that it equals 64 KiB, are “ghost data” added
to the C program. The actual C program and binary do not manipulate this variable
anywhere, but the Isabelle model contains all the assertions about it.

Should the initial con�guration violate the constraint, the system’s operation will still
be functionally correct, but the WCET bounds are no longer guaranteed.

Note that since all four types of manual assertions are speci�ed at the source level,
they will still be available if the kernel is re-compiled. We do not expect to have to add
further annotations until major code changes require them. The compiler might, however,
move information out of scope by changing the inlined structure of the binary, which
might require further manual intervention. Clearly, in any case, the WCET analysis must
be rerun on each actually-deployed binary.

3.5.2 Design of Preemptible Zeroing

We want to achieve the best possible WCET for a fully veri�ed kernel. Ideally we would
accomplish this by incorporating all the prototype changes made in the previous WCET
analysis of seL4 [BSH12] into the veri�ed version. As a �rst step towards this, we incor-
porate and verify one major change: making object creation preemptible. This allows the
kernel to create large objects (e.g. 16 MiB super pages) without compromising its WCET.

Objects are created as part of the seL4 invokeUntyped_Retype operation. This is
an operation on a so-called untyped memory region, a range of kernel memory available
to user-level resource allocators to create various kinds of kernel objects. The Retype
operation may both remove old objects from an untyped region and create new ones.
Creating new objects mainly involves zeroing the relevant memory. The removal of old
objects only impacts the veri�cation picture of the kernel memory, as the objects must be
unreachable to the implementation already.

To make the Retype operation preemptible, we split the creation phase into two phases,
the �rst zeroing all the relevant memory, the second doing the necessary object setup. The
preemption point is inserted in the zeroing phase. Object setup given zeroed memory is
fast enough even for large objects. Zeroing a large range of memory in blocks and adding
a preemption point is straightforward except for the problem of ensuring progress.

Ensuring progress is the challenging aspect of seL4’s abort-style preemption model
(see Section 3.2.6). Some long-running operations, such as emptying a linked list, can
be preempted and resumed easily. The resumed operation continues unlinking elements
from the list in exactly the same manner as the initially aborted operation. In fact, there is
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Figure 3.3: Preemptible Retype designs from previous and current work. Previous steps
(left): Starting state is junk data. 1-3: Preemptibly zero the region. 4: Complete zeroing
and create new objects. 5-6: Objects become unreachable over time. New steps (right):
Starting state is zeroed region. 1-4: Objects are created in separate system calls, and may
also expire. 5: All remaining objects expire. 6-9: Preemptible zeroing of the region, one
chunk at a time.

no need to detect that the operation was previously begun and aborted. Zeroing a large
region, however, cannot be e�ciently resumed without some knowledge of how much
memory has already been zeroed. Adding preemption points to operations of this kind
requires storing more information about the progress of the operations within the objects
being manipulated. This additional information, and its consistency requirements, then
complicates the rest of the implementation and veri�cation.

The Retype operation can scan a capability-related structure to determine whether
all the objects in the untyped region have become unreachable. The �rst-ever Retype
implementation would check the region was reusable, then �ll the region with newly
initialised objects in a single step. In the previous work [BSH12] on this operation, it was
adjusted to be preemptible by using a spare word to store a count of how much of the
untyped region had been zeroed out. The Retype operation would preemptibly expand
this zero region and then �ll it with new objects. This implementation is sketched on the
left side of Figure 3.3.

Unfortunately this spare word is no longer spare. The seL4 API has been updated to
allow untyped regions to be used incrementally, and the additional word now measures
the amount of space still available. The incremental Retype implementation allocates new
objects from the start of this available space, except in the case where it can detect that all
objects previously in the untyped range have expired, in which case it resets the untyped
range and begins from the start.

We want to support both incremental allocation and incremental initialisation, but we
have only one spare word available. The key insight to solving this problem is to make
the available space and the zeroed space the same. Untyped objects continue to track the
amount of space available for new objects, but now the space available (for use) is also
the part that is known to be zeroed – a new system invariant. The special case of the
Retype operation where the untyped range can be reset must now zero the contents of
the untyped range as well as marking it available. The zero bytes are also �ushed from
the cache to main memory.



3.5. IMPROVING SEL4 WCET 83

A peculiarity of this design is that the zeroing happens backwards. The existing API
speci�es that objects are created forward from the beginning of the untyped range, so
the available range is always at the end. Thus the zeroing process, which expands the
available range, must begin at the end of the range and proceed towards the start. In fact
we subdivide the region to be zeroed into chunks (with a default size of 256 bytes) and
zero the chunks in reverse order but each individual chunk in forwards order, for better
expected cache performance.

3.5.3 Verification of Preemptible Zeroing

The implementation of the preemptible zero operation is straightforward, requiring the
addition of 62 lines to seL4’s C code and the removal of 56. Roughly half (32 lines of C) of
the addition is the new preemptible zero function, and roughly half (24 lines) of the lines
removed were memory zero and cache clean function calls within the creation routines
for various speci�c object types. We make similar modi�cations to the two higher-level
speci�cations of seL4.

The veri�cation of these changes, however, is far more involved. The �nal changeset
committed to the proofs requires roughly 20,000 lines of changes (diff reports 147 �les
changed, 11,805 insertions, and 9,390 deletions.) This required 9 weeks of work, and we
found it a challenging project, despite extensive former experience with the seL4 proofs.

The main reason the veri�cation is so complex is that the Retype process has some of
the most involved proofs in the kernel. Most operations manipulate one or two objects
at a time, preserving the types of all objects, whereas Retype not only changes types,
but it requires several component operations to accomplish this (clearing the region of
old objects, updating the untyped range, creating new objects, issuing caps to them, etc).
The new proof of invariant preservation for Retype, for instance, is assembled from 31
di�erent sub-lemmas about the component operations. One of these sub-lemmas concerns
the new preemptible zero operation. In addition to adding this lemma, the proof structure
had to be substantially modi�ed.

We must also verify a new invariant, that the available section of each untyped range
of memory is zeroed. Similar invariants in seL4 are proven at the speci�cation levels, and
apply to the implementation thanks to the functional correctness proof. Unfortunately
this is impossible for this invariant, since the speci�cations do not accurately track the
contents of the relevant memory. Di�erent regions of memory are treated di�erently in
the kernel’s speci�cations. Memory shared with user tasks is represented as-is. Memory
used by kernel objects is represented by abstractions of those objects, so the speci�cations
do not need to specify the in-memory layout of these objects.

However, the memory in the available untyped ranges is neither covered by kernel
objects nor shared with users. Thus we cannot prove anything about it using the existing
speci�cations. To address this, we add a �eld to the speci�cation state which tracks the
locations of the untyped ranges expected to be zeroed, and require memory there be
zeroed as an additional component of the state relation between the speci�cation state
and C memory model. This complex approach then requires numerous changes to the
proofs.

After the veri�cation of this change was completed, it was included in the o�cial
seL4 development version (see https://github.com/seL4/seL4/commits/03c71b6).
This change also appears in o�cial seL4 relases from 4.0.0 onwards.

https://github.com/seL4/seL4/commits/03c71b6
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3.6 Evaluation and Discussion

3.6.1 Loop Bounds in seL4

We successfully compute the bounds of all 69 bounded loops in seL4 version 3.1.0, which is
in contrast to earlier work on seL4, which only succeeded on 18 of 32 loops5 (56%) [BH13].
A further 5 loops in the binary contain preemption points and have no relevant bound,
these are bounded by the preemption limit, as discussed in Section 3.2.2.

Computing all the bounds in the kernel demonstrates that our approach is su�cient
for a real-world real-time OS.

To more thoroughly investigate our WCET apparatus and our kernel modi�cations,
we go on to analyse three di�erent versions of seL4, and six di�erent WCET problems:

• 3.1.0-64K: The standard veri�ed kernel, as of version 3.1.0, with all system calls
enabled and a 64 KiB object size limit (see Section 3.5.1).

• 3.1.0-static: The standard veri�ed kernel, version 3.1.0, in a “static” system con�gu-
ration with most complex system calls forbidden.

• preempt-64K: Our branch of the kernel, with preemptible zeroing for object creation,
as discussed in Section 3.5.2, with a 64 KiB object size limit.

• preempt-nodelete: Our branch of the kernel, with no object size limit. This is not
exactly a “static” variant, since creation of new objects of arbitrary size is allowed.
However deletion of objects, and various cache management operations, are forbid-
den.

• rt-branch-64K: The “RT” branch of seL4 as of version 1.0.0. This is an o�cially
maintained but experimental version of seL4 which introduces a more powerful and
principled scheduling and timing model [LH16], designed to provide better support
for mixed-criticality systems. We assume a maximum of 10 scheduling contexts and
also impose a 64 KiB object size limit. As scheduling contexts represent independent
(asynchronous) threads of execution, 10 seems a reasonably limit for most critical
real-time systems, although it is likely too restrictive for mixed-criticality systems.
We will revisit these bounds when analysing the advanced real-time features more
thoroughly.

• rt-branch-static: The same RT branch, version 1.0.0, in a “static” con�guration with-
out complex system calls, and with a maximum of 10 scheduling contexts.

We want to demonstrate a number of points through these studies. Firstly, we want
to show that the WCET apparatus we have built works for a number of cases and a
realistic system. We also want to show that the current kernel can achieve modest WCET
performance goals if some limits are placed on the way its API is used, and that planned
adjustments to the scheduling API will not invalidate this. Finally, we show that the
veri�cation we have done of new preemption points can be used to allow more of the
kernel’s API to be exercised without compromising WCET. In future work we hope to
complete and combine all of these endeavours, resulting in a veri�ed OS with a general
API, predictable real-time scheduling behaviour and a competitive WCET.

5Note that the total number of loops here is higher than in earlier work. This results from this work
targeting the veri�ed kernel, and thus using preemption points less aggressively, see Section 3.2.2.
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Note that the “static” and “nodelete” variants have identical source and binary to the
more permissive environments. For the latter, we exclude a large fraction of the binary
from analysis by assuming that certain functions in the binary will never be reached.
Thanks to seL4’s capability-based access control, it is possible for the initial supervisor
to enforce these restrictions (this was discussed in Section 3.2.5). The loop analysis and
infeasible path analysis use these limitations to quickly exclude loops and refute paths.

In all these con�gurations, we also make one change to the kernel’s standard build-
time con�guration, to adjust a con�gurable limit called the “fan-out limit” to the minimum.
We make this change everywhere, but it is irrelevant for the “static” con�gurations. This
avoids an issue involving a nested loop with a complex bounding condition.6 We compile
the kernel with gcc-4.5.1with optimisation setting -O2, which is the default for building
the kernel.7 Finally, we remove the static keyword from a small number of sites. This
prevents GCC from inlining so other functions into a single symbol that the resulting
block runs for several thousand instructions and dominates the analysis time.

seL4 version 3.1.0 Preemptible RT
con�guration general static general nodelete general static
Explicit model 20 28% 8 11% 18 29% 11 17% 19 24% 7 8%
Abstraction 42 60% 5 7% 35 56% 8 12% 42 53% 5 6%
From C 1 1% 1 1% 1 1% 1 1% 1 1% 1 1%
Call cases 1 1% 0 0% 0 0% 0 0% 3 3% 2 2%
Skipped (preemption etc) 6 8% 56 80% 8 12% 42 67% 8 10% 58 74%
Not found 0 0% 0 0% 0 0% 0 0% 5 6% 5 6%
Total 70 70 62 62 78 78

Table 3.1: Loop bounds found by di�erent strategies.

The success rates of the strategies discussed in Section 3.4.2 are listed in Table 3.1. The
explicit strategy typically discovers smaller bounds, and the abstraction strategy �nds
all the higher bounds, which vary from 16 up to 8192. The exception is a bound of 32
discovered by the explicit strategy on the C program. This is the capability lookup loop,
manually annotated, which we discussed in Section 3.4.4. This bound is transferred across
the discovered split relation to bound the binary loop implicitly. A small number of loops
cannot be bounded without considering each case of their calling contexts individually.
This is reported in our framework as a fourth strategy, and the subproblems are always
solved by the two main strategies. We have not investigated which solvers solve the (small
collection of) subproblems.

The “static” and “nodelete” variants exclude far more loops as unreachable. Loops
containing preemption points are also detected and excluded by the same mechanism.

Some of the loops in the “RT” branch of the kernel are limited by the number of
scheduling contexts, or other limits related to system con�guration. These bounds could
be discovered if appropriate annotations were added, using similar con�gurable limits to
the object size limit. However, the “RT” branch is still in a rapid development phase, with
further major code changes expected. Once the branch is more mature and veri�cation is
underway, we will carefully address the loop bound issue. Until then, we let the bound
discovery process fail, and manually add appropriate loop bounds based on the symbol

6The minimum setting, 1, eliminates the outer loop entirely.
7Higher optimisation settings usually result in larger binaries, and instruction cache pressure is known to

be an important factor in microkernel performance.



86 CHAPTER 3. REAL-TIME APPLICATIONS

names of the binary functions in which the loops appear.

3.6.2 Loop Analysis Timing

The analysis time for each loop di�ers greatly, with the explicit strategy discovering small
bounds in under a second in some cases and some analysis attempts taking several minutes.
To investigate this further, we have timed the loop analysis for the six con�gurations
above.

Strategies Setup Unaccounted Total
3.1.0-64K 4,055 s 84.0% 201 s 4.2% 573 s 11.9% 4,828 s (1:20:28)
3.1.0-static 757 s 53.4% 102 s 7.2% 560 s 39.4% 1,419 s (0:23:39)
preempt-64K 2,835 s 63.8% 185 s 4.2% 1,424 s 32.0% 4,444 s (1:14:04)
preempt-nodelete 1,078 s 62.3% 106 s 6.1% 546 s 31.6% 1,730 s (0:28:50)
rt-branch-64K 12,014 s 58.5% 349 s 1.7% 8,164 s 39.8% 20,527 s (5:42:07)
rt-branch-static 9,849 s 54.1% 248 s 1.4% 8,101 s 44.5% 18,197 s (5:03:17)

Table 3.2: Loop analysis time breakdown.

The overall running time for the six variants varies enormously, between 20 and 90
minutes for the versions similar to seL4 3.1.0, and far longer for the experimental RT
branch. The majority of the running time is spent in the various loop analysis strategies,
as listed in Table 3.2, with a small minority of the time measured spent preparing analysis
problems in SydTV-GL-re�ne and otherwise unaccounted for. All timing is done on a
desktop machine with an Intel i7-4770 CPU running at 3.40GHz and 32 GiB RAM.

The analysis time is dominated by the execution time of the explicit and abstract
strategies, which is itself dominated by time spent running the SMT solvers. SMT solving
time is known to be exponential in the worst case and otherwise di�cult to estimate.
The analysis runs on each loop separately, with broadly linear complexity in the number
of loops to be analysed. However, the analysis time varies enormously between loops.
We hypothesise that larger and more complex loops, and larger and more complex SMT
problems, are contributors to analysis time. More complex SMT problems are in turn
created by complex loop contexts: the total size of the function the loop is in and any other
functions from the calling context. Small bounds found by the explicit strategy are also
discovered more quickly than larger bounds found by the abstract strategy, and falling
back to the more complex strategies takes longer again.

The scatter plots in Figure 3.4 test these hypotheses. They compare loop analysis
running time to the number of instructions in each loop, an its function and in its whole
calling context. These correlations go some way toward explaining expected running
times.

The clearest indicators of the analysis time variation are the eventually discovered
bound and the eventually successful strategy. The plots in Figure 3.5 clearly indicate this.
Small bounds can be discovered by the explicit strategy with only a couple of SMT solver
invocations. The abstract strategy must �rst discover and prove a number of inductive
invariants before making further progress. The bound transfer strategy is more complex
again, as is considering various possible calling contexts. Not only are these �nal strategies
more expensive, they are run only once the previous strategies have run and failed.
Considering calling context cases does not appear in Figure 3.5 as the relevant statistics
contain timing for each of the subproblems instead. The most consistently expensive
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strategy is failure: running all strategies and failing to discover a bound explains many of
the most expensive outliers.

We have not yet provided source annotations to the “RT” branch to bound some loops
whose iteration limit depends on system con�guration. Once the “RT” branch matures
further and veri�cation begins, we will add the relevant annotations. Until then we allow
the process to fail. The time cost of failure of all the available strategies largely explains
the slow analysis time for the “RT” branch.

It is a downside of our implementation that analysis time is reasonable once the
program is su�ciently annotated, but the initial process of discovering which annotations
to add can be far more expensive.

3.6.3 Binary-Only Analysis and Comparison to Previous Work

This work Prior work
Full analysis Binary-only [BH13]

Explicit model 25 35% 16 22% N/A
Abstraction 42 60% 27 38% N/A
From C 1 1% 0 0% N/A
Call cases 1 1% 5 7% N/A
Excluded 1 1% 0 0% N/A
Total found 70 100% 48 69% 18 56%
Not found 0 0% 22 31% 14 44%

Table 3.3: Loop bounds found without C-level information.

For comparison to previous work, we reran the analysis of the “static” case of seL4
3.1.0 with all C-level information discarded, only using information available in the binary.
The results are in Table 3.3. This mode makes more use of the last-resort strategy of
�nding loop bounds by considering multiple calling contexts. We speculate that this
approach was needed less often in the previous analysis because assertions we provide
through the C code usually make this step redundant. In total we �nd 48 of 69 bounds
(70%) using only information from the binary. This is a slight improvement on the level of
coverage we achieved in our earlier work (56%), possibly because the abstract strategy
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can discover some large bounds more easily than our previous approach, or because of
di�erences in the placement of preemption points. The reason the binary-only strategies
fail to �nd the remaining bounds are the same as in our earlier work: inability to perform
a memory aliasing analysis on the binary and the lack of an invariant maintained by a
loop’s environment.

3.6.4 Annotation Reuse

The advantages of source-level annotation became obvious when re-running the analysis
repeatedly. We began our work on a development version of seL4 prior to version 2.1.0,
and have now repeated our analysis for a variety of successive versions, with many
intermediate changes. This includes a major maintenance patch which adjusts over 500
source lines. The source level annotations were preserved across this adjustment, so, when
we switched versions, the automatic analysis immediately rediscovered all but one of the
expected loop bounds. The failure was because we had rebuilt the kernel binary having
forgotten to adjust the kernel build parameters as mentioned above. This failure is also
somewhat reassuring: the process is robust, in that the analysis checks the assumptions
we are making and will report failures if changes to the code base invalidates them.

3.6.5 Loop Bounds in the Mälardalen Suite

We use the Mälardalen WCET benchmark suite [GBEL10] to further characterise the
e�ectiveness of our approach. A similar evaluation for the earlier tools we build on was
performed before by Blackham et al [BH13]. As in that evaluation, we compile the C
sources for the ARMv6 architecture, with gcc (4.5.1) and the -O2 optimisation setting, and
omit benchmarks using �oating point arithmetic. Floating point arithmetic is not presently
supported by our C semantics nor the Cambridge processor model (see Section 3.6.9).

The results are listed in Table 3.4. We must also omit a number of benchmarks which
were attempted in the previous work. The current design depends on the C parser and
SydTV-GL-re�ne to handle both the C and binary resulting from each test problem. We
skipped some tests which employed the goto statement, took references to local variables,
or made extensive use of side-e�ecting operators such as «=, *p++, none of which are in
our veri�cation C subset. We also skipped some tests which involve nested loops, which
SydTV-GL-re�ne does not yet handle, or involve complex recursion.8 We also reject some
use of padding in memory, but this was not an issue for the remaining benchmarks. Finally,
we skip the ndes test, which exposes an issue in the decompiler’s stack analysis causing
it not to terminate.

This highlights the tradeo� inherent in our approach. The translation validation
apparatus is clearly worth making use of, if we assume that it has already been successfully
applied to our target program. Likewise if there is a proof document, we should be making
use of the facts in it. The more tools we depend on, however, the more constraints we put
on the target program for all the tools to succeed. The seL4 kernel was designed with the
source veri�cation in mind, and only needs slight adaptations for translation validation.

We discovered an interesting anomaly with the “bs” and “bsort100” benchmarks.
By default the tool discovers loops with a bound of zero, which de�es common sense.
Restricting the use of the calling context or information from the C level results in the
correct bound, for “bs”, and a search failure for “bsort100”. Further investigation reveals
that the main function in the two benchmarks does not have a return statement, despite

8We handle some simple cases of recursion with small bounds in SydTV-GL-re�ne, see Section 2.3.4.
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Benchmark Loops Bounds Failures
BS 1 1 0
BSORT100 2 1 1
COVER 3 3 0
FDCT 2 2 0
FIBCALL 1 1 0
JFDCTINT 2 2 0
STATEMATE 1 0 1

Table 3.4: Mälardalen loop bounds

having return type int. Reaching the end of a non-void function is invalid C and the
C parser forbids it. The WCET analysis makes use of exactly the restrictions that the C
parser checks, and so, since this failure occurs unconditionally whenever main is entered,
the system decides that main must be unreachable.

We could take additional care to avoid making use of C parser restrictions which the
programmer knowingly ignored. Since our tool is designed for a case where the checks
in the C model are proven true, we are con�dent that we can use them without further
analysis. Compilers must be more cautious, as even con�dent programmers misunderstand
the C standard, as Dietz et al. [DLRA12] have convincingly shown. We think this is a
strong argument for the merits of pairing WCET and translation-validation analysis with a
source-level proof of safety (e.g. through static analysis, as required by MISRA-C [MIS12]),
as no safety-critical code should depend on invalid language constructs.

3.6.6 Eliminating Infeasible Paths

We evaluate infeasible path elimination on the six seL4 con�gurations from above. Note
that the “static” and standard con�gurations of seL4 3.1.0 broadly match the open and
closed use cases that were evaluated in previous work [BSC+11]. In the open systems
all kernel operations are allowed. In the static/closed system, user tasks are not given
capabilities that would allow creation, deletion or recycling of kernel objects (such as
address spaces or thread-control blocks) once the system is initialised. Our current “static”
system restricts more operations than our previous “closed” system because the previous
analysis considered an seL4 variant with more preemption points and fewer long-running
operations.

The “static” and “nodelete” systems also forbid three particular operations for can-
celling message sends which have no satisfactory WCET in the currently veri�ed version
of seL4. These problematic operations are also long-running for small target objects, so
the object size limitation does not help. We plan to eventually make these operations
preemptible. Preemptible implementations were prototype by Blackham et al [BSC+11],
but this time we plan to verify the preemptible implementations. Unfortunately we have
not yet had time for such a major veri�cation e�ort. For the time being we perform our
WCET analysis as though these operations already contained preemption points.

The automated process iteratively identi�es the worst-case execution trace and elimi-
nates paths within it, until no refutable paths are found. In all scenarios, a large number
of infeasible paths are found, with varying impact. The “static” variants see a greater
improvement, as shown in Table 3.5. The more general variants are typically dominated
by instances of a cleanup operation on a 64 KiB sized object, which contributes over 80%
of the cycles spent. Re�nement of paths outside the hot loop makes little di�erence to
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seL4 version 3.1.0 Preemptible RT†
con�guration general static general nodelete general static

Initial est. (k cycles) 6,894 1,193 6,888 1,191 8,256 781
Final est. (k cycles) 6,349 532 6,347 525 7,397 682
Improvement 7.9% 55.4% 7.8% 55.9% 10.4% 12.6%
Analysis Iterations 7 11 6 10 10 9
Total Refutations 1854 2873 1887 3333 3814 2371
ILP Solving Time 708s 488s 642s 443s 2476s 942s

0:11:48 0:08:08 0:10:42 0:07:23 0:41:16 0:15:42
Unique contexts 1418 1456 1232 1331 4623 1937
Refutation Time 5410s 8002s 5813s 10775s 31566s 5588s

1:30:10 2:13:22 1:36:53 2:59:35 8:46:06 1:33:08

Table 3.5: Infeasible path analysis statistics. Note the “RT” statistics were impacted by
hand workarounds.

the headline WCET. In the restricted variants, more of the kernel code contributes to
the WCET, creating more productive work for the infeasible path analysis to do. The
improvement is typically steady for a small number of iterations, as shown in Figure 3.6,
before continuing for a number of further iterations without a signi�cant change in WCET
estimate.

The expensive cleanup operation which dominates the WCET is the same in each of
the general variants, with identical C code. Chronos produces a slightly higher estimate
of its cycle cost in the “RT” case. It seems likely that the variation is due to di�erences in
placement of the binary code across cache lines, although we have not con�rmed this.

We have inspected the worst-case paths by examining which binary function symbols
are called. The restricted cases all seem feasible in this regard, and we conclude that the
bounds are fairly tight. In the general cases, the function call graph is feasible, however,
the estimate is still not tight. The number of calls to the expensive cleanup operation is
too high. It is called from the capability cleanup process, a complex nested loop bounded
by preemption points. The discovered worst case path moves between the outer and inner
loops in a manner that calls twice as many object cleanup operations as preemption points.
This path is not feasible, but our trace refutation process cannot currently refute a path
entangled in a loop in this manner.

We could improve the general estimates by manually specifying a maximum number
of calls to the object cleanup mechanism, with the usual concerns about soundness. We
could also in principle extend the trace refutation process to handle these loops. Encoding
infeasible paths that interact with loops as ILP constraints can be complex, but e�ective
approaches have been found by others [KBC10, Ray14]. Discovering these refutations
would also be challenging for us, for various reasons involving the loop structure itself,
alias-analysis for key variables stored on the stack, and di�erences between the C and
binary loop structures. We have not attempted to solve these challenges. We plan in the
future to add more preemption points to the deletion processes, which will solve the
problem indirectly.

The “RT” branch introduces a performance problem for our analysis. Not only does
it contain a few more loops, its function call graph is more connected, and contains
signi�cantly more arcs through which loops can be reached. Chronos creates unique
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ILP variables for each visit to each function through each possible context, which means
the “RT” branch is signi�cantly more di�cult for Chronos, the ILP solver, and also the
trace refutation process. This is seen in Table 3.5, which lists the number of unique
function calling contexts which are encountered in candidate traces during the refutation
process. These di�erences initially resulted in e�ective timeouts of both Chronos and trace
refutation, i.e. no results after 24 hours. We worked around these problems by running
Chronos on a di�erent machine with more than 32 GiB RAM, by manually directing the
refutation process to skip certain calculations, and by manually excluding some paths
in the initial problem. For this reason the times of the “RT” column are not directly
comparable to the others.
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Figure 3.6: WCET bound at each iteration, number of refutations discovered, ILP solving
time, and trace analysis time. Note again that manual intervention in the “RT” branch
prevents direct comparison.

3.6.7 Performance

We studied the performance of the loop bound analysis in detail in Section 3.6.2. The
trace refutation process has some broadly similar characteristics. For instance, it focuses
individually on each function context with some calling context included, so it should
scale linearly to cover a larger codebase with similar functions. However the total running
time is highly sensitive to the number of necessary iterations, which is determined by the
number of paths through the binary that have WCET similar to that of the critical path.

This variation is displayed in Figure 3.6, which graphs the time taken during ILP
solving and path refutation for each iteration of each process. Broadly speaking, the ILP
solving phase is usually cheap, and the refutation process usually becomes faster as the
candidate path stabilises on the critical path. Substantial variation exists, including an
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outlying refutation iteration for the “RT” branch which took nearly six hours to complete.
There is substantial room for improvement in these performance characteristics. The

refutation phase employs sophisticated mechanisms to refute trace fragments, but has
no particular strategy in how to employ them. Figure 3.6 demonstrates that the system
discovers thousands of refutations which make little or no di�erence to the estimated
WCET. In the future we plan to extract data from the ILP problem as well as solution, and
use this to prioritise trace fragments which are likely to have an impact on the solution.

We also anticipate that the performance problem with the “RT” branch will be resolved.
This code will be veri�ed as it matures, and the veri�cation process itself is likely to result
in changes which make the codebase more amenable to analysis in general. We may also
make changes with the explicit intent of improving WCET, which may include minor
changes designed to improve analysis time.

The seL4 3.1.0 kernel consists of about 9,000 source lines of code (SLOC) and compiles
to about 14,000 instructions in about 2,100 basic blocks. After virtual inlining by Chronos,
this increases to an ILP problem for about 650,000 basic blocks. Hypothetically the ILP
solving phase, which is currently the cheapest phase, would dominate the analysis for
very large code bases. The analysis is helped by the small average size of functions in seL4.
If instead we analysed a codebase with a few very large functions, we would produce
much larger SMT problems. Our experience with the Mälardalen benchmarks is that the
size (number of statements) of the largest loops has a heavy impact on the performance
of SydTV-GL-re�ne.

3.6.8 API Availability and Future Work

The �nal WCET estimates for the preemption modi�ed kernel and seL4 3.1.0 were listed in
Figure 3.6. The key accomplishment of our veri�cation is that the �nal WCET estimate for
the preempt-nodelete and 3.1.0-static variants are nearly identical. This is despite the fact
that the 3.1.0-static kernel is restricted to an entirely static system con�guration, whereas
with the preemption change, new objects can be created while the system is in real-time
mode. This includes the creation of objects larger than the 64 KiB maximum permitted in
the 3.1.0-64K variant, even though the time taken to complete the creation of these objects
may be substantially longer.

This change already simpli�es the construction of modular real-time systems on
seL4. In the 3.1.0-static use case, the initial supervisor task must coordinate the setup
of all address spaces and kernel objects itself, and it must complete this task before the
system becomes static and the real-time guarantees hold. In the preempt-nodelete case, the
supervisor can set up tasks in priority order, or delegate task setup to trusted initialisation
routines within each component. Since the object creations performed during setup do
not impair responsiveness, the high priority tasks can operate in a real-time setting while
lower priority tasks are still doing setup.

Unfortunately the supervisor cannot yet delegate setup to untrusted modules. As
we discussed in Section 3.2.5, seL4’s security API does not provides only coarse-grained
control over which operations a task may perform. An untrusted task with the authority
to create kernel objects can always create for itself a means to trigger deletion events.

This is only a �rst step. The clear next step is to split up the long-running components
of the object deletion and cache management operations, which would allow a fully
dynamic task to run at low priority alongside a high-priority real-time application. In the
longer term, incorporating and verifying features of the seL4 real-time branch will allow
more complex real-time and mixed-criticality system designs. We hope that future work
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will eventually result in a veri�ed OS with a general API, �exible real-time scheduling
behaviour and a competitive WCET.

3.6.9 Limitations

We build on a number of existing tools and inherit their limitations. For instance, the
C-to-Isabelle parser does not support �oating point arithmetic, string constants, or taking
the address of a local variable. It also requires the program to be single-threaded and to
be written in clean C which strictly conforms to some aspects of the standard. The HOL4
ARM model does not specify �oating point or division operations (which are optional on
the relevant ARM cores). SydTV-GL-re�ne does not provide support for reasoning about
nested loops, though it handles loops with multiple entry paths or exit conditions.

None of these a�ect the analysis of seL4, which is unsurprising, as the parser has been
co-developed with seL4, and the HOL4 ARM model was enhanced to satisfy the needs
of the seL4 translation validation. Hence, the kernel code satis�es all those limitations.
Furthermore, nested loops can be accommodated if the inner loop is encapsulated into a
function.

While we use the proof apparatus from SydTV-GL-re�ne extensively, we make rela-
tively little use of the re�nement proofs themselves; we only use the loop relations for
a few challenging loop bound problems. In principle, we could use the loop and path
relations to map every candidate binary execution trace back into a trace through the C
program, and therefore convert any path constraint we could discover in the C program
into a binary equivalent. Such an approach would be both theoretically and practically
attractive. It would allow us to always derive a binary control �ow analysis as strong as
the best available source analysis.

There are two reasons we did not pursue this. Firstly it would be computationally very
expensive to map every binary branch back to its C counterpart (or lack thereof) rather
than just the looping conditions. Secondly, seL4 (like any OS kernel) contains a small
number of hardware-control routines that use in-line assembly. At the time we performed
this analysis, the C-to-Isabelle parser could not understand them. This created a number
of “blind spots” for the re�nement framework – functions which must simply be assumed
to match the semantics of the relevant binary routine. When the compiler is permitted to
inline aggressively (we use gcc -O2), it occasionally moves these simple routines upwards
into the loops they are called from. This means we depend on binary-only loop bound
analysis to operate within these blind spots.

3.7 Conclusions

We propose a WCET analysis approach supported by a translation validation suite and the
functional correctness apparatus used to verify the target program. In particular we build
on the Tuch/Norrish C semantics used for manual veri�cation and the SydTV translation
validation framework. Together these give us a convenient environment for reasoning
about binary execution and adding source level annotations if necessary, without trusting
either the compiler or the annotation author.

We apply this approach to the seL4 microkernel, and determine (tight) bounds on
all of the loops in its binary. The majority of bounds are found without providing any
additional information, while a few required adding extra assertions (which needed to be
proved) at the C level. After this one-o� manual interference, all remaining loop bounds
are found and proved. All the discovered loop bounds seem to be tight.



3.7. CONCLUSIONS 95

Similarly, the tool chain (provably) refutes infeasible paths. While in this case there
is no guarantee that all such paths have been refuted, the result is comparable to earlier
work (which identi�ed infeasible paths by manual inspection). The identi�ed worst-case
execution trace that remains after refutation concludes seems possible, though this is
laborious to con�rm by inspection.

We have also shown via the Mälardalen benchmarks that the approach works, in
principle, for other real-time code that has not been formally veri�ed, although restrictions
in the SydTV toolchain limit the class of programs that can be analysed. Obviously, without
being able to leverage formal veri�cation artefacts, the analysis is less complete than in
the case of seL4. However, the support for manual code annotations to specify assertions
can compensate for this, especially where such assertions can ibe proved by other means,
e.g. model checking.

Finally, we have used our framework to clearly enumerate the remaining real-time
de�ciencies in the veri�ed seL4 kernel as of version 3.1.0. We have implemented and
veri�ed an improvement to the single largest de�ciency, the object creation operation.
While plenty of work remains to be done before seL4 becomes a full-featured real-time
operating system with complete veri�cation and competitive WCET, this is a substantial
step in that direction.

This analysis has made use of the strengths of all three components of SydTV. The
complementary decompiler gives us a model for reasoning about binary path information,
and great assurance that our CFG reasoning is valid. The connection to Isabelle/HOL
allows us to add and verify timing-related assertions within a rich proof environment.
Finally, the analysis suite of the SydTV-GL-re�ne component can be easily expanded
from a speci�c tool for discovering re�nement proofs to a more general binary analysis
framework.

In summary, we believe that the WCET analysis framework based on our translation
validation approach is an extremely promising approach for establishing WCET bounds
on high-assurance software. In the speci�c case of the seL4 microkernel, it constitutes
a major step towards reaching a similar level of con�dence in its timeliness as already
exists in its functional correctness.
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4 Formal Aspects

The previous chapters detail the re�nement and timing computations about SydTV-GL
programs which we can perform within SydTV-GL-re�ne. This chapter focuses on the
proofs we produce within Isabelle/HOL. This includes the frontend proofs which link the
SydTV-GL semantics to the formal C semantics. This also includes a project in which
we replicate the proof rules of the SydTV-GL-re�ne proof checker with proof rules and
apparatus in Isabelle/HOL.

SydTV-GL-re�ne interfaces with SMT logics for its low-level judgements, but higher-
level concerns about SydTV-GL semantics cannot be expressed in an SMT logic, and are
instead encoded in the implementation of SydTV-GL-re�ne. The SydTV-GL semantics
can, however, be precisely speci�ed in Isabelle/HOL. We have already explained to the
reader the logic behind the proof rules of SydTV-GL-re�ne (in Section 2.1). We now repeat
this explanation to Isabelle/HOL.

We do this for three reasons. Firstly, the proof principles of SydTV-GL-re�ne might
simply be wrong, and Isabelle/HOL would force us to confront that. Secondly, and more
likely, the formal presentation of the SydTV-GL-re�ne logic will lead to the discovery
of subtleties that we had previously missed. Thirdly, this formalisation is a signi�cant
step toward a project which we hope to return to in future, in which we gather all of the
reasoning of SydTV into a single theorem in a single proof environment.

4.1 The Isabelle/HOL Proof Assistant

This chapter discusses a number of results which we prove, or reprove, within the Is-
abelle/HOL theorem prover. We use theorem provers such as Isabelle and HOL4 because
they are designed to give us the highest possible assurance of the results they prove, a
level of assurance which we consider the “gold standard” for this kind of work.

While we have considerable con�dence in the correctness of the results produced by
our custom tool SydTV-GL-re�ne, we acknowledge that the level of assurance that can be
attained by proving a theorem in Isabelle/HOL or HOL4 would be higher again.

These theorem provers are designed to be skeptical and foundational. Skeptical means
they only accept results proven according to their own proof rules. Foundational means
that the only proof rules they implement correspond directly to the foundational mech-
anisms of a well-studied mathematical logic. The tools we use generally build on the
well-understood theory of higher-order logic (HOL), a descendant of Church’s theory of
types [Chu40]. The HOL4 prover [SN08] directly implements a modern version of higher-
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order logic. The Isabelle approach is slightly di�erent, with a core Isabelle prover [Pau90]
which implements a generic logic onto which the Isabelle/HOL module adds higher-order
logic as a collection of axioms.

There are minor di�erences between these presentations of HOL, however, we can
say with con�dence that all of the theorems we prove within either logic are established
within a well-understood mathematical formalism.

4.2 Formalising SydTV-GL

Before we can prove anything about SydTV-GL programs in Isabelle/HOL, we must
introduce a formal semantics for the language. We have said on a number of occasions
that SydTV-GL is designed to have an elementary semantics, so that programs in SydTV-
GL can be manipulated in a number of of proof tools without risk of confusion. We do not
have any precise methodology with which to evaluate that claim, but we hope that the
simplicity of the de�nitions below go some way towards convincing the reader.

Recall that SydTV-GL is a low-level language designed to permit proofs about compiler
optimisations. Its name derives from “graph language”, because it was designed to make
the control-�ow graph of the program explicit, especially so that control-�ow adjusting
optimisations could be treated straightforwardly. SydTV-GL is goto-structured, where all
nodes are numbered and specify their successor nodes by number. There are also two
exceptional addresses, Ret and Err, which represent successful return from a function
and unrecoverable failure respectively.

The graph consists of three types of nodes. Conditional nodes are used to pick between
execution paths, and correspond closely to decisions made by if and while statements
in C. Basic nodes represent normal statements, or normal instructions in the binary, and
update the value of variables with the result of some calculation (memory is represented
as a variable, as are registers). Call nodes are used to represent function calls, which may
not be embedded in other statements.

The graph language was designed so its semantics would be straightforward to for-
malise in Isabelle/HOL or HOL4. The node types are introduced as a datatype:

datatype next_node = NextNode N | Ret | Err
(* variable names and function names are strings *)
type_synonym vname = string
type_synonym fname = string

(* variable state is a function *)
type_synonym state = (vname⇒ value)
(* expressions/state-accessors are shallowly embedded

as functions from state to variable *)
type_synonym acc = (state⇒ value)

datatype node =
Basic next_node ((vname× acc) list)
| Cond next_node next_node acc
| Call next_node fname (acc list) (vname list)

The syntax we will use here is slightly amended for presentation. Isabelle/HOL is
a logic with a functional style, so for instance “f n” is the application of function f to
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parameter n. We use font to distinguish variables (e.g. f ) and type variables (e.g. α) from
constants (e.g. Basic) and type constructors (e.g. list). Isabelle/HOL follows the ML
style where type constructors are applied as su�xes. We use mathematical syntax (e.g. ×
for cartesian products, N for the set of natural numbers) where possible. Function types
are written α⇒ β.

These de�nitions are taken from the GraphLang theory of the o�cial L4.veri�ed
distribution.1

In this representation variables are indexed by name (a string) only. A Basic node
contains a next program address and list of variables to update by evaluating expressions.
A Cond node has a pair of successors and a decision expression. A Call node contains
a successor, a function name to call, a list of argument expressions and a list of return
variables to overwrite.

A graph function is essentially a tuple of an input variable list, output variable list,
graph body and entry point:

datatype graph_function
= GraphFunction (vname list) (vname list) (N⇒ node option) N

The semantics of the graph language are de�ned by a small-step relation. The con�g-
uration of the system at any step is represented by a stack of executing functions. Making
the stack explicit introduces some complexity into our proofs, but it allows us to model
recursion faithfully, without �rst having to show a recursion bound or termination. Each
stack frame contains an executing address, the state mapping of variables to values, and
the name of the currently executing function. The step relation also takes as parameter
an environment object that maps function names to bodies.

type_synonym stack = (next_node× state× fname) list

type_synonym graph_env = (fname⇒ graph_function option)

constant exec_graph_step :: graph_env⇒ (stack× stack) set

The step relation speci�es all possible steps. It builds on a pair of functions exec_node
and exec_node_return, which specify the normal steps and return steps respectively.
Normal steps begin at a node address in some function. Return steps begin at the Ret
or Err address in the top stack frame when there is another stack frame to return to.
Execution ends when Ret or Err is reached in the bottom stack frame. The exec_node
function captures the behaviour of the three node types:

1 The �le can be found at:
https://github.com/seL4/l4v/blob/master/tools/asmrefine/GraphLang.thy

https://github.com/seL4/l4v/blob/master/tools/asmrefine/GraphLang.thy
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primitive_recursive
exec_node :: graph_env⇒ state

⇒ node⇒ stack⇒ stack set
where
exec_node Γ st (Basic cont upds) stack

= {upd_stack cont (K (upd_vars upds st)) stack}
| exec_node Γ st (Cond left right cond) stack

= {upd_stack (if cond st then left else right) I stack}
| exec_node Γ st (call cont fname inputs outputs) stack

= (case Γ fname of None⇒ {upd_stack Err I stack}
| Some (GraphFunction inps outps graph ep)
⇒ {(NextNode ep, init_vars inps inputs st, fname)

<Cons> stack})

The partner function exec_node_return, which we will omit here, is similar to
exec_node. It also investigates Call nodes to handle the way variables are saved on
return from function calls, however, if it encounters a Basic or Cond node it simply
reports an error. The exec_graph_step de�nition combines these partial speci�cations
together.

The aim of these simple de�nitions is to be shared between a number of proof tools
without risk of confusion. It is perhaps instructive to compare the de�nition of exec_node
above with its equivalent from the HOL4 formalisation below:

val exec_node_def = zDefine ‘
(exec_node Gamma st (Basic cont upds) stack =
{upd_stack cont (K (upd_vars upds st)) stack}) /\

(exec_node Gamma st (Cond left right cond) stack =
{upd_stack (if cond st then left else right) I stack}) /\

(exec_node Gamma st (Call cont fname inputs outputs) stack =
case Gamma fname of NONE => {upd_stack Err I stack}
| SOME (GraphFunction inps outps graph1 ep) =>

{(NextNode ep, init_vars inps inputs st, fname) :: stack})‘;

The aim of this formalisation is to produce proofs of re�nement. We can de�ne
re�nement by appeal to the set of possibly-in�nite traces generated by the small-step
relation. We can de�ne this set of traces for any small-step relation and continuing
condition:

de�nition
trace_set :: (σ ⇒ bool)⇒ (σ × σ) set

⇒ (N⇒ σ) set
where
trace_set C r = {tr. (∀ i s. tr (Suc i) = Some s

−→ (∃ s′. (s′, s) ∈ r ∧ tr i = Some s′))
∧ (∀ i s. tr i = Some s ∧ C s −→ tr (Suc i) 6= None)}

The traces are de�ned as partial maps from natural numbers to states, where the trace
evaluated at any number i tells us the state of execution after i steps. Partial maps are
constructed using the option type of Isabelle/HOL with constructors Some and None. Any
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point in the trace where the state is de�ned must be reached from a preceding state by a
step in the step relation. If the state is judged to be continuing at any step, there must be
a next state. For the graph language, continuing means that the �nal Ret or Err label has
not yet been reached.

These traces are possibly in�nite, and thus describe the semantics we are interested
in slightly more accurately than the transitive closure of the small-step relation. We can
prove that a state s′ can appear in a trace starting at s if and only if (s, s′) is in the re�exive
transitive closure of the small-step relation.

We can de�ne and prove some useful properties about the trace set already. We start
by de�ning the end of the trace, which may or may not exist. Because the small-step
relation executes on a stack of states, we prove a number of helper results about the stack.
Firstly, we show that the name of the initially executing function in the bottom stack
frame will never change, making it clear that the trace is an execution of this function.

Secondly, we show that we can extract executions of called functions. We can take
an inner chunk of the trace where the stack depth is always at least n, and discard the
bottom n− 1 stack elements at every point, resulting in a trace with valid steps. If this
subtrace begins at an appropriate entry point and ends at Ret or Err or never ends, then
it is a valid trace in its own right.

Finally, we show that any point in a trace where a Call node is reached will permit
such an extraction starting from the next step. These results are needed to reason about
function calls in later results.

4.3 Connecting C/Simpl to SydTV-GL

We gave an overview of the export process from Isabelle/HOL to SydTV-GL in Section 2.1.1.
This section describes this process in further detail, and introduces the proof procedure
that establishes that the exported SydTV-GL de�nitions re�ne the Isabelle/HOL C repre-
sentation.

4.3.1 The C/Simpl Language

The C program is given a semantics by the C-to-Isabelle parser. The parser uses a number
of facilities within Isabelle/HOL to represent the semantics of C. These mechanisms, taken
together, form a dialect of Isabelle/HOL which is the source language for the SydTV-GL
export process.

The most substantial components of this dialect of Isabelle/HOL are the Tuch memory
semantics [Tuc08], which we have already discussed, and Schirmer’s Simpl imperative
language framework [Sch06].

The Simpl language framework is a generic facility for deeply embedding imperative
languages in Isabelle/HOL. The central component of the Simpl formalisation is a syntax
datatype that allows the structure of imperative programs to be represented. The Simpl
development also includes as much additional Isabelle support for this language as possible,
including a small-step semantics, big-step semantics, sound & complete VCG,2 custom
syntax, etc.

The C-to-Isabelle parser uses Simpl constructors to assemble its representation of
the C program. All statement-level C constructs map to Simpl constructors. For instance

2Veri�cation Condition Generator, an essential feature for proving safety properties about programs in
the Simpl language.
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sequential composition in C (;) is mapped to its Simpl counterpart (called Seq in Is-
abelle/HOL, and also given the syntax ;; as an operator). Loops in C are encoded using
Simpl’s While constructor, if/else statements use Simpl’s Cond conditional operator,
and so on. Simpl was designed with the C language in mind, speci�cally for use in the C0
programs [LPP05] of the Verisoft project [AHL+08]. All statement-level C constructs map
into Simpl equivalents with minor adjustments.

We mentioned the Simpl Guard constructor previously, for instance in Section 2.1.1.
The Guard constructor wraps a potentially unsafe operation with a check, which is a
veri�cation condition for the program. Since nearly all C operations are potentially unsafe
in various ways, the output of the C-to-Isabelle parser usually contains more Guard
statements than anything else.

The Simpl infrastructure provides deep embedding for statements, allowing a formal
function in Isabelle/HOL to recurse across a function’s statements. The Simpl VCG is
exactly such a function. The expressions in Simpl, however, are shallowly embedded. The
Simpl datatype takes a type parameter σ, the type of states, and the expression components
of statements manipulate it directly. For instance, the condition parameters to the While
and Cond constructors have type σ set within Isabelle/HOL. State update actions are
encoded using the Basic constructor and a function of type σ ⇒ σ.

The C-to-Isabelle parser converts the expressions of C into Isabelle/HOL equivalents.
Various forms of arithmetic have equivalents using Isabelle/HOL’s native implementation
of bitvector arithmetic. Aggregate types in C become datatypes in Isabelle/HOL. The C-to-
Isabelle parser distribution includes a custom type family for arrays. The Tuch memory
semantics is used to manipulate memory, and also supplies guard conditions for pointer
validity etc. Variables, both local and global, are collected into the state type using the
record package of Isabelle/HOL.

We discussed before that we adjust the C semantics for seL4 (see Section 2.5.1). This
adjustment consumes the parser’s de�nitions and produces modi�ed de�nitions in the
same C/Simpl dialect. The new de�nitions are encoded to “mimic” the C-to-Isabelle parser,
so that most tools designed to work with the parser’s output also work with the adjusted
functions. The export process is such a tool: either the originally parsed C bodies or a
mimic set produced by adjustment can be exported.

4.3.2 The Export Process

The export process is conceptually straightforward. It consists of a collection of Standard
ML functions that run in the Isabelle/HOL environment and convert the various language
elements of the C/Simpl dialect to their SydTV-GL equivalents. Most Simpl statements
will map to a single SydTV-GL node, but there are some special cases. The conversion of
the expressions of the C/Simpl language is also conceptually straightforward, but intricate
in practice.

Since the C/Simpl function bodies are decomposed at the statement level by Simpl
constructors, the export process decomposes this way also. The central worker of the
export process is an ML function called emit_body. It recurses across the body of a
C/Simpl function. It emits a collection of SydTV-GL node de�nitions which correspond to
a block of C/Simpl syntax. We can see a small excerpt from the de�nition of emit_body
below:

fun emit_body ctxt outfile params
(Const (@{const_name Seq}, _) $ a $ b) n c e = let
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val (n, nm) = emit_body ctxt outfile params b n c e
val (n, nm) = emit_body ctxt outfile params a n nm e

in (n, nm) end
| emit_body _ _ _ (Const (@{const_name com.Skip}, _)) n c _
= (n, c)

| emit_body _ _ _ (Const (@{const_name cbreak}, _) $ _) n _ (_, b)
= (n, b)

| emit_body ...

The full de�nition of emit_body has 16 such cases, and we do not wish to go into
such detail here.3 We also edited out some error-formatting code for simplicity.

The emit_body function recurses across the underlying Isabelle term representation
of the C/Simpl function body. It matches on the Const and $ constructors of the under-
lying term representation, which encode constants and function application in Isabelle.
The source code of emit_body uses some Isabelle-speci�c antiquotation trickery to use
elements de�ned in the relevant Isabelle/HOL theories in the ML source, for instance the
way that the fully quali�ed name of the Seq constant is matched on here.

The �rst, trivial, design choice was that emit_body does not return the SydTV-GL
de�nitions it produces. It writes directly to the output �le speci�ed. To prove properties
about the new de�nitions in Isabelle/HOL, we parse the textual representation, the same
way that SydTV-GL-re�ne does.

The second design choice concerns the numeric identi�ers given to the nodes of the
exported program graph. The obvious way to do this would be to have one SydTV-GL node
for every statement, to number the statements in textual order, and use those numbers
as node identi�ers in the graph. When we have displayed such a graph (for instance in
Figure 2.1 within Section 2.1.1) we have numbered the nodes in this way.

The problem with this approach is that it requires us to number all the C/Simpl
statements ahead of time, store the numbers in some datatype, and look it up. Instead, we
number SydTV-GL nodes as they are emitted. However this means that we need to work
through the statements in reverse order, so that we know the numbers of the successor
statements as we export each statement.

This is what emit_body does. We see above that it handles a sequential composition
by emitting the second part of the composition �rst. Each call to emit_body returns a
two-element tuple. The �rst part is the next available numeric identi�er n. This value is
threaded through all the recursion of emit_body. The second part is the identi�er of the
emitted graph node which embodies the C/Simpl argument.

This approach allows us to omit some statements from the SydTV-GL graph entirely.
When we process an empty statement (Skip), instead of emitting a SydTV-GL node that
does nothing and points at some next statement, emit_body reports that the implementing
SydTV-GL node for the Skip statement is the same as for its successor. We see this above,
where emit_body returns as the node address the input parameter c. The parameter c is
the continuing address, the identi�er of the SydTV-GL node to be visited next.

The “next” node to be visited may not be unique. There are additional parameters
which specify the statement that control �ow would move to after a break, continue or
return statement. We do not support the goto statement. The SydTV-GL addresses that
would be reached after these statements are are also passed to emit_body. We see above

3The full implementation of the export process can be found in the SimplExport theory of the o�cial
L4.veri�ed distribution, for instance at:

https://github.com/seL4/l4v/blob/master/tools/asmrefine/SimplExport.thy

https://github.com/seL4/l4v/blob/master/tools/asmrefine/SimplExport.thy
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that the break statement can be treated like the empty statement, although proceeding
directly to the break address.

This hopefully explains the entire process for emitting a sequential composition which
we see above. Firstly the second component is emitted, with the same continuing and
exceptional addresses as the whole composition. The �rst component is then emitted, with
the same exceptional addresses, and the start of the second component as the continuing
address. The start of the whole composition is the start of the �rst component.

This approach can be extended straightforwardly to other structuring elements of the
C language. The only complex case concerns the While constructor, which introduces
loops. It is the exception to the rule that the program is emitted entirely in backward order.
To handle While constructs, emit_body �rst reserves some node numbers to represent
the start of the loop. The body of the loop is then emitted, with the �rst reserved address
as the continuing address. Finally the reserved nodes are emitted, out of order with the
rest of the sequence. These nodes handle the looping condition, and also check some error
conditions.

The above process handles the statement level of C/Simpl reasonably well. The complex
part of the export process is handling the C/Simpl expressions. There are two reasons for
the complexity. The �rst is the sheer quantity of di�erent kinds of expression syntax, which
the C-to-Isabelle parser cobbles together using a large library of di�erent Isabelle/HOL
theories. Much of the export process involves querying various Isabelle/HOL packages,
e.g. the datatype package of Isabelle/HOL, to discover what the relevant constants are
intended to do.

The second source of complexity is that the export process performs a conversion in
addition to changing syntax. Many standard operations in C, e.g. arithmetic operations in
the long type, have uniform representations in C/Simpl and langname. Operations on
aggregate types, however, are converted into �eld-by-�eld equivalents. This can be quite
intricate for some expression types. Some global objects, which are treated by the C/Simpl
semantics as global variables, must also be relocated into memory.

4.3.3 Verifying Export Correctness

Having exported the C/Simpl semantics to a SydTV-GL program, we now prove that
the exported program is a re�nement of the original. The proof process will follow the
statement-by-statement structure of the export process, which we outlined in Section 4.3.2.

The SydTV-GL functions have a semantics of possibly-in�nite traces which we in-
troduced in Section 4.2. The Simpl formalism includes both a small-step semantics and a
big-step semantics. The seL4 proofs, for instance, connect to the Simpl big-step semantics.
We can converge semantics somewhat by expressing the Simpl semantics as a set of traces,
using the small-step relation and the same trace_set operator as used for the SydTV-GL
semantics (Section 4.2). We prove that the big-step semantics, including its notion of
termination, can be reformulated via this trace semantics.

Re�nement then means the usual concept of trace re�nement. Each trace of the SydTV-
GL function must have a matching trace of the C/Simpl function. Matching means either
that both functions terminate with matching return values, that both functions have
in�nite traces, or that the C/Simpl trace faults at a Guard statement.

The re�nement problem concerns a complete C/Simpl function body and a complete
SydTV-GL function graph. We will prove that excerpts of the C/Simpl body match the
semantics of the function graph with di�erent starting points, eventually proving that the
entire C/Simpl body matches the semantics of the SydTV-GL function starting at its true
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entry point.
We will prove this re�nement property by presenting a rule calculus for the predicate

simpl_to_graph. We will use this predicate to establish that a (part of a) SydTV-GL
function graph and a (part of a) C/Simpl function body have matching semantics. The
simpl_to_graph predicate looks like this:

simpl_to_graph ΓS ΓG f nn simpl n trS P I eqsI eqsO

This predicate addresses two di�erent concerns. For the moment, we’re going to leave
aside its actual de�nition, and the intricacies of what the parameters n and trS are for,
and focus on the “common” cases.

The predicate says that the part of the SydTV-GL graph function f which begins at the
node address nn re�nes the semantics of the C/Simpl statement simpl. The environment
parameters ΓS and ΓG specify the function calling environment at the C/Simpl and SydTV-
GL levels respectively. The function of interest f is also speci�ed by name rather than
implementation, with the body fetched from ΓG.

We want to prove that all execution traces of f have matching traces of execution
in simpl. We assume a pair of starting states, related by the input relation eqsI . We will
always phrase this input relation as a collection of equalities. The �nal states must satisfy
the output relation eqsO, or the traces must both never end. Any case in which simpl
can transition to a faulting state by failing a Guard check is also considered a matching
trace to any possible SydTV-GL trace.

In addition to eqsI , the starting state on the C/Simpl side is assumed to be an element
of the sets P and I . We will use the parameter P to accumulate known information from
Guard checks. The parameter I is an invariant of the C/Simpl state. It is used in practice
to assert that the global variables are disjoint from all regular heap values according to
the heap type description.

Core Proof Calculus

The core approach of the simpl_to_graph proof calculus is to work through the syntax
of the SydTV-GL and C/Simpl programs one step at a time.

For example, the following rule processes a Guard statement at the C/Simpl level. We
proceed to checking that the inner statement of the Guard has the correct semantics. In
the inner proof, the state is known to be an element of the guard set G.

lemma simpl_to_graph_Guard :
simpl_to_graph ΓS ΓG f nn (add_cont c con)

n trS (G ∩ P ) I eqsI eqsO
−→ simpl_to_graph ΓS ΓG f nn (add_cont (Guard F G c) con)
n trS P I eqsI eqsO

The add_cont wrapper (“add continuations”) is used in our proof calculus to make
handling of composition more uniform. When we process a sequential composition Seq,
we need to focus on the �rst component and put the second component somewhere to
be resumed. The con argument to add_cont is a list of statements to be resumed. Since
the list may be empty, we can use the rule to handle a Guard statement whether it is
the �rst step in a sequence or the only statement present. The add_cont wrapper also



106 CHAPTER 4. FORMAL ASPECTS

handles exceptional composition (for handling break etcetera), but we will not go into
these details.

The Guard rule is simpler than others, because we do not require a one-to-one mapping
between Guard statements and nodes in SydTV-GL. We can move the whole e�ect of
Guard here into the precondition and continue.

A more conventional rule is the rule for conditional execution. We expect the Cond
operator of Simpl to map into a SydTV-GL Cond node. We apologise for the confusion
between Simpl’s simpl.Cond and SydTV-GL’s graph.Cond here, and similarly for Basic
and Call.

lemma simpl_to_graph_Cond :
nn = NextNodem −→ ΓG f = Some g
−→ function_graph g m = Some (graph.Cond l r cond)
−→ eq_impl nn eqs (λ sg ss. cond sg = (ss ∈ C)) (P ∩ I)
−→ eq_impl nn eqs eqs2 (P ∩ I ∩ C)
−→ simpl_to_graph ΓS ΓG f l (add_cont c con)

(Suc n) trS (P ∩ C) I eqs2 eqsO
−→ eq_impl nn eqs eqs3 (P ∩ I ∩ (−C))
−→ simpl_to_graph ΓS ΓG f r (add_cont d con)

(Suc n) trS (P ∩ (−C)) I eqs3 eqsO
−→ simpl_to_graph ΓS ΓG f nn (add_cont (simpl.Cond C c d) con)
n trS P I eqs eqsO

The �rst thing the reader will observe here is that these rules quickly become com-
plex in practice. This rule will always be applied by an automatic tool, and is verbose
partly because it is designed to be uniform. The eq_impl predicate here provides one
kind of uniformity. All additional proof obligations which are not to be solved in the
simpl_to_graph phase are wrapped in eq_impl statements and left for later work.
These eq_impl goals have a redundant nn parameter which makes it easier to understand
where they come from when debugging the later phase. The eq_impl goals relate to the
expression-level conversion to SydTV-GL. For example, the �rst such goal above requires
that the condition expressions be equivalent in the two languages.

The rule above requires that the label to be executed is a node label (rather than Ret
or Err), that the node looked up at that label is a Cond node, and that the next C/Simpl
statement to execute is a Simpl Cond statement. The two simpl_to_graph subgoals
require that the two branches of the respective Cond statements re�ne.

The equality parameters such as eqs are collections of equalities which link the
C/Simpl states and SydTV-GL states. The C/Simpl state is an Isabelle/HOL record of
variables, whereas the SydTV-GL state is an explicit mapping from variable names to
values. We assert equality for all relevant local variables. Because some variables are
initially uninitialised, we construct this equality parameter for each graph label, specifying
only the variables relevant at that label. Since this varies between addresses, the rule
may be instantiated with multiple equality parameters eqs, eqs2, eqs3 for the various
graph labels. Some addition proof obligations above require that the new equalities can
be derived from the initial ones.

There are several further structural rules which cover all of the elements of C/Simpl
which are converted into SydTV-GL nodes. There are also rules for skipping through
some constructs, for instance if Skip appears with a continuation we proceed to the
continuation without examining any SydTV-GL nodes (this treatment was implied by
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the emit_body code we saw in Section 4.3.2). Finally, there are straightforward rules for
arriving at the Ret label when only Skip remains to process.

Caching

Care needs to be taken in proving simpl_to_graph to avoid repeating work. Consider
the case of a C/Simpl body Cond C a b ; ; c which begins with a conditional expression
and then executes another statement. The predicate calculus described above will move
the additional component into the continuation list of add_cont, and then split on the
condition C . The continuation c will appear in both subsequent problems.

The proof calculus will follow the graph forward rather than backward, which means
the two proofs will converge on a proof about the c component. The two proofs should
then share this subproof.

The proof strategy for simpl_to_graph uses a simple caching mechanism to accom-
plish this. It stores each intermediate result in a database indexed by key parameters to
the simpl_to_graph predicate in the conclusion. The strategy will apply a previously
�nished subproof in preference to applying a standard rule.

Induction

The remaining complexity in the simpl_to_graph statement is to permit a particular
style of induction.

Loops in C/Simpl are encoded using the While constructor. The loops of the SydTV-GL
function body are simply Cond nodes where one of the conditional branches loops back
in the graph structure.

As a �rst step, we can prove the same sort of rule for While C c as we showed above
for simpl.Cond C c d, one which pushes the proof forward by one step of the respective
small-step relations. Like in the Cond rule, we expect to �nd a graph.Cond node, and
the �rst obligation is to show that the C/Simpl and SydTV-GL conditions are equivalent.
matching node of the C/Simpl While statement is a conditional node. The remaining two
subgoals will cover the two possible next steps, depending on whether C holds.

We could apply this rule and proceed forward from these con�gurations, but one
branch will loop back to the same con�guration. Deriving a logical fact in a cycle from itself
is pointless, but suggests that we could rephrase the problem into a proof by induction. All
our rules have pushed the proof “forward”, moving at least one step deeper into the trace.
If we knew that the trace was of �nite length, we could handle this proof by induction.

Then parameter to simpl_to_graph counts how many steps have already necessarily
taken place. When we introduced the predicate we said that the graph label nn, assumed
state information eqsI , I , etc, all applied at the starting states. This is true, but by “starting
states” we do not necessarily mean the �rst states of the traces. We assume there exists
an index i into the SydTV-GL trace at which point nn is the next graph label to be visited.
We also assume there exists a trace pre�x of the execution of some C/Simpl body which
after j steps has simpl the statement to be executed. We assume that i ≥ n and j ≥ n,
that is, at least n steps have occurred in both traces.

One aspect of the Cond rule that we did not draw attention to was the replacement of
n by Suc n in each branch. That is, the inner proof can assume that the the number of
steps that have taken place is one higher than before. The same is true for the structural
While rule above. If we knew our programs terminated, we could introduce a variable
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N which bounds the length of the traces, and induct on the possible number of steps
remaining N − n.

We do not, however, know that our programs terminate. Compiling a nonterminating
C program into a nonterminating binary is the expected behaviour for a compiler, so we
aim to be able to validate it.

We do this by proving the key induction rule for simpl_to_graph:

lemma simpl_to_graph_induct :
(∀S′ n′.

simpl_to_graph ΓS ΓG f r c
(Suc n′) S′ P I eqs eqsO
−→ simpl_to_graph ΓS ΓG f r c
n′ S′ P I eqs eqsO

) −→ simpl_to_graph ΓS ΓG f nn c
n ({tr} × UNIV ) P I eqs eqsO

This rule says that, roughly speaking, if we can prove our predicate under the assump-
tion that it will hold in the future, then it holds always. This is exactly what we need
to complete our proof. When we �rst wrote this proposition down, we thought that it
encoded a well-known induction principle of temporal logic. This was a misconception,
the temporal logic principle would move toward the past, not the future. Nonetheless, this
rule is provable in Isabelle/HOL.

The trS parameter can specify restrictions on the SydTV-GL trace or on pre�xes
of the C/Simpl trace. It is used here to initially assume that we know the name of the
SydTV-GL trace, tr.

To prove this rule, we consider the space of all possible matching trace pre�xes. We
consider all traces tr′ of the C/Simpl semantics, and all starting points i in tr and j in tr′
which can make the starting conditions P , I , eqs_I etc valid.

There must be at least one such con�guration in the space, since our outer simpl_to_graph
predicate assumes it. We call this reference con�guration X .

This space of all matching trace pre�xes has an ordering, where a pair of trace pre�xes
A ≤ B if iA ≤ iB , jA ≤ jB , and tr′A and tr′B agree for jA steps.

The proof is essentially a case division on the question of whether there is a terminal
element in this order which is above X . That is, is there some matching con�guration Y
where X ≤ Y but there is no following element Y < Z .

If such a Y exists, we can carefully instantiate the n′ and S in our induction premise,
in particular with n′ being jY . We ensure that the con�guration from Y can serve as a
starting con�guration in the n′ case, but no matching con�guration for Suc n can exist
as it would create a following element of Y . This then implies the needed trace which
matches tr.

If there is no such terminal element, then every con�guration reachable from X can
be extended to another such con�guration. This immediately implies that tr is in�nitely
long. The trace pre�xes on the C/Simpl side can also always be extended, implying there
must be a matching in�nite trace there, as required.

There is a technicality in the in�nite case which the perceptive reader may have
spotted. We will return to this in Section 4.5.

The induction rule we have proven here and the structural While rule we suggested
above can be combined to provide a su�cient mechanism for coping with While constructs
in the binary. The induction rule above needs to be slightly tweaked for nested while
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loops, to clarify that the unknown n and S′ inside the induction will be tighter bounds
than the existing ones.

Additional care needs to be taken in the caching process, which should never cache a
goal with a While constant in it. The proofs about the body elements will still be cached.
An outer mechanism will combine cached step applications with While induction to solve
the required problems.

Mistakes that We Have Made

Let us for a moment cast our mind back to the original question of translation correctness,
and the two competing approaches, validation of each translation and veri�cation of
the translator once and for all. These ideas are not true opposites, but rather ends of a
spectrum. Some tools consist mostly of algorithms that are proven correct, but might
for �exibility include one or two phases that are checked instead. One such example is
CompCert [Ler06], which was originally a fully veri�ed implementation but eventually
adopted a validation phase for its optimising register allocator [TL08].

Re�ecting on the complexities of our C/Simpl export proof, it occurs to us that perhaps
some translation validation approaches should consider including veri�ed transformations
as well.

The complexities of the simpl_to_graph proof calculus contrast with the simplicity
of the emit_body export process. The proof must take care not to cover the same ground
twice, and must carefully instantiate inductive hypotheses, whereas the emit process
simply works its way through the C/Simpl syntax one element at a time.

Perhaps in this work we stayed too much in the translate/validate mindset.
The C/Simpl syntax is deeply embedded in Isabelle/HOL. We could de�ne a function

emit in Isabelle/HOL which recursed through the syntax in the same way as emit_body.
It could operate on statements but not expressions, instead having to return a list of
requirements about expressions, such as a requirement that graph node 12 must be a Cond
node whose condition C matches some C/Simpl expression. The export process could
then use these requirements as a starting point in generating the actual SydTV-GL syntax.

We could then prove about emit that any SydTV-GL function which satis�es all its
output requirements must re�ne the input C/Simpl program. The complexity of the trace
induction discussed above would still have to be considered, but it would be contained
within the proof of correctness of emit, which would be performed once and for all.

One reason this option did not occur to us initially is that the C/Simpl programs are
not fully deeply embedded. This emit process could recurse at the statement level, but
would have more di�culty examining the inner expressions. This creates headaches for C
statements like break and continue which are converted into the same C/Simpl state-
ment structure with an inner expression that sets a global variable based on exception type.
Handling this inner expression would require tricky queries on the function semantics, or
some oracle to clarify what should be done.

Another alternative would be to stay closer to Pnueli’s original treatment [PSS98] in
which a simulation relation is produced. Such a relation would map states of the SydTV-GL
program to states of the C/Simpl program. Once again, care needs to be taken, because
SydTV-GL programs are not fully deep embeddings either, but the relation probably only
needs to consider the node address. The logical complexity of handling potentially in�nite
loops would move to the proof that a valid simulation relation implies a trace re�nement.
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int
g (int i) {
return i * 8 + (i & 15);

}

void
f (int *p, int x) {
int i;

for (i = x; i < 100; i ++) {
p[i] = g (i);

}
}

(a) Example source code

start

loop test loop body

end

return

function g

(b) Example C CFG

0xC-0x14

0x18-0x40

0x100-0x104

0x44-0x48

0x4c-0x64

0x68-0x9c

return

(c) Example binary CFG

Figure 4.1: An example program.

4.4 Replaying the Translation Validation Proof

The re�nement proof completed by SydTV-GL-re�ne establishes a simple notion of re-
�nement between two programs, both expressed in SydTV-GL. The search component
of SydTV-GL-re�ne produces a proof script, which the check process then checks. This
section discusses our work in re�ecting the steps of the check process into rules in the
Isabelle/HOL [NPW02] proof environment.

Proving the proof procedures formally against a foundational implementation of
HOL increases our con�dence in the design of the SydTV-GL-re�ne check process. It also
consitutes a signi�cant �rst step toward repeating the entire proof within the Isabelle/HOL
environment, which would eliminate all concerns about the implementation of SydTV-GL-
re�ne.

We will introduce the steps of the check procedure as a collection of proof rules
in Isabelle/HOL. Firstly, however, we will recap what the check procedure does via an
example program we will introduce in Section 4.4.1 and a sketch of its proof of compilation
correctness in Section 4.4.2. We will then introduce the key rules needed to formalise this
proof in Section 4.4.4.

4.4.1 An Example Program

Consider the simple example program of two functions and one loop presented in Figure 4.1.
While this is a simple program, when we compile it with GCC 4.5.1 and optimisation �ag
-O2, it becomes far more complex. The control �ow graph (CFG) of the program, together
with the simpli�ed CFG of the compiled binary, are also shown in Figure 4.1.

The call to the function g is inlined by the compiler. The compiler has also introduced



4.4. REPLAYING THE TRANSLATION VALIDATION PROOF 111

far more conditional branching structure. The intent here is to unroll the central loop,
with a single iteration of the loop starting at address 0x68 performing the actions of two
iterations of the loop in the source. This combined iteration only checks i < 100 once,
which saves numerous cycles. This single test is su�cient, because the compiler ensures
that i is always even at the start of the combined loop. If i is even and i < 100, it follows
that i + 1 < 100, so the second test can be skipped. The additional code complexity
before the loop entry in the binary CFG is to ensure that i is even by the start of the loop.

The �rst two checks of the binary CFG handle speci�cally the cases where the source
loop is executed 0 or 1 times. The �rst execution of the source loop is also performed.
The next key conditional checks whether the loop is to be executed an even number of
times in total. If so, an additional copy of the loop body is executed, followed by a test
for the case in which the loop was to be executed exactly 2 times and execution is now
�nished. The binary loop body then begins, executing the source loop actions twice and
then checking whether to continue.

4.4.2 Informal Proof

Given this function f, and an intuition for the way it was compiled, we now work through
the proof generated by SydTV-GL-re�ne.

The intuition we have given takes the compiler’s view, describing a series of transfor-
mations on the source to unroll the loop and arrive at the binary structure. It would be
possible to prove the correctness of the compilation in the same style, guessing which
transformations had been applied and showing that each transformation was valid. The
correctness proofs we will produce do not take this approach. Instead, we approach the
problem analytically, considering an arbitrary collection of inputs to the two representa-
tions of f, and deriving a proof that their outputs will be equal.

The key component of the overall proof will be a proof by induction on the sequence of
visits to a particular point in the binary loop. We will prove a relationship to the sequence
of visits to a matching point in the source loop. To complicate this, the relationship
between visits to the binary loop and visits to the source loop of f changes depending
on which of the entry paths was taken in the binary loop. These two paths correspond
to the cases where the loop in f would be executed an even or odd number of times. To
avoid this complication, the �rst step of our proof is a case division on whether or not
the instruction at binary address 0x4c (see Figure 4.1) is ever executed. We will sketch
the proof of the case where it is visited, the even case, in this section. The odd case is
essentially the same with di�erent parameters.

Given that instruction 0x4c is visited, the next step of our proof is to show by induction
that a sequence of visits to the address 0x68 within the binary (the start of the loop basic
block) correspond to a sequence of visits to the start of the loop body of the source CFG.
Because two executions of the source loop are handled specially in the binary, the �rst
such visit to the binary point actually corresponds to the third visit to the source point.
Because the binary loop is unrolled, the subsequent visits will correspond to every second
source visit. So the binary visit sequence matches the subsequence of the 3rd, 5th, 7th etc
visits to the source loop.

We prove the binary sequence and the source subsequence correspond by induction.
By correspondence, we mean that the given visits occur in the same cases, so, if the binary
point is visited 3 times but not a 4th time, the source point must be visited 7 times, but
not 9 times. The corresponding visits also have related variable values. So the contents of
memory will be the same at corresponding visits and the values of the relevant registers
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can be expressed as functions of i, x, etc.
We are omitting the details here: SydTV-GL-re�ne discovers this relationship, and we

are not interested in the speci�cs. The model-driven split discovery process was outlined in
Section 2.2.2, and the linear sequence optimisation outlined in Section 2.4.3 is of particular
assistance in computing this loop relation.

The induction proof must establish that, given related n-th visits of these visit se-
quences, the two loops either proceed to related (n + 1)-th visits or they both exit. It
must also show that the 1st visits to the visit sequences (which are the 3rd and 1st visits
to the actual points of the CFGs) either both occur or both do not occur. These checks
all concern only a bounded number of steps of the source and binary programs, and the
relevant proof obligations can be converted to a �nite-size, decidable expression in the
SMT language, and can be checked by an SMT solver.

Having proven that the visit sequences are related, we now consider three cases for
the length of the visit sequences. The �rst case is that they are both in�nite, which is
possible for loops in C. It happens we can exclude this case since our source loop is
bounded, but we don’t need to use this reasoning. If both programs execute forever, then
the compilation was valid.4

The second case is where both subsequences are empty. This means that the binary
point is not visited and the source point is visited at most 2 but not 3 times. In this case
the number of possible paths through the two CFGs is bounded again, and we can once
again derive expressions for the total e�ect of the two functions. We then need to prove
that the results of these functions are the same. Function f having return type void, the
only obligation is to prove that the output memory values are equal across all of the paths
possible given the CFG constraints we have mentioned. This equality can once again be
exported to SMT and checked.

The third case is where the subsequences contain some �nite number of visits. If we
call this number of visits n, then we know that the two executions reach related n-th
visits, but that the (n+1)-th visits are not reached. Speci�cally, this means that the binary
address 0x68 is visited n times, but not (n+ 1) times, and that the start of the C loop is
visited (2n+ 1) times, with matching values at visit (2n+ 1), but it is not visited (2n+ 3)
times. These constraints once again limit us to �nitely many paths through the CFGs. We
can once again derive expressions for the �nal memory values at the return points of the
functions, this time as expressions over the unknown but related values of the variables
at the matching visits. Once again we can prove the needed equality via SMT.

This is a sketch of a proof of correct compilation for the even case. Together with
the proof of the odd case, which is similar, we have a proof that the compilation of this
program was correct.

SydTV-GL-re�ne discovers this proof automatically. The aim here is to formalise the
proof fully in Isabelle/HOL.

4.4.3 Refinement

The objective is to prove re�nement, using the small-step and trace semantics for the
graph language that was de�ned in Section 4.2.

The conventional notion of re�nement would specify that for every trace of the binary
4In principle our program might have periodic external e�ects that can be observed before it terminates.

We have not yet added such observable e�ects to our semantics. If we did, our induction treatment would still
be valid, because the in�nite traces would synchronize with each other in�nitely often. We would additionally
need to specify that the observable states were related at each point of synchrony.
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SydTV-GL program, there must be a matching trace of the C SydTV-GL program. We will
also require a starting state for the C program which matches the starting binary state
according to the input relation of the function pairing (we discussed function pairings
in Section 2.1.4). We must then discover a matching C execution. Normally this would
be a terminating C execution which reaches Ret with return values related to the binary
return values by the output relation of the function pairing. We also allow two other cases.
If neither trace terminates, we will consider the traces to match. If the C function reaches
Err, we consider the traces to match, whatever the binary trace is.

We also have one more choice about re�nement semantics. Our choice is what to do if
the C SydTV-GL program would diverge, either by looping forever or recursing without
bound. C programmers would usually expect the compiler to respect their intentions
even if an in�nite loop clearly serves no other purpose. We call this the precise semantics.
However GCC provides a language extension for const and pure functions. The compiler
may remove calls to these functions if their results are discarded. In principle this means
that a non-terminating program might be optimised into a terminating one. We also
allow an imprecise semantics, which permits this optimisation. It is certainly debatable
whether these attributes should ever be used for a possibly-nonterminating function, but
we support the option.

4.4.4 Proof Rules

The proof scripts we introduced in Section 2.1 have four structuring proof rules, Split,
Restrict, CaseSplit and Leaf, with which they present a re�nement argument. The proof
script captures the part of the proof which must be discovered heuristically. Once the proof
script is known, the undecideable proof of re�nement reduces to a collection of (decidable)
proof obligations. In this work we convert these rules into proof rules in Isabelle/HOL.

We have already discussed these rules, in some sense, in the informally sketched proof
we gave already in Section 4.4.2. Recall the logic we used in multiple cases of the proof,
where we observed that there were now only �nitely many possible paths through the
CFGs, allowing some expression at some point in the graph to be expressed by exhaustively
considering all the paths by which it might be de�ned. We formalise the idea of “�nitely
many possible paths” with the concept of a restriction on a trace. A restriction is placed
on the number of visits to a given node in a graph, for instance, we might restrict the
number of visits to the start of the loop body in f to be 0, 1 or 2.

We can restrict the total number of visits within a trace. We also use restrictions
to identify di�erent visits to the same node within a trace. In our sketched proof we
considered a sequence of visits to a point p within the loop. We can identify the 3rd visit
to p as the visit to p where the number of previous visits to p is restricted to the set {2}.
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type_synonym trace = (N⇒ stack) option
type_synonym restrs = (N⇒ N set)

constant restrs_condition :: trace⇒ restrs⇒ N⇒ bool

constant visit :: trace⇒ next_node⇒ restrs⇒ state option
constant restrs_eventually_condition :: trace⇒ restrs⇒ bool

de�nition pc :: trace⇒ next_node⇒ restrs⇒ bool
where
pc tr nn restrs = (visit tr nn restrs 6= None)

constant restrs_list :: (N× N) list⇒ restrs

Formally the constant restrs_condition de�nes if, at a given step in a trace, the
restricted nodes have already been visited a matching number of times. From this we
derive visit, which gives us the variable state at the �rst satisfying visit, if there is one,
and restrs_eventually_condition which tells us if the restrictions hold eventually
(at some point and then forever afterwards) on the trace. We de�ne pc, the path condition
of a visit, as the condition that a satisfying visit occurs.

The restrs_list constant de�nes a set of restrictions by explicitly listing them.

constant restr_trace_refine :: bool
⇒ graph_env⇒ fname
⇒ graph_env⇒ fname
⇒ restrs⇒ restrs⇒ output_relation
⇒ trace⇒ trace⇒ bool

The restr_trace_refine predicate captures our proof obligation: trace re�nement
given restrictions. The �rst argument speci�es the precise or imprecise semantics, which
we will explain in a moment. The next four arguments specify the graph functions (by
name) and the function environments they exist in.

The two restriction sets apply to the two traces. We may assume that each restriction
set holds, in the sense of restrs_eventually_condition, on the trace of interest. The
output relation de�nes the equalities that must hold on the values returned by the two
programs. In this formalisation we also specify the two traces, that is, we assume we
can name the traces ahead of time. This is because we formalise SydTV-GL programs
as deterministic and always enabled, thus, from the starting SydTV-GL C state, we can
already name the trace that the program generates. Our objective is to prove that the
traces match, not discover a trace. We will revisit this assumption in Section 4.5.

We will formalise our key proof rules as a rule calculus for this predicate.
The restriction sets above are key to the proof structure. By imposing syntactic limits

on the possible paths the trace may take, the restrictions allow us to talk about speci�c
visits to nodes, whether those visits occur within loops or after loops. Notionally nodes
within loops can be reached via an in�nite sequence of possible paths until a restriction is
added.
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The Restrict rule introduces a new restriction on the visits to node n. The rule
introduces the restriction that n is visited at least i times and less than j times overall.
When we said in our informal proof that “the source point is visited at most 2 but not 3
times” we were appealing to the Restrict rule, with n the address of the source point,
i = 0 and j = 3.

This rule adds to a restriction set listed by the restr_list operator. We add to a list
with the Isabelle/HOL list constructor which we write <Cons> here. The restriction is
added in the sense that we must now �nish the proof, but we have the new restriction
available in the future.

The restriction is on visits to node n. We show n must be reached (pc is true) at a
point where n has been encountered i− 1 times. Likewise we show n cannot be reached
(pc is false) when it has already been encountered j − 1 times. Thus n is reached at least
i times and less than j times overall.

theorem restr_trace_refine_Restr1 :
j 6= 0
−→ distinct (map fst rs)
−→ wf_graph_function f ilen olen
−→ Γ nm = Some f
−→ rsi = (n, [i− 1]) <Cons> restrs_visit rs (NextNode n) f
−→ rsj = (n, [j − 1]) <Cons> restrs_visit rs (NextNode n) f
−→ (i 6= 0 −→ pc (NextNode n) (restrs_list rsi)
−→ ¬ pc (NextNode n) (restrs_list rsj)
−→ restr_trace_refine prec Γ nm Γ′ nm′

(restrs_list ((n, [i.. < j]) <Cons> rs)) rs′ orel tr tr′

−→ restr_trace_refine prec Γ nm Γ′ nm′ (restrs_list rs) rs′ orel tr tr′

Formalising this rule led to the discovery of a number of side conditions that were only
checked implicitly in SydTV-GL-re�ne. Arithmetic on naturals under�ows in Isabelle/HOL,
so we must check for the case of zero. We also require some simple wellformedness
properties on our graph functions, such as that all graph arcs go to nodes de�ned within
the graph. Within SydTV-GL-re�ne, the problem representation combines both program
graphs within a single numerical namespace, allowing a single set of restrictions to apply
to both cases. This was a challenge for our formalisation, where instead we distinguish
between this rule Restrict1 and a symmetric counterpart Restrict2 which a�ects the
right hand side trace. These are expected variations between the formal and informal
developments.

One variation was not expected. The restrs_visit constant here discards some of
the existing restriction information. It drops any restrictions on nodes still reachable from
n while we are testing the preconditions. We know that these restrictions hold for the
total trace, in the sense of restrs_eventually_condition. However it is possible that
these restrictions talk about nodes we have yet to reach at the time we reach node n. The
distinct constraint above is needed for restrs_visit to have the correct e�ect.

It happens that we never explicitly checked for this case in SydTV-GL-re�ne, allowing
its check process to potentially admit an unsound proof. This does not lead to a serious
issue, since SydTV-GL-re�ne generates proofs in which restrictions are created in a
sensible order. It would never return to a node prior to where a restriction has already
been applied. Nonetheless exposing these technicalities is exactly the purpose of this
formalisation.
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The Leaf rule is the terminal rule of proof scripts. In SydTV-GL-re�ne, the proof ends
once the number of possible paths through the CFGs is �nite, and all output equalities
can be expressed directly. The Leaf rule encodes this logic, checking the output relation
of the traces directly under the assumption that enough restrictions are in place that the
visit to the return points can be described concretely. It requires the return point of the
binary trace to be reached, which essentially means that possibly-nonterminating loops
have been handled. In the precise semantics, we need to know the source trace reaches its
return point also.

theorem restr_trace_refine_Leaf :
wf_graph_function f ilen olen
−→ Γ nm = Some f
−→ wf_graph_function f ′ ilen′ olen′

−→ Γ nm′ = Some f ′

−→ pc Ret rs tr
−→ output_rel orel (f, f ′) (rs, rs′) (tr, tr′)
−→ (prec −→ pc Ret rs′ tr′)
−→ restr_trace_refine prec Γ nm Γ′ nm′ rs rs′ orel tr tr′

The most involved of these rules is the Split induction rule, which provides the
mechanism for reasoning about loops. In the proof sketch in Section 4.4.2 we proved
by induction a relation on subsequences of visits to a source and binary graph node.
We then considered three cases, the case of in�nitely many visits, which automatically
implies re�nement, the case where the subsequence does not begin, and the case where the
subsequence contains exactly n visits for some positive n. The Split rule performs both
these logical divisions within a single step. The complication, compared to our informal
description in Section 4.4.2, is that the general Split rule is designed for k-induction,
where k previous visits n . . . n+ k − 1 are used to show the inductive step to visit n+ k.
The case we described previously is the special case where k = 1.
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theorem restr_trace_refine_Split :
vres = (λ i. restrs_list ((sp, [start+ i ∗ step]) <Cons> rs))
−→ vres′ = (λ i. restrs_list ((sp′, [start′ + i ∗ step′]) <Cons> rs′))
−→ vpc = (λ i. pc (NextNode sp) (vres i) tr)
−→ vpc′ = (λ i. pc (NextNode sp′) (vres′ i) tr′)
−→ visits = (λ i. (visit tr (NextNode sp) (vres i),

visit tr′ (NextNode sp′) (vres′ i)))
−→ rel = (λ i. vpc i ∧ vpc′ i ∧ vrel i (visits 0) (visits i))
−→ (∀ i. vpc (Suc i) −→ vpc i)
−→ (∀ i. i < k −→ vpc i −→ rel i)
−→ (∀ i. vpc (i+ k) −→ (∀ j. j < k −→ rel (i+ j)) −→ rel (i+ k))
−→ k > 0 −→ step > 0 −→ step′ > 0
−→ (¬ vpc k −→ restr_trace_refine prec Γ nm Γ′ nm′

(restrs_list rs) (restrs_list rs′) orel tr tr′)
−→ (∀ i. ¬ vpc (i+ k)
−→ (∀ j. j < k −→ rel (i+ j))
−→ restr_trace_refine prec Γ nm Γ′ nm′

(restrs_list rs) (restrs_list rs′) orel tr tr′)
−→ restr_trace_refine prec Γ nm Γ′ nm′

(restrs_list rs) (restrs_list rs′) orel tr tr′

The additional variables here abbreviate vpc i as the path condition of the i-th subse-
quence visit in the binary program, rel i as the condition that the i-th subsequence visits
both occur and are related, etc.

The rule requires that the subsequence visits happen in order, in particular that a visit
to i+ 1 implies a visit to i.

The initial condition of the induction is that the �rst k binary visits have matching
visits if they occur (vpc i −→ rel i for i < k). The inductive condition is that if binary
visit i+ k occurs and the previous k visits are related (by rel) then the source visit i+ k
must also be related.

The rule also requires some extra elementary checks, such as k > 0.
The last two premises of the Split rule are the subproofs to be addressed. The �rst

case is where the binary subsequence does not include k visits. The second case is where
there are exactly i+k binary visits, and the last k visits are known to be related by rel. No
restrictions are added, but the rules are designed so that in each case su�cient information
exists to immediately restrict the visits to the two split points using the Restrict rules.

Unlike the proof of Restrict, the proof of the induction rule in Isabelle/HOL was
complex, but did not introduce any interesting checks that were not performed in SydTV-
GL-re�ne. The formal constraints that k and the subsequence step sizes must be positive,
and that the binary path conditions must be monotonic, were unsurprising formal addi-
tions.

The CaseSplit rule is the path-condition case-split which we appealed to at the
beginning of the informal proof in Section 4.4.2. We divide into subproofs depending
on whether a given node is visited. This is logically trivial but necessary for our tool to
produce Split rules handling unrolled loops like the one we have seen, with di�erent
entry paths for di�erent cases.
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theorem restr_trace_refine_PCCases1 :
(pc nn rs1 tr −→

restr_trace_refine prec Γ nm Γ′ nm′ rs rs′ orel tr tr′)
−→ (¬ pc nn rs1 tr −→

restr_trace_refine prec Γ nm Γ′ nm′ rs rs′ orel tr tr′)
−→ restr_trace_refine prec Γ nm Γ′ nm′ rs rs′ orel tr tr′

TheErr rule generates the assumption that Err is not visited, with any restrictions that
are appropriate. This is done implicitly within SydTV-GL-re�ne, with various restriction
choices applied. This rule allows this process to be made explicit.

theorem restr_trace_refine_Err :
(¬ pc Err rs1 tr −→

restr_trace_refine prec Γ nm Γ′ nm′ rs rs′ orel tr tr′)
−→ restr_trace_refine prec Γ nm Γ′ nm′ rs rs′ orel tr tr′

The �nal structural rule we add is the Call rule. We decompose our re�nement proof
at function boundaries, and this is the rule that allows us to appeal to the proof that links
the called functions. The Call rule is technically intricate both to state and prove, and the
version we have proven is still insu�ciently general. We will leave the technicalities out
of this discussion, and say only that we are con�dent that the call matching part of the
SydTV-GL-re�ne SMT export process can indeed be shown correct in Isabelle/HOL.

These proof rules form the proof calculus we need for restr_trace_refine. We
can express re�nement as an instance of restr_trace_refine, and then apply these
rules to decompose a re�nement problem until only decidable proof obligations remain.

For our example program f, the proof structure begins with a PCCases on the path
into the loop, each possibility being addressed by a Split rule. Each split rule generates an
initial (< k) and inductive (≥ k) case, a total of 4 cases, each of which is addressed by a pair
of Restrict rules to �x the number of visits to the two loops followed by a Leaf rule. We
have implemented an automatic mechanism for composing and applying this compound
proof rule. When applied to our example problem, it discharges all restr_trace_refine
goals, leaving 70 remaining proof obligations, 30 of them non-trivial.

4.4.5 Further Work for Isabelle/HOL Replay

We have formalised su�cient rules to reduce our re�nement problem for f down to 30
non-trivial proof obligations. These obligations are logical expressions which concern
various speci�c visit instances.

These proof obligations match, at a high level, the proof obligations that are generated
within SydTV-GL-re�ne. To continue to realise the logic of SydTV-GL-re�ne within Is-
abelle/HOL, we would next need to replicate the SMT export process which we introduced
in Section 2.1.6. This would take the form of a rewrite mechanism that would expand
applications of the visit function into concrete SMT-compatible values, depending on
whether the previously visited nodes were Basic, Cond or Call nodes, or if the node has
multiple predecessors, etcetera.

The �nal step would be to export the problem to SMT, and replay the SMT “unsat”
judgement as a theorem in Isabelle/HOL. SMT export and replay has been studied in detail
by Böhme [BW10], and we have also made minor contributions to this problem [BFSW11].
We suspect, however, that more work remains to be done here. Replay of SMT proofs for
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the bitvector problem can be quite expensive. In addition, not all SMT solvers produce
traces to be replayed, and the most e�ective solvers are usually the ones that do not
produce proof traces.

We hope to return to this issue in future work.
For the time being, we have formalised the essential logical principles of SydTV-GL-

re�ne, and are satis�ed that they are correct. Formalising the rules has uncovered a modest
number of side conditions that we had not checked in SydTV-GL-re�ne, but none that
lead to concern about our existing results.

4.5 The Axiom of Dependent Choice

This section is a note about the theoretical underpinnings of this work that we encountered
more or less by accident. It relates to the style of induction which we used to prove trace
re�nement in both our replay proof (Section 4.4) and export proof (Section 4.3.3). Both
of these proofs establish that for each trace of the implementing programs there exists a
matching trace of the specifying program. We allow nontermination, so we must sometimes
show the existence of in�nite traces.

When we formalised these proofs in Isabelle/HOL, we were surprised that we were
often unable to complete the proofs by induction arguments alone, and instead had to
make explicit use of the axiom of choice. We were surprised again to realise that this
was not speci�c to our approach. An in�nite trace is a single object which potentially
encodes in�nitely many decisions. The existence of such single decision objects is (roughly
speaking) what the axiom of choice asserts.

Let us be more precise. The induction schema we used in the export proof (Section 4.3.3)
is equivalent to the axiom of dependent choice, a related axiom to the general axiom of
choice. The split induction theorem of SydTV would also be equivalent if we extended it
to include nondeterminism. Moreover, some quite di�erent trace re�nement results from
the literature are also equivalent.

In fact, we can make a stronger hypothesis:

Hypothesis 1. All approaches for proving trace re�nement which permit
both nondeterminism and nontermination are by default logically equivalent
to the axiom of dependent choice.

We say “by default” above because there exist a number of simple countermeasures to
reduce the logical strength of the problem. For instance, we can insist that all types in our
programs are countable, which gives us a simple choice procedure. We will discuss other
strategies in Section 4.5.4.

This discovery might not have profound implications, since it can be ignored by those
comfortable with the axiom of choice and worked around by those who are not. Moreover,
once we demonstrate instances of our hypothesis, it will become instantly clear why it is
true. What is surprising about this fact is that it does not seem to be well-known in cases
where it is relevant.

4.5.1 The Axiom

The axiom of choice is an optional member of the axioms of Zermelo-Fraenkel (ZF)
set theory [Zer08, FBHL73]. Conventional mathematics texts, including the venerable
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“Principia Mathematica” [RW10] use ZF set theory including the axiom of choice (ZF+C)
as the logical foundation from which other mathematics is derived.

The axiom of choice says that, given an indexed family of nonempty sets, here rep-
resented by a function S from index elements in the domain D to sets, there exists a
function which picks one element of each set:

(∀i ∈ D. ∃x. x ∈ S i) −→ (∃X. ∀i ∈ D. X i ∈ S i)

The axiom of choice is important in coping with complexities introduced by in�nity.
It is also controversial, giving rise to some counterintuitive results. Some mathematicians
have gone so far as to develop parallel mathematics texts which derive all possible results
from ZF with the axiom of choice excluded (ZF-C).

A compromise is to consider weaker variants of the axiom of choice. The axiom of
countable choice is identical to the axiom of choice, but insists that the domain of the
indexed family of sets is countable. This is equivalent to the previous presentation where
the domain D is the set of natural numbers:

(∀i ∈ N. ∃x. x ∈ S i) −→ (∃X. ∀i ∈ N. X i ∈ S i)

The axiom of countable choice is less controversial. It does not give rise to such
surprising results as the axiom of choice itself.

Unfortunately, the axiom of countable choice is not strong enough for the results we
need to prove. The axiom of dependent choice generalises the axiom of countable choice
by saying that later decisions can depend on earlier ones. For simplicity, we say that
later decisions depend on the previous one, so our function S now takes an additional
parameter from the domain D:

(∀i ∈ N. ∀x ∈ D. ∃y. y ∈ S i x ∧ y ∈ D) −→ (∃Y. ∀i ∈ N. Y (i+ 1) ∈ S i (Y i))

These variations of the axiom of choice are well-known, but their consequences have
not yet been as well studied as the choice axiom itself. It is clear that general choice implies
dependent choice implies countable choice.

These axioms form a sequence of strictly stronger logics, i.e. ZF-C, ZF with countable
choice, ZF with dependent choice, and ZF+C are four di�erent logics with di�erent
universes of provable facts.

4.5.2 Foundations

This may seem to some readers like a pointless exercise. After all, we are using the
Isabelle/HOL logic, which fundamentally assumes the Hilbert choice operator, one of the
strongest presentations of the axiom of choice. Why does it matter whether or not we use
a weaker variant as well?

The reason is that, while we are using Isabelle/HOL, we are not ideologically committed
to its logic, and we are committed to ongoing dialogue with the rest of the �eld of formal
methods.

The �eld of formal methods and formal veri�cation has its foundation in the principles
of mathematical logic. The problem, which we encounter here, is that the foundations of
mathematical logic have never been adequately settled. In addition to variants of Zermelo-
Fraenkel set theory, which we have discussed, there are various constructive logics [CH88]
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and intuitionistic logics [Kri65, Dum75] all making reasonable cases that they should be
the foundation stone of formal reasoning.

We claim that the working formal methodist hopes to avoid such deep discussions.
Instead, he or she picks a given implementation of a given logic, but hopes that his or her
contributions (results and approaches) have universal relevance even if the speci�c details
of the proofs do not.

This is why this particular observation is interesting. We thought we were studying the
simplest possible re�nement ordering on programs which do not necessarily terminate, one
which had been studied by many others. Instead, we discover that we cannot satisfactorily
de�ne this problem until we answer the most di�cult questions about the theoretical
universe we inhabit.

4.5.3 Logical Equivalence

We claim that any approach for proving trace re�nement which permits both nonde-
terminism and nontermination will be equivalent to the axiom of dependent choice by
default. We develop this proof in detail (including an Isabelle/HOL presentation) for a
handful of such proof approaches, but �rstly let us sketch the concept of the proof.

The interesting aspect of the proof for our purposes is the part that shows that the
axiom of dependent choice is implied by trace re�nement. The axiom can be simpli�ed
down to the problem of discovering an in�nite trace of steps within some relation X on
elements of domain D:

X ⊆ D ×D −→ (∀x ∈ D. ∃y. (x, y) ∈ X) −→ (∃Y. ∀i ∈ N. (Y i, Y (i+ 1)) ∈ X)

Now that the axiom is phrased in this way, it is almost transparent what we need
to do. We will prove trace re�nement between two programs. The specifying program
will make decisions from X . The implementating program will execute an in�nite loop
doing nothing. Re�nement will imply the existence of an in�nite trace of the specifying
program. This trace will encode an in�nite trace of steps within relation X .

One foundational approach to trace re�nement is to present a simulation relation
[LV95]. Given a pair of programs speci�ed by a small-step semantics, a simulation relation
maps some con�gurations of the implementing program to related con�gurations in the
specifying program. A simulation relation requires that there exists some bound n. The
implementing program must reach a state with a related counterpart at least every n steps.
For each path in the implementing program between con�gurations that are related, there
must exist a path of at most n steps in the specifying program that connects the related
states.

It is trivial to recover the axiom of dependent choice from the general principle of
simulation relations. We pick a specifying program whose small-step semantics is exactly
the relation X , an implementing program whose small-step relation is (0, 0), and our
simulation relation maps the state 0 to the set of states D. Given that X has forward steps
within D, the next step of the implementation (to 0) will be related to some next step
of the speci�cation (within X). This proves the simulation relation. The implementing
program has an in�nite trace all of whose elements is 0. If the simulation relation proves
trace re�nement, then it follows there is an in�nite trace of the speci�cation, which is
exactly the in�nite trace of X steps which the axiom speci�es.

In short, this general formulation of the principle of simulation relations �ts more or
less exactly to the shape of the axiom of dependent choice.
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Picking the small-step relation of a program to �t our problem is a bit unorthodox. In
a more conventional setting the small-step relation would be �xed by the semantics of
some language. Instead we should pick a program based on X .

As a simple illustration, we borrow a simple While language presented by Nip-
kow [Nip06]. The language syntax has four constructors, Semi (semicolon, sequential
composition), Cond (conditional, if-then-else), While (looping) and Do. The Do operator
abbreviates a few di�erent kinds of actions. It takes a parameter of type α ⇒ α set,
where α is the state. This allows the action “done” to introduce nondeterminism.5

We borrow this syntax unchanged, but present the semantics di�erently. Nipkow uses
a big-step semantics and addresses the notion of termination separately. We produce the
counterpart small-step semantics. We have de�ned this small-step relation in Isabelle/HOL,
and will elide the details here. We produce a trace semantics for the language using the
trace_set operator presented in Section 4.2.

We can now specialise the argument about simulation relations to this language.
Abusing syntax slightly, we try to prove:

While True (Do (λs. {s})) <refines> While True (Do (λs. {s′. (s, s′) ∈ X}))

We have, on the left, yet another instance of the program that does nothing forever. The
program on the right picks steps from X . The small step semantics relates con�gurations
that consist of a program to execute and a starting state. We can employ a simulation
relation here. We pick a simulation relation which relates the left hand side program and
any state to the right hand side program and any state from D. We set n to 2.

Indeed, after 2 steps, the left hand side program will return to where it was. The
requirement that a 2-step path exist on the right hand side is once again equivalent to the
condition that X has forward steps within D.

Re�nement will again establish a trace. Here we must discard every second step, and
then the state elements will form the desired trace with forward steps in X .

Another classic approach to proving re�nement is to introduce a syntax-directed
re�nement calculus. The composition rule for the constructor Whilemight look something
like this:

(∀(s, s′) ∈ S. (s ∈ C) = (s′ ∈ C ′))
−→ c <refines>S c′

−→ While C c <refines>S While C ′ c′

This notion of re�nement includes a state relation S which allows some data re�ne-
ment. It would probably require some more parameters to be really useful, but these are
not necessary for our purposes.

It should be clear how we will derive an in�nite X trace from the While re�nement
rule. We use the same programs as before. The state relation again relates any left state to
right states that are in D. The looping conditions trivially match. The condition that the
loop bodies re�ne should reduce to the expected requirement on X .

We could go on, but the reader is hopefully convinced at this point.
We proved some additional more complex cases in Isabelle/HOL. The future style of

trace induction we needed in our export proof (Section 4.3.3) also implies the axiom. This
5This is true in Nipkow’s 2006 version of this work [Nip06], but not in an earlier version [Nip02] which

handled nondeterminism di�erently.
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follows easily from the fact that the future re�nement can be used to prove the While
re�nement rule above.

Our split induction principle also implies the axiom, if we extend SydTV-GL with
nondeterminism by saying some functions might have weakly speci�ed nondeterministic
bodies. Since this proof will require function calls to involve choices from the relation X ,
it becomes quite involved.

To complete the proof of equivalence, we must also prove all of these results using
the axiom of dependent choice and not any stronger variants. We �rst prove the future
style of trace induction (see Section 4.3.3) using the axiom of dependent choice. Our other
results follow from future induction. The essential step of that proof involves a set of
“con�gurations” which have a partial order and in which every element has a strictly
greater element. We take the order relation as X , the set of con�gurations as D, and use
the axiom to pick a single in�nite sequence of con�gurations which are strictly increasing
according to the order. From this sequence we can extract a single in�nite trace as needed
in the relevant proof.

4.5.4 Countermeasures

While this observation applies by default to any notion of trace re�nement we can think
of, there are several possible adjustments that remove the issue.

The simplest would be to require that all variables take their values from some count-
able or ordered set. This gives us a choice mechanism whenever it is necessary.

Another possibility is to permit uncountable variables, but enforce countable choice.
Whenever the specifying system makes a nondeterministic decision, it must do so from
among a countable collection of options.

Yet another possibility is to require the simulation relation to be functional, to map
states of the implementing system to speci�c states of the specifying system. This moves
the decision process from the proof into this function. A related strategy is to require that
key aspects of the proof are constructive, which will imply the existence of a function that
converts implementation traces to speci�cation traces. The proof rules for loops will have
to stitch together these functions, but won’t actually have to make any decisions.

The other possibility is to adjust the semantics of trace re�nement, abandoning the
construction of in�nite traces. For instance, one option would be to have the re�nement
imply for each natural number N the existence of a speci�cation trace that matches for at
leastN steps. This avoids ever constructing an in�nite trace, but has the same implications
within any speci�c window of time.

4.5.5 Implications

This discovery will not change the world. The implications of the axiom of dependent
choice are in any case less troubling than those of the full axiom of choice, and many
authors may simply accept them. Others may employ one of the workarounds described
above.

What is interesting about this discovery is that it concerns some theorems that are
so well known. The statements “forward simulation implies re�nement” or “simulation
relations imply re�nement” are so well understood in the literature that venerable au-
thorities appeal to them as theorems without detailing their proofs [BvW94, LV95, BO01],
including in in�nite trace cases. In some cases, by careful reading of the proofs, we can
actually see where the authors have appealed to the axiom of choice without explicitly
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mentioning it, for instance in proposition 8.2 of van Glabbeek’s discussion of simulation
semantics [vG99].

While we have no objections to any of the existing literature, we think that we add
slightly to it by noting the logical strength of the statements being made.



5 Conclusion

We have explored an approach for translation validation of C programs and its implemen-
tation in SydTV. We have also, through a series of experiments, comprehensively studied
both the applicability of the approach and the e�ectiveness of the implementation.

Translation validation is an approach to the problem of binary correctness which
aspires to be both �exible and lightweight. We have seen throughout this work evidence
for the �exibility of our SydTV approach.

We have shown in Chapter 2 that the core SMT-powered model-guided proof search
of SydTV can verify binaries produced via intricate optimisations. By combining with the
veri�ed seL4 source, we produce a �nal e�cient veri�ed binary. We are con�dent that
this is the most comprehensively veri�ed OS binary produced to date.

We have seen in Chapter 3 that SydTV can adapt to the problem of timing analysis, a
task that typically requires a specialised real-time compiler toolchain. By threading addi-
tional timing information through the seL4 veri�cation proofs and the SydTV validation
process, we can produce high-assurance evidence of the kernel’s real-time performance.

While SydTV is �exible, it is grounded in precise formal logic. We have studied these
theoretical foundations in Chapter 4, and discovered that doing so introduces unexpected
insights into the theory of trace re�nement.

In conclusion, we present SydTV, a comprehensively studied translation validation
engine for producing veri�ed and real-time binaries.

Availability

All aspects of this work are open-source. The three components of SydTV are available
as part of the L4.veri�ed distribution, the HOL4 distribution, and the SydTV-GL-re�ne
repository (also called graph-re�ne) respectively. The seL4 proof manifest gathers all the
necessary tools to run the binary veri�cation. It can be found at:

https://github.com/seL4/verification-manifest

125

https://github.com/seL4/verification-manifest


126 CHAPTER 5. CONCLUSION



6 Bibliography

[AAB+13] Roberto M Amadio, Nicolas Ayache, Francois Bobot, Jaap P Boender, Brian
Campbell, Ilias Garnier, Antoine Madet, James McKinna, Dominic P Mul-
ligan, Mauro Piccolo, et al. Certi�ed complexity (CerCo). In International
Workshop on Foundational and Practical Aspects of Resource Analysis, pages
1–18. Springer, 2013.

[AARG12] Nicolas Ayache, Roberto Amadio, and Yann Régis-Gianas. Certifying and
reasoning on cost annotations in C programs. In FMICS 2012 - 17th Inter-
national Workshop on Formal Methods for Industrial Critical Systems, Paris,
France, Aug 2012.

[AHC+16] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb,
Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas
Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and Ger-
not Heiser. Cogent: Verifying high-assurance �le system implementations.
In ASPLOS, pages 175–188, Atlanta, GA, USA, Apr 2016.

[AHL+08] Eyad Alkassar, Mark Hillebrand, Dirk Leinenbach, Norbert Schirmer, and
Artem Starostin. The Verisoft approach to systems veri�cation. In VSTTE
2008, volume 5295 of LNCS, pages 209–224, 2008.

[ALM15] June Andronick, Corey Lewis, and Carroll Morgan. Controlled Owicki-
Gries concurrency: Reasoning about the preemptible eChronos embedded
operating system. InWorkshop onModels for Formal Analysis of Real Systems
(MARS 2015), pages 10–24, Suva, Fiji, Nov 2015.

[App11] Andrew Appel. Veri�ed software toolchain. In 20th ESOP, volume 6602 of
LNCS, pages 1–17, 2011.

[APST10] Eyad Alkassar, Wolfgang Paul, Artem Starostin, and Alexandra Tsyban.
Pervasive veri�cation of an OS microkernel: Inline assembly, memory con-
sumption, concurrent devices. In VSTTE 2010, volume 6217 of LNCS, pages
71–85, Edinburgh, UK, Aug 2010.

[ARI12] Avionics Application Software Standard Interface, Nov 2012. ARINC Standard
653.

127



128 CHAPTER 6. BIBLIOGRAPHY

[BB08] Robert Brummayer and Armin Biere. Lemmas on demand for the exten-
sional theory of arrays. In Proceedings of the Joint Workshops of the 6th In-
ternational Workshop on Satis�ability Modulo Theories and 1st International
Workshop on Bit-Precise Reasoning, pages 6–11. ACM, 2008.

[BBB+09] James Barhorst, Todd Belote, Pam Binns, Jon Ho�man, James Paunicka,
Prakash Sarathy, John Scoredos, Peter Stan�ll, Douglas Stuart, and Russell
Urzi. A research agenda for mixed-criticality systems. Available at http:
//www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR/, Apr 2009.

[BCD+11] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In Computer aided veri�cation, pages 171–177. Springer, 2011.

[BDP12] Gilles Barthe, Delphine Demange, and David Pichardie. A formally veri�ed
SSA-based middle-end. In European Symposium on Programming, pages
47–66. Springer, 2012.

[Bev89] William R. Bevier. Kit: A study in operating system veri�cation. Trans.
Softw. Engin., 15(11):1382–1396, 1989.

[BFSW11] Sascha Böhme, Anthony CJ Fox, Thomas Sewell, and Tjark Weber. Recon-
struction of Z3’s bit-vector proofs in HOL4 and Isabelle/HOL. In Interna-
tional Conference on Certi�ed Programs and Proofs, pages 183–198. Springer,
2011.

[BH13] Bernard Blackham and Gernot Heiser. Sequoll: a framework for model
checking binaries. In RTAS, pages 97–106, Philadelphia, USA, Apr 2013.

[BHHK10] Régis Blanc, Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács.
ABC: algebraic bound computation for loops. In 16th Int. Conf. Logic for
Progr., Arti�cial Intelligence & Reasoning, pages 103–118, 2010.

[BHV11] Sébastien Bardin, Philippe Herrmann, and Franck Védrine. Re�nement-
based CFG reconstruction from unstructured programs. In Int. Conf. Veri�-
cation, Model Checking & Abstract Interpretation, pages 54–69, 2011.

[BLH14] Bernard Blackham, Mark Li�ton, and Gernot Heiser. Trickle: automated
infeasible path detection using all minimal unsatis�able subsets. In RTAS,
pages 169–178, Berlin, Germany, Apr 2014.

[BO01] Manfred Broy and Ernst-Rüdiger Olderog. Trace-oriented models of con-
currency. Handbook of process algebra, pages 101–195, 2001.

[BPYA15] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W.
Appel. Veri�ed correctness and security of OpenSSL HMAC. In
24th USENIX Security, pages 207–221, Washington, DC, US, Aug 2015.
URL: https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/beringer.

[BR06] Claire Burguière and Christine Rochange. History-based schemes and
implicit path enumeration. In 6th WS Worst-Case Execution-Time Analysis,
2006.

http://www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR/
http://www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer


129

[BSC+11] Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoudhury,
and Gernot Heiser. Timing analysis of a protected operating system kernel.
In RTSS, pages 339–348, Vienna, Austria, Nov 2011.

[BSH12] Bernard Blackham, Yao Shi, and Gernot Heiser. Improving interrupt re-
sponse time in a veri�able protected microkernel. In EuroSys, pages 323–336,
Bern, Switzerland, Apr 2012.

[BSPH07] Jan Olaf Blech, Ina Schaefer, and Arnd Poetzsch-He�ter. Translation valida-
tion of system abstractions. In Proc. 7th Int. Conf. on Runtime veri�cation,
RV’07, pages 139–150, Vancover, Canada, 2007.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. In Proc. 8th Int. Workshop on Satis�ability Modulo Theories,
Edinburgh, UK, 2010.

[BvW94] R. J. R. Back and Joakim von Wright. Trace re�nement of action systems.
In CONCUR’94: Concurrency Theory, pages 367–384. 1994.

[BW10] Sascha Böhme and Tjark Weber. Fast LCF-style proof reconstruction for Z3.
In International Conference on Interactive Theorem Proving, pages 179–194.
Springer, 2010.

[CGJ+03] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction re�nement for symbolic model check-
ing. J. ACM, 50(5):752–794, Sep 2003.

[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions. Infor-
mation and computation, 76(2-3):95–120, 1988.

[Chl10] Adam Chlipala. A veri�ed compiler for an impure functional language. In
ACM Sigplan Notices, volume 45, pages 93–106. ACM, 2010.

[Chl11] Adam Chlipala. Mostly-automated veri�cation of low-level programs in
computational separation logic. In Proc. 32nd PLDI, pages 234–245, San Jose,
California, USA, 2011.

[Chl13] Adam Chlipala. The Bedrock structured programming system: combining
generative metaprogramming and Hoare logic in an extensible program
veri�er. In 18th ICFP, pages 391–402, 2013.

[CHN12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An
interpolating SMT solver. In International SPINWorkshop onModel Checking
of Software, pages 248–254. Springer, 2012.

[Chu40] Alonzo Church. A formulation of the simple theory of types. The journal of
symbolic logic, 5(02):56–68, 1940.

[CM07] Christoph Cullmann and Florian Martin. Data-�ow based detection of loop
bounds. In 7th WS Worst-Case Execution-Time Analysis, 2007.

[CMB14] Franck Cassez, Christian Mueller, and Karla Burnett. Summary-based in-
terprocedural analysis via modular trace re�nement. In FSTTCS, pages
545–556, India, Dec 2014.



130 CHAPTER 6. BIBLIOGRAPHY

[Cra57] William Craig. Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. The Journal of Symbolic Logic, 22(03):269–
285, 1957.

[CS10] Ernie Cohen and Norbert Schirmer. From total store order to sequential
consistency: A practical reduction theorem. In 1st ITP, volume 6172 of LNCS,
pages 403–418, Edinburgh, UK, Jul 2010.

[DLRA12] Will Dietz, Peng Li, John Regehr, and Vikram Adve. Understanding integer
over�ow in C/C++. In Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, pages 760–770, Piscataway, NJ, USA, 2012.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An e�cient SMT
solver. In TACAS, volume 4963 of LNCS, pages 337–340, Budapest, Hungary,
Mar 2008.

[dRdBH+01] Willem-Paul de Roever, Frank de Boer, Ulrich Hanneman, Jozef Hooman,
Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency veri�cation:
Introduction to compositional and non-compositional methods. Cambridge
Tracts in Theoretical Computer Science, 2001.

[Dum75] Michael Dummett. The philosophical basis of intuitionistic logic. Studies in
Logic and the Foundations of Mathematics, 80:5–40, 1975.

[Dut14] Bruno Dutertre. Yices 2.2. In International Conference on Computer Aided
Veri�cation, pages 737–744. Springer, 2014.

[EaJGBL07] Andreas Ermedahl, Christer Sandberg anf Jan Gustafsson, Stefan Bygde,
and Björn Lisper. Loop bound analysis based on a combination of program
slicing, abstract interpretation, and invariant analysis. In WS Worst-Case
Execution-Time Analysis, 2007.

[FBHL73] Abraham Adolf Fraenkel, Yehoshua Bar-Hillel, and Azriel Levy. Foundations
of set theory, volume 67. 1973.

[FFS07] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the relationship between
concurrent separation logic and assume-guarantee reasoning. In ESOP,
pages 173–188, 2007.

[FHL+01] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin,
Michael Schmidt, Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm.
Reliable and precise WCET determination for a real-life processor. In
EMSOFT, pages 469–485, London, UK, 2001.

[Flo67] Robert W. Floyd. Assigning meanings to programs. Mathematical aspects
of computer science, 19:19–32, 1967.

[FM10] Anthony Fox and Magnus Myreen. A trustworthy monadic formalization
of the ARMv7 instruction set architecture. In 1st ITP, volume 6172 of LNCS,
pages 243–258, Edinburgh, UK, Jul 2010.

[GBEL10] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The
Mälardalen WCET benchmarks – past, present and future. In 10th WS
Worst-Case Execution-Time Analysis, pages 137–147, Brussels, BE, Jul 2010.



131

[GESL06] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Björn Lisper.
Automatic derivation of loop bounds and infeasible paths for WCET analysis
using abstract execution. In RTSS, pages 57–66, Washington, DC, US, 2006.

[GHE15] Peter Gammie, Tony (Antony) Hosking, and Kai Engelhardt. Relaxing
safely: Veri�ed on-the-�y garbage collection for x86-TSO. In PLDI 2015: the
36th annual ACM SIGPLAN conference on Programming Language Design
and Implementation., page 11, Portland, Oregon, United States, Jun 2015.

[GLAK14] David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein. Don’t
sweat the small stu�: Formal veri�cation of C code without the pain. In
PLDI, pages 429–439, Edinburgh, UK, Jun 2014.

[GMKN17] Armaël Guéneau, Magnus O Myreen, Ramana Kumar, and Michael Norrish.
Veri�ed characteristic formulae for CakeML. In ESOP, pages 584–610, Apr
2017.

[GSC+16] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim,
Vilhelm Sjöberg, and David Costanzo. CertiKOS: An extensible architecture
for building certi�ed concurrent OS kernels. In OSDI, Nov 2016.

[GVF+11] Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David
Costanzo. CertiKOS: A certi�ed kernel for secure cloud computing. In
2nd APSys, 2011.

[GZB05] Benjamin Goldberg, Lenore D. Zuck, and Clark W. Barrett. Into the loops:
Practical issues in translation validation for optimizing compilers. Proc
3rd Int. Workshop on Compiler Optimization Meets Compiler Veri�cation
(COCV ’04). Electr. Notes Theor. Comput. Sci., 132(1):53–71, 2005.

[HAWH99] Christopher A. Healy, Robert D. Arnold, Frank Müller David B. Whalley, and
Marion G. Harmon. Bounding pipeline and instruction cache performance.
Trans. Computers, 48:63–70, Jan 1999.

[HER15] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. De�ning the unde-
�nedness of C. In ACM SIGPLAN Notices, volume 50, pages 336–345. ACM,
2015.

[HH08] AndrÃľ Hergenhan and Gernot Heiser. Operating systems technology for
converged ECUs. In 6th Emb. Security in Cars Conf. (escar), page 3 pages,
Hamburg, Germany, Nov 2008.

[HJM03] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Counterexample-
guided control. In 30th ICALP, pages 886–902, Eindhoven, The Netherlands,
Jul 2003.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. CACM,
12:576–580, 1969.

[KAE+14] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive formal veri�ca-
tion of an OS microkernel. Trans. Comp. Syst., 32(1):2:1–2:70, Feb 2014.



132 CHAPTER 6. BIBLIOGRAPHY

[KBC10] Tai Hyo Kim, Ho Jung Bang, and Sung Deok Cha. A systematic representa-
tion of path constraints for implicit path enumeration technique. Software
Testing, Veri�cation and Reliability, 20(1):39–61, 2010.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
Formal veri�cation of an OS kernel. In SOSP, pages 207–220, Big Sky, MT,
USA, Oct 2009.

[KKP+11] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and Albrecht
Kadlec. Beyond loop bounds: comparing annotation languages for worst-
case execution time analysis. Software & Systems Modeling, 10(3):411–437,
2011.

[KKU16] Moritz Kiefer, Vladimir Klebanov, and Mattias Ulbrich. Relational program
reasoning using compiler IR. In Veri�ed Software. Theories, Tools, and Ex-
periments: 8th International Conference, VSTTE 2016, Toronto, ON, Canada,
July 17–18, 2016, Revised Selected Papers 8, pages 149–165. Springer, 2016.

[KKZ11] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. Symbolic loop bound
computation for WCET analysis. In International Andrei Ershov Memorial
Conference, 2011.

[KKZ13] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. WCET squeezing: On-
demand feasibility re�nement for proven precise WCET-bounds. In RTNS,
RTNS ’13, pages 161–170, New York, NY, USA, 2013.

[Kle09] Gerwin Klein. Operating system veri�cation — an overview. Sādhanā,
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