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Abstract

The thesis presents microkernel-based software-implemented mechanisms for improving the trust-

worthiness of computer systems based on commercial off-the-shelf (COTS) hardware that can

malfunction when the hardware is impacted by transient hardware faults. The hardware anoma-

lies, if undetected, can cause data corruptions, system crashes, and security vulnerabilities, sig-

nificantly undermining system dependability. Specifically, we adopt the single event upset (SEU)

fault model and address transient CPU or memory faults.

We take advantage of the functional correctness and isolation guarantee provided by the for-

mally verified seL4 microkernel and hardware redundancy provided by multicore processors, de-

sign the redundant co-execution (RCoE) architecture that replicates a whole software system (in-

cluding the microkernel) onto different CPU cores, and implement two variants, loosely-coupled

redundant co-execution (LC-RCoE) and closely-coupled redundant co-execution (CC-RCoE), for

the ARM and x86 architectures. RCoE treats each replica of the software system as a state ma-

chine and ensures that the replicas start from the same initial state, observe consistent inputs,

perform equivalent state transitions, and thus produce consistent outputs during error-free execu-

tions. Compared with other software-based error detection approaches, the distinguishing feature

of RCoE is that the microkernel and device drivers are also included in redundant co-execution,

significantly extending the sphere of replication (SoR).

Based on RCoE, we introduce two kernel mechanisms, fingerprint validation and kernel bar-

rier timeout, detecting fault-induced execution divergences between the replicated systems, with

the flexibility of tuning the error detection latency and coverage. The kernel error-masking mecha-

nisms built on RCoE enable downgrading from triple modular redundancy (TMR) to dual modular

redundancy (DMR) without service interruption. We run synthetic benchmarks and system bench-

marks to evaluate the performance overhead of the approach, observe that the overhead varies

based on the characteristics of workloads and the variants (LC-RCoE or CC-RCoE), and conclude

that the approach is applicable for real-world applications. The effectiveness of the error detection

mechanisms is assessed by conducting fault injection campaigns on real hardware, and the results

demonstrate compelling improvement.
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Chapter 1

Introduction

In computing, the mean time to failure
keeps getting shorter.

Alan J. Perlis

1.1 Motivation

Computer-controlled safety-critical and security-critical systems require rigorous design, imple-

mentation, and evaluation to guarantee functional correctness and to provide a high level of assur-

ance. The vast adoption of computers in such systems is a double-edged sword: on the one side,

the computation power and storage provided by computers ensure responsive, autonomous, and

accurate operations of the systems, accomplishing tasks that otherwise cannot be achieved; on the

other side, computer failures, caused by hardware errors or software bugs, can render the systems

malfunctioning, potentially causing catastrophic results.

Conventionally, software bugs are deemed to be inevitable in complex systems. One strategy

that system designers may choose to defend against the negative effect of software bugs is to par-

tition a complex system into trusted and untrusted components. The trusted components, such as a

flight-control program in an unmanned aerial vehicle (UAV), can be kept small and straightforward

so that formal verification can be applied to eliminate software bugs. The untrusted components,

for instance, image-capturing and -processing software in the UAV, can be checked by traditional

testing-based approaches which have limited correctness guarantee; thus, these untrusted compo-

nents may contain bugs that can be exploited by attackers to take control of the trusted components

indirectly. Hence, trustworthy isolation between trusted and untrusted components is crucial, so

the malfunctioning or even compromised untrusted components are unable to affect the trusted

components. The lack of trust in software-enforced isolation leads to architectures (e.g., an air

gap) using redundant or separated hardware for different components to achieve the isolation.

However, the issue of increased size, weight, and power consumption caused by employing re-

dundant hardware cannot be tolerated in certain scenarios, such as in UAVs or military vehicles,

even if the increased cost is not a concern.

Various software-based approaches for consolidating software components with different se-

curity levels have been proposed. Separation kernels create “an environment which is indistin-
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guishable from that provided by a physically distributed system”, confine software components in

their regimes, and only allow information to flow through explicitly provided channels [Rushby,

1981]. Based on a separation kernel, the multiple independent levels of security (MILS) archi-

tecture consolidates partitioned systems onto a single hardware platform while guaranteeing that

security policies are “non-bypassable, evaluatable, always-invoked, and tamperproof” [Alves-Foss

et al., 2006]. Virtualization technology also provides platforms for system consolidation at the op-

erating system level [Garfinkel et al., 2003; Meushaw and Simard, 2000; Popek and Goldberg,

1974]. All these approaches share a common property: the lowest level system software, be it a

separation kernel or a virtual machine monitor (VMM), must function correctly according to spec-

ifications. This property implies a bug-free kernel or VMM that can be trusted to uphold safety

and security policies.

Recent advances in formal verification and microkernel design make a bug-free microkernel

possible [Klein et al., 2009]; the seL4 microkernel can be trusted to follow the design specifi-

cations. Additional proofs demonstrate that the microkernel can provide strong guarantees con-

cerning data integrity and isolation of applications [Elkaduwe et al., 2006; Murray et al., 2013;

Sewell et al., 2011]. Moreover, binary verification connects the proofs with the microkernel bi-

nary directly, thus removing compilers from the trusted tool-chain [Sewell et al., 2013]. Based on

the verified kernel, we can construct a reliable platform or framework for integrating trusted and

untrusted components on a single hardware platform without compromising performance [Fisher,

2014]; however, barriers to wide adoption of software-enforced isolation in safety- or security-

critical situations still exist since the microkernel assumes that the hardware also functions cor-

rectly according to its specifications. Any deviation in hardware behaviour, even a single-bit flip,

will invalidate the assumptions and thus undermine the security and functional properties derived

from formal verification. For example, from a very high-level perspective, an application assumes

that its private data stored in memory does not change if the application does not modify it explic-

itly; but the assumption can be invalidated by a single-bit flip in the memory region containing the

data.

Another motivation for our work is to replace the expensive, power-hungry, and slow hard-

ware components (e.g., radiation-harden processors) used in fault-tolerant systems with COTS

hardware. We briefly compare the Cortex-A9 processor with the widely-used radiation-hardened

RAD750 processor [Berger et al., 2011] to estimate the potential advantages of using software-

implemented fault-tolerant systems based on COTS for short-term missions. The RAD750 proces-

sor running at 133 MHz achieves around 240 Dhrystone 2.1 MIPS and requires less than 6 watts

of power [Berger et al., 2001]. Each Cortex-A9 core can achieve 2.50 DMIPS per MHz [ARM,

2009]. Thus, we can get around 2,000 DMIPS from the quad-core Cortex-A9 processor running

at 800 MHz if we use three cores for triple modular redundancy (TMR) and leave the remain-

ing core idle. Even if we assume the performance overhead of TMR is 50%, still, the system

can achieve 1000 DMIPS with a total power consumption of 5 watts for the whole SABRE Lite

board [Boundary Devices, 2011], which uses a quad-core Cortex-A9 processor. Each RAD750

processor costs around US$ 200,000 [Ginosar, 2012], but the price tag for a SABRE Lite board

is around US$ 200 [Boundary Devices]. Admittedly, the RAD750 processors can tolerate a more

stringent operating environment in terms of temperature ranges and radiation intensities. However,

2
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software-based approaches have the benefits of avoiding hardware vendor lock-in and adopting

new technology quickly with significantly improved performance and reduced costs.

COTS (commercial-off-the-shelf) hardware refers to the general-purpose systems or devices

that are manufactured in large quantity and ready to purchase from various vendors or distrib-

utors. The main advantages of COTS hardware over custom-made, in-house, or commissioned

counterparts are substantial cost savings, reduced development time, improved performance, and

current technology node. In the areas previously dominated by customised hardware components,

COTS-based systems are gaining acceptance and applications [Engel, 2001; Esposito et al., 2015;

Gansler and Lucyshyn, 2008; Hiergeist and Holzapfel, 2016]. Nevertheless, COTS hardware faults

can have direct impacts on system reliability. Various field studies showed the significance of the

COTS hardware reliability issue [Li et al., 2007; Nightingale et al., 2011; Schroeder et al., 2009;

Shazli et al., 2008; Sridharan et al., 2013, 2015]. Hardware faults can be categorised as permanent

faults, transient faults, and intermittent faults [Koren and Krishna, 2007]. A permanent fault com-

pletely damages a hardware component, and a replacement is required to restore functioning. An

intermittent fault comes and goes repeatedly but never disappears entirely, causing a component

to swing between correct and incorrect operating modes. A transient fault temporally deviates a

hardware component from its specification; however, the component is not permanently damaged.

Transient faults, specifically single-event-effect-induced transient faults, are the threats we

aim to deal with in the thesis. Correctly designed and manufactured hardware can be affected by

environmental factors, such as power fluctuation, temperature variations, and radiation. A signifi-

cant fraction of transient faults originates from single event effects (SEEs) which are triggered by

alpha particle strikes or cosmic-ray-induced neutron showers [Baumann, 2005a; Michalak et al.,

2005; Saggese et al., 2005] (details in Section 2.1). Recently studies show that seemingly benign

transient faults can introduce security vulnerabilities into Linux kernel, network services, and vir-

tual machines; some of the vulnerabilities can be removed only by a reboot, leaving the systems

vulnerable for an extended period [Chen et al., 2004; Govindavajhala and Appel, 2003; Xu et al.,

2001]. Furthermore, commodity DRAM is susceptible to disturbance errors [Kim et al., 2014] so

that malicious applications can corrupt data stored in a row by repeatedly reading nearby rows and

thus create an exploit, as demonstrated by the row hammer attack [Rowhammer]. Section 2.1 will

give a thorough discussion about transient faults; related existing software and hardware solutions

aiming to detect and tolerate hardware faults will be introduced in Chapter 3.

The thesis adopts single event upset (SEU) (Section 4.1.4) as the fault model, which implies

faults are random and independent, other than malicious and coordinated. The Byzantine fault

model [Lamport et al., 1982] describes a much stronger model in which faulty participants of a

distributed system can produce arbitrary results or even cooperate intentionally to prevent non-

faulty participants from reaching a consensus. Tolerating Byzantine faults usually requires more

replication effort (3×n+1 replicas in which n is the number of faulty replicas) and performance

overhead because of the multi-stage voting scheme. Essentially, the safety analysis of the SEU

model assumes multiple faults to be independent, while the Byzantine model assumes collusion.

Therefore, tolerating Byzantine faults is out the scope of the thesis.
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1.2 Contributions

The thesis presents a microkernel-based software solution addressing the COTS hardware reliabil-

ity issue and reducing the window of vulnerability induced by transient hardware faults. Specifi-

cally, we apply redundant co-execution and the concept of sphere of replication (SoR) on a modern

microkernel by instantiating multiple replicas of the kernel and applications. Furthermore, each

replica is deployed on a core of a multicore processor to exploit the spatial redundancy provided

by modern hardware; and thus a DMR (dual modular redundancy) or TMR (triple modular re-

dundancy) system can be structured by running two or three replicas. We manage the replicas as

replicated state machines (RSM), start them in the same state, and feed them with same inputs;

so the replicas should proceed with consistent state transitions and produce comparable output

data. Otherwise, if the state machines diverge or produce inconsistent output data, we consider

them faulty; and we fail-stop the system or initiate recovery procedure if certain conditions are

satisfied. Targeting COTS hardware, our error detection mechanisms cannot rely on special hard-

ware features, nor do they assume a small piece of hardware is always reliable. However, our

solution benefits from various improvements of fast-evolving COTS hardware from generation to

generation, compensating for the performance overheads of redundant co-execution and error de-

tection mechanisms. Designing and building for COTS hardware significantly lowers the barriers

to adopting our solution when system designers are planning a new system or porting an existing

one for improved security and integrity. We make the following contributions in the thesis:

• We identify the risks of building highly secure systems using commodity hardware since the

states of processors or memory can be corrupted by transient hardware faults; undetected

bit flips can be benign at best because of various masking effects or catastrophic if security-

or safety-critical data is corrupted or control flow is altered.

• We design and implement a set of microkernel mechanisms to support whole-system re-

dundant co-execution on multicore processors. We apply redundant co-execution to the

lowest-level system software (the seL4 microkernel) as well as user-mode applications, and

redundantly validate the status of the replicas for error detection. Essentially, the modi-

fied microkernel can conduct self-checking without relying on lower-layer software or spe-

cialised hardware (i.e., we do not shift the problem to another layer beneath the kernel or

hardware).

• We identify and treat sources of non-determinism in microkernel-based systems. The non-

deterministic events can lead to the divergence of the replicas even when the system is not

affected by faults, introducing false positives.

• We design and apply the I/O access patterns to replicated device drivers so that the redun-

dantly executed drivers can interact with non-redundant I/O devices correctly. The drivers

replicate input data so that other components of the replicated system can observe consistent

inputs; the drivers also check output data for error detection.

• We investigate and analyse the performance overhead of the resulting system on x86 and

ARM platforms, demonstrating that the whole-system redundant co-execution and error

4
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detection mechanisms result in moderate performance degradation and are applicable to

real-world systems.

• We build a fault injection framework and conduct fault injection campaigns on real x86 and

ARM machines, showing that our prototype is effective in detecting errors and preserving

data integrity.

In summary, an seL4-based software system protected by the whole-system redundant co-

execution possesses significantly improved capability of defending against errors induced by tran-

sient hardware faults, and thus the guarantee of preserving security properties provided by the

formally verified microkernel can be better protected when the system is deployed on COTS hard-

ware. In this thesis, we focus on the case that a software system (including the microkernel, device

drivers, and applications) runs on a single core; replicating a multicore system is left as future work

and discussed in Section 8.2.1. Although the work is based on the seL4 microkernel, we believe

that the obstacles we identified and solved when applying state machine replication to a whole

software system, the set of kernel mechanisms for supporting redundant co-execution, and the

error detection and masking methods are potentially applicable to other microkernels. The micro-

kernel mechanisms introduced in the thesis have the potential of being used to build fault-tolerant

systems to address dependability issues in a broader context beyond just a self-checking micro-

kernel. Note that the new code added in our prototype is not formally verified; the verification

of the changes is out the scope of the thesis. Additionally, our approach prevents vulnerabilities

introduced by transient hardware faults from being created or being dormant too long in a system,

eliminating or shortening the window of opportunity for attacking the system by exploiting the

vulnerabilities, as in the attack-vulnerability-intrusion (AVI) fault model [Verı́ssimo et al., 2006].

But we do not claim that the approach can directly improve system security; therefore, evaluating

the resulting systems in terms of security is considered as future work.

1.3 Thesis Organisation

Chapter 2 introduces why correctly designed and manufactured COTS hardware fails and provides

necessary background about the formally verified seL4 microkernel. Chapter 3 describes related

hardware or software approaches to detecting and tolerating hardware faults. Chapter 4 focuses on

discussing microkernel mechanisms to replicate a whole software system onto different cores, to

co-execute the replicas of the system redundantly, and to tolerate various non-deterministic events

that can cause the replicas to diverge. Two redundant co-execution modes, loosely-coupled re-

dundant co-execution (LC-RCoE) and closely-coupled redundant co-execution (CC-RCoE), are

presented; and the applicability and restrictions of the modes are examined. Chapter 5 is ded-

icated to describing the microkernel mechanisms for supporting device driver replication. The

device drivers serve as input data duplicators and output data comparators, ensuring consistent

observations of I/O inputs by the replicas and checking outputs produced by the replicas. Chap-

ter 6 discusses error-detection and error-masking mechanisms based on redundant co-execution

(RCoE) approach, illustrating that these mechanisms are flexible enough so that system designers

are able to experiment with various configurations that possess different error coverages, error

5
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detection latencies, and runtime overheads. In Chapter 7, we use microbenchmarks and system

benchmarks to evaluate the performance of the resulting systems and to demonstrate the effective-

ness of our error detection framework with fault injection campaigns. Finally, we conclude the

thesis and propose future research directions in Chapter 8.

6



Chapter 2

Background

The cheapest, fastest and most reliable
components of a computer system are
those that aren’t there.

Gordon Bell

This chapter lays the foundation for the following chapters, introducing why correctly de-

signed and rigorously tested hardware can still fail, revealing the consequences of transient hard-

ware faults, describing related concepts in fault-tolerant computing, and presenting the verified

seL4 microkernel with sufficient details to facilitate understanding the error detection mechanisms

and design decisions presented in the thesis. The precise meanings of various terms used in the

thesis are listed in Appendix A for reference.

2.1 Transient Faults in CMOS Circuits

We first describe the physical phenomena behind single event effects (SEEs) and how the SEEs

induce single event upsets (SEUs) in digital circuits and cause hardware components to deviate

from their design specifications. This section serves as a gentle introduction that is sufficient

for readers to understand the problem, not a complete review. CMOS (complementary metal

oxide semiconductor) technology is the fundamental building block for most of the digital com-

ponents used in general-purpose processors, micro-controllers, graphic processing units, DRAM

(dynamic random access memory), SRAM (static random access memory), etc. Two essential

characteristics of CMOS, large noise margin and low static power consumption, make CMOS the

dominating technology for constructing ICs (integrated circuits). As the name suggested, CMOS

implements logic functions by using complementary pairs of n-type and p-type MOSFETs (metal-

oxide-semiconductor field-effect transistors). We will briefly describe how MOSFETs work, and

then introduce how alpha particles and neutrons can cause transient hardware faults.

2.1.1 MOSFET and Basic Physical Mechanisms

Figure 2.1 illustrates the simplified structure of an n-type MOSFET which relies on electrons as

the carriers. The source and drain are n-doped terminals, and the bulk (body) is p-typed. The

7
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“metal” in the name refers to the gate material, but nowadays the gate is usually a polysilicon

layer. Similarly, the isolation layer that separates the gate from the bulk can be dielectric materials

other than silicon dioxide. When no voltage is applied to the gate, there is no channel between

the source and drain terminals; so the transistor is OFF. When a positive voltage is applied to the

gate, holes are pushed downward into the body. In the meanwhile, electrons are drawn towards

the gate area by the positive voltage. If the applied voltage is greater than the threshold voltage of

the MOSFET, the electrons amassed under the insulation layer are sufficient to create a conductive

channel between the drain and source, turning the transistor ON. P-type MOSFETs work in a

similar way, except that the source and drain are p-type material, the bulk is n-type material, and

the carriers forming the conductive channel are holes.

Bulk (P)

Source (N) Drain (N)

Insulator
Gate

Figure 2.1: N-type MOSFET

Alpha particle and neutron strikes are two dominating causes that can cause transient hard-

ware faults, although other factors (temperature variations, wire crosstalk, voltage fluctuations,

etc.) may also contribute. Alpha particles, emitted from radioactive matters of impure packag-

ing materials, consist of two protons and two neutrons. Charged alpha particles interact directly

with silicon crystals, creating tracks of electron-hole pairs [May and Woods, 1979]. Purifying

packaging materials can reduce alpha particle emissions, but it is difficult to eradicate alpha parti-

cles completely. Less susceptible circuit designs and shielding chips with thick polyimide layers

can also improve the reliability of the chips significantly, yet the chips are still not free from

alpha-particle-induced faults. High-energy neutrons, produced by primary cosmic rays colliding

with atoms and molecules in the Earth’s atmosphere, are ubiquitous around the world. Unlike al-

pha particles, neutrons do not produce electron-hole pairs directly. Instead, neutrons collide with

nuclei in transistors and create secondary particles consisting of protons, neutrons, alpha parti-

cles, etc. Then, these secondary particles can produce ionization tracks that create electron-hole

pairs [Ziegler and Lanford, 1979]. The density of neutron flux is highly correlated to the altitude

and the location on the Earth. The JEDEC standard JESD89A [JEDEC, 2016] defines how neutron

flux is measured and lists neutron flux at selected cities or locations relative to the reference flux

of New York City.

Single event effects (SEEs) are caused by high energy particles striking sensitive regions of

CMOS-based devices. A single event upset (SEU) is a non-destructive change of state in a storage

element, and it may affect a single bit or multiple bits. The electron-hole pairs inside or near the

depletion region of the p-n junction are prevented from recombination by the electric field that
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also collects the carriers efficiently in a short time (drift collection), resulting in a transient current

at the impacted node. The following phase is called diffusion collection during which more charge

is collected as excess carriers diffuse toward the depletion region [Baumann, 2005a; Dodd and

Massengill, 2003]. If a sufficient amount of charge is collected, exceeding the critical charge

(Qcrit), a single-event upset (SEU) occurs. The Qcrit is the minimal amount of charge that must be

collected to cause an upset.

2.1.2 Random Access Memory (RAM)

We briefly introduce how a DRAM cell works in Section C.1. If the storage capacitor or the

source of the access transistor of a DRAM cell is affected by a particle strike, the charge stored

in the capacitor may be disturbed by the event so that the stored bit is flipped [May and Woods,

1979]. Further, a single particle strike is able to trigger multiple upsets (a multi-cell upset) if

the ion track penetrates two proximal junctions or the charge is collected by multiple sensitive

nodes [Massengill, 1996]. If the error bits are in one data word (a multi-bit upset), the SEC-DED

ECC is unable to correct the errors. During a read operation, the differential voltage of the two bit

lines can be disturbed if transistors directly connected to the bit lines experience a particle strike,

causing the sense amplifier fail to interpret the stored bit correctly [Gulati et al., 1994]. DRAM

needs various supporting logic circuits to decode addresses (decoders), to buffer the read results

(latches), to pre-charge bit lines (pre-chargers), etc. Logic upsets in these components can also

lead to erroneous data [Slayman, 2011]. Moreover, as the manufacturing process moves to smaller

feature sizes, the closely packed cells can interfere each others. As shown by Kim et al. [2014],

frequently activating and deactivating rows can cause some of adjacent cells to leak charges.

Static random access memory (SRAM) is widely used as various levels of caches in processors

to fill the gap between very fast processors and slow DRAM. SRAM does not use capacitors for

keeping data; a bit is stored in a pair of cross-coupled inverters [Pavlov and Sanchdev, 2008]. Thus,

SRAM also suffers from transient faults [Cannon et al., 2004; Seifert et al., 2006]. Section C.2

describes the basic mechanism of an SRAM cell and how a transient fault changes the value stored

in the cell.

2.1.3 Logic Circuits

Logic circuits are not immune to transient faults since the underlying physical phenomena are the

same. The mechanism of particles striking latches, register files, flip-flops, etc. is similar to the

one impacting SRAM [Karnik et al., 2004]. A transient voltage caused by a particle strike at a

sensitive node of a combinational logic component is called a single event transient (SET), and

SETs are becoming an urgent issue for complex circuits [Dodd et al., 2004; Ferlet-Cavrois et al.,

2013]. If an SET propagates through logic gates and causes an incorrect value being captured by

a storage element, the SET then leads to an SEU. Logic components benefit from the following

masking effects [Shivakumar et al., 2002]:

• Electrical masking: A transient pulse is attenuated by subsequent logic gates so that it does

not affect the result of a digital component. This masking effect is influenced by the electri-

cal properties of the gates of the component.

9



2.1. TRANSIENT FAULTS IN CMOS CIRCUITS

• Logical masking: A transient fault is prevented from propagating from inputs of a compo-

nent to its outputs because the outputs are completely determined by the input values that

are not affected by the fault. Take an AND gate for example; if a zero is one of the two

inputs, the output stays at zero no matter what the other input value is.

• Temporal masking: A transient fault reaches the output of the current latch, but the time

when the fault arrives at the input of the next latch is outside the latching window of the

next latch; thus, the erroneous value is not captured.

Unlike storage elements that are relatively straightforward to protect with error-correcting

codes, approaches (hardening, DMR, TMR, or self-checking designs) to protecting logic com-

ponents usually accompany significant overheads in terms of die areas and power consumption.

2.1.4 Trends of Transient Faults

The feature size of CMOS transistors is steadily and continuously decreasing, so is the supply

voltage. An empirical model was developed to estimate the trend of SER for CMOS SRAM

circuits [Hazucha and Svensson, 2000; Shivakumar et al., 2002]: SER ∝ F×A× exp(−QCRIT
QS

). In

the equation, F is the neutrons with energies greater than 1MeV, A is the sensitive area in cm2,

QCRIT is the critical charge in fC, and QS is the charge collection efficiency of the device. QCRIT

mainly depends on the supply voltage Vdd , and the type of the (P or N) drain struck by a particle

also affects QCRIT . QS represents the charge generated by a particle strike and is determined

by the characteristics (e.g., doping and Vdd) of the device; QCRIT and QS are independent. The

model states that the SER of SRAM circuits increases exponentially when QCRIT declines and

decreases linearly when the sensitive area shrinks. The scaling feature size reduces the sensitive

area, lowering the SER; but the accompanied reduction in supply voltage for improved power

efficiency also decreases QCRIT and thus increases the SER. The single-bit SRAM per-bit SER

tread from 180 nm to 65 nm nodes published by Intel peaked at 130 nm node and decreased since

then [Seifert et al., 2006]. A sharp increase of the SER when scaling from 250 nm to 160 nm

was depicted by Dodd et al. [2010], peaking at 140 nm node and decreasing ever since. Baumann

[2005b] described and explained the saturation of the SER as the feature size scales. Slayman

[2011] reported that the trend of SRAM per-bit SER from multiple vendors is almost flat from

250 nm to 50 nm design rules. Dixit and Wood [2011] observed a decline of the SRAM SER

from from 250 nm to 65 nm, but the trend was reversed at the 40 nm feature size: the SER for

individual 40 nm SRAM cells was greater than the SER of the 65 nm cells. They also expected

that the reduction of QCRIT will eventually cause the SER of SRAM to rise. However, the general

agreement is that the overall system-level SER of SRAM is increasing since the scaling feature

size also translates to higher cell density and that the capacity of SRAM in microprocessors keeps

growing rapidly. Furthermore, multi-cell upsets are increasing because a particle can more easily

penetrate several densely packed cells [Dixit and Wood, 2011; Dixit et al., 2009], challenging the

effectiveness of SEC-DED ECC.

The SER performance of DRAM cells is improving as technology advances [Baumann, 2003;

Slayman, 2011]: over seven generations, the SER of DRAM has been reduced by more than 1000

times [Baumann, 2005b]. The significant reduction can be attributed to the facts that the charge
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collection efficiency decreases as the sensitive area shrinks and that the cell capacitance (and thus

QCRIT ) is relatively constant over generations. Nevertheless, the system SER of DRAM remains

constant or even increases due to the greatly increased memory density and capacity. Another

trend is that DRAM logic errors need more attention: the DRAM logic errors tend to be multi-bit

errors and require advanced ECC (e.g., chipkill) to correct [Slayman, 2011].

Shivakumar et al. [2002] predict how technology scaling will affect the SER of combinational

logic by building a model that takes masking effects into consideration. The results reveal that

both memory and combinational logic elements are becoming more susceptible because of feature

size scaling, and the SER of combinational logic is increasing faster than the memory’s since the

scaling also impacts the masking effects that reduce the SER of combinational logic. In terms of

single event transients, increasing clock frequencies, along with CMOS technology scaling, has

negative impact on the electrical and temporal masking: the higher frequencies lead to a higher

percentage of transients that fulfil the requirements for propagation and the elevated probability of

transient signals being captured by storage elements [Buchner et al., 1997; Ferlet-Cavrois et al.,

2013]. The threshold frequency at which logic errors overtake flip-flop errors, based on test results

on 40 nm bulk CMOS circuits, has been estimated in the range of 1.5 to 5 GHz [Mahatme et al.,

2011]. The SET (single event transient) pulse width plays an important role in determining the

vulnerability caused by SETs: the wider the transient pulse width, the higher the probability of

the transient signal causing an error. Benedetto et al. [2006] observed significant increase in pulse

width as a result of feature size scaling and lower nominal voltages. The increase of pulse width

was also reported when the technology scaled from 130 nm node to 90 nm node [Narasimham

et al., 2007], “ The event cross section is the highest for SET pulses between 400 ps to 700 ps

in the 130 nm process, while it is dominated by SET pulses in the range of 500 ps to 900 ps in

the 90 nm process.” However, Nakamura et al. [2012] reported that most of the pulse widths

observed for 20-stage NAND AND inverter chains manufactured by 90 nm and 40 nm bulk CMOS

process are less than 150 ps. The reduction of the pulse widths when moving to 65 nm node from

130 nm and 90 nm nodes is also described by Gadlage et al. [2010], and the authors concluded

that the trend of transient pulse widths is difficult to determine due to the fact that the several

combined factors [Ahlbin et al., 2010; Jagannathan et al., 2010; Maharrey et al., 2013] affect the

SET pulse width distributions. Modeling the SETs in advanced ICs using advanced technologies,

for example, FinFET ( Fin Field Effect Transistor) and UTSOI (ultrathin silicon on insulator), is

an active and challenging research area [Artola et al., 2015].

In summary, as the feature sizes shrink and technology advances, the volume of sensitive

regions keeps shrinking so that the charge collection efficiency reduces. The move from planar

bulk to SOI [Cannon et al., 2004; Oldiges et al., 2009] and multi-gate [Fang and Oates, 2011;

Wang et al., 2006] technologies also reduces cross sections and sensitive volumes. However,

feature size scaling is also accompanied by reductions in the nominal supply voltage (thus, the

critical charge Qcrit), noise margins, and node capacitance. The reductions raise the sensitivity to

soft errors and expand the spectrum of “problematic” particles (e.g., protons [Rodbell et al., 2007],

muons [Sierawski et al., 2010], and electrons [King et al., 2013]). Also, the significantly increased

device density raises the possibility of multiple components being affected by a single particle

strike so that the effectiveness of SEC-DED ECC coding and other redundancy-base fault-tolerant
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mechanisms needs further investigation. Succinctly, despite advanced technologies improving soft

error rates of ICs, the reliability issues caused by transient faults persist [Massengill et al., 2012].

2.1.5 COTS Hardware Faults in the Wild

Having introduced the physical mechanisms and the trends of transient faults, we try to get some

insights about how transient faults affect the reliability of COTS hardware by examining real-world

data—are the faults so rare that they can be ignored, or are they real threats that must be dealt with

properly to ensure a certain level of reliability? There are a plethora of field studies collecting and

analysing COTS hardware reliability data; we only excerpt the data related to transient faults.

The SEC-DED ECC-protected memory (approximately 3.92 GB each server) used by 212

servers was monitored over a period of three months, and 8288 memory errors were collected [Li

et al., 2007]. The authors believed that most of the errors were permanent errors and that only two

were soft errors. The error data was collected directly from memory controllers which recorded

corrected errors. The authors also conducted measurement by using a software-based error collec-

tion approach on 20 desktops and 70 geographically distributed PlanetLab machines, and all these

machines were not protected by ECC. The software approach reported no errors. We speculate that

the zero-error result is because of the limited memory sizes monitored by the software method:

averagely 104.23 MiB out of 512 MiB for each desktop and 1.54 MiB for each PlanetLab ma-

chine. Schroeder et al. [2009] gathered memory error data in a large server fleet over the period of

2.5 years. Two out of the six platforms studied employed SEC-DED ECC, and the rest platforms

used more powerful Chipkill [IBM, 2016] ECC. The DIMMs came from multiple manufacturers

and covered common DRAM technologies: double data rate (DDR1), double data rate 2 (DDR2),

and fully-buffered DDR2 (FBDIMM). Some of the key findings include: (1) The error rates are

much higher than previously reported. “Across the entire fleet, 8.2% of all DIMMs are affected

by correctable errors and an average DIMM experiences nearly 4000 correctable errors per year.”

Even with SEC-DED ECC or Chipkill-protected memory, “the annual incidence of uncorrectable

errors was 1.3% per machine and 0.22% per DIMM.” (2) “Memory errors are strongly correlated.

A DIMM that sees a correctable error is 13-228 times more likely to see another correctable error

in the same month.” (3) “Error rates are unlikely to be dominated by soft errors.” From the two

studies, we can observe that memory errors are common and frequent, that SEC-DED ECC or

even Chipkill is unable to correct all errors, and that transient faults are rare but not negligible.

Sridharan et al. [2013] summarised DRAM and SRAM faults in supercomputers (Cielo and

Jaguar). The authors made the following observations: (1) “the composition of DRAM faults

shifts markedly during the first two years of lift time, changing from primarily permanent faults

to primarily transient faults.” (2) “a significant inter-vendor effect on DRAM fault rates, with

fault rates varying by up to 4× among vendors.” (3) “SRAM faults in the field are primarily

transient.” In a following-up study, DRAM and SRAM errors of two supercomputer clusters

(Cielo and Hopper) were analysed [Sridharan et al., 2015]; the collected data comprised over 314

million CPU socket-hours and 45 billion DRAM device-hours. Cielo is equipped with Chipkill-

correct ECC memory [IBM, 2016], and Hopper is protected by Chipkill-detect ECC memory.

Both Chipkill ECCs are more resilient to faults than SDC-DED ECC memory: Chipkill-detect

ECC is able to detect any error in a single memory chip, and Chipkill-correct ECC can correct
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any error in a single memory chip. The authors find that the SRAM used as CPU L1/L2 caches

mainly suffers from transient faults caused by particle strikes, so extending the parity-protected

SRAM to the SDC-DED ECC protected SRAM should be able to correct most of single-bit faults

in SRAM. However, the level of protection provided by SDC-DED ECC memory is not sufficient

for modern memory systems and may result in undetected errors up to 20 FIT per DRAM device.

For the Hopper system, 78.9% of total DRAM faults are single-bit faults, and the rests are various

multi-bit faults; transient faults represent 44.5% of total DRAM faults. It is worth noticing that

the DRAM of these supercomputer systems uses advanced ECC technology and that the quality

grade of the memory chips are higher than consumer-grade chips used in desktops, laptops, and

mobile devices. Both studies confirm that the DRAM failure rates are vendor-dependant and that

the percentages of transient faults are higher than the results of previous studies [Li et al., 2007;

Schroeder et al., 2009]. The trend of increasing multi-bit faults is also supported by the data,

calling for advance ECC variants to reduce uncorrectable errors and silent data corruptions.

Bautista-Gomez et al. [2016] collected raw memory errors on a supercomputer consisting of

1080 nodes from February 2015 to February 2016; each node is an ARM SoC including two cores

and 4 GiB low-power DRAM without ECC protection. 923 nodes were continuously monitored

by a memory scanning program which wrote and checked data patterns when a node was idle

to detect bit flips. The authors intentionally chose DRAM modules without ECC protection and

implemented software-based memory error monitoring to detect the errors escaping ECC and lead-

ing to silent data corruptions. In total, the study analysed the memory monitoring logs of 12,135

terabyte-hours, and 55,000 independent memory errors were logged. Among the logged errors,

85 corrupted multiple bits of a memory word: 76 were double-bit errors, and 9 errors corrupted

more than 2 bits so that SEC-DED ECC would fail to catch the errors. Given the logs included

the timestamps when errors were detected, an important fact revealed by the study is that “over

26,000 corruptions occurred simultaneously to other corruptions in the same node. Over 99.9%

of those were multiple single-bit corruptions that occurred simultaneously in different parts of the

memory of the same node.” This finding demonstrates that the single-bit-error threat model, which

is adopted by several fault-tolerant approaches, is not suitable for modern unprotected DRAM.

Nightingale et al. [2011] analysed hardware failure rates of over one million PCs that lack of

error detection features, such as ECC protected memory. The data was collected by the Windows

Error Reporting (WER) system which generated logs when the system crashed, so the errors that

did not crash a system were excluded. For CPU-subsystem failures, a machined-check exception

(MCE) was issued to notify the operating system. For DRAM failures, the bit flips in the Windows

kernel code pages were logged. The read-only kernel code pages contain the OS kernel code and

device drivers. Although the exact causes of such bit-flips are unknown, the authors confirmed that

DRAM actually contained the erroneous values and that the bit-flips were less likely to be caused

by buggy DMA. The failure rates of CPU and DRAM are not trivial: 1 in 190 for CPU subsystem

(MCE) and 1 in 1700 for DRAM (one bit-flip) during a period of 30-day total accumulated CPU

time (TACT). Furthermore, recurrent failures are common; the likelihood of hardware crashing

again after the first crash increases by up to two orders of magnitude. Due to the lack of hardware

support for diagnosing errors, the authors did not trace back to the root causes of the errors. Neither

silent data corruptions nor application crashes were included in the study. However, the study does
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provide the evidence of bit flips in kernel code pages in the real world. We also infer that the total

hardware fault rates are higher than the reported failure rates since not all faults trigger failures.

The study of failure rates for COTS server-grade processors is less prolific than that of DRAM

or SRAM. Shazli et al. [2008] presented a case study for 32-bit server-grade processors used in

information systems. Two anonymous system types, A and B, were included in the study. Parity

was used to protect L1 cache and tags of L2 cache, and L2 cache data was guarded by ECC. The

field data was collected from thousands of systems in various locations over a period of 3 years.

The authors gave detailed examples of a probable SEU in the instruction pointer, a bit flip in the

address of a function, and a bit flip in the instruction cache. Since the FIT (failure in time) data

was considered as sensitive information, the absolute FIT rates were not revealed.

2.1.6 Summary

Transient hardware faults have significant impacts on the reliability of CMOS devices. We first

introduced the physical process of alpha particles or neutrons striking silicon crystals and then

described how such strikes can impact DRAM, SRAM, and logic circuits. Scaling feature sizes,

reducing supply voltages, lowering noise margins, and increasing clock rates make CMOS devices

more susceptible to transient faults. Several field studies demonstrate that the reliability issue of

COTS hardware is real. Considering the trends of transient faults and the unlikelihood of adopting

advanced error detection and correction techniques in high-volume COTS hardware due to the

increased costs and energy consumption, transient hardware faults are not going to vanish in the

near future.

2.2 How Transient Hardware Faults Impact Software

In this section, we first clarify the meanings of the terms faults, errors, and failures. We also

introduce the classification of errors and point out that silent data corruptions can be harmful.

Then, the security impacts of hardware faults are revealed as the main motivation of our work.

2.2.1 Classification of Errors

Obviously, not all transient faults will lead to errors. Some faults are removed by the software

or hardware masking effects. When faults propagate to the architecture interface between soft-

ware and hardware (e.g., faults in registers, caches, and memory), they become errors and may

corrupt results of computations. Subsequently, the incorrect results may lead to system failures.

Errors can be further categorised according to their severity and consequences, as shown in Fig-

ure 2.2 [Weaver et al., 2004]. The errors marked as benign or corrected do not affect the correctness

of output data. For example, a memory error is masked if the memory location is overwritten by a

new value before the previous erroneous data is used. Another example would be a single-bit flip

detected and rectified by ECC circuits.

Detected unrecoverable errors (DUEs), for instance, multi-bit errors beyond the reach of SDC-

DED ECC, can cause terminations of applications or kernel panics. As DUEs manifest as observ-

able abnormal events, we can take actions to prevent them from propagating and causing severe

consequences. Silent data corruptions (SDCs) are much more difficult to tackle—we are not aware
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Figure 2.2: Classification of errors

that the data in registers, caches, or memory has been corrupted and that the computation process

has produced incorrect results. Fault-tolerant mechanisms aim to convert DUEs to corrected errors

and SDCs to DUEs or corrected errors, improving overall system dependability.

2.2.2 Security Impacts

Conducting software-based fault injection are often used to investigate how errors impact software

systems (see [Hsueh et al., 1997; Ziade et al., 2004] for surveys on fault injection tools). We only

include the studies that put emphasis on security implications of the errors induced by transient

faults.

Xu et al. [2001] injected single-bit flips to code segments of FTP and SSH servers by using NF-

TAPE to evaluate how errors impact security of the servers. The fault injection approach is called

selective exhaustive injections: only branch instructions in the code segments that are critical to

system security are selected for injections (selective), and every bit of selected branch instructions

is injected (exhaustive; one single-bit flip for each run). 7,432 runs were executed for the FTP

server, and approximately 88% of the injected errors were never activated. The low activation

rate was attributed to the fact that many of the code blocks were not reachable for a particular

client request. Among the activated errors, about 38.5% had no impact; around 52% caused server

crashes; and approximately 9% introduced fail silence violations. Most importantly, the security

of the FTP server was compromised in 7 runs (1.07% of activated errors) in which unauthorised

accesses with an invalid password were allowed. 2,664 runs were conducted for the SSH server.

About 40% of injected errors were never activated, and the authors attributed the higher activation

rate to the fact that the implementation of the SSH server was more compact than that of the FTP

server. Out of the activated errors, the percentages for no impact, system crashes, and fail silence
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violations were 40%, 52%, and 7.5%. In 19 cases (1.5% of activated errors), a user with incorrect

password was allowed to access the system. In a following-up study, Chen et al. [2004] exam-

ined how errors affected Linux kernel packet filters/firewalls: IPChains and Netfilter. Similarly.

single-bit flips were injected exhaustively to the instructions of four critical firewall functions. For

IPChains, 78% of the injected errors were not activated, and 20% of the errors caused crashes

or hangs. 2% and 0.5% of the errors led to temporary and permanent security vulnerabilities that

allowed unapproved packets to pass. For Netfilter, the numbers were 57%, 42%, 1.9%, and 0.02%.

Govindavajhala and Appel [2003] demonstrated that a single-bit flip induced by heating PC

(personal computer) memory with a light bulb can be exploited to gain full control over a Java

VM at a high success rate. The idea is to fill the heap with many objects of type B and a single

object of type A. All the fields of the type B objects are pointers to the single type A object that

has the following fields: a pointer to a type B object, an integer, and pointers to itself. By carefully

arranging the fields and sizes of both types, a single-bit flip in a field of a type B object has a

good probability of changing the field to reference a B type object. Thus, the static type of the

field, type A, mismatches the actual referenced object type—type B. Subsequently, the runtime

mismatch can be exploited to read and write arbitrary virtual memory addresses of the Java VM.

The RowHammer DRAM bug, which exits in many DRAM modules manufactured by all

three major DRAM suppliers, provides a software-controlled and repeatable method to introduce

bit flips in DRAM [Kim et al., 2014]. Since DRAM cells are getting smaller and closely packed

together, frequently activating a row can introduce disturbance errors to adjacent rows. Software

can simply use memory read and cache flushing (CLFLUSH on x86) instructions with row-conflict

addresses in a loop to activate the bug. The bug has been exploited to break out of the Native Client

sandbox in Chrome and to gain access to all physical memory on Linux machines [Rowhammer].

The latter attack is achieved by populating memory with page table entries and exploiting a bit

flip in an entry. The consequence of a successful attack is complete control over the targeting

machine. Although the bit flips are not directly related to particle strikes, the bug does corroborate

the severity of the hardware reliability issue.

2.2.3 Summary

Although a significant fraction of the hardware faults is masked by various hardware/software

masking effects, the remaining faults propagated to architectural interface can cause errors that

corrupt data or alter control flows. The affected software may exhibit observable anomalies: page

faults, invalid instructions, early terminations, or system crashes. Furthermore, silent data cor-

ruptions can induce security vulnerabilities or affect data integrity. Thus, the need for protecting

software components from hardware errors is evident and immediate.

2.3 Relevant Concepts in Fault Tolerance

In this section, we introduce concepts and principles guiding our design and implementation. The

sphere of replication (SoR) helps us identify components protected by redundant co-execution and

vulnerable parts that should be guarded by other measures. State machine replication is a simple

yet powerful approach to achieving fault tolerance, and it is mostly used to protect applications for
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improved availability in the case of server crashes.

2.3.1 The Sphere of Replication

Replica0 Replica1

Output 
Comparison

Input 
Replication

Rest of System

Figure 2.3: The sphere of replication

The sphere of replication (Figure 2.3) is introduced by Reinhardt and Mukherjee [2000] to

describe the physical or logical redundancy in fault-tolerant systems. The root of this concept

dates back to the early years of replication-based fault-tolerant systems, before the term (SoR)

was coined. Replica0 and Replica1 are the parts of the system that are executed redundantly. In-

put replication ensures that the replicas observe consistent input data from the rest of the system

so that they will not diverge, and output comparison checks for inconsistency of output data from

the replicas for error detection. Although the concept originally was introduced in the context of

hardware-based fault tolerance, it can also be applied to software; and we will use this concept

to analyse each component in our proposed architecture in Section 4.1.3. The components car-

rying out input replication and output comparison are vulnerable if they are not self-checked or

redundantly executed. Thus, one of our design decisions is to conduct output comparisons inde-

pendently on each replica so that the comparisons are also protected by redundant co-execution.

Input replication is not protected in the current framework. If an error occurs during the input

replication step, there are two possible outcomes: (1) Inconsistent input data is provided to the

replicas so that the replicas diverge and/or produce different output data. We design error de-

tection mechanisms to capture the divergence or output irregularity to detect the errors. (2) The

same but incorrect input data is provided to the replicas so that the replicas do not diverge and/or

produce the same erroneous output data. As to the second case, we suggest adopting information

redundancy (e.g., parity and CRC) to protect input data integrity so that corrupted data can be

detected.

2.3.2 State Machine Replication

State machine replication (SMR) [Schneider, 1990] is an extensively studied and well-understood

approach for building fault-tolerant services. The principles (or requirements) of SMR can be

generalised as the following items.

17



2.4. SEL4 MICROKERNEL

1. Duplicate a service to one or more machines or processors and ensure that all replicas have

consistent initial states.

2. Guarantee that all replicas observe the same input data or requests, in the same order.

3. Build state transition functions in a way that they produce output data or responses only

based on current state and input data or requests.

4. Given a state and input data or a request, the new state and the output data or response of

any correct replica are always the same (determinism).

Studies apply SMR on networked servers [Cui et al., 2015; Guo et al., 2014; Kapritsos et al.,

2012]. Consensus protocols, for example, Paxos [Lamport, 1998] and Raft [Ongaro and Ouster-

hout, 2014], are used to ensure that the replicated services agree on the order and type of incoming

requests to be handled. Replicating user-mode applications, as shown in Section 3.2.2, is straight-

forward and mature. To satisfy the requirement of consistent initial state, properly initialising

variables and disabling address space randomisation (only if the control flow relies on virtual ad-

dresses) are sufficient. The consensus protocols are designed to fulfil the requirement of observing

the same input data in an orderly manner. Various approaches described in Section 3.3 help to tame

non-determinisms. Consistent state transitions and output data follow naturally if the first three

items above are satisfied.

One common way of applying SMR to an application is to build an active-standby pair on

physically separated machines so that the standby machine can keep operating should the active

machine crash, improving the system availability. The active-active pattern is also prevailing

since two active machines both serving incoming requests improve hardware efficiency. Our aim

of implementing SMR is significantly different from the common active-standby and active-active

patterns: our goal of applying SMR to a whole software system including the lowest-level system

software is to prevent the errors induced by transient hardware faults from becoming silent data

corruptions that impact system integrity and plant security vulnerabilities that can be exploited by

attackers to compromise a system.

2.4 seL4 Microkernel

The formally verified seL4 microkernel is a member of the L4 family [Elphinstone and Heiser,

2013]. The formal verification of the kernel proves that the behaviours and security properties

defined in the high-level design specification are implemented correctly in the C code, eliminating

software bugs [Klein et al., 2009]. Furthermore, the microkernel can provide strong isolation

guarantee [Elkaduwe et al., 2006; Murray et al., 2013; Sewell et al., 2011] that is indispensable

for building dependable computer systems on which trusted and untrusted components can be

integrated. This section, partially based on “seL4 Reference Manual” [seL4], introduces important

concepts of the microkernel.
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2.4.1 Capability Space and Resource Management

The access control model of seL4 is based on capabilities [Dennis and Van Horn, 1966]. System

resources, for example, memory and I/O devices, are governed by capabilities that are unforgeable

tokens with access rights. During initialisation, seL4 creates capabilities according to detected

hardware configuration and stores them in a table called CSpace (Capability Space). Each capa-

bility is addressed by an integer called CPtr (Capability Pointer); and capabilities can be copied,

moved, or revoked if the owners of the capabilities have authority to do so. The initial CSpace

is passed to a user-mode bootstrapping thread (i.e., the root task) that is responsible for further

initialising the whole system according to predefined policies that specify how the bootstrapping

thread creates other threads and distributes the capabilities to other threads. Once the system ini-

tialisation is done, the bootstrapping thread typically halts itself; and thus each thread can only

manipulate the capabilities assigned to it. Without explicit communication channels (endpoints)

established between two threads, the threads cannot copy or move capabilities; so the authority to

resource represented by capabilities is confined within the threads respectively.

Kernel objects, for instance, threads, endpoints, virtual memory objects, and even capability

spaces, are managed through capabilities. The kernel objects are created through retyping mem-

ory regions which are represented by untyped capabilities. These untyped capabilities contain

physical addresses and lengths of memory regions. A thread is allowed to create a kernel object

only if it has an untyped capability which satisfies the required memory size of the kernel object,

so the number of kernel objects that can be created by the thread is determined by the untyped

capabilities owned by the thread. The advantage of this model is that all kernel object creations

become explicit, preventing kernel memory exhaustion attacks mounted by malicious threads cre-

ating kernel objects repeatedly. The names and descriptions of the kernel objects are listed in

Table 2.1.

After the kernel initialises the root task, the kernel creates untyped capabilities that cover

all remaining unused physical memory regions and inserts them to the CSpace of the root task,

delegating all physical memory management to user-mode applications. This design avoids the

complexity of memory management in the microkernel, but it also exposes the physical memory

addresses to applications. The kernel also creates various device frame capabilities and I/O port

capabilities (x86 only) according to I/O devices available on a system, and these capabilities are

given to the root task as well. Section 5.1 discusses in detail how user-mode device drivers use

these capabilities to communicate with I/O devices. For now, we only need to know that the root

task distributes these capabilities to device drivers so that the drivers are able to access I/O devices.

One important fact we need to emphasise is that kernel objects can be treated as extensions

of kernel data structures although they are created at the discretion of user-mode threads. For

example, the virtual address space objects resemble the multiple-level in-kernel page tables used

in other kernels. Admittedly, the seL4 microkernel consumes an insignificant amount of memory

after it finishes initialisation; but the memory usage of the kernel grows as more kernel objects are

created.
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Type Description

CNodes Capabilities are stored in CNodes, and each CNode has a fixed number of
slots determined when the CNode is created.

Thread Control
Blocks

TCBs represent kernel scheduling entities, called threads, in seL4;
architecture-dependant registers files are saved in TCBs when threads are
blocked.

IPC Endpoints Endpoints are the main inter-process communication mechanism provided
by seL4. Threads send, reply, and wait for messages through endpoints.
Furthermore, capabilities can also be transferred through endpoints.

Notification
Objects

Notification objects are provided as a signalling mechanism. A notifica-
tion object contains a word-size array of flags, and each flag works like a
binary semaphore. Hardware interrupts are delivered to user-mode drivers
through notification objects. See Section 2.4.4

Virtual Address
Space Objects

Virtual address space objects are used to construct virtual memory address
spaces, which are consulted by processors to translate virtual memory ad-
dresses to physical memory addresses. See Section 2.4.3.

Interrupt Objects Interrupt objects allow user-mode drivers to receive and acknowledging
interrupts. A capability to the IRQControl object controls the creation of
IRQHandler capabilities. An IRQHandler capability associated with an
interrupt source can be delegated to a driver so that the driver is allowed
to wait for and acknowledge the interrupt source (Section 2.4.4).

Untyped Memory Untyped memory are kernel objects representing unused physical memory
regions; each untyped object contains the start kernel virtual address and
size of the region described by the object. The retype operation applied on
untyped objects can create other kernel objects. Also, an untyped object
representing a large memory region can be divided into several untyped
objects describing smaller memory regions.

I/O Ports I/O port objects only exist on x86 machine, representing the authority to
access ranges of hardware I/O ports.

Table 2.1: seL4 kernel objects

2.4.2 Threads, Scheduling, and Inter-Process Communication (IPC)

The seL4 adopts a single-kernel-stack and non-preemptible kernel execution model to tackle the

limitations of formal verification. Kernel system calls or interrupt handlers run to completion

without being disturbed by interrupts, thus limiting concurrency inside the kernel to reduce com-

plexity of verification. Some kernel operations may execute for a significantly extended period

with interrupts disabled, so several long-running functions feature preemption points to reduce the

interrupt latency. The preemption points poll for pending interrupts; and if there is one, the kernel

suspends and backs out of the current system call, and then invokes the interrupt handling code.

The suspended system call will be restarted once the interrupt handling is done.

The kernel scheduling entities of seL4 are threads. Threads are created through retyping un-

typed capabilities to thread control blocks (TCBs); a TCB contains the following fields:

The priority of a thread is used by the kernel scheduler to determine the next thread to run.

The state of a thread represents the current state; the states are: Inactive, Running, Idle,
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Restart, BlockedOnSend, BlockedOnReply, BlockedOnReceive, BlockedOnFault,

and BlockedOnNotification.

User-mode registers are used to save user-mode register contents when a running thread traps to

kernel mode due to interrupts, system calls, or exceptions. The contents are architecture-

specific and are restored to hardware registers when the thread is resumed. The kernel can

examine the saved values of the user-mode registers.

The remaining time slices record how long a thread can keep executing on the current core be-

fore the kernel preempts the thread and invokes the scheduler.

The type of fault indicates the type of fault that a thread triggers. The exact type is architecture-

dependant. The common ones are: invalid addresses (data and instructions), invalid instruc-

tions, debug exceptions, etc.

The capability pointer to a fault handler tells whether there is a handler (another user-mode

thread) for handling faults triggered by a thread. In the case that a valid handler exists,

the faulting thread is suspended; the kernel resumes the handler thread and passes fault

information to the handler.

The initial capability table of a thread is allocated together with a TCB, and the table contains

several frequently used capabilities pre-populated by the creator of the thread.

The physical address of a thread’s IPC buffer is used together with the IPC buffer capability

to obtain the kernel virtual address of the IPC buffer so the kernel is able to pass messages

between threads.

The pointer to a notification object usually is used to notify a thread of incoming hardware in-

terrupts if the thread is a driver.

seL4 has 256 priorities and schedules ready-to-run threads with the same priority in a round-

robin fashion. A platform-specific hardware timer is configured to generate periodic interrupts

that are called kernel ticks. The length of a tick is configurable, so is the number of ticks allocated

to running threads. When a thread uses up all its time slices, the kernel iterates the runnable thread

queue from high priority to low priority and chooses the first runnable thread that has higher or

equal priority (compared with the current thread) as the next thread to schedule. If such next-to-run

thread exists, the current thread running out of slices is put back to the run queue; otherwise, the

current thread is scheduled to run again. In both cases, the time slices of the thread are replenished.

Among the valid state transitions, only the transition from BlockedOnNotification to Running

is triggered by non-deterministic device interrupts. All other transitions are results of system calls

or exceptions which are deterministic. Therefore, the scheduler of seL4 is deterministic provided

that we ensure the deterministic observations of device interrupts.

Systems based on the seL4 kernel depend on fast IPC (Inter-Process Communication). seL4

implements IPC with endpoint kernel objects and adopts the rendezvous model. The capabilities

to endpoints are used as parameters of seL4 Send, seL4 Call, seL4 Reply, seL4 Recv and

seL4 ReplyRecv system calls. An endpoint blocks a sender until a receiver is ready. Likewise, a

receiver is queued until a message arrives.
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2.4.3 Virtual Memory Space

Virtual memory spaces are vital for isolation. Modern processors are equipped with memory

management units (MMUs) to translate virtual addresses to physical memory addresses, enforcing

isolation between threads by separating physical memory regions used by the threads. An MMU

walks through multiple-level page tables, using different fields of a virtual address as indexes

into various levels of the page tables. The last-level page tables contain the final corresponding

physical address. Different architectures implement the table formats and lookup mechanisms

differently [ARM, 2014; Int, 2016b], but the principle of address translation stays the same. When

the kernel preempts the current thread and switches to another one, the control register holding the

start address of the active translation tables is also updated with the address of the next thread’s

page tables; so the processor can start to use the new mappings. Because all threads share the

kernel, the higher part of the virtual address space (usually the top 1 GiB for a 32-bit kernel, but

configurable) is reserved; kernel code and data sections are mapped to the reserved regions of all

threads.

The virtual memory space of the root task is set up by the kernel during system bootstrapping;

all other VM spaces are created by retyping untyped objects into various VM kernel objects:

page directory objects, page table objects, and frame objects with different sizes. System calls

are provided to map frame objects and intermediate page table objects (if the tables do not exist

yet) into a page directory at specified virtual addresses. As we will see later, these system calls are

augmented with new options to support device driver replication (Section 5.4.1) and error masking

(Section 5.7.3).

2.4.4 User-Mode Drivers and Interrupt Delivery

Device drivers for seL4-based systems run in user mode; they are just normal applications, except

that they have capabilities representing I/O ports and device memory-mapped I/O regions. Also,

drivers can receive device interrupts delivered by the kernel through notification object capabili-

ties.

Different architectures have different approaches in terms of organising how I/O device reg-

isters are accessed by software. For example, ARM SoCs (system on chip) usually define the

layout of physical addresses statically, specifying which regions are mapped to physical mem-

ory and which regions are backed up by I/O device registers. Intel platforms keep I/O ports for

backward compatibility of legacy devices, for instance, programmable interrupt controller (PIC),

programmable interval timer (PIT), and communication port (COM); and modern PCI devices are

discovered dynamically by PCI bus scanning [Shanley and Anderson, 1999]—physical addresses

for PCI devices are stored in the base address registers (BAR) of the PCI configuration spaces

that are located during scanning. During the initialisation stage, the kernel creates capabilities that

cover I/O ports and device register regions. These capabilities are passed to the root task that is

responsible for further distributing the capabilities to corresponding device driver threads.

The kernel also creates an IRQ (interrupt request) control capability that is used by the root

task to create an IRQHandler capability for each interrupt source in the system; the resulting

capabilities are delegated to driver threads. We introduce how interrupts are delivered to user-

mode device drivers since understanding the delivery procedure helps readers to perceive how we
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include the drivers in redundant co-execution (Chapter 5). The pseudo code in Listing 2.1 is the

usual pattern used by the drivers to receive and handle interrupts. We first create a notification

object (ntfn) by retyping an untyped memory object, and then get an IRQHandler capability

(irq handler) that can be used to bind an IRQ number to the notification object (line 3) and

to unmask the IRQ source by acknowledging the handler (lines 4 and 10). The main body of the

driver is the while loop (lines 5 to 11). The driver waits for an interrupt by calling seL4 Wait with

the capability of the notification object, and the kernel sends a message to the notification object

if an interrupt associated with the IRQ specified at line 2 is received by the kernel. If the driver

has sufficient priority, the kernel will schedule the driver to run; so the driver starts to execute the

device-specific interrupt handling procedure. The driver checks if the device issues an interrupt

and the type of the interrupt, and then handles the interrupt accordingly. Finally, the interrupt

source is unmasked at line 10 so that further interrupts from the device controlled by the driver

can be delivered.

1 ntfn = retype_to_ntfn_object(untyped);

2 irq_handler = seL4_IRQControl_Get(irq_num);

3 seL4_IRQHandler_SetNotification(irq_handler , ntfn);

4 seL4_IRQHandler_Ack(irq_handler);

5 while (true) {

6 seL4_Wait(ntfn , &badge);

7 if (dev_irq_active(dev_regs)) {

8 handle_irq ();

9 }

10 seL4_IRQHandler_Ack(irq_handler);

11 }

Listing 2.1: Handling I/O device interrupts

The user-mode device driver architecture employed by various microkernels is significantly

different from monolithic kernels that include a considerable amount of driver code in kernel

mode and execute the drivers with the highest privilege.

2.4.5 Non-determinism Analysis of seL4-Based Systems

Since our approach aims to apply SMR (state machine replication Section 2.3.2) to an seL4-

based system, we need to understand the sources of non-deterministic events in the system so

that the replicas of the system do not diverge during error-free runs. As a start, we discuss the

determinism of user-mode applications. Following that, for a whole-system replication approach,

we also consider the seL4 kernel and device drivers—components that are usually ignored in other

SMR approaches, which only replicate selected applications. It is worth repeating that we focus

on a seL4-based software system running on a single core.
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Deterministic and non-deterministic events

Before diving into the details, we informally introduce the meanings of deterministic and non-

deterministic events in the context of seL4-based systems. From the kernel’s point of view, we

call the events that are intrinsic to applications and can be observed by the kernel in program order

as deterministic events. For seL4-based systems, system calls issued and exceptions triggered

by user-mode threads are deterministic events. If we replicate a single-threaded process onto

different cores with the same initial state and ensure that the system calls interacting with external

environments return the same results for the replicas, the sequences of deterministic events and

output results on different cores will be the same. In other words, deterministic events do not cause

replicas of a system to diverge. Non-deterministic events come from two sources: (1) external

environments, specifically interrupts and input data from I/O devices; (2) concurrent accesses to

shared memory regions. Non-deterministic events can cause replicas of a system to diverge so that

we need to tame them.

Non-deterministic events in applications

We start from single-threaded applications which only interact with other parts of the system

through system calls (reading/writing files, sending/receiving data to/from sockets, etc.). For such

an application, feeding the replicas of the application with consistent system call return values is

sufficient to ensure the deterministic execution of the replicas. On ARM and x86 architectures,

applications may try to read CPU timestamp counters and performance counters directly by using

inline assembly, and the counters can return different values to the replicas. Such operations must

be trapped so that the supporting library or kernel can have the opportunity of providing the same

values to the replicas. In summary, controlling system calls and accesses to CPU performance and

timestamp counters is sufficient to guarantee the single-threaded replicas not to diverge.

Multi-threaded applications inherently possess another source of non-determinism—concurrent

accesses to shared variables from multiple threads. A thread and its replica can diverge if they ob-

serve different values from a shared variable and the shared variable’s replica, depending on if the

updates (made by other threads) to the shared variables have been performed or not. If all shared

variables of a multi-threaded application are protected by synchronisation primitives, the applica-

tion is data-race-free. Ensuring consistent locking/unlocking order across replicas is adequate for

data-race-free multi-threaded applications to eliminate the non-determinism from concurrent ac-

cesses [Olszewski et al., 2009]. For applications with data races, in addition to ensuring consistent

locking order, updates to shared variables are controlled by runtime libraries [Bergan et al., 2010;

Liu et al., 2011] so that the updates are committed deterministically. Section 3.3 will describe ap-

proaches to deterministic execution of multi-threaded applications. We will also discuss support

for replicating multi-threaded applications on seL4-based systems in Section 4.5.1.

Non-deterministic events in device drivers

I/O devices are primary sources of non-deterministic events since they generate unpredictable in-

terrupts and that I/O operations have side-effects. In our approach to redundant co-execution, a

device driver is also replicated onto multiple cores so that multiple replicas of the driver can com-
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pete for a physical device. As a straightforward example, if reading the status register of a device

has the side-effect of clearing the register, the return values of reading operations issued by the

driver replicas on different cores depend on the order of the read operations. Another example

would be accessing DMA (direct memory access) buffers: the device is unaware of driver replica-

tion, so only one of the driver replicas gets input data from the DMA buffers. As to interrupts, they

are usually routed to a designated core; the driver replica running on the designated core receives

the interrupts through the notification object. However, other driver replicas are not notified. On

platforms (e.g., x86 with IO-APIC and ARM with GICD) supporting broadcasting interrupts, all

cores can get interrupts for an interrupt source, but the timing can be significantly different, leading

to divergence of the replicas. The support for device driver replication and coordinating the driver

replicas to observe input data and interrupts consistently are crucial for replicating the the whole

system, so we dedicate Chapter 5 to discuss the issues in-depth and to describe the mechanisms

for driver replication.

Non-deterministic Events in the seL4 kernel

The seL4 kernel is invoked in three circumstances: (1) executing system calls explicitly issued

by applications, (2) handling interrupts from I/O devices, and (3) processing various exceptions

triggered by applications. The category (2) is related to I/O devices; device interrupts non-

deterministically interrupt user-mode applications, causing switches to kernel mode (interrupts are

disabled in kernel mode). Further, the interrupts can be classified as kernel preemption interrupts

that trigger rescheduling (the interrupts from the kernel preemption timer) and device interrupts

that are forwarded to user-mode device drivers. The steps for handling the kernel preemption timer

interrupts include decreasing the time slice available for the currently running thread and context

switching to a new thread if the current thread uses up its time slices. Similarly, forwarding the

device interrupts to user-mode drivers also involves preempting the current-running thread. If the

preemptions happen on different cores without coordination, the current threads running on differ-

ent cores can be preempted at different instructions; or even worse, the preempted current threads

can be replicas of different threads. For instance, thread A is preempted on core 0, but thread B is

preempted on core 1. The uncoordianted preemptions can lead to divergence.

The system calls provided by the seL4 kernel are quite different from the ones supplied by

traditional monolithic kernels. Only functions or mechanisms enabling safe resource sharing are

kept in the microkernel, and the kernel objects described above (Table 2.1) are manipulated by

respective owners through capabilities to achieve various system configurations. The seL4 kernel

only provides Send, NBSend, Call, Wait, Reply, ReplyWait, Poll, and Yield. Detail descrip-

tions of the system calls can be found in [seL4]. The system calls, except Yield, take a capability

(a handle to a kernel object) as the first parameters and modify the state of the kernel objects

according to additional system call parameters provided. Therefore, we need to examine the ker-

nel objects to determine the determinism of the system calls. The criterion is simple: the state

of a kernel object is affected by non-deterministic events or not. In kernel mode, we only need

to consider the non-deterministic events from I/O devices; thus, the following kernel objects are

non-deterministic:

Notification objects are used for interrupt delivery so that they are directly affected by non-
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deterministic interrupts. For this reason, the system call seL4 Wait is non-deterministic

when it is used with a notification object capability that is bound to an interrupt.

IO port objects (x86 only) are used for controlling accesses to hardware I/O ports. Although

the objects are not changed by the hardware directly, the results returned by hardware

are non-deterministic. Consequently, the following system calls, seL4 IA32 IOPort In8,

seL4 IA32 IOPort In16, and seL4 IA32 IOPort In32 are non-deterministic. (Note that

these I/O port calls are just wrappers of the seL4 Call system call.)

Thread control blocks (TCBs) contain the user-mode registers of threads when the threads are

preempted. Preemptions are triggered by kernel preemption timer interrupts or I/O device

interrupts that are not deterministic. Therefore, the system call, TCBReadRegisters, re-

turns register values non-deterministically.

In short, for systems based on seL4, we consider system calls and application triggered excep-

tions as deterministic events; we also identify interrupts, unguarded memory accesses to shared

memory regions by multiple threads, and input data from I/O devices as non-deterministic events.

We also identify the non-deterministic system calls that need special attentions. In Chapter 4

and Chapter 5, we describe how our redundant co-execution approach deals with these non-

deterministic events to ensure the divergence-free execution of the system replicas during fault-free

runs.

2.4.6 Summary

Being a formally verified microkernel, seL4 provides strong isolation guarantee by adopting the

capability model for resource management and upholding the user-mode policies that prescribe the

capability distribution. Delegating resource management to user-mode servers and implementing

user-mode device drivers effectively reduce the complexity of kernel implementation, but the ap-

proach also implies that user-mode components involving in managing resources (e.g., a memory

pager) or providing services (device drivers) must behave according to their specifications. Es-

pecially, a root task has all the initial capabilities and is responsible for setting up a system. The

correct execution of the root task is vital to the security of the system since it controls capability

distribution and system initialisation. From the security point of view, we cannot simply protect

a high security level application by executing it redundantly and checking the results, especially

when the application co-locates with other applications with lower security levels. This is because

the system software (i.e., the kernel and other user-mode servers managing hardware resources) is

unprotected so that any deviation of the system software from specifications may cause unexpected

security violations.
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Chapter 3

Related Work

Opposites are complementary.

Niels Bohr

As hardware faults are common and can cause serious consequences, system designers ac-

knowledge the existence of hardware faults and develop various techniques to tolerate hardware

faults for improved system reliability. Hardware solutions implement redundancy at different lev-

els, ranging from replicated processor functional units inside a processor to redundant physical

machines connected with high-speed interconnection fabrics. These solutions have the advantages

of improved fault coverage, short fault detection latency, fast recovery, strong fault isolation, and

low performance overhead; they can tolerate both transient and permanent faults, preventing costly

system downtime and preserving service availability even when a faulty component is being re-

placed. However, replicated hardware components also imply increased size, weight, cost, and

power consumption. The thesis focuses on building systems using commodity hardware; still,

several representative hardware solutions are introduced in Section 3.1 for completeness.

Software-based fault-tolerant or error-detection-only approaches are flexible and inexpensive,

but, as far as we know, all of them assume that the underlying system software layer is not affected

by hardware faults, or that some hardware components are always correct. Unfortunately, these

assumptions limit the applicability of the software solutions, which will be discussed in detail

in Section 3.2. In contrast, our approach explicitly includes the microkernel into the sphere of

replication (SoR) and protects the kernel with redundant co-execution, aiming for a self-checking

kernel running on COTS hardware. Our SMR-based approach requires deterministic execution

of the replicas when multithreaded applications are deployed, so the related work for building

deterministic systems is also covered in Section 3.3.

3.1 Hardware Solutions

We first introduce error detection and correction methods based on circuit-level redundancy to

protect processors and memory. The increased die area, energy consumption, and latency need to

be considered when choosing a protection method for a particular circuit element. System-level

redundancy systematically duplicates all hardware components (processors, memory modules,

power supplies, I/O devices, buses, etc.) used by a system to construct multiple running replicas
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of the hardware system, aiming for very high level of reliability. The functionality of the system

is unaffected except for potential performance degradation if one or more (in some approaches)

replicas crash.

3.1.1 Circuit-Level Redundancy

Processors

Processors themselves can be enhanced with error checking features for early detection of faults.

Storage elements of the processors are normally protected by coding techniques: ECC or parity is

commonly used to detect bit flips in caches, registers, latches, TLB, etc. As to the pipeline protec-

tion, the techniques can be classified into two categories: spatial redundancy including lockstep-

ping, redundant multithreading (RMT), heterogeneous cores, etc.; and information redundancy

consisting of AN codes [Peterson and Weldon, 1972], residue codes [Garner, 1966; Lipetz and

Schwarz, 2011], parity predication [Nicolaidis et al., 1997], and so on. We focus on several repre-

sentative spatial redundancy approaches to protecting logic components and then briefly introduce

commercial processors embracing information redundancy.

Out-of-order Execution

DIVA Core

IF ID REN

EX

ROB

EX

In-of-order Verify 
and Commit

DIVA Checker

Check COMMIT

WatchDog
Instructions 
with Inputs
and Outputs

Figure 3.1: Dynamic implementation verification architecture (DIVA)

As shown in Figure 3.1, DIVA [Austin, 1999] proposes using a simple, electrically robust,

reusable, and latency-insensitive checking unit, which is suitable for formal verification, to verify

the correctness of a high-performance complex core. Instructions completed by the complex core

are shipped to the checker with inputs and outputs, and the checker re-executes the instructions

with the supplied inputs and compares the re-computed outputs with the given outputs. If the

results differ, the checker throws an exception to indicate an error. The exception is handled at

the commit stage of the checker, and the result produced by the checker is used to fix the errant

instruction. The register and memory input operands for each instruction are also verified, but

DIVA requires all architectural register files and memory be protected by coding schemes. The

author claims that the performance impact is very limited based on detailed timing-simulation

results. The reliability of the DIVA checker is vital to the correct operation of the processor

since the results produced by the checker are used to rectify errors. Thus, if the checker fails,

erroneous results will be committed to architectural storage. The author informally argues that

formal verification can guarantee the correctness of the simple checker and that using slow and

large transistors makes the checker less susceptible to transient faults. The main advantages of

DIVA are that the checker consumes less die area than duplicating a fully functional pipeline and
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that the checker can be reused with new versions of the complex core to leverage the correctness

guarantee.

Redundant multi-threading (RMT) runs two identical instances of an application thread inde-

pendently and compares the outputs of the threads for error detection. Based on a simultaneous

multi-threaded (SMT) processor, an RMT implementation called simultaneous and redundantly

threaded (SRT) processor is designed and evaluated by Reinhardt and Mukherjee [2000]. The

concept of sphere of replication (SoR) is introduced in this paper, and the authors analyse the

SRT processor with the concept to identify that inputs, instructions, cached load data, uncached

load data, and external interrupts must be replicated and that outputs, stores and uncached load

addresses, must be compared. Mukherjee et al. [2002] apply the RMT on a dual-processor device

and coin the term chip-level redundant threading (CRT). Loosely-synchronised redundant threads

are generated transparently by the processor, and the leading and trailing threads are executed on

different cores of a chip multiprocessor (CMP) to leverage the spatial redundancy and improved

fault coverage. Both SRT and CRT use similar techniques for input replication and output compar-

ison. We summarise the techniques so that we can compare them with our software-implemented

replication and comparison methods in Section 4.1.3. In the case of SRT, memory stores are com-

pared through a store buffer shared between the redundant threads: the leading thread puts the

retired store addresses and values in the buffer, and the trailing threads compares its retired stores

with the ones in the buffer. For CRT, a separate structure called store comparator monitors the

store queues of the cores and compares the stores retired by the trailing thread with the corre-

sponding ones retired by the leading thread. The consistent view of cached data is maintained

by a load value queue that contains source addresses and values of load instructions issued by

the leading thread; the trailing thread directly receives values from the queue for corresponding

load instructions instead of probing caches. As to comparing uncached load addresses, the lead-

ing thread stalls the execution of an uncached load instruction until the trailing thread executes

the same instruction so that the addresses can be checked. Thus, the threads synchronise for the

uncached load instruction and keep synchronised until the load data is returned and replicated. An

external interrupt is delivered to both threads precisely either by synchronising the threads before

the delivery or by recording the point when the interrupt is delivered to the leading thread and

redelivering the interrupt when the trailing thread arrives at the same point.

IBM G5 processors, used in IBM S/390 mainframes, are designed with replicated pipelines

and ECC protected on-chip storage (register files, cache, etc.) [Slegel et al., 1999; Spainhower and

Gregg, 1999]. S/390 mainframes are used where data corruptions must be prevented, so exten-

sive error checking is integrated into all function components of the processors, even including

combinatorial logic components that are considered difficult and time-consuming to check. To

avoid prohibitive checking overhead, the designers duplicate the I-unit (fetching and decoding in-

structions) and E-unit (executing instructions). The R-unit (a register file) is protected by ECC

and also stores the architecture checkpoint used for recovery. Caches are guarded by parity. The

total area overhead for the fault-tolerant features is 35%. The processor executes an instruction

independently twice with duplicated units, and results are compared before being committed to

the R-unit. Should a comparison fail, the faulty instruction will be retried automatically. All the

self-correcting activities of the G5 processor are transparent to software.
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ARM implemented [ARM] a lockstep mode for the Cortex-R series processors that are de-

signed for electronic systems that should provide uninterrupted services, in addition to ECC-

protected storage components (caches, tightly coupled memory, TLB, etc.) and parity-protected

branch prediction RAMs. The lockstep mode employs the second processor as a copy of the first

processor to protect logic components, without duplicating on-chip RAM to cut down the area

overhead; the input pins, the caches, and the TCM (tightly-coupled memory) of the first processor

are shared by the two processors. The output signals of the duplicated components are checked by

the comparison logic that can be customised during implementation.

Recent processors adopt coding-based techniques to detect errors in logic units instead of

replicating a whole pipeline for reduced die-area overhead and power consumption, but at the

risk of reduced fault coverage. The fifth generation Fujitsu SPARC64 processor [Ando et al.,

2003] covers 80% of the 200,000 latches with parity. The ALUs and shifters of the processor

are protected with parity predication, and the multiply and divide units are guarded by residue

check and parity predication. Furthermore, the parity bits are carried along the data paths and

checked again by the receiving components to detect errors introduced during transfers. Errors

in pipelines of Itanium processors (9500 series) [Bostian, 2012] are detected by using residues

that are produced by arithmetic units and by using parity bits for data and instructions moving

through the pipelines. Once an error is detected, the instruction replay technology, implemented

at pipeline level, re-executes the affected instruction and corrects the error automatically without

software intervention. IBM’s POWER processors employ comprehensive built-in fault detection

features [Henderson; Henderson et al.; Reick et al., 2008; Sanda et al., 2008]. Starting from

POWER6, most of data and control-flow units are protected by error-detection logic such as parity

(for latches) and residue checking (for floating-point units). A recovery unit that is functionally

similar to the R-unit in the G5 processor also exists, and the ECC-protected register file also

serves as the architectural checkpoint so that IRR (instruction retry recovery), the primary method

for handling transient faults, can try to correct a detected error based on the previous checkpointed

state. If a permanent fault is detected, APR (alternate processor recovery) moves the checkpointed

state from a failing core to a spare core and restarts execution.

Memory

The commonly-used error-correcting code for memory modules is SEC-DED (single error correc-

tion, double error detection) code [Moon, 2005]. DDR3 or DDR4 memory transfers 64-bit data

at a time; for ECC DIMMs (dual in-line memory module), the width is 72-bit including a 8-bit

error-correcting checksum to protect the 64-bit data. The 8-bit checksum is calculated based on

the 64-bit data when the data is written to memory. When the data is read back, a new 8-bit check-

sum will be computed again based on the 64-data and compared with the original checksum for

error detection. In a DIMM consisting of 4-bit memory chips, a 72-bit ECC word is stored in 18

chips; so a failure of a chip results in 4-bit data error that cannot be dealt by SEC-DED.

In order to tolerate a whole-chip failure, IBM developed Chipkill Memory [IBM, 2016] that

distributes an ECC word across multiple DIMMs so that each memory chip only contains one bit

of the ECC word. Take a 72-bit ECC word for example; 72 memory chips spanning 4 DIMMs

are required (assuming 4-bit memory chips). In this configuration, a chip failure causes 4 single-
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bit errors in 4 different ECC words, and such errors can be corrected by SEC-DED. Other major

vendors also implement similar technologies, such as Advanced ECC from HP [HP, 2016], Ex-

tended ECC from Oracle, and SDCC (enhanced DRAM single device data correction) and DDDC

(enhanced DRAM double device data correction) from Intel [Intel, 2016a].

ECC and its advanced versions provide error correction for memory, but they do not imple-

ment failover capability that is required for uninterrupted service if an entire DIMM fails. High-

end servers provide memory mirroring mode in which identical data is written to two memory

channels simultaneously [Dell, 2016; Fujitsu, 2016; HP, 2016; Intel, 2016a]. If a read from the

first DIMM fails because of an uncorrectable error, the memory controller automatically retries

the read from the second DIMM. Memory mirroring increases reliability and availability of the

memory subsystem significantly at the cost of halving the size of memory available.

Sridharan et al. [2015] conclude that SEC-DED ECC is insufficient to protect DRAM since

that multi-bit upsets are becoming more frequent and that the memory capacity keeps growing.

Advanced ECCs are capable of correcting MBUs, but they are not widely adopted mainly because

of the increased cost. Additionally, more memory chips are required to achieve the same data

bus width (72 chips for chipkill vs. 18 chips for SEC-DED ECC, assuming 72-bit words and 4-

bit chips), making the advanced ECCs less suitable for embedded systems. In this thesis, we do

not assume the memory is protected by SEC-DED ECC, Chipkill, or memory mirroring. Thus,

our approach duplicates and maintains two or three copies of data of a system in memory for

redundancy and error detection.

3.1.2 System-Level Redundancy

Tolerating hardware faults by using isolated and redundant processors, buses, memory modules,

and I/O devices is a well-accepted approach in safety-critical computer systems [Brière and Tra-

verse, 1993; Hopkins Jr. et al., 1978; Wensley et al., 1978; Yeh, 1996]. Usually, TMR (triple

modular redundancy) is employed by such systems, so a faulty unit can be identified, recovered,

and reintegrated without service interruptions. Redundant outcomes are voted onto form a final

output, and the voting units can be made self-checking to further improve reliability.

Flight-control computers for airplanes are representative safety-critical systems that require

ultimate reliability and integrity, so massive system-level redundancy and dissimilarity are the

techniques used to achieve extreme levels of reliability and availability. Take the Airbus A320

fly-by-wire system for example [Brière et al., 1995]; 5 computers are simultaneously active, and

the performance and safety of an A320 plane is unaffected if one computer fails. Furthermore,

flying the plane is still possible when only one computer is active. Each computer has two sep-

arated channels: a control channel and a monitor channel. Each channel is a fully functional

“subcomputer” with dedicated I/O units, power supply, memory, processors, etc. The monitor

channel constantly compares the outputs of the control channel with its own outputs and stops the

computer if the results of the two channels diverge significantly. The five computers are built with

two different processor models to avoid common hardware failures. Two out of five are ELAC (el-

evator and aileron computers) that are built by Thomson-CSF with 68010 processors, and the rest

three computers are SEC (spoiler and elevator computers) manufactured by SFENA/aerospatiale

based on 80186 processors. The Boeing 777 embraces triple-triple redundant primary flight com-
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puters (PFC) [Yeh, 1996]. The system consists of a left PFC, a centre PFC, and a right PFC. Each

PFC further comprises three lanes connected to an ARNIC 629 data bus with dedicated interfaces;

each lane also has its own processor, power supply, and other peripherals. Three processor models

(AMD 29050, MOTOROLA 68040, and INTEL 80486) are used by the lanes in one PFC to avoid

the case that a single common-mode hardware fault brings down the whole PFC. Dissimilar ADA

compilers compile the common software for the processors. One of three lanes in a PFC is the

command lane, and the other two lanes are the monitor lanes. The outputs computed by the three

lanes are compared against each other. Likewise, each PFC also checks its outputs with the out-

puts of the other two PFCs. From the two examples above, we can learn that dependable computer

systems can be built on COTS processors by designing the systems with enormous redundancy

and systematic engineering. In the case of A320, at least 10 processors are engineered to finish

the task of one processor; and the number is 9 for Boeing 777. Additionally, hardware diversity is

a must to avoid common-mode failures that can disrupt all processors.

For the enterprise market, NEC manages redundant Intel Xeon processors and chipsets in

lockstep mode by using specially designed LSI chips called GeminiEngine™ that monitor all

system transactions and error signals from the chipsets [NEC, 2011]. All primary components,

CPU, memory, motherboards, I/O devices, cooling fans, and power supply units, are fortified

by hardware redundancy to achieve uninterrupted service. The Xeon processors, chipsets, and

GeminiEngine™ chips embed specifics lockstep functions that are developed jointly by Intel and

NEC: (1) The XEON processors are updated with fault-tolerant specific firmware. (2) The chipsets

are enhanced with technology to maintain determinism. (3) A special initialisation sequence is

required for PCI Express. Thus, the processors in lockstep execute the same instructions cycle

by cycle synchronously. Both processors are active so that a faulty component does not upset

normal operation. The DM (data mover) in the GeminiEngine™ chips is also responsible for

copying memory contents from the primary node to the secondary node when the system starts up

or after a board is replaced. The operating systems observe the processors running in lockstep as

a single processor. I/O devices adopt traditional failover approach: pairs of active-standby disks

and network cards are visible to the processors so that device drivers can detect I/O failures of

the active devices and control the switch over to the standby devices. This example shows that

lockstepping two high-performance multicore processors is a challenging task that requires close

collaboration with the processor manufacturer. Furthermore, development and validation costs to

support new generations of processors could be significant.

The designers of NSAA (nonstop advanced architecture) [Bernick et al., 2005] recognise that

running commodity multicore processors in lockstep is becoming more challenging because of

dynamic core frequency scaling, increasing CPU frequency, and the fact that multicore processors

may not expose individual cores through the sockets. As shown in Figure 3.2, NSAA loosely

couples multicore processors to allow redundant instruction streams execute on different cores at

different speeds. Each 4-way SMP server is called a slice; and in a TMR configuration, three SMP

servers are employed. Each physical core of a 4-way multicore processor represents a processor

element (PE). Three PEs belonging to different servers are grouped together as a logical processor.

In the figure, the system has four logical processors. The physical memory of each slice is split

and assigned to PEs for isolation. Sharing memory is prohibited so that the processors can only
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communicate through the redundant ServerNet SAN (system area networks) in a message-passing

style. The ServerNet SAN is made up two independent fabrics, ensuring that a failure can at most

disrupt one fabric.
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Figure 3.2: Non-stop advanced architecture

Each logical processor is connected with one or two self-checking logical synchronisation

units (LSU), and each LSU includes a voter and a SAN interface. The voter compares IPC (inter-

processor communications) and I/O from all PEs inside a logical processor for error detection and

masking. The SAN interface is responsible for attaching the logical processor to the SAN so that

the processor can issue I/O requests and receive I/O responses from redundant I/O devices (e.g.,

mirrored disks). The packets transmitted through SAN are protected by CRC (cyclic redundancy

check), and disk data integrity is also protected by end-to-end checksums. Because the PEs inside

a logical processor are not strictly lock-stepped, they can observe an interrupt when they execute

different instructions and thus drift away, producing inconsistent output data that causes compari-

son failures at the LSUs. The PEs must be synchronised so that the interrupt handlers are invoked

exactly at the same instruction on all PEs. A rendezvous protocol and the voters in the LSUs work

together to achieve the goal: (1) When an interrupt is received by the PEs, each PE initiates a

synchronisation and proposes its VRO (voluntary rendezvous opportunity) number to handle the

interrupt by writing to the special rendezvous register in its LRU. The VRO is a small code section

embedded in the OS and called implicitly by applications. (2) The proposed VRO numbers are
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reflected to all PEs, and the highest VRO number is chosen. (3) When each PE arrives the agreed

VRO number, it calls the interrupt handler. The VRO embeds a small portion of code that increaes

the VRO number and checks for pending interrupts, and it is inserted into the code streams and

meant to be executed periodically. To cope with uncooperative processes that do not execute VRO

for an extended period, two algorithms, the UNCP-Store and UNCP-Trace, are developed to bring

the uncooperative processes running on different PEs to the same instruction before suspending

the processes and executing VRO. The UNCP-Store chooses one PE as the target and copies mem-

ory stores and registers of the target PE to other PEs. The UNCP-Trace figures out which PE is

leading and determines how many instructions the trailing PEs need to catch up. The sophisticated

operating system, NonStop Kernel, is capable of recovering from various software or hardware

failures. For instance, critical system services are implemented in primary-backup process pairs.

This approach demonstrates how processors can be loosely lockstepped (i.e., the signals the

processors are not checked cycle by cycle) by the kernel with help from LSUs and invocations

of VRO. We also aim to execute a whole system redundantly on different CPU cores, but all the

cores belong to the same processor. The issue of cores diverging because of imprecise interrupt

handling needs to be tackled in our approach as well. The synchronisation protocol Section 4.3 we

developed for redundant co-execution largely resembles functionality of the rendezvous protocol

and the UNCP-Trace algorithm in NSAA.

3.1.3 Summary

The approaches employing hardware or system redundancy are able to tolerate most transient hard-

ware faults without service interruptions. However, the initial purchase and subsequent operating

costs restrict them to several specialised segments requiring extreme uptime, such as banks, stock

exchanges, or telecommunication providers. In addition to the costs, the increased size, weight,

and power consumption of these approaches also make them unsuitable for embedded systems

(e.g., flight computers for satellites and geographic information systems for vehicles) that have

limited budgets in physical volume and are usually powered by batteries. Compared with software-

implemented approaches, hardware redundancy lacks the flexibility of allowing end users to trade

the fault coverage for better performance or vice versa. Furthermore, software approaches usually

do not rely on special hardware features so that they may be ported to different architectures or

platforms. On the other hand, relying on hardware fault-tolerant features usually means vendor

lock-in.

3.2 Software Solutions

Since we build systems on COTS (commercial of the shelf) hardware that usually lacks advanced

error-detection or fault-tolerant features (for instance, the caches of some desktop processors are

not protected by ECC), we shift our focus to software-implemented error-detection approaches.

Replication and redundant execution are the common techniques used by software-implemented

fault-tolerant approaches. The granularity of replication can be generally categorised into in-

struction level, thread level, process level, and whole-system level; furthermore, the replication

mechanisms can be implemented in compilers, libraries, operating system services, OS kernels, or
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hypervisors. The mechanisms implemented in different levels have contrasting assumptions, er-

ror coverage, error detection latencies, run-time overhead, and applicability. We can also observe

a trend that the replication granularity is becoming coarser to utilise the hardware redundancy

provided by multicore processors.

3.2.1 Instruction-Level Replication by Compiler Techniques

SWIFT is a compiler-based solution targeted for Itanium 2 processors; the modified compiler du-

plicates instructions to compute results with different registers and inserts instructions that com-

pare the results to detect transient hardware faults [Reis et al., 2005]. It assumes memory and

caches are protected by ECC so that store instructions are not replicated. In terms of SoR, general

computation and flow-control instructions are within the SoR; but the inserted checking instruc-

tions, store instructions, caches, and memory are excluded from the SoR. Input replication is

achieved by duplicating load instructions, and output comparison is realised by checking store ad-

dresses and output register values. There is a gap between the validation of the address and value

of a store instruction and the actual execution of the instruction, so an error occurred between

the validation and execution can cause an undetected data corruption. A limitation of SWIFT is

that the compiler cannot enforce an order of memory accesses for a multi-threaded application or

applications communicating through shared memory regions, so only single-threaded applications

are supported. For a multithreaded application, a replicated load instruction pair may observe

different values and cause comparison failures in absence of transient faults.

Wang et al. [2007] propose to exploit multiple cores provided by chip multi-processors (CMPs).

This technique implemented in a research version of the Intel ICC 9.0 automatically generates a

pair of threads, a leading thread and a trailing thread, for a thread in source code. The leading

thread performs all operations of the original program, and additional instructions are added to

communicate with the trailing thread. System calls for I/O operations and shared memory loads

are excluded from the SoR because the values returned by the calls or loads are non-deterministic.

Thus, the leading thread takes the responsibility of input replication by invoking the calls or per-

forming memory loads and then sending the return values to the trailing thread through a shared

memory buffer. The trailing thread, running on a separate core, re-executes the computations of

the leading thread and compares its outputs with the outputs received from the leading thread.

The comparisons conducted by the trailing thread verify the following output data: the addresses

of shared memory load or store operations, the values to be stored into shared memory, and the

parameters passed to system calls. The inserted instructions that implement the communication

channel between the leading and trailing threads and that conduct output comparisons are not

redundantly executed, so they are vulnerable to transient hardware faults.

HAFT (hardware-assisted fault tolerance) [Kuvaiskii et al., 2016] takes a hybrid approach,

which combines compiler-based instruction-level replication for error detection and Intel TSX

(transactional synchronisation extensions) instructions for error recovery. HAFT is implemented

as two LLVM [LLVM, 2016] passes: the ILR (instruction level redundancy) pass replicates in-

structions and inserts checking instructions for error detection; and the Tx (transactification) pass

covers an application with transactions (the number of transactions is determined by a transactifi-

cation algorithm at compile-time) to provide hardware-assisted recovery. The ILR pass essentially
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creates shadow threads that re-execute instructions (except control-flow and memory-related ones)

of original threads with different registers as source and destination operands, and the computa-

tion results are checked before being used to update memory locations. If an error is detected by

the inserted checking instructions, the current transaction is aborted by issuing a TSX instruction

explicitly, and the processor automatically rolls back the processor’s architecturally-visible state

to the point before the transaction started. By using hardware transactions, HAFT almost gets

error recovery for free. If an aborted transaction fails to commit within a bounded number of

retries, a non-transactional fallback will be executed instead. If an error hits the fallback, HAFT

has no choice but terminates the application. PARSEC 3.0 [Bienia and Li, 2009] and Phoenix

2.0 [Ranger et al., 2007] are used to evaluate the performance overhead of HAFT. Although the

averaged runtime overhead is 1.89 times, the overhead for each individual benchmark can be as

low as 1.04 times or as high as 4.21 times. Furthermore, enabling hyper-threading can increase or

decrease the overhead for each benchmark dramatically: matrixmul goes from 1.04 times to 377

times due to cache-unfriendly behaviour, but vips goes down from 4.21 times to 1.5 times due to

increased instruction-level parallelism. A fault injection tool, based on the Intel SDE emulator [In-

tel, 2016b], selects an instruction randomly and injects a fault to one of the chosen instruction’s

output registers arbitrarily to complete one fault injection. The results show that HAFT can detect

98.9% of injected data corruptions and correct 91.2% of the detected corruptions. However, the

total number of faults injected is not disclosed, neither is how random numbers are generated.

HAFT does require that memory be protected by other measures such as SDC-DED ECC or Chip-

kill since application data and memory load/store instructions are not duplicated, and it cannot

detect the faults happened in-between inserted checking instructions and non-replicated instruc-

tions that update memory or change control flow. HAFT does not cover Linux system calls that

run in privileged kernel mode, leaving an important part of the system unprotected.

In summary, the three compiler-based approaches share the following commonalities: (1)

Memory and caches are assumed to be protected by ECC so that application data is not dupli-

cated; neither are memory store instructions. (2) Recompilation is required, so static or dynamic

libraries are not protected unless the libraries are also recompiled. (3) The inserted checking in-

structions are vulnerable since they are executed only once. (4) There is a window of vulnerability

between the successful validation of output data and the actual use of data. (5) System call instruc-

tions are not duplicated; instructions executed in kernel mode to serve system calls are completely

unprotected. (6) Non-deterministic shared memory loads are not duplicated: a load is executed

once, and subsequently the return value is duplicated.

3.2.2 Process-Level Replication by System Services

As shown in Figure 3.3, PLR (process-level redundancy) [Shye et al., 2009] exploits hardware

redundancy provided by symmetric multiprocessing (SMP) systems or multicore processors, but

it targets unmodified single-threaded binary applications by creating replicas at the process level

with Pin (a dynamic binary instrumentation system) [Luk et al., 2005]. When a protected ap-

plication starts, PLR gains control and starts a monitor process first; the monitor process forks

the application twice or three times to create redundant processes that actually perform compu-

tations, and the original application process becomes a figurehead process that acts as a Unix
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Figure 3.3: Process-level redundancy (PLR)

signal [Stevens and Rago, 2005] forwarder. One of the redundant processes is designated as mas-

ter process that invokes system calls, others are slave processes that receive system call results

from the system call emulation layer that is also responsible for input replication and output com-

parison. Shared memory accesses are handled by trap-and-emulate techniques. An asynchronous

signal is only delivered to the figurehead process, and then the figurehead process stops all redun-

dant processes, sets up the pending signal service epoch number as the highest epoch counter plus

one, and resumes the processes. The redundant processes poll for a pending signal at the end of

each epoch; if a signal is pending and the current epoch counter matches the epoch number set up

by the figurehead process, the processes transfer control to signal handlers. The epoch boundaries

can be placed at each system call, each function call, or each backward branch. Nevertheless, PLR

assumes that operating systems are protected by other measures; neither the monitor process nor

the system call emulation layer is protected by redundant execution. A subset of SPEC2000 is

used in fault injection campaigns to evaluate PLR in terms of error detection. Each benchmark is

executed 1000 times, and one fault is injected for each run. The victim instruction is randomly

selected based on a dynamic instruction execution count profile of the application, and a random

bit is chosen from the source or destination general-purpose registers of the selected instruction.

A random bit flip is injected by the Pin instrumentation tool during runtime; thus, the fault model

is a single-bit flip in general-purpose registers. The authors claim that PLR successfully elim-

inates all silent data corruptions, and aborts and terminations caused by detected unrecoverable

errors. The averaged performance overheads measured using a subset of SPEC2000 compiled

with -O2 optimisation level are 16.9% for two redundant processes and 41.1% for three redundant

processes.

Romain [Döbel et al., 2012] is an operating system service based on a modern microkernel (Fi-

asco.OC). Romain consists a master process that initialises environments, creates process replicas,

and handles CPU exceptions (e.g., page faults, invalid instructions, or system calls) triggered by

the replicas; the exception handling code compares the replicas’ states, which include architecture

registers, kernel-level exception state, and UTCB (user-level thread control block, a per-thread
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memory region shared between the kernel and thread) contents, to detect errors caused by hard-

ware faults. The master process also acts as a system call proxy to ensure that a system call is

actually invoked only once although the replicas attempt to execute the system call multiple times.

Each replica has its own virtual memory space to leverage memory isolation, reducing the possibil-

ity of fault propagation from one replica to others; the master process also functions as the memory

manager of all the replicas, handling page faults and maintaining consistent memory layouts. The

microkernel, OS runtime services, device drivers, and the Romain framework lie outside of the

SoR. The term reliable computing base (RCB) is used to describe the software components that

must function correctly to provide transparent process replication but are outside of the SoR. The

RCB must be protected by other measures; for example, the authors propose to protect the RCB by

deploying the system on heterogeneous multicore processors which consist of hardened resilient

cores (ResCore) and non-resilient cores, and only execute the RCB on the resilient cores for reli-

able operations [Döbel and Härtig, 2012]. Romain is further improved to support multi-threaded

applications by ensuring that the invocations of pthread mutex lock/unlock functions are ex-

ecuted deterministically [Döbel and Härtig, 2014].

Similar to instruction-replication-based approaches, process-level redundancy provides pro-

tections for selected user-mode applications. Once a system switches to kernel mode to handle a

system call or an interrupt, redundant execution stops. Therefore, a significant part of the whole

system is left unprotected. For example, if the kernel responds to a system call with incorrect

data, the user-mode applications may not be able to detect such errors. A common trait shared

by these approaches is that the runtime software layers responsible for input replication, output

comparison, and replica management are not redundantly executed and verified. The trait implies

the singe-bit-flip fault model: only one bit flip throughout the execution of an application [Reis

et al., 2005]. This model assumes that a bit flip changes either the result of a normal instruction

or the result of an error-checking instruction, but not both. If the normal instruction is impacted,

the error-checking instruction should be able to detect the error; if the error-checking instruction

is affected, a false positive triggers an unnecessary recovery, but the result is still correct. The

input replication instructions can also be affected; in this case, the approaches rely on the output

comparison to catch the divergence of the replicas. However, if corrupted input data is used by

all replicas, the error cannot be detected by the output comparison—application-specific error-

detection algorithms should be employed.

Device drivers are indispensable for building practical and useful systems, but the code of

device drivers tends to have a higher error rate than other kernel subsystems [Chou et al., 2001].

Buggy device drivers impact the dependability of operating systems. Minix 3 aims to increase sys-

tem availability by isolating device drivers as user-mode processes and introducing mechanisms

that detect and repair failures of device drivers [Herder, 2010]. The system is designed to tolerate

intermittent and transient driver failures, and the observation is that microrebooting can correct a

large portion of driver failures. Running device drivers as user-mode processes employs the iso-

lation provided by MMU to prevent a driver failure from crashing or corrupting the entire kernel.

Static per-driver isolation policies restrict the resources that a user-mode driver can access, and

I/O MMU ensures that each driver can only issue DMA (direct memory access) requests targeting

the driver’s own physical memory regions. A reincarnation server monitors the status of device
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drivers and detects driver defects by the following measures: process exit or panic, CPU excep-

tions, user-initiated termination, loss of heartbeat messages, complaints by other components, and

dynamic update by users. The recovery procedure is initiated by the reincarnation server once a

defect is detected, and the procedure can be a simple restart or a policy script that contains precise

steps to repair the defect.

3.2.3 Virtual-Machine Replication by Hypervisors

The virtualization technologies extend the replication boundary to include operating systems, mak-

ing system-level redundant execution possible. A hypervisor is software that creates and manages

virtual machines (VMs) so that multiple operating systems are able to share the computing re-

sources provided by a single physical host machine; the VMs are isolated from each other by the

hypervisor. Since the hypervisor has full control over the VMs, it can pause a VM, and inspect or

modify the VM’s internal data at its will.

Bressoud and Schneider [1996] design the protocols that coordinate non-deterministic event

delivery for a hypervisor based on HP’s PA-RISC architecture so that the hypervisor is capable

of managing a primary-backup virtual machine pair for fault tolerance. The protocols divide VM

execution into epochs by programming the recovery register to generate an interrupt after a certain

number of instructions have been executed, and the length of an epoch is configurable by varying

the number written to the recovery register. A very important feature of the PA-RISC processor is

the deterministic deliveries of the interrupts generated by the recovery register, so the primary and

backup VMs start and end each epoch at the same instruction precisely. The hypervisor buffers

interrupts on the primary VM and sends them to the backup VM, and deliveries of the interrupts

on both VMs only happen on epoch boundaries. Therefore, the epoch length determines the syn-

chronisation frequency as well as the interrupt delivery latency. For the instructions that interact

with I/O devices, the hypervisor allows the primary VM to execute the instructions; and the return

values of the instructions are transferred to the backup VM as well, ensuring consistent input data

is observed by both virtual machines. The performance evaluation section reveals how the epoch

length affects CPU-intensive and I/O-intensive applications. For CPU-intensive workload, Dhrys-

tone 2.1 is used and executed 1 million iterations per experiment. The averaged execution time of

20 experiments running on the fault-tolerant VM pair is 6.5 times of the baseline execution time

when the epoch length is 4000 instructions, but the predicated best case is 1.24 times if the length is

385,000 instructions, at the expense of increased interrupt latency. Our closely-coupled redundant

co-execution in Section 4.4 also ensures that external device interrupts are observed consistently

by replicas with assistance from hardware performance counters or a compiler plugin; but our

approach does not divide the execution of VMs or applications into epochs, nor does it require

a constant distance be maintained between the replicas. The way of this approach treating I/O

instructions is also similar to our I/O device access patterns that will be described in Section 5.2.

Remus [Cully et al., 2008] aims for high availability by replicating protected and backup

virtual machines on a pair of physical hosts. The approach enhances the live migration capability

of the Xen virtual machine monitor to support fine-grained checkpoints. Instead of delivering non-

deterministic events to the protected and backup virtual machines, Remus periodically checkpoints

the state of the protected VM, transfers the checkpoints to the backup VM, and synchronises the
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backup VM state by applying the checkpoints. Network out-bound data generated by the protected

VM is buffered and can only be released when state synchronisation finishes on the backup VM

(i.e., the protected VM receives acknowledges of completed checkpoints from the backup VM).

The error detection mechanism is simply based on detecting timeouts: either the backup VM fails

to respond commit requests or the protected VM stops sending checkpoints. The states of protected

and backup VMs are not checked for data integrity or control flow correctness: the backup VM is a

copy of the protected VM so that it can be used for resuming operations if necessary. Performance

overhead is proportional to the checkpoint frequency; the measured Linux kernel compilation

overheads, in terms of increased wall-clock time, are 31%, 52%, 80%, and 103% for checkpoint

rates at 10, 20, 30, and 40 times per second respectively.

Scales et al. [2010] bring fault-tolerant features to commercial enterprise-grade virtualization

product—VMWare vSphere 4.0. Fault tolerance is provided by running the primary and backup

virtual machines in virtual lockstep on different physical machines. The term virtual lockstep

is coined to describe the fact that the hypervisors manage the virtual CPU of the backup VM

to execute the same instructions committed by the primary VM. A logging channel is used to

transmit input data and non-deterministic events captured by the primary VM to the backup VM,

which applies the data and replays the events deterministically. VMWare vSphere 6.0 [VMware,

2015] adopts a new approach called fast checkpointing to support up to 4 virtual CPUs in a virtual

machine. Fast checkpointing continuously captures the active memory and precise execution state

of the primary VM and transfers the data to the backup VM over a high-speed, dedicated 10 Gbps

network. Fast checkpointing is used to avoid recording non-deterministic events introduced by

concurrent memory accesses from multiple CPUs; this type of non-determinism does not exist

in a single-core system, and the overhead to record and replay such events is significant without

hardware support.

Overall, the VM-replication-based fault-tolerant approaches focus on tolerating machine fail-

ures, aiming for uninterrupted service. Two general techniques, record-replay and checkpointing,

are used to ensure that primary and backup VMs are in consistent states. Neither of the techniques

considers the effects of transient faults. For example, a bit flip occurred in the memory of the

primary VM can be checkpointed and transferred to the backup VM; so both VMs may suffer

from the same error and fail in the same way. Another weakness is that the outputs of the primary

and backup VMs are not compared for consistency, so the primary VM affected by an SEU may

release erroneous outputs.

3.2.4 Discussion

Table 3.1 lists representative software-implemented fault-tolerant approaches. Although the im-

plementation details, assumptions, and levels of replications vary greatly, they share a common

prerequisite: the underlying system software, be it an OS kernel or a hypervisor, is either assumed

to be fault-free or be protected by other measures. The system software is usually the critical

component to enforce system security policies and ensure data integrity. Kernels, hypervisors,

and device drivers represent a significant portion of a whole software system, providing runtime

environments for applications. Leaving these components unprotected would undermine the effort

of defending the applications from transient faults. Moreover, the system software is shared by all
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applications, so bit flips in kernels, hypervisors, or device drivers impact the whole-system relia-

bility, security, and integrity: a transient-fault-induced kernel vulnerability can cause much more

serious damages than a faulty application since the kernel has full control over the whole system

and is running at the highest privilege level. Most importantly, the existing software approaches

described above aim for fault tolerance, neglecting the security issues led by hardware faults. For

instance, none of the approaches checks the integrity of page tables that are used to translate virtual

memory addresses to physical memory addresses by processors; but these page tables are vital for

security since the isolation between applications relies on the correctness of the page tables. Our

proposed approach can be configured to include operations on the page tables into execution fin-

gerprints (details in Section 6.2) so that the kernel replicas can compare the fingerprints to validate

the correctness of the operations. Furthermore, the page tables of the replicas exist in different

memory areas so that they can be validated entry by entry if necessary.

Name Replication Level Notes

SWIFT Instruction is based on a compiler, assumes ECC memory, and supports
only single-threaded applications.

Redundant MT Thread is based on a compiler and hardware multi-threading, and
assumes ECC memory.

HAFT Instruction is based on a compiler and hardware TSX, and assumes
ECC memory.

PLR Process is based on a binary instrumentation tool (Pin).

ROMAIN Process is implemented as OS Services.

VM PA-RISC VM is implemented in the hypervisor with record-replay.

Remus VM is implemented in the hypervisor wich check-pointing.

vSphere 4 VM is implemented in the hypervisor with record-replay.

vSphere 6 VM is implemnted in the hypervisor with fast check-pointing.

Table 3.1: A summary of software-implemented fault-tolerant approaches

3.3 Deterministic Execution

Deterministic systems produce consistent outputs across multiple runs given that the inputs are the

same for each run. This attribute makes these systems very useful for debugging and replication-

based fault tolerance. In this section, we only focus on software-implemented approaches to de-

terministic execution since building systems on COTS hardware rules out customised hardware

components, such as FDR (flight data recorder) which uses modified directory-based cache hard-

ware to record data races [Xu et al., 2003].

The meaning of deterministic execution in the context of our SMR-based approach is different

from the traditional definition of deterministic execution summarised by Bergan et al. [2011]. We

aim to ensure that the concurrently running replicas of an application produce the same outputs in

a run, given that the inputs are the same for all the replicas. However, the outputs produced by the

replicas in different runs can be different even if the same inputs are used. Thus, we use the term
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co-execution to denote our intended execution mode.

Olszewski et al. [2009] roughly classify the systems into two categories based on the degree

of determinism that the systems can provide: (1) strong determinism that ensures memory access

ordering of a multi-threaded application is deterministic, and (2) weak determinism that enforces

deterministic locking ordering for a multi-threaded application. In the case of strong determinism,

data races (two or more threads in a process access the same memory location concurrently without

using synchronisation primitives, and at least one of the accesses is a write) can be tolerated and

made deterministic; however, weak determinism requires data-race-free applications (i.e., shared

data is protected by synchronisation primitives).

Kendo [Olszewski et al., 2009] builds a logical clock by counting retired memory-store in-

structions with hardware performance counters of x86 processors since the authors find that the

event is deterministic on the Intel Core 2 models. The performance counters are programmed to

generate an interrupt after N (an adjustable chunk size) memory-store instructions retired, and the

interrupt handler updates each thread’s logical clock accordingly. Given that each thread’s logical

clock increases deterministically and is independent of physical time, the locking ordering can be

enforced by only allowing the thread with the least logical clock value to grab a lock when mul-

tiple threads are competing. When several threads have the same logical clock value, the thread

identifiers are used as a tie breaker. Kendo guarantees weak determinism by enforcing locking

orders. Kendo inspired us to construct a logical clock to coordinate the running replicas of a multi-

threaded application. In Section 4.4, we present how we employ hardware performance counters

on x86 processors and compiler-implemented counters on ARM processors as logical clocks to

achieve precise preemption that is a prerequisite (otherwise replicas may diverge because of the

different memory access orders) for replicating multi-threaded applications.

DTHREADS [Liu et al., 2011], designed as a POSIX threads [IEEE and Group] drop-in re-

placement, provides strong determinism by isolating “threads” with private memory regions, up-

dating shared data transactionally at synchronisation points, and enforcing locking orders. Cre-

ating and terminating threads, acquiring and releasing locks, waiting and signalling conditional

variables, blocking on barriers, and several selected systems calls are defined as synchronisation

points. When creating a thread, the library uses the Linux system call clone internally to initialise

a process instead, and initially the global data and heap regions are marked as read-only. Each

thread’s memory updates to the read-only regions are trapped, and private pages are allocated to

store the changes. The private updates from all threads are committed later at the synchronisation

points in a deterministic order, so data races can be resolved. Between two synchronisation points,

threads are executing in parallel and accessing private memory regions. At the synchronisation

points, a global token pointing to the next thread in the run queue is used to serialise threads: each

thread must wait for its turn before committing private memory copy to the global memory regions

(the last writer wins when multiple threads updated the same memory address), performing syn-

chronisation primitives, and passing the token to the next thread in the queue. The threads finished

their turns wait on an internal barrier; when all threads finish their turns, they pass the barrier and

start next parallel phase. The positions of the threads in the token queue determine the order of

getting turns, and the positions can be arranged the same across multiple runs, achieving deter-

ministic synchronisation primitives that do not rely on particular hardware features. DTHEADS
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still uses POSIX threads internally as building blocks. DTHREAD presents a straightforward ap-

proach to building a library that provides strong determinism without relying on hardware features.

As we will describe in Section 4.5.1, the loosely-coupled redundant co-execution only supports

multi-threaded applications that are data-race-free. The techniques described in DTHREAD can

be retrofitted to the seL4 environment so that applications with data races can also be supported.

3.4 Summary

Various degrees and forms of redundancy are the key elements in hardware, software, or combined

fault-tolerant approaches. Hardware solutions extensively adopt spatial redundancy and coding

techniques: SEC-DED ECC and advanced variants are used to protect caches, register files, and

DRAM. Parity, SEC-DED ECC, residue checking, redundant execution safeguard the logic com-

ponents in processors. Hardware approaches require little intervention from software layers, and

the performance degradation is less severe than software-based counterparts. However, such hard-

ened hardware targets high-end server market so that the increased space, power consumption, and

costs are less concerned. For instance, most of the everyday desktops, laptops, and mobile devices

that count for the majority IT (information technology) equipment sales are not even equipped

with SEC-DED ECC memory.

Software-implemented fault tolerance (SIFT) is flexible, and it is possible to apply an approach

to different CPU architectures. As multicore processors have become ubiquitous, SIFT approaches

also shift from fine-grained instruction-level duplication to coarse-grained thread, process, or vir-

tual machine level replication, better exploiting the hardware redundancy of multicore processors

with simultaneous multithreading. The compiler-based techniques duplicate instructions and in-

sert additional checking instructions, delegating memory protection to ECC. The coarse-grained

replication-based approaches, the unprotected system software layers (kernels, runtime libraries,

hypervisors, etc.) perform replications and error detection and masking. These software-based

approaches presume the lowest-level system software is correct and protected by alternative mea-

sures. The assumption may be justifiable for systems that availability is the only concern, but we

believe that a self-protecting kernel, being the lowest-level system software, is vital for security-

critical systems built based on COTS hardware, which suffers from the issues caused by transient

hardware faults.
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Chapter 4

Whole-System Redundant
Co-Execution

Simplicity is a great virtue but it requires
hard work to achieve it and education to
appreciate it. And to make matters worse:
complexity sells better.

Edsger W. Dijkstra

This chapter presents the framework for achieving redundant co-execution (cooperative and

concurrent execution) on multicore platforms, providing a solid foundation and backbone for

building error detection mechanisms. We use the term co-execution to highlight the fact that

the execution of replicas of a whole software system is coordinated by a synchronisation pro-

tocol and concurrent on different cores. We begin with the architecture overview that reiterates

the need to protect the lowest-level system software (specifically, the seL4 microkernel), present

the synopsis of our approach to improving the microkernel with self-checking capabilities by ap-

plying state machine replication to all layers of the software stack, and examine the challenges.

After the overview, we explain how we replicate a whole software system and ensure that the

replicas have identical initial states. Then, we introduce a synchronisation protocol to coordinate

redundant co-execution. There are two implementations of the protocol: the first variant, called

closely-coupled redundant co-execution (CC-RCoE Section 4.4), takes advantages of hardware

performance counters available on the modern x86 architecture or utilises a GCC compiler plugin

on the ARM architecture to achieve precise preemption; the second variant, called loosely-coupled

redundant co-execution (LC-RCoE Section 4.5), does not rely on hardware features or the GCC

plugin but requires that multi-threaded applications must be free from data races.

The modifications and newly introduced mechanisms to the seL4 kernel are highlighted in

each section. Currently, our implementation is based on the seL4 microkernel; but we believe that

other microkernels may face similar challenges when applying SMR to a whole software system.

Thus, we strive to generalise our design so that others can also benefit from our work.
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4.1 Architecture Overview

First, we give an informal definition of redundant co-execution. Then, we delineate how SMR

(state machine replication in Section 2.3.2) is applied to a microkernel-based system, aiming for

redundant execution of the whole system. Following that, we employ the SoR (sphere of repli-

cation in Section 2.3.1) to analyse the resulting system and map the components in the system

to the logic counterparts in the SoR. Based on the determinism analysis of an seL4-based sys-

tem (Section 2.4.5), challenges of replicating a complete system that includes the microkernel,

applications, and device drivers are examined at the end of this section.

4.1.1 Redundant Co-Execution

We use the term redundant co-execution (RCoE) to describe an execution model in which multiple

replicas of a software system are running concurrently and independently on different CPU cores

unless the replicas need to synchronise for consistently observing input data from I/O devices,

comparing I/O outputs, and handling I/O device interrupts. Most components of the system, in-

cluding the system software, are redundantly executed, and the synchronisation of the replicas is

coordinated by a protocol.

We briefly compare our model with related redundant execution models in the literature. The

leader-trailer model used in SRT [Reinhardt and Mukherjee, 2000], CRT [Mukherjee et al., 2002],

and SRMT [Wang et al., 2007], designates a replica as the leader and maintains a distance be-

tween the leader and the trailer. Note that the Delta-4 XPA architecture pioneered the leader/fol-

lower model [Barret et al., 1990] in the context of building an open, fault-tolerant, and distributed

computing architecture. The leader-trailer model applies the ideas of the leader/follower model in

different contexts. The leading replica performs memory loads and feeds the load values to the

trailer, since the leader and trailer share the same memory. In the RCoE model, uncoupling the

replicas is made possible by the fact that each replica has private memory regions so that the cor-

responding load and store instructions to private memory regions can be executed independently

by each replica. Also, the execution speed of each replica is not throttled unless a round of syn-

chronisation is in progress. In Romain’s transparent redundant multithreading model [Döbel et al.,

2012], each replica of a user-mode application has its address space. However, the replicas are

synchronised for each externalisation event (such as a system call or a page fault): the replicas

are blocked on an externalisation event, and controls are transferred to the Romain master process

that handles the event and compares the architectural states of the replicas. Note that the Romain

master is assumed to run on reliable hardware so that the master is not affected by hardware faults.

The model of PLR [Shye et al., 2009] also blocks replicas of a process at the system calls so that

a designated master process is able to execute a system call on behalf of the replicated processes

and thus returns the call results to the slave processes. In both models above, system calls are

essentially synchronisation points. In the RCoE model, replicas do not synchronise at system calls

(except for the system calls explicitly requiring synchronisations of the replicas or the systems

configured to compare every system call), reducing the runtime overhead. Furthermore, system

calls are handled locally by each replica due to the fact that the kernel and device drivers are

also replicated; thus, in our model, there are no special, unchecked master processes, which can
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become a single point of failure.

4.1.2 Applying SMR to an seL4-Based Software System

The need for replicating a whole software system

As a microkernel, seL4 follows the minimality principle [Liedtke, 1995]:

A concept is tolerated inside the µ-kernel only if moving it outside the kernel,

i.e. permitting competing implementations, would prevent the implementation of the

system’s required functionality.

The kernel designers strive to provide general microkernel mechanisms for building almost ar-

bitrary systems. Being a policy-free kernel means that delegating policy-making decisions to

user-mode applications is the favoured approach enforced by design. The approach alleviates the

complexity of kernel design and implementation, but the implication is that the states of policy-

making applications are also vital. For example, the distribution of capabilities (see Section 2.4.1)

is entirely managed by user-mode applications so that an error affecting the applications may cause

a violation of resource allocation policies. Another example is the so-called root task, which is the

first user-mode application brought up by the kernel. The root task has all hardware resources that

are not reserved by the kernel and is responsible for initialising device drivers, system services,

and applications. Should an error affect the root task, the whole system state could be invalid.

User-mode device drivers, of course, should be protected since they deal with incoming and out-

going data directly. Also, they are the last line of defence against silent data corruptions, so we

should check the integrity of the outgoing data in the drivers.

As the policy enforcer, the seL4 microkernel must perform correct operations instructed by

user-mode policy-making applications. For example, as we described in Section 2.4, the capabil-

ity spaces and virtual memory spaces are in-kernel data structures that are vital for managing the

authority distribution and maintaining the isolation between any two applications; the microkernel

directly manipulates the spaces based on applications’ directions. Obviously, if the kernel opera-

tions on these data structures are disturbed by transient hardware faults, the corrupted data in the

spaces can cause serious violations of isolation and security properties. For example, the IA32

page table entry, as shown in Table 4.1, uses a single bit R to represent if a 4 KiB memory frame

is read-only or read-write; so a single bit flip can change the access permission. Google Project

Zero team demonstrated the attack that exploits DRAM rowhammer bug [Rowhammer] and trig-

gers single-bit flips in page tables can be leveraged to gain unrestricted access to all physical

memory [Seaborn and Dullien, 2015].

31-12 11-9 0
Physical Page Address Avail. G 0 D A C W U R P

Table 4.1: The format of an IA-32 page table entry

In summary, in order to protect an seL4-based software system with redundant co-execution,

all components should be replicated, redundantly co-executed, and subsequently checked to en-

sure the proper initialisation of the system, to guarantee the correct distribution of capabilities, to
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uphold data integrity, and to scrutinise communications between applications. The approach is a

natural decision based on the fact that many kernel-mode functionalities of monolithic kernels are

moved to user mode in microkernel-based systems

An example of a replicated system

Core0

seL4

Trusted Apps / 
Drivers

Untrusted
Apps

Memory Image

Core1

seL4

Memory Image

I/O Dev

CMP

Root Task Root Task

Trusted Apps / 
Drivers

Untrusted 
Apps

Figure 4.1: Replicate an seL4-based system

An exemplary replicated system is presented in Figure 4.1, depicting how physical memory

and CPU cores are split and assigned to the replicas. Each replica includes an seL4 kernel instance

and applications. In the figure, the green box labelled “Trusted Apps / Drivers” represents appli-

cations that can be trusted, and the orange “Untrusted Apps” box represents untrusted applications

that can potentially affect the trusted applications. The vertical red bars represent the isolation that

must be maintained by the microkernel. The figure also shows an important trait of our replication

approach: the seL4 kernel, being the lowest level system software, is also instantiated on different

cores; most of the kernel functions are executed redundantly on different cores, so are the applica-

tions. The purple double arrow indicates the redundant comparisons that validate the states of the

replicas for error detection.

We treat each replica as a state machine, and thus we can observe that the inputs for the

state machines (replicas) are from the I/O devices. Admittedly, the initial states of the replicas

are not strictly identical. For instance, the physical memory regions allocated to the replicas

are not the same. We need to ensure that the state transitions of the replicas are independent of

the different initial states. In the figure, the replica running on Core0 manages I/O devices and

receives interrupts from the devices; so we call this replica as the primary replica (Section 5.2).

The replica running on Core1 does not have direct accesses to the I/O devices, nor can it receive

the I/O device interrupts. Therefore, the observations of non-deterministic events from I/O devices

must be coordinated so that the replicas observe and handle the events consistently (see Chapter 5).
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4.1.3 SoR Analysis

In our approach, each replica includes an seL4 kernel instance, applications, libraries, and device

drivers; and the hardware components for each replica comprise a CPU core and physical memory

regions allocated to the replica. However, the I/O devices are not redundant, so they are the “rest

of the system”. Non-redundant I/O devices only communicate with the replica that is designated

as the primary replica. Since user-mode device drivers and the kernel interact with I/O devices, the

functions of input replication and output comparison are implemented in the drivers and the kernel.

The output comparisons are conducted redundantly on each replica; the checked output data is

finally committed to the I/O devices by the primary replica. Thus, a window of vulnerability exists

between the successful comparisons and the actual uses of output data. The output comparison

is effective to protect the integrity of output data, but it is inefficient to guard the system security

because many important state updates of the replicas do not change the output data to I/O devices.

For example, a bit flip in a page table may not be detected by output comparison if the bit flip does

not affect output data. However, the bit flip presents a potential security vulnerability.

In the thesis, we mainly focus on detecting and tolerating transient CPU or memory faults,

so we do not explore the model of using redundant I/O devices to tolerate I/O device errors.

However, we estimate that supporting redundant I/O devices does not require significant changes

to our approach since the drivers for the redundant I/O devices are replicated in the same way

we replicate drivers for non-redundant I/O devices. Thus, we mainly examine the mechanisms

of supporting whole system replication despite that I/O hardware is not replicated. Of course,

properly adopting redundant I/O devices will improve system reliability, and we leave it as a

future work (Section 8.2.8).

WS-RCoE CRT NSAA SWIFT ROMAIN

In SoR Cores, Mem,
seL4, Apps,
Drivers

Cores, Code All Selected
Apps

Apps, Data
Mem, Cores

Out of SoR I/O Mem, I/O nil OS, Cores,
I/O, Mem

Kernel,
Drivers,
Code Mem,
I/O

Input Rep I/O Inputs Mem Loads
by LVQ

I/O Inputs Mem Loads Syscall
Results

Output Cmp I/O Outputs Mem Stores Outputs of
PEs

Mem Stores Syscall, User
Registers

Checker seL4, Drivers
(redundant
checking)

The trailing
thread

Self-checked
LSUs

Inserted
comparison
instructions

Romain
master

Hardware
Require-
ments

Multicore
processors

Hardware
implementa-
tion

LSUs,
redundant
hardware

ECC
memory

Hardened
resilient
cores

Table 4.2: SoR comparison

In Table 4.2, we compare the SoR of our proposed WS-RCoE (whole-system redundant co-
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execution) with those of CRT (chip-level redundant threading) [Mukherjee et al., 2002] in Sec-

tion 3.1.1, NSAA (non-stop advanced architecture) [Bernick et al., 2005] in Section 3.1.2, SWIFT

(software implemented fault tolerance) [Reis et al., 2005] in Section 3.2.1, and Romain [Döbel

et al., 2012] in Section 3.2.2. We recognise that the SoR of our approach is very close to the

SoR of NSAA, which, not surprisingly, provides the highest level of reliability among the ap-

proaches. The “Code” in the CRT column indicates that instructions are automatically replicated

by hardware and executed on different CPU cores.

The level of replication determines the input replication and output comparison. At the in-

struction level, memory load instructions provide data to be consumed by the cores, and memory

store instructions output the results. At the process level, system calls are the main means used

by processes to communicate with the environment. Thus, it is natural to compare system call

parameters for error detection and to replicate results of system calls to all process replicas. At the

system level, external events from I/O devices are the inputs to the systems, and outputs produced

by the systems must be checked.

The checkers used for output comparison must be reliable so that they do not fail to catch

errors. In the WS-RCoE, we design the checker in a ways that it is also replicated and redundantly

executed so that an error will not be missed if as least one checker replica works. The NSAA

uses self-checked LSUs to ensure the functional correctness of the checkers. The checkers used

by the other three approaches are neither self-checked nor protected by redundancy. Lastly, we list

the hardware requirements of the approaches. Our WS-RCoE requires multicore processors that

are ubiquitous nowadays. CRT is a hardware implementation. NSAA employs customised LSUs,

each of which includes an FPGA (field-programmable gate array) voter and an ASIC (application-

specific integrated circuit) ServerNet SAN (system area network) interface, to connect redundant

SMP processors belonging to different servers. SWIFT assumes ECC-protected memory, and RO-

MAIN specifically mentions that hardened resilient cores should be used to protect the software

components that must always function correctly. Among the software approaches, our WS-RCoE

includes more components in the sphere of replication and imposes little restriction on the selec-

tion of hardware components.

4.1.4 Fault Model

As described in Section 2.1, single-bit or multi-bit upsets can affect correct operation of digital

components; and the results can be benign or catastrophic. Before we describe our approach to the

issue, we introduce the failure model of transient hardware faults first. Specifically, we focus on

the transient faults affecting processors and memory in the thesis; I/O peripherals (disks, network

cards, video cards, etc.) should be protected by other measures.

A commonly used fault model is the single event upset (SEU) model. An SEU can be caused

by of a single particle striking storage elements directly or a single event transient propagating to

storage elements. Unlike the simplified version of the SEU fault model described by Reis et al.

[2005], an SEU can be a single-bit upset (SBU) or a multi-cell upset (MCU). If an MCU affects

several bits in one data word, a multi-bit upset (MBU) is registered. We also adopt the SEU as our

fault model and acknowledge the fact that an SBU or an MCU can occur. The trends of transient

faults described in Section 2.1.4 mandate us not to ignore MCUs that are becoming frequent as the
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feature size keeps shrinking. Thus, we omit various hardware masking effects (Section 2.1.3) and

assume that an SEU manifests as a single-bit error, a multi-bit error, or several single-bit errors.

An important consequence of including MCUs into the fault model is that some assumptions based

on SBUs being the only fault model are not valid. For instance, a replication-based fault-tolerant

approach cannot assume that only one replica is affected by a single error.

Note that we assume the errors occurred in one CPU core do not propagate to other cores, and

we focus on the hardware components that can be directly observable by software—CPU registers

and memory. The components hidden from software (branch prediction units, translation lookup

buffers, instruction decoders, micro-operation cache [Solomon et al., 2003], etc.) can indirectly

affect the execution of a replica if they are disturbed by an error; however, our software-based error

detection mechanisms can only catch the error if (a) the replica diverges from other replicas (see

Section 6.3.2 or (b) the execution fingerprint of the faulty replica is different from other replicas’

fingerprints (see Section 6.3.1). Thus, the implication is that if an error or multiple errors can affect

the replicas exactly the same way (i.e., the execution fingerprints are the same but incorrect), our

mechanisms are unable to detect the error(s).

4.1.5 Challenges

Applying SMR to seL4-based systems requires the following additional steps:

(a) Hiding the differences of initial kernel states from user-mode applications.

(b) Coordinating the delivery of interrupts and observation of input data from I/O devices.

(c) Taming non-deterministic events introduced by applications.

Item (a) ensures that applications and their replicas managed by different kernel instances do not

diverge by not allowing them to observe the differences. For instance, as shown in Section 4.2.3,

the relative memory addresses are provided to the replicas instead of absolute physical memory

addresses. In other words, we create identical “virtualised” environments on different cores to

replicate the applications. Both items (b) and (c) guarantee the order and consistency of observing

and handling non-deterministic events so that the replicas perform the same state transitions. From

now on, the term applications represents user-mode programs other than the root task and device

drivers. We use root task and device drivers directly when we mean them. Other complications,

although not directly related to SMR, are also listed below.

• Modifications to applications should be minimal. Ideally, the system should be able to run

unmodified binary applications directly. This property is mainly for reducing the efforts to

adopt our approach and increasing the range of supported applications.

• Building systems based on COTS hardware means that we cannot rely on specialised hard-

ware that is immune to transient faults. Making no assumptions about the hardware suggests

that we must extend the sphere of replication as much possible.

• The performance of the resulting system is usable for real-world applications. To achieve

good performance, we need to minimise the overheads of redundant co-execution by decou-

pling the replicas as much as possible: the unthrottled replicas run independently and only

synchronise for non-deterministic events, input replications, and output comparisons.
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• The synchronisation protocol described in Section 4.3 plays a vital role in coordinating the

execution of the system replicas, so it should be lightweight, correct, and resilient to tran-

sient faults. As a performance consideration, we also need low-overhead methods of mea-

suring the progress of the replicas of a system, since the synchronisation protocol frequently

invokes these methods.

4.2 System Initialisation and Resource Allocation

The SMR approach requires that the replicas have consistent initial states. The replication process

starts from the kernel booting stage, and the kernel needs to replicate itself and a root task onto

different cores. The OS loaders, GRUB [Dubbs] on x86 and u-boot [UBoot] on ARM, load the

seL4 kernel and the root task to memory from hard disk or network and then pass control to the

non-replicated kernel image. It is the responsibility of the kernel to replicate itself and the root

task, split and allocate hardware resources, and bring up the root task.

4.2.1 Kernel Replication

The original single-core seL4 has kernel-code and kernel-data regions. To replicate the kernel onto

different cores, we split the kernel data region to two regions; so the modified kernel supporting

replication has the following three regions.

• Per-core kernel code region (PC KCode): Each kernel replica has its own code region which

is copied from the kernel image loaded by the system boot loader. The checksums of the

original and copied kernel text regions are compared for correctness. Replicating the kernel

code section ensures that a single-bit error does not affect the execution of all kernel replicas

in the same way. Furthermore, keeping multiple copies of the code region provides the

possibility to recover from an error even if the error affects the code section of a kernel

replica.

• Per-core kernel data region (PC KData): The private kernel data regions belonging to differ-

ent kernel replicas are disjoint; each kernel replica’s private variables and stack are stored

in its private region.

• Shared kernel data region (S KData): This region is accessible by all kernel replicas. The

data structures used by the synchronisation protocol are allocated in this region, so are the

variables and buffers for implementing the new system calls provided for driver replication

(see Section 5.5). The variables in this region do not have additional copies.

Figure 4.2 shows the physical memory layout before and after the kernel replicates itself and

the root task to construct a DMR (dual modular redundancy) system; the grey-shaded box indicates

the physical memory region shared by all the kernel replicas. The bootstrapping kernel copies the

kernel code section once or twice for DMR or TMR. Then, the bootstrapping kernel instance brings

up other cores, and each core (the bootstrapping core included) starts to run kernel initialization

code which sets up the per-kernel page tables. When the page tables are populated properly, each

core switches to the new page table and then starts to fetch instructions from its own code and
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Figure 4.2: Physical memory layout before and after kernel replication for a dual modular redun-
dancy (DMR) system

data sections. All the kernel replicas use a barrier (a synchronisation primitive) to coordinate the

dropping to user mode after they finish the per-kernel initialization.

The seL4 kernel replicates itself during starting up so that each kernel replica has its

private code, data, and stack. The shared kernel data region is accessible by all kernel

replicas.

4.2.2 Root-Task Replication

The root task is copied by the bootstrapping (BSP) core twice or three times for DMR or TMR

configurations. The kernel replica running on the BSP core splits physical memory according to

the number of replicas before it brings up other cores, and we call the regions as per-replica free

memory regions. For instance, the RootTask0 and FreeMem0 in Figure 4.2 occupy the per-replica

free memory region assigned to the first replica. The root task is copied multiple times by the BSP

kernel to the beginning areas of the per-replica free memory regions, and the information of the

root task replicas and free memory regions is saved and passed to other kernel replicas by the BSP

kernel. Thus, other kernel replicas are able to initialize the root task replicas and create untyped

capabilities from the free memory regions.

Each kernel replica creates untyped kernel objects from the remaining free physical memory

region after the kernel finishes allocating the physical memory it needs for initialisation, and the

capabilities of these untyped kernel objects are passed to the root task through the bootinfo data

structure. The physical memory management is completely controlled by user-mode system pro-

cesses by distributing the capabilities. The bootinfo also contains the physical addresses and sizes

of the untyped kernel objects. Although we trust the root task and its replicas will not intentionally

abuse the address differences, we prefer to limit the exposure of the state dissimilarities as few as

possible. Therefore, we supply all the replicas with the physical addresses and sizes of the primary

replica in the bootinfo data structures. Applications usually do not care about absolute physical

addresses, but DMA-enabled device drivers need the physical addresses that are passed to I/O de-

vices. The kernel mechanisms to support DMA operations will be presented in Section 5.4 and

Section 5.5.

Physical addresses exposed to replicas are “virtualised” so that all the replicas observe

the same addresses and sizes as the primary replica’s.

4.2.3 Relative Addresses

Although the actual physical addresses are hidden to user-mode, each untyped memory kernel

object contains the absolute start kernel virtual memory address and size of the memory region
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described by the object. The kernel virtual memory address is derived from the start physical

address of the region by adding a architecture-specific constant offset. Thus, the corresponding

untyped objects belonging to the replicas cannot be compared directly because their start kernel

virtual addresses are different. We ought to compare the offsets instead, and we call the offsets

as relative addresses to avoid confusions. A relative address is calculated by following two steps:

(1) If an address is a kernel virtual address, we convert it to a physical address by subtracting a

platform-specific constant offset from the kernel virtual address. (2) We subtract the start physical

address of the physical memory region assigned to the current replica from the physical address

calculated in the previous step to get a relative address. The same rule applies when we check

the page table entries of the replicas one by one—we compare the calculated offsets instead of

the absolute physical addresses stored in the entries (entries mapping virtual addresses to device

MMIO regions are exceptions).

Relative addresses are compared when validating kernel objects or data structures con-

taining physical addresses or values derived from physical addresses.

4.2.4 Application Replication

User-mode applications are brought up by a root task. The root task can bundle the applications in

its data segment as payload, or it can load the applications from disk or network if the drivers are

included in the root task. Since the root task replicas already run on different kernel replicas when

they are setting up the rest of the system, no special support is required from the kernel to replicate

the applications. Each root task retypes the untyped capabilities to create various kernel objects

(e.g., TCBs, VSpaces, CSpaces, endpoints, etc). All of the operations are redundantly executed

and checked on multiple cores. The root task is not aware of the fact that it is being replicated;

and we only modify the part that brings up device drivers (details in Section 5.2). The redundant

co-execution framework treats drivers more specially than the general seL4 model does, where the

drivers are just applications that happen to have special device memory regions mapped. Actually,

we need to modify the drivers so that they can fulfil the responsibilities of input replication and

output comparison.

An application instantiated by the root task can create child threads provided that it owns

sufficient untyped capabilities to construct various kernel objects required for thread creations.

Consequently, the child threads are also replicated naturally on different cores.

4.3 A Synchronisation Protocol for Redundant Co-Execution

One of the meanings of co-execution is that the execution of replicas is coordinated by a synchro-

nisation protocol. Whenever the replicas need to be synchronised to handle a non-deterministic

interrupt, the protocol is triggered on all replicas. The protocol has 5 stages as described in Ta-

ble 4.3, and we use logical time to measure the progress of each replica. The precision of the

logical time determines the level of consistency we can expect when comparing the replicas in

the H stage. Based on how the logical time is constructed (Section 4.4.2, Section 4.4.3, and

Section 4.5), two implementations, closely-coupled redundant co-execution and loosely-coupled

redundant co-execution, will be described in Section 4.4 and Section 4.5.
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We call the replicas synchronised when the replicas are ready to observe a non-deterministic

event without triggering divergence. As we will see in the following sections, the meanings of

synchronised replicas are different for single-threaded applications, multi-threaded applications

with or without data races, and applications communicating through shared memory. The closely-

coupled version is able to precisely stop all replicas at the same position in the user-mode instruc-

tion streams, ensuring that the replicas have consistent states when they handle a non-deterministic

event. The loosely-coupled variant brings the replicas close enough—they all have finished the

same number of deterministic events that are observable by the kernel—so that the replicas will

not diverge if certain conditions are satisfied.

Stage Description

Initiating (I) A round of synchronisation is initiated when the primary replica receives
an interrupt. A notification is sent to all replicas to indicate the start of the
synchronisation.

Proposing (P) Having received the synchronisation notification, each replica proposes the
logical time to handle the synchronisation request based on its current
progress. The proposals are stored in a kernel shared memory region so that
they can be read by all replicas.

Voting (V) Each replica reads the proposals from other replicas and chooses the proposal
with the highest logical time value. The voting phase runs independently on
each replica.

Synchronising (S) Each replica compares the chosen logical time in the stage V with its pro-
posed time. If the values are the same, the replica waits for other replicas to
catch up. Otherwise, it keeps executing until its logical time value is the same
as the chosen value and joins the wait afterwards. The synchronising stage
finishes when all the replicas join the wait.

Handling (H) Now, all replicas’ logical time values are the same as the chosen value; the
replicas can handle the interrupt saved at the stage I and compare the states.

Table 4.3: Five stages of the synchronisation protocol

The five stages are coordinated by a class of kernel barriers, and we name them S-barriers

(synchronisation barriers). The term barrier in this context represents a synchronisation primitive

at which any kernel instance cannot proceed until all kernel instances reach the same barrier. For

instance, in the S stage, a leading replica blocks at a barrier in order to wait for other replicas to

catch up. Furthermore, there is another class of kernel barriers that are used to support device

driver replication (Section 5.2) and error detection(Section 6.3.1); we call them F-barriers (func-

tional barriers). The two classes of kernel-mode barriers can deadlock a system if the replicas

block at different barriers, simply because none of the replica is able to make progress. (Actually,

this is an error detection method that we adopt to uncover execution divergence of the replicas.

See details in Section 6.3.2.) Since the replicas and barriers can interact in a number of ways that

are infeasible for human to explore and verify, the SPIN model serves as a guider when we imple-

ment the redundant co-execution frameworks, ensuring that the system will not deadlock during

error-free operation.
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4.3.1 The SPIN Model of The Synchronisation Protocol

We first describe the abstract SPIN [Holzmann, 2003] model of the protocol, and then we intro-

duce how we map the model to the concrete kernel implementation. The SPIN model is a distilled

abstract model of the actual C code. We exclude implementation details for the following reasons:

(1) Detailed modelling of system state will lead to the state explosion problem. (2) SPIN does not

have direct support for the required operations (e.g., reading performance counters). (3) SPIN does

not assume the execution speed of the processes, so the barrier timeout mechanism (Section 6.3.2)

is not modelled. Essentially, we use the model to check assertion violations and deadlocks, but

not liveness properties. For the purpose of not distracting from our main topic, in the following

discussion, we do not explain details of the Promela code, but focus on what the model repre-

sents. The correctness of the model can be examined mechanically by the model checker. For the

complete SPIN model, please consult Appendix B, which is commented and self-contained.

1 typedef data_t {

2 bool catchup;

3 bool entry_de;

4 bool entry_nde;

5 bool sync;

6 bool sync_req;

7 bool out_flag;

8 unsigned de_type : DE_TYPE_BITS;

9 unsigned de_count : DE_LIMIT_BITS;

10 unsigned sync_abort : N_BITS;

11 unsigned sync_abort_notify : N_BITS;

12 unsigned lead_rep : N_BITS;

13 };

14

15 /* The per -replica data stored in the shared kernel data region */

16 data_t data[NKERNEL ];

Listing 4.1: Per-replica kernel data structure

Each replica’s data used during the synchronisation stages is represented by the data t data

structure as in Listing 4.1, and the data[NKERNEL] is accessible by all kernel replicas and is in-

dexed by the replica IDs. The field catchup indicates that the current replica is in the progress

of catching up. The fields entry de and entry nde specify the replica is processing a deter-

ministic or non-deterministic event. The field sync indicates that if a round of synchronisation

is initiated or in progress, and sync req is set by the primary replica to notify the non-primary

replica(s), triggering synchronisations. The type of the deterministic event currently being handled

is stored in de type; de count is the deterministic event counter that is used as the logical clock

to measure the progress of each replica; it is incremented by system calls and application-triggered

exceptions. The ID of the leading replica for the current round of synchronisation is in lead rep.

The fields sync abort and sync abort notify are helpers to implement the conditional bar-
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rier. The field out flag helps the implementation of the control flow due to the slightly more

restricted control-flow constructs provided by the Promela language, and it does not exist in the C

implementation.

The details of deterministic events are abstracted away to reduce the number of states that must

be explored and checked by the model checker. As an example, we do not distinguish system calls

by call numbers. We generalise the deterministic events into two types: the normal events and

synchronous events. The normal events can be handled independently by each kernel replica.

For instance, the system call mapping a physical memory frame to a virtual memory region is

considered as a normal event. In contrast, the synchronous events need to synchronise the states

of the replicas before they can be handled consistently by all the kernel replicas. For instance,

the system call, seL4 FT Add Event (see Section 6.2.1), for validating the execution fingerprints

(see Section 6.2) of the replicas triggers synchronous events, since the fingerprints of the replicas

should only be compared when the replicas have finished the same number of deterministic events.

When a kernel replica arrives at a synchronous event first, it blocks on an F-barrier to wait other

kernel replicas.

We use a SPIN process to model a CPU core executing a system replica, as in Listing 4.2

and Listing 4.3. The system starts from a special process called init which generates a se-

quence of deterministic events and brings up other non-primary replica(s). Then, init executes

the kernel pri and becomes the primary replica. For more information about the primary and

non-primary replicas, please see Section 5.2. For now, we only need to know that the primary

replica is designated to receive non-deterministic events and to trigger synchronisations. The

kid identifies a replica, and it is also used as an index into the data array in Listing 4.1. In

kernel pri, the do–od repetition construct forms the main body, representing an infinite se-

quence of input events. The first option, data[kid].entry de = true, is an assignment so that

it is always executable. The second option, data[kid].entry nde = true, is also executable.

For each repetition, one of the two options will be selected non-deterministically. The inline

get de returns the same sequences of deterministic event types (normal or synchronous) to all the

replicas. de handler increases the per-replica event counter (de count); if the current event is

synchronous, the de handler blocks the replica on an F-barrier used by synchronous events. The

inline nd handler triggers a new round of synchronisation by setting the sync and sync req to

true.

1 inline kernel_pri(kid) {

2 unsigned _for_i : N_BITS;

3 do

4 :: data[kid]. entry_de = true -> {

5 get_de(kid);

6 de_handler(kid);

7 data[kid]. entry_de = false;

8 }

9 :: data[kid]. entry_nde = true -> {

10 nd_handler(kid);

11 data[kid]. entry_nde = false;
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12 }

13 od

14 }

15 init {

16 gen_des ();

17 run kernel_np (1);

18 #if NKERNEL == 3

19 run kernel_np (2);

20 #endif

21 kernel_pri (0);

22 }

Listing 4.2: The primary kernel replica

As to the non-primary replica(s), the main body constitutes two choices: deterministic events

(data[kid].entry de = true) and synchronisation requests (data[kid].sync req == true).

The first option is the same as the one in kernel pri. The second option becomes executable

when the primary replica receives a non-deterministic event and initiates a synchronisation. Again,

when both the options are executable, one of them will be chosen non-deterministically. However,

the model checker will explore all the possible combinations.

1 proctype kernel_np(unsigned kid : N_BITS) {

2 unsigned _for_i : N_BITS;

3 do

4 :: data[kid]. entry_de = true -> {

5 get_de(kid);

6 de_handler(kid);

7 data[kid]. entry_de = false;

8 }

9 :: data[kid]. sync_req == true -> {

10 handle_action(kid);

11 data[kid]. sync_req = false;

12 }

13 od

14 }

Listing 4.3: The non-primary kernel replica(s)

The inline handle action in Listing 4.4 is called by both de handler and nd handler to

examine if a synchronisation is requested or in progress by examining the sync variable. If the

sync is true and and the leading replica has not been elected (the else part from line 30), a replica

first saves a copy of the variable sync abort notify, which is used to implement the conditional

barriers. Then, if other replicas have made more progress than the replica, it skips the subsequent

steps and catches up by setting the out flag variable to true (lines 32 to 38). Otherwise, the

replica proceeds to the conditional barrier at line 41 and waits for others to arrive. It is worth
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pointing out that even if the replica passes the check (lines 32 to 38), the replica is not necessarily

the leading replica: another replica could have started the next event, but that replica’s de count

has not been increased.

When all replicas pass the conditional barrier at line 41 and arrive at line 44, they vote the

leading replica by comparing the de count and store the ID of the leading replica in the lead rep

variables (lines 45 to 51). Eventually, do sync is called at line 52. The leading replica waits on

the barrier sbar at line 6, and the other replicas, which need to catch up, set the catchup variables

to true (line 20).

If a replica is catching up, it directly executes do sync the next time when handle action is

called (line 29). The inline do sync checks if the replica has finished the same number determin-

istic events as the leading replicas did (line 3). If the numbers are equal, the chasing replica waits

on the barrier sbar at line 6. Eventually, when all the replicas reach the barrier sbar, they have

executed the same number of deterministic events and are synchronised. We do not include the

actions (e.g., comparing fingerprints, or propagating and injecting interrupts) to be executed when

the replicas are synchronised in the model, so the replicas simply reset the states of the replicas

and continue execution.

1 inline do_sync(kid) {

2 if

3 :: data[kid]. de_count == data[data[kid]. lead_rep ]. de_count -> {

4 /* the one with the highest event counter needs to wait others

to catch up */

5 data[kid]. catchup = false;

6 bar(kid , sbar);

7 assert(data[kid]. de_count <= DE_LIMIT);

8 assert(data[kid]. de_count ==

data[data[kid]. lead_rep ]. de_count);

9 bar(kid , sbar);

10 /* reset states */

11 data[kid]. catchup = false;

12 data[kid]. lead_rep = 0;

13 data[kid].sync = false;

14 data[kid]. out_flag = false;

15 bar(kid , sbar);

16 }

17 :: else -> {

18 assert(data[kid]. de_count <

data[data[kid]. lead_rep ]. de_count);

19 /* others enter catch -up mode */

20 data[kid]. catchup = true;

21 }

22 fi

23 }

24

25 inline handle_action(kid) {
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26 if

27 :: data[kid].sync == true -> {

28 if

29 :: data[kid]. catchup == true -> do_sync(kid);

30 :: else -> {

31 data[kid]. sync_abort = data[kid]. sync_abort_notify;

32 for (_for_i : 0 .. (NKERNEL - 1)) {

33 if

34 :: data[kid]. de_count < data[_for_i ]. de_count ->

35 data[kid]. out_flag = true;

36 :: else -> skip;

37 fi

38 }

39 if

40 :: data[kid]. out_flag == false -> {

41 bar_cond(kid , sbar);

42 if

43 :: sbar.backoff[kid] == true -> sbar.backoff[kid] = false;

44 :: else -> {

45 for (_for_i : 0 .. (NKERNEL - 1)) {

46 if

47 :: data[_for_i ]. de_count >

data[data[kid]. lead_rep ]. de_count ->

48 data[kid]. lead_rep = _for_i;

49 :: else -> skip;

50 fi

51 }

52 do_sync(kid);

53 }

54 fi

55 }

56 :: else -> data[kid]. out_flag = false;

57 fi

58 }

59 fi

60 }

61 :: else -> skip;

62 fi

63 }

Listing 4.4: The synchronisation procedure

In the model, non-deterministic events (e.g., interrupts) can happen any time between any two

deterministic events; and each non-deterministic event triggers a synchronisation of the replicas

before the replicas are allowed to handle the non-deterministic event. Note that the barrier (sbar,

an S-barrier, employed in handle action and sync is different from the F-barriers (not shown

in Listing 4.4) used for synchronous events. Thus, it is possible that the replicas block on different
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barriers so that the none of them is able to make progress. We introduce the conditional barrier at

line 41 above (see Section D.1 for details): a blocking replica is allowed to pass the conditional

barrier if certain condition is satisfied. In our case, the condition is that another replica with a

higher de count blocks on a barrier for synchronous events. The variable sbar.backoff[kid]

is set to true if the condition meets. We have performed full verification for the DMR (NKERNEL =

2) and TMR (NKERNEL = 3) versions of the SPIN model, and the results show that our approach

of using the S-barriers and F-barriers to synchronise and coordinate the execution of the replicas

does not introduce deadlocks.

4.4 Closely-Coupled Redundant Co-Execution (CC-RCoE)

The first implementation of the synchronisation protocol is called closely-coupled redundant co-

execution, which measures the progress of each replica by using the branching-instruction counters

and the instruction pointer together. CC-RCoE is able to support precise preemption: a thread and

its replicas running on different cores are preempted only when they have executed the same num-

ber of user-mode instructions. Note that the instructions executed in kernel mode are not included,

since the microkernel replicas are exposed to non-deterministic events and thus may have executed

different numbers of kernel-mode instructions. As we will see in Section 5.2, the kernel replica

designated as the primary replica, which is responsible for receiving hardware interrupts, trig-

gering synchronisations, and performing I/O operations, inherently executes more instructions in

kernel mode than the non-primary replicas. If kernel-mode instructions were counted, CC-RCoE

would fail to synchronise the execution of replicated user-mode threads. This is because the pri-

mary replica could execute more kernel-mode instructions and less user-mode instructions than the

non-primary replicas, despite that the total numbers of instructions executed by the replicas are the

same. By doing so, multi-threaded applications, even with data races or ad-hoc synchronisations,

are supported by CC-RCoE. We start from the algorithm for supporting precise preemption, and

then, two implementations for the ARM and x86 architectures are examined in detail. Later, we

show that the approach can be used to support replicating Linux virtual machines as a case study

in Section 7.2; the ability to run unmodified Linux kernel significantly expands the range of appli-

cations ready to be deployed.

4.4.1 The Logical Time and Precise Preemption Algorithm

The flowchart for the precise preemption algorithm is shown in Figure 4.3, and the first step

of the algorithm is to identify which replica has executed the most instructions so that we can

stop it and let other replicas catch up. As shown by Mellor-Crummey and LeBlanc [1989], the

number of backward branches taken and the current instruction pointer together are sufficient

to identify a unique point in the instruction stream. We will describe how we count branches

(including backward branches) by using a per-core performance measurement unit (PMU) on x86

in Section 4.4.2 and by using a GCC plugin on ARM in Section 4.4.3. Let us assume, for the

moment, that we can count branches accurately so that we can introduce the algorithm without

worrying about the details.
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Figure 4.3: The flowchart for precise preemption

In the closely-coupled redundant co-execution approach, each kernel instance uses the

triple, (deterministic events, user-mode branches, user-mode instruction pointer), to

construct the logical time of each replica.

The triple (events, branches, IP) can be used to pinpoint an exact point in the instruction

stream. The first item events is incremented each time when the kernel handles a deterministic

event (system calls, exceptions, etc.). The second item branches is the number of branches

executed in user mode so far, and the third item IP is the instruction pointer of the current thread.

The replicas are only considered as consistent when the triples are the same. The item events is

necessary since system calls and application-triggered exceptions are not included in branches.

Therefore, an application and its replica can have the same branches and IP items, but they still

can have different events items. For instance, a thread traps into kernel mode because of a page

fault triggered by an instruction, but the replica of the thread is interrupted by a hardware interrupt

at the same instruction (an interrupt has higher priority than a page fault if they are both pending

at the instruction boundary). In this scenario, events of the former thread is greater than that of

the later thread, but their values of branches and IP are the same. Should we compare branches

and IP only, we would conclude that the replicas are consistent.
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At the Vote stage, the leading replica is pinpointed by comparing the triplets. The event coun-

ters are compared first. If the counters are the same, we continue to compare branch counters.

Again, if the branch counters are equal, we compare instruction pointers. Having identified the

leading replica that will wait on a barrier, the algorithm instructs other replicas to program the

hardware debug registers to generate exceptions when the values of their instruction pointers are

the same as the leading replica’s instruction pointer. In the breakpoint handler, a chasing replica

checks if its triple is the same as the leading replica’s. If they are the same, the replica has finished

the same amount of progress as the leading replica did; so the replica clears the breakpoint and

joins the barrier. Otherwise, the replica continues execution to make more progress and repro-

grams the debug registers if necessary. When all the replicas join the barrier, they arrive at the

same position in the user-mode instruction streams so that we can preempt them precisely without

triggering divergence. Essentially, we implement the synchronisation protocol with fine-grained

event counting and stopping replicas at the same instruction by using hardware debug registers.

Having given an overview of the algorithm, we will present how the algorithm is implemented for

the x86 and ARM architectures.

4.4.2 Hardware-Assisted CC-RCoE

Modern processors provide performance counters that can be programmed to count the the num-

bers of certain architectural events that have occurred on a core (e.g., instruction retired, branching

instruction retired, memory stored retired, etc.). Unfortunately, for the popular architectures, ARM

and x86, most of the events are non-deterministic, exhibiting overcounting or undercounting is-

sues [Weaver et al., 2013].

According to the Intel SDM [Int, 2016b], the BR INST RETIRED.ALL BRANCHES represents

all branch instructions retired and the BR INST RETIRED.FAR BRANCH counts all far branches that

are triggered by interrupts, exceptions, system calls, etc; the former event includes the latter one.

The difference of the two events is the number of user-mode branches executed on each core.

We experimentally confirm that the differences between BR INST RETIRED.ALL BRANCHES and

BR INST RETIRED.FAR BRANCH on different cores are the same for Intel Haswell and Skylake

microarchitectures. Thus, we can delegate the task of counting user-mode branches to hardware

by programming two performance counters. The technical details are described in Section D.3 for

the readers who are interested.

4.4.3 Compiler-Assisted CC-RCoE

ARMv7-A processors, specifically the Cortex-A9 processors, cannot provide accurate counters for

branching instructions. Slye and Elnozahy [1996] demonstrated the feasibility of using compiler-

based branch counting technique to build a record-replay fault-tolerant solution on a DEC Alpha

processor with moderate performance overhead. Similarly, we developed a plug-in for GCC to

count branches for the ARM architecture. An overview about GCC plugin based on GCC inter-

nals [FSF] can be found in Section D.4.

We need to insert an instruction (insn) before each call instruction (call insn) and jump

instruction (jump insn) to count branches. We decide not to use memory as the storage for

counting since we want to minimise the overheads of added instructions. Incrementing a register is
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probably one of the cheapest instructions since it does not access memory, nor does it significantly

complicate pipeline scheduling. (However, there is still cost since reserving a register can affect

instruction scheduling of the compiler.) To use a register for counting branches, we need to ensure

that the chosen register is not used by any application code. For the GCC compiler, reserving a

register can be achieved by the --ffixed-register GCC option. On ARM, we adopt register

r9 for this purpose, so the option is --ffixed-r9. With the r9 register reserved, we implement

our plugin to iterate lists of insns, which are the GCC’s internal representation of instructions. If

a call insn (a function call instruction) or jump insn (a jump instruction) is found, we create

an insn that represents the increment operation and insert the insn before the call insn or

jump inst. The plugin is called after various optimisation passes so that the inserted instructions

will not be removed by the optimisations. In Listing 4.5 and Listing 4.6, the original assembly

code and the assembly generated when our plugin is activated are listed; add r9, r9, #1, is

added at line 6, line 10, and line 14 to count the function call instruction (bl IO getc) and

function return instructions (ldmeqfd sp!, {r3, pc} and ldmfd sp!, {r3, pc}).

1 if_test:

2 stmfd sp!, {r3, lr}

3 movw r3 , #: lower16:stdin

4 movt r3 , #: upper16:stdin

5 ldr r0 , [r3]

6 bl _IO_getc

7 uxtb r0 , r0

8 cmp r0 , #66

9 ldmeqfd sp!, {r3 , pc}

10 cmp r0 , #55

11 moveq r0, #56

12 ldmfd sp!, {r3, pc}

Listing 4.5: Original assembly code

1 if_test:

2 stmfd sp!, {r3, lr}

3 movw r3 , #: lower16:stdin

4 movt r3 , #: upper16:stdin

5 ldr r0 , [r3]

6 add r9 , r9 , #1

7 bl _IO_getc

8 uxtb r0 , r0

9 cmp r0 , #66

10 add r9 , r9 , #1

11 ldmeqfd sp!, {r3 , pc}

12 cmp r0 , #55

13 moveq r0, #56

14 add r9 , r9 , #1

15 ldmfd sp!, {r3, pc}

Listing 4.6: Processed assembly code

The plugin is executed by the GCC compiler for each compilation unit, and working at the

RTL (register transfer language) level means that all languages supported by GCC can be sup-

ported by the plugin. However, all the source code (including libraries) must be recompiled with

the compiler with our plugin enabled so the reserved register (r9) is not accidentally used. Fur-

thermore, inspections are required for the code in GCC inline assembly or in assembly files, and

modifications are made accordingly to exclude the usages of the r9 register if necessary. Another

advantage of transforming code in RTL level is that the plugin can be re-targeted to other archi-

tectures easily, thanks to the architecture-independent nature of RTL. Should we need to build a

similar plugin for the x86 architecture, we would only need to modify several lines of the plugin

code and pick another reserved register for x86.

With the register r9 as the branch counter, the kernel can read the register and use the pre-
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emption algorithm in Figure 4.3. The value in the register r9 does not need to be passed between

threads when context switching for the following reasons: (1) If a context switch is triggered by

an interrupt, the kernel replicas need to synchronise the current running threads first so that the

values in the r9 registers are the same. Thus, the implication is that the replicas of the switch-to

thread have the same r9 register values as well. (2) If a context switching is a result of a system

call, the system call increments the per-replica event counter so that the kernel replicas can still

identify the leading replicas since the deterministic event counters are compared first. Therefore,

each thread’s branch counter, the r9 register, stays private: a thread can only observe its branch

counter, not other thread’s counter values.

Furthermore, we must consider the possibility that the next instruction to be executed is a

branching instruction when all the replicas have the same number of branches, as shown in List-

ing 4.7. In this case, if the next instruction of replica0 is line 2, the next instruction of replica1 is

line 5, and the r9 registers for them are the same, replica1 would be chosen as the leader since its

IP is higher than the IP of replica0. However, the actual case is that replica0 is the leader since the

branching instruction at line 5 has not been executed by replica1. This scenario can happen due

to the fact that the branch counting instruction and the actual branching instruction are separated.

Because of this, we have to check if the previous instruction is the branch counting instruction by

comparing the content of (IP - 4) with the binary form of the instruction—0xe2899001. The

comparison is only required when the replicas have the same branch counters, and the additional

check ensures that the correct leading replica is chosen. Nevertheless, just like checking for re-

peated string operations described in Section D.3, reading the content of (IP - 4) can cause a

kernel page fault; so paging out code sections is not allowed for reducing implementation com-

plexity.

1 L1:

2 add r8 , r8 , #1

3 cmp r8 , #100

4 add r9 , r9 , #1

5 bne L1

Listing 4.7: An example of assembly code with a branch-counting instruction

Special considerations must taken in order to support ARMv7 atomic primitives. The prim-

itives (e.g., compare and swap, fetch and add, and fetch and dec) are implemented using

the load exclusive (ldrex) and store exclusive (strex) instructions. Take the assembly code of

fetch and add in Listing 4.8 for example; r0 contains the memory address of a variable, and

r1 specifies the value to be added to the variable. The value of the variable is loaded into r2 at

line 3, and we save the result of addition in r3 at line 4. At line 5, we try to store the value in r3

in to memory exclusively. Roughly speaking, the ldrex instruction loads the value and tags the

underlying physical address for exclusive access; and the following strex instruction performs

a conditional store that only succeeds if the tagged physical address is still in exclusive state. A

value of 0 is returned in r12 for a successful store; otherwise, a value of 1 is returned for a failure
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store. At line 7, we branch to the retry: label if a store fails so that the whole exclusive load-

store sequence is retried. The precise and complete conditions that can fail an strex instruction

are explained in [ARM, 2014]. For now, what we need to know is that an exclusive load-store

sequence and its replicas running on different cores can be repeated different times.

1 dmb

2 retry:

3 ldrex r2, [r0]

4 add r3 , r2 , r1

5 strex r12 , r3, [r0]

6 cmp r12 , #0

7 bne retry

8 dmb

9 mov r0 , r2

Listing 4.8: Function fetch and add

1 dmb

2 retry:

3 ldrex r2, [r0]

4 add r3 , r2 , r1

5 strex r12 , r3, [r0]

6 cmp r12 , #0

7 add r9 , r9 , #1

8 bne retry

9 dmb

10 mov r0 , r2

Listing 4.9: Function fetch and add with

branch counting

The fetch and add function with inserted branch-counting instruction is shown in List-

ing 4.9. Since the ldrex-strex sequence can be retried several times and the numbers of retries

on different cores can be different, the inserted branch-counting instruction at line 7 can be re-

peated different times as well. Therefore, the replicas may observe different numbers of branches

even if they do not diverge. To address this issue, we use system calls to replace the synchroni-

sation primitives that use the ldrex-strex sequences and implement the required operations in

kernel mode, avoiding non-deterministic retries of the sequences.

Overall, this compiler-assisted approach is rather complex in implementation and inconvenient

for end users (everything must be recompiled), so this approach is reserved as the last resort when

neither LC-RCoE nor PMU-assisted CC-RCoE is applicable. Some implementation details on

ARM are presented in Section D.5.

4.5 Loosely-Coupled Redundant Co-Execution (LC-RCoE)

Although CC-RCoE supports precise preemption, it can exhibit significant performance overhead,

as shown later in Chapter 7. We implement the second realisation of the synchronisation protocol,

called loosely-coupled redundant co-execution, aiming to optimise performance and simplify the

implementation. The performance overhead is reduced since this approach does not need to read

and write performance counters, to program debug registers, and to handle debug exceptions. The

implementation is simplified because the approach uses only the deterministic event counter (the

events in the triple used by CC-RCoE) as the logical clock. This implies that neither hardware

support nor a compiler plugin is required, making the approach independent of architectures; and

we do not need to deal with architecture-specific issues of CC-RCoE (some of the issues are

described in Section D.3 and Section D.5).

The term loosely-coupled in this context means that the protocol does not have to synchronise
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the replicas at the same instruction if the applications are single-threaded, or multi-threaded and

data-race-free. We first consider how LC-RCoE works when all applications are single-threaded,

and then we explain how data-race-free multi-threaded applications can be supported if the micro-

kernel is able to observe synchronisation operations (e.g., acquiring or releasing a mutex).

In the loosely-coupled redundant co-execution approach, each kernel instance counts

deterministic events that are observable by the kernel to construct the logical time of

each replica.

For an application, its progress can be coarsely and simply measured by counting the num-

ber of deterministic events (e.g., system calls, exceptions, etc.) executed. These events obey the

program order, and the whole execution of a replica can be viewed as sequences of chunks of

deterministic events divided by non-deterministic interrupts. The microkernel can count these

events effortlessly by incrementing an integer counter without instrumenting user code. If one

replica runs faster than any other replicas, it has the highest event counter value. The synchroni-

sation protocol ensures that the fastest replica waits until other replicas catch up, ensuring that the

event counters of the replicas have the same value when the replicas are allowed to handle non-

deterministic events. If all the applications are single-threaded and do not communicate through

shared memory, they can be preempted anywhere between two deterministic events (inclusion) for

the following reasons: (1) The replicas of an application can diverge if they observe inconsistent

input data from system calls. (2) We ensure that the input data from I/O devices is consistent

to all the replicas at the device driver level (details in Chapter 5). (3) LC-RCoE guarantees that

preemptions are allowed only when the replicas have finished the same number of deterministic

events.

4.5.1 Support for Multi-Threaded Applications

In the context of LC-RCoE, we discuss software-only approaches to support multi-threaded ap-

plications that are data-race-free. Although an application we replicate onto different cores is

multi-threaded, all the threads of a replica of the application run on a single core. Thus, we do

not need to resolve concurrent locking requests from threads running on different cores determin-

istically. We begin with the restrictions caused by imprecise preemption and explain the problem

with an example. Then, we describe the requirements that should be satisfied to avoid execution

divergence and present three approaches to fulfil the requirements in the context of seL4-based

systems.

4.5.2 Imprecise Preemption and Restrictions

The microkernel can only observe application state changes through system calls and exceptions,

so the lack of fine-grained tracking of thread progress introduces a restriction on threads: All

observable state shared among threads in a replica is consistent between deterministic events.

This limitation affects threads communicating through shared memory. Consider the simple code

in Listing 4.10. There are two threads T1 and T2 running on each core, and shared x is a shared

variable used by T1 and T2 with an initial value 0. Now if Core0 preempts T1 before T1 sets

shared x to 1 and Core1 preempts T1
′ after T1

′ sets shared x to 1, threads T2 and T2
′ will diverge
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because they observe different values of shared x, as in Figure 4.4. If the kernel knew that the

values of shared x are different, it could postpone the preemptions and only preempt T1 and T1
′

threads either before or after the values of shared x are changed.

1 Thread1 (T1):

2 statement0;

3 /* core0 preempts T1 here */

4 shared_x = 1;

5 /* core1 preempts T1’ here */

6 statement1;

7

8 Thread2 (T2):

9 if (shared_x == 1) {

10 /* T2’ on core1 executes */

11 } else {

12 /* T2 on core0 executes */

13 }

Listing 4.10: Divergence caused by a race

condition

T1Core0

Core1 T1'

shared_x = 1;

T2

T2'

Figure 4.4: Timeline of the imprecise preemption
example

Of course, this is a data race because the accesses to the shared variable shared x from dif-

ferent threads are not protected by a lock; but merely putting locks around shared variables is

not enough to avoid divergences. The requirements for supporting multi-threaded applications are

very straightforward and intuitive: (1) Every locking or unlocking operation must be observed by

the kernel so that the deterministic event counters also include such operations. (2) If the lock

information data is accessible by all threads invoking the locking or unlocking primitives that use

the data, the locking or unlocking operations must appear to be atomic. The need for the require-

ment (2) will become apparent later.We propose the approaches below to implement the locking

and unlocking primitives that are applicable in our LC-RCoE environment.

A locking server

A microkernel-based system can be designed in a way that a lock server manages all locks in a

multi-thread application, and the server runs as a separate thread. Locking and unlocking oper-

ations are translated to IPCs between the calling threads and the lock server. The calling thread

provides the lock ID in the IPC and blocks for a reply by invoking seL4 Call. The lock server

determines if the requested lock is free or not; for a free lock, the server resumes the execution of

the calling thread by replying to it (seL4 Reply). Otherwise, the lock server waits (seL4 Wait)

for another incoming request instead of replying the caller so that the caller is suspended until

the lock is free. Note that the lock server needs bookkeeping data about the status of the locks,

and we must ensure that the bookkeeping data is only accessed by the lock server. This approach

is elegant and simple since the kernel already counts the three system calls; so in this case, the

multi-threaded applications are supported naturally.
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Notification objects as semaphores

The seL4 user-mode library provides synchronisation primitives including a mutex implementa-

tion based on notification objects [seL4, 2014]. When a mutex is being initialised, a notification

object and a counter are allocated together. The counter represents the current status of the mutex

and is initialised as one (unlocked). The pseudo code for locking and unlocking operations is

shown in Listing 4.11.

1 int lock(seL4_CPtr notification , volatile int *value) {

2 int oldval;

3 int result = sync_atomic_decrement_safe(value , &oldval ,

__ATOMIC_ACQUIRE);

4 if (result != 0) return -1;

5 if (oldval <= 0) {

6 /* the lock is not free; wait on the notification object */

7 seL4_Wait(notification);

8 /* memory barrier */

9 __atomic_thread_fence(__ATOMIC_ACQUIRE);

10 }

11 return 0;

12 }

13

14 int unlock(seL4_CPtr notification , volatile int *value) {

15 int val = sync_atomic_increment(value , __ATOMIC_RELEASE);

16 if (val <= 0) {

17 /* wake up waiters */

18 seL4_Signal(notification);

19 }

20 return 0;

21 }

Listing 4.11: Locking/unlocking functions

In the code above, the pointer value references to a shared data; although the atomic in-

struction at line 3 is used to read and modify the data, preemptions can happen before and after

the atomic instruction on different cores. Thus, a similar scenario as in Figure 4.4 can happen

(replacing the shared x with the pointer value). One straightforward remedy is to provide a

variant of the seL4 Wait system call that takes an additional parameter, which is the address of

the lock. The kernel can examine and modify the locking information, and block the calling thread

on the notification object if the lock is held by another thread. All these steps appear atomic from

the user-mode thread’s point of view. Another way to address the issue is to disable preemption

temporarily when a thread is in the lock function.
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Bulk data transfer through shared memory

For seL4-based systems, processes communicating through shared memory for bulk data trans-

fers usually are organised in a way that they use notification objects to interchange buffer-full or

buffer-empty messages. When a producer process fills a buffer, a consumer process blocks on a

notification object and only starts to read the buffer after it receives a “buffer-full” message. The

producer process, on the other side, blocks for a “buffer-empty” message before it puts more data

in the buffer. Since the producer and the consumer run on the same core, only one of them can

access the shared memory at a time. Also, these messages sent through system calls are counted

by the kernel as deterministic events so that the processes following this pattern to access shared

memory are supported. However, other forms of accessing shared memory regions (e.g., polling a

flag to check if data is ready) need case-by-case discussion.

4.6 Summary

In this chapter, we present our approach to replicating an seL4-based system on a multicore ma-

chine and executing the replicas redundantly. We examine the obstacles to apply SMR on a whole

software system including the seL4 kernel, device drivers, and applications. This chapter focuses

on the synchronisation protocol that coordinates the execution of the system replicas and ensures

that non-deterministic events do not cause divergence. The protocol is modelled in SPIN and

checked to guarantee not to introduce deadlocks. We presented two implementations of the syn-

chronisation protocol: closely-coupled redundant co-execution (CC-RCoE) and loosely-coupled

redundant co-execution (LC-RCoE).

CC-RCoE uses the triple (events, branches, IP) to pinpoint a position in an instruction

stream, aiming to achieve precise preemption. On x86, we program performance counters to

count the events BR INST RETIRED.ALL BRANCHES and BR INST RETIRED.FAR BRANCH in user

mode and calculate the user-mode branches. For ARM Cortex-A9 series processors, we develop

a GCC plugin that introduces one more pass during compilations. The new pass works at RTL

level and scans for branching instructions. When such an instruction is found, the plugin inserts

an instruction counting the branch before the branching instruction. The kernel replicas utilise the

hardware instruction breakpoints and (events, branches, IP) together to stop the application

replicas precisely at the same instruction and then handle non-deterministic events accordingly.

Multi-threaded applications, even with data races, are supported by this variant. However, the

compiler-based branch counting needs to recompile the whole user-mode software stack and GCC

built-in functions; code written in assembly also needs to be processed.

LC-RCoE counts deterministic events that can be observed by the kernel; this variant does

not depend on hardware features or compiler techniques so that it can be ported on different ar-

chitectures straightforwardly (x86 and ARM are currently supported). However, multi-threaded

applications can be supported only if they are data-race-free and if the lock and unlock operations

meet the requirements described in Section 4.5.1. LC-RCoE does not preempt a thread and its

replicas precisely at exact the same instruction to reduce performance overhead and implementa-

tion complexity.

The realisations of the synchronisation protocol work together with the techniques to support
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device driver replication (see Chapter 5), enabling a software system running in DMR or TMR on

commodity hardware and thus establishing a solid foundation for the error detection mechanisms

described in Chapter 6.

70



Chapter 5

Support for Device Driver Replication

We do not know where we are “stupid”
until we “stick our neck out,” and so the
whole idea is to put our neck out.

Richard Feynman

Device drivers play important roles in our whole-system replication framework: they are the

boundary between replicated software components and non-replicated I/O devices, and they func-

tion as input duplicators and output comparators. As the input duplicators, the driver replicas

provide consistent input data to other replicated components (e.g., file systems, network stacks,

etc.) of the system replicas, avoiding execution divergence caused by observing inconsistent input

data. As the output comparators, the driver replicas check the final output data produced by other

parts of the system, detecting inconsistent computation results.

We begin with describing how device drivers work in general and then introduce the access

patterns used to coordinate I/O operations: we designate a replica as the primary replica to perform

I/O operations and propagate the results to other replicas. The drivers modified to work with LC-

RCoE and CC-RCoE require different types of support from the microkernel. For LC-RCoE, an

existing system call is augmented to create cross-replica shared memory regions so that the driver

replicas are able to conduct input data replication in user mode. For CC-RCoE, the replicas of a

device driver must behave exactly the same (remember we count user-mode branches for precise

preemption); so we provide two new system calls to conduct the input replication procedure in

kernel mode (the branch instruction counters are stopped in kernel mode). Applying the access

patterns needs to modify the source code of the drivers. The second part of the chapter focuses on

the microkernel infrastructure to support primary replica migration, which is motivated by error

masking in the TMR configuration. Should the primary replica be voted faulty, the functionality

of the primary replica is transferred to another error-free replica that becomes the new primary

replica. This chapter includes the work published in [Shen and Elphinstone, 2015; Shen et al.,

2019].
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5.1 Device Drivers

Device drivers communicate with I/O devices through I/O ports (x86) or memory-mapped registers

(x86 and ARM). Reading I/O ports is supported by special instructions: outX and inX. The X

specifies the width (8-bit, 16-bit, or 32-bit) of the data. The dx register contains the I/O port

number to access, and the ax register has the input or output data. The following Listing 5.1 and

Listing 5.2 show how to transfer 8-bit data from/to the first serial port on 32-bit x86 machines.

The I/O address space has 216 8-bit ports, so the value range for dx is 0 to 0xffff, with 0xf8 to 0xff

reserved. Accesses to I/O ports are restricted to the microkernel for seL4-based systems.

1 xor %eax , %eax

2 movw 0x3f8 , %dx

3 inb %dx , %al

Listing 5.1: Read from I/O ports

1 movw 0x3f8 , %dx

2 movw 0x38 , %ax

3 outb %al , %dx

Listing 5.2: Write to I/O ports

For memory-mapped I/O, device registers can be accessed by normal load or store instructions,

just like accessing physical memory. Usually, designers of ARM platforms SoCs (system on chip)

arrange the allocations of device addresses statically since the peripherals integrated on a chip

are known. For x86 machines, PCI (peripheral component interconnect) [Shanley and Anderson,

1999] devices can be added and removed dynamically; so the platform firmware (BIOS or UEFI)

detects the available PCI devices, allocates bus addresses for the devices, and ensures that the

addresses for the devices do not conflict with the addresses assigned to physical memory. The

microkernel creates a list of frame capabilities covering the regions of the devices by scanning

the PCI bus on x86 or reading the list known devices on ARM. The frame capabilities can be

mapped into virtual memory space by their owners. Once the mapping is established, the drivers

can access the device registers without restrictions; so the kernel cannot monitor such accesses

without incurring overhead (e.g., using debugging hardware to monitor memory accesses).

5.1.1 Devices Reserved by the Microkernel

The microkernel reserves several devices for its own use. On x86, the devices are the IO-APIC

(I/O advanced programmable interrupt controller), per-core local-APIC, and APIC timer. The

IO-APIC is used to control interrupt routing. The per-core local-APIC is used to enable, disable,

and acknowledge the interrupts that sent to the core. The APIC timer is used to generate peri-

odic preemption ticks. On the ARM Cortex-A9 based platforms, seL4 uses the GICD (generic

interrupt controller distributor), per-core GICC (generic interrupt controller CPU interface), L2

cache controller, and per-core private timer. The GICD and GICC are functionally similar to the

IO-APIC and local-APIC: they manage hardware interrupts. The private ARM timer provides

kernel preemption interrupts. The L2 cache controller is necessary for the i.MX6 platform, which

uses a separate controller for L2 cache, and the kernel must have full control over cache cleaning,

invalidating, and flushing operations. Among these devices, the IO-APIC, GICD, and L2 cache

controller are per-machine devices that can be accessed by all cores.
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5.1.2 Simple Devices

We call the devices that only use I/O ports or memory-mapped device registers for data transfers

simple devices. In other words, simple devices do not use direct memory access (DMA) for data

transfers. For example, UART (universal asynchronous receiver/transmitter), PIT (programmable

interval timer), and PIC (programmable interrupt controller) are such devices. Some UART chips

are capable of DMA, but we do not use the function. The following requirements are sufficient to

replicate such drivers.

1. For each read, one of the driver replicas is allowed to carry out the read. All the replicas

need to wait until the read is finished so that they all observe the read result.

2. For each write, one of the driver replicas is allowed to carry out the write. The values from

the replicas can be optionally compared to detect an potential error.

The output comparison and input replication need a mechanism that enables communications

among the replicas of a driver, but, not surprisingly, the unmodified microkernel does not have

support for the purpose.

5.1.3 DMA-Enabled Devices

High-speed I/O devices, such as network cards, hard disk controllers, or video cards, use DMA for

bulk data transfers. The DMA engines of the devices use physical memory addresses if IOMMU

(input-output memory management unit) is not present or not programmed to perform address

translations for I/O devices. As an example, we show the replicated network interface card (NIC)

drivers and the hardware NIC managed by the drivers in Figure 5.1 Two memory-mapped I/O

(MMIO) regions in the figure are mapped to the NIC registers so that both the drivers are able

access the registers. When the driver is not replicated, the NIC stores incoming network packets

in the physical memory regions (DMA buffers) specified by its driver and generates interrupts to

notify the driver that the data is ready. However, in the replicated case, the NIC is not aware of the

situation that the driver is replicated—each driver instance has its own DMA buffers so that only

one replica’s DMA buffers contain the incoming data.

NIC Driver
DMA 

Buffers MMIO
NIC Driver

DMA 
Buffers MMIO

NIC

DMA 
Engine RegistersControl

Data

Figure 5.1: Replicated NIC drivers
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In Figure 5.1, the solid green line represents data transfers performed by the DMA engine, and

the dashed green line stands for the data transfers that ideally should be automatically duplicated,

based on the solid-green-line transfers by the DMA engine; so the input data is copied into mul-

tiple DMA buffers that belong to different driver replicas. However, COTS network cards do not

support such functionality yet. The IOMMU address translation cannot help on this issue either

since it is not designed to translate one device address to multiple physical addresses and to dupli-

cate the input data. Therefore, the other driver replica on the right in the figure does not observe

the incoming data and diverges from the replica on the left. We name the DMA buffers actually

used by I/O devices as the real DMA buffers and the DMA buffers not being used by devices as the

shadow DMA buffers. Therefore, we need a mechanism to ensure that either all replicas observe

input data from the real DMA buffers or the input data in the real DMA buffers is replicated to the

shadow DMA buffers.

5.2 The Primary Replica and Access Patterns

We designate one system replica in a DMR or TMR system as the primary replica, and the device

drivers of the primary replica are responsible for actually performing I/O accesses. Also, we

program the interrupt controllers (the GICD and IO-APIC) to reroute device interrupts to the

primary replica. The way we appoint a primary replica is simple: the replica with ID 0 is the

primary replica; so by default, the bootstrapping replica is the primary replica. However, the

primary replica is not permanent. As we will introduce in Chapter 6, if the primary replica is

voted as the faulty replica in a TMR configuration, the remaining replicas designate another fault-

free instance as the primary replica. But for now, let us assume that the primary is the one with ID

0.

The general access patterns applied to the drivers and the microkernel (the kernel also needs

to operate on the reserved devices) are listed in Listing 5.3 and Listing 5.4; let’s examine the read

pattern first. The function is primary compares a replica’s ID with the ID of the primary replica.

Lines 1 and 2 allow the primary replica to perform the read access and store the result in a shared

memory buffer which is accessible by all replicas. The barrier at line 3 blocks all non-primary

replicas to ensure that the result is ready in the shared memory buffer since all replicas can only

pass the barrier when the primary replica finishes the operations and joins the barrier. At line 4,

each replica copies the data to its private memory. The barrier at line 5 guarantees that the shared

buffer will not be modified by the primary replica at line 2 before every replica finishes copying

the data. The pattern for writes is straightforward—the primary replica simply writes the data out.
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1 if (is_primary ())

2 shared = read_data ();

3 barrier ();

4 local = shared;

5 barrier ();

6 return local;

Listing 5.3: Access pattern for reads

1 if (is_primary ())

2 write_data(local);

3

4 return;

Listing 5.4: Access pattern for writes

For the devices used by the seL4 kernel, we directly modify the kernel to apply the patterns.

For the drivers used in LC-RCoE, we modify the drivers to apply the patterns directly. Each

kernel instance also passes its replica ID to the root task, which selectively forwards the ID to the

device drivers, but applications are not allowed to observe the ID by any means. The implication

is that we trust the root task and drivers not to abuse the IDs. Given the fact that we are able

to inspect the source code, we believe exposing the replica IDs to the device drivers is not a

concern. For LC-RCoE, we build the barriers in the user-mode cross-replica shared memory

region (details in Section 5.4.1). For the drivers used in CC-RCoE, we supply a new system

call named seL4 FT Mem Rep and modify the drivers to use the system call. The system call

performs the accesses in kernel mode because otherwise the patterns will cause the replicas of a

driver to issue different number of branch instructions (more in Section 5.5). The new system call

seL4 FT Mem Rep uses kernel-mode barriers.

The primary replica is designated to perform I/O accesses; the seL4 kernel and device

drivers are modified to follow the access patterns.

5.3 Support for Accessing I/O Ports

I/O ports are governed by the seL4 kernel objects so that only the owners of the I/O port capabili-

ties can read or write the I/O ports. Each kernel replica creates one I/O port capability that covers

all ports and passes it to the root task; other I/O port capabilities that authorise accesses to specific

ranges of I/O ports can be derived from the initial capability by using the seL4 CNode Mint sys-

tem call. The root task can then distribute the derived capabilities to different device drivers

needing I/O port accesses. In this way, each driver replica has valid capabilities that can be

used as parameters for various I/O port related system calls (e.g., seL4 IA32 IOPort In8 and

seL4 IA32 IOPort Out8).

We modify the kernel code that handles I/O port operations according to the patterns described

above, and the input data is propagated through the shared kernel data region. The primary replica

accesses the ports on behalf of driver replicas and returns the results for read operations. For out-

put data, the kernel replicas exchange and compare the port number and data through the shared

kernel data region to ensure that the output requests are consistent. Incompatible output requests

are treated as errors. The code changes are common to both LC-RCoE and CC-RCoE. We list

the C code in Listing 5.5 for seL4 IA32 IOPort In8 and seL4 IA32 IOPort Out8 as two de-

tailed examples to illustrate the access patterns. The variable ft io bar is the kernel barrier for
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coordinating the accesses, and ft io input val resides in kernel shared memory region so that

it serves as the temporary buffer for copying input data. The code also demonstrates the need for

the conditional barrier (Listing 4.4) so that ft abort sync wait() at lines 11 and 27 can wake

up the replicas blocked on the conditional barrier in the synchronisation protocol.

1 /* the barrier for IO port operations */

2 DATA_GLOB volatile kbar_t ft_io_bar;

3 /* shared buffer for input replication */

4 DATA_GLOB volatile uint32_t ft_io_input_val;

5 /* shared buffer for output comparison */

6 DATA_GLOB volatile ft_io_out_t ft_io_out_val[NUM_REPLICAS ];

7

8 uint32_t ft_io_in8(uint16_t port)

9 {

10 uint32_t val = 0;

11 ft_abort_sync_wait ();

12 kbar_waitn (&ft_io_bar , NUM_REPLICAS);

13 /* the primary replica performs the access */

14 if (is_primary ()) {

15 ft_io_input_val = in8(port);

16 ft_io_input_val &= 0xff;

17 }

18 kbar_waitn (&ft_io_bar , NUM_REPLICAS);

19 val = ft_io_input_val;

20 return val;

21 }

22

23 void ft_io_out8(uint16_t port , uint8_t data)

24 {

25 ft_io_data[my_replica_id ].port = port;

26 ft_io_data[my_replica_id ].data = data;

27 ft_abort_sync_wait ();

28 /* the barrier ensures that the output data to be

29 * compared is ready in ft_io_data */

30 kbar_waitn (&ft_io_bar , NUM_REPLICAS);

31 for (int i = 0; i < NUM_REPLICAS; i++) {

32 if (ft_data[i].port != ft_data[my_replica_id ].port ||

33 ft_data[i].data != ft_data[my_replica_id ].data)

34 ft_halt ();

35 }

36 /* the barrier ensures the ft_io_data is not modified

37 * until all replicas finish the output data comparison */

38 kbar_waitn (&ft_io_bar , NUM_REPLICAS);

39 /* the primary replica performs the access */

40 if (is_primary ()) out8(port , data);
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41 }

Listing 5.5: I/O port functions for the DMR configuration

5.4 Kernel Mechanisms and Driver Modifications for LC-RCoE

5.4.1 Cross-Replica Shared Memory Regions (LC-RCoE)

Driver
PMem SMem

Driver’
PMem SMem

PMem SMem PMem SMem

Figure 5.2: Cross-replica shared memory

In the read access pattern Listing 5.3, local represents the local data for each replica, and

shared points to a shared memory region that can be accessed by all the replicas. Figure 5.2

shows a pair of driver replicas. PMem (private memory) and SMem (shared memory) are all virtual

memory regions used by the driver replicas, and the virtual addresses and sizes of the PMem and

SMem regions in Driver are the same as the ones in Driver'. The PMem regions are private to

the replicas since they are mapped to different physical memory regions (as indicated by the blue

arrows), but the SMem regions are mapped to the same physical memory region (as indicated by

the green arrows) so that the replicas can communicate through the regions. We call the green

SMem regions as the cross-replica shared memory regions. As to the access pattern, the local

and shared variables are allocated in the PMem and SMem regions respectively. The red SMem

box is the physical memory region that would be mapped to the green SMem box of Driver', if the

mechanism for building cross-replica shared memory regions were not used.

The prototypes of the system calls seL4 ARM Page Map and seL4 IA32 Page Map are shown

in Listing 5.6. These system calls map a frame representing a physical memory region into a page

table pd to back up a virtual memory region starting from vaddr with rights and attributes attr.

The rights parameter specifies read-only or read-write permission, and the attr parameter de-

scribes the cacheability (cache enabled or disabled), write policies (for x86 only; i.e., write back,

write through, or write combining), and parity (for ARM only). Note that the corresponding VM

mapping system calls issued by the replicas must have the same parameters. In the current form,

the system calls do not support the function of constructing cross-replica shared memory regions

as in Figure 5.2.

1 int seL4_ARM_Page_Map(seL4_ARM_Page frame ,

2 seL4_ARM_PageDirectory pd,
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3 seL4_Word vaddr , seL4_CapRights rights ,

4 seL4_ARM_VMAttributes attr);

5

6 int seL4_IA32_Page_Map(seL4_IA32_Page frame ,

7 seL4_IA32_PageDirectory pd ,

8 seL4_Word vaddr , seL4_CapRights rights ,

9 seL4_IA32_VMAttributes attr);

Listing 5.6: Virtual memory mapping system calls

To create the cross-replica shared memory regions, we extend the system calls above with one

additional attribute—SHARED. The kernel code is changed to handle the new option: (1) The virtual

addresses passed by the replicas are compared for consistency; different addresses are rejected.

(2) The physical addresses of the frames are checked. Instead of comparing absolute values, we

examine the offsets to the beginning addresses of the memory regions allocated to the replicas.

Similarly, if the offsets mismatch, the mapping requests are rejected. (3) Having successfully

checked the system call parameters, each kernel replica uses the physical address supplied by

the primary replica to update the page table that is used by the replica, creating a cross-replica

shared memory region. (Note the non-primary replicas can calculate the physical address used by

the primary replica.) Accordingly, the replicas of the driver can communicate through the shared

memory regions and use the regions to propagate input data. We need to emphasise that only the

replicas of the same device driver can communicate through the cross-replica shared memory.

For LC-RCoE, the system calls mapping physical frames to virtual memory spaces and

the kernel code for handling the system calls are augmented to support the SHARED

attribute for creating cross-replica shared memory regions. The barriers and shared

memory variables for replicating input data in the read pattern are also constructed in

the cross-replica shared memory regions .

5.4.2 Driver Modifications for Accessing MMIO Device Registers (LC-RCoE)

Device drivers need to first map device frames into their VSpaces before they can access MMIO-

based device registers. Each kernel replica creates the original device frame capabilities according

to the PCI device discovery procedure or the predefined device MMIO regions; the root task owns

all the device frames so that it can distribute them to the corresponding drivers appropriately. All

replicas of a driver map the assigned device frames to their VSpaces at the same virtual addresses

so that they can access the MMIO regions. The mapping step is unchanged. Nevertheless, the

access patterns described above are applied to the functions that read or write device registers,

allowing only the primary replica to perform operations. The reason for permitting all the replicas

to map the device frames is for error masking: when the primary replica is faulty and we need

to remove it, we can elect a new primary replica so that the new one can read and write devices

without mapping the device frames first. Another reason is to minimise the code changes to the

microkernel and device drivers.
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5.4.3 Driver Modifications for Accessing DMA Buffers (LC-RCoE)

Device drivers allocate DMA buffers through the functions provided by the seL4 user-mode li-

brary. We modify the DMA-related library functions so that the cross-replica shared memory

regions are created and used for DMA buffer allocations. Since we only expose the physical mem-

ory addresses of the primary replica to all replicas, the I/O devices are programmed to utilise the

primary replica’s DMA buffers. Thus, the buffers created in the cross-replica shared memory re-

gions are accessible by all corresponding driver replicas. The access patterns are applied to DMA

buffer operations: (1) the primary replica can write to the DMA buffers; (2) a barrier is required to

coordinate reading contents from the DMA buffers consistently. Furthermore, we can compare the

output contents of the replicas before writing them to the DMA buffers for transmitting, as shown

in Listing 5.7.

1 chksum = gen_chksum(output);

2 seL4_Add_Event(chksum , true);

3 if (is_primary ())

4 write_dma_buf(output);

Listing 5.7: Check DMA output data

Each replica generates a checksum (the checksum algorithm is chosen by the driver) based on

the output data; the checksums are compared with the seL4 Add Event system call which will be

described in Section 6.2.1. Basically, the system call adds the chksum to the per-replica execution

fingerprint (Section 6.2) and compares the fingerprints before returning to user mode if the second

parameter is true. If the checksums are not consistent, the system call halts the system if the

fail-stop approach is adopted.

Replicating device drivers disables the opportunity of using an optimisation called zero-copy

DMA for input data. Take a network card driver for example; when the zero-copy DMA opti-

misation is applied, the driver may decide to pass the addresses of the buffers to an upper level

(e.g., a network stack) for further process, without making a copy of the data first. However, in

the case of allocating DMA buffers in the cross-replica shared memory regions, we cannot guar-

antee that upper-level applications will not modify the buffers which are shared by all replicas.

Uncoordinated changes to the buffers made by one replica can be observed by other replicas and

subsequently cause divergence, unless the upper-level applications are also modified to follow the

access patterns. Therefore, all the replicas must copy the contents in the DMA buffers to their

private buffers which will be subsequently passed to upper-level applications. The extra copies

introduce runtime overhead for I/O-intensive systems (see Section 7.4.1).

5.4.4 Summary

The key enabling mechanism for supporting driver replication in LC-RCoE is the kernel’s ability

of creating cross-replica shared memory that is subsequently used to build user-mode barriers and

to replicate input data. Based on our redundant co-execution model, the kernel code to support the
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mechanism is straightforward since LC-RCoE ensures that the parameters for the corresponding

seL4 IA32 Page Map or seL4 ARM Page Map calls issued by the driver replicas are the same.

Another advantage of this mechanism is that the microkernel does not need to access memory

regions belonging to the device drivers. As we will see later, CC-RCoE does not possess this

property; thus, the microkernel has either to trust the drivers or to perform tedious checking against

the addresses provided by the drivers. Fundamentally, the more relaxed (in term of not requiring

consistent user-mode branches) LC-RCoE model allows us to adopt the simple mechanism to

support device driver replication.

5.5 Kernel Mechanisms and Driver Modifications for CC-RCoE

5.5.1 New System Calls Implementing the Access Patterns in Kernel Mode

In the closely-coupled redundant co-execution approach, we count user-mode branches by using

the performance counters or the compiler plugin that inserts branch-counting instructions; the

requirement of CC-RCoE is that the number of branches executed by the replicas of an application

must be exactly the same. Therefore, the patterns described in Section 5.2 are not suitable for

user-mode drivers in CC-RCoE since the patterns introduce inconsistent branches for the driver

replicas. Take the if (is primary()) shared = read data() in Listing 5.4 for example;

even if we assume that the read data() is inlined properly and that it does not contain branch

instructions, the primary replica still executes one more or one less branch instruction than the

other replicas, depending how the compiler treats the if statement. Furthermore, the user-mode

barrier implementation based on the cross-replica shared-memory mechanism causes the replicas

to execute different numbers of branches because the replica coming early waits others in a busy

loop. In summary, to work properly in CC-RCoE, the device drivers have to hide the access

patterns so that all the replicas of a driver still issue the same number of branches. We provide two

new system calls (function prototypes are shown in Listing 5.8) for device drivers.

1 int seL4_FT_Mem_Access(seL4_Word access_type , seL4_Word va_mmio ,

2 seL4_Word va_src_dest , seL4_Word size);

3 int seL4_FT_Mem_Rep(seL4_Word va , seL4_Word size);

Listing 5.8: seL4 FT Mem Access and seL4 FT Mem Rep

The system call seL4 FT Mem Access targets for MMIO regions. access type specifies an

access is a read or write, and va mmio is the MMIO virtual address used for reading input data

or writing output data. The parameter va src dest provides the virtual address where the input

data should be stored for a read or where the output data should be taken from for a write. Lastly,

the parameter size defines the MMIO region ([va mmio, va mmio + size)) for an operation

in bytes. For a read access, the primary replica performs the read and stores the result in the kernel

shared memory region. After that, all replicas copy the stored result to their private memory

regions specified by the va src dest parameters. For a write, the primary replica reads out the
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output data from the address indicated by va src dest and writes the data to the MMIO region

described by va mmio.

The system call seL4 FT Mem Rep is for accessing DMA buffers. It copies the contents of the

primary replica’s memory region ([addr, addr + size)) to the corresponding memory regions

belonging to other replicas, hiding the input data replication procedure in the kernel mode. To

handle the system call, the primary kernel replica reads size bytes from the address specified by

addr to the shared kernel data region, and other kernel replicas copy the data to the per-replica

memory regions. The pseudo code for this system call is showed in Listing 5.9. Note that the

kernel barriers used to implement the system calls belong to the F-barrier type (Section 4.3).

1 DATA_GLOB volatile char ft_mem_rep_buf[BUF_SZ ];

2 DATA_GLOB volatile bar_t ft_mem_rep_bar;

3 ft_mem_rep(unsigned long va, unsigned long size)

4 {

5 ft_abort_sync_wait ();

6 while (size > 0) {

7 /* the primary replica reads the data to the shared buffer */

8 if (is_primary ()) {

9 if (size > BUF_SZ) {

10 memcpy(ft_mem_rep_buf , va , BUF_SZ);

11 size -= BUF_SZ;

12 va += BUF_SZ;

13 } else {

14 memcpy(ft_mem_rep_buf , va , size)

15 size -= size;

16 }

17 }

18 /* ensure that the data is ready */

19 kbar_wait (& ft_mem_rep_bar , NUM_REPLICAS);

20 /* other replicas copy the data to their memory regions */

21 if (! is_primary ()) {

22 if (size > BUF_SZ) {

23 memcpy(va , ft_mem_rep_buf , BUF_SZ);

24 size -= BUF_SZ;

25 va += BUF_SZ;

26 } else {

27 memcpy(va , ft_mem_rep_buf , size);

28 size -= size;

29 }

30 }

31 /* ensure other replicas finish the current copy before

starting the next round */

32 kbar_wait (& ft_mem_rep_bar , NUM_REPLICAS);

33 }
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34 }

Listing 5.9: The pseudo code for seL4 FT Mem Rep

For CC-RCoE, two system calls, seL4 FT Mem Access and seL4 FT Mem Rep, are

introduced to support input data replication for device drivers in kernel mode so that

the access patterns do not affect the user-mode branch-instruction counters.

5.5.2 Driver Modifications for Accessing MMIO Device Registers (CC-RCoE)

The modified device drivers map the device MMIO regions into their virtual memory spaces as

normal. However, every MMIO region access is replaced with the seL4 FT Mem Access system

call. As an example, the original and modified code is listed in Listing 5.10. Note that ctrl reg is

a variable on the stack and that the virtual addresses of ctrl reg are the same for all the replicas.

The modifications are straightforward and potentially can be automated. Nevertheless, the runtime

performance overhead is nontrivial: a simple memory access is replaced by a system call which

can cost hundreds or thousands of CPU cycles.

1 /* original MMIO read */

2 uint32_t ctrl_reg = *(( volatile uint32_t *)dev ->ctrl_reg);

3

4 /* modified MMIO read */

5 uint32_t ctrl_reg = 0;

6 seL4_FT_Mem_Access(FT_READ , dev ->ctrl_reg , &ctrl_reg ,

sizeof(ctrl_reg));

7

8 /* original MMIO write */

9 uint32_t ctrl_reg |= ENABLE_BIT;

10 *(( volatile uint32_t *)dev ->ctrl_reg) = ctrl_reg;

11

12 /* modified MMIO write */

13 uint32_t ctrl_reg |= ENABLE_BIT;

14 seL4_FT_Mem_Access(FT_WRITE , dev ->ctrl_reg , &ctrl_reg ,

sizeof(ctrl_reg));

Listing 5.10: Modified MMIO access code

5.5.3 Driver Modifications for Accessing DMA Buffers (CC-RCoE)

For CC-RCoE, the library functions related to DMA buffer creation and allocation are not mod-

ified. Thus, the DMA buffers belonging to different replicas are mapped to separate physical

memory regions; and only the DMA buffers of the primary replica contain input data from I/O

devices. The seL4 FT Mem Rep system call is inserted before the places where input data in the
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buffers is about to be used. By replicating the data in the primary replica’s buffer to the corre-

sponding buffers belonging to other replicas, the system call ensures that consistent input data is

observed by all replicas when the data is used later. The zero-copy DMA optimisation can be used

to amortise the overhead introduced by the additional copies conducted by the system call since

each replica has a private copy of the DMA buffer after executing the system call.

5.5.4 Security Concerns

These two system calls seem dangerous if the parameters provided by the drivers are incorrect.

Now we examine the system calls and investigate what can happen if the system calls are purpose-

fully or accidentally misused.

access type mmio va + size va src dest + size Results

FT READ Valid MMIO
Valid Data/Stack (1) Read OK
Invalid Mem (2) Kernel-mode VM Faults
Valid MMIO (3) Unknown Effects

FT READ Invalid Mem Address N/A (4) Kernel-mode VM Faults

FT READ Valid Mem, not MMIO
Valid Data/Stack (5) Incorrect Behaviour
Invalid Mem (6) Kernel-mode VM Faults
Valid MMIO (7) Unknown Effects

FT WRITE Valid MMIO
Valid Data/Stack (8) Write OK
Invalid Mem (9) Kernel-mode VM Faults
Valid MMIO (10) Unknown Effects

FT WRITE Invalid Mem Address N/A (11) Kernel-mode VM Faults

FT WRITE Valid Mem, not MMIO
Valid Data/Stack (12) Inconsistent Replicas
Invalid Mem (13) Kernel-mode VM Faults
Valid MMIO (14) Inconsistent Replicas

Table 5.1: The combinations of inputs for seL4_FT_Mem_Access

We discuss seL4 FT Mem Access first. The first parameter is access type, which can be

FT READ or FT WRITE. The second parameter is va mmio that contains the virtual address backed

up by device registers, and va src dest should be the virtual address of data or stack regions.

However, a malicious or buggy driver may provide one of the following types of addresses to

the va mmio and va src dest: an invalid address, an address backed up by normal memory, an

MMIO address, or even a kernel address. We list the possible combinations and consequences

of the input parameters in Table 5.1. To check if an address belongs to the kernel reserved vir-

tual memory region is straightforward, so we skip the cases that use kernel virtual addresses as

parameters. We can group the results (1) to (14) into five categories:

• The cases (1) and (8) are correction operations. The parameters are correct, and operations

are correctly performed.

• The cases (2), (4), (6), (9), (11), and (13) cause kernel-mode VM faults. The kernel currently

halts the system when a VM fault occurs in kernel mode.
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• The cases (3), (7), and (10) cause undetermined effects. Unknown data from MMIO regions

((3) and (10)), or memory ((7)) is written to an MMIO region; the exact consequences de-

pend on the contents being written and the functionality of the MMIO region. We expect

that these cases will cause the I/O device to malfunction; however, we do recognise the pos-

sibility that the DMA engine of the device may be programmed to access physical memory

regions that the driver does not have access permissions (e.g., physical memory used by the

microkernel). For this issue, we can program the IOMMU to restrict the physical memory

regions that an I/O device is able to access.

• The cases (12) and (14) introduce inconsistent replicas of the driver. Only the primary

replica’s memory is modified with data from memory or from MMIO. If the inconsistency

originates execution divergence or comparison failures, the system halts.

• The case (5) may cause the driver replicas to behave incorrectly since incorrect data is read

from the primary replica’s memory instead of device registers. For example, if the driver

needs to check the interrupt status and incorrect information about the interrupt is supplied

from a physical memory region, the driver may act incorrectly.

A similar analysis can be conducted for the seL4 FT Mem Rep(va, size) system call as

well. The scenarios are fewer because of reduced number of parameters.

• If the [va,va+ size) is a valid memory region used for DMA buffers, the system call per-

forms as expected.

• If the [va,va+ size) is a valid and writeable memory region but not used for DMA buffers,

the system call performs. But instead of copying from primary replica’s DMA buffers, the

system call copies data from the primary replica’s non-DMA memory regions. However,

CC-RCoE ensure that the data in these regions belonging to different replicas of a driver is

the same; so the system call has no effects.

• If the [va,va+ size) is fully or partially invalid or read-only, kernel-mode VM faults will be

triggered; thus, the system halts.

• If the [va,va+ size) is a MMIO region, the same contents are read from and written to the

MMIO region; how the device is affected by such operations needs further case-by-case

analysis.

• If the [va,va+size) contains kernel-reserved virtual addresses, we reject the system call and

halt the system.

In summary, these are risks if the provided system calls are deliberately used to interfere

correct operation of a system. However, we need to modify the source code of the drivers so that

it is unlikely that malicious uses of the system calls will exist in the drivers. In the worst case, we

can validate the input addresses by walking through the page tables to identify if the addresses are

translated to valid physical memory regions or MMIO regions, at the cost of increased overhead.

One crucial character shared by the two system calls is that they can only be used to construct

channels among the replicas of a device driver; in other words, the replicas of the driver A cannot

communicate with the replicas of the driver B by using the two system calls.
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5.6 Interrupt Delivery

Device interrupts are delivered to the primary replica; so we need a mechanism to propagate the

interrupts to other replicas. As we introduced in Section 2.4.4, a device driver observes interrupts

by waiting on a notification object; so the driver replicas can observe the interrupts consistently

since the positions of the seL4 Wait system call are deterministic. However, the interrupt delivery

procedure usually involves preempting the current threads and context-switching to the replicas of

the driver. Thus, the kernel instances need to execute the synchronisation protocol first, ensuring

the preemption of the current threads will not cause execution divergence.

The microkernel is modified to buffer interrupts and to trigger synchronisations before

injecting the interrupts to all driver replicas, ensuring consistent observations of the

interrupts by all driver replicas through the seL4 Wait system call and notification

objects.

The code changes we made to the kernel entry point for interrupt handling is shown in List-

ing 5.11. The original entry point calls the interrupt handler handleInterrupt(irq) directly if

the received irq is valid. The modified entry point has different execution paths for the primary

replica and non-primary replicas. The primary replica buffers the valid irq and triggers a round of

synchronisation by calling ft trigger action at line 16. After that, ft arch sync notify is

called to send IPIs (inter-processor interrupts) that interrupt the execution of non-primary replicas.

The source of the current irq is disabled (the device driver can re-enable it), and the interrupt con-

troller is acknowledged so that interrupts from other devices can still come in. The non-primary

replicas only handle the synchronisation IPIs; the function sync is called by all replicas to start

the synchronisation protocol.

1 /* original interrupt handler */

2 handle_interrupt () {

3 irq = get_irq ();

4 if (irq != irqInvalid) handleInterrupt(irq);

5 schedule ();

6 activateThread ();

7 return EXCEPTION_NONE;

8 }

9

10 /* modified interrupt handler */

11 ft_handle_interrupt () {

12 irq = get_irq ();

13 if (is_primary_replica () && irq != irqInvalid) {

14 /* the primary replica triggers a synchronisation and

15 * and saves the irq number. */

16 ft_trigger_action(FT_SYNC_EVT_INT , irq);

17 /* notify other replicas by sending IPIs */

18 ft_arch_sync_notify ();

19 /* mask the interrupt source */
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20 maskInterrupt(true , irq);

21 /* interrupts from other sources can still fire */

22 ackInterrupt(irq);

23 } else {

24 /* non -primary replicas only respond to IPIs */

25 if (irq != FT_SYNC_IPI) return;

26 }

27 /* call the synchronisation protocol */

28 sync();

29 }

Listing 5.11: The code changes made to the kernel interrupt entry point

When the replicas are synchronised, the saved interrupts are injected in a batch as shown in

Listing 5.12. The batch injection implies that multiple drivers can become ready to run. Still, the

thread with the highest priority among the runnable threads will be chosen to execute first.

1 /* this function is called when the replicas are synchronised */

2 handle_event () {

3 switch (sync_evt) {

4 case FT_SYNC_EVT_INT:

5 /* multiple interrupts can be saved by ft_handle_interrupt;

6 * we call the original kernel interrupt handle

7 * handleInterrupt to process the saved interrupts. */

8 foreach (irq in saved_irqs)

9 handleInterrupt(irq);

10 clear_saved_irqs ();

11 break;

12 /* other synchronisation events are omitted */

13 }

14 }

Listing 5.12: The pseudo code for interrupt injection

5.7 Primary Replica Migration

To support error masking in TMR mode, we need the ability to migrate the functionality of the

primary replica to another core if the primary replica is voted faulty. We postpone the details of the

error masking mechanisms to Section 6.5.2 and focus on the microkernel infrastructure to support

the migration. After the migration, the new primary replica will have accesses to the device MMIO

regions, I/O ports, and DMA buffers. Since CC-RCoE and LC-RCoE support MMIO and DMA

accesses differently, we examine them separately.
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5.7.1 I/O Ports

As described in Section 5.3, the I/O port operations are performed by the microkernel on behalf of

the device drivers. The approach is used for both CC-RCoE and LC-RCoE, so the driver replicas

only using I/O ports are completely unaware of the migration, since the interactions with I/O ports

are hidden. Note the kernel I/O port functions supporting error masking are slightly different from

the code in Listing 5.5. For example, the function is_primary() for a TMR system with error

masking needs to know when the primary replica migrates; so the function compares the replica

ID with a variable containing the ID of the current primary replica. Additionally, the kernel mode

barriers need to adjust their internal counters accordingly when a system downgrades from three

replicas to two replicas after the faulty replica has been removed.

5.7.2 Memory-Mapped I/O

CC-RCoE and LC-RCoE establish the mappings of device MMIO regions for all replicas so that

each replica, be it the primary replica or not, can access device registers. (This is the reason

why we use the access patterns in Section 5.2 to coordinate MMIO accesses.) For CC-RCoE, we

provide new system calls Section 5.5.1 to implement the access patterns in kernel mode so that

the user-mode branch counting is unaffected by the patterns. Thus, just as the case for I/O port

operations, the driver replicas are not affected by a migration since the accesses are handled by the

microkernel in a way that the driver replicas observe the completions of accesses atomically.

1 if (is_primary ())

2 shared = read_data ();

3 barrier ();

4 local = shared;

5 barrier ();

6 return local;

Listing 5.13: Access pattern for reads

(repeat)

1 disable_migration ();

2 if (is_primary ())

3 shared = read_data ();

4 barrier ();

5 local = shared;

6 barrier ();

7 enable_migration ();

Listing 5.14: Read access pattern with error

masking

On the other hand, LC-RCoE implements the patterns in user mode. The problem here is that

a faulty replica can be removed any time while the system is running, since non-deterministic

device interrupts can come in and trigger synchronisations. Consider the code in Listing 5.13; if

a replica is removed at line 4 and other replicas are waiting at the barrier at line 5, the waiting

replicas cannot pass the barrier. Therefore, we need a mechanism to notify the blocking replicas

that the number of active replicas has changed, so they can abort the current round and call the

barrier again with the reduced number of active replicas. Now, let us consider another scenario:

the primary replica is removed between line 1 and line 2, and other replicas are waiting at line

3. Assume the notification mechanism discussed above exists, so the waiting replicas pass the

barrier and arrive at line 4 and start to copy the input data from the cross-replica shared memory

region. However, the data in the shared buffer is incorrect since the previous primary replica did

not perform the read operation. Similarly, if the primary replica is removed between line 4 and
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line 5, and the newly chosen primary replica resumes execution at line 1, the new primary replica

will read the device again at line 2. However, unlike normal memory, reading memory-mapped

I/O region usually has side effect so reading twice should be forbidden. The microkernel cannot

distinguish if the primary replica has finished the read operation and stored the result to the shared

memory buffer without decoding instructions and analysing source/destination memory addresses.

Therefore, if any replica is in the middle of accessing MMIO regions, we decide to abort the

attempt of migrating the primary replica and to halt the whole system instead (see Section 6.5.2).

For the purpose of the drivers advising the microkernel that an MMIO access is being executed

and the purpose of the microkernel notifying the drivers that a faulty replica has been removed,

we need to establish bidirectional channels between the microkernel and the drivers. The channels

should incur little overhead during normal operations, so frequently executing a system call, which

usually costs hundreds of cycles each, is not an ideal choice. Our approach is to set up a dedicated

memory region between each driver replica and the microkernel replica, and the region contains

the following items.

num active replicas represents the number of active replicas. The microkernel updates this

item when a replica is removed, and the driver replicas use the value as the parameter to the

barriers used in the access patterns. This item is updated by the kernel and read by a driver.

primary replica id indicates the ID of the current primary replica. The microkernel updates

this item when a primary replica migration happens. The access patterns compare this item

with the exposed replica ID to identify the primary replica. This item is updated by the

kernel and read by a driver.

num replica changed marks that a faulty node has been removed so that the replicas blocking

on a user-mode barrier can terminate waiting and restart the barrier with the new value in

num active replicas. This item is updated by the kernel and read by a driver.

migration disabled suggests that an MMIO access is in progress, so the kernel halts the

system if a primary migration is required. This item is updated by a driver and read by the

microkernel.

When error masking is enabled for TMR, the alternative versions of the access patterns and

the user-mode barriers are used. These alternatives communicate with the kernel replicas by the

reading or writing the variables described above, and the memory reads and writes are relatively

low-cost. For instance, the alternative version of the read access pattern is listed in Listing 5.14.

disable migration() sets migration disabled to 1 to mark the beginning of no-migration

region, and enable migration() concludes the region.

When error masking is enabled, a lightweight bidirectional communication channel is

established between each driver replica and the microkernel replica for LC-RCoE. The

microkernel notifies the driver replicas if the number of active system replicas changes,

and the driver replicas advise the microkernel if an MMIO operation is in progress.
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5.7.3 Direct Memory Access

For LC-RCoE, DMA buffers are allocated from the cross-replica shared-memory regions (Sec-

tion 5.4.1). The same approach (the bidirectional communication channel) we designed for MMIO

accesses also works for the DMA operations. A slight difference is that we only temporarily dis-

able primary replica migration when writing to the DMA buffers. The reads from DMA buffers

are unaffected since each driver replica can directly read the data from the buffers without relying

on the primary replica to copy the data first.

For CC-RCoE, the situation becomes more complicated since that the DMA buffers are pri-

vate to each driver replica and that the driver replicas depend on the system calls to replicate the

input data (Section 5.5.1). However, if we remove the faulty primary replica, we lose the only

replica that can access the DMA buffers that are actually used by the I/O devices. Fortunately, the

actual physical memory addresses of the DMA buffers, owned by the previous primary replica and

used by the I/O devices, can be derived from the new primary replica’s virtual memory page table

entries by the following simple calculation: phy addr new pri - start phy addr new pri +

start phy addr former pri. phy addr new pri is a physical address in an entry of the new

primary replica’s page tables for DMA regions. start phy addr new pri is the start physical

memory address of the region assigned to the new primary replica. start phy addr former pri

is the start physical memory address of the region assigned to the former primary replica. Accord-

ingly, we are able to patch the page tables of the drivers running on the new primary replica to

restore the mappings of the DMA buffers, avoiding reprogramming the I/O devices. The patching

procedure is a one-time operation for each driver, but it requires that the microkernel keep track of

the virtual addresses assigned to the DMA buffers so that the corresponding entries can be patched.

On the x86 architecture, we exploit the fact that the bits 9 to 11 of a page table entry pointing

to a 4 KiB physical frame are ignored by hardware [Int, 2016b], so we use the bit 9 to indicate if

an entry in a page table is used for DMA buffers. We also modify the virtual memory mapping

system call, in a similar way we augment them for creating the cross-replica shared memory

regions (Section 5.4.1), to support the new DMA attribute that indicates the requested mapping is for

DMA buffers. Hence, the kernel sets the bit 9 in the corresponding page table entry to 1 if the DMA

attribute is enabled by the system call. When patching the page tables of the drivers is required, the

microkernel scans the page table entries, looks for the matching entries, and replaces the entries

with the computed physical addresses that previously used by the former primary replica.

To enable the primary replication migration for CC-RCoE on the x86 architecture, the

system call, seL4 IA32 Page Map, is augmented with the DMA attribute that distin-

guishes mappings for DMA regions from other mappings. The microkernel exploits

the 9th bit, which is ignored by hardware in a 4-KiB page entry, to indicate if the entry

is for a DMA region or not. The marked DMA entries of the new primary replica are

patched with actual physical addresses used by I/O devices when a migration occurs.

For the ARMv7-A architecture with the large physical address extension (LPAE), two page

table formats are provided: the short-descriptor format and long-descriptor format [ARM, 2014].

The short-descriptor format does not have extra bits that can be used by system software. The

long-descriptor format for blocks and pages reserves bits 55 to 58 for software use, but the long-

descriptor format is not supported by our i.MX 6-based ARM board [NXP, 2015]. Thus, we do not
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implement error masking for CC-RCoE on ARM; but there is no fundamental obstacle to adding

the support once we switch to an SoC with LPAE.

5.8 A Comparison of the Driver Support in CC-RCoE and LC-RCoE

Cross-Replica Shared Memory seL4 FT Mem Access/Rep

Performance Overhead Moderate High
Risks N/A Moderate
Implementation Complexity Simple Moderate
Driver Code Changes Moderate Small

Table 5.2: A comparison of the approaches to supporting device drivers

In Table 5.2, we compare the approaches to supporting device driver replication from the

following four perspectives: performance overhead, risks, implementation complexity, and size of

code changes. The cross-replica shared memory for LC-RCoE has the advantage of implementing

the required functionalities in user mode, so the performance overhead of driver replication in

LC-RCoE is less than that of CC-RCoE; neither does the microkernel take the risk of accessing

driver-provided addresses. The in-kernel implementation for the cross-replica shared memory for

LC-RCoE is also less complicated than that for the new system calls for CC-RCoE in terms of

both lines of code and logic; however, the lines of driver code need to be modified for LC-RCoE

are more than that of CC-RCoE.

5.9 Summary

In this chapter, we describe the access patterns that the kernel and replicated drivers must fol-

low to support the replication of device drivers. For LC-RCoE, the system calls managing virtual

memory address to physical memory address translation are augmented to support the SHARED

option for creating cross-replica shared memory regions. This mechanism provides the essen-

tial functionality required to implement the access patterns in user mode for the operations on

MMIO device registers and DMA buffers. For CC-RCoE, we supply the seL4 FT Mem Access

(for accessing MMIO registers) and seL4 FT Mem Rep (for DMA buffers) system calls that im-

plement and hide the access patterns in kernel mode, avoiding disturbing the hardware-assisted

or compiler-implemented branch counters. We also introduce how the synchronisation protocol is

integrated with the procedure of interrupt injection to ensure consistent observations of interrupts

by all the replicas.

To support error masking, we introduce the primary replica migration: when a primary replica

is faulty, we migrate functions for accessing I/O devices to a new primary replica and retire the

old one. For LC-RCoE, a lightweight bi-directional channel enables the notification of removing a

replica from the kernel to the drivers and the report of in-progress I/O accesses from the drivers to

the kernel. For CC-RCoE, the virtual memory mapping system calls are augmented with the DMA

option so that the kernel can identify the entries used for DMA buffers in the page tables. When

the primary replica migrates, the DMA buffer entries in the new primary replica’s page tables are
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patched by the kernel with the physical addresses used by the I/O devices. By doing so, the new

primary replica is able to perform DMA buffer operations.

The mechanisms for supporting driver replication and the synchronisation protocol comple-

ment each other, and we design different solutions for LC-RCoE and CC-RCoE based on their

requirements and run-time characteristics. Fundamentally, they work together to achieve the fol-

lowing two targets: (1) The non-determinisms introduced by I/O device interrupts and multi-

threaded applications are tamed by the synchronisation protocol. (2) The non-deterministic input

data from I/O devices is harnessed and replicated by the driver replication mechanisms. Therefore,

the replicas of a system are able to observe non-deterministic events consistently and thus to avoid

execution divergence during error-free runs.
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Chapter 6

Error Detection and Masking

And now that you don’t have to be perfect,
you can be good

John Steinbeck

The microkernel mechanisms for redundant co-execution described in the previous chapters

establish the foundation for error detection, which is the main topic of this chapter. Section 6.3

discusses two approaches to detecting errors induced by faults: (1) Section 6.3.1 describes how the

execution fingerprints are compared independently by each replica to avoid a faulty replica being

the single point of failure. (2) Section 6.3.2 illustrates how the time-out mechanism equipped by

the kernel-mode barriers catches the faults manifested as execution divergence—after a predefined

period of time has elapsed, if not all replicas arrive at a barrier, the timed out barrier halts the

whole system. Using the execution fingerprinting mechanism for error detection is flexible; system

designers can trade performance for improved error coverage and reduced error detection latency

by including more states into the fingerprints and triggering comparisons more frequently, or vice

versa. Finally, we conclude this chapter by examining the error masking for the triple modular

redundancy (TMR) configuration, presenting the benefit and limitation. This chapter includes the

work published in [Shen and Elphinstone, 2015; Shen et al., 2019].

6.1 Challenges

The properties of an error detection mechanism can be evaluated using three metrics: error cover-

age, error detection latency, and performance overhead. Generally speaking, good coverage and

short latency imply increased performance overhead; and we need experiments and experiences to

balance the three factors in order to build a system that fulfils design targets for error coverage and

detection latency with reasonable performance overhead. Allowing system designers to experi-

ment with various error detection configurations requires us not to predetermine error detection

policies in the microkernel, but to provide flexible mechanisms that can be used to customise error

coverage and error detection latency.

Error coverage is defined as the ratio of the number of errors that can be detected and the

number of total potential errors. 100% error coverage means that every error in memory or

architecture-visible parts of a processor shall be detected, but implementing such full coverage
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in software is neither practical nor necessary. Thus, the first question we need to answer is, what

should be covered by the error detection mechanism? The following tasks are: How do we collect

data for error detection? How do we store the collected data in a storage-efficient way that it is

also straightforward to compare?

Error detection latency describes the interval from the time when an error occurs to the time

when the error is detected. It is usually infeasible to measure the latency directly in software

since the exact time when the error happened is unknown to software. For instance, an error can

propagate from a component that is not covered by the error detection mechanism to a component

that is protected so that the exact time when the original error occurred is undetermined. For this

reason, we do not aim to quantify the exact length of error detection latency, but intend to estimate

an upper bound for the period between when an error is captured by the error detection mechanism

and when the error is actually detected by comparing the states of the replicas. Capturing an error

mandates that the incorrect state be included into the execution fingerprints, and detecting the error

is achieved by validating the fingerprints. The question is, how do we enforce the upper-bound

error detection latency (assuming a user specifies one)?

For DMR systems, we fail-stop the systems once an error is detected since having two copies is

not sufficient to conduct majority voting, and it is risky to assume that one of the replicas is correct.

For TMR systems, we have the opportunity of masking an error by voting the replica affected by

the error, removing the faulty replica, and downgrading the systems to the DMR mode. Each

replica votes the faulty replica independently and validates its result with the results from other

replicas. The error masking procedure continues only when all the replicas reach a consensus on

which replica is faulty. We will examine the multi-stage voting algorithm in Section 6.5.1.

6.2 Execution Fingerprints

The per-replica (per-core) fingerprint consists of a sequence of events that are captured by the

microkernel. An event is defined generally as a sequence of steps that change per-replica state,

ranging from a system call invoking multiple kernel functions to a single function updating a

virtual to physical memory translation table entry. Various helper functions are implemented to

compress an event to a signature—a 32-bit or 64-bit integer. For example, a system call signature

can be constructed by adding system call number, input parameters, and output results. Each

kernel replica keeps an event counter and assigns a unique sequence number for each signature,

forming a pair of (event count, event signature).

The storage used for keeping the pairs can become significant for a long-running system, so we

use Fletcher checksum [Fletcher, 1982], which is dependent on the values forming the checksum

and the order of the values being incorporated, to compress the pairs. By checksumming the

events, the execution fingerprint of a replica is effectively represented by a pair, (event count,

checksum of event signatures), which reflects the history of state updates of the replica.

Not only does checksumming save storage, but also it simplifies fingerprint validation: comparing

checksums is much easier than comparing captured events one by one.

An execution fingerprint of a replica represents a compressed running history of state

updates that have been performed by the replica.
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6.2.1 Internal Kernel Functions and the System Call

The microkernel provides internal functions which are listed below, to manage the per-replica

fingerprint and to trigger fingerprint validations; the functions are used by the microkernel to

implement introspection: isolation-critical state updates of the kernel can be included into the

per-replica execution fingerprint for validations.

• add event(value) adds an event to the per-replica fingerprint. It is an operation entirely

local to the replica, requiring no cross-replica synchronisation.

• add compare event(value) adds an event to the local fingerprint of a replica and waits

until all replicas reach the same point in the sequence of state updates and then compares

the fingerprints. A mismatch of the fingerprints implies the replicas are inconsistent due to

an error, and our prototype triggers a graceful fail-stop for the DMR mode or a recovery (if

enabled) for the TMR mode.

add event(value) and add compare event(value) are interchangeable with the former

being a fast local operation and the latter forcing an immediate fingerprint comparison. The system

call, seL4 FT Add Event(value, compare_now), is implemented by the two internal func-

tions; the compare now parameter controls the use of the former or the latter. This creates a

trade-off between performance and frequency of fingerprint comparison for system designers to

resolve as required.

The seL4 FT Add Event system call can be used by a malicious user-mode application to

trigger fingerprint-comparison failures if the replicas of the application manage to break out from

the virtualised runtime environment and to provide inconsistent data as the input parameters for the

system call. There are two possible outcomes when parameters mismatch: (1) a failed fingerprint

comparison (when the value parameters are different), and (2) a kernel-barrier timeout (when

the compare now parameters are different). Both outcomes lead to halting the system so that the

the malicious application cannot use the call to violate isolation guarantees. Furthermore, we can

reserve the call to trusted applications and device drivers only, reducing the possibility of abusing

the system call.

6.2.2 What Should Be Included in Execution Fingerprints

The microkernel is modified to collect security- and isolation-related kernel-state updates into the

per-replica fingerprint by using the add event and add compare event functions. Our default

implementation includes the following updates into the fingerprint unconditionally.

Virtual address to physical address translation table updates affect the isolation between sys-

tem replicas, between user-level components and the kernel, and between trusted and un-

trusted applications within a replica. The MMU of the processor walks the multi-level

tables to translate a virtual memory address to a physical memory address. Although the

formats of the table entries are architecture-dependent, the virtual address, physical address,

and the attributes of the mapping are common properties. We combine these values to

form a signature for each update and call add compare event to include the signature into
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the fingerprint for validation before returning to user mode. We collect the offsets (phys-

ical address - start physical address of the replica) instead of absolute physical addresses

since the physical memory regions for the replicas are different.

Capability space updates affect the distribution of authority and the isolation boundaries en-

forced by the microkernel. A capability space is a single- or multi-level table, and each slot

in the table represents a capability. One or more tables can be modified by a system call

to manipulate the states or ownerships of the capabilities. For each capability space opera-

tion, we collect the source and destination entries as well as the type of operation into the

fingerprint and trigger a validation before returning to user mode.

We modify the microkernel to include all capability space and virtual memory space

updates that are security- and isolation-critical into the execution fingerprints by call-

ing the internal functions.

From the microkernel’s point of view, system calls issued by applications are inputs to the

kernel and the return values from the kernel are the outputs. Such input/output data should be

consistent (except for the system calls that are reliant on precise preemption), so the system calls

and the associated data can be included into the fingerprints to detect any divergence. We introduce

a configuration option so that the kernel can be built to incorporate system calls for error detection

at the expense of slightly increased performance overhead, which will be demonstrated in the

evaluation. The option provides the flexibility of increasing or reducing error coverage.

Inputs and outputs for each system call can be optionally included into the fingerprints

for improved error coverage.

From the whole system’s point of view, incoming data from I/O devices is the input; the

system processes the input data and generates output data which is then released to I/O devices for

transmission. Therefore, user-mode drivers should verify the output data. For this reason, we allow

the drivers to contribute their output data or key internal state changes into the fingerprints via the

new system call: seL4 FT Add_Event(value, compare now). The drivers can provide the

checksums of the output data as the first parameters. If compare now is true, the calling replicas

add the first parameter to the fingerprints and wait on the kernel barrier dedicated for this system

call; when all replicas arrive at the barrier, the fingerprints can be validated. When compare now

is false, the calling replicas simply append the first parameters to their fingerprints and continue

execution. The microkernel does not know if a data region is important to an application, so

in order to increase the error coverage, system designers can employ the same system call to

incorporate application-specific data or checksums into the fingerprints for validations.

We also allow the user-mode programs to adjust the frequency of fingerprint validations. This

system call, seL4 FT Add Event, can also be used with zero as the first parameter and true

as the second parameter, triggering a fingerprint comparison explicitly. We can set up periodic

comparisons by programming a hardware timer to generate recurrent interrupts and calling the

system call from the interrupt-handler thread. In this case, a user-mode application can increase

or decrease the comparison frequency directly without tuning kernel configuration options.
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A multi-purpose system call, seL4 FT Add Event(value, compare now), is im-

plemented. Device drivers and applications can use the system call to incorporate

safety- or security-critical data into the execution fingerprints for validations, increas-

ing the error detection coverage. The system call can also be used to trigger fingerprint

validations explicitly, allowing user-mode programs to adjust the validation frequency

and thus error detection latency.

6.3 Error Detection

The instrumented microkernel relies on two methods for error detection: fingerprint comparisons

and timeouts of kernel barriers. The fingerprints of all the replicas are checked by each replica

independently to avoid a replica being the single point of failure; a transient-fault-triggered er-

ror that propagates to a per-replica execution fingerprint can be detected by the comparisons.

Kernel-barrier timeouts detect control-flow divergence introduced by transient faults by setting

proper timeout values for the synchronisation barriers and functional barriers. Choosing appro-

priate timeout values requires the knowledge of worst-case execution time of the applications to

be deployed: inappropriate values would either increase the window of vulnerability or halt the

system unnecessarily.

6.3.1 Error Detection by Comparing Fingerprints

As described in Section 6.2, the execution fingerprint of each replica summarises how the impor-

tant kernel and application states of the replica evolve over a period of time. The code for validat-

ing the fingerprints is shown in Listing 6.1, and it is executed redundantly by all the replicas. The

barriers (at lines 2 and 6) are used to ensure that the fingerprints are not modified when the replicas

are comparing them. Admittedly, the code is straightforward and uninteresting, but the simplicity

comes from the thorough preparation of redundant co-execution and fingerprint collection.

1 ret = FAIL;

2 kbar_waitn (&bar_cmp , FT_REPLICAS);

3 if (FT_REPLICAS == 2 && fingerprint [0] == fingerprint [1]) ret = OK;

4 if (FT_REPLICAS == 3 && fingerprint [0] == fingerprint [1] &&

5 fingerprint [1] == fingerprint [2]) ret = OK;

6 kbar_waitn (&bar_cmp , FT_REPLICAS);

7 return ret;

Listing 6.1: Fingerprint co-comparison

The fingerprint is an array in the shared kernel data region so that each replica’s fingerprint

can be accessed by other replicas. For DMR systems, we halt the systems if one of the replicas

returns FAIL result. However, the situation for TMR systems is more complicated if we allow

error masking, so we will discuss the possible outcomes in Section 6.5.
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6.3.2 Error Detection by Kernel Barrier Timeouts

As shown in the SPIN model (Appendix B), several kernel-mode barriers (the S-barriers) are used

to coordinate the redundant co-execution. Furthermore, more barriers (the F-barriers) are also used

in the seL4 FT Mem Access, seL4 FT Mem Rep, seL4 FT Add Event, and seL4 IA32 IOPort

system call handlers. These barriers can be configured with the timeout feature: a kernel barrier

halts the system if not all replicas arrive at the barrier after a specified amount of time has elapsed

since the first replica arrived at the barrier. The timeout value is supplied as a kernel-configuration

option, and it is in the unit of CPU cycles. We use the CPU cycle counters for the following

reasons: (1) each core has its own cycle counter so that accesses to the counter do not interfere with

other cores; (2) accessing a cycle counter is a relatively cheap operation compared with accessing

other platform-specific timers; (3) the timeout values are usually shorter than the architecture-

specific counter overflow intervals. However, users have to convert the timeout value from absolute

time to CPU cycles so that recalculation is required for CPU running at different frequencies.

Choosing appropriate timeout values for the barriers is non-trivial and potentially system-specific;

we consider it as a future work (Section 8.2.6).

6.3.3 Bounding the Error-Detection Latency

The comparison frequency determines error-detection latency. Although we provide system de-

signers the flexibility to meet their error detection latency goals by increasing or decreasing the in-

tervals between comparisons with the seL4 FT Add Event system call, we also provide an option

that enables periodic fingerprint comparison if applications are not modified to take the advantage

of the new system call. The observation is that we already need to synchronise the replicas for han-

dling an interrupt, so the fingerprints of the replicas must be consistent after the synchronisation

and before injecting the interrupt for error-free runs. Thus, we can compare the fingerprints right

before injecting interrupts, without introducing too much additional overhead (e.g., synchronis-

ing the replicas only for fingerprint comparisons). Remember that the periodic kernel preemption

timer interrupts are treated by the same mechanism, so we can optionally configure the system to

check the fingerprints at every preemption-timer tick. The length of the ticks is configurable so

that the comparison frequency can also be adjusted accordingly, and the default value is 20 mil-

liseconds (50 ticks per second). For systems with a very high interrupt frequency (e.g., a network

server with thousands of network interrupts per second), the checking frequency is dominated by

the rates of device interrupts, and we suggest disabling the preemption-timer-triggered compar-

isons for reduced performance overhead, since the fingerprints are compared by default for each

I/O device interrupt.

6.4 Turning the Knob: Coverage, Latency, and Overhead

In this section, we demonstrate how the supplied primitives are used to build systems with dif-

ferent levels of error coverage, error-detection latency, and runtime performance overhead. The

principle is to reduce built-in kernel policies as much as possible, but we still safeguard the micro-

kernel with two default rules: (A) Updates to the capability spaces and virtual spaces are included

into the execution fingerprints, and each update triggers a comparison immediately so that the
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update can be verified against with other replicas’ updates before returning to user mode. (B) Ex-

ecution fingerprints of all replicas are compared when the system is synchronised for each device

interrupt (other than the kernel preemption timer interrupts). The default rules can be removed

easily by reconfiguring the microkernel building options if designers really want to do so. We

also strongly recommend that driver writers checksum the output data and validate the data with

the seL4 FT Add Event system call before releasing the data to I/O devices. We present several

typical configurations with different degrees of error detection capabilities and overhead. We list

several basic error detection modes below, and system designers can configure systems to use the

combinations of the basic modes. Please note that the fingerprints are implicitly verified according

to rule (B) in all modes.

Barrier-Timeout (BT) Mode only halts a system when replicas diverge or one of the replicas

stops making progress. No state updates are included into the fingerprint so that the com-

parisons are turned off. This execution mode introduces the least runtime overhead, but it

is ineffective in catching data corruptions unless the corruptions cause execution divergence

that can be captured by the kernel barriers.

Critical-Update (CU) Mode includes CSpace and VSpace updates into the execution finger-

prints, and each update triggers a validation to check the integrity and validity of the update

immediately before the kernel replica returns to user mode. The CU mode only verifies up-

dates that are critical to preserve the isolation enforced by the microkernel. However, these

updates are relatively infrequent once a system is completely initialised.

Application-Contribution (AC) Mode incorporates application-contributed data into the execu-

tion fingerprints and allows applications to explicitly trigger a fingerprint validation when-

ever they see fit. The mode significantly expands the fingerprints to include arbitrary ap-

plication data for validation. The increase of runtime overhead depends how frequently the

seL4 FT Add Event is called and how often the compare now option is true.

System-Call (SC) Mode incorporates system call numbers, inputs, and outputs into the execution

fingerprints; but each system call is not checked immediately before the kernel returns to

user mode. Since applications communicate through IPC, this mode also captures data

interchanges between applications into the fingerprints.

System-Call Number (SCN) Mode only collects system call numbers into the execution finger-

prints, omitting call inputs, call outputs, and IPC buffers; each call is not checked immedi-

ately before the kernel returns to user mode.

System-Call Immediate (SCI) Mode is similar to the SC mode above; in addition to capturing

system call data into the fingerprints, this mode synchronises the replicas for each system

call before the replicas return to user mode and the compares the fingerprints immediately.

In other words, the replicas are “lockstepped” at the system-call level. Obviously, the SCI

mode incurs higher overhead than the SC mode if other conditions are the same.

From the simple BT mode to the most complicated and comprehensive BT+CU+AC+SCI

mode, the designers are able to combine the basic modes and tailor the error-detection mode that
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suits their needs best. Among the combinations, we recognise that the CU + SC + BT + AC

mode achieves a sweet spot balanced with good coverage, low latency, and moderate performance

overhead. On the other hand, the CU + SCI + BT + AC mode delivers the most extensive protection

at the cost of high overhead. In Chapter 7, we illustrate various performance characteristics of

several error detection modes.

6.5 Error Masking

With the TMR (triple modular redundancy) configuration, the microkernel is able to recover from

an error without service disruptions, provided that the security policy allows recovery and that the

system state is eligible for conducting the operations of removing a faulty replica.

Two approaches are commonly used for error masking: backward recovery and forward re-

covery. Backward recovery rolls back a system to a previously saved and checked state, so it

requires periodic checkpointing for taking snapshots of the system state as well as reliable storage

for ensuring the integrity and correctness of the saved snapshots. The checkpointing frequency and

the amount of data to be saved for each checkpoint largely determine the performance overhead

of backward recovery. One observation is that the checkpoint data is usually proportional to the

interval between checkpoints. In terms of our whole-system replication approach, a less optimised

approach would produce a checkpoint by taking a snapshot of per-core memory regions, increas-

ing the memory usage further. While several optimisations could be applied, such as saving only

one replica’s memory to a globally accessible storage, incrementally saving the memory changes

since the last checkpoint, and compressing checkpoints, we still need to consider the possibility of

the checkpointing process being affected by faults, resulting in incorrect checkpoints. In spite of

increased memory and computation overheads, backward recovery provides the opportunity to re-

store a faulty replica to a previously correct state and to keep running the system in DMR or TMR

configurations without losing a replica. Furthermore, backward recovery does not need to identify

which replica is faulty since it can simply revert all replicas to a former state, so it is possible for

a DMR system to deploy backward recovery.

Forward recovery relieves the needs for periodic checkpointing, but it requires TMR and ma-

jority voting to reach a consensus on which replica is faulty. Then, the recovery algorithm can

decide to reintegrate a faulty replica by copying data from a correct replica or bringing up a spare

replica into service, retaining TMR; or it can choose to downgrade the system to DMR, reducing

implementation complexity. We adopt forward-recovery-based error masking by using major-

ity voting and dynamically downgrading to DMR for the following reasons: (1) Our redundant

co-execution already significantly increases pressure on the memory subsystem bandwidth (see

Section 7.3.1) and doubles or triples memory consumption. (2) The reintegration process is not

redundantly executed and checked, neither is the process of copying or modifying important kernel

data structures (e.g., virtual memory and capability tables), introducing a window of vulnerability.

Although we consider reintegration as future work, we will outline the steps should be performed

in Section 6.5.3. (3) Fail-stop is an acceptable, sometimes even preferred method, if reliable error

masking cannot be achieved.

For a TMR system, the error masking algorithm described in Listing 6.2 and Listing 6.3 at-
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tempts to remove the faulty replica and downgrades the system to DMR, without service inter-

ruption or reboot. Since we do not support the reintegration of the faulty replica, a full system

reboot is required to restore TMR if the system is downgraded to DMR. Another limitation is that

the kernel can only initiate recovery when an error is detected by the fingerprint comparisons; a

kernel barrier timeout halts the whole system without attempting to recover. For a DMR system,

should an error be detected, we halt the system instead of trying to mask the error. Please refer to

Section 5.7 for the underlying kernel mechanisms supporting primary replica migration.

Error masking is attempted for TMR systems and achieved by voting the faulty replica

and removing the replica from the system, implementing a forward-recovery approach.

6.5.1 The Algorithm for Voting A Faulty Replica

The voting algorithm in Listing 6.2 is specialised for our scenario, and we designed it in a way

that it can fulfil the following requirements: (1) if only one checksum is inconsistent with other

checksums, the replica ID of the incorrect checksum is returned; (2) an error is returned for all

other scenarios, which include all the checksums are the same, all the checksums are different,

etc. The algorithm is only called when the checksums mismatch, so it reports an error when

all the checksums are the same. We aim to fail-stop the system if the replicas fail to reach a

consensus, no matter what the underlying causes are (the checksums are corrupted, two or more

replicas misbehave, the code region for the voting algorithm is corrupted, etc.). Although our

TMR configuration can only tolerate one faulty replica if certain conditions are met, the voting

algorithm does not assume that only one replica is faulty. This is because an SEU can affect

more than one replica, as described in Section 4.1.4. We want to emphasise that the algorithm is

executed by all the replicas independently, and the arrays ft votes and ft fault replica are

in shared kernel memory region so that they can be accessed by all replicas.

1 global_shared int ft_votes[NUM_REPLICAS ];

2 global_shared int ft_fault_replica[NUM_REPLICAS ];

3

4 int vote_fault_replica(void) {

5 int least_vote = NUM_REPLICAS + 1;

6 int fault_replica = NUM_REPLICAS + 1;

7 ft_votes[my_replica_id] = 0;

8 /* If the checksum of the current replica is the same as

9 another replica ’s, the current replica receives one vote.

10 A replica gets at least one vote from itself. */

11 for (int i = 0; i < NUM_REPLICAS; i++) {

12 if (checksum[i] == checksum[my_replica_id ])

13 ft_votes[my_replica_id ]++;

14 }

15

16 kbarrier(bar , NUM_REPLICAS);

17 /* Now we count which replica receives the least votes */

18 for (int i = 0; i < NUM_REPLICAS; i++) {
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19 if (ft_votes[i] < least_vote) {

20 least_vote = ft_votes[i];

21 fault_replica = i;

22 }

23 }

24 /* If the current replica does not receive enough votes ,

25 it marks itself as the faulty replica. Otherwise , the

26 replica with the least votes is marked. */

27 if (ft_votes[my_replica_id] != NUM_REPLICAS - 1)

28 ft_fault_replica[my_replica_id] = my_replica_id;

29 else

30 ft_fault_replica[my_replica_id] = fault_replica;

31

32 kbarrier(bar , NUM_REPLICAS);

33 /* Check if all the replicas reach a consensus. */

34 for (int i = 0; i < NUM_REPLICAS; i++) {

35 if (ft_fault_replica[i] != ft_fault_replica[my_replica_id ]) {

36 return ERROR_DIFF_FAULT_REPLICA;

37 }

38 }

39 kbarrier(bar , NUM_REPLICAS);

40 return fault_replica;

41 }

Listing 6.2: The algorithm for voting a faulty replica

The function, vote faulty replica, first compares each replica’s checksum with other

replicas’ and increases the per-replica counter ft votes[my replica id] if the checksums match

(lines 11-14). The barrier at line 16 ensures all replicas finish before proceeding to the next stage,

or halts the system if the barrier timeouts. Lines 18–23 find out the smallest value in the ar-

ray ft votes; the values in the array represent how many checksums in the array checksum

are the same as one indexed by my replica id. Thus, the replica has the smallest value is

the faulty one. Lines 27 to 30 further check for the cases that more than one of the repli-

cas are faulty and that all the checksums are the same: the votes received by each non-faulty

replica should be the replica number (NUM REPLICAS) minus one if only one checksum is in-

correct. Each replica stores the faulty replica ID in the globally shared, per-replica variable

ft fault replica[my replica id] if the check succeeds; otherwise, each replica stores its

ID. The second barrier at line 32 ensures that all the replicas have finished the checking stage.

Finally, all the replicas check if the faulty replica voted by others is the same as the one chosen

by itself. An error is returned if the faulty replica IDs are different, and the system halts (lines

34–38). If all replicas agree on the faulty replica, they pass the third barrier and the faulty replica

ID is returned by the function (lines 39–40). The three barriers play important roles in robust error

handling through fail-stop. It is worth mentioning that we use the function when NUM REPLICAS

is 3, but the algorithm can be used to vote a faulty replica when NUM REPLICAS is greater than 3.

Now let us see how the voting algorithm works with examples in Table 6.1. The first two

examples are for three replicas, and the other two are for four replicas. In the first example, R2
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R0 R1 R2 R3

checksum 0xdeadbeef 0xdeadbeef 0xdeedbeef N/A
ft votes 2 2 1 N/A
ft fault replica 2 2 2 N/A

checksum 0xdeadbeaf 0xdeadbeef 0xdeedbeaf N/A
ft votes 1 (<2) 1 (<2) 1 (<2) N/A
ft fault replica 0 1 2 N/A

checksum 0xdeadbeef 0xdeadbeef 0xdeedbeef 0xdeedbeef
ft votes 2 (<3) 2 (<3) 2 (<3) 2 (<3)
ft fault replica 0 1 2 3

checksum 0xdeadbeef 0xdeadbeef 0xdeedbeef 0xdeedbeaf
ft votes 2 2 1 1
ft fault replica 0 1 2 3

Table 6.1: Examples of the voting algorithm

has the incorrect checksum and the least ft votes value, so R2 has been voted by all replicas

as the faulty node. In the second example, all the checksums are different so that the ft votes

values are all 1. In this case, each replica set its ft fault replica to its ID, indicating multiple

faulty replicas. The third example shows that the replicas are split into two equally-sized sets

and that each replica is unable to receive enough votes, so an consensus cannot be achieved. The

last example demonstrates that the last two replicas are faulty so that the replicas fail to reach an

agreement.

6.5.2 Removing A Faulty Replica

1 global_shared int num_replicas;

2 global_shared int new_primary_replica;

3 global_shared int cur_primary_replica;

4 global_shared int former_primary_replica;

5

6 /* rid is the id of the replica to be removed */

7 void remove_fault_replica(int rid) {

8 int num_replicas = num_active_replicas;

9 if (is_in_lcrcoe () && rid == cur_primary_replica &&

10 !migration_allowed ()) {

11 /* migration is not allowed , abort */

12 halt();

13 }

14 if (rid == cur_primary_replica) {

15 /* if the current primary replica is faulty , *

16 * we need to choose a new primary replica. */

17 new_primary_replica = choose_new_primary_replica ();

18 kbarrier(bar , num_active_replicas);

19 /* redirect interrupts to the new primary replica */
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20 if (my_replica_id == new_primary_replica) {

21 reroute_interrupt(new_primary_replica);

22 /* perform platform -specific operations */

23 ...

24 former_primary_replica = cur_primary_replica;

25 cur_primary_replica = new_primary_replica;

26 }

27 }

28 kbarrier(bar , num_active_replicas);

29 /* now we remove the faulty replica */

30 if (rid == my_replica_id) {

31 if (is_former_primary_replica ()) {

32 disable_kernel_timer ();

33 /* save pending interrupts */

34 while (irq = interrupt_pending ()) {

35 save_pending_interrupt(irq);

36 mask_interrupt(irq);

37 ack_interrupt(irq);

38 }

39 }

40 node_data[my_replica_id ]. status = FT_NS_FAULT;

41 num_active_replicas --;

42 /* the faulty replica loops forever */

43 infinite_loop ();

44 }

45 /* other replicas spin until the faulty replica removes itself */

46 while (num_replicas == num_active_replicas);

47 /* for LC -RCoE , threads must be notified about the changes. */

48 if (is_in_lcrcoe ()) { notify_threads (); }

49 /* for CC -RCoE , we need to patch page tables if a primary *

50 * replica migration happened so that the new primary replica *

51 * can access DMA buffers. */

52 if (is_in_ccrcoe () && is_primary () && is_primary_switched ()) {

53 patch_page_tables ();

54 }

55 kbarrier(bar , num_active_nodes);

56 return;

57 }

Listing 6.3: Pseudo code for removing a faulty replica

The function, remove fault replica (Listing 6.3), actually retires a faulty replica; it also

chooses a new primary replica and reroutes interrupts if a primary replica is the one to be re-

moved. The replica ID to be removed is passed as the parameter node. All the replicas first

make a local copy of the global shared variable nun active nodes that represents the number

of active replicas. The value of num active nodes is decreased by one at line 41 to indicate the

completion of removing the faulty replica, so other replicas can exit the loop at line 46. If the
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system is managed by LC-RCoE and the primary replica is to be removed, the replicas check if

primary replica migration is allowed (lines 9–11). When the primary replica is voted as faulty,

migration allowed() scans all threads in the run queue to determine if a device driver thread,

be it running or runnable, is in the middle of accessing device registers, The system will be halted

at line 12 if the migration is not allowed (see Section 5.4). Lines 14–27 handle the case of remov-

ing the current primary replica (cur primary replica) and switching to a new primary replica

(new primary replica) by performing the following steps: (1) choose a new primary replica;

(2) reroute interrupts to the newly selected primary replica; (3) perform platform-specific opera-

tions.

Lines 30–44 remove the faulty replica, and we do assume that the removal process is not

affected by errors. If the replica is the former primary replica (lines 31–39), the replica stops its

own kernel preemption timer and saves pending interrupts, if any, for processing. Finally, the

faulty replica marks itself as faulty (line 40), decreases num active replicas, and enters an

infinite loop. By doing so, the faulty replica stops execution. The replicas waiting at line 46 now

can proceed after the faulty replica has removed itself. For LC-RCoE, all device driver threads

need to be notified about the changes (line 48). The notify threads() function iterates through

all threads and notifies the driver threads through the bidirectional notification channels described

in Section 5.7.2. For CC-RCoE, as described in Section 5.7.3, the page tables of the device driver

threads must be patched when a primary replica migration happens (lines 52–54); so the new

primary replica is able to access DMA buffers.

6.5.3 Reintegration

For a TMR system, if a faulty replica is removed, we downgrade the whole system to DMR,

without attempting to reintegrate a new replica or the faulty replica (if the faulty replica can be

repaired) into the system and to restore operations in TMR. Although reintegration might not be a

critical feature, it is definitely desirable for systems unattended for an extended period. We identify

the following steps to reintegrate a core into the system. We adopt a “stop-the-world” approach

since no specialised hardware, as in [Bernick et al., 2005], is available to monitor memory traffics

and conduct memory copy in background.

• If we build a new replica from a spare core, we first activate the core and set the core’s page

directory address to the faulty replica’s address and put the core in idle mode. After that,

the core of the faulty replica is deactivated. We call the new replica as the target replica.

• Choose a valid replica as the source replica; we reconstruct and repair the state of the target

replica based on the source replica.

• Compare the kernel page table entries of the target replica with the entries of the source

replica and correct the entries that are corrupted. We check the attributes of the entries as

well as the relative addresses (Section 4.2.3). Correcting the physical address in an erro-

neous entry can be done by using the relative address of the corresponding entry from the

source replica plus the start physical address of the target replica.
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• Compare the checksums of the kernel code section. If the checksums mismatch, we copy

the code section for the source replica to the target replica.

• Compare the kernel variables in kernel data section (ksCurThread, ksReadyQueue, etc.) and

correct the variables of the target replica if necessary.

• For each user-mode thread, we conduct the following inspections and repair a thread if

necessary.

– Compare the data in the thread control block. This step verifies the kernel-mode state

of the thread.

– Compare the CSpaces of the source and target replicas and make corrections accord-

ingly. This step verifies all the capabilities owned by the thread.

– Compare the VSpaces of the source and target replicas. This step checks the validity

of the entries in the page directory of the thread.

– Compare the user-mode code, data, and stack sections. This step aims to correct any

user-mode corrupted data.

• Having verified all user-mode threads, now the replicas can reset kernel data used by redun-

dant co-execution and resume execution.

The steps described above provide a rough guideline for implementing reintegration; we have

not realised the steps in C code yet. The main obstacle is that the steps can take a long time since

they perform systematic checks on the target replica to be reintegrated, but the checking steps

are not protected by redundant co-execution; thus the new replica may contain errors. A more

dangerous scenario is like this: (1) The source replica is affected by a transient fault (e.g., a single-

bit flip in a page table entry) while checking and repairing the target replica, and (2) the repair

steps find a mismatch and copy the corrupted data from the source replica to the target replica. In

this case, we have two faulty replicas becoming the majority so that the redundant majority voting

may wrongly determine the only valid replica as the faulty one. Although such scenario is low

probability, the consequence can be disastrous. Thus, ensuring that the reintegration process is

being executed correctly and that the new replica is error-free is an important research topic for

future work.

6.6 Summary

In this chapter, we introduce the concept of the execution fingerprint that captures updates made

by a replica. Kernel internal functions (add event and add compare event) and the system

call (seL4 FT Add Event(value, compare now)) are provided so that system designers can

tune the error coverage by increasing or decreasing the state updates included in the execution

fingerprint. Each replica compares its execution fingerprint with the fingerprints of other replicas

independently as the first error detection mechanism. To cater various needs for tuning error

detection latency and performance overhead, setting the compare now parameter of the system

call above to true triggers an immediate fingerprint comparison, so user-mode applications can
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adjust the comparison frequency. However, the kernel still checks the fingerprints for each I/O

device interrupt as a default setting so that error detection is in operation even if the applications

do not trigger comparisons explicitly. The second mechanism for error detection is using timeouts

of the kernel barriers to uncover execution divergence of the replicas. The kernel barriers used for

different purposes require different timeout values, and some of the values depend on worst-case

execution time of the applications running on the system. Determining accurate timeout values for

the kernel barriers is left as future work Section 8.2.6. We also introduce a list of error checking

modes with various levels of error detection capabilities and overheads, demonstrating that our

mechanisms can be straightforwardly tailored to diverse scenarios.

Error masking is only available for TMR systems, and the kernel only tries to recover from an

error if the error is detected by the fingerprint comparison mechanism. The voting algorithm for

choosing the faulty replica is discussed, and we also show that the algorithm does not assume an

error-free execution environment. However, the procedure to remove the faulty primary replica is

neither redundantly executed nor checked.
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Chapter 7

Evaluation

Beware of bugs in the above code; I have
only proved it correct, not tried it.

Donald E. Knuth

The aims of the chapter are fourfold: (1) Investigate to what extent redundant co-execution

affects the performance of CPU-bound, memory-bound, and I/O-bound benchmarks. (2) Demon-

strate that our approach is applicable to real-world workloads by benchmarking Redis server, an

in-memory key-value data store, with a mix of memory loads and stores, I/O operations, and com-

putations. (3) Validate that our approach can detect errors induced by transient faults effectively by

conducting fault-injection experiments on real hardware. (4) Show that the microkernel primitives

are elastic and accessible for building systems with different error-coverage or error-detection-

latency targets. This chapter is based on the work published in [Shen et al., 2019].

7.1 Benchmark Configurations

We implement our approaches on both ARM and x86 architectures, and the hardware platforms

used for benchmarks and fault injection experiments are listed in Table 7.1. We term the bench-

marks running directly on seL4 and invoking seL4 system calls as seL4-native benchmarks, and

the benchmarks executing inside a Linux VM and exercising Linux sytem calls are called as VM

benchmarks. In the case of the replicated Linux virtual machines, we list the guest VM software

environment in Table 7.2.

In Table 7.1, the sizes of L1 and L2 caches for the Core i7 6700 are for each core; the L3 cache

is shared by all four cores. The L1 caches use separate instruction cache and data cache (64 KiB in

total for each core), and the L2 and L3 caches are unified. The L1, L2, and L3 caches are protected

by parity, single-bit ECC, and multi-bit ECC respectively. As to the i.MX6 quad-core SoC, each

core features 32 KiB data cache and 32 KiB instruction L1 cache; the 1 MiB L2 cache is unified

and managed by the PL310 cache controller from ARM.

For x86 processors, I have implemented and tested our approaches (both LC-RCoE and CC-

RCoE) on four different processor models (Core i7-2600, Core i5-4590, Core i7-4770, and Core

i7-6700) spanning three microarchitectures (Sandy Bridge, Haswell, and Skylake). LC-RCoE

works on all four models, and CC-RCoE is supported by Core i5-4590, Core i7-4770, and Core
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Sabre Lite Dell

CPU/SoC NXP i.MX6 Intel Core i7 6700
uArch ARM Cortex-A9 ARMv7 Skylake
Cores 4 4 (Hyper-Threading off)
Clock 1 Ghz 3.40 GHz (Turbo Boost off)
L1 4×32 KiB D/I 4×32 KiB D/I
L2 1 MiB 4×256 KiB
L3 N/A 8 MiB
Memory 1 GiB DDR3-1006 4 GiB DDR4-2133×2
NIC 1000 Mbit/s ENET Intel I219-LM

Table 7.1: Hardware platforms (seL4 native/VM benchmarks)

i7-6700. We are able to run replicated Linux VMs managed by hardware-assisted CC-RCoE on

the three models; the results of the relatively recent model, Core-i7 6700, are presented in the

following sections.

Software Version Notes

Kernel Linux v4.10.10 built with GCC 6.3.0
RootFS Image Buildroot 16/04/2017 Git target arch: i386, arch variant: i586
C library musl libc v1.1.16 shared libary
Init System Busybox v1.26.2
Ramspeed v2.6.0 memory bandwidth benchmark
Dhrystone v2.1 integer benchmark
Whetstone v1.2 floating-point benchmark

Table 7.2: Linux virtual machine software configurations

We choose the i.MX6 quad-core SoC [NXP, 2015] for the following reasons: (1) It is the first

official ARM-v7 platform supported by the verified seL4 kernel. (2) The user-mode device drivers

for the network card, serial port, and timer have been implemented and tested by our colleagues.

(3) The SoC is equipped with an 1 Gbps ENET network interface, ensuring that the network link

is not the bottleneck. According to the chip errata [NXP, 2016], the actual performance is limited

to 400 Mbps, which is still higher than the peak network throughput when running the Redis

benchmark on this platform.

7.2 A Case Study: Adapting CC-RCoE to Support Linux VM Repli-
cation

Before we present the benchmarking results, we describe how we use hardware-assisted CC-RCoE

(Section 4.4) to replicate a Linux virtual machine as a case study, providing necessary background

for the VM benchmarks. Running virtual machines requires less effort to deploy mature or legacy

applications than porting the applications to a new operating system. For binary-only applications

written for other operating systems, deploying them in a virtual machine could be the only viable

or affordable way to reuse them. Being able to support Linux virtual machines on x86 greatly
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expands the scenarios that the seL4 microkernel can be used while still benefiting from the strong

isolation guarantee provided by the kernel.

As introduced in Section 3.2.3, existing virtual machine replication approaches [Bressoud,

1998; Cully et al., 2008; Scales et al., 2010; VMware, 2015] focus on providing high availability

instead of mitigating the SEU fault model. Neither the hosting operating systems nor the virtual

machine monitors are replicated and redundantly executed. Moreover, output data from a primary

VM is transferred to a backup VM without validating the integrity of the data, opening a door for

transient-fault-induced data corruptions.

We describe how we adapt hardware-assisted CC-RCoE to support replication of a virtual

machine and virtual machine monitor. Certainly, the underlying microkernel is also duplicated.

Replicating the Linux kernel is much more complicated than replicating native seL4 applications

because of the huge code base and complexity of the Linux kernel. In addition to the code base,

it is unlikely that we are able to examine all applications running inside a VM to ensure that they

are data-race-free. Although the Linux kernel source code is available, we aim to treat the Linux

kernel as a black box and avoid modifying its code. The resulting system is shown in Figure 7.1.

The orange boxes represent the Linux virtual machines and applications running inside the VMs.

The blue boxes are native seL4 applications: The VMM is the virtual machine monitor that creates,

starts, and manages the Linux VM; and the native drivers for the network card and serial port are in

the boxes labelled with Drivers. We customise the configuration options (i.e., make menuconfig)

of the Linux kernel to remove unused device drivers and to enable the VIRTIO [VIRTIO-v1.0,

2013] network driver as the front-end for sending/receiving network packages to/from the native

network card driver.

Linux 
VM VMM Drivers

seL4

CPU/Memory

Linux 
VM VMM Drivers

seL4

CPU/Memory

I/O Devices

Apps Apps

VirtIO VirtIO

Interrupts

Figure 7.1: Replicated virtual machines

7.2.1 Adapting Hardware-Assisted CC-RCoE

Hardware virtualisation support [ARM, 2014; Int, 2016b] is required to launch virtual machines

on seL4. We provide a brief introduction to x86 hardware virtualisation technology in Section D.6

for reference. In addition to the kernel objects described in Section 2.4, the seL4 extension for

hardware virtualisation introduces a VCPU object type to represent a virtualised CPU assigned
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VMX Non-Root

App AppApp

Ring 3

Linux Kernel
Ring 0

VMX Root

VMM AppsDrivers

Ring 3

seL4
Ring 0VCPU/EPT

VM Exit VM Entry

Figure 7.2: The architecture of an seL4-based Linux VM

to a virtual machine and extended page table objects used to control the second-level address

translations (from guest physical addresses to host physical addresses). The seL4 kernel changes

to support hardware virtualisation, the general user-mode libraries for building a VMM (virtual

machine monitor), and the VMM were developed by our colleagues; I took an usable snapshot of

the project as the base for my development.

The architecture of the Linux VM system and the privilege levels of the components are shown

in Figure 7.2. All the components in the figure are running on a single core and are supposed to be

replicated for redundant co-execution. The virtual machine extension (VMX) for x86 introduces

two VMX operations: VMX root operation and VMX non-root operation. Each operation has

complete ring 0 to ring 3, but the system software running in ring 0 of the non-root operation does

not have full control over the processor’s behaviour. The seL4 kernel runs in the ring 0 of the root

operation, so it is the most privileged system software. The VMM manages the life-cycle of the

virtual machine by manipulating the VCPU and EPT kernel objects, and it runs in the ring 3 of

the root operation. The guest Linux kernel and applications execute in ring 0 and ring 3 of the

non-root operation respectively. The execution of software in the non-root operation is monitored

by the VMM, so are the accesses to hardware resources. Native seL4 applications and drivers run

in ring 3 of the root operation as normal, and the device drivers provide services for the Linux VM

and VMM.

As we do not assume the Linux kernel or the applications running inside the VM are data-race-

free, device interrupts for the VM replicas must be delivered precisely and consistently to avoid

divergence. In fact, even if the Linux kernel and the applications were data-race-free, it would be

expensive to track locking and unlocking operations since VM exits are expensive [Agesen et al.,

2012]. In addition to the system calls issued by native seL4 applications, some VM exits triggered
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by certain instructions (e.g., IO port instructions, HLT, CPUID, RDTSC, etc) or exceptions (e.g.,

page faults) can also be considered as deterministic events. The event counters are also incre-

mented by these VM exits. One simple approach to ensuring precise and consistent injection of

interrupts is to buffer all interrupts and inject the interrupts only when seL4 replicas are handling

deterministic VM exits and when the event counters are the same. While the interrupts are injected

consistently, the approach suffers a significant issue – a buggy or malicious application in the VM

can stop the whole VM by simply looping. The looping application prohibits the deterministic

VM exits so that no interrupts can be injected to the VM, and thus the Linux kernel is unable to

get back in control and to stop the application. Because of this issue, we abandon the approach

that only injects interrupts at deterministic VM exits.

From the seL4 kernel’s point of view, the kernel does not distinguish between the non-root

operation kernel mode (ring 0) and the non-root operation user mode (ring 3), treating the whole

virtual machine as a single user-mode program. Thus, we need to program the performance coun-

ters to count both kernel-mode and user-mode branches when we switch from the root operation

(seL4 kernel, virtual machine monitor, and device drivers run in this mode) to the non-root op-

eration in which the guest VM runs, and revert to count user-mode branches when switching

from the non-root operation to the root operation. Switching counting mode can be achieved

by programming the following entry and exit control fields of the virtual machine control struc-

ture (VMCS): VM-entry MSR-load count, VM-entry MSR-load address, VM-exit MSR-load

count, and VM-exit MSR-load address. The VM-entry MSR-load count has the number of MSRs

(model-specific registers) we want to load when the VM is about to be executed, and the VM-

entry MSR-load address contains the details about the MSRs and the values that should be loaded

into the hardware MSRs. The VM-exit fields have similar functionality, and they load the MSRs

with the specified values when VM exits. Based on experiment results, for the Core i7 6700

processor, we modify the IA32 PERFEVTSEL1 and IA32 PERFEVTSEL2 MSRs that control the

counting modes for the counters IA32 PMC1 (BR INST RETIRED.ALL BRANCHES) and IA32 PMC2

(BR INST RETIRED.FAR BRANCH). For VM entries, IA32 PMC1 and IA32 PMC2 are programmed

to count branches in both kernel mode and user mode without changing their existing values. In

the course of VM exits, IA32 PMC1 and IA32 PMC2 are reverted to count user-mode branches

only. Note that we still maintain the per-replica event counters which also count deterministic VM

exits so that we can find out the leading replica quickly when these event counters are not equal.

Using this method with slight tunes for different micro-architectures, we are able to launch repli-

cated Linux VMs and run various tests on a machine with an Intel Core i7 4770 CPU, a machine

with an Intel Core i5 4590 CPU, and a machine with an Intel Core i7 6700 CPU.

7.3 Microbenchmarks

The microbenchmarks consist of native-seL4 benchmarks and standard benchmarks running inside

a Linux VM. For the native-seL4 benchmarks, we report the results of the DMR and TMR systems

managed by LC-RCoE and CC-RCoE. By executing similar microbenchmarks under different

redundant co-execution modes, we can clearly observe the performance characteristics of LC-

RCoE and CC-RCoE. The Linux benchmarks were measured on a baseline single-core Linux VM
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and replicated Linux VMs managed by hardware-assisted CC-RCoE.

7.3.1 Native Microbenchmarks on seL4

CPU-bound microbenchmark

To evaluate RCoE’s effect on CPU-bound applications, we port Dhrystone [Weicker, 1988] and

Whetstone [Painter, 1998] to run on seL4, for both x86-64 and ARM platforms. Dhrystone and

Whetstone are both synthetic benchmarks. Dhrystone emphasises on integer operations with the

following approximate distributions of operators: arithmetic operators (50.8%), comparison op-

erators (42.8%), and logic operators (6.3%). Whetstone is designed to exercise float-point units,

representing numeric applications. In addition to floating-point arithmetic operations, a significant

portion of execution time is attributed to mathematical library functions (sin, cos, atan, log,

exp, and sqrt). A comparison and characteristic analysis of the two benchmarks can be found

in [Weicker, 1991]. We use the raw CPU cycles to measure the execution time by reading CPU cy-

cles counters. We set the Number Of Runs variable to 1,000,000,000 (x86-64) and 200,000,000

(ARM) for Dhrystone, and the loopstart variable to 2,000,000 (x86-64) and 500,000 (ARM)

for Whetstone; the variables control iterations and thus the execution time. The GCC compiler

optimisation level is set to -O0. LC-DMR and LC-TMR represent DMR and TMR configurations

running in LC-RCoE mode. For ARM, CC-DMR and CC-TMR are managed by compiler-assisted

CC-RCoE; for x86-64, they are managed by hardware-assisted CC-RCoE. The averaged CPU cy-

cles of 10 runs and standard deviations are shown in Figure 7.3 and Figure 7.4 for x86-64, and in

Figure 7.5 and Figure 7.6 for ARM.

 0

 5x10
10

 1x10
11

 1.5x10
11

 2x10
11

 2.5x10
11

 3x10
11

 3.5x10
11

 4x10
11

 4.5x10
11

Base LC-DMR LC-TMR CC-DMR CC-TMR

C
P

U
 c

y
c
le

s

3.677e+11 3.693e+11 3.693e+11 3.764e+11 3.804e+11

Figure 7.3: Dhrystone on x86-64.

We examine the results of the LC-RCoE variants first. For both Dhrystone and Whetstone, the

LC-DMR and LC-TMR variants on ARM and x86-64 exhibit negligible overhead. These results

represent the best-case scenario for the following reasons: (1) The benchmarks are CPU-bound

and the computations are being executed on each core locally. (2) The benchmarks do not invoke
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Figure 7.4: Whetstone on x86-64.
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Figure 7.5: Dhrystone on ARM
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Figure 7.6: Whetstone on ARM

system calls. (3) The active datasets are small so that they can fit in the caches, avoiding con-

tentions on the memory bus. We only expect to observe the synchronisation overhead introduced

by the kernel preemption timer interrupts for LC-DMR and LC-TMR configurations. Indeed, our

LC-RCoE framework has nearly no effect on such CPU-bound applications when the dataset fits

in the caches.

For the CC-RCoE variants, as we expected, the CC-RCoE framework introduces more over-

head: (1) Programming debug registers and handling debug exceptions for achieving precise pre-

emption incur overhead. (2) If a breakpoint is set at an instruction that is inside a tight loop,

handling repeated debug exceptions induces significant overhead. The CC-DMR and CC-TMR

variants’ standard deviations for Whetstone on both ARM and x86-64 are significantly larger than

the standard deviations of the baseline and LC-RCoE variants. We recognise that the execution

time of the CC-RCoE variants is highly dependant on the places where the instruction breakpoints

are set when synchronising the replicas. When a breakpoint is set at an instruction inside a tight

loop, the execution time of a catching up replica increases because of the increased overhead of

handling debug exceptions triggered by the breakpoint. A reader may wonder why the CC-DMR

and CC-TMR variants’ standard deviations for Dhrystone are insignificant. This can be explained

by examining the overall structures of Dhrystone and Whetstone, as shown in Listing 7.1 and

Listing 7.2. The main body of Dhrystone is a long loop, which includes invocations to various

functions. However, Whetstone is made of several tight loops in which the loop control variables

N1 to N11 are derived from the user-supplied parameter (loopstart). As we can see, Whetstone

has a higher probability of setting an instruction breakpoint inside a tight loop than Dhrystone;

therefore, we observe higher variances.
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1 start = get_time ();

2 for (Run_Index = 1; Run_Index <=

Num_Of_Runs; ++ Run_Index) {

3 Proc_5 ();

4 Proc_4 ();

5 /* other tests */

6 ...

7 Proc_2 ();

8 }

9 end = get_time ();

Listing 7.1: Dhrystone structure

1 start = get_time ();

2 /* Module 1 */

3 for (I = 1; I < N1; I++) {

4 /* various operations */

5 }

6 /* other modules */

7 ...

8 /* Module 11 */

9 for (I = 1; I <= N11; I++)

{

10 /* various operations */

11 }

12 end = get_time ();

Listing 7.2: Whetstone structure

Memory bandwidth micro-benchmark

To quantify the effect of the redundant co-execution on a memory-intensive benchmark, we used

the following simple copy-based benchmark. The benchmark uses two memory regions (a source

and a destination), and each region is four times the size of the last-level cache on the platform

under test (each region is 32 MiB on x86-64 and 4 MiB on ARM). The regions are pre-mapped to

avoid page faults, and they are 4 KiB aligned. The benchmark uses memcpy() to copy the source

buffer to the destination buffer 100 times. We use a barrier to coordinate the start and finish of

the replicas, together with the platform’s time-stamp counter to record start and finish times for

each run. We run the benchmark 10 times in a loop, and report average copy bandwidth achieved

in mebibyte/s together with standard deviations in Figure 7.7 and Figure 7.8. The bandwidths are

calculated by the following equation: block size ∗ copy times ∗ 2/execution time. We double the

total copy size since each copy operation includes one read and one write.

On both platforms, we observe that the replicated configurations, LC-DMR, LC-TMR, CC-

DMR, and CC-TMR, split the total available memory copy bandwidth between the replicas; the

CC-DMR and CC-TMR variants, as expected, show slightly lower bandwidths than the LC-DMR

and LC-TMR variants. In Figure 7.7, the available bandwidths for each replica of the DMR and

TMR configurations are almost 1/2 and 1/3 of the baseline bandwidth. Compared to x86-64, the

ARM platform has a lower penalty when moving from a non-replicated to a replicated scenario.

This is due to a single core on ARM being insufficient to saturate the available memory copy

bandwidth of approximately 2.21 GiB/s. For x86-64, a single core is much closer to saturating the

available memory copy bandwidth of approximately 25 GiB/s. The theoretical maximum memory

bandwidths are 31.78 GiB/s (2133 mega transactions per second * 64 bits per transaction * 2

channels) for the x86-64 machine and 7.7 GiB/s (1033 mega transactions per second * 64 bits per

transaction) for the Sabre board.

The main bodies of the memcpy functions are shown in Listing E.1 and Listing E.2; note that

we omit various checks for parameters and data alignments. The code for the i.MX6 SoC heavily
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Figure 7.7: A comparison of memory-bound (memcopy) micro-benchmark on x86-64.
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Figure 7.8: A comparison of memory-bound (memcopy) micro-benchmark on ARM.
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uses the pld instruction to overlap the prefetching of memory into the L1 data cache and the

read/write operations. We determine the constant offsets used by the pld instructions based on

experimental results on this ARM platform for optimal memory copy bandwidth, and the offsets

may or may not be ideal for other platforms. For Cortex-A9 processors, the pld instruction is

handled by dedicated hardware units to avoid using integer or load-store units [ARM, 2010]. The

two pairs of ldmia and stmia copy 64 bytes of data each time, using the general purpose registers

r3 to r10 (LC-RCoE) or r1 to r8 (CC-RCoE) as the buffers. For the x86-64 machine, the memcpy

implementation uses SSE (streaming SIMD extensions) registers as the buffers and copies 256

bytes of data each time. It is necessary to use the movntdq (store double quadword using non-

temporal hint) for the optimal results since the movntdq instruction is implemented by using a

write-combining memory-type protocol which avoids writing data into the cache hierarchy and

fetching the cache lines corresponding to the write addresses into the cache hierarchy.

Interrupt latency

Interrupt delivery in our approach requires propagation to all replicas and an agreement on when

an interrupt becomes visible to the replicas in order to preserve consistency. Interrupt latency

is highly dependent on system activity at the time (e.g., interrupt disabling), so our benchmark

involves an idle system consisting of only the in-kernel idle thread, and a user-level timer driver

which is effectively an interrupt handling thread. Note that the the kernel disables interrupts while

running in kernel mode and re-enables interrupts when the kernel idle thread is running.

The timer driver programs the platform-dependent hardware timer to trigger an interrupt and

then blocks waiting for its arrival via IPC. To measure the effect on latency, we instrument the

in-kernel interrupt handler on the interrupt-handling core to take a time-stamp early when the

system traps to kernel mode. We also take a time-stamp after the user-level driver receives the

interrupt notification, i.e., after the interrupt is propagated across all cores and the notification

is consistently delivered. The difference between the two timestamps is our metric for interrupt

latency. We measure the latencies 500 times in a loop for a baseline unprotected seL4, and DMR

and TMR variants managed by LC-RCoE. The average of the 500 runs together with standard

deviations are shown in Figure 7.9 and Figure 7.10.
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Figure 7.9: A comparison of interrupt latency on x86-64 (LC-RCoE).
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Figure 7.10: A comparison of interrupt latency on ARM (LC-RCoE).

As we can observe from the results, the interrupt latency increases significantly for the DMR

and TMR variants. The increase in latency is due to the latency of sending and receiving inter-

processor interrupts (IPIs), and the three barriers used to coordinate consistent interrupt observa-

tion across replicas. Note that this is the optimal scenario since the replicas already wait for the

interrupt, so the kernel synchronisation protocol can skip the leader-waiting-follower-catching-up

part.
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Figure 7.11: The breakdown of interrupt latency on ARM.

Stage DMR TMR

ET 55 53

TR 159 181

ST 62 67

CB 175 266

VT 33 48

SB 122 330

CP 26 78

II 506 540

TB 178 207

RT 59 58

Total 1375 1828

Table 7.3: CPU cy-
cles for each stage.

We further break down the latency for the DMR and TMR configurations on the ARM machine

by instrumenting the synchronisation code, as shown in Figure 7.11. The results are averaged

numbers of 500 runs, and the meanings of the keys in the figure are explained below. We also

list the averaged CPU cycles for each stage in Table 7.3; note that the numbers are all from the

primary replica.

118



7.3. MICROBENCHMARKS

ET (entry) indicates the cycles spent on saving user-mode registers, invoking kernel interrupt

handler, and reading the active interrupt request number from the interrupt controller.

TR (trigger) represents the cycles that the primary replica spends on triggering a synchronisa-

tion. It includes setting the synchronisation flags of the replicas, sending inter-processor

interrupts to other replicas, and acknowledging the interrupt.

ST (synchronisation start) is the cycles that the primary replica spends on travelling from the

interrupt handler function (after a synchronisation has been triggered) to the place before

the conditional barrier.

CB (the conditional kernel barrier) indicates the cycles that the primary replica spends on the

first conditional barrier.

VT (vote) marks the cycles that the primary replica uses to vote the leading replica.

SB (the second kernel barrier) is the cycles that the primary replica spends on the second kernel

barrier.

CP (comparing fingerprints) represents the cycles for comparing fingerprints.

II (interrupt injection) stands for the cycles of interrupt injection operations.

TB (the third kernel barrier) denotes the cycles that the primary replica spends on the third

kernel barrier.

RT (return) is the cycles for returning to user mode.

The total cycles in Table 7.3, 1375 and 1828, are higher than the corresponding numbers, 1277

and 1566, in Figure 7.10. We recognise that the inserted code reading timestamps can disturb the

execution of the code being measured. The baseline case roughly consists of the ET, II, and RT

stages. For the DMR configuration, the total cycles for these three stages are 620, which is larger

than the averaged baseline 512 cycles. In addition to the disturbance mentioned above, the II stage

for the DMR also has more code to walk through an array of pending interrupts to be processed.

Given the increased latency, we expect that high interrupt frequency workload will suffer from

RCoE, but as our Redis system benchmark results in Section 7.4.1 demonstrate that real-world

workloads can still achieve acceptable performance when RCoE is employed.

7.3.2 Microbenchmarks on Replicated Linux Virtual Machines

Dhrystone and Whetstone on Virtual Machines

We also use Dhrystone and Whetstone shipped as parts of Buildroot system [Buildroot] on the

baseline Linux VM and the DMR Linux VMs managed by hardware-assisted CC-RCoE. For Dhry-

stone, we set the number of runs to 1,000,000,000, making the total execution time on the baseline

Linux VM around 86 seconds. As to Whetstone, the number of loops is set to 2,000,000 so that

the total execution time on the baseline Linux VM was approximately 55 seconds. Please note

that no direct comparison should be made between the results of the benchmarks running on the

VMs and the results of the benchmarks running as native-seL4 applications (Section 7.3.1), since

the software configurations, building environments, supporting libraries are quite different. For

instance, the native-seL4 benchmarks are 64-bit, statically linked, and compiled with optimisation

level -O0; but the VM benchmarks are 32-bit, dynamically linked, and compiled with optimisation

level -Os.

119



7.3. MICROBENCHMARKS

The timekeeping of the Linux kernel relies on periodic interrupts from architecture-specific

clock sources. In our VM configuration, the 8254 programmable interval timer (PIT) is used

to generate interrupts at a frequency of 250 Hz. As we discussed in Section 5.6, the delivery of

device interrupts in the DMR and TMR configurations must be coordinated by the synchronisation

protocol. Therefore, the delivery of timekeeping interrupts can be delayed non-deterministically

in CC-RCoE, which requires setting instruction breakpoints and handling the exceptions triggered

by the breakpoints. For this reason, we use the following command to measure the execution time

based another machine running native Linux.

time ssh user@the_test_machine ’time dhrystone 1000000000’

The outer time command reports the total execution time of sshing from the native Linux to

the testing VM, executing the command time dhrystone 1000000000, and returning to the

machine. The reported time is based on the native Linux machine. The inner time reports the ex-

ecution time of the command based on the time of the testing VM, which can be inaccurate. I also

measured the execution time of the command, time ssh user@the_test_machine ’echo’,

to establish a baseline round-trip time when the testing machine was running the baseline Linux

VM. The average of 10 runs of the command is 0.14 second, and we consider the small overhead

can be ignored.

Configuration VM Time (s) SSH Time (s)

Base Linux VM 86 (0) 86 (0)
DMR Linux VMs 117 (0) 130 (11) 1.5×

Table 7.4: Results for Dhrystone on Linux VMs

Configuration VM Time (s) SSH Time (s)

Base Linux VM 55 (0) 55 (0)
DMR Linux VMs 82 (1) 159 (11) 2.9×

Table 7.5: Results for Whetstone on Linux VMs

The results for Dhrystone and Whetstone are presented in Table 7.4 and Table 7.5. The Base

Linux VM is a single-core VM; and the DMR Linux VMs are two Linux VMs (each VM runs on

one core) managed by CC-RCoE, interacting with other machines as a single logic VM. VM Time

represents the averaged execution time reported by the time of the VMs, and SSH Time shows the

mean execution time reported by the time of the native Linux machine. Standard deviations are in

the parentheses. The timekeeping of the baseline Linux VM is relatively accurate. Nevertheless,

the timekeeping of the DMR Linux VMs is heavily affected by CC-RCoE, which delays interrupt

delivery non-deterministically. The actual execution time of Dhrystone is approximately 1.5 times

of the baseline, and the DMR Linux VMs almost triple the baseline time to finish the Whetstone

benchmark. Compared with the results in Figure 7.3 and Figure 7.4, the DMR Linux VMs exhibit

more overhead when running the benchmarks. This is not a surprise given that the Linux VMs need

to execute various background threads and handle network interrupts (ssh connection), while the

native-seL4 benchmarks runs in an environment with less noise. However, we consider the main
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cause of the slowdown is the cost of increased number VM exits that are triggered by instruction

breakpoint exceptions. As discussed in Section 7.3.1, setting an instruction breakpoint inside a

tight loop further exacerbates the situation for the DMR Linux VMs; the performance degradation

of Whetstone that includes many small loops, once again, confirms the theory.

SPLASH-2

Name Parameters Introduction

BARNES 65536 bodies BARNES application implements the Barnes-Hut method to
simulate the interaction of a system of bodies (N-body
problem).

CHOLESKY inputs/tk29.O Cholesky Factorization

FFT -m22 Fast Fourier Transform.

FFM 163840
particles

FMM implements a parallel adaptive Fast Multipole Method
to simulate the interaction of a system of bodies.

LU-C -n2048 LU-C factors a dense matrix into the product of a lower
triangular and an upper triangular matrix with contiguous
block allocation.

LU-NC -n2048 LU-NC is similar as LU-C, but it uses non-contiguous block
allocation.

OCEAN-C default OCEAN-C simulates large-scale ocean movements based on
eddy and boundary currents with contiguous partition
allocation.

OCEAN-NC default OCEAN-NC is similar as OCEAN-C, but it uses
non-contiguous partition allocation.

RADIOSITY -batch
-largeroom

RADIOSITY computes the equilibrium distribution of light
in a scene using the hierarchical diffuse radiosity method.

RADIX -n 26214400
-r1024
-m52428800

RADIX implements an integer radix sort.

RAYTRACE inputs/teapot.env RAYTRACE renders a 3-D scene onto a 2-D image plane
using optimised ray tracing .

VOLREND inputs/head.den VOLREND renders a 3-D volume onto a 2-D image plane
using optimised ray casting.

WATER-NS default WATER-NSQUARED solves the molecular dynamic N-body
problem.

WATER-S default WATER-SPATIAL is similar as WATER-NS, but it uses a
different algorithm.

Table 7.6: Configurations for SPLASH-2

We execute SPLASH-2 [Woo et al., 1995] to understand how the redundant co-execution af-

fects scientific applications, and we use the same method to measure the execution time of each

benchmark as we did for Dhrystone and Whetstone in Section 7.3.2. Specifically, we use the

following command, time ssh user@the_test_vm ’time run_splash2.sh N test’ (N is

the times to repeat, and test is the benchmark to run), to repeat each test N times and ensure that
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the baseline execution time of each test is more than 40 seconds, which are significantly longer

than the added latency for executing the ssh command. SPLASH-2 is compiled as statically linked

32-bit x86 ELF binaries with POSIX thread enabled, and the parameters and brief introductions

for the benchmarks are listed in Table 7.6. All benchmarks are executed with NPROC = 1 by

specifying command-line options or defining parameters in input files.

Name N Base CC-DMR Factor

BARNES 30 60 (0) 68 (1) 1.14
CHOLESKY 300 41 (0) 100 (8) 2.43
FFT 100 72 (0) 145 (7) 2.00
FFM 20 74 (0) 136 (9) 1.83
LU-C 30 64 (0) 520 (42) 8.14
LU-NC 20 63 (0) 390 (43) 6.23
OCEAN-C 1000 62 (0) 184 (1) 2.96
OCEAN-NC 1000 64 (0) 186 (1) 2.92
RADIOSITY 25 66 (0) 74 (1) 1.12
RADIX 20 66 (0) 99 (12) 1.50
RAYTRACE 1000 58 (0) 64 (1) 1.10
VOLREND 100 72 (0) 88 (1) 1.22
WATER-NS 600 63 (0) 90 (2) 1.43
WATER-S 600 67 (0) 85 (3) 1.27

Geometric mean 2.02

Table 7.7: SPLASH-2 results on VMs. The total time in seconds represents the length of N
repeated runs. Standard deviations (in units of seconds) for the total execution time are shown in
the parenthesis.

We present the benchmark results in Table 7.7. Base and CC-DMR represent the total exe-

cution time in seconds for the baseline VM and the DMR VMs, measured by the Linux machine

issuing the ssh command. Since we use the script, run splash2.sh, to execute a kernel or

an application N times, the total execution time actually includes the overhead of creating and

destroying processes as well as interpreting the script. In the last column, the DMR results are

normalised to the corresponding baseline results. The applications or kernels that experience sig-

nificant or severe performance degradation in the DMR mode are highlighted in blue or red colour

respectively. Evidently, we observe that the performance of the LU-C and LU-NC is massively

affected by redundant co-execution. These two applications perform various operations on matri-

ces, so, not surprisingly, the main bodies are composed of loops accessing or modifying matrix

elements. The remaining applications demonstrate varied increases in execution time from 1.10

to 2.96 times, and the geometric mean of the increases in execution time for all applications is

2.02 times. As to some applications, the significantly hiked execution time limits the applicability

of CC-RCoE; therefore, we set reducing the performance overhead of CC-RCoE as future work

(Section 8.2.5). Nevertheless, in some cases (BARNES, RAYTRACE, RADIOSITY, etc.), we

consider the overhead is tolerable.
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Memory bandwidth – RAMspeed on VMs

RAMspeed benchmarking program [Hollander and Bolotoff] is used to understand how CC-RCoE

affects memory-intensive applications in a VM environment. We run the following selected tests:

INTmem, FLOATmem, and SSEmem(nt), which use integer registers, floating-point registers, and

SSE registers as the temporary data storage and corresponding instructions for data movement

respectively. The SSEmem(nt) test uses non-temporal store instructions (movntps), and the non-

temporal hint is implemented with a write combining memory protocol to avoid polluting caches

when writing to memory. The processors implemented the protocol do not write the data into

cache hierarchy, nor do they fetch the corresponding cache line from memory into the cache hier-

archy. Each test contains four sub-tests, Copy, Scale, Add, and Triad, which simulate real-world

applications. Copy simply transfers data from one memory location to another (A = B). Scale

modifies the data before writing by multiplying the data with a constant value (A = m ∗B). Add

reads data from two memory locations and writes the sum of the data to a third memory location

(A = B+C). Triad combines Add and Scale (A = m∗B+C). We supply the following param-

eters in the command below for the tests—8 GiB (-g 8) memory per pass and 32 MiB (-m 32)

arrays for source and destination locations; each test is repeated 10 times (-l 10). The following

command is used to start the benchmark.

time ssh user@machine ‘time ramspeed -b test_id -g 8 -m 32 -l 10‘

We report the memory bandwidths measured by the VMs in Figure 7.12, and Table 7.8 shows

the execution time measured by the VMs and by the Linux machine initiating the benchmark

remotely. IntBase, FloatBase, and SSEBase represent the results of INTmem, FLOATmem, and

SSEmem(nt) for the baseline VM; IntDMR, FloatDMR, and SSEDMR are the results of the DMR

Linux VMs.
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Figure 7.12: RAMspeed memory bandwidth in MiB/s
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IntBase FloatBase SSEBase IntDMR FloatDMR SSEDMR

VM Time 55.12 52.06 45.07 123.65 107.81 85.86
SSH Time 55.236 52.207 45.216 126.188 110.242 88.769

Table 7.8: RAMSpeed execution time in seconds

CC-RCoE still affects the time keeping of the DMR VMs when RAMspeed is executing, but

the impact is less profound than that in the Dhrystone and Whetstone benchmarks (Section 7.3.2).

Thus, the DMR bandwidths in Table 7.8 are slightly higher than the actual bandwidths. The DMR

variant coordinated by the CC-RCoE roughly achieves 40% to 55% of the baseline VM’s band-

widths, depending on the sub-tests (Copy, Scale, Add, or Triad) and registers (integer, floating-

point, or SSE). We take a closer look at the results of the Copy sub-test using SSE registers and

non-temporal store instructions, since the SSEDMR bandwidth (11450 MiB/s) is more than half of

the SEEBase bandwidth (20711 MiB/s). To get the maximal memory copy bandwidth on this ma-

chine, we use the improved version of RAMspeed which can spawn multiple processes and report

the total bandwidth. We set the process number to 4 and ensure that the processes are running

on different cores. The total memory copy bandwidth reported by RAMspeed/SMP on native

Linux is approximately 25253 MiB/s with SEE registers and non-temporal store instructions. The

bandwidth is very close to the memory copy bandwidth (2.5 GiB/s) of the native seL4 memcpy

benchmark in Figure 7.7. Thus, RAMspeed running on the baseline VM is unable to saturate the

memory bandwidth; this explains why the DMR VMs achieve around 55% of the baseline memory

copy bandwidth with SSE registers and non-temporal store instructions.

Another observation is that IntDMR Copy only achieves 40% of the baseline. We inspect the

source code of RAMspeed and find out that the copy function using integer registers copies 128

bytes for each iteration; but the copy functions using floating-point registers and SSE registers

copy 256 bytes and 1024 bytes respectively for each iteration. The copy function using integer

registers has more loops in order to copy the same amount of data, and more loops lead to higher

overhead for the CC-RCoE managed VMs.

7.4 System Benchmarks

7.4.1 Redis on Native seL4

To test our system under a more realistic workload, we choose Redis [RedisLabs, 2009], a key-

value store set up as shown in Figure 7.13, for the following reasons: (1) Redis is implemented

in ANSI C without external dependencies, and our colleagues already ported it to run on native

seL4. (2) Redis adopts a single-threaded, event-driven design and thus saves us from analysing

source code for data races. (3) Redis stores data in memory and supports various data structures

as well as related operations on the data, exercising both the CPU and memory. (4) The load

generator for Redis can be executed on another dedicated machine connected by 1 Gbps network

so that the network stack and network card driver are also being stressed during the benchmark,

simulating a close-to-real-world scenario including I/O devices. (5) Not only does the mixed

workload (CPU, memory, and I/O) reveal the overhead of the synchronisation protocol but also
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the cost of supporting driver replication.

Redis Machine
Core/Mem/seL4 Core/Mem/seL4

NIC 
Driver+lwIP Redis

NIC

Redis NIC 
Driver+lwIP

Load Generator Machine
Yahoo! Cloud Benchmark Suite

NIC

Figure 7.13: Redis-based benchmark architecture (DMR).

The target system runs seL4 with one process dedicated to lwIP [Dunkels, 2001] combined

with the Ethernet device driver, which handles I/O interrupts and network packages; and another

process runs an instance of Redis. Note that we run Redis as volatile store with file system access

disabled, as our prototype lacks a port of a file system. The device driver was modified so as to sup-

port replication in LC-DMR-SC, LC-DMR-SCN, LC-DMR-SCI, LC-TMR-SC, LC-TMR-SCN,

LC-TMR-SCI, CC-DMR-SC, CC-DMR-SCN, CC-DMR-SCI, CC-TMR-SC, CC-TMR-SCN, and

CC-TMR-SCI configurations as described below.

• Base: The unprotected single-core baseline.

• LC-DMR-SC: The whole system is replicated onto two cores and executed in LC-RCoE.

System call parameters are collected into fingerprints, and the fingerprints are compared

only before handing I/O device interrupts. The network drivers contribute the checksums

of the output data into the fingerprints; the kernel barrier timeout is also enabled. This

configuration corresponds to the BT + CU + AC + SC configuration described in Section 6.4.

• LC-DMR-SCN: This configuration is similar to LC-DMR-SC except that we only collect

system call numbers into the fingerprints and omit the system call parameters; the finger-

prints are compared only before handling I/O device interrupts. The network drivers con-

tribute the checksums of output data into the fingerprints; the kernel barrier timeout is also

enabled. This configuration corresponds to the BT + CU + AC + SCN configuration de-

scribed in Section 6.4.

• LC-DMR-SCI: The whole system is replicated onto two cores and executed in LC-RCoE.

System call parameters and IPC buffers are collected into fingerprints; and for each system

call, the replicas synchronise and compare the fingerprints, in addition to the comparisons

before handling I/O device interrupts. The network drivers contribute the checksums of the

output data into the fingerprints; the kernel barrier timeout is also enabled. This corresponds

to the BT + CU + AC + SCI configuration described in the Section 6.4.
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• LC-TMR-SC: The whole system is replicated onto three cores and executed in LC-RCoE;

the error-detection configuration is BT + CU + AC + SC.

• LC-TMR-SCN: The whole system is replicated onto three cores and executed in LC-RCoE;

the error-detection configuration is BT + CU + AC + SCN.

• LC-TMR-SCI: The whole system is replicated onto three cores and executed in LC-RCoE;

the error-detection configuration is BT + CU + AC + SCI.

• CC-DMR-SC: The whole system is replicated onto two cores and executed in CC-RCoE. For

the ARMv7 SoC, compiler-assisted CC-RCoE (Section 4.4.3) is adopted, and hardware-

assisted CC-RCoE (Section 4.4.2) is used for the x86-64 machine. The error-detection

configuration is BT + CU + AC + SC.

• CC-DMR-SCN: The whole system is replicated onto two cores and executed in CC-RCoE;

the error-detection configuration is BT + CU + AC + SCN.

• CC-DMR-SCI: The whole system is replicated onto two cores and executed in CC-RCoE;

the error-detection configuration is BT + CU + AC + SCI.

• CC-TMR-SC: The whole system is replicated on three cores and executed in CC-RCoE; the

error-detection configuration is BT + CU + AC + SC.

• CC-TMR-SCN: The whole system is replicated on three cores and executed in CC-RCoE;

the error-detection configuration is BT + CU+ AC + SCN.

• CC-TMR-SCI: The whole system is replicated on three cores and executed in CC-RCoE;

the error-detection configuration is BT + CU + AC + SCI.

For ARM For x86

CPU Core i5 4250U dual-core@1.30 GHz
(2.3 GHz dual-core TurboBoost)

Xeon E5-2683 v3 14-core@2.00 GHz×2
sockets

Cache 2×32 KiB L1 D/I, 2×256 KiB L2, 3 MiB
L3

14×32 KiB L1 D/I, 14×256 KiB L2,
35 MiB L3

Memory 8 GiB LPDDR3-1600 16×16 GiB DDR4-2133
NIC Thunderbolt to Gigabit Ethernet Adapter Broadcom NetXtreme BCM5720

Table 7.9: Load generator machines for Redis

We evaluate performance of the baseline and LC-RCoE Redis servers using Yahoo! Cloud

Serving Benchmarks (YCSB) [Cooper et al., 2010], running on dedicated load generator machines

as in Table 7.9 for x86 and ARM target machines, with dedicated Gigabit Ethernet links between

the load generators and the machines under test. The hardware configurations are chosen to ensure

that the load generators are more powerful than the machines running the Redis server. During

the benchmarks we monitor the CPU-load and network bandwidth to ensure the benchmark per-

formance is not limited by the load generators. YSCB consists of several workloads. We use the

same A–F benchmarks as presented by the benchmark developers, which are as follows.
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A: update-heavy workload (50/50 reads and writes) using zipfian distribution for record selection

in the store.

B: read-mostly workload (95/5) with zipfian distribution.

C: read-only workload with zipfian distribution.

D: new records inserted, then most recently inserted record are read.

E: short ranges of records are queried, where record selection is zipfian, but the number of records

in the range is uniformly distributed.

F: read-modify-write workload (50% read and 50% read-modify-write) using zipfian distribution.

We set recordcount to 70,000 on ARM and x86-64 for all workloads; operationcount

is 10 times recordcount, except for workload E which is 1. The goal of tuning the parameters

was to give a database size (around 160 MiB on ARM and 190 MiB on x86-64 as reported by the

info memory Redis client command) significantly larger than the last-level cache sizes. For each

platform, we run the YCSB benchmark set 10 times for an unprotected single-core baseline and

protected DMR and TMR variants of the system. The averaged throughput results are reported in

Figure 7.14 and Figure 7.15; the standard deviations are shown as error bars in the figures, and

they are less than 2.3% (x86-64) and 2.6% (ARM). Note: we multiply the throughputs of workload

’E’ by 50 to make it comparable on the scale.
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Figure 7.14: Average Redis transactions per second on x86-64 for each configuration and work-
load. ’E’ multiplied by 50.

127



7.4. SYSTEM BENCHMARKS

 0

 2000

 4000

 6000

 8000

 10000

 12000

A B C D E*50 F

T
ra

n
s
./

S
e

c
.

Base

 

 

LC-DMR-SCN

LC-DMR-SC 

LC-DMR-SCI

CC-DMR-SCN

CC-DMR-SC 

CC-DMR-SCI

LC-TMR-SCN

LC-TMR-SC 

LC-TMR-SCI

CC-TMR-SCN

CC-TMR-SC 

CC-TMR-SCI

Figure 7.15: Average Redis transactions per second on ARM for each configuration and workload.
’E’ multiplied by 50.

LC-RCoE CC-RCoE

Mode ARM x86 ARM x86

DMR-SCN 78–80% 74–79% 53–56% 51–54%

DMR-SC 77–79% 74–79% 52–56% 50–54%

DMR-SCI 72–75% 61–66% 48–53% 38–42%

TMR-SCN 71–72% 68–73% 45–48% 46–49%

TMR-SC 69–71% 68–73% 45–48% 46–49%

TMR-SCI 63–66% 53–58% 39–43% 34–38%

Table 7.10: Redis throughputs normalised to baseline

The throughputs normalised to the baseline for various configurations are listed in Table 7.10.

Our recommended LC-DMR-SC and LC-TMR-SC perform reasonably well: The performance of

the LC-DMR-SC systems is between 77%–79% (ARM) and 74%–79% (x86-64) of the baseline,

and LC-TMR-SC systems achieve 69%–71% (ARM) and 68%–73% (x86-64) of the baseline. The

CC-RCoE variants, as expected, show significant performance overhead: The compiler-assisted

CC-DMR-SC and CC-TMR-SC on ARM achieve only 52%–56% and 45%–48% of the baseline,

and the hardware-assisted CC-DMR-SC and CC-TMR-SC on x86-64 deliver 50%–54% and 46%–

49% of the baseline. Compared with the CPU-bound results (which show insignificant slowdown)

in Section 7.3.1, we can see that the performance overheads when executing the Redis system

benchmark are quite significant. The main reason for that is the Redis benchmark exercises the

cores, memory, and I/O devices altogether instead of only the cores performing limited accesses

to memory and I/O devices. Furthermore, the high-frequency network and timer interrupts of the

Redis benchmark trigger more synchronisations; more synchronisations imply higher overheads.
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The performance degradation of the CC-RCoE variants deserves some discussions. The over-

heads are mainly from two factors: (1) The additional work introduced by the CC-RCoE mode is

discussed in Section 7.3.1. (2) The cost, introduced by supporting driver replication as described

in Section 5.5, increases linearly to the frequency of I/O operations, such as accessing memory-

mapped registers or DMA buffers. The cost of accessing MMIO registers also exists in LC-RCoE,

but it is less than that of CC-RCoE since LC-RCoE implements input data replication in user mode

rather than invoking the seL4 FT Mem Access system call, which requires two mode switches.

Similarly, reading data from DMA buffers in CC-RCoE imposes much more overhead than that

of LC-RCoE since the seL4 FT Mem Rep system call has to be called for each DMA read access

to copy the data in the buffers. Each seL4 FT Mem Rep involves two mode switches, two or more

calls to the kernel-mode barriers for coordinating the data copy, and loops for actually copying the

data to the corresponding DMA buffers of the non-primary replicas. Contrastingly, reading DMA

buffers in LC-RCoE only needs a user-mode barrier. Due to the performance degradation intro-

duced by CC-RCoE, we recommend LC-RCoE whenever it is applicable and reserve CC-RCoE

for executing binary-only applications or virtual machines, which cannot be easily supported by

LC-RCoE.

We also observe that the SCN variants, which do not include system call parameters into the

fingerprints, have an insignificant performance advantage over the SC variants. Therefore, we

suggest enabling the SC option for more complete coverage. The SCI variants impose a modest

performance penalty on ARM, but the x86-64 SCI versions exhibit more overhead. These variants

trade performance for more frequent fingerprint comparison and thus the lower the error-detection

latency. Overall, we consider our approach is applicable even for systems that are I/O-intensive

and high interrupt frequency, if high performance is not the first priority. Furthermore, we can turn

various parameters to trade performance for improved error coverage and error-detection latency

or vice versa.

7.5 A Comparison of the CC-RCoE and LC-RCoE

It is useful to analyse the advantages and disadvantages of CC-RCoE and LC-RCoE so that we

can understand which approach fits better for a given software system and hardware platform.

Table 7.11 compares the important attributes of the three approaches to implementing redundant

co-execution. HA stands for hardware-assisted, and CA means compiler-assisted. Note that we

exclude device drivers in the discussion since the drivers need modifications to support the RCoE

(i.e., the source code of the drivers must be available), and Chapter 5 is dedicated to discussing the

microkernel support for device drivers.

Clearly, if the software is a collection of data-race-free applications, be they single-threaded or

multi-threaded, the ideal choice is LC-RCoE with the improvement of supporting multi-threaded

applications. The selection of hardware platform is flexible since LC-RCoE does not require

hardware features, and thus LC-RCoE is able to run on any architectures supported by seL4.

For x86 binary-only applications or software with the huge code base, which are unsuitable

for analysing data races, hardware-assisted CC-RCoE may be a viable approach. However, the

reliance on accurate hardware performance counters restricts the choices of hardware—currently,
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LC-RCoE HA CC-RCoE CA CC-RCoE

Applicability Data-race-free apps. x86 binary apps. or VMs Source code
Hardware Nil Accurate branch counters,

debugging
Debugging

Overhead Low High High
Complexity Moderate High Very high

Table 7.11: A comparison of LC-RCoE, HA CC-RCoE, and CA CC-RCoE

only x86 processors with accurate branch counting are supported by hardware-assisted CC-RCoE.

Compared with LC-RCoE, the additional performance overheads of hardware-assisted CC-RCoE

are mainly from three factors: reading performance counter, programming debug registers, and

handling debug exceptions. What makes performance analysis harder is that an instruction break-

point can be set at an instruction inside a loop in which the instruction may be repeated hundreds or

thousands of times. Subsequently, hundreds or thousands of debug exceptions must be handled by

the catching up replicas before synchronisation finishes; these additional debug exceptions can sig-

nificantly increase the required time for synchronising the replicas. We attribute the unpredictable

runtime overhead an important reason why LC-RCoE should be preferred to CC-RCoE if possible,

and it is on our road map to reduce the overhead of hardware-assisted CC-RCoE (Section 8.2.5).

Compiler-assisted CC-RCoE is the most complex approach in terms of applicability and us-

ability: The need to recompile everything (i.e., applications, libraries, and even the functions in

libgcc; see Section D.5) makes the approach unfriendly to end users. CA CC-RCoE also suf-

fers from the issue of unpredictable runtime overhead when the instruction breakpoints are set

inside loops. Furthermore, on ARMv7 processors, each catching-up kernel replica needs to han-

dle two debug exceptions for each activated instruction breakpoint until synchronisation finishes

(also consult Section D.5 for details). For the reasons above, we expect the chance of applying

this approach to a software system is limited; but we still developed the approach as a mitigation

plan for the cases that cannot be handled by LC-RCoE and HA CC-RCoE.

7.6 Fault Injection Experiments

Since SEUs are rare and unpredictable, significant time and hardware resources would be required

to collect statistical meaningful results if we only rely on capturing naturally occurred SEUs. Fault

injection tools are useful and time-saving in evaluating system dependability, and the tools can be

implemented in hardware or software [Hsueh et al., 1997]. For our purpose, software-implemented

fault injection (SWIFI) tools are more suitable and accessible since we can have control over how

and where faults will be injected. In this section, we first survey existing tools for conducting fault

injection experiments and point out why the existing tools are not suitable for our experiments.

Then, we introduce our fault-injection framework tailored for the seL4 kernel and redundant co-

execution, explaining how various faults are injected. Lastly, we present the results of the fault

injection experiments and evaluate the effectiveness of our error detection mechanisms.

Ideally, we should compare our software system protected by RCoE on COTS hardware with

the software system running on hardware with ECC memory and radiation-hardened processors,
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to understand how our software-implemented fault-tolerant mechanisms perform compared with

expensive hardware components. Conducting such comparisons requires a high radiation environ-

ment (e.g., neutron beams) in which hardware components can have higher SEU rates, and thus

we can collect results during a reasonable time frame. We did not have the opportunity of gaining

access to such an environment, despite that several attempts were made.

7.6.1 Existing Fault Injection Tools

Various fault injection tools based on CPU debugging or monitoring features, virtualisation tech-

nology, or simulators have been developed over the years. Xception [Carreira et al., 1998] uses

debugging and performance monitoring units of PowerPC MPC601 processors to trigger hardware

exceptions when the conditions for injecting faults are met, and the exception handler, which is

integrated with the PARIX kernel, modifies the targeted components, such as memory locations,

general-purpose registers, floating-point registers, etc. This fault injection tool is tightly integrated

with the PARIX kernel so that it is unsuitable for our purpose. FAUmachine [Potyra et al., 2007]

is an open-source emulator for PC hardware and capable of running a complete operating sys-

tem. It also incorporates fault injection functions featuring the following fault models: transient

memory bit flips, permanent memory stuck-at errors, transient or permanent disk block faults,

whole disk faults, or transient/intermittent/permanent network sending/receiving faults. How-

ever, injecting faults to CPU registers is not supported; neither is multicore, which is required

by our approach, supported by the FAUmachine. QEMU-based fault injection methods are ex-

plored in [Ferraretto and Pravadelli, 2015; Geissler et al., 2014], but simulating multiple cores

with multiple host threads is still in active research [Ding et al., 2011; Wang et al., 2011] and de-

velopment. FAIL? [Schirmeier et al., 2015] is capable of conducting fault injection campaigns for

ARM and x86 architectures; it supports three simulators (Bochs, QEMU, and Gem5) and Cortex-

A9 boards that can be controlled with JTAG (e.g., PandaBoard). Bochs [Bochs, 2017] multiplexes

a single host thread to execute instruction streams from multiple emulated virtual CPUs if the SMP

option is enabled, serialising the instructions issued by different virtual CPUs. Neither QEMU nor

Bochs is suitable for conducting the fault injections since their modelling and implementations

of multiple virtual CPUs are unable to faithfully reflect the runtime behaviour of real multicore

processors.

7.6.2 The Fault Models and Fault Injection Framework

We decide to build our own fault injection tools running on real hardware for the following rea-

sons: (1) Our kernel barrier timeout mechanism requires the measurement of elapsed time, but a

simulator-based system is unable to fulfil the requirement. (2) CC-RCoE for the x86 architecture

mandates accurate values for the two performance monitoring events. (3) Hardware multicore pro-

cessors implement the hardware parallelism exploited by our our redundant co-execution (RCoE)

approaches. (4) Physical network cards with DMA capability are required to assess to what extend

the non-replicated parts of the system affect the effectiveness of the error detection mechanisms.

Since our aim is to conduct fault injections on real hardware and the seL4 kernel is the lowest-

level system software, our strategy is to modify the kernel to inject random or targeted faults while

a system is running, without relying on other software components (e.g., a hypervisor inserted
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under the seL4 kernel). We describe fault models used in the experiments, and then introduce how

the models are implemented without diving into technical details.

Fault models

We consider the following fault models: (1) single-bit flips in user-mode general-purpose registers,

(2) corrupted system call parameters, (3) bit flips in kernel memory, and (4) random bit flips

in memory. The model (1) focuses on application-level faults, and it is adopted in [Kuvaiskii

et al., 2016; Reis et al., 2005; Shye et al., 2009] to evaluate error detection techniques targeting

applications. The model (2) simulates the errors propagated from user mode to kernel mode;

the model (3) evaluates how the synchronisation protocol and error detection mechanisms behave

when faults are injected into the kernel. The models (2) and/or (3) are used to assess the reliability

of COTS microkernels [Arlat et al., 2002], to characterise Linux kernel’s behaviour under different

fault types [Jarboui et al., 2002], and to compare the error behaviour of different operating systems

running on various CPU architectures [Chen et al., 2008]. The model (4) simulates extreme cases

that multiple errors happen at random memory locations, and it is employed by Messer et al.

[2004] to discover the susceptibility of Linux kernel and JVM to memory errors. We use three

experiments (Section 7.6.3, Section 7.6.4, and Section 7.6.4) to cover the fault models (1), (3),

and (4). The model (2) is omitted since corrupted system call parameters can be easily detected

by the fingerprint comparison if the parameters are included in the fingerprints.

The random number generator

The fault injection experiments need to choose an address, a register, or a bit in a data word

randomly as a fault injection target. For this purpose, we use a complementary multiply-with-

carry (CMWC) [Marsaglia, 2003] pseudo random number generator. The sequences of random

number generator seeds for the baseline (unprotected) and the protected DMR and TMR are the

same, ensuring relatively fair comparisons.

Injecting bit flips into user-mode general-purpose CPU registers

To corrupt user-mode registers is straightforward since the kernel can access all registers of a

thread. The register values of the running thread are saved in the TCB (thread control block, see

Section 2.4) when the thread is interrupted by hardware interrupts; the saved values will be popped

back to physical registers when the kernel resumes the thread. Thus, we modify the interrupt entry

point of the kernel; the inserted code reads the value of the targeting register from the TCB, flips a

chosen bit, and writes the corrupted value back to the TCB, if the fault injection condition is met

for the current interrupt. Note that we manually specify the injection conditions in C code.

Injecting bit flips into memory

For memory errors, we use a spare CPU core, which is not used by redundant co-execution, to

modify the selected memory addresses while other cores are executing normally. During boot-

strapping, the seL4 kernel activates an additional core for the purpose of fault injection, starts that

core with the fault injection code, and continues normal initialisation. The fault injection core
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runs in kernel mode and has access to all physical memory regions, so it can modify any physical

memory address as required. The injection regions can be specified, so we can conduct targeted

or random fault injections. The main advantage of using a spare core is that the cores used for

redundant co-execution are not interrupted by fault injection activities.

Overclocking cores for random CPU faults

We increase the CPU frequency of the ARM SoC beyond the maximal operational frequency,

aiming to induce random CPU glitches. For this method, we have no control over the number of

faults induced, neither can we specify which components (registers, ALUs, internal buses, caches,

etc.) should be affected. However, we use this method as an extreme case study to understand how

our protected system behave when multiple cores may be affected by induced faults.

7.6.3 Fault Injection Campaign against a CPU-Bound Application

For this fault injection experiment, we evaluate how effective our approach is able to detect data

corruptions in CPU registers by using a CPU-bound application, md5sum, which is a part of the

BusyBox [BusyBox, 2017]. The md5sum program implements the MD5 [Rivest, 1992] algorithm

and produces a 128-bit hash value for a file, and the value is very sensitive to the input data: a ran-

dom (i.e., not sophisticatedly designed) single-bit flip is likely to produce significantly divergent

hash values.

1 #!/bin/mksh

2 runs=0

3 # remove the old file

4 rm -f tmp

5 # a new file with random data

6 head -c 128m < /dev/urandom > tmp

7 # baseline hash value

8 md5sum tmp > base

9 # md5sum in a loop

10 while true

11 do

12 ((runs=runs +1))

13 # generate a hash value again

14 md5sum tmp > target

15 # compare the hashes

16 diff base target

17 # different hash values?

18 if [[ $? -ne 0 ]]; then

19 if [[ -s target ]]; then

20 # corrupted values

21 echo corruptions

22 else

23 # md5sum crashes

133



7.6. FAULT INJECTION EXPERIMENTS

24 echo crash

25 fi

26 echo $runs
27 exit 1

28 fi

29 done

Listing 7.3: The script to execute md5sum in a loop

We use the Linux virtual machine as our testing platform and conduct targeted fault injections.

Once the virtual machine has booted up, the script in Listing 7.3 is executed to ensure that md5sum

dominates the CPU usage. We first create a 128 MiB file filled with random data and produce

an error-free digest file named base. Then, we execute md5sum in a loop; in each loop, we

compare the newly produced digest file target with the digest file base to detect potential data

corruptions that may happen during the computations. If the diff utility returns 0, the files are

the same. Otherwise, the target file mismatches the base file so that we stop the current run and

attribute the error to data corruptions. Another possible outcome of injected faults is an abnormal

termination of the md5sum process; in this case, a zero-sized target file is generated so that

we classify the error into crashes. For each run, we keep injecting register faults until an error

happens (a mismatch or an abnormal termination) or one of our kernel error detection mechanisms

halts the system. A random delay is inserted between two injected faults. We specify the fault

injection conditions to ensure that only the Linux virtual machine is affected by the faults. Note

that we cannot guarantee that every injected fault impacts the md5sum process since doing that

requires analysing the guest Linux VM kernel data structures. However, since the md5sum process

dominates the CPU usage, there is a high possibility that the injected faults affect the md5sum

process.

In Table 7.12, we present the fault injection results that include the number of faults injected

to each general-purpose register (EAX to EIP) and the total number of faults injected (Total In-

jected). The column Base is for the unprotected single-core VM, and we classify the failures as

Crashes (md5sum failed to produce a hash value) and Corruptions (md5sum produced an incorrect

hash value). The DMR column represents the protected DMR VMs managed by hardware-assisted

CC-RCoE, and we categorise the errors detected by the two error detection mechanisms, Timeouts

(kernel barrier timeouts) and Mismatches (execution fingerprints are inconsistent). In this experi-

ment, we only injected register bit flips into the primary replica of the DMR VMs. We categorise

the data corruptions and crashes as Uncontrolled Failures and the halts triggereed by timeouts and

mismatches as Controlled Failures.

For the unprotected configuration, a significant portion of the failures is data corruptions that

account for approximately 64.5% of the total uncontrolled failures. The high data corruption rate

can be attributed to the fact that the steps for computing the hash values are very sensitive to

variations of input data and intermediate computation values. In contrast, the protected DMR

configuration does not allow data corruptions to go out of the system by timely halting the system

when the fingerprint comparison fails (96.04%). The kernel-barrier timeout mechanism (3.96%)

catches the errors caused by execution divergence.

This experiment demonstrates the effectiveness of our approach in terms of detecting application-
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Base DMR

EAX 626 (21.80%) 624 (22.19%)
EBX 259 (9.02%) 249 (8.86%)
ECX 47 (1.63%) 35 (1.24%)
EDX 647 (22.53%) 648 (23.04%)
ESI 265 (9.23%) 257 (9.14%)
EDI 48 (1.67%) 39 (1.37%)
EBP 641 (22.32%) 636 (22.62%)
ESP 301 (10.48%) 288 (10.24%)
EIP 38 (1.32%) 36 (1.28%)

Total Injected 2872 2812
Crashes 887 (35.5%) 0
Corruptions 1613 (64.5%) 0
Timeouts N/A 99 (3.96%)
Mismatches N/A 2401 (96.04%)
Uncontrolled Failures 2500 0
Controlled Failures 0 2500

Table 7.12: Fault injection results. Random bit flips are injected into user-mode registers when
md5sum is running.

level divergence and catching errors that causing erroneous output data, significantly reducing the

chances of data corruptions.

7.6.4 Fault Injection Campaign against the Redis System

Random memory faults

In this experiment, we use a spare CPU core to perform fault injections into memory. While

our goal is to handle relatively rare transient faults or SEUs, our fault model in this experiment

injects multiple SEUs to compress the time required to run the campaign. The campaign repeatedly

injects until the system under test fails, restarts the system, and then continues fault injections. The

victim physical address and bit to be flipped are chosen randomly based on the random number

generator in Section 7.6.2. The delay time between two fault injections is also chosen randomly

between 3,489,660,928 to 4,294,901,760 CPU cycles for x86-64 and between 268,435,456 to

4,294,901,760 cycles for ARM, as reported by the rdtsc and c15 cycle counter registers on

x86-64 and ARM respectively. We rely on having enough samples to observe overall trends in the

data.

The system under test is the Redis and YCSB benchmarking software used previously. The

YCSB benchmarking client is modified to embed CRC32 checksums of the key-value pairs into

the values written to the Redis server. The YCSB client can then validate the correctness of data

returned by Redis by comparing the embedded checksum with a recalculated checksum. We test

an unprotected and various protected versions of the system. A script monitors the outputs from

the Redis server and YCSB client. Once the script detects the Redis server failure, errors reported

by YCSB client, or errors reported by our error detection mechanisms, it logs the reason for failure

and restarts the Redis server and YCSB client.
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Table 7.13 and Table 7.14 show the total number of fault injections performed over all runs

for an unprotected Redis configuration and the protected configurations managed by LC-RCoE,

and the breakdown of the observed failures. The difference in number of faults injected is not

indicative of anything other than length of time each experiment has executed. We experiment

with two different fault injection strategies for the x86-64 and ARM machines. On the x86-64

machine, we choose to inject single-bit flips into the physical memory regions used by the kernel

replicas (including the code and data sections for all kernel replicas and the kernel shared memory

region for building the synchronisation protocol) and the regions allocated to the primary replica

(including the applications and the DMA buffers allocated to the I/O devices). As to the ARM

machine, the memory addresses targeted for fault injections are all memory regions used by the

unprotected, DMR, or TMR system. We use the same sequences of seeds for the random number

generator (RNG) that generates the memory addresses and positions in data words to inject faults

for the baseline and protected systems of each machine. The ARM machine has two additional

configurations, DMR-N and TMR-N, which do not include user-mode driver contributed updates

into the the fingerprints. For our particular system, the checksums of the out-going network pack-

ages are not included in DMR-N and TMR-N. The protected configurations of x86-64 and ARM

run in LC-RCoE. The meanings of the first column in the tables are explained below.

Total Injected Faults: The number represents the total single-bit flips injected into various mem-

ory locations. Note that not all injected faults manifest as errors; for instance, the faults

injected at unused memory locations do not introduce errors.

Observed Errors: The number of observed errors caused by the injected faults. We categorise

the errors to the following classes: (1) user-mode exceptions (User VM Exceptions and User

Other Exceptions), (2) kernel-mode exceptions, (3) errors reported by the YCSB (YCSB

Corruptions and YCSB Errors) , and (4) errors spotted by our error detection mechanisms

(KBarrier Timeouts and Fingerprint Mismatches). (1), (2), and (3) are called uncontrolled

errors that we aim to reduce. In our protected configurations, we attribute the errors in (4)

as controlled errors that are reported when our framework observes inconsistency between

the replicas. The remedy for a controlled error is a graceful fail-stop, avoiding replying the

YCSB with corrupted data. The details of the observed errors are listed below.

User VM Exceptions: User-mode invalid virtual memory exceptions triggered by applica-

tions. A memory access (be it a data access or an instruction fetch) beyond the ranges

of of valid data or code sections is reported as this error type. Note that on-demand

paging is not treated as an error.

User Other Exceptions: Other user-mode exceptions triggered by applications. For in-

stance, invalid instruction exceptions belong to this error type. Also, the exceptions

set off by the root task are taken into this type.

Kernel Exceptions: Various exceptions occurred in kernel mode.

YCSB Corruptions: The number of results returned by Redis that are not correct. Re-

member that the YCSB client validates data integrity by comparing the embedded

checksums and recalculated checksums; thus, inconsistent checksums are reported

and categorised as data corruptions.
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YCSB Errors: Run-time exceptions (e.g., SocketTimeoutException, JedisDataException,

or StringIndexOutOfBoundsException) reported by the YCSB client.

KBarrier Timeouts: A graceful fail-stop because of a kernel-mode barrier timeout in the

protected configurations. A consequence of one of the cores becoming non-responsive

or the cores diverging.

Fingerprint Mismatches: A graceful fail-stop because of a fingerprint comparison failure

in the protected configurations.

Base DMR TMR DMR-N TMR-N

Total Injected Faults 243277 201558 183794 223776 214387

Kernel Exceptions 0 0 0 0 0
User VM Exceptions 291 29.1% 0 0 0 0
User Other Exceptions 5 0.5% 0 0 0 0
YCSB Corruptions 647 64.7% 3 0.3% 1 0.1% 381 38.1% 299 29.9%
YCSB Errors 57 5.7% 1 0.1% 0 13 1.3% 10 1.0%
KBarrier Timeouts N/A 304 30.4% 304 30.4% 602 60.2% 678 67.8%
Fingerprint Mismatches N/A 692 69.2% 695 69.5% 4 0.4% 13 1.3%

Observed Errors 1000 1000 1000 1000 1000
Uncontrolled Errors 1000 100% 4 0.4% 1 0.1% 394 39.4% 309 30.9%
Controlled Errors N/A 996 99.6% 999 99.9% 606 60.6% 691 69.1%

Table 7.13: Number of system failure type occurrences and percentages of total failures (ARM)

Base DMR TMR

Total Injected Faults 60449 91033 92299

User VM Exceptions 832 36.033% 2 0.086% 2 0.085%
User Other Exceptions 339 14.682% 0 0
Kernel Exceptions 0 0 3 0.128%
YCSB Corruptions 1001 43.352% 11 0.470% 16 0.684%
YCSB Errors 137 5.933% 6 0.256% 4 0.171%
KBarrier Timeouts N/A 1238 52.906% 1184 50.598%
Fingerprint Mismatches N/A 1083 46.282% 1131 48.333%

Observed Errors 2309 2340 2340
Uncontrolled Errors 2309 100% 19 0.812% 25 1.068%
Controlled Errors N/A 2321 99.188% 2315 98.932%

Table 7.14: Number of system failure type occurrences and percentages of total failures (x64)

In the unprotected case, we see that many failures are application crashes due to user-mode

exceptions (29.6% for ARM and 50.715% for x86-64). We also observe a significant fraction of

failures as errors propagated as incorrect results returned to YCSB (64.7% and 43.352%) or errors

that caused YCSB to throw Java run-time exceptions (5.7% and 5.933%). The high percentages

of YCSB corruptions demonstrate the severity of silent data corruptions.
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The results confirm that the our error detection mechanisms successfully convert most of the

uncontrolled errors to controlled errors for the DMR (99.6% and 99.188%) and TMR (99.9% and

98.932%) configurations on both ARM and x86-64 machines. Although all the protected DMR

and TMR configurations failed to eliminate YCSB data corruptions completely, the improvements

are momentous: the percentages of YCSB corruptions were reduced from 64.7% to 0.3% (DMR)

and 0.1% (TMR) for ARM and from 43.352% to 0.470% (DMR) and 0.684% (TMR) for x86-

64. We attribute the remaining corruptions due to the fact that the DMA buffers used by network

drivers are not redundant so that a data corruption in the buffers can cause all the replicas observe

incorrect data. The x86-64 machine has slightly higher data corruption percentages due to the fol-

lowing two factors: (1) The DMA buffer size on x86-64 machine is several times larger than the

buffer size of the ARM machine. (2) The fault injection addresses for x86-64 are restricted to the

memory regions used by the kernel replicas and the primary replica, but the addresses for ARM

are randomly selected from the memory regions used by all replicas. The higher YCSB error per-

centages of the x86-64 DMR and TMR configurations can also be explained by the second factor.

Furthermore, the design choice of allowing applications to contribute data into the fingerprints

and to trigger comparisons pays off: the network drivers of the protected configurations contribute

checksums of output data into the fingerprints for comparisons, resulting in efficient captures of

corrupted output data (69.2% and 69.5% for ARM, and 46.282% and 48.333% for x86-64). In

contrast, the DRM-N and TMR-N configurations, which exclude the checksums of out-going net-

work packets, still suffer from YCSB corruptions (38.1% and 29.9%) and show low fingerprint

mismatch percentages (0.4% and 1.3%).

The three kernel exceptions occurred on the x86-64 machine deserve our attention. We anal-

yse the log files and find that two of errors were caused by bit flips at the 5th bit of physical

memory address 0x36bd03. The reason for the two errors being caused by exactly the same

fault is that the kernel RNG was coincidently seeded with the same number in two different runs.

That particular address was in the text section of the second kernel replica, and the fault changed

the instruction at the address from cmp $0x1, %edx (0x83 0xfa 0x01) to .byte 0xa3 cli

.byte 0x1 (0xa3 0xfa 0x01). Evidently, the bit flip changed the victim byte from 0x83

(0b1000 0011) to 0xa3 (0b1010 0011), causing an invalid instruction in the kernel function

decodeX64MMUInvocation. We also look into the log for the DMR configuration and find that

the same physical address, 0x36bd03, was affected as well. However, the address was located in

the shared kernel data region of the second kernel replica. As described in Section 4.2.1, that par-

ticular physical memory region was not used; thus, the fault did not ignite a kernel exception. As

to the baseline configuration, the address fell into the memory region for the applications so that

no kernel-mode exception was observed. Another kernel exception was caused by a kernel-mode

page fault. We do not observe faults injected into kernel memory regions during that run. How-

ever, according to the faulting instruction and kernel source code, we identify the potential cause:

a bit flip changed the type of a capability from endpoint cap to irq handler cap so that an in-

valid pointer was returned; thus, the kernel faulted when it was referencing the invalid pointer. The

seL4 formal verification proves that there are no kernel exceptions (assuming correctly-function

hardware), and the default handler for kernel exceptions halts the system. Therefore, in a sense,

the three kernel exceptions could be also categorised as controlled errors. To detect such errors,
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we added additional kernel barriers in the kernel exception handlers when executing the ARM

fault injection experiment; thus, we do not observe any kernel exceptions on ARM. According to

the log, several kernel data aborts did happen, but they were caught by kernel barrier timeouts.

It is worth mentioning two arguments related to our fault injection results. The first one is

that a DMR system built with the same hardware components with identical FIT (failure in time)

rates as in an unprotected system is more likely to fail because the doubled hardware components

lead to higher overall system failure rate. The kernel exceptions of the x86-64 TMR configuration,

to some extent, support the argument. However, we need to recognise that the DMR or TMR

configurations can detect errors that can cause various failures ranging from system resets to silent

data corruptions. The key factor is that the protected configurations have the opportunity to handle

a detected error before the error potentially causes severe consequences. The second argument

is that the approach of end-to-end checksumming used by the modified YCSB client is able to

detect data corruptions so that the DMR or TMR configurations are not necessary in terms of

preventing data corruptions. We agree that end-to-end checksumming is effective in protecting

data integrity. Notwithstanding, we also perceive the possibility that some data can be corrupted

before a checksum is calculated for the data; thus, a checksum is computed for the corrupted data.

In this case, the end-to-end approach cannot identify such corruptions.

Still, the very small percentages of YCSB errors in fault injection experiments reveal an issue:

when the primary replica stops functioning, the primary replica receives no interrupts and ceases

triggering synchronisations. The consequence is that if there is no active or pending synchronisa-

tion request when the the primary replica halts, the other replicas cannot observe the failure of the

primary replica unless the other replicas are already blocked or are going to block on a kernel bar-

rier for I/O operations or output comparisons. Subsequently, the other replicas eventually switch

to the idle thread because of the lack of external input events. A system under such condition is

unable to receive inputs or to produce outputs, and thus we deem the system to be halted. This

issue can be resolved by distributing interrupts to all replicas and allowing each replica to initiate

synchronisations once it receives a device interrupt. However, we have not fully evaluated the

performance impact of such an approach.

Random CPU faults

Overclocking processors has negative effects on the reliability of the processors [Memik et al.,

2005]. We overclock the Cortex-A9 cores of the Sabre board to around 1.09 GHz, aiming to

trigger random CPU faults or anomalies in various processor components. Note that we have no

control over the locations and timings of the faults, so it is possible that multiple faults occur in

several components during a very short interval. The system under test is the same as the above

Redis system except that we adopt overclocking cores instead of corrupting memory to induce

random glitches. The results for the baseline, DMR, and TMR systems are shown in Table 7.15.

Both the protected DMR and TMR systems are managed by LC-RCoE, and the error detection

configuration is BT (barrier timeout) + CU (critical updates) + AC (application contribution) + SC

(system call). The meanings of the error types in the table are the same as above, and we remove

the row named “Total Injected Faults” since we cannot accurately collect the data for random CPU

faults. We can only observe errors, but we cannot determine the causes of the errors.
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Unprotected DMR TMR

User VM Exceptions 632 63.2% 0 0
User Other Exceptions 345 34.5% 0 0
Kernel Exceptions 2 0.2% 0 0
YCSB Corruptions 1 0.1% 0 0
YCSB Errors 20 2.0% 25 2.5% 24 2.4%
KBarrier Timeouts N/A 724 72.4% 853 85.3%
Fingerprint Mismatches N/A 251 25.1% 123 12.3%

Observed Errors 1000 1000 1000
Uncontrolled Errors 1000 100% 25 2.5% 24 2.4%
Controlled Errors N/A 975 97.5% 976 97.6%

Table 7.15: Number of system failure type occurrences and percentages of total failures when the
ARM SoC is overclocked

We have the following observations based on the results in Table 7.15.

• For the unprotected baseline system, a majority of the observed errors are various user-mode

exceptions. However, there is still one data corruption.

• The percentage of YCSB corruptions for the unprotected system is significantly lower than

the corresponding percentage in Table 7.13. The main reason for this situation is that the

system crashed relatively soon after we increased the frequency so that the YCSB client did

not have the opportunity of executing the benchmark stage during which the data was read

back and checked for any potential corruptions.

• The percentages of YCSB errors of the DMR and TMR configurations are higher than the

corresponding percentages in Table 7.13. I examined the log files and determined that 6 of

the total 49 errors were caused by system reboots induced by overclocking. The remaining

43 errors reported were various network exceptions, indicating unresponsive failures. We

expect that our error detection mechanisms may not be able to handle the cases in which

multiple faults affect several components within a short interval.

• Both the DMR and TMR configurations report nontrivial numbers of fingerprint mismatches.

We speculate that these mismatches were triggered by register errors.

In summary, the overclocking experiment reveals one important but expected limitation of our

error detection schemes: when multiple components experience errors in a relatively short period,

the system may enter a state of complete failure that is beyond the capability of our software-

implemented mechanisms to handle. Fortunately, this kind failure is relatively straightforward to

handle: a watchdog constantly monitors the status of the system and reboots the system when it

misses heartbeats.

7.7 Error-Masking Experiments

The error-masking mechanisms are evaluated on the x86-64 machine for both CC-RCoE and LC-

RCoE and the ARM SoC for LC-RCoE only. As we mentioned in Section 6.5, we only try to
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recover from a fingerprint mismatch for a TMR system. Our experiment method is to trigger a

fingerprint mismatch while the TMR system is running, and we specifically remove the primary

replica, exercising the primary replica migration mechanism described in Section 5.7. The system

under test is still the Redis server; YCSB is also used to generate the workload (workload B). For

each configuration (CC-RCoE or LC-RCoE), we perform two runs that remove the primary replica

and one non-primary replica respectively. Approximately, the system is programmed to trigger a

fingerprint mismatch 60–70 seconds after the kernel brings up the root task.
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Figure 7.16: Redis throughputs with error masking on x86-64 (LC-RCoE)
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Figure 7.17: Redis throughputs with error masking on x86-64 (CC-RCoE)

In Figure 7.16 and Figure 7.17, we show the throughputs reported by the YCSB load generator

every 10 seconds for the x86-64 machine. The x-axis is the execution time, and the y-axis rep-

resents the throughputs. Primary and Non-primary designate the replica to be removed. Clearly,

we can observe that the throughputs go up significantly during the intervals of 50s to 60s, which

conform to the time when the mismatches are triggered. (The time for starting up the Redis system

and populating the database takes around 15 seconds.) The increases in throughputs are because

that the system downgrades from TMR to DMR by removing the faulty replica which holds the
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incorrect fingerprint. We also demonstrate that removing the primary replica, which is responsi-

ble for performing I/O operations, does not cause service interruptions when the criteria for error

masking are satisfied.

CC-RCoE Primary CC-RCoE Non-primary LC-RCoE Primary LC-RCoE Non-primary

2,869 3 532 8

Table 7.16: Measured time (microseconds) for error-masking operations (x86-64)

Table 7.16 shows the measured time for the error-masking operations for the 4 particular runs

reported in the figures above. Note that the time for error-masking operations varies from run

to run and can change significantly if hardware and software configurations change. However,

these operations are not critical for performance since normal execution does not invoke the error-

masking operations. Removing the primary replica while the system is running in CC-RCoE costs

the most (2,869 microseconds). As we have discussed in Section 5.7.3, primary replica migration

involves patching the page tables of the device drivers running on the new primary replica so that

the drivers can access the DMA buffers that are allocated in the memory regions of the former

primary replica. The patching step examines the page table entries one by one and updates some

entries if necessary. Thus, the execution time of the patching step is linear to the number of the

page table entries used by the drivers. In our case, we only need to patch the page table entries of

the network driver. The cost (532 microseconds) for removing the primary replica of the system

in LC-RCoE is also more than that of removing non-primary replicas. This is because rerouting

hardware interrupts to the new primary replica is still needed, although patching page tables is not

required for LC-RCoE. The cost of reprogramming interrupt controllers is specific to the controller

type and to the accessing method (e.g., memory-mapped or I/O port). The reported time includes

the cost for reprogramming IO-APIC through I/O ports. The costs (3 and 8 microseconds) for

removing the non-primary replica are relatively low since they do not need to migrate the primary

replica, and the costs are mainly from voting and deactivating the faulty replica. The LC-RCoE

has a slightly higher cost since it needs to inform the user-mode drivers about the removal of the

non-primary replica through the bidirectional communication channel (Section 5.7.2).

LC-RCoE Primary LC-RCoE Non-primary

2,621 21

Table 7.17: Measured time (microseconds) for error-masking operations (ARM)

We perform similar experiments on the ARM board with the LC-RCoE TMR configuration.

As we mentioned in Section 5.7.3, due to the hardware limitation, we have not added primary-

replica migration support (Section 5.7) for CC-RCoE on the ARMv7-based board. In Figure 7.18,

we can observe similar throughput increases during the interval of 40s to 60s, for the same reason

mentioned above. The costs for error-masking activities are listed in Table 7.17; and not surpris-

ingly, removing the primary replicas takes much longer than removing the non-primary replica

because of the steps for performing primary replica migration in which the ARM generic interrupt

controller is reprogrammed and pending interrupts are saved.
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Figure 7.18: Redis throughputs with error masking on ARM (LC-RCoE)

Overall, although there are various restrictions imposed on the error-masking operations, we

demonstrate that a viable forward recovery approach can be constructed based on existing kernel

mechanisms for error detection and primary replica migration, with reasonable cost. Further-

more, our whole-system redundant co-execution creates possibilities for exploring other recovery

approaches or reintegration (Section 6.5.3).

7.8 Summary

In this chapter, we first evaluated the performance characteristics of the resulting systems, using

the single-core unprotected system as the baseline. The microbenchmarks running directly on

seL4 reveal the following observations when LC-RCoE is adopted: (1) For CPU-bound workload,

the overhead of redundant co-execution is very small. (2) For memory-intensive workload, the

redundant co-execution significantly reduces the available memory bandwidth for each core. (3)

The interrupt latency is prolonged by the synchronisation protocol coordinating the replicas. Fur-

ther, we delineated the traits of hardware-assisted CC-RCoE by running Dhrystone, Whetstone,

SPLASH-2, and RAMspeed on the baseline Linux VM and the DMR Linux VMs. For Dhrystone

and Whetstone, which respectively measure integer and floating-point performance of processors,

we observed notable increases in execution time (1.50 and 2.89 times of the baseline VM). LU-C

and LU-NC from SPLASH-2 exhibited severe performance degradation (8.14 and 6.23 times of

the baseline execution time), and the remaining SPLASH-2 applications showed varied increases

in execution time in the range of 1.10–3 times. The geometric mean of the increases in execution

time for all applications is 2.02 times. RAMspeed demonstrated that the overhead for running

memory-bound applications on the DMR VMs is significant, since two Linux VMs running on

different cores compete for the memory bandwidth that is otherwise monopolised by the base-

line VM. We attribute the overhead to the fact that CC-RCoE needs hardware breakpoints to stop

the replicas exactly at the same instruction, so applications containing tight loops are likely to be

slowed down if the breakpoints happen to be at instructions inside tight loops.

We used Redis as the system benchmark to assess the performance when our approach is
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applied in a real-world scenario. The LC-RCoE-based DMR and TMR systems configured with

our recommended error detection options (LC-DMR-SC and LC-TMR-SC in Table 7.10) achieved

74%–79% and 68%–73% of the baseline across 6 workloads on the x86-64 machine; the Cortex-

A9 ARM board achieved 77%–79% (LC-DMR-SC) and 69%–71% (LC-TMR-SC) of the baseline.

Given that the Redis benchmark exercises the cores, memory, and I/O devices (thus high interrupt

frequency), we consider the resulting system managed by LC-RCoE performs reasonably well.

We conducted fault injection campaigns on real hardware to determine the effectiveness of the

error detection mechanisms. In the fault injection experiment targeting user-mode registers, our

protected DMR VM system successfully prevented corrupted MD5 digests from escaping the sys-

tem. In the campaigns injecting single-bit flips into various memory addresses, protected configu-

rations significantly reduced the uncontrolled errors; more importantly, the data corruptions were

lowered from 64.7% to 0.3% (DMR) and 0.1% (TMR) for ARM and from 43.352% to 0.470%

(DMR) and 0.684% (TMR) for x86-64. We also demonstrated that allowing user-mode drivers

or applications to contribute critical state updates into execution fingerprints for comparisons un-

questionably helped error detection. The CPU overclocking experiments, which induced random

CPU faults, illustrated a limitation of our approach: when multiple components experience errors

in a relatively short period, the system may enter a complete failure that is beyond the capability

of our software-implemented error detection mechanisms. However, our DMR and TMR systems

still showed much lower uncontrolled error percentages—2.5% and 2.4%. Finally, we performed

the error-masking experiments to demonstrate that a system running in TMR can be gracefully

downgraded to DMR without interrupting services when a faulty replica is detected by comparing

fingerprints and when the criterion for performing error masking are satisfied.

In summary, LC-RCoE systems usually outperform CC-RCoE systems. The hardware-assisted

CC-RCoE on x86 machines has the advantage of running replicated Linux virtual machines that

can be leveraged to support existing applications, although the performance suffers. More im-

portantly, our error detection mechanisms perform well in terms of reducing data corruptions and

uncontrolled crashes.

144



Chapter 8

Summary and Looking Forward

We can only see a short distance ahead,
but we can see plenty there that needs to
be done.

Alan Turing

We conclude the thesis by reiterating the problem and our approaches, followed by examin-

ing potential directions for performance improvements and better error recovery mechanism. We

recognise that transient hardware faults still pose serious threats to COTS computer systems that

require a high level of security and data integrity, despite that many software-implemented ap-

proaches have been proposed to detect or tolerate errors caused by transient hardware faults. One

critical software component ignored by existing software-implemented fault-tolerant approaches

is the lowest-level system software that plays a crucial role in ensuring safe and fair hardware

resource sharing. The main theme of the thesis is to address the need by improving the formally

verified seL4 microkernel with self-checking capabilities. Arguably, our proposed mechanisms,

especially the synchronisation protocol, may also be adopted by other microkernels. We choose

the seL4 kernel mainly because its unique property—its C implementation is bug-free (conditions

apply) and is guaranteed to follow the design specifications; the microkernel already demonstrated

its advantages in terms of building real-world secure systems [Fisher, 2014].

8.1 Summary

8.1.1 Transient Hardware Faults

Our journey begins with single-bit flips; we described how alpha particles or neutrons interact with

silicon crystals and how a transient current triggered by a particle striking a sensitive node of a

transistor can cause a single event upset (SEU) or single event transient (SET) (Section 2.1). Tran-

sient hardware faults have significant impacts on the reliability of CMOS circuits. Scaling feature

sizes, reducing supply voltages, lowering noise margins, and increasing clock rates make CMOS

devices more susceptible to transient faults. However, the demands for state-of-the-art comput-

ing capacity and technology, dramatically reduced costs, improved energy consumption, and de-

creased physical volumes motivate system designers to build fault-tolerant, safety- and/or mission-
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critical systems based on COTS hardware instead of using customised or radiation-hardened hard-

ware components, which are generations behind the up-to-date COST components in terms of raw

computation power and functionalities.

Transient faults impact the dependability of the systems; as shown in previous studies, transient-

fault-induced errors can introduce security vulnerabilities and system failures. Despite that tech-

nology advancements improve the soft error rate of COTS hardware, transient hardware faults are

not going to disappear completely in the foreseeable future. Even worse, multi-cell faults are also

becoming an urgent issue since that SEC-DED ECC is unable to correct a multi-cells fault in a

data word (a multi-bit fault) and that the replication-based error detection approaches assuming

single-bit flip fault model may not be able to handle such faults well.

8.1.2 The Mechanisms for Whole-System Redundant Co-Execution

Various software-implemented fault-tolerant approaches, aiming for protecting applications, as-

sume that the low-level system software is protected by other measures or is free from hardware

faults. The system software (kernels, hypervisors, etc.) ensures safe and fair hardware resource

sharing, so its correct operation has direct impacts on the whole system security; a soft error affect-

ing the system software has more significant negative effects on the whole system dependability.

Our answer to the challenge is whole-system redundant co-execution that exploits the hard-

ware redundancy provided by multicore processors, instantiates a whole-system replica (including

the microkernel, device drivers, and applications) onto different cores, redundantly executes the

replicas, and compares the replicas for error detection. Applying SMR (state machine replication

Section 4.1.2) to a whole software system requires taming non-deterministic events (Section 2.4.5)

in the system, so we design a synchronisation protocol and various microkernel mechanisms for

instantiating and managing the replicas of the whole software system on different cores. The pro-

tocol (Section 4.3) coordinates the execution of the replicas, and we implement two prototypes

of the protocol on ARM and x86 platforms. Loosely-coupled redundant co-execution (LC-RCoE

Section 4.5) relies on kernel-maintained deterministic event counters to measure the progress of

the replicas and only supports single-threaded applications or multi-threaded applications that are

data-race-free. Closely-coupled redundant co-execution (CC-RCoE Section 4.4) is able to pre-

cisely preempt the replicas as the same position in the instruction streams so that it can support

multi-threaded applications (even with data races), but it requires hardware performance counter

support on the x86 machines (Section 4.4.2) and recompilation of all user-mode code with the

GCC plugin on ARM machines (Section 4.4.3). A comparison of LC-RCoE and CC-RCoE is

presented in Section 7.5.

To support device driver replication, we introduce cross-replica shared memory regions (Sec-

tion 5.4.1) for LC-RCoE and two new system calls (Section 5.5.1) for CC-RCoE to facilitate the

implementation of the access patterns (Section 5.2) that coordinate the accesses to I/O devices and

DMA buffers. Essentially, the replicated drivers function as the input data duplicators and output

data comparators. We call the replica that actually performs the I/O operations in the access pat-

terns as the primary replica. For a TMR system, if error masking is enabled and an error is detected

by comparing execution fingerprints, the system downgrades to the DMR mode by removing the

faulty replica. If the faulty replica is the primary replica, the system needs to conduct a procedure
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called primary replica migration (Section 5.7) that retires the old primary replica and migrates the

functions to the new primary replica. The necessary kernel supports for the migration is illustrated

separately for LC-RCoE and CC-RCoE: the bidirectional communication channel (Section 5.7.2)

and the mechanism (Section 5.7.3) for dynamically patching the page table entries that cover the

virtual memory addresses used as DMA buffers.

8.1.3 The Mechanisms for Error Detection and Masking

Based on the solid foundation provided by redundant co-execution and driver replication, we intro-

duce two kernel mechanisms for detecting errors: execution fingerprint comparison (Section 6.3.1)

and kernel barrier timeout (Section 6.3.2). Internal kernel functions (Section 6.2.1) are provided to

collect kernel state updates into the fingerprints and trigger the comparisons to validate the finger-

prints. The microkernel is modified to employ the functions for including virtual-memory-space

and capability-space updates (Section 6.2.2), and system calls (configurable) into the fingerprints.

The new system call, seL4 FT Add Event(value, compare_now), allows user-mode processes

to contribute their internal data into the fingerprints. Specifically, device drivers use this system

call to validate checksums of output data before they release the data to I/O devices. The kernel

barrier timeout catches the execution divergence triggered by transient faults, and it is effective in

detecting the errors causing “stuck-at” situations.

Error masking can be optionally enabled for the TMR configuration so that the system can

mask an error detected by fingerprint comparisons with forward recovery (Section 6.5); The al-

gorithm (Section 6.5.1) for voting the faulty replica is crucial. The algorithm cannot assume that

only one replica is faulty, neither can it assume that the voting procedure is free from faults. Thus,

the algorithm is designed to be executed redundantly, and it finishes successfully only when all the

replicas reach an agreement on the faulty replica ID; the algorithm halts the system otherwise. If

the faulty replica is not the primary replica, we can simply remove the replica; otherwise, we need

to conduct primary replica migration first (Section 5.7).

8.1.4 Realisations and Evaluation

We have implemented our redundant co-execution, error detection, and error masking mechanisms

based on the seL4 microkernel for ARM and x86 machines. The performance overheads vary ac-

cording to the types of workloads and the redundant co-execution mode (CC-RCoE or LC-RCoE)

chosen by a system. Applications demanding high memory bandwidth may suffer from noticeable

slowdown (Section 7.3.1). The obvious worst case is applications whose performance is limited

by memory bandwidth. This limited bandwidth must now be shared between the replicas, result-

ing in roughly a factor-two slowdown for DMR, and a factor of three for TMR. This slowdown is

an inevitable result of redundant co-execution, and the good news is that our design imposes lit-

tle performance cost in this case. As shown in Section 7.3.1, for computation-intensive programs

with small cache footprints, the overhead is mostly negligible if the system is running in LC-RCoE

mode. Nevertheless, CC-RCoE may cause significant performance degradation for applications

consisting of tight loops. Furthermore, the slowdown can vary significantly across runs, depend-

ing on the positions of the instruction breakpoints. The cost of programming debug registers and
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handling instruction breakpoint exceptions is the main reason for the slowdown, especially when

the breakpoints are in loops.

In addition to the synthetic benchmarks, we also adopt a real-world server application, Redis,

to benchmark the resulting systems (Section 7.4.1); we observe modest degradation of throughputs

and consider that the systems are suitable for practical uses. Finally, the fault injection experiments

demonstrate the effectiveness of our error detection mechanisms by showing that a dominating

portion of the errors induced by bit flips in registers or memory is captured by the error detection

mechanisms; and thus the data corruptions are eliminated (Section 7.6.3) or significantly reduced

(Section 7.6.4).

8.1.5 Application Areas

Based on the characteristics of LC-RCoE and CC-RCoE, we envision that the following areas

(including but not limited to) are good candidates for adopting our approach.

• CubeSats [Toorian et al., 2008] are very small and low-cost satellites with restricted size

(10cm×10cm×10cm) and weight (1.33 kg) requirements. Thus, COTS hardware is widely

adopted in order to meet the size, weight, and cost constraints [Gregorio and Alimenti,

2018]. Our LC-RCoE for ARM SoCs should be able to run on the payload computers,

which perform image processing, data analysis, data compression, etc. If the real-time

requirements of the primary computer can be achieved through careful design and measure-

ment, an ARM SoC powered by LC-RCoE can potentially be used as well. The tasks for

the payload and primary computers are usually well defined and static, so it is possible to

conduct extensive analysis to ensure that the resulting system meets various requirements

despite that the LC-RCoE adds non-trivial overhead in trade for improved reliability in harsh

space environments.

• The hardware-assisted CC-RCoE on x86 is capable of running virtual machines, thus it can

be used to built a secure computing platform (e.g., NetTop [Meushaw and Simard, 2000])

on which classified data can be processed in conjunction with unclassified data. Usually,

absolute performance and real-time response are not vital requirements for such systems, so

the overhead of CC-RCoE is likely to be tolerated. Furthermore, seL4 represents a small

trusted computing base (TCB), and CC-RCoE further enhances seL4 with the capability of

protecting itself from transient hardware faults.

• Autonomous driving technologies require significant computing power, which necessitates

the state-of-the-art COTS hardware for not only performance but also low costs and en-

ergy consumption. For instance, 10 Intel dual-core processors are used in Boss [Kim et al.,

2013], an autonomous vehicle developed at CMU. Thus, the importance of tolerating tran-

sient hardware faults is rising since more and more electronic components are used in

cars [Baleani et al., 2003]. Using replicated hardware increases the production costs and

energy consumption significantly. The increased energy consumption directly translates to

reduced fuel economy for petrol cars or shortened range for electric cars. Our LC-RCoE

variants for x86 and ARM architectures may be used to alleviate the issue.
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8.2 Road Ahead

8.2.1 Multicore Replicas

Nowadays, multicore processors completely dominate the COTS market; four-core and eight-core

CPUs are common. In the DRM and TMR configurations, we only use two and three cores for

redundant co-execution, leaving other cores idle. The need to utilise the idle cores for improved

performance is both apparent and urgent.

Extending the verified seL4 kernel to support multicore processors is introduced by Elphin-

stone et al. [2016]. The main idea is using a big kernel lock, as shown on the left-side of Figure 8.1,

to restrict the concurrency in the kernel. In the figure, both cores, C0 and C1, are managed by the

kernel, and the big lock ensures that only one of two cores is in kernel mode at a time. Each core

grabs the big lock before entering kernel mode and releases the lock before returning to user mode.

Using a big lock to avoid concurrency is to comply with verification requirements. The multicore

version of seL4 sets up a run queue containing all ready-to-run threads for each core and provides

a new system call to specify the affinity of each thread (i.e., pinning a thread to a core). In the

figure, T0 and T2 are pinned on the core C0, and T1 and T3 are bound to the core C1. The kernel

does not try to balance work-load of the cores automatically by moving threads between cores, but

relies on directives from a user-mode scheduler.

replica0

T0 T1

C0 C1

Big Lock

T2 T3

replica1

T0’ T1’

C2 C3

Big Lock

T2’ T3’

Pair Pair

Figure 8.1: A multicore DMR example

Figure 8.1 shows a straightforward method to replicate the dual-core system, forming a multi-

core DMR configuration—each replica runs on two cores. In this configuration, before the replicas

handle an interrupt, the states of the replicas have to be synchronised. In this figure, C0 should be

synchronised with C2, so are C1 and C3. The dashed-line rectangles with different colours group

cores belonging to different replicas together to form two pairs, and the we call the individuals
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making a pair as items. The synchronisation process is applied to each pair in order to achieve the

multicore version of redundant co-execution. Because the existence of the big kernel lock in each

replica, an item has to drop the lock when waiting on a kernel mode barrier so that other items

in the same replica but belong to other pairs can enter kernel mode and make more progress. For

example, when items C0 and C3 are waiting for items C2 and C1 to catch up, they have to release

the locks so that C2 and C1 can proceed to catch up without blocking on lock acquisitions. In the

case of a dual-core TMR configuration, we have three replicas, and each replica has two items.

However, there are still two pairs, and each pair includes three items.

Now let’s have a look how an interrupt is handled in the case of the dual-core DMR configu-

ration. The following steps are executed:

1. A user-mode thread is interrupted by the external interrupt on the core C0, and then, C0

switches to kernel mode and grabs the big lock of replica0.

2. C0 triggers a round of synchronisation by calling the trigger action function with the inter-

rupt request number (IRQ) to handle. The function sends IPIs to all other cores to notify the

pending synchronisation request.

3. C0 releases the lock and begins the synchronisation mode. C1, C2, and C3 receive the notifi-

cations and enter the synchronisation mode without holding the locks.

4. Each pair votes a leading item that will wait on the barrier, and the other item in a pair

catches up until it makes the same amount work as the leading item. By doing so, we

synchronise the pairs individually. When a pair is synchronised, it stops at the first pair

barrier to wait the other pair to finish.

5. When all the pairs finish the synchronisation, they pass the first pair barrier. Then, the items

in the replica0 acquire and release the kernel lock deterministically according to the core

IDs. After grabbing the lock, an item handles the interrupt and then releases the lock. By

doing so, the interrupt is handled by all items in the replica sequentially and deterministi-

cally. The same steps are repeated on the other replica. The items stop at the second pair

barrier to ensure that all replicas finish handling the interrupt.

6. Now the interrupt is handled by all replicas consistently, and the synchronisation process

finishes.

Two kernel pair barriers must be added to coordinate the execution of the pairs. In Figure 8.1,

the pair barriers require all four cores to arrive before any one of cores can proceed. However, the

barriers used to coordinate the items inside a pair still require two cores.

8.2.2 Error Masking Support for Kernel Barrier Timeouts

As described in Section 6.5, error masking is only attempted for a TMR system when execution

fingerprints mismatch; kernel barrier timeouts halt the system directly. We plan to enhance error

masking so that downgrading from TMR to DMR can be optionally enabled for kernel barriers.

Given a TMR system, we consider the following situations:
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• Three replicas block on three different barriers. In this case, there is no simply way to

identify which replica is faulty, since it is possible that more than one of the replicas are

incorrect.

• Two replicas block on the same barrier. Apparently, in this case, two replicas correctly

arrive at the barrier; the remaining replica, blocking on a different barrier or still running,

could be the faulty one. Therefore, we can force the replicas to perform a majority voting,

as described in Section 6.5.1. The voting results can also be discussed case by case:

– The voting result identifies that the faulty replica is not one of the two replicas blocking

on the same barrier. We remove the faulty one and resume normal execution in DMR.

– The voting result shows that the faulty replica is one of two replicas blocking on the

same barrier. We halt the system since there is a possibility that two replicas are

incorrect.

– The voting fails to identify a faulty replica because the fingerprints are the same. In

this case, we consider the two replicas blocking on the same barrier are correct, based

on the assumption that random hardware faults are unlikely to cause two replicas to

fail the same way.

– For other voting results, we halt the system.

• For other situations, we halt the system.

8.2.3 Tolerating Heisenbugs and Replica Checkpointing

A software bug that disappears or changes its symptom when one tries to debug the bug is called

a Heisenbug [Gray, 1985]. Software that has gone through traditional testing-based quality assur-

ance has few bugs that can be triggered deterministically. However, a Heisenbug may not be eas-

ily captured by various debugging methods (e.g., single-stepping, breakpoints, debug log), since

the methods may just disturb the conditions that triggered the Heisenbug. Therefore, debugging

Heisenbugs is frustrating and time-consuming.

We speculate a variation of redundant co-execution can help tolerating Heisenbugs. We briefly

describe how we plan to use a variation of RCoE to tolerate Heisenbugs. Take a TMR system for

example; two of the replicas are managed by LC-RCoE, and we call them execution replicas. The

remaining replica is the checkpoint replica, which runs slightly behind the execution replicas and

serves as a running checkpoint. The execution replicas run as a DMR configuration, but their

inputs and checked outputs are stored and forwarded to the checkpoint replica, which takes the

inputs and outputs, updates its own state, and creates checkpoints. When the execution replicas

diverge or disagree on their outputs, we revert them back to the previous checkpoint based on the

checkpoint replica and resume execution, hoping that the slightly different scheduling and timing

of input data in the resumed run will not trigger the Heisenbug. Obviously, we need to design and

implement checkpoint mechanisms, which can be used for building checkpoint-based recovery.

Indeed, we need to address the issues of adopting checkpoint recovery as described in Section 6.5.
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8.2.4 Real-time Applications

The synchronisation protocol (Section 4.3) holds up the leading replica and lets the chasing repli-

cas to catch up; so during that period, no external event is delivered to applications for processing.

The delayed delivery of external events affects real-time applications since it increases the latency

between the occurrence of an event and the observation of the event by its handler. The latency in-

troduced by the protocol can be measured (Section 7.3.1), but the intervals that the leading replica

waits for the chasing replicas to catch up cannot be determined precisely, since they depend on

how faraway the chasing replicas are left behind by the leading replica. The distance between the

leading and chasing replicas continuously changes when the system is running so that the lengths

of delays vary as well.

For CC-RCoE, the performance overhead can become significant if hardware breakpoints are

set at instructions inside loops. CC-RCoE is not suitable for real-time applications because the

overhead can vary dramatically and unpredictably. For LC-RCoE, the overhead during the catch-

ing up stage is constant for each kernel trap and linear to the distance; the cost of handling hard-

ware breakpoints in tight loops does not exist. Thus, we conjecture that LC-RCoE can be used

with some real-time applications through careful design, engineering, and validation.

8.2.5 Optimising the Performance of CC-RCoE

As we observed in Section 7.3.1 and Section 7.3.2, CC-RCoE pays the price of non-deterministic,

increased execution time for precise preemption, when the applications being replicated contain

many small and tight loops. We also conclude the slowdown is mainly caused by the instruc-

tion breakpoints, which are set at an instruction inside a tight loop, frequently triggering debug

exceptions that are expensive to handle. Our plan is to reduce the overhead associated with han-

dling debug exceptions, and it can be achieved by reducing the frequency of the debug exceptions

triggered by instruction breakpoints.

The intuition is that if a chasing replica is tens of thousands of branches behind the leading

replica, we can allow the chasing replica to run without triggering instruction breakpoint excep-

tions until it is very close (e.g., 50 branches behind) to the leading replica. Therefore, the imple-

mentation of CC-RCoE is slightly modified as below (assuming DMR).

• If the difference of branches between the leading replica and the chasing replica is less than

an experimentally-determined value N, the original synchronisation steps are executed.

• Otherwise, the follow additional steps are executed to bring the chasing replica close enough

before resuming execution of the original synchronisation steps.

– A performance counter is programmed to trigger an exception when the chasing replica

is approximate N branches behind the leading replica.

– The execution of the chasing replica is resumed without setting an instruction break-

point.

– When a performance counter exception occurs, the exception handler in kernel mode

sets the instruction breakpoint and resumes the original synchronisation steps.
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As we can see, the additional steps allow the chasing replica to make more progress quickly,

since a significant numbers of exceptions triggered by instruction breakpoints can be avoided.

Therefore, the synchronisation protocol only needs to deal with the exceptions triggered by the

remaining N branches. We need experiments to choose the value N properly for the following

reasons: (1) The delivery of performance counter exception can be imprecise. (2) The performance

counter can over-count or under-count. Furthermore, we need to confirm that programming an

additional performance counter to trigger exceptions does not interfere with the accuracy of the

existing counters for counting branches on x86. Note that both PMU-based and compiler-based

CC-RCoE can be modified to adopt the optimisation.

8.2.6 Choosing Timeout Values for the Kernel-Mode Barriers

As we introduced before, choosing appropriate timeout values for kernel barriers is important for

halting systems in a timely manner, and also it is hard since worst-case execution time (WCET)

of the kernel and applications must be computed to obtain accurate timeout values. Therefore,

the values are highly architecture- and application-specific. The computation of WCET is difficult

for modern processors that extensively use caches, pipelines, speculative execution, and branch

prediction. Various tools and research prototypes are surveyed by Wilhelm et al. [2008]. WCET

analysis of seL4 is presented in [Blackham et al., 2011, 2012] on a TI DM3730 (ARM Cortex-

A8) processor with L2 cache disabled. Following work further improves the analysis of kernel

WCET [Sewell et al., 2016] as well as kernel WCET [Sewell et al., 2017]. Although the results

cannot be directly used for processor models with L2 or L3 caches enabled, the work still provides

guidelines and tools that can be used to estimate WCET of the seL4 kernel. However, the analysis

is only applicable to LC-RCoE; setting and resuming instruction breakpoints in CC-RCoE render

the WCET analysis highly dependable on which instruction is being monitored and if the moni-

tored instruction is in a loop, when a replica is in the catching-up mode. Assuming that we have

the following WCET results.

WCET K represents the longest possible kernel execution path of the unmodified seL4 kernel

(i.e., without support for redundant co-execution and error detection).

WCET A represents the maximal execution time of user-mode instructions between any two

successive system calls. To get this value, we need to have the applications that are planned

to be deployed for analysis.

The WCET results can be used to calculate how long the leading replica needs to wait based on

how many system calls the slowest replica still needs to execute.

8.2.7 Analysing and Hardening Shared Memory Regions

Several types of shared memory regions are described in the thesis:

(1) The kernel shared memory region for building the synchronisation protocol and kernel bar-

riers (Section 4.3). The implementation uses several barriers to coordinate the replicas, and

we use the timeouts of the barriers and logical checks to catch execution divergence caused

by a data corruption in the region. For instance, a corrupted kernel barrier is mostly like
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to cause a timeout of another barrier. Since this region is small, we can use information

redundancy to protect the region if necessary.

(2) The kernel shared memory region for supporting device driver replication in CC-RCoE (Sec-

tion 5.5) and I/O ports (Section 5.3). This region is used for storing temporary input data,

which will be propagated to non-primary replicas. If the data in this region is corrupted,

the replicas are likely to observe inconsistent input data and thus diverge. Subsequently, the

corruption will be captured by barrier timeouts or fingerprint mismatches.

(3) The cross-replica shared memory region for supporting device driver replication in LC-

RCoE (Section 5.4.1). Similarly, the region is used to support input data replication in user

mode. Data corruptions in this region likely lead to similar results as in case (2).

The simple analysis above is incomplete, and we consider a complete analysis of all possible

failures in these regions as future work. For (2) and (3), using redundant I/O devices and voting

on input data from the redundant I/O devices can help to alleviate the issue.

8.2.8 Supporting Redundant I/O Devices for Device Driver Replication

The I/O access patterns (Section 5.2) are used to coordinate I/O operations for replicated device

drivers when redundant I/O devices are not available. For x86 machines, supplementary I/O de-

vices can be added to the expansion slots on motherboards. For example, it is trivial to integrate

two or more network cards that are the same model to a single PC. Furthermore, the single root

I/O virtualization and sharing specification [PCI-SIG, 2010] standardises I/O virtualization for

PCIe-based devices, allowing efficient sharing a single I/O device by multiple virtual machines. A

physical I/O device supporting the specification can provide multiple virtual I/O devices that can

be directly assigned to virtual machines. Take network cards as an example; each VF (virtual func-

tion) is capable of transmitting/receiving data through DMA buffers and performing limited con-

trol operations (reset, configuring DMA descriptors and MAC addresses, etc.) [Int, 2011]. There-

fore, it is worth investigating how redundant I/O devices can be used to improve performance and

reliability of a system managed by RCoE. In the meanwhile, programmable NICs [Calvium, 2017;

Mellanox, 2018; Netronome, 2018] provide on-board processing capability for network acceler-

ation and offloads, reducing the pressure on general purpose CPUs. Potentially, such capability

can be used to reduce the overhead of copying DMA buffers (Section 5.4.3 and Section 5.5.3) and

thus to improve performance.
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Björn Döbel and Hermann Härtig. Who watches the watchmen? Protecting operating system relia-

bility mechanisms. In Proceedings of the 8th Workshop on Hot Topics in System Dependability,

Hollywood, CA, US, October 2012.
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Appendix A

Terminology

• Transient Hardware Faults: anomalies that change hardware state but do not cause damage

permanently. The affected state can be corrected by rewriting correct values. Bit flips

induced by alpha particles or neutrons are examples of transient faults.

• Intermittent Hardware Faults: anomalies that appear and disappear multiple times without a

clear pattern.

• Permanent Hardware Faults: anomalies that cause permanent damage to hardware and re-

main indefinitely. The impaired component needs treatment to restore its functions. Oxide

wearout is an example of a permanent fault.

• Singe Event Upset (SEU): a non-destructive change of state in a storage element. An SEU

is caused by ionizing particle striking a sensitive node of the device, and it can manifest as

a single-bit upset or a multiple-bit upset.

• Multiple Cell Upset (MCU): a single event upset that causes several bits in an integrated

circuitry to fail.

• Multiple Bit Upset (MBU): a multiple-cell upset (MCU) in which two or more error bits

occur in the same word.

• Soft Errors: incorrect data or signals that caused by transient hardware faults and can be

observed through architectural interfaces.

• Failure In Time (FIT): the number of errors occurred in one billion hours.

• Soft Error Rate (SER): the observed or predicated frequency of a device experiencing soft

errors, usually measured in FIT.

• Silent Data Corruption (SDC): erroneous outputs produced by a system that is affected by a

fault. Usually, systems not equipped with error detection mechanisms or using only simple

mechanisms are vulnerable to hardware faults.

• Detected Unrecoverable Error (DUE): errors that can be detected by an error detection

mechanism but cannot be corrected by the mechanism. For example, SEC-DED ECC can

detect a double-bit error but cannot correct the error.
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• Error-Correcting Code (ECC): coding schemes that embed redundant information to the

original data in order to correct errors in the coded data.

• Single-Error-Correction Double-Error-Detection ECC (SEC-DED ECC): a coding scheme

that is able to correct single-bit errors and detect double-bit errors.

• Fault Detection Latency: the delay between the occurrence of a fault and the detection of

the fault.

• Dual Modular Redundancy (DMR): an engineering approach that duplicates the components

of a system twice for spatial redundancy. The duplicated components work in parallel, and

an error can be identified by comparing outputs.

• Triple Modular Redundancy (TMR): an engineering approach that duplicates the compo-

nents of a system three times for spatial redundancy. An error can be detected and corrected

since the faulty component can be identified by majority voting.

• Replica (node): the basic unit for replication, redundant execution, and comparison. A

DMR system has two replicas, and a TMR system has three replicas.

• Error Coverage: the percentage of errors that can be detected by an error detection mecha-

nism.

• Microkernel: a kernel that is designed to provide only minimal sets of mechanisms to build

an operating system. Compared with monolithic kernels which include almost all system

services (e.g., file systems, device drivers, memory manager, and network stack) in privi-

leged mode, a microkernel implements such services as user-mode processes, reducing the

trusted computing base.

• Hypervisor: a piece of system software that enables creating, scheduling, servicing, and

isolating multiple virtual machines (VMs) on a single physical host machine. Each VM

executes its operating system on hardware resources allocated by a hypervisor.

• Barrier (synchronisation): a synchronisation primitive that allows a group of threads or

processes to pass the barrier only when all the members of the group arrive at it.

• Memory Barrier (hardware): architecture-specific instructions that prevent hardware from

reordering memory accesses specified in program order and ensure the observation of the

effects of memory accesses. Architectures implementing weak memory models may reorder

memory accesses to hide memory access latency.

• MMU: memory management unit.
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Appendix B

The SPIN Model for the
Synchronisation Protocol

1 /* The number of replicas */

2 #define NKERNEL 2

3

4 #ifndef NKERNEL

5 #define NKERNEL 2

6 #endif

7

8

9 /* Deterministic events. These events are handled by each *

10 * replica locally without triggering synchronisations. *

11 * The original seL4 system calls are such events. */

12 #define DE_NORMAL 0

13 /* Deterministic synchronous events. These events need *

14 * to trigger synchronisations. For instance , the *

15 * fingerprint comparisons invoked by seL4_FT_Add_Event *

16 * system call are such events. */

17 #define DE_SYNC 1

18

19 #define DE_TYPE_BITS 1

20

21 /* Nondeterministic events (I/O device interrupts). We *

22 * need to synchronise the replicas before allowing them *

23 * to observe these events. */

24 #define ND_EVT 2

25

26 #define N_BITS 2

27

28 #if NKERNEL == 2

29 #define DE_LIMIT 7

30 #define DE_LIMIT_BITS 3

31 #endif
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32

33 #if NKERNEL == 3

34 #define DE_LIMIT 3

35 #define DE_LIMIT_BITS 2

36 #endif

37

38 typedef de_t {

39 unsigned type : DE_TYPE_BITS;

40 };

41

42 /* The array of deterministic events to be consumed */

43 de_t des[DE_LIMIT ];

44

45 /* The per -replica data structure for building the protocol */

46 typedef data_t {

47 bool catchup;

48 bool entry_de;

49 bool entry_nde;

50 bool sync;

51 bool sync_req;

52 bool out_flag;

53 unsigned de_type : DE_TYPE_BITS;

54 unsigned de_count : DE_LIMIT_BITS;

55 unsigned sync_abort : N_BITS;

56 unsigned sync_abort_notify : N_BITS;

57 unsigned lead_rep : N_BITS;

58 };

59

60 data_t data[NKERNEL ];

61

62 /* The data structure for kernel barriers */

63 typedef bar_t {

64 unsigned cnt : N_BITS;

65 bool gflag;

66 bool flag[NKERNEL ];

67 bool backoff[NKERNEL ];

68 };

69

70 /* sbar represents the kernel S-barrier used by the protocol */

71 bar_t sbar;

72

73 /* fbar represents the kernel F-barrirs used by the newly *

74 * added system calls (seL4_FT_Add_Event , seL4_FT_Mem_Rep) *

75 * and the kernel barriers used for coordinating kernel *

76 * accesses to I/O devices. */

77 bar_t fbar;

78

79 unsigned de_type : DE_TYPE_BITS;
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80 unsigned de_index : DE_LIMIT_BITS;

81

82 /* Generate random deterministic events */

83 inline gen_des () {

84 atomic {

85 for (de_index : 0 .. (DE_LIMIT - 1)) {

86 select (de_type : DE_NORMAL .. DE_SYNC);

87 des[de_index ].type = de_type;

88 }

89 }

90 }

91

92 /* Get the next deterministic event */

93 inline get_de(kid) {

94 atomic {

95 data[kid]. de_type = des[data[kid]. de_count ].type;

96 }

97 }

98

99 /* The common part of the barriers */

100 inline bar_common(kid , b) {

101 b.flag[kid] = b.gflag;

102 /* The atomic steps are protected by a spin lock or *

103 * implemented with atomic instructions */

104 atomic {

105 b.cnt++;

106 if

107 :: (b.cnt == NKERNEL) -> {

108 b.cnt = 0;

109 b.gflag = 1 - b.gflag;

110 }

111 :: else -> skip;

112 fi;

113 }

114 }

115

116 inline bar(kid , b) {

117 bar_common(kid , b);

118 (b.flag[kid] != b.gflag);

119 }

120

121 /* The conditional kernel barrier. */

122 inline bar_cond(kid , b) {

123 bar_common(kid , b);

124 if

125 :: (b.flag[kid] != b.gflag) -> {

126 skip;

127 }
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128 /* When the condition below becomes true , the conditinal *

129 * barrier aborts; and the replicas waiting on the barrier *

130 * proceed. */

131 :: (data[kid]. sync_abort != data[kid]. sync_abort_notify) -> {

132 assert(b.flag[kid] == b.gflag);

133 b.backoff[kid] = 1;

134 b.cnt = 0;

135 }

136 fi

137 }

138

139 /* This function triggers synchronisations by marking the *

140 * sync and sync_req as true. In the C implementation , the *

141 * function sends IPIs to other replicas to notify that *

142 * a round of synchronisation is required. */

143 inline trigger_action(kid) {

144 for (_for_i : 0 .. (NKERNEL - 1)) {

145 data[_for_i ].sync = true;

146 data[_for_i ]. sync_req = true;

147 }

148 }

149

150 inline do_sync(kid) {

151 if

152 :: data[kid]. de_count == data[data[kid]. lead_rep ]. de_count -> {

153 /* The one with the highest event counter needs to wait others *

154 * to catch up. */

155 data[kid]. catchup = 0;

156 bar(kid , sbar);

157

158 /* After passing the second barrier , all kernel instances *

159 * finished the same number of deterministic events , so they *

160 * can proceed to handle some actions. */

161 assert(data[kid]. de_count <= DE_LIMIT);

162 assert(data[kid]. de_count ==

data[data[kid]. lead_rep ]. de_count);

163 /* The barrier is required for the assertions above */

164 bar(kid , sbar);

165

166 /* Reset states */

167 data[kid]. catchup = 0;

168 data[kid]. lead_rep = 0;

169 data[kid].sync = 0;

170 data[kid]. out_flag = false;

171 bar(kid , sbar);

172 }

173 :: else -> {

174 /* The replicas need to catch up until their de_count variables *
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175 * are the same as the leading replica ’s de_count. The catchup *

176 * is set to true to indicate that a replica is in catching -up *

177 * mode. */

178 assert(data[kid]. de_count <

data[data[kid]. lead_rep ]. de_count);

179 data[kid]. catchup = true;

180 }

181 fi

182 }

183

184 /* The inline synchronises the replicas when sync == true. */

185 inline handle_action(kid) {

186 if

187 :: data[kid].sync == true -> {

188 if

189 :: data[kid]. catchup == true -> {

190 do_sync(kid);

191 }

192 :: else -> {

193 data[kid]. sync_abort = data[kid]. sync_abort_notify;

194 /* Check if other replicas are ahead */

195 for (_for_i : 0 .. (NKERNEL - 1)) {

196 if

197 :: data[kid]. de_count < data[_for_i ]. de_count -> {

198 data[kid]. out_flag = true;

199 }

200 :: else -> skip;

201 fi

202 }

203 if

204 :: data[kid]. out_flag == false -> {

205 /* Wait on the conditional barrier */

206 bar_cond(kid , sbar);

207 if

208 :: sbar.backoff[kid] == true -> {

209 sbar.backoff[kid] = false;

210 }

211 :: else -> {

212 /* All the replicas arrive here , so we start to vote the *

213 * leading replica. */

214 for (_for_i : 0 .. (NKERNEL - 1)) {

215 if

216 :: data[_for_i ]. de_count >

data[data[kid]. lead_rep ]. de_count -> {

217 data[kid]. lead_rep = _for_i;

218 }

219 :: else -> skip;

220 fi
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221 }

222 /* The leading replica has been voted , and we start to *

223 * synchronise the replicas. */

224 do_sync(kid);

225 }

226 fi

227 }

228 :: else -> { data[kid]. out_flag = false;}

229 fi

230 }

231 fi

232 }

233 :: else -> skip;

234 fi

235 }

236

237 /* Notify the replicas waiting on the conditional barrier *

238 * to exit. */

239 inline bar_sync_abort_notify(kid) {

240 for (_for_i: 0 .. (NKERNEL - 1)) {

241 data[_for_i ]. sync_abort_notify ++;

242 }

243 }

244

245

246 /* This function is used to represent several kernel barriers *

247 * used by synchronous events. It aborts the conditional barrier *

248 * if required so that the replicas waiting on the conditional *

249 * barrier can proceed and arrive at this barrier , avoiding *

250 * deadlocks. */

251 inline sync_event_bar(kid) {

252 trigger_action(kid);

253 bar_sync_abort_notify(kid);

254 bar(kid , fbar);

255 for (_for_i : 0 .. (NKERNEL - 1)) {

256 assert(data[_for_i ]. de_count == data[kid]. de_count);

257 skip;

258 }

259 bar(kid , fbar);

260 }

261

262 inline de_handler(kid) {

263 if

264 :: data[kid]. de_type == DE_NORMAL -> {

265 /* Do nothing for normal syscalls; just count them */

266 data[kid]. de_count ++;

267 }

268 /* Sync events need to synchronise the replicas */
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269 :: data[kid]. de_type == DE_SYNC -> {

270 data[kid]. de_count ++;

271 sync_event_bar(kid);

272 }

273 fi

274

275 /* Reset counters and generate the next batch of deterministic *

276 * events if necessary. This is because we only have limited *

277 * bits for the de_count to avoid state explosion. */

278 if

279 :: data[kid]. de_count == DE_LIMIT -> {

280 bar_sync_abort_notify(kid);

281 bar(kid , fbar);

282 data[kid]. de_count = 0;

283 if

284 :: kid == 0 -> gen_des ();

285 :: else -> skip;

286 fi

287 bar(kid , fbar);

288 }

289 :: else -> skip;

290 fi

291

292 /* Check if any actions pending */

293 handle_action(kid);

294 }

295

296 inline nd_handler(kid) {

297 assert(kid == 0);

298 trigger_action(kid);

299 handle_action(kid);

300 }

301

302 /* The primary replica */

303 inline kernel_pri(kid) {

304 unsigned _for_i : N_BITS;

305 assert(kid == 0);

306 /* Nondeterministic choices between deterministic events and *

307 * nondeterministic events. */

308 do

309 :: data[kid]. entry_de = true -> {

310 /* Get the type of the current deterministic event. DE_NORMAL *

311 * or DE_SYNC. */

312 get_de(kid);

313 de_handler(kid);

314 data[kid]. entry_de = false;

315 }

316 /* Nondeterministic interrupts */
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317 :: data[kid]. entry_nde = true -> {

318 nd_handler(kid);

319 data[kid]. entry_nde = false;

320 }

321 od

322 }

323

324 /* The non -primary replica(s) */

325 proctype kernel_np(unsigned kid : N_BITS) {

326 unsigned _for_i : N_BITS;

327 assert(kid != 0);

328 do

329 /* The non -primary replicas only observe deterministic *

330 * events when the sync_req is false. When the sync_req *

331 * is true , it represents that a round of synchronisation *

332 * is triggered by the primary replica in order to handle *

333 * nondeterministic interrupts. */

334 :: data[kid]. entry_de = true ->

335 {

336 get_de(kid);

337 de_handler(kid);

338 data[kid]. entry_de = 0;

339 }

340 /* Sync notification IPI */

341 :: data[kid]. sync_req == true -> {

342 handle_action(kid);

343 data[kid]. sync_req = false;

344 }

345 od

346 }

347

348 /* The execution starts here */

349 init {

350 gen_des ();

351 /* Bring up other replicas */

352 run kernel_np (1);

353 #if NKERNEL == 3

354 run kernel_np (2);

355 #endif

356 /* The init proc becomes the primary replica */

357 kernel_pri (0);

358 }

Listing B.1: The SPIN model for the synchronisation protocol
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Appendix C

Background

C.1 DRAM

BL

WL

C

Figure C.1: 1-T-1-C DRAM cell

Figure C.1 is the logical circuit diagram for a

modern DRAM cell; the cell is made of one

transistor and one capacitor, representing one

bit [Wang, 2005]. The WL (word line) controls

accesses to the capacitor; and the BL (bit lines),

which actually consists two lines, are used to

read out the data or to overwrite the cell with

new data. One of the bit lines directly con-

nects to the transistor, and the other serves as

a reference voltage for read operations. When

the capacitor is charged to a specified voltage

level, the cell stands for a “1”; a “0” is stored

when the capacitor is discharged to 0 voltage.

Due to the leakage effect, the capacitor must

be refreshed periodically to retain the correct

data. For a read operation, the two bit lines are

pre-charged to the median value of logic “0”

and “1”. The lines still maintain the voltage

for a short period after the pre-charge circuit turns off. After that, the access transistor is turned

on. If the capacitor contains a “1”, it discharges and transfers the charge to the bit line connected

to the transistor. Thus, the voltage of the bit line is slightly higher than the other line served as

the reference. If a “0” is stored, the connected bit line transfers charge to the capacitor so that its

voltage decreases slightly. The voltage difference between the bit lines is picked up by the sense

amplifier and interpreted as a “1” or “0”. Obviously, a read operation destroys the value stored in

a cell; so the read value is written back to the cell again. For a write operation, the bit line is set

to high or low voltage according to the value, and the corresponding WL is selected, forcing the

capacitor to charge or discharge.
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C.2. STATIC RANDOM ACCESS MEMORY (SRAM)

C.2 Static Random Access Memory (SRAM)

The logic layout of the widely used 6-transistor SRAM cell is illustrated in Figure C.2 [Pavlov and

Sanchdev, 2008]. The data is stored in a pair of cross-coupled inverters (N1 and P1, N2 and P2);

so as long as the power is on, the data is retained by the inverters. Transistors N3 and N4 control

access to the inverters, and they are enabled/disabled by the WL (word line). Assuming that both

N3 and N4 are off, a “1” is stored when transistors N1 and P2 are off and transistors N2 and P1

are on; a “0” is stored in the opposite case.

N1

BLBBL

WL

N2

N3 N4 

P1 P2

GND

VDD

Figure C.2: 6-T SRAM cell

We briefly show how a read request is fulfilled and assume that the cell contains a “1”. Firstly,

both bit lines BL and BLB are pre-charged to an intermediate voltage Vdd/2. Then, N3 and N4

are turned on by applying Vdd to the word line. Because N4 and N2 are on, the bit line BLB is

connected to the ground and starts to discharge. Also, the bit line BL is connected to Vdd and being

charged towards Vdd since P1 and N3 are on and N1 is off. The differential voltage bewteen the

bit lines BL and BLB is picked up and amplified to the voltage of logic “1” by the sense amplifier

(not shown in the figure) which speeds up the read process. To write a value, the bit lines BL and

BLB are set to the corresponding voltages for the value, and then, the word line WL is enabled to

overwrite the inverters with the new value. Assuming that the previous value is 0 (N1 is on; N2

is off), writing a “1” requires pulling the bit line BL up to Vdd and pulling the bit line BLB down

to 0. When the WL is enabled, the transistor N1 is turned off since the bit line BLB is 0 and the

transistor N4 is on. N2 is connected to the bit line BL (Vdd) through N3 and is switch on. The

transistors N1 and N2 flip their states, so do the transistors P1 and P2.

Now, let us consider how a transient fault changes the value stored in a SRAM cell. The sen-

sitive nodes are the drain of the OFF-NMOS transistor and the drain of the OFF-PMOS transistor.

Supposing that the original value is “0” (N2 is off; N1 is on) and that the transistor N2 is impacted

by a transient fault, the transient current passes through the stuck transistor N2; and the transistor
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P2 tries to counteract the effect so that there is also current flowing through P2. The end result is a

voltage drop at the drain of P2 [Dodd and Massengill, 2003], changing the status of the inverter on

the left (N1→ off; P1→ on). The output for the left inverter becomes 1 which is fed back to the

right inverter, reinforcing the wrong value by changing the transistor N2 to on and the transistor

P2 to off. Thus, both inverters flip their states so that the cell now represents an incorrect value

“1”.
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Appendix D

Implementation Details

D.1 The Conditional Barrier

A simple implementation of the conditional barrier is shown in Listing D.1 and Listing D.2 for the

DMR mode. The condition to abort blocking on the barrier is that the local variable sync abort

read at line 2 is different from the current value of ft data[node id].sync abort. For the bar-

riers used in other parts of the kernel (e.g., the barrier used by seL4 FT Mem Rep), the kernel does

the following two steps before blocking itself on the barriers: (1) increment the per-replica event

counting variable (et count) and (2) increase the sync abort variables of all other replicas.

1 /* save a local copy of the per -replica sync_abort */

2 int sync_abort = ft_data[cur_node_id ]. sync_abort;

3 /* dmb: a memory barrier is needed for ARM */

4 dmb();

5 /* if the other replica is ahead , we just return to catch up */

6 if (ft_data [1 - cur_node_id ]. et_count >

ft_data[cur_node_id ]. et_count)

7 return;

8 /* the conditional barrier checks the sync_abort variable */

9 while (required_number_not_achieved) {

10 if (sync_abort != ft_data[cur_node_id ]. sync_abort) {

11 abort_cond_barrier ();

12 return;

13 }

14 }

Listing D.1: Conditional Barrier (waiting side)

1 /* increae the event counter */

2 ft_data[cur_node_id ]. et_count ++;

3 /* dmb: a memory barrier is needed for ARM */
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4 dmb();

5 ft_data [1 - cur_node_id ]. sync_abort ++;

6 /* now we can block on another barrier */

7 kbar_wait (& another_bar);

Listing D.2: Conditional Barrier (aborting side)

The key mechanism is that if a replica is waiting on another barrier ahead, either the et count

comparison at line 6 or the sync abort comparison at line 10 will cause the synchronisation

initiator to abort the current round, catch up, and meet the other replica at the barrier ahead. On

ARM, we need the memory barriers (dmb()) to avoid reordering of the two reads at lines 2 and

6 in Listing D.1, and two writes at lines 2 and 5 in Listing D.2. Keeping the orders is vital to the

correctness of the algorithm. Now let us consider all the possible interleaving of the two reads and

two writes, as shown in listings D.3 to D.8, assuming the replica 0 waits on the conditional barrier

and the replica 1 is waits on another barrier.. The r and w represent read and write accesses, and the

0 and 1 indicate the replica that issued the read/write. For the interleaving A, the conditional barrier

is aborted by the write to the ft data[0].abort sync by the replica 1. For the interleavings B

to F, the et count comparison cancels the current round of synchronisation since the et count

of the replica 1 is increased before being read by the replica 0. Should the reads or writes be

reordered by the hardware, the algorithm fails to fulfil its purpose.

1 /* aborting cond_barrier */

2 r0 ft_data [0]. abort_sync;

3 r0 ft_data [1]. et_count;

4 w1 ft_data [1]. et_count;

5 w1 ft_data [0]. abort_sync;

Listing D.3: Interleaving A

1 /* et_count comparison */

2 r0 ft_data [0]. abort_sync;

3 w1 ft_data [1]. et_count;

4 r0 ft_data [1]. et_count;

5 w1 ft_data [0]. abort_sync;

Listing D.4: Interleaving B

1 /* et comparison */

2 r0 ft_data [0]. abort_sync;

3 w1 ft_data [1]. et_count;

4 w1 ft_data [0]. abort_sync;

5 r0 ft_data [1]. et_count;

Listing D.5: Interleaving C

1 /* et_count comparison */

2 w1 ft_data [1]. et_count;

3 w1 ft_data [0]. abort_sync;

4 r0 ft_data [0]. abort_sync;

5 r0 ft_data [1]. et_count;

Listing D.6: Interleaving D
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1 /* et_count comparison */

2 w1 ft_data [1]. et_count;

3 r0 ft_data [0]. abort_sync;

4 w1 ft_data [0]. abort_sync;

5 r0 ft_data [1]. et_count;

Listing D.7: Interleaving E

1 /* et_count comparison */

2 w1 ft_data [1]. et_count;

3 r0 ft_data [0]. abort_sync;

4 r0 ft_data [1]. et_count;

5 w1 ft_data [0]. abort_sync;

Listing D.8: Interleaving F

D.2 Sending Notifications

If the primary replica needs to start a round of synchronisation, it sets the sync evt variable of

each replica to indicate the purpose (handling interrupts, rescheduling, and/or fingerprint compari-

son) of the next synchronisation and then notifies all other replicas by sending IPIs (inter-processor

interrupts). On ARM, the IPIs are generated by writing to the software generated interrupt register

of GICD (generic interrupt controller distributor) [ARM, 2016] with target core ID and inter-

rupt ID. On x86, interrupt command registers of LAPIC (local advanced programmable interrupt

controller) [Int, 2016b] are programmed with corresponding core APIC ID and interrupt number.

Although the sync evt can be observed by the replicas when they handle deterministic events

(each replica checks the variable before it returns to user mode from kernel mode), we need the

IPIs to reduce interrupt latency and deal with “unfriendly” programs (e.g., programs use while

(true) loops for polling).

D.3 Implementation Details of Hardware-Assisted CC-RCoE for x86

The width of the performance counters for Haswell and Skylake microarchitectures is 48-bit, and

each core has 8 general purpose counters that (IA32 PMCx) can be programmed to count certain

events by writing to their associated control registers (IA32 PERFEVTSELx). The values of the

IA32 PMCx can be read by the rdpmc instruction, and the IA32 PERFEVTSELx are accessed by the

rdmsr instruction. We reserve two counters and instruct them to include only user-mode events, so

it is safe to read the counter values in kernel mode with two rdpmc instructions since the counters

stop counting in kernel mode.

The x86 architecture has 8 debug registers (DR0 to DR7). However, the DR4 and DR5 are

obsolete synonyms for DR6 and DR7. DR0 to DR3 contain the linear addresses we want to monitor,

so we can monitor up to 4 addresses at a time. Being the control register, DR7 specifies the

trigger conditions (instruction execution, read, read and write, or I/O read and write) and the

levels (local or global) for the 4 debug address registers. The generation of a debug exception,

when the condition for a debug address register is met, is also controlled by DR7. DR6 is the debug

status register, indicating which debug address register triggers a debug exception. The CPU never

clears the status register, so the software must reset it after handling a debug exception to avoid

confusions.

We reserve one debug address register, DR0, for the precise preemption algorithm. When
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we need to set an instruction breakpoint, DR0 is updated with the leading replica’s IP; DR7 is

also changed to specify that an exception must be triggered right before executing the instruction

pointed by the address in DR0 and that the address must be matched globally (i.e., all threads in a

system). The global matching is required: When we vote the leading replica, the current running

threads of the system replicas can be different (note that IPCs do context switches frequently and

that we do not invoke the synchronisation protocol for such deterministic events).

When a chasing kernel replica receives a debug exception, it consults DR6 first to determine if

the exception is triggered by DR0. The leading replica’s branch counter value and IP (specifically,

the IP of the user-mode thread) are stored in the shared kernel data region, and they do not change

since the leading replica is stopping at the kernel barrier. When the chasing replica finds that it

needs to make progress, the resume flag (bit 16) in the FLAGS register has to be set. Remember

that DR0 still has the address of the next instruction to be executed, and the instruction breakpoint

is still enabled. Without enabling the resume flag, another breakpoint exception will be triggered

immediately since the processor is trying to execute the instruction again. The resume flag tem-

porarily disables the breakpoint so we can execute the next instruction without generating a debug

exception. However, the instruction breakpoint is still enabled, and the resume flag is cleared by

the processor automatically after the breakpoint is skipped; so we can still receive an exception

the next time when the instruction is about to be executed.

The movs (move string), cmps (compare string), scas (scan string), lods (load string), and

stos (store string) instructions are string instructions [Int, 2016a]. These instructions operate

on individual elements in a string, and each element can be a byte, word, or doubleword. The

register ESI specifies the source element, and the destination element is identified by the EDI

register. The string instructions can be used with rep, repe, repz, repne, and repnz prefixes

to construct repeated string operations; and the value in the register ECX controls the how many

times the instructions are repeated. The EDI and ESI registers are automatically incremented or

decremented after each iteration so that they point to the next element. Recent processors further

optimise the operations initiated by movs and stos if implementation-specific initial conditions

are met. The optimised operations are called fast-string operations, and they operate in groups

(each group may include multiple elements); interrupts or data breakpoints are recognised only on

the boundaries of the groups. The 64-bit string operations are similar to the 32-bit ones. But RCX,

RDI, and RSI registers are used instead.

The string operations bring us an issue: if we set an instruction breakpoint at a string instruc-

tion with one of the rep-like prefixes, for each iteration, a debug exception is generated. Thus,

if the value in the ECX register is substantial, the debug exceptions introduce significant over-

head. Also, these instructions do not increase the performance counters that we use for counting

branches. We avoid setting breakpoints on repeated and fast string operations by inspecting the

content of the address pointed by the leading replica’s instruction pointer. If the next instruction

is one of the repeated string operations, we set the breakpoint to the address following the re-

peated string instruction for all the replicas. The leading replica does not wait on the barrier in

this case, but keeps running until the breakpoint triggers the debug exception; and then, it waits

on a special barrier dedicated for the case. When all replicas arrive at the special kernel barrier,

the synchronisation protocol restarts from the beginning. We restart the synchronisation process
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because, although very unlikely, a repeated string instruction may be followed by another repeated

string instruction. Restarting the process can handle this case correctly. Nevertheless, thought-

lessly examining the content according to the address provided by a user-mode thread is unwise:

the code section of the address to be examined can be paged out so that the examining the content

in kernel mode will trigger a kernel-mode page fault which results in a kernel panic. Currently, we

disallow paging out code sections.

D.4 An Introduction to GCC RTL

The GCC’s front-ends transform source code of all supported languages (C, C++, Objective-C,

etc.) to an intermediate, three-address representation called GIMPLE. Complex control structures

are lowered into conditional jumps. Target- and language-independent optimisations, for example,

inlining, dead code elimination, constant propagation, redundancy elimination, etc., work on the

GIMPLE representation. The option -fdump-tree-all-raw can be passed to GCC to produce

GIMPLE tuples. For example, a simple assignment a = 5; is transformed to gimple_assign

<integer cst, a, 5, NULL, NULL>. When the target-independent optimisations are done,

GIMPLE is expanded to a low-level intermediate representation called RTL (register transfer lan-

guage), which is used by low-level optimisers (loop optimisation, common sub-expression elim-

ination, modulo scheduling, etc.) and back-ends to generate architecture-specific assembly code.

Essentially, RTL is an architecture-independent assembly language for an abstract machine with

infinite registers. When various RTL passes finish, a list of RTL instructions will be matched

against RTL templates to produce final assembler code.

1 char if_test(void) {

2 char c = getchar ();

3 if (c == 66) return c;

4 if (c == 55) c++;

5 return c;

6 }

Listing D.9: An example of RTL: source code

RTL employs 5 object types: expressions, integers, wide integers, strings, and

vectors. We focus on expressions since they include branch instructions. An RTL expression

is called RTX for short. A function in source code is represented by a double-linked list of RTL

objects called insns. Each insn must be one of the following six expression codes (excerpts

from file rtl.def in the GCC source code):

• insn: an instruction that cannot jump.

• jump insn: an instruction that can possibly jump.

• call insn: an instruction that can possibly call a subroutine but which will not change

which instruction comes next in the current function.
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• barrier: a marker that indicates that control will not flow through.

• code label: holds a label that is followed by instructions.

• note: says where in the code a source line starts, for symbol table’s sake.

Obviously, we are interested in jump insn and call insn for the purpose of counting branches.

Note that return instructions are covered by the code jump insn. Now let us have a look at the

code in Listing D.9 and the corresponding insns in Listing D.10 with some unimportant details

removed for clarity. The lines guarded by the BEGIN and END pairs are the inserted code for count-

ing branches, and they can be ignored at the moment. The call insn at line 8 is the function call

to getchar(); line 18 insn assigns the result of the function call to register r0. Line 21 compares

the value of r0 with a constant 66 and sets the condition register reg:CC to 0 if the values are

equal. At line 33, the jump insn returns if the reg:CC equals to 0. The inst at line 44 compares

the value in r0 with a constant 55 and again, sets the reg:CC accordingly. The insn at line 48

conditionally sets the r0 to 56 according to the comparison result above. The last jump insn at

line 62 returns from the function.

1 /* BEGIN increase branch counter */

2 (insn 72 8 9 (set (reg:SI 9 r9)

3 (plus:SI (reg:SI 9 r9)

4 (const_int 1 [0x1]))) -1

5 (nil))

6 /* END increase branch counter */

7

8 (call_insn:TI 9 72 11 (parallel [

9 (set (reg:SI 0 r0)

10 (call (mem:SI (symbol_ref:SI ("_IO_getc"))

11 (const_int 0 [0])))

12 (use (const_int 0 [0]))

13 (clobber (reg:SI 14 lr))

14 ]) /usr/include/bits/stdio.h:46 251 {* call_value_symbol}

15 (nil)

16 (expr_list:REG_CFA_WINDOW_SAVE (use (reg:SI 0 r0))

17 (nil)))

18 (insn:TI 11 9 12 (set (reg/v:SI 0 r0 [orig :110 c ] [110])

19 (zero_extend:SI (reg:QI 0 r0))) loop.c:7 171

{* arm_zero_extendqisi2_v6}

20 (nil))

21 (insn:TI 12 11 67 (set (reg:CC 100 cc)

22 (compare:CC (reg/v:SI 0 r0 [orig :110 c ] [110])

23 (const_int 66 [0x42]))) loop.c:8 217

{* arm_cmpsi_insn}

24 (nil))

25 (insn 67 12 73 (use (reg/i:SI 0 r0)) -1

26 (nil))

190



D.5. IMPLEMENTATION DETAILS OF COMPILER-ASSISTED CC-RCOE FOR ARM

27 /* BEGIN increase branch counter */

28 (insn 73 67 13 (set (reg:SI 9 r9)

29 (plus:SI (reg:SI 9 r9)

30 (const_int 1 [0x1]))) -1

31 (nil))

32 /* END increase branch counter */

33 (jump_insn:TI 13 73 14 (set (pc)

34 (if_then_else (eq (reg:CC 100 cc)

35 (const_int 0 [0]))

36 (return)

37 (pc))) loop.c:8 257 {* cond_return}

38 (expr_list:REG_DEAD (reg:CC 100 cc)

39 (expr_list:REG_BR_PROB (const_int 1991 [0x7c7])

40 (nil)))

41 -> return)

42 (note 14 13 55 [bb 3] NOTE_INSN_BASIC_BLOCK)

43 (note 55 14 63 NOTE_INSN_DELETED)

44 (insn:TI 63 55 64 (set (reg:CC 100 cc)

45 (compare:CC (reg/v:SI 0 r0 [orig :110 c ] [110])

46 (const_int 55 [0x37]))) loop.c:11 217

{* arm_cmpsi_insn}

47 (nil))

48 (insn:TI 64 63 27 (cond_exec (eq (reg:CC 100 cc)

49 (const_int 0 [0]))

50 (set (reg/v:SI 0 r0 [orig :110 c ] [110])

51 (const_int 56 [0x38]))) loop.c:11 3211 {*p

*arm_movsi_insn}

52 (expr_list:REG_DEAD (reg:CC 100 cc)

53 (nil)))

54 (insn 27 64 74 (use (reg/i:SI 0 r0)) loop.c:24 -1

55 (nil))

56 /* BEGIN increase branch counter */

57 (insn 74 27 69 (set (reg:SI 9 r9)

58 (plus:SI (reg:SI 9 r9)

59 (const_int 1 [0x1]))) -1

60 (nil))

61 /* END increase branch counter */

62 (jump_insn 69 74 68 (return) loop.c:24 256 {* arm_return}

63 (nil)

64 -> return)

Listing D.10: An example of RTL: RTL expressions

D.5 Implementation Details of Compiler-Assisted CC-RCoE for ARM

We implement the GCC plugin based on GCC version 4.8.4. Older or newer GCC versions may

change internal functions, structures, and macros, so the plugin may or may not be compatible
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with other versions.

On ARM Cortex-A9 processors, the x86 resume flag equivalent feature is missing; the feature

is especially useful if an instruction point is set inside a loop. Without this feature, the kernel

cannot disable the breakpoint temporarily to resume the interrupted instruction without generating

another exception. Instead, the kernel has to remove the breakpoint and enter single-step mode by

setting the debug register to generate an exception when any instruction other than the previously

interrupted instruction is the next-to-run instruction; having executed the previously-interrupted

instruction, the processor generates a prefect exception because of single-stepping. Finally, the

kernel re-enables the breakpoint and disables single-stepping, so the processor can generate an-

other exception the next time when it hits the breakpoint.

The general purpose registers are 32-bit; if we assume that the processor runs at 1 GHz and that

the frequency of branch instruction is one out of ten, the 32-bit registers overflow approximately

every 42.95 seconds. We need to reset the R9 register to 0 after each synchronisation; since the

replicas need to synchronise for kernel preemption timer interrupts, which are usually 10 to 100

times per second, the overflow does not present an issue.

Lastly, we mention that all source code must be recompiled with the plugin, including li-

braries. Actually, the library libgcc.a is linked to the binary implicitly. GCC assumes that it

can safely call functions in libgcc.a during code generation as it sees fit. The functions in-

cluded in libgcc.a depend on the target architecture, the configuration when building GCC, and

command-line options passed to the compiler. On ARM, the library implements arithmetic func-

tions (div, mod, divmod, etc.), floating-point functions (single and double precisions), and other

support functions. We obtain the source files from GCC source code, modify functions that are

implemented in assembly and used by GCC during compilation, and compile these files with ap-

plications. We also use the option -nostdlib to instruct GCC not to link the libgcc.a by default

so that our modified version is used.

D.6 An Introduction to the x86 Hardware Virtualisation Technology

VMX instructions, vmxon, vmxoff, vmlaunch, vmresume, vmread, vmwrite, vmclear, vmptrst,

and vmptrld are added in the VMX root operation and are only available to the kernel in ring 0.

The vmxon instruction enables VMX operation; vmlaunch switches from root operation to non-

root operation and starts to execute a virtual machine. When certain events specified by the VMM

happen, the execution of a virtual machine is interrupted, and a transition is made from non-root

operation to root operation. The VMM handles the events and restarts the VM with the vmresume

instruction. Transitions from root operation to non-root operation are called VM entries; transi-

tions from non-root operation to root operation are called VM exits.

An seL4 VCPU kernel object contains the VMCS (virtual machine control structure) memory

region defined by Intel, and the VMCS controls the behaviour of the corresponding VM. The data

in VMCS can be divided into 6 groups: guest-state area, host-state area, VM-execution control

fields, VM-exit control fields, VM-entry control fields, and VM-exit information fields. The guest-

state area is used to save the processor state when VM exits happen, and the state is restored from

the area on VM entries. The data of host-state area is restored to the current processor on VM exits.
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The VM-execution control fields govern the processor behaviour in non-root operation. They

define under what conditions VM exits should be triggered. For example, whether an interrupt,

a rdtsc instruction, or a cr3 reloading triggers a VM exit is controlled by these fields. The

second-level address translation is also managed by one of the fields. The VM-exit control fields

determine the behaviour of VM exits. For instance, saving the debug control registers or not is

specified by one of these fields. VM-entry control fields prescribe the actions to be performed

during VM entries. One of most frequently used fields is the VM-entry interruption-information

field that controls event injection (e.g., interrupts, debug exceptions, etc.). Lastly, the VM-exit

information fields describe the reason for the most recent VM exit, including the cause (interrupts,

accesses to control registers, privileged instructions, etc.) and additional qualifications.

Memory virtualisation is achieved by the two-level address translation mechanism: The first

level is managed by the guest Linux kernel, and it translates guest virtual addresses to guest phys-

ical addresses. The second level is controlled by a VMM through EPT (extended page table) ob-

jects, and it translates guest physical addresses to host physical addresses. The VMM determines

physical memory allocated to the VM by constructing and populating the second-level translation

tables, restricting the physical addresses that can be accessed by the VM.

The microkernel does not handle a VM exit directly; a VM exit is redirected to the user-

mode VMM through an endpoint. The VMM inspects the VM exit reason and qualifications and

decides if the exit is valid or not according to policies. For example, for a VM exit triggered by an

access to a physical memory region that is not mapped in second-level address translation tables,

the VMM may decide to terminate the VM by destroying the VCPU object and EPT objects if

allocating more physical memory to the VM is not allowed. If the policy does not allow the VM to

use the rdtsc instruction to read absolute values from the CPU cycle counter, the VMM can set

corresponding VM-execution control field to generate a VM exit each time the VM executes the

rdtsc instruction; so the VMM can emulate the instruction and then resume the VM by replying

to the endpoint.
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Supplementary Code

E.1 Memory Copy Functions

1 asm volatile (

2 "push {r3 -r10} \n\t"

3 "1: \n\t"

4 "pld [%1, #0] \n\t"

5 "pld [%1, #32] \n\t"

6 "pld [%1, #64] \n\t"

7 "pld [%1, #96] \n\t"

8 "pld [%1, #128] \n\t"

9 "pld [%1, #160] \n\t"

10 "pld [%1, #192] \n\t"

11 "pld [%1, #224] \n\t"

12 "pld [%1, #256] \n\t"

13 "pld [%1, #288] \n\t"

14 "pld [%1, #320] \n\t"

15 "pld [%1, #512] \n\t"

16 "pld [%1, #640] \n\t"

17 "pld [%1, #768] \n\t"

18 "pld [%1, #1024] \n\t"

19 "ldmia %1!, {r3-r10}\n\t"

20 "stmia %0!, {r3-r10}\n\t"

21 "ldmia %1!, {r3-r10}\n\t"

22 "stmia %0!, {r3-r10}\n\t"

23 "subs %2, %2, #0x40\n\t"

24 "bge 1b \n\t"

25 "pop {r3-r10} \n"

26 : "+r"(dest), "+r"(src), "+r"(size)

27 :

28 : "memory"

29 );

Listing E.1: The memcpy function for ARM
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1 asm volatile (

2 "1: \n\t"

3 "movups 0(%% rsi), %%xmm0 \n\t"

4 "movups 16(%% rsi), %%xmm1 \n\t"

5 "movups 32(%% rsi), %%xmm2 \n\t"

6 "movups 48(%% rsi), %%xmm3 \n\t"

7 "movntdq %%xmm0 , 0(%% rdi) \n\t"

8 "movntdq %%xmm1 , 16(%% rdi)\n\t"

9 "movntdq %%xmm2 , 32(%% rdi)\n\t"

10 "movntdq %%xmm3 , 48(%% rdi)\n\t"

11 "movups 64(%% rsi), %%xmm4 \n\t"

12 "movups 80(%% rsi), %%xmm5 \n\t"

13 "movups 96(%% rsi), %%xmm6 \n\t"

14 "movups 112(%% rsi), %%xmm7 \n\t"

15 "movntdq %%xmm4 , 64(%% rdi) \n\t"

16 "movntdq %%xmm5 , 80(%% rdi) \n\t"

17 "movntdq %%xmm6 , 96(%% rdi) \n\t"

18 "movntdq %%xmm7 , 112(%% rdi)\n\t"

19 "movups 128(%% rsi), %%xmm0 \n\t"

20 "movups 144(%% rsi), %%xmm1 \n\t"

21 "movups 160(%% rsi), %%xmm2 \n\t"

22 "movups 176(%% rsi), %%xmm3 \n\t"

23 "movntdq %%xmm0 , 128(%% rdi)\n\t"

24 "movntdq %%xmm1 , 144(%% rdi)\n\t"

25 "movntdq %%xmm2 , 160(%% rdi)\n\t"

26 "movntdq %%xmm3 , 176(%% rdi)\n\t"

27 "movups 192(%% rsi), %%xmm4 \n\t"

28 "movups 208(%% rsi), %%xmm5 \n\t"

29 "movups 224(%% rsi), %%xmm6 \n\t"

30 "movups 240(%% rsi), %%xmm7 \n\t"

31 "movntdq %%xmm4 , 192(%% rdi)\n\t"

32 "movntdq %%xmm5 , 208(%% rdi)\n\t"

33 "movntdq %%xmm6 , 224(%% rdi)\n\t"

34 "movntdq %%xmm7 , 240(%% rdi)\n\t"

35 "addq $256 , %%rsi \n\t"

36 "addq $256 , %%rdi \n\t"

37 "subq $256 , %%rdx \n\t"

38 "jnz 1b \n\t"

39 "sfence"

40 : : : "rsi", "rdi", "rdx"

41 );

Listing E.2: The memcpy function for x86-64
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