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“We have 2 customers and 1 desk”
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Shared-memory concurrency 
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Motivating use case

Beaumont, McCarthy, Murray 
(ACSAC 2016)

Cross Domain Desktop Compositor 
(DSTG + Trustworthy Systems collaboration)
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Finalist entry for 2021 Eureka Prize 
(Outstanding Science in Safeguarding Australia)
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A mixed-sensitivity concurrent program 
CDDC’s HID switch as software components

Trusted

LAVA
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LAVA

LAVA

LAVA

Keyboard inputs are 
sent to Trusted

Mouse inputs may 
be sent to LAVA

(On video monitor: “Keyboard inputs can be secret”)



That “Proving Confidentiality and Its 
Preservation Under Compilation for 
Mixed-Sensitivity Concurrent Programs” is feasible. 

• Program verification 

• Compiler verification 

• Case study: CDDC 

• Extension to program verification

Thesis (PhD, 2020)

Chapter 5

Chapter 4

Chapter 6

Chapter 7
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(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads 
(Jones 1983 via Mantel et al. 2011)
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Program verification: My work
(Programmer’s perspective)

• Local security 
“I win ‘floor is lava with levers’ using locks”

• Local compliance 
“I respect the locks”

• Assign locks to spaces

• For each thread, prove:

(Type systems provide proof method)

• Global compatibility 
“Respecting locks is enough for 
guarantees to meet assumptions” 
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That “Proving Confidentiality and Its 
Preservation Under Compilation for 
Mixed-Sensitivity Concurrent Programs” is feasible. 

• Program verification 

• Compiler verification 

• Case study: CDDC 

• Extension to program verification

Thesis (PhD, 2020)

Chapter 4
+

Chapter 5

Chapter 7

Chapter 6
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Verified secure compilation

Prove confidentiality-preserving refinement,

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Here's how!

What if your compiler could be proved to preserve it?

Say you’ve proved your mixed-sensitivity concurrent program 
doesn’t leak secrets…

using a decomposition principle.
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Compiler verification: Prior work 
Using interactive theorem proving

• CakeML compiler (Standard ML dialect) - verified in HOL4 
(Kumar et al. 2014) 

• CompCert C compiler - verified in Coq 
(Leroy, 2009)

• Jinja compiler (Java dialect) - verified in Isabelle/HOL 
(Klein and Nipkow, 2006)

+ JinjaThreads compiler (for multithreaded programs) 
(Lochbihler, 2010)

(also)
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Compiler verification: Prior work

Direction 
of 

compilation

Abstract

Concrete

A simulates C  ⇒  C refines A

“Usual” refinement
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Compiler verification: My work
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That “Proving Confidentiality and Its 
Preservation Under Compilation for 
Mixed-Sensitivity Concurrent Programs” is feasible. 

• Program verification 

• Compiler verification 

• Case study: CDDC 
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Chapter 4
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Case study 
Methodology in Isabelle/HOL

• Global compatibility 
“Respecting locks is enough for 
guarantees to meet assumptions” 

• Local security 
“I win ‘floor is lava with levers’ using locks”

• Local compliance 
“I respect the locks”

• Assign locks to spaces

• For each thread, prove:

Program verification

Compiler application
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Conditional branching on secrets 

if (secret) then

else

(9pm)

…

(9pm)

…

Allowed by Chp 7 extension to type system
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