
Proving confidentiality and its
preservation under compilation for

mixed-sensitivity concurrent programs

SSS2, 25 January 2023

Dr Robert Sison

Research Fellow, The University of Melbourne

Visiting Fellow, UNSW Sydney

PhD thesis (2016-2020), UNSW
https://doi.org/fjmt

https://doi.org/fjmt

Proving confidentiality and its
preservation under compilation for

mixed-sensitivity concurrent programs

SSS2, 25 January 2023

Dr Robert Sison

Research Fellow, The University of Melbourne

Visiting Fellow, UNSW Sydney

PhD thesis (2016-2020), UNSW

Note: Interactive theorem proving (Isabelle)

https://doi.org/fjmt

https://doi.org/fjmt

Proving confidentiality and its
preservation under compilation for

mixed-sensitivity concurrent programs

SSS2, 25 January 2023

Dr Robert Sison

Research Fellow, The University of Melbourne

Visiting Fellow, UNSW Sydney

PhD thesis (2016-2020), UNSW

Note: Interactive theorem proving (Isabelle)

_________ _________________

https://doi.org/fjmt

https://doi.org/fjmt

The floor is lava
Proving confidentiality:

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison2

The floor is lava
Proving confidentiality:

“secret files can’t
touch the lava”

game

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison2

The floor is lava
Proving confidentiality:

“secret files can’t
touch the lava”

game

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison2

The floor is lava
Proving confidentiality: in reality:

a hotel window;
the media

“secret files can’t
touch the lava”

game

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison2

Mixed-sensitivity reuse
“We have 2 customers and 1 desk”

3

The desk is lava
Confidentiality in the face of scale

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison3

Mixed-sensitivity reuse
“We have 2 customers and 1 desk”

3

The desk is lava
Confidentiality in the face of scale

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison3

Mixed-sensitivity reuse
“We have 2 customers and 1 desk”

3

Shared-memory concurrency
“15 of us work in this office”

The desk is lava
Confidentiality in the face of scale

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison3

Mixed-sensitivity reuse
“We have 2 customers and 1 desk”

3

Shared-memory concurrency
“15 of us work in this office”

• Any of us might use the desk

The desk is lava
Confidentiality in the face of scale

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison3

Mixed-sensitivity reuse
“We have 2 customers and 1 desk”

3

Shared-memory concurrency
“15 of us work in this office”

• Any of us might touch the lever

• Any of us might use the desk

The desk is lava
Confidentiality in the face of scale

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison3

Mixed-sensitivity reuse
“We have 2 customers and 1 desk”

3

Shared-memory concurrency
“15 of us work in this office”

Mixed-sensitivity concurrent programs

• Any of us might touch the lever

• Any of us might use the desk

The desk is lava
Confidentiality in the face of scale

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison3

Motivating use case

Beaumont, McCarthy, Murray
(ACSAC 2016)

Cross Domain Desktop Compositor
(DSTG + Trustworthy Systems collaboration)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison4

Finalist entry for 2021 Eureka Prize
(Outstanding Science in Safeguarding Australia)

Motivating use case

Unclassified
PROTECTED

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison4

Motivating use case

Unclassified
PROTECTED

… 😑 , 💸
Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison4

Motivating use case Cross Domain
Desktop Compositor

(CDDC)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison4

Motivating use case Cross Domain
Desktop Compositor

(CDDC)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison4

Motivating use case Cross Domain
Desktop Compositor

(CDDC)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison4

Motivating use case Cross Domain
Desktop Compositor

(CDDC)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison4

Motivating use case Cross Domain
Desktop Compositor

(CDDC)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison4

Motivating use case Cross Domain
Desktop Compositor

(CDDC)

Confidentiality

2. Multiple moving parts
(well-synchronised) Doesn't leak secrets

1. Mixed-sensitivity reuse
(of devices, space, etc.)

Concurrent value-dependent information-flow security

3. Compositionally!
 (per-thread effort)

SECRET,
PROTECTED,

or Unclassified?

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

3 key challenges

4

Motivating use case Cross Domain
Desktop Compositor

(CDDC)

Confidentiality

2. Multiple moving parts
(well-synchronised) Doesn't leak secrets

1. Mixed-sensitivity reuse
(of devices, space, etc.)

Concurrent value-dependent information-flow security_____________

3. Compositionally!
 (per-thread effort)

SECRET,
PROTECTED,

or Unclassified?

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

3 key challenges

4

Motivating use case Cross Domain
Desktop Compositor

(CDDC)

Confidentiality

2. Multiple moving parts
(well-synchronised) Doesn't leak secrets

1. Mixed-sensitivity reuse
(of devices, space, etc.)

Concurrent value-dependent information-flow security_________

3. Compositionally!
 (per-thread effort)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

3 key challenges

4

Motivating use case Cross Domain
Desktop Compositor

(CDDC)

Confidentiality

2. Multiple moving parts
(well-synchronised) Doesn't leak secrets

1. Mixed-sensitivity reuse
(of devices, space, etc.)

Concurrent value-dependent information-flow security_________

3. Compositionally!
 (per-thread effort)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

3 key challenges

4

A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

Trusted

LAVA

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison5

A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

seL4 component architecture, functional schematic

Trusted

LAVA

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison5

A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

seL4 component architecture, functional schematic

Trusted

LAVA

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison5

LAVA

LAVA

LAVA

LAVA LAVA
LAVA

LAVA

(On video monitor: “Warning, keyboard is LAVA!”)

A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

seL4 component architecture, functional schematic

Trusted

LAVA

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison5

LAVA

LAVA

LAVA

Keyboard inputs are
sent to Trusted

Mouse inputs may
be sent to LAVA

(On video monitor: “Keyboard inputs can be secret”)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification

Thesis (PhD, 2020)

Chapter 5

Chapter 4

Chapter 6

Chapter 7

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison6

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification

Thesis (PhD, 2020)

Chapter 5

Chapter 4

Chapter 6

Chapter 7

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison6

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification

Thesis (PhD, 2020)

Chapter 5

Chapter 4

Chapter 6

Chapter 7

Proving Confidentiality

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison6

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification

Thesis (PhD, 2020)

Chapter 5

Chapter 4

Chapter 6

Chapter 7

Preservation Under Compilation
ItsProving

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison6

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification

Thesis (PhD, 2020)

Chapter 5

Chapter 4

Chapter 6

Chapter 7

is feasible

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison6

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification

Thesis (PhD, 2020)

Chapter 5

Chapter 4

Chapter 6

Chapter 7

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison6

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification

Thesis (PhD, 2020)

Chapter 5

Chapter 4

Chapter 6

Chapter 7

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison6

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison7

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

“When I’m not sitting at this desk, I guarantee
not to touch it.”

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison7

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

“When I’m not sitting at this desk, I guarantee
not to touch it.”

“When I’m sitting at this desk, I assume that
nobody else will pull the lever.”

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison7

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

• Local compliance
“I respect my guarantees”

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

“When I’m sitting at this desk, I assume that
nobody else will pull the lever.”

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison7

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

• Global compatibility
“Guarantees meet assumptions”

• Local compliance
“I respect my guarantees”

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

“When I’m sitting at this desk, I assume that
nobody else will pull the lever.”

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison7

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

• Global compatibility
“Guarantees meet assumptions”

• Local compliance
“I respect my guarantees”

• Local security
“I win ‘floor is lava with levers’
using assumptions”

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison7

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

• Global compatibility
“Guarantees meet assumptions”

• Local compliance
“I respect my guarantees”

• Local security
“I win ‘floor is lava with levers’
using assumptions”

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

(Type systems for a generic While language)
Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison7

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

• Global compatibility
“Guarantees meet assumptions”

• Local compliance
“I respect my guarantees”

• Local security
“I win ‘floor is lava with levers’
using assumptions”

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

(Type systems for a generic While language)

?

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison7

Program verification: My work
(Language designer’s perspective)

• Global compatibility
“Guarantees meet assumptions”

• Local compliance
“I respect my guarantees”

• Local security
“I win ‘floor is lava with levers’
using assumptions”

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison8

Program verification: My work
(Language designer’s perspective)

• Global compatibility
“Guarantees meet assumptions”

(For a generic While language with locks)

• Local compliance
“I respect my guarantees”

• Local security
“I win ‘floor is lava with levers’
using assumptions”

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison8

Program verification: My work
(Language designer’s perspective)

• Global compatibility
“Guarantees meet assumptions”

• A way to assign locks to spaces

(For a generic While language with locks)

• Local compliance
“I respect my guarantees”

• Local security
“I win ‘floor is lava with levers’
using assumptions”

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison8

Program verification: My work
(Language designer’s perspective)

• Global compatibility
“Guarantees meet assumptions”

• A way to assign locks to spaces

(For a generic While language with locks)

• Local compliance
“I respect my guarantees”

• Local security
“I win ‘floor is lava with levers’
using assumptions”

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison8

• Local compliance
“I respect the locks”

Program verification: My work
(Language designer’s perspective)

• Global compatibility
“Guarantees meet assumptions”

• A way to assign locks to spaces

(For a generic While language with locks)

• Local security
“I win ‘floor is lava with levers’
using assumptions”

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison8

• Local compliance
“I respect the locks”

Program verification: My work
(Language designer’s perspective)

• A way to assign locks to spaces

• Local security
“I win ‘floor is lava with levers’ using locks”

• Global compatibility
“Respecting locks is enough for
guarantees to meet assumptions”

(For a generic While language with locks)
Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison8

• Local compliance
“I respect the locks”

Program verification: My work
(Language designer’s perspective)

• A way to assign locks to spaces

• Local security
“I win ‘floor is lava with levers’ using locks”

• Global compatibility
“Respecting locks is enough for
guarantees to meet assumptions”

(For a generic While language with locks)
Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison8

Program verification: My work
(Programmer’s perspective)

• Local security
“I win ‘floor is lava with levers’ using locks”

• Local compliance
“I respect the locks”

• Assign locks to spaces

• For each thread, prove:

(Type systems provide proof method)

• Global compatibility
“Respecting locks is enough for
guarantees to meet assumptions”

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison9

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification

Thesis (PhD, 2020)

Chapter 4
+

Chapter 5

Chapter 7

Chapter 6

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison10

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification

Thesis (PhD, 2020)

Chapter 4

Chapter 5

Chapter 7

Chapter 6

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison10

11

Verified secure compilation
Say you’ve proved your mixed-sensitivity concurrent program

doesn’t leak secrets…

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

11

Verified secure compilation

No leaks!

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets…

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

11

Verified secure compilation

No leaks!

How do you know your compiler won’t introduce leaks?

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets…

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

11

Verified secure compilation

No leaks!

How do you know your compiler won’t introduce leaks?

What if your compiler could be proved to preserve it?

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets…

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

12

Verified secure compilation

What if your compiler could be proved to preserve it?

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets…

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

12

Verified secure compilation

Here's how!

What if your compiler could be proved to preserve it?

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets…

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

12

Verified secure compilation

Prove confidentiality-preserving refinement,

Here's how!

What if your compiler could be proved to preserve it?

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets…

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

12

Verified secure compilation

Prove confidentiality-preserving refinement,

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Here's how!

What if your compiler could be proved to preserve it?

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets…

using a decomposition principle.

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: Prior work
Using interactive theorem proving

• CakeML compiler (Standard ML dialect) - verified in HOL4
(Kumar et al. 2014)

• CompCert C compiler - verified in Coq
(Leroy, 2009)

• Jinja compiler (Java dialect) - verified in Isabelle/HOL
(Klein and Nipkow, 2006)

+ JinjaThreads compiler (for multithreaded programs)
(Lochbihler, 2010)

(also)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison13

Note: “Usual” refinement

Compiler verification: Prior work

Direction
of

compilation

Abstract

Concrete

A simulates C ⇒ C refines A

“Usual” refinement

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison14

Compiler verification: Prior work

For-all

Execution
steps

Program
configurations

Relations

(between)

Direction
of

compilation

Abstract

Concrete

A simulates C ⇒ C refines A

“Usual” refinement

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison14

Compiler verification: Prior work

For-all

Execution
steps

Program
configurations

Relations

(between)

Direction
of

compilation

Abstract

Concrete

Exists

A simulates C ⇒ C refines A

“Usual” refinement

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison14

Compiler verification: Prior work

For-all

Execution
steps

Program
configurations

Relations

(between)

Direction
of

compilation

Abstract

Concrete

Exists

(Murray, Sison, Pierzchalski, Rizkallah 2016)Confidentiality-preserving
refinement

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison14

Compiler verification: Prior work

For-all

Execution
steps

Program
configurations

Relations

(between)

Direction
of

compilation

Abstract

Concrete

Exists

(Murray, Sison, Pierzchalski, Rizkallah 2016)Confidentiality-preserving
refinement

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison14

Compiler verification: Prior work

For-all

For-all

Execution
steps

Program
configurations

Relations

(between)

Direction
of

compilation

Abstract

Concrete

Exists

(Murray, Sison, Pierzchalski, Rizkallah 2016)Confidentiality-preserving
refinement

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison14

Compiler verification: Prior work

Exists

For-all

For-all

Execution
steps

Program
configurations

Relations

(between)

Direction
of

compilation

Abstract

Concrete

Exists

(Murray, Sison, Pierzchalski, Rizkallah 2016)Confidentiality-preserving
refinement

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison14

Compiler verification: Prior work

Exists

For-all

For-all

Execution
steps

Program
configurations

Relations

(between)

Direction
of

compilation

Abstract

Concrete

Exists

(Murray, Sison, Pierzchalski, Rizkallah 2016)Confidentiality-preserving
refinement

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison14

Compiler verification: My work

Direction
of

compilation

Abstract

Concrete

(Compiler based on
Tedesco et al. 2016)

Exists

For-all

Exists

For-all

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison15

Compiler verification: My work

Direction
of

compilation

Abstract

Concrete

Generic
While language

with locks

Generic
RISC assembly

with locks

(Compiler based on
Tedesco et al. 2016)

Exists

For-all

Exists

For-all

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison15

Compiler verification: My work

Direction
of

compilation

Abstract

Concrete

Using a decomposition principle
(Thanks to Toby Murray)

Generic
While language

with locks

Generic
RISC assembly

with locks

(Compiler based on
Tedesco et al. 2016)

Exists

For-all

Exists

For-all

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison15

Compiler verification: My work

Direction
of

compilation

Abstract

Concrete

• The “usual” refinement,
with no changes to locking:

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Using a decomposition principle
(Thanks to Toby Murray)

Generic
While language

with locks

Generic
RISC assembly

with locks

(Compiler based on
Tedesco et al. 2016)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison15

Compiler verification: My work

Direction
of

compilation

Abstract

Concrete

• The “usual” refinement,
with no changes to locking:

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Using a decomposition principle
(Thanks to Toby Murray)

Generic
While language

with locks

Generic
RISC assembly

with locks

(Compiler based on
Tedesco et al. 2016)

+ Using knowledge that
spaces are locked

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison15

Compiler verification: My work

Direction
of

compilation

Abstract

Concrete

• No new timing, stopping, or branching based
on secret information:

• The “usual” refinement,
with no changes to locking:

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Using a decomposition principle
(Thanks to Toby Murray)

Generic
While language

with locks

Generic
RISC assembly

with locks

(Compiler based on
Tedesco et al. 2016)

+ Using knowledge that
spaces are locked

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison15

Compiler verification: My work

Direction
of

compilation

Abstract

Concrete

• No new timing, stopping, or branching based
on secret information:

• The “usual” refinement,
with no changes to locking:

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

Using a decomposition principle
(Thanks to Toby Murray)

Generic
While language

with locks

Generic
RISC assembly

with locks

(Compiler based on
Tedesco et al. 2016)

+ Using knowledge that
spaces are locked

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison15

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification

Thesis (PhD, 2020)

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison16

Case study
Methodology in Isabelle/HOL

• Global compatibility
“Respecting locks is enough for
guarantees to meet assumptions”

• Local security
“I win ‘floor is lava with levers’ using locks”

• Local compliance
“I respect the locks”

• Assign locks to spaces

• For each thread, prove:

Program verification

Compiler application

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison17

Case study
Cross Domain Desktop Compositor HID switch

Trusted

LAVA

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison18

Case study
Cross Domain Desktop Compositor HID switch

seL4 component architecture, functional schematic

Trusted

LAVA

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison18

Case study
Cross Domain Desktop Compositor HID switch

seL4 component architecture, functional schematic

Trusted

LAVA
LAVA

LAVA

LAVA

LAVA LAVA
LAVA

LAVA

(On video monitor: “Warning, keyboard is LAVA!”)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison18

Case study
Cross Domain Desktop Compositor HID switch

seL4 component architecture, functional schematic

Trusted

LAVA
LAVA

LAVA

LAVA

Keyboard inputs are
sent to Trusted

Mouse inputs may
be sent to LAVA

(On video monitor: “Keyboard inputs can be secret”)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison18

Case study
Cross Domain Desktop Compositor HID switch

Trusted

LAVA
LAVA

LAVA

LAVA

Keyboard inputs are
sent to Trusted

Mouse inputs may
be sent to LAVA

(On video monitor: “Keyboard inputs can be secret”)

• Assign locks to spaces
Program verification

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison18

Case study
Cross Domain Desktop Compositor HID switch

Trusted

LAVA
LAVA

LAVA

LAVA

Keyboard inputs are
sent to Trusted

Mouse inputs may
be sent to LAVA

(On video monitor: “Keyboard inputs can be secret”)

• Assign locks to spaces
Program verification

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison18

Case study
Cross Domain Desktop Compositor HID switch

Trusted

LAVA
LAVA

LAVA

LAVA

Keyboard inputs are
sent to Trusted

Mouse inputs may
be sent to LAVA

(On video monitor: “Keyboard inputs can be secret”)

• Assign locks to spaces

• Local security
“I win ‘floor is lava with levers and locks’”

• Local compliance
“I respect the locks”

• For each thread, prove:

Program verification

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison18

Case study
Cross Domain Desktop Compositor HID switch

Trusted

LAVA
LAVA

LAVA

LAVA

Keyboard inputs are
sent to Trusted

Mouse inputs may
be sent to LAVA

(On video monitor: “Keyboard inputs can be secret”)

• Assign locks to spaces

• Local security
“I win ‘floor is lava with levers and locks’”

• Local compliance
“I respect the locks”

• For each thread, prove:

Program verification

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison18

Case study
Cross Domain Desktop Compositor HID switch

Trusted

LAVA
LAVA

LAVA

LAVA

Keyboard inputs are
sent to Trusted

Mouse inputs may
be sent to LAVA

(On video monitor: “Keyboard inputs can be secret”)

• Assign locks to spaces

• Local security
“I win ‘floor is lava with levers and locks’”

• Local compliance
“I respect the locks”

• For each thread, prove:

Program verification

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison18

Case study
Cross Domain Desktop Compositor HID switch

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison19

Case study
Cross Domain Desktop Compositor HID switch
Compiler application

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison19

Case study
Cross Domain Desktop Compositor HID switch
Compiler application

While language with locks

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison19

Case study
Cross Domain Desktop Compositor HID switch
Compiler application

While language with locks Generic RISC assembly with locks

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison19

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification:

Thesis (PhD, 2020)

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison20

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

• Compiler verification

• Case study: CDDC

• Extension to program verification:

Thesis (PhD, 2020)

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Allow conditional branching on secrets

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison20

Explicit flow

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison21

Explicit flow

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison21

output := secret

Explicit flow

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison21

output := secret Analysis (rightly)
rejects this!

Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison21

…do stuff, then…

output := 0

Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then else

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison21

…do stuff, then… …do other stuff, then…

output := 0 output := 1

Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then else

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison21

…do stuff, then… …do other stuff, then…

output := 0 output := 1

Also (rightly)
rejected

Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then else

?

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison21

…do stuff, then… …do other stuff, then…

output := 0 output := 0

Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then else

?

Is this safe?

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison21

…do stuff, then… …do other stuff, then…

output := 0 output := 0

Conditional branching on secrets

if (secret) then

(3pm)

Implicit flow #2: timing leak

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison22

…do stuff, then…

Conditional branching on secrets

if (secret) then

else

(9pm)

…

(3pm)

Implicit flow #2: timing leak

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison22

…do stuff, then…

…do other stuff, then…

Conditional branching on secrets

if (secret) then

else

(9pm)

…

(3pm)

Implicit flow #2: timing leak

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison22

…do stuff, then…

…do other stuff, then…

Conditional branching on secrets

if (secret) then

else

(9pm)

…

(3pm)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison22

…do stuff, then…

…do other stuff, then…

Disallowed in previous Chps 4-6 of thesis!

Conditional branching on secrets

if (secret) then

else

(9pm)

…

(9pm)

…

Allowed by Chp 7 extension to type system

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison22

…do other stuff, then…

…do stuff, wait…, then…

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

Thesis (PhD, 2020)

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison23

• Extension to program verification:
Allow conditional branching on secrets

• Case study: CDDC

• Compiler verification

https://doi.org/fjmt

https://doi.org/fjmt

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

Thesis (PhD, 2020)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison24

Proving Confidentiality

• Compiler verification

• Case study: CDDC

and publications
https://doi.org/fjmt www.robs-cse.com

https://doi.org/fjmt
https://www.robs-cse.com

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

Thesis (PhD, 2020)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison24

Proving Confidentiality

- Murray, Sison & Engelhardt (EuroS&P 2018)

• Compiler verification

• Case study: CDDC

and publications
https://doi.org/fjmt www.robs-cse.com

Joint work with
Toby Murray

(Uni Melbourne)

https://doi.org/fjmt
https://www.robs-cse.com

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

Thesis (PhD, 2020)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison24

Proving Confidentiality

- Murray, Sison & Engelhardt (EuroS&P 2018)

• Compiler verification

- Part of Eureka Prize 2021 finalist entry
(w/ Beaumont et al. ACSAC 2016)

• Case study: CDDC

and publications
https://doi.org/fjmt www.robs-cse.com

Joint work with
Toby Murray

(Uni Melbourne)

https://doi.org/fjmt
https://www.robs-cse.com

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

(⟹)
implies

decomposition principle

Thesis (PhD, 2020)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison24

Proving Confidentiality

- Murray, Sison & Engelhardt (EuroS&P 2018)

and Its
Preservation Under Compilation

• Compiler verification

- Part of Eureka Prize 2021 finalist entry
(w/ Beaumont et al. ACSAC 2016)

• Case study: CDDC

and publications
https://doi.org/fjmt www.robs-cse.com

Joint work with
Toby Murray

(Uni Melbourne)

https://doi.org/fjmt
https://www.robs-cse.com

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

(⟹)
implies

decomposition principle

Thesis (PhD, 2020)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison24

Proving Confidentiality

- Murray, Sison & Engelhardt (EuroS&P 2018)

- Sison & Murray (ITP 2019)

and Its
Preservation Under Compilation

• Compiler verification

- Part of Eureka Prize 2021 finalist entry
(w/ Beaumont et al. ACSAC 2016)

• Case study: CDDC

and publications
https://doi.org/fjmt www.robs-cse.com

Joint work with
Toby Murray

(Uni Melbourne)

https://doi.org/fjmt
https://www.robs-cse.com

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

(⟹)
implies

decomposition principle

Thesis (PhD, 2020)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison24

Proving Confidentiality

- Murray, Sison & Engelhardt (EuroS&P 2018)

- Sison & Murray (ITP 2019)

- J. Funct. Programming vol. 31, 2021

and Its
Preservation Under Compilation

• Compiler verification

- Part of Eureka Prize 2021 finalist entry
(w/ Beaumont et al. ACSAC 2016)

• Case study: CDDC

and publications
https://doi.org/fjmt www.robs-cse.com

Joint work with
Toby Murray

(Uni Melbourne)

https://doi.org/fjmt
https://www.robs-cse.com

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

• Program verification

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

=

=

(⟹)
implies

decomposition principle

Thesis (PhD, 2020)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison24

Proving Confidentiality

- Murray, Sison & Engelhardt (EuroS&P 2018)

- Sison & Murray (ITP 2019)

- J. Funct. Programming vol. 31, 2021

and Its
Preservation Under Compilation

• Compiler verification

- Part of Eureka Prize 2021 finalist entry
(w/ Beaumont et al. ACSAC 2016)

• Case study: CDDC

and publications
Thank you!

Q & A
https://doi.org/fjmt www.robs-cse.com

Joint work with
Toby Murray

(Uni Melbourne)

https://doi.org/fjmt
https://www.robs-cse.com

