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Abstract

Here, I pose the thesis that proving noninterference and its preservation by a com-

piler is feasible for mixed-sensitivity concurrent programs. Software does not al-

ways have the luxury of limiting itself to single-threaded computation with resources stati-

cally dedicated to each user to ensure the confidentiality of their data. Prior work therefore

presented formal methods for proving and preserving the strictest kind of confidentiality

property, noninterference, for mixed-sensitivity concurrent programs: a term I coin to

describe those programs that might reuse memory shared between their threads to hold

data of different sensitivity levels at different times. Although these methods addressed

challenges in formalising the value-dependent coordination of such mixed-sensitivity reuse

under the impact of concurrency, their practicality remained unclear: Could they be used

to prove noninterference for any nontrivial mixed-sensitivity concurrent program in its

entirety? Furthermore, could any compiler be verified to preserve the needed guarantees

to the compiled code?

To support this claim, I prove for the first time both (1) noninterference for a non-

trivial mixed-sensitivity concurrent program, modelling a real-world use case, and (2) its

preservation by a compiler down to an assembly-level model. This main result rests on

two major contributions. First, I demonstrate how programming-language designers can

make reasoning on each thread sufficient to prove noninterference for such programs, by

supplying synchronisation primitives (here, mutex locks for a generic imperative language)

and proving they maintain as invariant the necessary requirements. Second, I demonstrate

how compiler developers can make confidentiality-preserving refinement a feasible target

for verification, by using a decomposition principle to prove that a compiler (here, from

that imperative language to a generic RISC-style assembly language) establishes it for

mixed-sensitivity concurrent programs. Thus, per-thread reasoning proves noninterfer-

ence for the case study, and the verified compiler preserves it to assembly automatically.

All my results are formalised and proved in the Isabelle/HOL interactive proof assistant.

My work paves the way for more fully featured programming languages and their

compilers, in replicating these results, to raise the typical level of assurance readily offered

by developers of multithreaded software responsible for data of multiple sensitivity levels.
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Matthew Brecknell, Johannes Åman Pohjola, Qian Ge, and Gernot Heiser. For their

careful evaluation of its merits and shortcomings, I thank Gilles Barthe and David Sands.

Furthermore, I thank Alexander Legg and Anna Lyons for their mentoring and advice,

delivered variously over coffee and in the midst of a metal concert.

Finally, I thank my partner Leo and my extended family for their ongoing support,

and I dedicate this work to the memory of my grandfather, an architect.

This research was funded by an Australian Government Research Training Program (RTP)

Scholarship, and a CSIRO Data61 Research Project Award.

v



vi



Publications

The contributions of Chapter 4 led to the following conference paper, which also first

presented the case study of Chapter 6:

• [68] Toby Murray, Robert Sison, and Kai Engelhardt. Covern: A logic for compo-

sitional verification of information flow control. In European Symposium on Security

and Privacy, pages 16–30, London, United Kingdom, April 2018. IEEE.

The contributions of Chapter 5 led to a workshop presentation and a conference paper,

both of which I presented:

• [83] Robert Sison. Per-thread compositional compilation for confidentiality-preserving

concurrent programs. In 2nd Workshop on Principles of Secure Compilation, Los

Angeles, January 2018. Cătălin Hriţcu.
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Chapter 1

Confidentiality in the face of scale

This thesis is about techniques for proving two things:

1. The total absence of information flow between a trusted and untrusted

party in a given program, including concurrent programs that reuse shared

memory to scale up their capacity to service different parties at different times.

For such programs, this thesis in particular concerns proofs eliminating the flow of

information between two sets of memory locations—sensitive sources and untrusted

sinks—designated by the user of the techniques as belonging to each party. Infor-

mation coming from the former set of locations will also be described as sensitive,

and be called secrets. The attacker model throughout this thesis will be an entity

with the power to read at any time from the untrusted sinks.

This kind of strict prohibition of information flow is called noninterference [32] in

the literature. Unless specified otherwise, this thesis will also use the broader terms

confidentiality, information-flow security, and security to mean noninterference.

2. That a compiler preserves this total absence of information flow in such

programs when translating them to other languages.

To be clear, this thesis is not about placing upper bounds on some small but necessary

amount of information leakage between a trusted and untrusted party. If I have the job

of “password checker”, the techniques studied here will inevitably find leaks, for example,

between the piece of paper from my boss with today’s secret password, and the answer of

“accepted” or “rejected” I give to the stranger at the window who tried to guess it. Even

if it would take the stranger thousands of guesses, the techniques in this thesis will flag

even this tiniest of leaks in a single one of my “yes” or “no” answers as unsafe. I must

defer to the authority of other, leakage-bounding techniques like quantitative information

flow [87] or differential privacy [4], for determining whether the rate of leakage inherent

in the application domain is acceptable—such a task lies outside the scope of this thesis.

This thesis is more about whether I inadvertently leave the password on the coffee

table in the break room where we host discussions with external clients who visit the

building—or inexplicably blurt out the password at the cafeteria when I’m ordering lunch.

1



These kinds of extremely obviously wrong behaviours regarding confidentiality may

sound easy to avoid. In fact, it sounds so easy that when a computer program about

which we have full details does the right thing, surely we should be able to prove that it

holds, in a way that arises from the form of that program. Indeed, techniques already exist

that make it straightforward to prove formally that some kinds of computer programs do

not do the obvious wrong thing, like leaving the password on the proverbial coffee table.

This thesis, however, will be about those programs for which the reasoning of these

techniques breaks down—where such an apparently easy task is not, in fact, so easy.

1.1 Mixed-sensitivity concurrency and its challenges

The specific focus of this thesis is on how these two problems—(1) the program verifica-

tion problem of proving total absence of information flow, and (2) the compiler verification

problem of proving its preservation by a compiler—become more challenging when a pro-

gram has both of the following characteristics:

• Concurrency (Section 1.1.1): specifically, concurrency of access by different threads

of execution, to memory locations shared between those threads.

• Mixed-sensitivity reuse (Section 1.1.2): a term I coin to describe a reuse of memory

locations to hold information of differing levels of sensitivity, at different times.

These characteristics are answers to fundamental problems of scale. They

arise, respectively, from the need to divide work in computer systems that handle infor-

mation, and the need to share scarce resources to be able to service every customer for

whom that work is done. There will always be a program for which that sharing is not

abstracted, and whose responsibility is to implement that sharing; proving that it does not

permit the information of one customer to flow to another is the objective of this thesis.

As answers to problems of scale, these characteristics pose an additional challenge:

Compositionality (Section 1.1.3) demands that a proof about a program be composable

from proofs about its parts, that are each not overly sensitive to changes to the other parts.

This thesis focuses on compositionality of proofs about program threads—in this way, the

proof effort can scale with the development effort as split into concurrent components.

In addressing these challenges, this thesis demonstrates that it is feasible to prove

noninterference and its preservation under compilation for mixed-sensitivity concurrent

programs, a term I coin for those whose threads make mixed-sensitivity reuse of the mem-

ory they share. Prior to my doctoral studies, no formal techniques had been exercised to

prove noninterference, or its preservation by a compiler, for such a program in its entirety.

1.1.1 Concurrency: Scaling with the number of workers

Concurrency poses two new challenges when proving noninterference properties and their

preservation by a compiler: (1) managing the proof impact of inter-thread interactions,

2



and (2) preventing the conversion of internal timing leaks into storage leaks.

Inter-thread interactions, as interference and intermediate value leakage

It is well known that the possibility of interactions between the threads of a concurrent

program—as coworkers that need to cooperate using a shared pool of resources—leads to

the number of possible configurations growing exponentially in the number of threads.

The main impact on proofs of confidentiality for such programs is that the usual

shortcuts that are available to analyses of the behaviour of a sequential program (a single

thread of execution assumed to be working in complete isolation) no longer apply:

• Analyses of confidentiality for sequential programs will typically assume that secrets

(including any intermediate values derived from secrets) can be stored temporarily

at locations that might only become visible to the attacker at the end of the program.

However, in a concurrent program I cannot assume that secrets stored at such a

location will not be read by another worker, if that location is in a shared space.

• As Section 1.1.2 will explain: When coordinating mixed-sensitivity reuse, a

program’s functional-correctness issues can now become security issues.

Analyses of the functionality of sequential programs will typically assume that values

written to a location will still be there later, unless that one thread of execution

writes to the location again. This allows such analyses to be flow sensitive [19],

meaning they can take into account what happens before and after a given point in

the program—i.e. be sensitive to that program point’s position in the control flow.

However, as a worker thread in a concurrent program, I cannot assume that some-

thing will be where I left it, because another worker thread might have replaced it

with something else. This inherent instability of the contents of the shared space,

due to interference by other threads in the program, thus (if not mitigated) poses

an obstacle to flow sensitive analysis of a concurrent program’s functionality.

These issues pose the challenge of finding ways to reason about the coordination

of workers’ access to certain resources at certain times. With a means of formalising

this coordination, (1) confidentiality proofs for concurrent programs can be structured

to recognise when the coordination rules out instances of instability due to interference,

or inadvertent leaks due to other workers’ reading of secret intermediate values; and (2)

verified compilers can be proved formally to preserve any such methods of coordination.

Internal timing leaks become storage leaks, without a specialised scheduler

Concurrent settings with shared space are notorious for converting internal timing leaks

into storage leaks. This section will explain the problem, and the difficulties arising from

preventing it without overly constraining programs, or specialising the scheduler to assist—

that is, the part of the execution environment that chooses how threads are interleaved.
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Thread A 1 : i f (h ) { Thread B 6 : i f (s ) {
2 : v := TRUE ; 7 : x := TRUE ;

} else { } else {
3 : v := FALSE ; 8 : x := FALSE ;
4 : skip ; }

}
5 : s := TRUE ;

Figure 1.1: Example of conversion of an internal timing leak into a storage leak.
Here, h contains a secret, s is shared between both threads, and x is an untrusted sink.

Informally, storage leaks (discernible by a difference in value) are often distinguished

from timing leaks (discernible by a difference in the timing of identical changes in value)

because an attacker that can easily detect a storage leak (e.g. the final value of v in Thread

A in Figure 1.1) may have no way of measuring the timing of changes to storage reliably

enough to exploit a timing leak (e.g. the timing of Thread A’s assignment of TRUE to s).

In a concurrent program, however, a timing leak must be treated as seriously as any

storage leak. Consider the (pseudocode) example program in Figure 1.1, with s = FALSE

initially: If the scheduler chooses to switch execution to Thread B after executing three of

the numbered commands of Thread A, this program produces a storage leak of the exact

(boolean) value of h to the variable x, which stems from the timing leak of h determining

whether the assignment to s has happened yet. This example illustrates two principles:

1. The notion of time that matters is scheduler relative: counted by the distinct points

at which the scheduler might interleave a thread’s execution with that of others. The

literature typically calls this internal time (and internal timing leaks); I will some-

times use the term scheduler-relative time, to emphasise the role of the scheduler.

2. Internal timing leaks are propagated to storage by race conditions; here, a race

between Thread A’s write and Thread B’s read of s determines the final value of x.

Thus, early approaches included: (1) having programs avoid race conditions by disallowing

all asynchronous communication via shared memory [101], including that which would

be needed to implement synchronisation primitives; or, (2) specialising the scheduler to

control the notion of time to avoid leaky schedules [9, 10]. For instance, if the scheduler

here only ever chose to switch to Thread B after two (or four) of the numbered commands

of Thread A, it could ensure that the final value of x is unconditionally FALSE (resp. TRUE).

Unfortunately, it is not always feasible to impose special requirements like these on

the scheduler. Furthermore, race-prone (asynchronous) interactions on shared memory

between threads may be inherent to the level of abstraction at which the program is to

be analysed—for example, at the operating-system level, or including the implementation

of synchronisation primitives. This obliges us to verify that each program thread satisfies

a timing-sensitive notion of noninterference: specifically, one that rejects the program

if it has any internal timing leaks (relative to the scheduler) observable via race-prone
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shared memory. This timing sensitivity has follow-on implications both for compiler

verification, and for verifying programs with secret-dependent control flow:

• Compilers (hardware aside! [31]) tend to optimise as aggressively as possible to make

the program run as fast as possible. Consequently, the soundness of any source-

level program verification of timing-sensitive noninterference rests on imposing more

nuanced compiler verification requirements (regarding timing), than any typically

imposed on a production-quality compiler for a mainstream programming language.

However, practical approaches to verifying that a compiler preserves timing-sensitive

notions of noninterference are only recently beginning to be explored [11, 12]. Thus,

this thesis adds to that body of work, by exploring the satisfiability of requirements

specialised to mixed-sensitivity concurrent programs [67, 66].

• As timing leaks stem from dependence of timing behaviour on secrets, a common

approach (followed by the first few contributions of this thesis) is to avoid precise

source-level reasoning about time by disallowing secret-dependent control flow—for

example, disallowing if (h) conditionals to prevent any timing leaks from h.

However, a strength of timing-sensitive notions of noninterference proposed recently

for mixed-sensitivity concurrent programs [67, 65] is to be compatible with such

precise source-level reasoning about the time taken by such control flow paths. Thus,

this thesis presents (as a final contribution) an example of such reasoning.

1.1.2 Mixed-sensitivity reuse: Scaling with the number of customers

As previously mentioned, the program verification problem also becomes more challenging

when (imagining that we are threads in a concurrent program) my coworkers and I want

to reuse any shared space between us to serve two or more mutually distrusting parties.

Under these circumstances, we cannot use a shortcut that makes proving confidentiality

easy: calling a workspace permanently tainted if it is used for a given customer A, and

then never using it to serve customer B, and vice versa. This is because if we were to use

this shortcut, we would need two permanently dedicated workspaces: one for customer

A, and the other for customer B. Then, if we served sixty thousand customers, we would

need sixty thousand workspaces—this is clearly inefficient, if there is nothing stopping

us from flushing the content of one customer before reusing the workspace for another.

Furthermore, if we do not know how many customers we are liable to have, we would

not even know how many workspaces to set aside. Note that, in a nutshell, it was this

impetus for flexible reuse of shared resources—to prevent inefficiency and over- or under-

provisioning—that in large part led to the rise to supremacy of cloud architectures.

Rather, any analysis we develop must account more generally for the possibility that a

workspace might be used for customer A at one moment, and for customer B the next. The

only conceivable way to do this predictably is to have the dedication of that workspace be

coordinated by values handled or calculated by the program itself (e.g. as in Figure 1.2).
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i f ( current_customer = 0) {
customer_A := workspace ;

} else {
customer_B := workspace ;

}

Figure 1.2: Example of mixed-sensitivity reuse—here, of the workspace, depending on
the value of current customer.

The security property must therefore be value dependent [103, 51, 64] to account for the

dynamically changing dedication of the workspace, meaning the analysis must be flow

sensitive (Section 1.1.1) enough to track the values on which that property is dependent.

As foreshadowed in Section 1.1.1, however, such value-dependent coordination and its

flow-sensitive analysis may be complicated by concurrency. Consider the (pseudocode)

example program in Figure 1.2: If workspace contains customer B’s data, but another

thread overwrites current customer with 0, the program will incorrectly deliver the data

to customer A. It is in this sense that, as mentioned in Section 1.1.1, functional-correctness

issues can become security issues; thus, program functionality coordinating mixed-

sensitivity reuse needs to be protected from concurrency, with values calculated

needing to be analysed just as seriously as their sensitivity levels. Consequently, mitiga-

tions against concurrency’s interference with a program thread’s functionality (see Sec-

tion 1.2.1) will become critical to protect also the confidentiality of such programs.

In short, the challenges so far can be summed up as follows: A program with mixed-

sensitivity reuse inevitably features value-dependent coordination of that reuse, therefore

requiring a flow-sensitive security analysis to track the changes in those values; however,

as just mentioned in Section 1.1.1, concurrency interferes with that flow-sensitive analysis.

Then on top of that, we would ideally be able to support verification of a wider variety

of software architectures, that might allow a given worker thread to service n customers,

or where one customer is serviced (perhaps for m different purposes) by m worker threads.

Developing techniques for verifying such programs poses the challenge of finding ways to

reason about how worker threads coordinate the dedication of resources to customers,

without necessarily tying together workers with customers in a 1:1 relationship. This

means managing how formalisms for coordinating customer–resource dedication (see Sec-

tion 1.2.2) interact with those for coordinating worker–resource access (see Section 1.2.1).

1.1.3 Compositionality: Scaling with the size of the software project

Finally, the proof effort for any techniques that this thesis develops (for handling concur-

rency and mixed-sensitivity reuse) needs to scale with the size of the software project, in

terms of the number of distinctly developed software components it comprises.

Particularly, the program verification effort should scale compositionally, meaning

proof effort on each software component is possible without (yet, or possibly

6



ever) knowing the internal details of all the other software components in the

system. Furthermore, the compiler verification theorem should ensure that the compiler

preserves the compositionality of whatever confidentiality property it is preserving.

This thesis will focus on the development of techniques that scale and compose proof

effort for an arbitrary number of worker threads as software components, assuming

that the code run by each thread forms a natural area of responsibility or ongoing mainte-

nance in a long-term software development for a concurrent program. When considering

worker threads as software components, this adds to the concerns of scalability raised in

Section 1.1.1, because while a proof technique may vastly reduce the complexity of an

analysis, it may still not be compositional—a notable example is Owicki and Gries [74].

In contrast however, this thesis will simplify to the typical basic case of servicing

two customers, assuming that verifying for an arbitrary number of customers amounts to

repeated applications of the basic case. We leave to future work any issues of scale in

verifying for an arbitrary number of customers (e.g. as in Lourenço and Caires [51]).

1.2 Approaches taken by this thesis

In Section 1.1, I described how the problems of scale addressed by mixed-sensitivity con-

current programs beg for methods of coordination—between worker threads, and towards

their cooperative dedication of resources to customers serviced—and how they must give

rise to program- and compiler-verification efforts that scale compositionally in the num-

ber of threads. Here I will talk about the approaches chosen for dealing with those two

challenges of coordination (described in Sections 1.2.1 and 1.2.2 respectively), and for

proving that a compiler preserves noninterference for mixed-sensitivity concurrent pro-

grams (Section 1.2.3). Finally I describe briefly the methodology for experimenting with

the improvements and the application of all of these approaches (Section 1.2.4).

1.2.1 Assume–guarantee contracts, on worker–resource access

This thesis continues a line of experimentation on the adaptation to noninterference ver-

ification [54, 64, 67] of assume–guarantee [54] (another name for rely–guarantee [41]), a

method for achieving compositional analysis for concurrent programs.

In these confidentiality-focused adaptations of assume–guarantee, inter-thread inter-

ference is limited by the use of assumptions (also known as rely conditions) that other

worker threads will not write to certain areas of the shared space. Inadvertent leakage of

intermediate values is handled using a more confidentiality-centric kind of assumption (as

pioneered by Mantel et al. [54]), that other workers will not read from certain areas.

However, as is standard for assume–guarantee, the greater ease of per-thread analy-

sis (due to assumptions) is paid for by proof obligations to establish certain guarantees

(corresponding to those assumptions). The first focus of this thesis is on a method for

proving all of these contractual obligations on resource access by threads—these were only

partially proved by any known instantiation [33, 65] of the preceding theories [54, 67].
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1.2.2 Value-dependent classification, for customer–resource dedication

Static classification of locations corresponds to the inflexible scenario illustrated in Sec-

tion 1.1.2, in which workspaces tainted by data belonging to a given customer must be

classified as belonging to that customer for all time. In contrast, mixed-sensitivity reuse

requires dynamic changes to the classification of locations.

This thesis continues experimentation in the literature [64, 67] on confidentiality prop-

erties that support value-dependent classification schemes, in which the classification of a

location can change dynamically in a manner dependent on values currently held in other

locations. This implies a recognition of which of the variables in the program—termed the

control variables [64]—are significant for controlling the classification of other variables.

(In Figure 1.2, current customer would likely control the classification of workspace.)

For control variables to function as an effective means of coordinating customer–

resource dedication, these approaches require the instantiator of the theory to demonstrate

the satisfaction of certain requirements in the treatment of these variables—for example,

the requirement that sensitive information belonging to one customer be flushed from a

shared location, before it is reclassified to belong to another customer.

1.2.3 Confidentiality-preserving refinement, for compiler verification

Tying the above concerns together, this thesis gauges the applicability to compiler verifi-

cation of notions of confidentiality-preserving refinement [66, 85], that specifically preserve

a timing-sensitive, assume–guarantee-supporting notion of noninterference with value-

dependent classification policies [67, 65].

This seeks to mirror the usual approaches of large-scale compiler verification efforts

like CompCert [48] and CakeML [47] of using various notions of refinement to prove

preservation of program semantics—but in this case, satisfying a notion of refinement

expressly designed to preserve security while tackling the difficulties raised in Section 1.1.

1.2.4 Machine-checked formalisation and proof

All theories described in this thesis are simplified presentations of theories formalised [84] in

Isabelle/HOL (Isabelle’s higher-order logic) [71], with development of the theories having

proceeded using the Isabelle interactive proof assistant as a development environment.

The Isabelle/HOL theories for this thesis [84] build directly on top of the previous

Isabelle formalisations [65, 66] of Murray et al. [67]—work I assisted prior to this thesis—

which in turn had extended the Isabelle-based formalisation [33] of Mantel et al. [54].

1.3 Overview of contributions

This thesis evaluates the feasibility of formal methods (1) for verifying noninterference—

total absence of information flow between certain designated locations—for a mixed-

sensitivity concurrent software program, and (2) for having that noninterference verifi-
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cation proof effort be carried down to a target language semantics by a one-time compiler

verification proof effort. Consequently, compiling the threads of such a program yields a

concurrent program that also satisfies noninterference.

An extension of the program verification method is also presented, allowing some forms

of secret-dependent control flow (as a foundation for future extensions of the compiler).

1.3.1 Completion of a program verification method

Chapter 4 presents the first contribution of this thesis: a novel set of per-thread techniques

that is sufficient to prove noninterference for mixed-sensitivity concurrent programs. They

show programming-language designers that assume–guarantee makes it feasible to prove

that their synchronisation primitives make these proofs compositional.

Specifically I extend, for a generic imperative language, a prior set of proof techniques

by Murray et al. [67, 65] whose compositionality was conditional on some unproved re-

quirements. I add mutex lock-based synchronisation primitives to that language, and prove

that their semantics maintains the needed compositionality requirements as an invariant

of program execution. I also add type-checking rules for the new primitives accordingly,

and prove the updated rule sets remain sound. The requirements proved are also from

Murray et al. [67, 65], and I present them as formal preliminaries in Chapter 3.

The work of Chapter 4 led to a program logic (with additional features falling outside

the scope of this thesis; see Section 2.2.4) that establishes security for mixed-sensitivity

concurrent programs using mutex locks, presented in the following paper:

• [68] Toby Murray, Robert Sison, and Kai Engelhardt. Covern: A logic for compo-

sitional verification of information flow control. In European Symposium on Security

and Privacy, pages 16–30, London, United Kingdom, April 2018. IEEE.

1.3.2 Demonstration of a compiler verification method

Chapter 5 then presents the second contribution of this thesis: the first compiler proved to

preserve proofs of noninterference for mixed-sensitivity concurrent programs. This shows

compiler developers that decomposition principles make it more feasible to prove that

compilers satisfy noninterference-preserving notions of refinement.

Specifically I implement an Isabelle/HOL function that compiles programs from the

language of Chapter 4 to a generic RISC-style assembly language, adapted from a compi-

lation scheme originally intended for fault-resilience [95]. I then prove that this compiler

satisfies a confidentiality-preserving notion of refinement from Murray et al. [67, 66], using

a decomposition principle (falling outside the scope of this thesis) published alongside the

compiler [85]. I present these background notions as formal preliminaries in Chapter 3.

The work of Chapter 5 appeared in the following paper:

• [85] Robert Sison and Toby Murray. Verifying that a compiler preserves concur-

rent value-dependent information-flow security. In 10th International Conference on
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Interactive Theorem Proving (ITP 2019), volume 141, pages 27:1–27:19, Portland,

USA, September 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

1.3.3 Demonstration of program verification, preserved by a compiler

Chapter 6 presents the third and central contribution of this thesis, resting on those of

Chapters 4 and 5: the first significant mixed-sensitivity concurrent program proved to

satisfy a noninterference property, preserved by a compiler down to an assembly-level

model. This validates the central claim of this thesis, that proving confidentiality and its

preservation by a compiler is feasible for such programs.

Specifically I implement, in the language of Chapter 4, a model of an actual non-

trivial mixed-sensitivity concurrent program serving a real-world use case: the software-

componentised input-handling regime for the Cross Domain Desktop Compositor [13]

(CDDC). I then exercise the proof techniques of Chapter 4 on each thread to yield a

proof of noninterference for the model. Finally, I show that it is straightforward to use

the proofs about the compiler of Chapter 5 to obtain noninterference automatically for a

RISC-style assembly language model of the program, output by the compiler.

A demonstration of all these methods on a two-component variant of the CDDC input-

handling model appeared in the paper Sison and Murray [85] (noted by Section 1.3.2)

that presented the contributions of Chapter 5. As case study, this thesis presents a three-

component model that is more faithful to the CDDC input handler’s original C-language

implementation than the two-component model verified and compiled by Sison and Murray

[85]. This three-component model previously appeared in the paper Murray et al. [68]

(noted by Section 1.3.1), except that the version in this thesis checks certain functional

properties at runtime, instead of discharging them using the general assume–guarantee

verification support added by the Covern logic [68].

1.3.4 Program verification extension for secret-dependent control flow

Although secret-dependent control flow is compatible with the underlying theory of Murray

et al. [67] on which this thesis rests, the contributions of Chapters 4 and 5 as applied in

Chapter 6 disallow it—a practice common in the literature when proving confidentiality.

To address this, Chapter 7 presents a fourth and final contribution: the first instance of

syntax-directed reasoning about secret-dependent control flow for mixed-sensitivity con-

current programs. This shows programming-language designers that security type systems

are capable of such reasoning.

Specifically I add to the security type system of Chapter 4 a rule that admits limited

forms of conditional branching on secrets, and prove that it remains sound. In short, the

rule ensures the absence of any timing leaks that are convertible to storage leaks, assuming

a scheduler making decisions according to the same notion of time.

This final contribution is intended to facilitate future work on extending the compiler

of Chapter 5 to allow noninterference-preserving compilation of such programs.
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Chapter 2

Review of related formal methods

As explained in Chapter 1, this thesis is about proving particular forms of a family of

confidentiality properties referred to broadly as noninterference [32], and its preservation

by a compiler, that are designed to cater to mixed-sensitivity concurrent programs.

After introducing the basic forms of noninterference properties and what distinguishes

them from the more typical safety properties (Section 2.1), this chapter will present a

literature review divided into each of the two problems introduced in Chapter 1—program

verification (Section 2.2) and compiler verification (Section 2.3)—gradually narrowing in

on the aspects of those problems most relevant to this thesis. A formal presentation of

preliminaries from background work on these topics will be given separately, in Chapter 3.

2.1 Defining noninterference

The term “noninterference”, as used in the field of security verification, was coined by

Goguen and Meseguer [32] to mean: “what the first group (of users) does. . . has no effect

on what the second group of users can see.” The literature typically refers to this first

and second group respectively as the high and low user or classification.

This thesis will mostly focus on definitions of noninterference that assert that any two

initial states of some program that “look the same” to that low-classified group of users

must execute with semantics that also “look the same” to that group. Overloading ≃
to denote some formal notion of (low-)observational equivalence both (1) between states

and (2) between behaviours of the program (to a low user), and using JσK to denote its

behaviour when executed with initial state σ, these definitions broadly take the form:

∀σ1 σ2. σ1 ≃ σ2 −→ Jσ1K ≃ Jσ2K

Noninterference properties are 2-safety [96] hyperproperties [20]: Two executions are

necessary to refute noninterference, whereas safety properties can be refuted by a single

execution. A counterexample pair of executions to noninterference, when formalised as

just shown, indicates a leakage of information in the form of some difference in the state

visible to low user, resulting from differences in some part of the state that cannot be seen
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by them—such “hidden” differences could have only resulted from the high user. Formally:

∃σ1 σ2. σ1 ≃ σ2 ∧ Jσ1K ̸≃ Jσ2K

Information leakage was first formalised in this manner in 1977 by Cohen [22], who

termed that leakage a strong dependency, and formalised confidentiality in terms of its

negation—some 5 years before Goguen and Meseguer [32]. Defining confidentiality in

much the same form, seemingly independently of Cohen [22] in the mid-90s, Volpano

et al. [99] described it as “noninterference-like”, and the name has stuck ever since.

The style of noninterference definition described so far can be contrasted to purge-based

definitions, which more closely follow Goguen and Meseguer [32]: These instead compare

the behaviour of a program before and after applying a “purge” function that removes

secrets from an input to the program. Overloading ≃ to denote low-observational equiv-

alence between input strings, and JwK to denote the program’s behaviour when executed

on input string w, Goguen and Meseguer’s noninterference took the form:

∀w. JwK ≃ Jpurge(w)K

Note that this is just as much a 2-safety hyperproperty; it is refuted by a counterexample

pair of executions of the program that have different observable semantics before and after

purging secrets from the input string—that is, ∃w. JwK ̸≃ Jpurge(w)K.

2.2 Program verification: Proving noninterference

This section will review the literature on improving the precision of analyses (Section 2.2.1)

seeking to establish noninterference, and on having these analyses support programs with

mixed-sensitivity reuse (Section 2.2.2) and concurrency, in a manner that is composi-

tional across the concurrently running threads (Section 2.2.3). (The formal preliminaries

provided in Chapter 3 will then centre on a particular form of noninterference from the lit-

erature that combines all three concerns.) After a brief discussion of works contemporary

with and subsequent to the work in this thesis that also reconcile mixed-sensitivity reuse

and concurrency compositionally (Section 2.2.4), the final part of this literature survey on

program verification will focus on related works’ decision of whether to allow or disallow

secret-dependent control flow (Section 2.2.5). (That topic will be the focus of Chapter 7.)

2.2.1 With better precision, through flow sensitivity

Although Jones and Lipton [39] proved that it is impossible to construct a fully automated

sound method of information-flow policy enforcement that is also complete—does not

reject any secure programs—research in this area has steadily improved the precision of

methods, so that they accept more and more secure programs. These approaches thereby

seek to retain greater scope for automation and pose less practical difficulties than complete
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methods like relational Hoare logics [14, 15] and self-composition [7, 96]. (Needless to say,

proving soundness—rejection of all insecure programs—is broadly treated as compulsory.)

This thesis will focus on security type systems for achieving language-based security, an

idea first proposed and demonstrated by Volpano et al. [99]—at the time, as a reformulation

of a security analysis method (described by Denning and Denning [25]) to make it amenable

to a soundness proof. In their security type system, each variable in the system was given a

security type that corresponds exactly to a classification (there called “security class”) that

does not vary over time. In this way, a violation (e.g. assignment l := h, from a sensitive

source h of type High to an untrusted sink of type Low) can be identified instantly just by

comparing the security types of the variables involved in a given command.

A body of work surveyed by Hunt and Sands [36] has focused on gaining precision

through greater flow sensitivity—in short, the ability to base security judgements on things

that happen before or after a given point in the program (i.e. sensitivity to position in

the control flow [19]). Consider for example the program l := h; l := 0 against an attacker

who can only observe the final value of each variable (thanks to Hunt and Sands [36]).

A flow-insensitive analysis (like that of Volpano et al. [99]) would reject the assignment

l := h as insecure—in effect, asserting perfect recall [34] of l’s entire history, despite the

attacker only observing l’s final value. To allow the l := h assignment in these situations,

flow-sensitive security type systems “allow the type of a variable to float” [36] by having

typing environments track the sensitivity of the data in each variable (e.g. Γ :: Var ⇒
{High, Low}) as the analysis progresses through the control flow of the program. They

then only enforce at the end of the program that untrusted sinks (like l in our example)

no longer contain secrets (e.g. for some final typing environment Γ′, that Γ′ l ̸= High).

Clearly this kind of reasoning, on account of being sensitive to state, implicitly and

broadly assumes both (1) the stability of that state—that is, the absence of changes to the

values in the locations involved—and (2) that no other parties are able to read from any

relevant locations at intermediate points of the program. It is important to note that while

such assumptions are perhaps reasonable for sequential programs, they will come under

threat upon introducing concurrency (in Section 2.2.3). This caveat will apply to any

other improvements in precision that rely on tracking or making use of extra information

about the state of the program—such as the “context sensitivity” (using knowledge about

the calling context) and “object sensitivity” (using knowledge about the object hosting

the current method, in an object-oriented environment) offered by the JOANA tool [89].

2.2.2 With mixed-sensitivity reuse, through value dependence

We now turn to the emergence of confidentiality proof techniques precise enough to allow

reuse of locations for data of differing sensitivity levels at different times. This requires

judgements of security to be value dependent, which in turn means analyses must be flow

sensitive (discussed Section 2.2.1) enough to track any runtime changes to those values.

(Recalling the example of Figure 1.2, to prevent assigning the data in workspace to the
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wrong customer, the assignment would likely be judged secure or not depending on the

value of current customer, which therefore must be tracked by a flow-sensitive analysis.)

Zheng and Myers [102, 103] were the first to present a formal soundness proof for a

security type system with judgements dependent on values that can change at runtime (not

merely differ between runs, as achieved by Tse and Zdancewic [97] shortly beforehand).

Subsequent formally proved-sound security type systems with value dependence include

those for the Fine [92] and F* [93] languages, and the dependent information-flow types

of Lourenço and Caires [51]—these each differed in how they map values to sensitivity

levels. Costanzo and Shao [23] showed furthermore that proving a value-dependent notion

of security is just as possible using a program logic that tracks assertions about state, in

the usual fashion for separation logics [72, 77] and other Floyd–Hoare-like logics [29, 35].

To analyse mixed-sensitivity reuse of shared memory in concurrent programs, Murray

[64] coined the term control variables to describe those variables in memory, on whose

values the value-dependent classification of other variables depends. Security typechecking

for the resulting concurrent value-dependent noninterference property in Murray et al. [67]

(which extended the security type system of Mantel et al. [54], and which I will extend

further in Chapter 4) involved tracking abstractions of both:

• dynamic classifications based on memory (as a set of predicates over variables that,

if all true, imply the variable contains Low-sensitivity data), and

• the current state of all memory (as a set of predicates over variables that are all

“currently known” to be true).

This was in contrast to tracking only static classifications of data held by each variable (as

done by Mantel et al. [54], Hunt and Sands [36] in the manner described in Section 2.2.1).

It is important here to note that as these analyses rely on tracking some abstraction

of state, this once again relies on the stability of that state—which (as pointed out in

Section 2.2.1) will come under threat from concurrency in Section 2.2.3. The difference

here from Section 2.2.1 (and Mantel et al. [54]) is that, as judgements now depend on real

values, the security type systems are now obliged to track some abstraction of the actual

values computed by the program, and not just their security levels. (Recalling the example

of Figure 1.2 as discussed in Section 1.1.2, functional-correctness issues that impact on the

coordination of mixed-sensitivity reuse are thereby security critical.) For instance, Murray

et al. [67] allows tracking of values in any shared variable (not just control variables), as

they might in future influence the value of a control variable (and thereby any security

judgements dependent on them). Section 2.2.3 will elaborate on how analyses formalise

assumptions of stability needed for flow sensitivity in the face of concurrency.

2.2.3 With concurrency, done compositionally

This section will review the literature on how to handle the impact of concurrency on

proving noninterference, which implies a trade-off between the responsibility of the sched-

uler, and that of the threads it is scheduling. In short, this literature will show that for
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choices of scheduler that allow race conditions, security analysis for each thread is obliged

(1) to prevent timing leaks relative to the notion of internal time defined by the scheduler,

and (2) to quantify over the potential impact of scheduling decisions on shared memory. I

then elaborate on the approach in the literature followed by this thesis, of using assume–

guarantee reasoning (introduced in Section 1.2.1) as a compositional way to contractualise

the race-freedom of the inter-thread interactions that are permitted by such a scheduler.

A contract with the scheduler

As was illustrated by the example of Figure 1.1, a key goal is to prevent internal timing

channels being converted into storage channels (via race-prone access to shared memory);

the choice of scheduler matters because internal time is scheduler relative.

In their seminal work on language-based noninterference in concurrent programs, Smith

and Volpano [88] assumed an angelically [38] (or Floyd-style [28]) nondeterministic sched-

uler that always (if possible) chooses an interleaving that avoids any information leak.

However, Smith and Volpano recognised that their noninterference property would not be

preserved when refining away that nondeterminism to choose a particular scheduler—an

instance of refinement paradox (a term attributed to Jacob [37] by Morgan [62]).

Subsequent works therefore aimed to prove noninterference for concurrent programs

when executed with particular classes of schedulers. While some targeted common classes

of scheduler implementation (such as uniform probabilistic [98, 100] and round robin [78]),

others sought more “scheduler-independent” verification techniques. Such techniques aim

to permit wider classes of schedulers, that are instead characterised primarily by security-

relevant requirements ranging from active participation to complete distrust.

On the “active participation” end of the spectrum, Barthe et al. [9, 10] presented an

approach that is sound assuming a class of security-aware scheduler, which is aware (via

program annotations) of whether a thread is on a secret-dependent control flow path, and

disallows it to be interrupted by any thread that might race with its subsequent effects on

race-prone memory. With the scheduler thereby actively controlling the notion of time to

hide timing leaks, the security analysis for each thread need not be timing sensitive.

On the “complete distrust” end of the spectrum, Zdancewic and Myers [101] instead

required threads never to write–write or read–write race on shared state. As this removes

any means of propagating a timing leak to storage, the scheduler’s behaviour and notion of

time become largely irrelevant to the security analysis for each thread. However, this also

implicitly rules out any asynchronous communication via shared memory, thus restricting

analysis to programs that use only message passing-based synchronisation primitives.

In between are approaches that do not impose such an active role on the scheduler as

Barthe et al. [10], but do allow race conditions; these include the “strong low-bisimulation”-

based approaches [53, 54, 67] pioneered by Sabelfeld and Sands [80], that are followed by

this thesis. This makes it possible to model the kind of inherently race-prone asynchronous

communication underlying the implementation of synchronisation mechanisms in shared
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memory. These works have in common that they impose the following kinds of scheduler-

aware requirements on the program threads’ security analyses:

1. The program threads are now responsible for not propagating any timing leaks to

storage via race conditions; this largely comes down to the treatment of threads

that have secret-dependent control flow. While some approaches ban such threads

from writing to certain race-prone parts of memory after secret-dependent control

flow (e.g. Mantel and Sudbrock [53], Stefan et al. [90]), other approaches instead

ensure the alternative control-flow paths always take the same time (e.g. Sabelfeld

and Sands [80], Mantel et al. [54], Murray et al. [67])—the latter must be sensitive

to the notion of internal time as defined by the granularity of scheduling decisions.

The various approaches to secret-dependent control flow in the literature on nonin-

terference for concurrent programs will be the focus of Section 2.2.5.

2. Furthermore, for the security analyses of program threads to be sensitive to the

impact of other threads’ interference with the shared memory, these analyses may

need to account for the possible choices made by the scheduler. Such works require

these analyses to exhibit some variant of strong low-bisimulation [80] to witness

noninterference: Whereas low-bisimulations (first applied to proving noninterference

by Focardi et al. [30]) enforce observational equivalence as seen by a “low” user,

strong low-bisimulations (as adapted for concurrency by Sabelfeld and Sands [80])

quantify over all possible scheduling decisions at every step of the program.

The resulting problems of scale are addressed in the literature with contracts be-

tween the threads, which is the focus of the following section.

Finally, the scheduler is typically required (explicitly or implicitly) to satisfy a nonin-

terference property showing that its scheduling decisions (or their probability distribution

[80, 53]) for leak-prone threads are not dependent on secret information. For example,

Sabelfeld and Sands [80] define schedulers as functions from non-sensitive information

only, whereas Mantel and Sudbrock [53] formalised a purge-based noninterference property

defining a class of “robust schedulers” that allow secret information to taint only decisions

about non–leak-prone threads. Karbyshev et al. [42] have also allowed scheduling deci-

sions to become tainted by secret information, but instead ensure (via typechecking) that

the program has no race-prone effects on attacker-visible resources1 until it has reset the

scheduler state using a designated primitive. Even if not defined formally (as in Mantel

et al. [54], Murray et al. [67]), an assumption that scheduling decisions (or environmental

noise, in the case of Tedesco et al. [95]) do not inject any secrets is implied wherever there

is a use of strong low-bisimulations that only ever demand a comparison between the same

scheduling decisions (resp. environmental noise [95]) for observationally equivalent states.

1The type system of Karbyshev et al. [42] knows which of these effects are race prone by tracking the
transfer between threads of fractional permissions [16] over those resources; as this transfer of ownership
is between threads and not sensitivity levels, this should not be confused with mixed-sensitivity reuse.
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Contracts between the threads

Approaches to concurrent program noninterference based on strong low-bisimulation (as

just described), for all their strengths, commit the program analysis to quantifying over

all possible scheduling decisions and their resulting inter-thread interactions.

Finding a way to reason over inter-thread interactions that is also compositional across

an arbitrary number of threads as software components (as motivated in Section 1.1.3)

is a famously nontrivial problem. For example, the classic Owicki–Gries technique [74]

(albeit for analysis of program functionality, not confidentiality) reduced the effort from

exponential to quadratic in the number of threads. However it is not compositional because

it requires knowledge of the code for all of the threads in the system; thus, the analysis of

any one thread is fragile to changes made to the code of other threads.

The approach followed by this thesis to managing the inter-thread interactions, which

is explicitly geared towards compositionality, is the rely–guarantee reasoning of Jones [40]

as adapted by Mantel et al. [54] (there called assume–guarantee) to apply to confidentiality.

Recall (from Sections 1.1.1, 2.2.1, and 2.2.2) that the concurrency of access to shared state

has two effects on the precision of formal confidentiality analyses:

1. It shatters the assumption of stability on which most reasoning rests.

Reasoning that is sensitive to state implicitly depends on the stability of that state—

that is, the absence of changes to the values in the locations involved.

This first concern is not restricted to analyses of information-flow security, but (as

pointed out in Section 2.2.2) such stability is needed for flow-sensitive analysis, which

is critical to discharge value-dependent notions of security for mixed-sensitivity reuse.

2. It also shatters any assumptions that intermediate values cannot be read.

Temporarily housing secrets in locations relies on no other parties being able to read

those locations at intermediate points of the program.

This second concern is much more specific to information-flow security.

Both assumptions (often made implicitly when analysing sequential programs) are in

essence violated by actions that can be taken by other threads whose executions are

interleaved with the one under analysis, when they share access to common state.

The general intuition for this adaptation of rely–guarantee to concurrency is that it

contractualises threads’ freedom from each of these two effects. To this end,

Mantel et al. [54] proposed and demonstrated restricting the interleavings that must be

considered during program analysis of each thread, by using explicit annotations of these

assumptions in the form of two access modes mirroring the two concerns named above:

1. “No write x” is just a standard rely–guarantee condition [40], specifying that the

contents of location x are unchanged by a step of interference σ ⇝ σ′ between two

states. Its specification broadly takes the form, paraphrased from Grewe et al. [33]:

σ ⇝ σ′ −→ σ.x = σ′.x
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This serves in a roughly similar capacity to proving “interference freedom”2 in the

Owicki–Gries method [74]—that is, that any assertions made at a program point are

not falsified by statements in the code of the other threads.

2. “No read x” asserts that any step of interference σ ⇝ σ′ taken by another thread is

independent of the contents of location x. In that sense, it is itself a noninterference

property that treats the original contents of x as confidential, with respect to the

entirety of the destination state treated as an untrusted sink.

Grewe et al. [33] specified this in a form equivalent to the following: Rewriting x with

an arbitrary value v either has no effect on the destination, or its only effect is to

change the value of x to v in the destination. Paraphrased here from Isabelle/HOL:

σ ⇝ σ′ −→ ∀v. (σ[x 7→ v]⇝ σ′) ∨ (σ[x 7→ v]⇝ σ′[x 7→ v])

For example, an assignment x := 3 satisfies “no read x” (via the first disjunct, as it

overwrites any v with 3); so does the assignment y := z (via the second disjunct).

Unlike the “no write” mode, the “no read” mode has no direct analogue in Owicki–

Gries’ method [74] or standard rely–guarantee [40]. As expected for a noninterference

property, it is a 2-safety hyperproperty: A counterexample cannot merely exhibit

some single interference step σ ⇝ σ′, but must rather exhibit the pair of that step

with a violating interference step: σ[x 7→ v] ⇝ σ′′, where σ′′.x ̸= v ∧ σ′′.x ̸= σ′.x.

Thus it cannot be encoded with a standard rely-guarantee condition, which can only

make assertions about the state before or after a single given step of interference.

Mantel et al. [54] then demanded, as the witness to noninterference for each thread, a

strong low-bisimulationmodulo modes: These are not required to quantify over interference

that would disobey any access modes (annotated as) active at a given program point.

In allowing security analysis to be relative to such assumptions, Mantel et al. [54]

imposed two side conditions needed for their compositionality: a (non-compositional)

global one showing that each thread’s assumptions are always guaranteed by all the

other threads, and a local one showing that each thread always complies with its own

guarantees. Mantel et al. [54] provided type systems for the local side condition and

security property, but proposed that the non-compositional global side condition be met

by a non-compositional may happen in parallel analysis (e.g. Masticola and Ryder [56]).

Mantel et al. [55] subsequently proposed a solution using a reachability analysis making use

of dynamic pushdown networks, and Askarov et al. [5] a solution using dynamic monitoring.

Murray [64] adapted the above principles further to support mixed-sensitivity reuse

of shared memory; however, Murray et al. [67] (like Mantel et al. [54]) developed proof

techniques only for discharging the local obligations. Discharging the global side condition

would complete a method of verifying concurrent programs with mixed-sensitivity reuse;

therefore, the first contribution of this thesis (in Chapter 4) is to provide an instantiation of

2No direct relation to the noninterference concept of Goguen and Meseguer [32].
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Murray et al. [67] wherein the global side condition is proved as an invariant of a language’s

mutex locking primitives, whose semantics are based on shared memory interactions.3

2.2.4 With both mixed-sensitivity reuse and concurrency

As I noted in Section 2.2.3, Murray [64] and Murray et al. [67] added support for programs

with mixed-sensitivity reuse to the approach of Mantel et al. [54] to proving noninterference

for concurrent programs; it is these works’ approach which I follow and extend in this

thesis, so as to prove noninterference for mixed-sensitivity concurrent programs.

The work described in this thesis is both contemporary with and succeeded by a

number of related works that, likewise, concern program verification techniques for proving

noninterference properties compositionally for mixed-sensitivity concurrent programs.

Firstly, as I noted in Section 1.3.1, the Covern logic of Murray et al. [68] extends

both the underlying theory of Murray et al. [67] and the work of Chapter 4 in this thesis.

These extensions add support for proving shared data invariants, about variables protected

by the mutex locks in the While language of Chapter 4, that may be necessary to prove

noninterference for a given concurrent program. This allows the removal of runtime checks

of such shared data invariants of the kind made by the case study I present in Chapter 6.

Subsequently, SecCSL (Security Concurrent Separation Logic) by Ernst and Murray

[27] presented an evolution of the ideas in the Covern logic, instead applying more di-

rectly the natural strengths of concurrent separation logics [17, 73] to enable compositional

noninterference proofs for a wider range of mixed-sensitivity concurrent programs:

1. Separation logics typically already track the values at memory locations—a feature

of both the security type system of Murray et al. [67] extended in Chapter 4, and

the Covern logic—which (recall from Section 2.2.2) is necessary to prove the value-

dependent security properties needed for programs with mixed-sensitivity reuse.

2. Unlike Covern and Murray et al. [67], however, and like other separation logics,

SecCSL tracks the locations themselves as pointer arithmetic expressions, making

it possible to support programs with indirect addressing via pointers and arrays.

Also related is Veronica by Schoepe [81], Schoepe et al. [82], a program logic which,

in addition to supporting compositional noninterference proofs for mixed-sensitivity con-

current programs, also adds support for “delimited release”-style declassification policies

[79]. In doing so, this work is remarkable for reconciling several features of proof pre-

cision; another such feature is a proof rule that allows programs with secret-dependent

conditional branching, under restrictions similar to those I present in Chapter 7 in my

extension to the security type system of Murray et al. [67] and Chapter 4. Finally, they

present a new approach to noninterference proof compositionality, based on “decoupling”

functional correctness reasoning from security reasoning: In contrast to mandating the use

3By way of preliminaries, Chapter 3 (specifically Section 3.1) will present formally the requirements
posed by Murray et al. [67] that need to be met by such an instantiation.
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of assume–guarantee contracts or separation logic assertions, Veronica instead allows the

use of Owicki–Gries-style annotations [74] to express the security-critical expectations of

functional correctness held by each thread of others; Veronica’s logical judgements then

establish the security property assuming these functional correctness assertions hold, so

that they can then follow from some completely security-agnostic compositional analy-

sis of that functional correctness. They then provide two such analysis implementation

backends in their Isabelle/HOL formalisation: one based on the Owicki–Gries method as

implemented by Nieto [69], Nieto and Esparza [70], and the other based on rely–guarantee.

2.2.5 With secret-dependent control flow, despite concurrency

Techniques for proving noninterference in the literature have been obliged to treat secret-

dependent control flow carefully: Differing observable effects of the alternative control flow

paths constitute an implicit flow of the secret, even if there is never any direct assignment

(i.e. explicit flow) of a secret value to an observable location. As implicit flows can include

timing leaks—when the timing (but not the value) of some observable effect differs—

special care must be taken whenever there is concurrency of access to shared locations,

which (as illustrated in Section 1.1.1) can convert such timing leaks into storage leaks.

In Section 2.2.3 I reviewed various ways of balancing the responsibility between the

scheduler and the threads for preventing timing leaks—we now shift focus to how various

such choices in the literature affect the treatment of secret-dependent control flow. The

first few approaches I will present allow secret-dependent control flow, while avoiding the

need for a timing-sensitive security analysis; we then move on to works whose choices make

a formal treatment of time unavoidable, if secret-dependent control flow is to be allowed.

Allowing secret-dependent control flow while avoiding timing-sensitive analysis

Zdancewic and Myers [101] and Barthe et al. [10] (discussed in Section 2.2.3) both allow

looping (via recursion [101], resp. while-loops [10]) and if -conditional branching to be

secret dependent. Notably, both works avoid any timing-sensitive analysis, despite per-

mitting threads to have observable effects after executing secret-dependent control flow:

As Zdancewic and Myers [101] disallows any race conditions involving writes to shared

memory, the precise timing of any thread’s interaction with the shared memory is irrele-

vant; in contrast, recall that Barthe et al. [10] has the scheduler in effect adjust the notion

of time on-the-fly, to ensure that the time taken regardless of control flow path (judging

from the timing of observable effects afterwards) is indistinguishable to other threads.

Other approaches in the literature avoid security analysis having to be timing sensitive

by restricting the kinds of observable effects a thread can have after any instance of secret-

dependent control flow. This approach is taken by Mantel and Sudbrock [53] (as enforced

by a security type system), Karbyshev et al. [42] (also by a security type system, but

only for observable effects that it knows would be prone to race conditions), and Stefan

et al. [90] (as enforced by an execution monitor), all of which allow secret-dependent if -
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conditionals and while-looping. The approach they take ensures that any writes to an

observable location cannot have their timing (relative to other such writes) be dependent

on any secret; meanwhile, race-prone writes to shared locations not considered observable

by the security property (perhaps dedicated to the transmission of secrets) are permitted.

When timing-sensitive analysis is unavoidable, it is relative to the scheduler

In contrast to the situations just described, analyses may wish to allow threads to have

observable effects after secret-dependent control flow, without banning observable race

conditions or having the scheduler actively manipulate the notion of time. In this case,

there is no other choice but to have the security analysis be sensitive to the “time” taken

by those paths of control flow. Recalling from Section 2.2.3 that internal time is scheduler

relative, any such approach (to preventing storage leaks by eliminating internal timing

leaks so precisely) will depend on the notion of time as defined by the choice of scheduler.

Works by Agat [2], Sabelfeld and Sands [80], Köpf and Mantel [46], and Mantel et al.

[54] presented timing-sensitive security typing rules for secret-dependent if -conditionals

(see also Chapter 7 of this thesis, and the Veronica logic [81, 82] for an example contem-

porary with this thesis). These works required (and in some cases [2, 80, 46] transformed)

the alternative control flow paths to take the same amount of “time”, as measured in the

evaluation steps of the programming (or assembly) language’s semantics.

The remainder of this section will explain that, when used for threads of concurrent

programs, such analyses will have to assume that scheduling is either (1) based on real time

on a simple hardware platform, with evaluation steps taking a fixed amount of real time;

or, (2) based on some other notion of time like the number of instructions executed [91],

provided this can be measured in a reliable manner. Otherwise, banning secret-dependent

control flow (e.g. Molnar et al. [61]) may be the most appropriate solution.4

First, if the scheduler makes decisions based on real time, then internal time is real

time; to analyse the running time of control flow paths, the program verifier must then

have reliable and accurate information about the real timing behaviour of the hardware

platform. For simple platforms, real timing behaviour might be predictable enough to

model accurately with a deterministic semantics—such as in Dewald et al. [26] for AVR.

However, typical (superscalar) processing architectures present complex microarchitec-

tural features, exhibiting undocumented (often exploitable [31, 45]) nondeterministic real

timing behaviour. Thus, banning secret-dependent control flow outright—preventing all

implicit flows, including timing leaks—is fairly common; variants of noninterference based

on the program counter security (or pc-security) notion of Molnar et al. [61] enforce this

by explicitly treating control flow (as captured by the program counter) as an observable.

Note also that, although the security property of Murray et al. [67] used by this thesis

(see Chapter 3) is sensitive to time as modelled by evaluation steps, the security type

system presented in that paper (as well as this thesis’ contributions of Chapters 4 through

4That is, if the need for a timing-sensitive analysis cannot be avoided by ruling out race conditions
between threads or using a security-aware scheduler, as described under the previous subheading.
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6 that are based on it) also effectively bans secret-dependent control flow, by imposing a

pc-security–like extra requirement on top of the original security property.

Finally, to prevent the internal timing leaks that result from schedulers that make

decisions based on (unpredictable) real time, Stefan et al. [91] proposed instruction-based

scheduling, which instead makes decisions based on time as counted by the number of hard-

ware instructions “retired” (after being executed). As implementations of such schedulers

have in practice been found to suffer from nondeterminism in the retired instruction counts

(retrieved using hardware performance counters), timing analyses based on instruction-

based scheduling would need to rely on the removal of such nondeterminism; Cock et al.

[21] evaluated the extent to which they can result in measurable information leaks.

2.3 Compiler verification: Proving property preservation

Apart from being about proving certain (particularly targeted) kinds of confidentiality

properties, this thesis is also about proving that a compiler preserves such properties.

This section will take the following approach to the literature on compiler verification:

It starts (in Section 2.3.1) with large-scale verified compiler projects that have succeeded

in preserving the standard (safety, liveness) properties down to low-level (assembly, byte-

code) languages, then moves on (in Section 2.3.2) to efforts to extend the scope of compiler

verification to preservation of hyperproperties [20] like confidentiality, and finally (in Sec-

tion 2.3.3) efforts to preserve confidentiality properties in the presence of concurrency.

Chapter 3 will then provide (specifically in Section 3.2) a formal presentation of the set of

requirements, drawn from background work, that this thesis will demonstrate can be met

by a compiler so as to preserve noninterference for mixed-sensitivity concurrent programs.

2.3.1 For single-trace properties, like safety and liveness

Research on formal compiler verification [58, 63] and its mechanisation [59] spans decades.

However, the last 15 years in particular have seen several groundbreaking projects, demon-

strating that it is feasible for fully fledged compilers, for practical subsets of mainstream

programming languages down to assembly or bytecode, to be verified as correct using

interactive theorem proving:

• Klein and Nipkow [43] presented Jinja, a dialect of Java intended to exhibit its core

features, with a compiler that is verified (using Isabelle/HOL [71]) to preserve the

semantics and well-typedness of Jinja programs down to JVM bytecode. Lochbihler

[49, 50] later did the same for JinjaThreads, an multithreaded extension of Jinja.

• Leroy [48] presented CompCert, the first C compiler formally verified (here using the

Coq [94] proof assistant) to preserve program semantics from source (a “verifiable

subset” of C) down to hardware assembly—here PowerPC, ARM, RISC-V, and x86.
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• Kumar et al. [47] then presented CakeML (a subset of Standard ML [60]) with a

compiler proved (using the HOL4 [86] proof assistant) to preserve the semantics of

CakeML programs down to ARM, x86, MIPS, and RISC-V assembly code.

All of the above projects proved that their compilers preserve “program semantics” in

the sense of some notion of the “observable behaviour” of the source program.

In the case of JinjaThreads, CompCert, and CakeML, the preserved behaviours are

traces of various “observable events” emitted by the program, such as input–output events,

or memory operations. To be precise, these three projects proved that the source program’s

execution simulates that of the compiled program;5 therefore, the compiled program is a

refinement of the source program, because it only produces traces that the source program

could have produced. A simulation relation then serves as a witness to that refinement.6

As the traces preserved by the JinjaThreads, CompCert, and CakeML compilers can

be of either finite or infinite length, this automatically implies that they preserve all safety

(finite-trace counterexample) and liveness (infinite-trace counterexample) properties of the

source programs that are defined in terms of the kinds of events captured by the traces.

2.3.2 For multiple-trace hyperproperties, like noninterference

The previous section talked about compilers verified to preserve traces of certain “ob-

servable” behaviours, and thereby safety and liveness properties that are defined in terms

of those behaviours. However, as I explained in Section 2.1, noninterference properties

are 2-safety hyperproperties [96, 20], because they make assertions about pairs of execu-

tion traces—rather than about individual execution traces—for a given program. Thus,

in contrast to the previous section, fully fledged source-to-assembly (or bytecode) com-

pilers verified to preserve hyperproperties (beyond the standard 1-safety and 1-liveness

properties) are only now beginning to emerge. I now narrow in on such efforts in the lit-

erature, that preserve confidentiality (hyper)properties in particular (but defer discussing

adaptations to concurrency and other environmental interference to Section 2.3.3).

Beyond the seminal work of Barthe et al. [6, 8], the line of work most relevant to

this thesis is that conducted (concurrently with this thesis) by Barthe et al. [12], wherein

they achieved the remarkable result of proving that a modification of the CompCert C

compiler [48] preserves the cryptographic constant-time class of noninterference (2-safety)

properties. Their proof approach was to use various notions of constant-time simulation

(CT-simulation) [11] originally intended for application to the Jasmin compiler [3]. Al-

though not targeting programs with concurrency or mixed-sensitivity reuse (as this thesis

does), CT-simulation shares in common with the refinement notions used by this thesis

5Note that the compiler verification literature, from Leroy [48] onwards, tends to refers to this direction
as “backward simulation”. This is not to be confused with the “backward simulations” of concurrency
verification [52] and data refinement [24, 18], where the refined program instead simulates the original, and
where simulation proceeds from the end of the program back to the beginning.

6In the case of JinjaThreads, Lochbihler [49, 50] went even further and exhibited a bisimulation relation
as witness—an even stronger result than was strictly needed to establish refinement.
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(from Murray et al. [67], which we recall in Chapter 3, Figure 3.2), that it in essence rests

on a simulation diagram that is cube-shaped, as it must preserve a 2-safety hyperproperty.

I submit that Barthe et al. [12] broadly validates the argument we made in Sison

and Murray [85], that decomposing such cube-shaped diagrams into square-shaped ones

is what will make them feasible to apply to the verification of fully fledged compilers like

CompCert—noting that they described the only compilation pass they proved with their

non-decomposed, cube-shaped diagram as “not especially pleasant because the diagrams

are difficult to exploit” [12]. (I will present our decomposition principle from Sison and

Murray [85] in Chapter 3, Figure 3.3, as a preliminary to be used in Chapter 5.)

Furthermore, like the work of this thesis, CT-simulation pursues a timing-sensitive

security property, albeit for different reasons: Whereas Barthe et al. [11, 12] explicitly

aims at the prevention of external timing channels, the property of Murray et al. [67]

is sensitive to an internal (scheduler-relative) notion of time primarily to prevent the

emergence of storage channels (as was discussed in Section 2.2.3).

As a final note: Although Patrignani and Garg [75] proved that a strict notion of

trace-preserving compilation—in which every single entry (observable behaviour) in the

trace must be preserved—is sufficient to preserve all hypersafety properties (k-safety hy-

perproperties [20] for all finite k), a main limitation of this definition is that it permits no

reordering, addition, or removal of observable behaviours. However, compilers routinely

introduce new behaviours that, for timing-sensitive notions of confidentiality, need to be

considered observable. Barthe et al. [12] consider the example of compiling some program

“if c then a else b fi” to “if ¬c then b else a fi”, where the new negation operation “¬”
constitutes an additional observable behaviour. The strict trace-preserving compilation

defined by Patrignani and Garg [75] is not applicable to this compilation; in contrast,

both CT-simulation and the notion of refinement used in this thesis allow adding such

new observable operations (in this thesis, as long as they modify no shared memory).

2.3.3 For noninterference with concurrency

I have so far covered related work verifying that a number of source-to-assembly (or byte-

code) compilers for dialects of mainstream programming languages preserve standard (1-

safety, 1-liveness) properties, as well as a recent example of the same feat for confidentiality

(a 2-safety hyperproperty) by a modification of the CompCert compiler [12].

The task of preserving confidentiality becomes much more difficult again when in-

troducing concurrency—in this section, we review related work that demonstrates these

difficulties. We divide the following discussion of concurrency’s impact into that on each of

the “no read” and “no write” assumptions (discussed in Section 2.2.3), which were avail-

able implicitly in reasoning about sequential programs, but are violated by concurrency.
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Compilers have to worry about concurrency making things readable

Typical optimising compilers freely add and remove behaviours not considered observable

to the user. However, concurrency obliges the shared state to be treated as observable

at every program point at which the scheduler might invoke a context switch to another

thread; this constitutes a form of scheduler-relative timing sensitivity. As already noted,

this heightened timing sensitivity renders simple optimisations (like the compilation exam-

ple at the end of Section 2.3.2 adding a “¬” negate operation) and basic code generation

(like an expansion of x :=y into [Load r y,Store x r], even when only x’s and y’s contents

are considered observable) as changes to observable behaviour, largely ruling out strict

trace-preserving compilation [75] as a method of proving preservation of confidentiality.

Extending the seminal work of Barthe et al. [6, 8] on information-flow security type-

preserving compilation, Barthe et al. [9, 10] added a concurrency semantics and proved

confidentiality preservation for concurrent programs, again following a type-preserving

compilation approach. As explained by Section 2.2.3, this particular work escaped the

need for a timing sensitive notion of observable behaviour and its preservation, because it

assumed the presence of a security-aware scheduler (at the compilation target level) that

prevents any context switches that have the potential to leak sensitive information.

Assuming instead a scheduler with less active responsibilities regarding security (as

elaborated on also in Section 2.2.3), Murray et al. [67] presented a notion of confidentiality-

preserving refinement that has the required timing sensitivity, because it demands preser-

vation of the contents of the shared state at every point of the program at which context

switch may occur—in this case, between every possible execution step (see Chapter 3).

As the shared state includes all control variables (for mixed-sensitivity reuse, as explained

in Section 2.2.2) this furthermore preserves all value-dependent classifications.

Compilers have to worry about concurrency making things writable

Apart from introducing extra points at which behaviour must be considered observable,

concurrency also introduces the threat of changes to the shared state, at each potential

point in time that a context switch is possible. While mostly a concern for preservation of

functional properties, recall from Section 2.2.2 that such functionality has security-critical

impacts when security is value-dependent to admit mixed-sensitivity reuse.

In this respect, the closest related work to ours in compiler verification is that of

Tedesco et al. [95], who presented a type-preserving compilation scheme that preserves

noninterference that, like the one in this thesis, is based on strong low-bisimulation (intro-

duced in Section 2.2.3)—there, intended for execution contexts that are prone to memory

faults. (It is their compilation scheme that this thesis will later adapt in Chapter 5, to

preservation of noninterference for concurrent programs with mixed-sensitivity reuse.)

Also closely related are notions of robust property preservation, of which Abate et al. [1]

have mapped out a spectrum. These have now largely superseded earlier-explored notions

of fully abstract compilation (surveyed by Patrignani et al. [76]). Both bodies of work
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explored requirements for compilers aimed at preserving source program (hyper)properties

in the presence of adversarial execution contexts at the level of the compilation target.

The refinement notion of Murray et al. [67] to be presented in Chapter 3 (on which

compiler verification in Chapter 5 is based) deals with the threat of these changes by

demanding the witness refinement relation be closed under all changes by other threads

permitted by the currently active access modes (recall from Section 2.2.3, these record

which parts of shared memory are assumed to be readable or writable by other threads).

In our publication Sison and Murray [85] of the work of Chapter 5, we conjectured that,

because it preserves a noninterference property that quantifies over some environmental

interference, the refinement notion of Murray et al. [67] is implied by the formal notion

of robust 2-hypersafety preservation (R2HSP) on the Abate et al. [1] spectrum. However,

because that property does not quantify over all environmental interference—only changes

modulo modes (as in Mantel et al. [54])—we do not expect its refinement notion to imply

any of the preservation notions on the Abate et al. [1] spectrum.
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Chapter 3

Formal preliminaries from

background work

This chapter will now give formal details on the theory of a particular background work,

Murray et al. [67], which will be relevant as preliminaries to the formalisms presented in

rest of this thesis. Its relation to the wider survey conducted in Chapter 2 is as follows:

1. Section 2.2 surveyed treatments of concurrency and mixed-sensitivity reuse in other

program verification techniques for confidentiality; Murray et al. [67] sought to pro-

vide such a verification technique combining all of these concerns.

2. Section 2.3 covered some of the other work on verifying confidentiality preservation

by a compiler for concurrent programs; Murray et al. [67] sought to provide such a

preservation notion that is furthermore tailored to allow mixed-sensitivity reuse.

This chapter expands on a similar presentation of the same background work, which we

gave in a recent publication—Sison and Murray [85]—on the contributions of Chapter 5.

First, Section 3.1 presents the concurrent value-dependent noninterference (CVDNI)

notions of Murray et al. [67], whose verification and preservation is the objective of this

thesis. This presentation differs from that given by Sison and Murray [85], in two ways:

1. I provide additional details from Murray et al. [67, 65] on the compositionality

requirements needed for the “per-thread” CVDNI property, once proved for each

thread, to compose into a “whole-system” property about the entire program.

This will be particularly relevant to the program verification efforts of Chapter 4.

2. I present also some updates made to the Isabelle/HOL formalisation [65, 84] of these

properties, that allow parameterisation of initial conditions and extra requirements.

The ability to phrase such restrictions will allow the compiler verification and its

case-study application to rely on them precisely in Chapters 5 and 6.

Then, Section 3.2 presents the CVDNI-preserving refinement notion put forward by

Murray et al. [67], which is the objective of the compiler verification efforts of Chapter 5.
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In addition to that original notion, here I present the other major contribution of Sison and

Murray [85], considered outside the scope of this thesis’ contributions: a decomposition

principle used in Chapter 5 to prove that notion of refinement.

Finally, Section 3.3 summarises what was covered in the chapter.

3.1 Concurrent value-dependent noninterference (CVDNI)

First I present the basic elements in terms of which CVDNI is defined (Section 3.1.1).

Then I present support for parameters on initial conditions and extra requirements added

to the definitions of the per-thread and whole-system CVDNI properties, and the theorem

by which the former composes into the latter (Section 3.1.2). Finally I present the com-

positionality requirements demanded as a side-condition to that theorem (Section 3.1.3).

3.1.1 Basic elements

CVDNI as proved for each thread is defined by Murray et al. [67] in terms of:

1. A binary strong low-bisimulation (modulo modes) relation B between program config-

urations, which serves as witness to CVDNI. In the style of other low-bisimulation–

based noninterference definitions, it requires the program configurations it relates

to agree on their “low”-observable portions, and demands that lock-step execution

preserves that correspondence (explained in Section 2.2.3). Furthermore, it is rely–

guarantee-style concurrency aware, following Mantel et al. [54], but modified to allow

value-dependent classifications [64] for mixed-sensitivity reuse (see next point).

2. A classification function L that determines the “low”-observable portion of a pro-

gram configuration, thus affecting B’s requirements. The innovation of L as param-

eterised first by Murray [64], and then by Murray et al. [67] as reproduced here,

is that L can depend on values in the program configuration itself, thus expressing

dynamic and not just static classifications (explained by Section 2.2.2).

The following definitions are reproduced from the background section of Sison and

Murray [85], which in turn simplified definitions from Section III-2b of Murray et al. [67].

The theory is parameterised over the type of values Val , a finite set of shared vari-

ables Var , and a deterministic evaluation step semantics ⇝ between local configurations

of a thread in a concurrent program. Each local configuration is a triple ⟨tps,mds,mem⟩:

• tps :: ThreadPrivate is the thread-private state, which the theory will consider to

be permanently inaccessible to the attacker and not shared with the other threads.

Note that, due to this inaccessibility, we allow the user of the theory to parameterise

the type ThreadPrivate, and we do not impose any particular structure on it.

• mds :: Mode ⇒ Var set is the (assume–guarantee) mode state, which is ghost state

associating each of Mode ≜ {AsmNoW,AsmNoRW,GuarNoW,GuarNoRW}
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with a set of shared variables. Intuitively, it identifies the set of variables for which

the thread currently Assumes it possesses (or Guarantees it respects) exclusive

permission to Write (or Read and Write), granted (or obligated) for those variables

typically by some synchronisation scheme.1 This facilitates compositional, rely–

guarantee-style reasoning about such access [41, 54] (as explained in Section 2.2.3).

• mem :: Mem is shared memory considered potentially accessible to the attacker and

other threads. To make what is accessible amenable to analysis, we impose the

structure Mem ≜ Var ⇒ Val , a total map from shared variable names to values.

The theory is then further parameterised by the value-dependent classification function

L :: Mem ⇒ Var ⇒ {High, Low}, inducing a function Cvars :: Var ⇒ Var set that returns

all the control variables of a given variable, on which its classifications depend. The set

C = {y | ∃x. y ∈ Cvars x} is then defined to contain all control variables in the system.

The notion of observational equivalence used for the whole-system noninterference

property—the ultimate objective, to be proved for the entire concurrent program of

threads—is value dependent: Low-classified variables are required to have the same value

in both memories. Formally (as defined originally by Murray [64]):2

Definition 3.1 (Low-equivalent memories).

mem1 =
Low mem2 ≜ ∀x. L mem1 x = Low −→ mem1 x = mem2 x

To support compositionality for concurrent programs, however, the equivalence notion

for the per-thread noninterference property—for compositional analysis of each thread—

is tightened up to be modulo modes in the style of Mantel et al. [54] (as described in

Section 2.2.3) but only for non-control variables (x /∈ C): These are required to have the

same value only if they are assumed to be readable by other threads according to the mode

state.3 Defined more formally (again, originally by Murray [64]):4

Definition 3.2 (Readability of variable x, according to mode state mds).

readable mds x ≜ x /∈ mds AsmNoRW

1There is, strictly speaking, nothing in this formalism to stop the sets of any two different modes from
overlapping, but my instantiations of this theory for this thesis will in practice prevent any such overlaps
from occurring (via restrictions on parameters in Section 4.1.2, and via invariants proved in Section 4.3).

2Note that the asymmetry of both of Definition 3.1 and Definition 3.3 referring only to mem1 is resolved
by requiring (see Section 4.1.2) that the user of the theory provide a classification function L that statically
(i.e. always, regardless of the memory state) classifies all control variables as Low.

3Thus intuitively, the user of the theory should model permanent untrusted output sinks of the whole
concurrent program, as variables for which L always returns Low, ungoverned by any synchronisation
scheme that the attacker cannot be trusted to follow.

4Logical operator precedence here is just as in Isabelle/HOL—from most tightly to least: ∧,∨,−→.
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Definition 3.3 (Low-equivalence of memories, modulo the mode state mds).

mem1 =
Low
mds mem2 ≜

∀x. x ∈ C ∨ L mem1 x = Low ∧ readable mds x −→ mem1 x = mem2 x

For this thesis, I will use notation lc1 =
Low
mds lc2 (from Sison and Murray [85]) to lift this

Definition 3.3 of =Low
mds to local program configurations, asserting also that lc1 and lc2 have

the same assume–guarantee mode state. Additionally, I will use notation lc1 =mds lc2 to

denote (only) that lc1 and lc2 have the same assume–guarantee mode state.

We now have almost enough definitions to state the per-thread compositional secu-

rity property (deferred to Section 3.1.2). This property will assert the existence of a

witness relation B for every possible observationally equivalent pair of starting configura-

tions. This witness relation must be a strong low-bisimulation (modulo modes) (denoted

by strong-low-bisim-mm B), meaning that it must satisfy the following three conditions:

1. It must maintain observational indistinguishability by requiring that all configuration

pairs it relates (i.e. (lc1, lc2) ∈ B) that have the same mode state (lc1 =mds lc2), are

low-equivalent modulo modes (lc1 =
Low
mds lc2).

2. Furthermore, it must be a bisimulation by being symmetric (denoted by sym B) and
progressing to itself : Any step taken by one of the configurations (lc1 ⇝ lc′1) must

be matched by some step taken by the configuration related to it (lc2 ⇝ lc′2), so the

destinations remain related (i.e. (lc′1, lc
′
2) ∈ B) and modes-equal (lc′1 =mds lc

′
2).

3. Finally, it must be closed under globally consistent changes made to memory by other

threads (denoted by cg-consistent B)—that is, changes that preserve low-equivalence

and are permitted by the current mode state mds. Specifically, other threads are

permitted to change either of variable x’s value or its classification only when x is

considered writable by the current mode state (denoted by writable mds x, Defini-

tion 3.5). This is the most crucial element of the per-thread CVDNI property itself

that ensures its compositionality for concurrent programs.

These requirements are formalised by Definitions 3.4, 3.5, and 3.6:

Definition 3.4 (Strong low bisimulation, modulo modes).

strong-low-bisim-mm B ≜ cg-consistent B ∧ sym B ∧

(∀lc1 lc2. (lc1, lc2) ∈ B ∧ lc1 =mds lc2 −→

lc1 =
Low
mds lc2 ∧

(∀lc′1. lc1 ⇝ lc′1 −→ (∃lc′2. lc2 ⇝ lc′2 ∧ lc′1 =mds lc
′
2 ∧ (lc′1, lc

′
2) ∈ B)))

Definition 3.5 (Writability of variable x, according to mode state mds).

writable mds x ≜ x /∈ mds AsmNoW ∧ x /∈ mds AsmNoRW
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Definition 3.6 (Closedness under globally consistent changes).

cg-consistent B ≜ ∀tps1 mem1 tps2 mem2 mds.

(⟨tps1,mds,mem1⟩, ⟨tps2,mds,mem2⟩) ∈ B −→

(∀mem ′
1 mem ′

2. (∀x. (mem1 x ̸= mem ′
1 x ∨ mem2 x ̸= mem ′

2 x ∨

L mem1 x ̸= L mem ′
1 x) −→ writable mds x) ∧ mem ′

1 =
Low
mds mem ′

2 −→

(⟨tps1,mds,mem ′
1⟩, ⟨tps2,mds,mem ′

2⟩) ∈ B)

3.1.2 Parameters for initial conditions and extra requirements

For this thesis, I use a version of the theory of Murray et al. [67] that allows the developer

two additional forms of customisation for the CVDNI security properties:

1. They may characterise which initial states of the system are to be considered valid,

by providing as a parameter to the theory a predicate over shared memory called

INIT . The per-thread and whole-system security properties are relaxed such that

they only quantify over initial shared memories that obey this predicate.

This parameter was added in an update to the Isabelle/HOL formalisation [65] of

Murray et al. [67] following its publication, and was necessary to enable the work

covered in Chapter 4.

2. They may furthermore characterise additional requirements to be imposed on top of

strong low-bisimulation modulo modes, in the form of a predicate over bisimulation

relations called EXTRA. The per-thread security property is strengthened to impose

these additional requirements on any candidate security witness.

This second parameter was added to enable the work of Sison and Murray [85], which

will be covered in Chapter 5.

When not specified, INIT and EXTRA default to (λ . True) in the following definitions, in

which case they simplify to their original versions as presented in Murray et al. [67], Sison

and Murray [85]. In such cases, I will drop the parameter from the property name.

With the additional parameters, the per-thread security property is then as follows:

Definition 3.7 (Per-thread compositional security, with INIT ,EXTRA requirements).

com-secureEXTRA
INIT (tps,mds) ≜ ∀mem1 mem2.

mem1 =
Low
mds mem2 ∧ INIT mem1 ∧ INIT mem2 −→

(∃B. strong-low-bisim-mm B ∧ EXTRA B ∧

(⟨tps,mds,mem1⟩, ⟨tps,mds,mem2⟩) ∈ B)

The compositionality theorem of Murray et al. [67] is re-proved straightforwardly to

hold regardless of the INIT ,EXTRA chosen. Subject to some “sound mode use” side
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conditions (which in this thesis I will call “compositionality requirements”, deferred to

Section 3.1.3), it gives us that the parallel composition cms :: (ThreadPrivate × (Mode ⇒
Var set)) list of com-secure program threads is itself a concurrent program that enforces

sys-secure, a system-wide value-dependent noninterference property:

Theorem 3.8 (Compositionality of com-secureEXTRA
INIT ).

∀(tps,mds) ∈ set cms. com-secureEXTRA
INIT (tps,mds)

∀mem. INIT mem −→ sound-mode-use (cms,mem)

sys-secureINIT cms

This whole-system property then asserts low-equality for all global configuration pairs

reachable via pairwise execution to the same schedule (defined in the natural way; see

Murray et al. [67, 65] for a precise definition). The special form of low-equality that it

applies is modified from Definition 3.1, such that it only requires each Low-classified non-

control variable x /∈ C to be of equal value in both global configurations if the mode states

of all threads consider x to be readable (Definition 3.2). Furthermore, the property ensures

that paired global configurations continue to agree on the number of threads in the system,

and on the mode states for all threads, written cms ′1 =all-mds cms ′2 ≜ (map mds cms ′1 =

map mds cms ′2). Finally, I will use the syntax cms[i] to denote the ith element in list cms:

Definition 3.9 (Whole-system value-dependent security, with INIT requirements).

sys-secureINIT cms ≜ ∀mem1 mem2.

INIT mem1 ∧ INIT mem2 ∧ mem1 =
Low mem2 −→

(∀sched cms ′1 mem ′
1. (cms,mem1) 99Ksched (cms ′1,mem ′

1) −→

(∃cms ′2 mem ′
2. (cms,mem2) 99Ksched (cms ′2,mem ′

2)) ∧

(∀cms ′2 mem ′
2. (cms,mem2) 99Ksched (cms ′2,mem ′

2) −→

length cms ′1 = length cms ′2 ∧ cms ′1 =all-mds cms ′2 ∧

(∀x. x ∈ C ∨ L mem ′
1 x = Low ∧

(∀i < length cms ′1. readable cms ′1[i] x) −→ mem ′
1 x = mem ′

2 x)))

3.1.3 Compositionality requirements

We now turn to the sound mode use side condition of Theorem 3.8, whose fulfilment will

form the focus of Chapter 4. This consists of a “local” and a “global” part:

Definition 3.10 (Sound mode use side-condition).

sound-mode-use (cms,mem) ≜

(∀cm ∈ set cms. local-mode-compliance (cm,mem)) ∧

global-modes-compatibility (cms,mem)
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Firstly, all threads must each obey a local mode compliance requirement. This says that

for all reachable local configurations of the program, at no point will the thread violate any

of its own guarantees not to access a particular location in the shared state, which implies

also not accessing any of its control variables; here, precise definitions for reachable-lcs and

doesnt-read(-or-modify) are left to the Isabelle/HOL formalisations [65, 84]:

Definition 3.11 (Local mode compliance).

local-mode-compliance lc ≜

∀c′ mds ′ mem ′. ⟨c′,mds ′,mem ′⟩w ∈ reachable-lcs lc −→

(∀x. (x ∈ mds ′ GuarNoRW −→ doesnt-read-or-modify c′ x) ∧

(x ∈ mds ′ GuarNoW −→ doesnt-modify c′ x))

Then together, all threads must obey a global modes compatibility requirement. This

says that the threads’ mode states in all reachable global configurations of the concurrent

program (the reachable-mds-lists) are compatible—that is, if any one thread assumes a

particular location will not be accessed (for writing, or reading), then all other threads

must be guaranteeing not to access that location (for the same purpose):

Definition 3.12 (Global modes compatibility).

global-modes-compatibility gc ≜ ∀mdss ∈ reachable-mds-lists gc. compatible-modes mdss

where

reachable-mds-lists gc ≜

{mdss | ∃cms ′ mem ′ sched . gc 99Ksched (cms ′,mem ′) ∧ map mds cms ′ = mdss}

compatible-modes mdss ≜ ∀i x. i < length mdss −→

(x ∈ mdss[i] AsmNoRW −→

(∀j < length mdss. j ̸= i −→ x ∈ mdss[j] GuarNoRW)) ∧

(x ∈ mdss[i] AsmNoW −→

(∀j < length mdss. j ̸= i −→ x ∈ mdss[j] GuarNoW))

For more details and precise definitions, please refer to Section III-2(a) of Murray et al.

[67], and to its Isabelle/HOL formalisation [65] or the formalisation for this thesis [84].

3.2 CVDNI-preserving refinement

Section 3.2.1 gives details on a refinement notion that is tailored to preserve the per-thread

CVDNI property I presented in Section 3.1. (Both the property and its refinement notion

were originally presented together by Murray et al. [67].) Subsequently, Section 3.2.2

presents a decomposition principle for proving that notion of refinement.
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if h ̸= 0 then

x := y

else

x := y + z

fi

(a) Abstract if -conditional.
Relation R pairs configurations
of this program with configu-
rations of the program in Fig-
ure 3.1b that are of the same-
shaded region.

reg3 := h;

if reg3 ̸= 0 then

skip;

skip;

reg0 := y ;

x := reg0

. . .

. . .

else

reg1 := y ;

reg2 := z ;

reg0 := reg1 + reg2 ;

x := reg0

fi

(b) Concrete if -conditional. Relation I pairs configurations
of this program as shown by the dashed lines.

Figure 3.1: Excerpts from a CVDNI-preserving refinement example. Reproduced from
Sison and Murray [85]—the example is originally from Murray et al. [67].

3.2.1 Original notion with cube-shaped diagram

Proof of security-preserving refinement (or secure refinement), for a single-threaded pro-

gram that will be run as a thread of a concurrent program, requires the user of the theory

to nominate two binary relations (both illustrated by Figure 3.1):

1. A refinement relation R relating local configurations of the abstract program to local

configurations of the concrete program: Abstract must simulate concrete, in a sense

typical of much other work on program refinement, including compiler verification.

2. A concrete coupling invariant I that allows us to use B and R to build a new strong

low-bisimulation (modulo modes) for the concrete program, by discarding pairs of

local configurations after the refinement that should not be reached in the same

number of evaluation steps. It thereby witnesses that any changes a refinement (or

compiler) might make to the execution time do not introduce any timing channels.

The essence of the proof technique is to require that a number of conditions—analogous

to those for strong-low-bisim-mm (Definition 3.4)—be imposed on the nominated R and

I, in relation to a given witness relation B establishing com-secure (Definition 3.7) for the

abstract program. The definitions to follow are adapted from Murray et al. [67] Section

V, as we presented in Sison and Murray [85]—for better readability, a simplified version

in which no new shared variables are added by the refinement. Consequently, we use the

notation =mem
mds to denote that two local configurations have equal mode state and memory,

regardless of whether relating configurations of the same or differing languages.

Regarding the maintenance of modes equivalence and observational equivalence across

the relation, the restrictions on refinement are tighter than those that were applied to

strong-low-bisim-mm, in that R is required to preserve the shared memory in its entirety:

Definition 3.13 (Preservation of modes and memory).

preserves-modes-mem R ≜ ∀lcA lcC . (lcA, lcC) ∈ R −→ lcA =mem
mds lcC
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coupling-inv-pres B R I ≜
∀lc1A lc1C . (lc1A, lc1C) ∈ R −→

(∀lc′1C . lc1C ⇝C lc′1C −→
(∃n lc′1A. lc1A ⇝

n
A lc′1A ∧ (lc′1A, lc

′
1C) ∈ R ∧

(∀lc2A lc2C lc′2A. (lc1A, lc2A) ∈ B ∧ lc1A =mds lc2A ∧
(lc2A, lc2C) ∈ R ∧ (lc1C , lc2C) ∈ I ∧
lc1C =mds lc2C ∧ lc2A ⇝

n
A lc′2A ∧ lc′1A =mds lc

′
2A

−→ (∃lc′2C . lc2C ⇝C lc′2C ∧ lc′1C =mds lc
′
2C ∧

(lc′2A, lc
′
2C) ∈ R ∧ (lc′1C , lc

′
2C) ∈ I))))

1A
n 1A′

2A
n 2A′

B B

I I

abstract
execution

concrete
execution

R

R

R

R

1C
1

1C′

2C
1

2C′

Figure 3.2: Definition and graphical depiction of refinement preservation obligation for
secure-refinement (Definition 3.15). Reproduced from Sison and Murray [85]—the defini-
tion is a simplified restatement of its original formalisation in Murray et al. [67].

Regarding the closedness under changes by other threads that ensures compositionality

for concurrency, on I we again impose cg-consistent (Definition 3.6) from Section 3.1. How-

ever, in the case of R, we instead impose “closed-others”, a simplification of cg-consistent

that considers only environmental actions that affect the memories on both sides of the

relation identically. Furthermore, closed-others ensures equality of all shared variables,

not just those judged observable. Defined formally:

Definition 3.14 (Closedness of refinements under changes by others).

closed-others R ≜ ∀tpsA tpsC mds mem mem ′.

(⟨tpsA,mds,mem⟩A, ⟨tpsC ,mds,mem⟩C) ∈ R) ∧

(∀x. (mem x ̸= mem′ x ∨ L mem x ̸= L mem ′ x) −→ writable mds x) −→

(⟨tpsA,mds,mem ′⟩A, ⟨tpsC ,mds,mem ′⟩C) ∈ R)

The final major—and hardest—requirement for confidentiality preservation is to prove

R and I closed simultaneously under the pairwise executions of the concrete and abstract

programs, using a cube-shaped “refinement and coupling invariant preservation” diagram

(coupling-inv-pres, depicted in Figure 3.2), whose edges are configuration pairs in B, R,

and I. (Reducing its difficulty is the focus of the decomposition principle in Section 3.2.2.)

All that then remains is for the nominated concrete coupling invariant I to be sym-

metric (sym I), and the predicate secure-refinement puts together all the requirements:

Definition 3.15 (Requirements for confidentiality-preserving secure refinement).

secure-refinement B R I ≜ preserves-modes-mem R ∧ closed-others R ∧

cg-consistent I ∧ sym I ∧ coupling-inv-pres B R I

The soundness theorem for confidentiality-preserving refinement by Murray et al. [67]

then gives us that under the aforementioned conditions, the concrete bisimulation relation
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BCof B R I derived from strong-low-bisim-mm relations B, refinement relation R, and

coupling invariant I, is itself a witness strong-low-bisim-mm for the concrete program.

Definition 3.16 (Concrete bisimulation relation derived from B,R and I).

BCof B R I ≜ {(lc1C , lc2C) | ∃lc1A lc2A. (lc1A, lc1C) ∈ R ∧ (lc2A, lc2C) ∈ R ∧

(lc1A, lc2A) ∈ B ∧ lc1C =Low
mds lc2C ∧ (lc1C , lc2C) ∈ I}

Theorem 3.17 (Preservation of strong-low-bisim-mm by secure-refinement).

strong-low-bisim-mm B secure-refinement B R I

strong-low-bisim-mm (BCof B R I)

3.2.2 Decomposition principle

Recent work, published in Sison and Murray [85] alongside (but outside the scope of)

Chapter 5’s contributions, presented an alternative way to prove secure-refinement (Defi-

nition 3.15) that obviates the need to use the cube-shaped, two-sided refinement obligation

(depicted by Figure 3.2), by decomposing its concerns into:

1. ProvingR closed using a square-shaped simulation diagram (depicted by Figure 3.3a)

akin to the backward simulations commonly used to prove semantics-preserving re-

finement by compilers (e.g. for CompCert [48]), and

2. A number of obligations (depicted by Figures 3.3b, 3.3c), separable from the square-

shaped simulation, that prevent the introduction of timing leaks, termination leaks,

and secret-dependent differences in the assume–guarantee mode state.

The decomposition requires the verifier to nominate a new parameter, called abs-steps

or the pacing function. Its role is to dictate the pace of the square-shaped simulation by

specifying the number of abstract steps that ought to be taken for one concrete step, as de-

picted by Figure 3.3a. Deferring the separable side conditions (“decomp-refinement-safe”)

to afterwards, the decomposition principle is then defined formally as follows:

Definition 3.18 (Decomposed requirements for secure-refinement).

secure-refinement-decomp B R I abs-steps ≜

preserves-modes-mem R ∧ closed-others R ∧ cg-consistent I ∧ sym I ∧

decomp-refinement-safe B R I abs-steps ∧ (∀lcA lcC . (lcA, lcC) ∈ R −→

(∀lc′C . lcC ⇝C lc′C −→ (∃lc′A. lcA ⇝
(abs-steps lcA lcC)
A lc′A ∧ (lc′A, lc

′
C) ∈ R)))

The aforementioned side conditions on all refinement parameters, depicted by Figures

3.3b, 3.3c, are then defined formally under the predicate decomp-refinement-safe as follows:
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(a) Refinement preservation
for relation R under program
execution paced by abs-steps.
(Part of Definition 3.18.)

1A abs-steps 1A 1C
=

2A abs-steps 2A 2C

B

I

R

R

1C stops 1C
=

2C stops 2C

(b) Consistency of pacing and
stopping behaviour, to prevent
timing and termination leaks.
(Part of Definition 3.19.)
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1

1C′
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1
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(c) Closedness of the coupling
invariant relation I under
lockstep program execution.
(Part of Definition 3.19.)

Figure 3.3: Graphical depictions of decomposed refinement preservation obligations.
Reproduced from Sison and Murray [85].

Definition 3.19 (Side conditions for secure-refinement decomposition).

decomp-refinement-safe B R I abs-steps ≜ ∀lc1A lc2A lc1C lc2C . (lc1A, lc2A) ∈ B ∧

lc1A =mds lc2A ∧ (lc1A, lc1C) ∈ R ∧ (lc2A, lc2C) ∈ R ∧ (lc1C , lc2C) ∈ I ∧ lc1C =mds lc2C

−→ stops lc1C = stops lc2C ∧ abs-steps lc1A lc1C = abs-steps lc2A lc2C ∧

(∀lc′1C lc′2C . lc1C ⇝C lc′1C ∧ lc2C ⇝C lc′2C −→ (lc′1C , lc
′
2C) ∈ I ∧ lc′1C =mds lc

′
2C)

The intuitive meanings of the side conditions in Definition 3.19 are:

• stops lc1C = stops lc2C ensures that the refinement has not introduced any termina-

tion leaks, by asserting consistent stopping behaviour for I-related concrete program

configurations, which we know to be observationally indistinguishable.

• abs-steps lc1A lc1C = abs-steps lc2A lc2C ensures that the refinement has not in-

troduced any timing leaks, by asserting consistency of the pace of the refinement

for R-related program configurations, which we again know to be observationally

indistinguishable.

• The final ∀-quantified clause asserts I’s suitability as a coupling invariant, in that

it must remain closed under lockstep evaluation of the concrete program configura-

tions it relates. Furthermore it must maintain mode state equality with each lockstep

evaluation, which ensures that the refinement has not introduced any inconsisten-

cies in the memory access assumptions and guarantees needed for the concurrent

compositionality of the property.

Note that the B- and R-edges in Figure 3.3c may capture useful facts about a particular

program verification technique and compiler (respectively), so their availability as assump-

tions is intended to reduce greatly the effort needed to specify a coupling invariant I and

prove it satisfies the condition.
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Assuming the fulfilment of all of the decomposed requirements, Sison and Murray [85]

provided a proof that they are a sound method for establishing secure refinement of the

per-thread confidentiality property, as desired:

Theorem 3.20 (Soundness of secure-refinement-decomp).

secure-refinement-decomp B R I abs-steps =⇒ secure-refinement B R I

3.3 Summary

This chapter presented formal preliminaries from the background work (Murray et al.

[67]), its Isabelle/HOL formalisation (Murray et al. [65]), and other details (from Sison

and Murray [85]) considered outside the scope of, but relevant to, this thesis’ contributions.

In particular, Section 3.1 presented a per-thread security property and details about

its compositionality, which will be targeted by program verification (in Chapter 4). It also

presented support (from Murray et al. [65]) for parameterising the property with extra

restrictions, which will be relied on by the compiler verification and its case study (Chap-

ters 5 and 6). Section 3.2 then presented a notion of security-preserving refinement for

that security property, as well as a decomposition principle (from Sison and Murray [85])

for that refinement notion, which will be targeted by compiler verification (in Chapter 5).

Although I participated in all of the aforementioned publications [67, 65, 85] cited in

this summary, as mentioned previously the content presented in this chapter is considered

outside the scope of this thesis’ contributions; the decomposition principle, however, ap-

pears in the same publication (Sison and Murray [85]) as the contributions of Chapter 5.
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Chapter 4

Compositional noninterference for

a While language with mutex locks

This chapter presents the first contribution of this thesis: a novel set of per-thread tech-

niques that is sufficient to prove noninterference for mixed-sensitivity concurrent programs.

Here I extend While, a generic imperative language withwhile-looping, and its proof tech-

niques from prior work [67, 65], to support mutex lock-based synchronisation. By having

the programmer explicitly specify via a parameter each lock’s footprint—the variables

it protects—I prove that the language’s execution semantics maintains compositionality

requirements as an invariant, and that the extended techniques remain sound.

In Section 2.2.3 (informally) and Section 3.1 (formally), I explained that Murray et al.

[67] followed Mantel et al. [54] in using assume–guarantee modes to express expectations

about each thread’s patterns of access to shared memory, to allow verification to be compo-

sitional across each thread in the system. However, for the per-thread verification results

to compose into a whole-system proof of confidentiality, the concurrent program must

implement a synchronisation scheme satisfying the expectations expressed by the modes.

As these prior works [54, 67] were designed to be agnostic of the synchronisation scheme

and its implementation, they exposed all compositionality requirements to the program

developer. Both works gave the developer full freedom to specify their expectations as

mode annotations in the While language (as in Figure 4.1a) indicating whether or not

each thread accesses certain parts of the shared state at certain points in the program.

This freedom, however, comes at the cost of program developers themselves having to

prove that these expectations are well founded. This chapter therefore aims to show:

1. How to prove formally that mutex locking primitives (as in Figure 4.1b) maintain

the compositionality requirements posed by Murray et al. [67], and thereby:

2. How to provide program developers a way to prove noninterference for mixed-

sensitivity concurrent programs that use them, having specified each lock’s footprint.

Mutex lock-based synchronisation relies on locking discipline: To access certain shared

variables, each thread must hold a lock “governing” access to those variables. Mutual
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skip /∗ con t r o l += AsmNoW ∗/ ;
skip /∗ workspace += AsmNoRW ∗/ ;
workspace := source ;
i f ( control = 0) then

low_sink := workspace

else
high_sink := workspace

f i ;
workspace := 0 ;
skip /∗ workspace −= AsmNoRW ∗/

(a) Mode annotations supported by prior work [67].
These specify that (1) control be protected from
write, as it determines the classification of source;
and (2) workspace must, additionally, be protected
from read, as it might be assigned sensitive data.

lock ( big_lock ) ;
workspace := source ;
i f ( control = 0) then

low_sink := workspace

else
high_sink := workspace

f i ;
workspace := 0 ;
unlock ( big_lock )

(b) Enforcement with mutex locks.
The programmer would specify that
big lock’s footprint in the locking dis-
cipline includes control, source, and
workspace, via the lock interpretation
parameter (see Section 4.1.1).

Figure 4.1: Annotation versus enforcement of assumptions on shared memory access, in
the While language. Example program snippet adapted from Murray et al. [67].

exclusion of access then follows from the locking primitives ensuring at most one thread

holds a given lock at a time. To this end, in Section 4.1, I replace the mode annotations in

the While language of [67, 54] with mutex locking primitives, whose semantics (1) enforces

this mutual exclusivity of lock acquisition, and (2) manipulates the assume–guarantee

mode state to express the expectation of threads’ adherence to the locking discipline.

Proving the requirements for compositionality (recalled as Theorem 3.8) then entails

showing that each thread locally follows the locking discipline, and its global consequences:

1. The local compositionality requirement (local-mode-compliance, Definition 3.11) here

entails showing that threads do not access any variables whose lock they do not hold.

The developer may prove it by running a simple check on each of the threads: In

Section 4.2, I present the adaptation of such a check from the prior work [67].

2. The global compositionality requirement (global-modes-compatibility, Definition 3.12)

then follows from the threads’ adherence to the locking discipline, in tandem with the

language semantics’ enforcement that mutex lock acquisition is mutually exclusive.

Therefore, the language designer can prove it so the developer need not prove it: In

Section 4.3, I present proof of its invariance for all concurrent programs written in

While with mutex locks, when initialised not to have any locks held.

With these discharged, it suffices for a program developer wishing to prove noninterfer-

ence for an entire mixed-sensitivity concurrent While program (sys-secure, Definition 3.9)

to prove a noninterference property for each of its threads (com-secure, Definition 3.7),

and to invoke Theorem 3.8. To this end, in Section 4.4, I update the While-language’s

security type system of Murray et al. [67] to replace mode annotations with mutex locks,

and prove that it remains sound for proving the per-thread noninterference property.
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In Section 4.5, I list publications that I coauthored whose work builds directly on

the contributions of this chapter, and I acknowledge the work of others included in this

chapter’s presentation. Finally, I summarise the chapter’s main implications in Section 4.6.

4.1 Source language: While with mutex locks

While with mutex locks (hereafter While) consists of the commands cmd :

cmd ::= skip | cmd ; cmd | if bexp then cmd else cmd fi |
while bexp do cmd od | v := aexp |
lock(k) | unlock(k)

For this version of While I introduce the mutex synchronisation primitives lock(k)

and unlock(k); these wholly replace both the ad-hoc mode annotations and the await(v)

synchronisation primitive offered for While by Murray et al. [67]. After noting how While

instantiates the underlying theory from Chapter 3, I will present the new primitives’ exe-

cution semantics, which depends on the program developer supplying details of the locking

discipline as a parameter (Section 4.1.1), subject to some restrictions (Section 4.1.2).

As in the previous work [67], While instantiates the concurrent value-dependent non-

interference theory described in Section 3.1, leaving users free to supply as parameters the

types of arithmetic and boolean expressions (resp. aexp, bexp) over a set of shared program-

variable identifiers v :: Var and a type of constant values Val . (For example, for Chapters 5

and 6, I will fix both aexp and bexp to a generic type of expressions exp ::= n | v | exp ⊕ exp

over v :: Var , n :: Val and binary arithmetic operators ⊕ :: Val ⇒ Val ⇒ Val .)

Again in common with the previous work, this instantiation assumes that the underly-

ing concurrent execution model (e.g. operating system, scheduler) for the While language

prevents threads from seeing each others’ current program location. Thus the While pro-

gram command c :: cmd being executed (understood as the current program location) is

modelled as the thread-private state of the local configuration triple: ⟨c,mds,mem⟩w.
To ease formalisation of lock(k) and unlock(k), I instantiate the shared mem :: Mem

type as a total mapping from a sum type (with constructors Lock,Var) to values Val , so

as to distinguish the lock-variable identifiers k :: Lock (which can only be read or written

by the lock primitives) from the program-variable identifiers v :: Var (which can be read

or written by the rest of the commands). In Isabelle/HOL’s datatype notation, this is:

Mem ≜ (Lock Lock | Var Var) ⇒ Val

For readability, I will elide this distinction between Lock and Var—or applications of their

constructors Lock and Var—from the presentation whenever clear from the context.
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4.1.1 Locking discipline and its semantics

The program developer provides the details of the program’s locking discipline in the form

of a lock interpretation parameter lock -interp :: Lock ⇒ (Var set × Var set), which gives

for each lock the two non-overlapping sets of program-variables over which acquiring the

lock grants exclusive permission to write, (resp.) read and write. For readability, this

presentation will elide lock -interp from the arguments of definitions, and use the notation

varsNoW , varsNoRW :: Lock ⇒ Var set to refer to its fst and snd projection.

Alongside encoding the mutex primitives’ usual effect on control flow—most crucially,

lock(k) should refuse to proceed meaningfully if the lock k is already held—I will now

specify for them an evaluation semantics that furthermore encodes the permissions implied

by the locking discipline, as assumptions and guarantees expressed in the mode state.

The following two helpers specify how acquiring (resp. releasing) a lock affects the mode

state under a given lock interpretation lock -interp. When a thread acquires a lock it gains

more assumptions, and makes fewer guarantees about the region of memory concerned:

Definition 4.1 (Impact on mode state mds of acquiring lock k).

mds ⊕ k ≜ λ m. case m of GuarNoW ⇒ mds GuarNoW − varsNoW k

| AsmNoW ⇒ mds AsmNoW ∪ varsNoW k

| GuarNoRW ⇒ mds GuarNoRW − varsNoRW k

| AsmNoRW ⇒ mds AsmNoRW ∪ varsNoRW k

The converse occurs when releasing a lock: the thread drops the assumptions it was

making about that region of memory, and once again makes guarantees not to access it.

Definition 4.2 (Impact on mode state mds of releasing lock k).

mds ⊖ k ≜ λ m. case m of GuarNoW ⇒ mds GuarNoW ∪ varsNoW k

| AsmNoW ⇒ mds AsmNoW − varsNoW k

| GuarNoRW ⇒ mds GuarNoRW ∪ varsNoRW k

| AsmNoRW ⇒ mds AsmNoRW − varsNoRW k

The operational semantics for lock(k) is then given by two rules: LockAcq when

lock k is available, and LockSpin when it is already held. For these, I use predicate

evLock :: Val ⇒ bool with designated constants TrueLock ,FalseLock :: Val to indicate that

the lock is, resp. is not held—i.e. evLock (TrueLock ) = True, and evLock (FalseLock ) = False.1

Apart from impacting the mode state as already specified (by Definition 4.1), attempt-

ing to acquire an available lock will succeed in the usual manner, setting the lock-variable

1All three of evLock ,TrueLock ,FalseLock are parameters that are set by the user of the theory, with the
proviso that their choice of parameters satisfy that evLock (TrueLock ) and ¬evLock (FalseLock ) hold as required.
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to the designated constant (TrueLock ) to prevent subsequent lock acquisition attempts:

¬evLock (mem (Lock k)) mem ′ = mem[Lock k 7→ TrueLock ]

mds ′ = mds ⊕ k

⟨lock(k),mds,mem⟩w ⇝w ⟨stop,mds ′,mem ′⟩w
LockAcq

Attempting to acquire an already-held lock results in a stuttering evaluation step:

evLock (mem (Lock k))

⟨lock(k),mds,mem⟩w ⇝w ⟨lock(k),mds,mem⟩w
LockSpin

Then, the operational semantics for unlock(k) is given by two rules, of which only

one, LockRel, will ever be used by programs that follow locking discipline (according to

the local mode compliance check to be presented in Section 4.2). This rule requires that

the mode state mds is consistent with the present thread having previously acquired the

lock k: In short, it should have all the assumptions, but none of the guarantees, associated

with the variables governed by the lock. To specify this, I define the following helper:

Definition 4.3 (Mode state is consistent with holding a lock k).

lock-held-mds-correct mds k ≜

∀x. (x ∈ varsNoW k −→ x /∈ mds GuarNoW ∧ x ∈ mds AsmNoW) ∧

(x ∈ varsNoRW k −→ x /∈ mds GuarNoRW ∧ x ∈ mds AsmNoRW)

With that condition satisfied, the LockRel rule specifies that an unlock(k) will

proceed successfully, to enact lock release on the memory and mode state as expected:

lock-held-mds-correct mds k mem ′ = mem[Lock k 7→ FalseLock ]

mds ′ = mds ⊖ k

⟨unlock(k),mds,mem⟩w ⇝w ⟨stop,mds ′,mem ′⟩w
LockRel

To ensure that the While evaluation semantics is defined for all possible configurations,

the LockInvalid rule defines a stuttering evaluation step for attempts to unlock(k) that

are an apparent violation of the locking discipline due to not having previously acquired the

lock k. Program developers can rely on the local compliance check (see UnlockComply

rule, in Section 4.2.1) to reject programs that misbehave in attempting to do this.

¬ lock-held-mds-correct mds k

⟨unlock(k),mds,mem⟩w ⇝w ⟨unlock(k),mds,mem⟩w
LockInvalid

As mode state is nominally a form of ghost state, having the operational semantics

appear to depend on it in this manner is rather unusual. However, as the local mode

compliance check will only ever admit programs that satisfy the lock-held-mds-correct
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check whenever attempting to unlock(k), for such programs the operational semantics is

equivalent to one that (1) omits the lock-held-mds-correct check from the LockRel rule,

and (2) omits the LockInvalid rule from the While-language semantics entirely.

4.1.2 Restrictions on locking disciplines

While with mutex locks imposes the following cleanliness conditions on locking disciplines

and their interaction with the classification function L (and derived information like C and

Cvars, all introduced in Section 3.1) to be supplied by program developers as parameters:

1. Locks cannot govern access to other locks.

This reflects that in this proof framework, the access modes encoded by locking

discipline will mandate that if some lock k were to govern access to lock k′, then no

thread may even attempt to acquire k′ without first successfully acquiring k. This,

however, would make k′ entirely redundant with k.

Instead this framework enforces, using the type signature of the lock -interp parame-

ter (see Section 4.1.1), that locks can only govern access to program-variables. This

will simplify the reasoning in Section 4.2 and Section 4.3.

2. Lock-variables k cannot be control variables, i.e.

∀k. (Lock k) /∈ C

In the prior work [65], the definitions of doesnt-read(-or-modify) that determine

local-mode-compliance (Definition 3.11) entail that any guarantees not to access

some variable v will effectively apply also to all of v’s control variables. Disallow-

ing lock-variables from being control variables will thus simplify the reasoning for

local-mode-compliance in Section 4.2, because lock(k) and unlock(k) (which only

access lock-variable k) cannot violate any guarantees active for program-variables.

3. The classification of all lock-variables k must be Low statically, i.e.

∀k mem. L mem (Lock k) = Low

This reflects the expectation that developers would have no desire to allow secrets

to leak into the locking state. This would be problematic for two reasons.

First, the control flow of any thread would immediately become secret-dependent

following an attempt to acquire such a lock. While this is strictly speaking not

disallowed by the security property (Definition 3.7), the proof techniques presented

in this thesis prior to Chapter 7 will disallow any such secret-dependent control flow.

Furthermore, the locking semantics chosen here modifies the mode state in tandem

with the lock-memory state, and the security property (see Definition 3.4 of its

witness in particular) prohibits mode state from ever becoming secret-dependent.
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4. A lock-variable k governing access to a program-variable v must govern the same

kind of access to all of v’s control variables, i.e.

∀c v k. Var c ∈ Cvars (Var v) −→ (c ∈ varsNoW k = v ∈ varsNoW k) ∧

(c ∈ varsNoRW k = v ∈ varsNoRW k)

The design of the security type system from Murray et al. [67], when I adapt it

in Section 4.4 for locks, will require effectively that when a program locks some

variable v, all of v’s control variables’ contents must also be stable, to ensure that

v’s security type is stable afterwards. This restriction simplifies matters by ensuring

that variables and their control variables are always locked simultaneously.

5. No variable can be managed by more than one lock, i.e.

∀v k. v ∈ varsNoW k ∪ varsNoRW k −→

(∀k′. v ∈ varsNoW k′ ∪ varsNoRW k′ −→ k′ = k)

This simplifies both the mode update semantics (given in Section 4.1.1) and the

reasoning for global-modes-compatibility in Section 4.3, because acquiring or releasing

a lock will not affect assumptions or guarantees governed by any other lock.

6. There are no “vacuous” locks, i.e. ones that would govern no variables:

∀k. varsNoW k ∪ varsNoRW k ̸= ∅

I argue that this is a reasonable expectation; it will serve to simplify some proofs

in Section 4.3 by ensuring that lock-held-mds-correct and lock-not-held-mds-correct

(resp. Definition 4.3, Definition 4.5) cannot both be true simultaneously.

7. The lock interpretation sets for any given lock k do not overlap, i.e.

∀k. varsNoW k ∩ varsNoRW k = ∅

This restriction leads to the fulfilment of a guard to be asserted by the security typing

rule for unlock(k) in Section 4.4, which I will then use to exclude a pathological

case in the soundness proof (specifically in the proof of Lemma 4.23).

4.2 Local mode compliance check

To check local-mode-compliance (Definition 3.11) for program threads written in While

with mutex locks, I adapted the local compliance check (there named a type system for

locally sound use of modes) presented in the Isabelle/HOL formalisations [65, 33] of pre-

cursor works [67, 54]. This entailed adding dedicated judgement rules for the new locking

primitives lock(k) and unlock(k), due to their replacing the mode annotation feature of
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the While language as the sole means of making changes to the mode state (Section 4.2.1).2

I then proved that the modified compliance check is still sound (Section 4.2.2).

This compliance check makes judgements of the following form:

⊢ mds {c} mds ′

This judgement says that all the evaluation steps of the command c, when run with an

initial mode state of mds, will comply with any guarantees present in the mode state as

it develops; furthermore if it terminates, it will do so with the final mode state mds ′.

The pre-existing judgement rules from Murray et al. [65] ensure that commands that

might write (namely, an assignment v :=aexp to its destination v) or read shared program

variables (namely, for the conditional bexp of an if-conditional or while-loop, or the right-

hand side of an assignment v := aexp) do not violate any guarantees (resp. GuarNoW,

GuarNoRW) present in the mode state. When such guarantees encode a locking disci-

pline (as formalised in Section 4.1.1, with initial conditions to be given in Section 4.3.2),

this in effect establishes that threads do not access variables whose locks they do not hold.

Apart from removing the handling of the mode annotations, the only other change to

the pre-existing rules is the addition of a guard no-lock-mds, asserting a cleanliness condi-

tion that the mode state never records any assumptions or guarantees for lock-variables:

no-lock-mds mds ≜ ∀l m. Lock l /∈ mds m

This is expected to follow for well-initialised programs (see Section 4.3.2) from the re-

striction imposed on locking disciplines (enforced by the type signature of lock -interp,

Section 4.1.1) that locks protect only program variables, not other locks (Section 4.1.2).

We defer to the Isabelle/HOL formalisations [84, 65] for further details as, apart from

these changes, the rules are substantially unchanged since their prior publication [67].

4.2.1 New rules for mutex locks

The compliance check rules added for the new locking primitives are then as follows.

The LockComply rule reflects the mode state updates made by lock(k) (given by

Definition 4.1), while also asserting the aforementioned no-lock-mds cleanliness condition.

no-lock-mds mds mds ′ = mds ⊕ k

⊢ mds {lock(k)} mds ′
LockComply

In addition to doing the same for unlock(k) with respect to its mode state updates

(given by Definition 4.2), the UnlockComply rule also has the responsibility of asserting

that programs do not attempt to release locks that they are not holding—to be precise,

2As mode annotations previously had no dedicated compliance check rule, but rather affected the rules
for every command to which they could be attached, this change has the slight advantage of decoupling the
rules’ management of changes to modes, from their checking of commands’ compliance with those modes.
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they must be in a mode state that is consistent with their having previously acquired the

lock. To that end, it also asserts lock-held-mds-correct (Definition 4.3) as a precondition:

lock-held-mds-correct mds k no-lock-mds mds mds ′ = mds ⊖ k

⊢ mds {unlock(k)} mds ′
UnlockComply

4.2.2 Proof of soundness

The changes to the local compliance check require re-proving that it indeed establishes

local-mode-compliance (Definition 3.11)—stated formally, that:

⊢ mds {c} mds ′

∀mem. local-mode-compliance ⟨c,mds,mem⟩w

Recall from Section 3.1 that this compliance requirement states formally that at no point

reachable from a given starting configuration will a thread violate any of its own guarantees

not to read or write a given location and its control variables:

Definition 3.11 (Local mode compliance).

local-mode-compliance lc ≜

∀c′ mds ′ mem ′. ⟨c′,mds ′,mem ′⟩w ∈ reachable-lcs lc −→

(∀x. (x ∈ mds ′ GuarNoRW −→ doesnt-read-or-modify c′ x) ∧

(x ∈ mds ′ GuarNoW −→ doesnt-modify c′ x))

The soundness theorem I actually re-prove is one from Murray et al. [65] that al-

lows a little more flexibility about the initial and final mode states. It says that if

a command c passes the compliance check with initial mode state mds1, then c still

obeys local-mode-compliance even when started with an initial mds2 with less modes3

than mds1—note that only the guarantee modes impact on compliance. Furthermore, the

theorem promises that if c terminates, it will do so with a mode state mds ′2 that has no

more modes than the final mds ′1 emitted by the compliance check. Stated formally:

Theorem 4.4 (Soundness of local compliance check).

⊢ mds1 {c} mds ′1 mds2 ≤ mds1

∀mem. local-mode-compliance ⟨c,mds2,mem⟩w ∧
(∀mds ′2 mem ′. ⟨stop,mds ′2,mem ′⟩w ∈ reachable-lcs ⟨c,mds2,mem⟩w −→ mds ′2 ≤ mds ′1)

Proof. By induction over the structure of the compliance check.

Mode annotations were previously the only mechanism by which the mode state could

be modified; this responsibility instead now rests solely with the new locking primitives.

3The less-or-equals relation mds ≤ mds ′ means all modes present in mds must also be in mds ′.
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Thus, the removal of mode annotations simplifies the proofs of many of the rule cases and

helper lemmas, leaving intact that the remaining parts of the existing rules were already

established in the previous work [65] to comply with any guarantee-modes present.

The cases for the new rules LockComply and UnlockComply are then straightfor-

ward because the locking primitives never read or modify the program-variables Var . This

just leaves the possibility of violating a guarantee not to read or modify a Lock variable.

But we know from the no-lock-mds guards that the mode state never records modes about

Lock variables, so there are never any guarantees regarding them to comply with.

4.3 Global modes compatibility

This section will present proof that global-modes-compatibility (Definition 3.12) holds as

an invariant for concurrent While programs (Section 4.3.1) when initialised to have no

locks held (Section 4.3.2). Consequently, it is sufficient for a developer to use the local

compliance check of Section 4.2 to obtain the sound-mode-use condition (Definition 3.10)

needed for per-thread security proofs to be compositional via Theorem 3.8.

Recall from Section 3.1 that this compatibility requirement formalises that for all

reachable global configurations of a concurrent program, any assumptions made by any of

the threads must be met by corresponding guarantees made by all of the other threads:

Definition 3.12 (Global modes compatibility).

global-modes-compatibility gc ≜ ∀mdss ∈ reachable-mds-lists gc. compatible-modes mdss

where

reachable-mds-lists gc ≜

{mdss | ∃cms ′ mem ′ sched . gc 99Ksched (cms ′,mem ′) ∧ map mds cms ′ = mdss}

compatible-modes mdss ≜ ∀i x. i < length mdss −→

(x ∈ mdss[i] AsmNoRW −→

(∀j < length mdss. j ̸= i −→ x ∈ mdss[j] GuarNoRW)) ∧

(x ∈ mdss[i] AsmNoW −→

(∀j < length mdss. j ̸= i −→ x ∈ mdss[j] GuarNoW))

4.3.1 Proof of invariance

The approach to establish global-modes-compatibility here will be to define three mode

management requirements that taken together imply compatible-modes, and to prove them

invariant for concurrent While programs when initialised such that they hold to begin with.

The first of these pertains to variables whose access is governed by some lock, ac-

cording to the locking discipline. To define it, we need, alongside lock-held-mds-correct

(Definition 4.3) from Section 4.1.1, a predicate that specifies the correct mode state for
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not holding a lock k: It should make all of the guarantees, and have none of the assump-

tions associated with the variables governed by k.4 Stated formally:

Definition 4.5 (Mode state is consistent with not holding a lock k).

lock-not-held-mds-correct mds k ≜

∀x. (x ∈ varsNoW k −→ x ∈ mds GuarNoW ∧ x /∈ mds AsmNoW) ∧

(x ∈ varsNoRW k −→ x ∈ mds GuarNoRW ∧ x /∈ mds AsmNoRW)

This first management requirement for global configurations, regarding lock-managed

variables, is then that for all locks, exactly one thread if and only if the lock is held by

anybody has a mode state consistent with holding it, and all other threads have a mode

state consistent with not holding it. Formally, with mdss gc ≜ map mds (cms gc):

Definition 4.6 (Lock-managed variable modes are compatible with memory).

lock-managed-modes-mem-compatible gc ≜

∀k. if (evLock ((mem gc) k)) then

∃!i. i < length (cms gc) ∧

lock-held-mds-correct (mdss gc)[i] k ∧

(∀j < length (cms gc). i ̸= j −→

lock-not-held-mds-correct (mdss gc)[j] k)

else ∀i < length (cms gc).

lock-not-held-mds-correct (mdss gc)[i] k

The second requirement pertains to variables whose access is entirely ungoverned by

any locks in the locking discipline. For these we specify a more direct check that if any

thread in the global configuration has an assumption about access to any of these variables,

then all other threads must be providing the corresponding guarantee to that assumption:

Definition 4.7 (Unmanaged variable modes are compatible).

unmanaged-var-modes-compatible gc ≜ ∀i x. i < length (mdss gc) −→

(x /∈
⋃

k::Lock

varsNoRW k −→

(x ∈ (mdss gc)[i] AsmNoRW −→

(∀j < length (mdss gc). j ̸= i −→ x ∈ (mdss gc)[j] GuarNoRW))) ∧

(x /∈
⋃

k::Lock

varsNoW k −→

(x ∈ (mdss gc)[i] AsmNoW −→

(∀j < length (mdss gc). j ̸= i −→ x ∈ (mdss gc)[j] GuarNoW)))
4Note that this not merely the negation of lock-held-mds-correct mds k (Definition 4.3)!
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Also proved invariant is a third, minor property that enforces globally that no assump-

tions or guarantees are ever recorded regarding access to lock-variables:

Definition 4.8 (No assumptions and guarantees on lock variables).

no-lock-mds-gc gc ≜ ∀mds ∈ set (mdss gc). no-lock-mds mds

This follows trivially from the restriction (in Section 4.1.2) that the lock interpretation

parameter only permit locks to protect access to program variables (not other locks), and

the fact that no While primitives ever touch any mode state pertaining to lock variables.

Thus, further details on this third management requirement will be elided.

We then have straightforwardly from their definitions that together, these three mode

management requirements imply compatible modes for a given global configuration:

Lemma 4.9 (Management requirements ensure compatibility).

lock-managed-modes-mem-compatible gc unmanaged-var-modes-compatible gc

no-lock-mds-gc gc

compatible-modes (mdss gc)

Proofs of invariance then proceed by induction over the single-step evaluation semantics

of an arbitrary thread taking a step to progress the system to a new global configuration.

For the first management requirement (Definition 4.6):

Lemma 4.10 (Single-step preservation of lock-managed-modes-mem-compatible).

lock-managed-modes-mem-compatible (cms,mem)

⟨ci,mds i,mem⟩w ⇝w ⟨c′i,mds ′i,mem ′⟩w i < length cms

cms ′ = cms[i := (c′i,mds ′i)] cms[i] = (ci,mds i)

lock-managed-modes-mem-compatible (cms ′,mem ′)

Proof. By induction over the single-threaded evaluation semantics of the program at index

i that is taking a step.

lock(k) preserves the property because it only allows a thread to set lock k’s memory

if it is not already set – it would then become the single unique thread whose mode state

is consistent with holding k. Otherwise, the mode states and memory remain unchanged.

Similarly, unlock(k) preserves the property because its only possible change is to unset

lock k’s memory, and return the unique thread holding lock k to a mode state consistent

with not holding k.

The other While commands preserve the property because they do not touch the mode

state nor any lock-variables.

For the second management requirement (Definition 4.7):
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Lemma 4.11 (Single-step preservation of unmanaged-var-modes-compatible).

unmanaged-var-modes-compatible (cms,mem)

⟨ci,mds i,mem⟩w ⇝w ⟨c′i,mds ′i,mem ′⟩w i < length cms

cms ′ = cms[i := (c′i,mds ′i)] cms[i] = (ci,mds i)

unmanaged-var-modes-compatible (cms ′,mem ′)

Proof. Again, by induction over the single-threaded evaluation semantics of the program

at index i that is taking a step.

I prove and use lemmas that lock(k) and unlock(k) do not touch any mode state

pertaining to variables that are unmanaged by any locks, and that the remaining While

commands do not touch the mode state at all. Therefore evaluation steps cannot possibly

have any effect on the compatibility of modes on these variables.

These single-step evaluation results lift easily to invariance results over the global multi-

step evaluation semantics quantified over arbitrary schedules. These invariance results,

with the fact that the management requirements ensure compatibility (Lemma 4.9), yield

in a straightforward manner the desired global compatibility invariance theorem:

Theorem 4.12 (Mode management requirements ensure global compatibility).

lock-managed-modes-mem-compatible gc unmanaged-var-modes-compatible gc

no-lock-mds-gc gc

global-modes-compatibility gc

4.3.2 Initial conditions

I now define conditions on memory and mode state consistent with no locks being held,

and show that initialising a system under these conditions is enough to satisfy the global

compatibility part (Definition 3.12) of the sound-mode-use side condition (Definition 3.10)

of the compositionality theorem for our security property (Theorem 3.8).

I define the following predicate for initial memory:

Definition 4.13 (A requirement for initial memory that no locks are held).

no-locks-held mem ≜ ∀k. ¬evLock (mem k)

I then define an initial mode state mds0 :: Mode ⇒ Var set that provides all guaran-

tees demanded by the lock interpretation parameters varsNoW , varsNoRW (described in

Section 4.1.1) for all lock variables in the system, and makes no assumptions:
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Definition 4.14 (Initial mode state mds0).

mds0 ≜ λ m. case m of GuarNoW ⇒
⋃

k::Lock

varsNoW k

| GuarNoRW ⇒
⋃

k::Lock

varsNoRW k

| AsmNoW ⇒ ∅

| AsmNoRW ⇒ ∅

I am then able to show that these conditions are enough to satisfy the requirements I

just showed (in Section 4.3) ensure global modes compatibility for While:

Lemma 4.15 (Initialising with no-locks-held,mds0 ensures global modes compatibility).

no-locks-held mem ∀(c,mds) ∈ set cms. mds = mds0

global-modes-compatibility (cms,mem)

Proof. Theorem 4.12 obliges us to show that the mode management conditions (Definitions

4.6, 4.7, and 4.8) hold. This follows straightforwardly from all the relevant definitions.

4.4 Security type system

Murray et al. [67] presented a security type system for While-language programs where

the developer can use annotations to specify changes to the mode state directly. With the

changes to the While language presented in Section 4.1, however, the mode state is instead

managed implicitly by the new lock(k) and unlock(k) primitives, which for simplicity also

replace the await(v) synchronisation primitive that was present in Murray et al. [67].

As While no longer supports mode annotations and await(v), here I remove the

corresponding typing rules Anno and Await, and replace these with rules for the new

lock(k) and unlock(k) commands (Section 4.4.1). Meanwhile the typing rules Seq, Skip,

As(1|2|C), If and While for the language features retained here, and Rewrite rule for

rewriting the typing environment, are substantially the same as in Murray et al. [67].

Finally I prove that the security type system remains sound (Section 4.4.2).

As in Murray et al. [67], the security type system tracks three forms of information:

typing environment Γ, stable variables S, and predicate set P (all to be explained here).

For convenience, I will refer to all three together as an extended typing environment. A

typing judgement, attesting that command c is well typed with respect to a particular

initial (Γ,S, P ) and final (Γ′,S ′, P ′) extended typing environment, then takes the form:

⊢ Γ,S, P {c} Γ′,S ′, P ′

The typing environment Γ :: Var ⇀ bexp set represents value-dependent security types
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for each program variable5 as a partial map to sets of predicates (boolean expressions) over

program variables. The bexp set encoding the security type of a given variable encodes

what is known about the sensitivity of the data stored in the variable, at that program

point. The intuition is that to conclude that a variable of security type (predicate set)

ps contains data of Low sensitivity when the shared memory state is mem, all of the

predicates in ps must evaluate to True in that mem. Written formally:

preds-hold ps mem ≜ ∀p ∈ ps. evbexp mem p

Otherwise if any evaluate to False (formally, ¬preds-hold ps mem), then the variable must

be considered to contain data of High sensitivity.

The type system also tracks a pair S :: Var set × Var set , of the sets of variables

assumed to be stable (not written to). The fst of this pair tracks variables having a mode

state of AsmNoW, and the snd resp. a mode state of AsmNoRW.

Finally, the type system maintains a set of predicates P :: bexp set that it currently

tracks as True, which the type system uses (as an abstraction of mem state) to determine

the sensitivity of data in variables according to their value-dependent security type.

With the help of the stable set pair S, the security type system at all times restricts

the typing environment Γ and predicate set P only to concern (or refer to) variables that

are stable. (This is the reason that the typing environment is a partial map.) This role

previously fell to Anno, and will now fall to the new security rules to be introduced below.

4.4.1 New rules for mutex locks

I now elaborate on the new typing rules that I add for lock(k) and unlock(k), before

moving on (in Section 4.4.2) to a proof of their soundness.

Because I have replaced mode annotations with mutex locking primitives, variables now

become stable (resp. return to being unstable) for a program precisely when that program

acquires (resp. releases) a lock governing them according to the locking discipline.

The effect on S of acquiring (resp. releasing) the lock k is formalised as follows:

Definition 4.16 (Impact of acquisition, resp. release of lock k on stable set pair S).

S ⊕ k ≜ (fst S ∪ varsNoW k, snd S ∪ varsNoRW k)

S ⊖ k ≜ (fst S − varsNoW k, snd S − varsNoRW k)

In response to acquiring a lock k, the typing environment adds the variables governed

by that lock k to the set of variables being tracked. The security types of variables

previously tracked remain unchanged; newly tracked variables are given a default security

type that corresponds to their value-dependent classification L transliterated as a set of

5Its full type in the Isabelle formalisation [84] also includes lock variables, but the restrictions laid out
in Section 4.1.2, together with an extra guard (elided from this presentation) on the Lock typing rule, are
effectively enough to exclude any tracking of lock variables; similarly for the stable set pair S.
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bexp predicates (written Lbexp) that must all hold for the variable’s classification (thus

its data’s sensitivity) to be Low. (An exception to the above is that control variables are

excluded from this tracking, as the assignment typing rules As1, As2, AsC [67] already

ensure they are only ever assigned data of Low sensitivity.) Stated formally, acquiring lock

k when in typing environment Γ results in a new typing environment defined as follows:6

Definition 4.17 (Impact on typing environment Γ of acquiring lock k).

Γ⊕ k ≜ λx. if (x ∈ dom Γ) then Γ x

else if (x ∈ varsNoW k ∪ varsNoRW k ∧ x /∈ C) then Some (Lbexp x)

else None

Conversely, when releasing k the typing environment ceases tracking the variables

governed by k (i.e. it only gives answers for variables that are still stable after the release):

Definition 4.18 (Impact on typing environment Γ of releasing lock k).

Γ⊖S k ≜ λx. if (x ∈ fst (S ⊖ k) ∪ snd (S ⊖ k)) then Γ x

else None

Then as mentioned earlier, the new typing rules now bear the responsibility (taking

over from the old mode annotation typing rule Anno) for restricting the predicate set to

the variables that are stable. This trimming of the predicate set reflects the intuition that

predicates previously thought to be True may become unreliable if their variables become

unstable. For this I reuse a helper function from Murray et al. [67]:

Reproduced definition (Restriction of a predicate set P to those stable under S).

P ↾ S ≜ {e | e ∈ P ∧ e ⊆ (fst S ∪ snd S)}

Finally, both of the new typing rules will impose a check carried over from the Anno

rule of Murray et al. [67] (itself adapted originally from Mantel et al. [54]) that disallows

the locking primitives from lowering the tracked security type of any variable. For this I

use a subtyping relation (also defined previously in Murray et al. [67]) between predicate

sets t, t′ :: bexp set , asserting that for shared memories mem where the set of tracked

predicates P holds, the latter set t′ holding entails the former set t holding too:

Reproduced definition (Subtyping relation between predicate sets).

t ≤:P t′ ≜ ∀mem. preds-hold (P ∪ t′) mem −→ preds-hold t mem

The aforementioned subtyping check, formally ∀x. Γ x ≤:P ′ Γ′ x, then ensures that under

a new set of facts P ′, the tracked sensitivity of the data in any variable x cannot have

dropped from High (in the old typing environment Γ) to Low (in the new environment Γ′).

6Note that from here onwards, I will overload the ⊕,⊖ notation seen earlier in Section 4.1.1.
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The checks all described so far yield the typing rule for the lock(k) primitive:

Γ′ = Γ⊕ k S ′ = S ⊕ k P ′ = P ↾ S ′ ∀x. Γ x ≤:P ′ Γ′ x

⊢ Γ,S, P {lock(k)} Γ′,S ′, P ′
Lock

For the unlock(k) primitive, the typing rule also enforces that if a lock k governing

some control variable v is released, then no variable x tracked by the typing environment

Γ has their type continuing to rely on v. This restriction must be enforced because if it

were violated, releasing k would cause v (and thus all sensitivity-tracking security types

relying on it) to become unstable. Stated precisely, we say that a variable v is part of

what determines the security type t = Γ x of some variable x, if it occurs in any of its

boolean expressions p (this was called vars-of-type in Murray et al. [67, 65]):

Reproduced definition (Variables determining a given predicate set).

vars-determining-preds t ≜ {v′ | ∃p ∈ t. v′ ∈ bexp-vars p}

The requirement just described is then phrased precisely as:

Definition 4.19 (Unlock maintains tracking stability).

unlock-maintains-tracking-stability k Γ S ≜

(∀v ∈ (varsNoW k ∪ varsNoRW k). v ∈ C −→

(∀x ∈ dom (Γ⊖S k). v /∈ vars-determining-preds (Γ x)))

The typing rule for the unlock(k) primitive is then:

Γ′ = Γ⊖S k S ′ = S ⊖ k P ′ = P ↾ S ′ ∀x. Γ x ≤:P ′ Γ′ x

unlock-maintains-tracking-stability k Γ S fst S ∩ snd S = ∅

⊢ Γ,S, P {unlock(k)} Γ′,S ′, P ′
Unlock

The final guard fst S ∩ snd S = ∅ enforces a basic check that the stable sets are non-

overlapping, which should follow from a similar restriction imposed on pairs returned

by the lock -interp parameter (Section 4.1.2). This guard will allow me to exclude a

pathological case (see Lemma 4.23) where a variable continues to have a security type

(due to being AsmNoW-stable after the unlock) without assurance that its contents are

free of secrets (due to having been hidden by AsmNoRW-stability before the unlock).

4.4.2 Proof of soundness

Having changed the set of rules in the security type system, we are obliged to re-prove

that the security type system is sound—meaning that for a While program thread, it

establishes the per-thread compositional security property com-secure (Definition 3.7).

The only substantial proof impact is on two main lemmas from Murray et al. [65]:
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• The “preservation” lemma says that if a well-typed program takes a step, its destina-

tion is also well typed (here, relative to the same final extended typing environment).

Such a property is commonly proved also for traditional (non-security) type systems.

• The “typed step capture” lemma says that well-typed program evaluation is captured

by an artifact exhibiting the desired security property:7 If a well-typed program takes

a step, then a configuration considered equivalent by the initial typing environment

must also be able to take a step, and both destinations are related by a bisimulation

construction BΓ′,S′,P ′ defined relative to the final extended typing environment.

These main lemmas are both proved by induction over the structure of the type system,

and therefore the impact is largely restricted to the removal of cases for Anno and Await,

and the addition of the new cases for Lock and Unlock.

Proving these two main lemmas makes use of the following two pairs of helper lemmas

about the impact on the extended typing environment of the new mutex locking primitives.

The first pair of helper lemmas establishes that the updates made by the Lock and

Unlock rules preserve the stability of the types (i.e. the variables they depend on) in a

well-formed typing environment (i.e. dependent only on control variables):

Reproduced definitions (Wellformedness of types, based on stability of their predicates.

From Murray et al. [65]).

preds-stable S ps ≜ ∀x ∈ vars-determining-preds ps. x ∈ fst S ∪ snd S

types-stable Γ S ≜ ∀x ∈ dom Γ. preds-stable S (dom Γ)

types-wellformed Γ ≜ ∀x ∈ dom Γ. vars-determining-preds (Γ x) ⊆ C

Lemma 4.20 (Lock acquisition updates preserve type environment stability).

types-stable Γ S types-wellformed Γ

types-stable (Γ⊕ k) (S ⊕ k)

Proof. When acquiring a lock on variable x, its type is initialised to Lbexp x, which could

only be in terms of its control variables (Cvars x). To know that they are stable, we rely on

a lock-interpretation requirement (as mentioned in Section 4.1.2) that access to variables

must be governed by exactly the same lock as all of their control variables.

The types of all other variables could not have been in terms of any of these (previously

unstable) variables, and therefore are unaffected and remain stable.

7In the sense that it links the type system with the property it is meant to establish, the “typed
step capture” lemma here could be viewed as a security type system analogue of the “progress” theorem
commonly proved for traditional type systems whose purpose is to prevent programs from getting stuck.
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Lemma 4.21 (Lock release updates preserve type environment stability).

types-stable Γ S types-wellformed Γ unlock-maintains-tracking-stability k Γ S

types-stable (Γ⊖S k) (S ⊖ k)

Proof. The types of all variables governed by the lock k are dropped from the typing

environment, so their stability is of no concern.

However, there may be other variables not governed by k whose types have moved

away from their default Lbexp x, and have come to rely on control variables other than

their own (Cvars x). The unlock-maintains-tracking-stability k Γ S guard (Definition 4.19)

explicitly protects the rest of these cases, by disallowing programs that try to unlock

control variables when there are types that still rely on them.

The second pair of helper lemmas establishes that the updates made by the Lock and

Unlock rules to the typing environment preserve a security condition: Effectively, the

tracked sensitivity of data should never exceed the classification of the variable containing

it, unless that variable is currently assumed not to be readable. Stated formally:

Reproduced definitions (Type environment security condition, Murray et al. [65]).

type-max t mem ≜ if (preds-hold t mem) then Low else High

tyenv-sec mds Γ mem ≜ ∀x ∈ dom Γ. x /∈ mds AsmNoRW −→

type-max (Γ x) mem ≤ L mem x

Lemma 4.22 (Lock acquisition updates preserve type environment security).

tyenv-sec mds Γ mem ∀x. x ̸= Lock k −→ mem ′ x = mem x

tyenv-sec (mds ⊕ k) (Γ⊕ k) mem ′

Proof. We are only worried about the case of variables x that after the lock acquisition

are tracked as containing High data, but are still assumed to be readable with a value-

dependent classification L mem x of Low. Using Isabelle we are able to discharge this

proof with the auto tactic, unfolding all of the aforementioned definitions.

Lemma 4.23 (Lock release updates preserve type environment security).

tyenv-sec mds Γ mem S = (mds AsmNoW,mds AsmNoRW)

fst S ∩ snd S = ∅ lock-held-mds-correct mds k

∀x. x ̸= Lock k −→ mem ′ x = mem x

tyenv-sec (mds ⊖ k) (Γ⊖S k) mem ′

Proof. Similarly to Lemma 4.22, we are only worried about variables x that continue to

be tracked as stable but readable (AsmNoW) after the lock release.
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As lock release can only possibly drop assumptions, this means x must have previously

been tracked as AsmNoW, and furthermore the lemma’s guards tell us x must have

satisfied the security condition previously. But the only part of memory that may change

is the value of lock k, so therefore neither of the still-tracked security type nor the value-

dependent classification of x could have changed from before.

Finally, as mentioned in Section 4.4, the guard fst S ∩ snd S = ∅ excludes a patholog-

ical case where x was permitted previously by the security condition to contain sensitive

contents, due to being hidden by AsmNoRW-stability before the unlock.

Along these lines of reasoning, using various Isabelle tactics in mixed Isar/“apply”-style

proof script, we are able to show that the security condition continues to hold.

To state the two aforementioned “preservation” and “typed step capture” lemmas

formally and detail the proof impact on them, I need a few more definitions from Murray

et al. [65] that bundle the type environment security and stability conditions together with

other wellformedness conditions, relative to a given mode state:

Reproduced definitions (Wellformedness and consistency of type environments).

tyenv-mds-consistent mds Γ S P ≜ S = (mds AsmNoW,mds AsmNoRW) ∧

dom Γ = {x | x /∈ C ∧ x ∈ fst S ∪ snd S} ∧

preds-stable S P

tyenv-wellformed mds Γ S P ≜ tyenv-mds-consistent mds Γ S P ∧

types-wellformed Γ ∧ types-stable Γ S

(Note that tyenv-wellformed was denoted by the abbreviation wf in Murray et al. [67].)

Then as mentioned before, the preservation lemma says that if a well-typed program

takes a step, its destination is also a well-typed program relative to the same final typing

environment. Furthermore, the step preserves the desired well-formedness conditions.

Lemma 4.24 (Preservation of welltypedness by program evaluation).

⊢ Γ,S, P {c} Γ′,S ′, P ′

tyenv-wellformed mds Γ S P preds-hold P mem tyenv-sec mds Γ mem

⟨c,mds,mem⟩w ⇝w ⟨c′,mds ′,mem ′⟩w
∃Γ′′ S ′′ P ′′. ⊢ Γ′′,S ′′, P ′′ {c′} Γ′,S ′, P ′ ∧ tyenv-wellformed mds ′ Γ′′ S ′′ P ′′ ∧

preds-hold P ′′ mem ′ ∧ tyenv-sec mds ′ Γ′′ mem ′

Proof. By induction over the structure of the type system. The proofs of the surviving

cases from Murray et al. [65] proceed largely unchanged.

The new cases for Lock and Unlock follow straightforwardly from Lemma 4.22 and

Lemma 4.23 (respectively), and from a type environment wellformedness preservation

lemma that makes use of Lemma 4.20 and Lemma 4.21 in a similar manner.
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I then prove that steps taken from configurations considered low-equivalent by the

typing environment maintain a strong low-bisimulation (modulo modes) given by the con-

struction BΓ′,S′,P ′ . In this chapter, the construction remains largely unchanged from the

previous work’s Isabelle formalisation [65]—it will be revisited in more detail in Chapter 7.

Meanwhile, the notion of low-equivalence is unchanged from Murray et al. [67]:

Definition 4.25 (Low-equivalence of memories according to a typing environment [67]).

mem1 =Γ mem2 ≜ ∀x. type-max (to-total Γ x) mem1 = Low −→ mem1 x = mem2 x

Lemma 4.26 (Well-typed program evaluation steps are captured by bisimulation BΓ′,S′,P ′).

⊢ Γ,S, P {c} Γ′,S ′, P ′ mem1 =Γ mem2

tyenv-wellformed mds Γ S P preds-hold P mem1 tyenv-sec mds Γ mem1

⟨c,mds,mem1⟩w ⇝w ⟨c′1,mds ′,mem ′
1⟩w

∃c′2 mem ′
2. ⟨c,mds,mem2⟩w ⇝w ⟨c′2,mds ′,mem ′

2⟩w ∧
⟨c′1,mds ′,mem ′

1⟩w BΓ′,S′,P ′ ⟨c′2,mds ′,mem ′
2⟩w

Proof. By induction over the structure of the type system. As for Lemma 4.24, the proofs

of the surviving cases from Murray et al. [65] proceed largely unchanged.

For the new Lock and Unlock cases, there are new sub-cases for the LockSpin (and

LockInvalid) evaluation step. The remaining sub-cases, for the actual LockAcq and

LockRel evaluation steps, are mostly adaptations of the proof for the old Anno rule,

making use of the new lemmas (and re-proved Lemma 4.24) covered in this section. As

for the Anno rule in Murray et al. [67], the subtyping guard ∀x. Γ x ≤:P ′ Γ′ x serves

to prevent the locking primitives from breaking the equivalence =Γ between memories,

which must be maintained through to the destination pair of memories (specifically =Γ′

for those) as a condition for their membership in BΓ′,S′,P ′ .

Then ultimately, what I re-prove is a more general form [65] of the soundness theorem

from Murray et al. [67]. It permits any initial mode state mds that “yields stable types”,

meaning that if a variable is stable, then all its control variables must also be stable:

Reproduced definitions (Allowable initial mode states mds, and their corresponding

initial typing environment Γmds and stable set pair Smds . From Murray et al. [65]).

yields-stable-types mds ≜ ∀x ∈ (mds AsmNoW ∪mds AsmNoRW).

(∀v ∈ Cvars x. v ∈ mds AsmNoW ∪mds AsmNoRW)

Γmds ≜ λx. if (x /∈ C ∧ x ∈ mds AsmNoW ∪mds AsmNoRW) then

if (x ∈ mds AsmNoRW) then Some {Falsebexp}

else Some (Lbexp x)

else None

Smds ≜ (mds AsmNoW,mds AsmNoRW)
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The security type system is sound in the sense that if a While program c :: cmd passes

it, with initial typing environment Γmds and stable set pair Smds corresponding to an

allowable mode state mds, then it is per-thread secure when started with that mds:

Theorem 4.27 (Soundness of the security type system updated for mutex locks).

⊢ Γmds ,Smds , ∅ {c} Γ′,S ′, P ′ yields-stable-types mds

com-secure (c,mem)

Proof. As in Murray et al. [65], I use the strong low-bisimulation (modulo-modes) con-

struction BΓ′,S′,P ′ derived from the type system, but with the re-proved Lemma 4.26.

4.5 Publications and acknowledgements

Work building on the contributions of this chapter was first presented by me at a workshop:

• [83] Robert Sison. Per-thread compositional compilation for confidentiality-preserving

concurrent programs. In 2nd Workshop on Principles of Secure Compilation, Los

Angeles, January 2018. Cătălin Hriţcu.

Subsequently, further work building directly on them has appeared in the publications:

• [68] Toby Murray, Robert Sison, and Kai Engelhardt. Covern: A logic for compo-

sitional verification of information flow control. In European Symposium on Security

and Privacy, pages 16–30, London, United Kingdom, April 2018. IEEE.

• [85] Robert Sison and Toby Murray. Verifying that a compiler preserves concur-

rent value-dependent information-flow security. In 10th International Conference on

Interactive Theorem Proving (ITP 2019), volume 141, pages 27:1–27:19, Portland,

USA, September 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Some definitions in Section 4.4 survive unchanged, apart from rephrasing for presen-

tation, from an unfinished early prototype by Edward Pierzchalski: S ⊕ k and S ⊖ k

(Definition 4.16), and unlock-maintains-tracking-stability (Definition 4.19). These adapt

analogous concepts from the Anno typing rule of our previous work, Murray et al. [67, 65].

Pierzchalski’s initial versions of the new security typing rules Lock andUnlock, however,

underwent changes by me in the course of my soundness proof effort (Section 4.4.2). Fur-

thermore, the restriction in Section 4.1.2 ensuring variables and their control variables are

always locked simultaneously, and the final versions of Isabelle proofs for two subsidiary

lemmas in Section 4.4.2 (Lemmas 4.20 and 4.21), are thanks to Toby Murray.

4.6 Summary

This chapter has presented a novel set of per-thread proof techniques that is sufficient to

verify noninterference for mixed-sensitivity concurrent programs. In doing so, it demon-

strated how to use assume–guarantee to prove that mutex lock-based synchronisation
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primitives, supplied with a way of explicitly specifying their footprints, yield a fully com-

positional proof method—that is, that those primitives maintain as invariant that assump-

tions on threads’ access to shared state are always met by corresponding guarantees.

To this end, this chapter proved that, with lock footprints specified by the programmer,

the semantics of the While language [67, 65] with mutex locks added (in Section 4.1) itself

ensures ongoing compatibility between the guarantees and assumptions (in Section 4.3).

Having discharged this one non-compositional (global) compositionality requirement from

the background work, this chapter then soundly extends for mutex lock support (1) a

check of local compliance with guarantees promised by locking discipline (in Section 4.2),

and (2) a security type system for proving noninterference for each thread (in Section 4.4).

Thus, a developer wishing to prove confidentiality for a mixed-sensitivity concurrent

program written in While with mutex locks is obliged only to provide details of the pro-

gram’s locking discipline, and to exercise the checks on each of the threads considered

independently. Chapter 6 will demonstrate the success of this approach on a case study.
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Chapter 5

Noninterference-preserving

compiler for mixed-sensitivity

concurrent While programs

As a second contribution, this chapter presents the Covern wr-compiler: the first compiler

proved to preserve proofs of noninterference for mixed-sensitivity concurrent programs.

Implemented by me as an Isabelle function [84] adapting a compilation scheme originally

for fault-resilient noninterference [95], the wr-compiler compiles programs from the While

language of Chapter 4, to a generic RISC-style assembly language with mutex locks. Here,

by using assume–guarantee modes [54, 67] and a decomposition principle [66, 85] to prove

it introduces (resp.) no race conditions or timing leaks, I prove that it satisfies the needed

notion of refinement to preserve noninterference despite mixed-sensitivity concurrency.

This contribution demonstrates the applicability to compiler verification of the CVDNI-

preserving refinement notion posed by Murray et al. [67], as made feasible by a decompo-

sition principle for proving it [66, 85]; I presented both notions in Section 3.2 as prelimi-

naries. Here the decomposition principle (Figure 3.3) is crucial because, in separating the

concern of preventing new timing leaks, it avoids directly having to prove the cube-shaped

refinement diagram (Figure 3.2) arising from its need to preserve a 2-safety property.

To preserve security for mixed-sensitivity concurrent programs, CVDNI-preserving re-

finement demands small-step preservation of the contents of all shared memory locations

including those that control value-dependent classifications and implement locks. As it is

unusual for verified compilers to make such promises in terms of memory contents,1 I show

that a valid approach is to take advantage of CVDNI’s assume–guarantee framework to:

1. test and preserve any absence of race conditions implied (via the framework) by

mutex lock-based synchronisation of access to such locations, and then

1For instance, CompCert [48] preserves operations on such memory locations, but its proofs of refinement
lack the direct reasoning about their contents needed to capture interference by other threads changing the
values of control variables, and thereby changing what the security property considers observable.
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2. use this absence of race conditions to establish the small-step preservation of their

contents demanded for security-preserving refinement.

In preserving CVDNI, the wr-compiler preserves security proofs that are produced by

my program verification techniques of Chapter 4. Such an application of the wr-compiler

to a case study program verified using these techniques will be demonstrated in Chapter 6.

This chapter will now proceed as follows. Section 5.1 will briefly introduce RISC with

mutex locks, the target language of the Covern wr-compiler. Then Section 5.2 will focus

on the wr-compiler’s particular adaptations to concurrent value-dependent noninterference

(beyond the fault-resilient noninterference targeted by the original compilation scheme of

Tedesco et al. [95]), in the form of static checks and invariants that ensure and maintain the

absence of race conditions on lock-protected shared variables. Section 5.3 formalises a ban,

preserved by the wr-compiler, on secret-dependent control flow. Section 5.4 then presents

formal proof, using the decomposition principle published alongside this chapter’s con-

tributions in Sison and Murray [85], that the wr-compiler implements CVDNI-preserving

refinement. Section 5.5 ultimately presents proofs of overall security preservation results

useful to users of the wr-compiler: Namely, it can be used either to preserve security down

to RISC for an entire concurrent While-language program, or to preserve the per-thread

security for threads that will be run alongside others written directly in the RISC-language.

The chapter concludes with acknowledgement of publications on this work and how

they relate to this chapter’s presentation in Section 5.6, and a summary in Section 5.7.

5.1 Target language: RISC with mutex locks

The wr-compiler targets RISC with mutex locks (hereafter RISC), a generic RISC-style

assembly language (based on the RISC architecture targeted by Tedesco et al. [95]) but for

the addition of lock-based synchronisation operations LockAcq and LockRel:

I ::= [l :]B

B ::= Load r v | Store v r | Jmp l | Jz l r | Nop

MoveK r n | MoveR r r | Op ⊕ r r

LockAcq k | LockRel k

The only new types here are register identifiers r :: Reg , and labels l :: Lab. A

RISC program text is then a list of RISC instructions I, each optionally associated with a

label. In contrast, the types of the constant values n :: Val , binary arithmetic operators

⊕ :: Val ⇒ Val ⇒ Val , shared program variables v :: Var , and shared lock variables

k :: Lock are fixed to be the same as those for the source While language being compiled.

The new LockAcq k and LockRel k operations are then given the same operational

semantics on the shared memory and mode state as the lock(k) and unlock(k) primitives

from While (Section 4.1). Thus, the wr-compiler is expected to have knowledge of the lock-

ing discipline supplied by the program developer for the While program being compiled,
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so as to be able to ensure that the RISC program it produces follows the same discipline.

As for While in Section 4.1, I instantiate the CVDNI theory [67] (recalled in Section 3.1)

for RISC assuming that the underlying concurrency model (e.g. OS, scheduler etc.) pre-

vents one thread from reading the program text of another. Here for RISC, I furthermore

assume that the context switching mechanism ensures effectively that no thread can read

or interfere with the contents of the registers when active for another thread. This includes

a distinguished program counter register, which captures the current thread’s program lo-

cation as an index into its RISC program text. Based on these assumptions, I model all

three of the program counter register’s value pc :: nat , RISC program text P :: I list , and

register bank regs :: Reg ⇒ Val , as thread-private state in the local configuration triple:

⟨((pc, P ), regs),mds,mem⟩r. The subscript r distinguishes the configuration triple as being

for a RISC program (as opposed to w for While configurations).

Apart from this notational adaptation to the configuration triple format for CVDNI

proofs, the RISC language’s evaluation semantics follows that of the RISC target archi-

tecture of Tedesco et al. [95]. For the new LockAcq k and LockRel k operations, the

program counter is incremented by the RISC equivalents for the LockAcq and LockRel

evaluation rules for the While language, and left unchanged by those for LockSpin and

LockInvalid (Section 4.1.1). There is no evaluation rule that changes the program text.

The direct-addressing Load and Store instructions, and conditional Jz (jump if zero),

are adequate for RISC to implement all features of While present in Chapter 4.

5.2 Preserving race-free expression evaluation

Recall from Section 3.2 that CVDNI-preserving refinement [67] demands that all shared

memory contents be preserved, between each target- and source-language configuration

that it relates. This is security critical for mixed-sensitivity concurrent programs, as it

ensures that any future influence of those contents on value-dependent classifications (via

control variables) or readability by other threads (via lock variables) is preserved.

The wr-compiler’s approach to preserving the contents of shared memory is to ensure:

1. That values calculated by expressions are preserved by compilation—that is, they

have the same value when written back to shared memory (or conditionally branched

on) by the RISC program, as they did in the original While program; and

2. That expression evaluation is race-free—that is, free of any race conditions with

other threads that would render the calculated expression inaccurate.

To this end, the wr-compiler requires of the original While program that whenever

each thread attempts to evaluate an expression, it must hold locks ensuring the

stability of all variables referenced by the expression.

The wr-compiler tracks two kinds of information to achieve these outcomes: the con-

tents of registers as expressions over shared variables, and assumptions on access to vari-

ables by other threads. The structures the wr-compiler uses to do this are, respectively:
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• A register record Φ :: RegRec ≜ Reg ⇀ exp. This draws inspiration from that used

by the compilation scheme of Tedesco et al. [95] (originally of type Reg ⇀ Var) to

avoid generating unnecessary Load instructions to registers that already contain a

variable; in addition, here I extend it to track entire expressions on shared variables.

• An assumption record S :: AsmRec ≜ (Var set×Var set) that, like the security type

system of Chapter 4, tracks which variables at a given point in the source While

program are “stable” due to having an AsmNoW or AsmNoRW assumption.

The wr-compiler’s main function compile-cmd then outputs every register–assumption

record pair (or compilation record) C = (Φ,S) :: CompRec ≜ RegRec×AsmRec associated

with the program state before execution of each instruction in the output RISC program.2

A typical invocation to compile some c :: cmd takes an initial compilation record C, and

returns the CompRec-annotated RISC program PCs :: (I×CompRec) list (i.e. map fst PCs

recovers an unannotated RISC text), and a final compilation record C ′:

Example 5.1 (Example invocation of the Covern wr-compiler).

(PCs, l′,nl ′, C ′, failed) = compile-cmd C l nl c

The remainder of this section will focus on formal properties of the compilation records

output alongside each RISC text: Section 5.2.1 will elaborate on checks enforced on input

programs with the help of AsmRecs, and Section 5.2.2 will present a resulting property that

RegRecs track stable expressions, needed to prove security preservation (in Section 5.4).

Remaining details (e.g. l, l′, nl, nl′ for label allocation) will be relegated to Appendix A.

I note here only that (1) compile-cmd may return True for failed to reject the input pro-

gram, such as when it detects a race condition (described further in Section 5.2.1), or if

expression depth exceeds the limit assumed by the register allocation scheme model (elided

to Appendix A.2); also, (2) relative to the label allocation scheme (elided to Appendix

A.1) I proved that the control flow of each program fragment compiled by the wr-compiler

remains self-contained even when composed sequentially with other such fragments.

5.2.1 Requirements on inputs to the wr-compiler

I define a shared variable v to be recorded as assumed stable if it and all its control

variables (i.e. Cvars v) cannot presently be written to by another thread—that is, if they

are recorded as having either of AsmNoW or AsmNoRW active on them. Formally:

Definition 5.1 (Stability of variable v according to assumption record S).

var-stable S v ≜ v ∈ (fst S ∪ snd S) ∧ (∀v′ ∈ Cvars v. v′ ∈ (fst S ∪ snd S))

For register record entries to be of any help in ensuring consistency of While and RISC

expression evaluation, I exclude expression evaluation on race-prone variables by lifting the

2For readability, I will use regrec, asmrec to denote a CompRec’s (resp.) fst, snd projections.
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concept of stability to register records. The following predicate asserts internal consistency

of the compilation record C created by compile-cmd, in the sense that the register record

may only map to expressions that mention variables that are recorded as stable by the

assumption record accompanying it. (Here, ran denotes the range of a map.)

Definition 5.2 (Stability of the register record in compilation record C).

regrec-stable C ≜ ∀e ∈ ran (regrec C). (∀v ∈ exp-vars e. var-stable (asmrec C) v)

I then implement a collection of stability-checks :: cmd × CompRec ⇒ bool (called

no-unstable-exprs in Sison and Murray [85]) as a recursive function on the structure of

While programs, that compile-cmd will use to ensure the following requirements of the

given cmd if started with a configuration consistent with the given CompRec:

• The first requirement is the main one I described at the beginning of Section 5.2:

The program must not refer to expressions on any unstable variables.

Note that this means that even a simple assignment x := y, of a single variable to

another, must be lock-protected; this is stricter than what is enforced by the local

compliance check of Section 4.2, because it is a means of requiring the developer of

the While-language program to be explicit in ensuring that an assignment from an

otherwise-unstable variable will still execute atomically in the RISC output program.

In this thesis I will call locks introduced solely for this purpose “read-atomicity”

locks, a practice I will exercise in Chapter 6.

• The remaining requirements are ones that the wr-compiler expects to be enforced by

the security type system and local compliance check of Chapter 4:

– If the program assigns to an unstable variable, that variable must not be a lock-

governed one according to the locking discipline. This prevents the violation of

any guarantees not to write to the variable (due to not holding its lock).

– The two sides of any if -conditional branches in the program must both end

with, effectively, the same set of locks held—to be precise, judging by their

effect on the mode state, as captured by the assumption record.

– Any while-loops in the program must restore the original set of locks held on

loop entry (again, as captured by the assumption record) on loop termination.

Together, regrec-stable C and stability-checks c C make up the main two requirements of

a predicate compile-cmd-input-reqs C l nl c imposed on the input arguments to compile-cmd.

(If any of these requirements are violated, compile-cmd rejects the program with failed =

True.) Its other two requirements reflect that the terminated While program stop has no

valid compilation, and that the initial label (if provided) must be valid (see Appendix A):
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Definition 5.3 (Requirements on inputs to compile-cmd).

compile-cmd-input-reqs C l nl c ≜ stability-checks c C ∧ regrec-stable C ∧

c ̸= stop ∧ (∀x. l = Some x −→ x < nl)

5.2.2 Proof that all tracked register contents are stable

Imposing the predicate compile-cmd-input-reqs (Definition 5.3) gives us enough information

to prove a lemma that compile-cmd only ever outputs stable register records, that attest

to the fact that registers contain the results of evaluating expressions on stable variables.

Stated more precisely, every RISC program returned by a successful invocation of

compile-cmd is annotated by CompRecs all with stable register records, and furthermore

that the final CompRec’s register record is also stable:

Lemma 5.4 (Successful compilations output only stable register records).

(PCs, l′,nl ′, C ′,False) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

(∀pc < length PCs. regrec-stable (snd (PCs[pc])) ∧ regrec-stable C ′

Proof. By induction on the structure of the While language program c, making reference

to the implementation of compile-cmd.

For cases that must compile expressions, I furthermore prove and make use of a lemma

by induction on the structure of expressions, making reference to the implementation of

the expression compiler function compile-expr called by compile-cmd. In essence, I prove

that (sub)expressions appearing in register records must be stable, for two reasons:

First, they are always only ever subexpressions over variables that must have been

stable in the input program when their contents were first loaded into registers.

Second, when compiling an unlock(k), the wr-compiler will always flush all register

records that make reference to any variables that the unlock(k) makes unstable.

5.3 Preserving a ban on secret-dependent control flow

The wr-compiler assumes that input While programs have no conditional branches on

High-sensitivity values (High-branching), and therefore no secret-dependent control flow.

This is a restriction applied by the security type system of Chapter 4 (inherited from

Murray et al. [67]), and—as noted in Section 2.2.5—commonly applied as a means to

prevent all implicit flows, including timing leaks; note that I will revisit this in Chapter 7.

This restriction will then be preserved by the wr-compiler for its output RISC programs,

reflected primarily in the design of the concrete coupling invariant Iwr (see Section 5.4.3).

Specifically, the wr-compiler assumes that the confidentiality of input While programs is

witnessed by a strong low-bisimulation modulo modes with an extra requirement (supplied

as a parameter, as in Section 3.1.2) that effectively disallows any present or past High-

branching. Relying on the fact that a low-bisimulation already asserts Low-equivalence of
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memories, the extra requirement asserts that it furthermore pairs only configurations at

the same program location, and that any if-conditional expressions must evaluate to the

same value in both configurations’ memories. Stated formally:3

Definition 5.5 (An extra requirement for low-bisimulations B to ban High-branching).

no-high-branching B ≜

∀c c′ mds mem mem ′. (⟨c,mds,mem⟩w, ⟨c′,mds,mem ′⟩w) ∈ B −→ c = c′ ∧

(∀e c1 c2. leftmost-cmd c = if e then c1 else c2 fi −→ evexpmem e = evexpmem ′ e)

Then, in Section 5.5, I will prove that the wr-compiler produces confidential RISC

programs with no secret-dependent control flow, as witnessed by a low-bisimulation that

asserts a similar extra requirement for RISC programs—in effect, the pc-security notion of

Molnar et al. [61] (noted in Section 2.2.5), but also explicitly equating the program text:

Definition 5.6 (A pc-security–like requirement for RISC bisimulations B).

pc-security B ≜ ∀pc pc′ P P ′ regs regs ′ mds mem mem ′.

(⟨((pc, P ), regs),mds,mem⟩r, ⟨((pc′, P ′), regs ′),mds,mem ′⟩r) ∈ B −→ pc = pc′ ∧ P = P ′

5.4 Use of the decomposition principle

Having covered the most relevant aspects of the wr-compiler’s implementation, I now

present the refinement relation Rwr (in Section 5.4.1), pacing function abs-stepswr (in

Section 5.4.2), and concrete coupling invariant Iwr (in Section 5.4.3), parameters I use to

apply the decomposition principle I presented in Chapter 3 to prove (in Section 5.4.4) that

successful compilations are legitimised by secure-refinement (Definition 3.15)—the desired

confidentiality-preserving notion of refinement for mixed-sensitivity concurrent programs.

The strategy laid out by the decomposition principle will be to prove that these

parameters satisfy decomp-refinement-safe (Definition 3.19) for a targeted class of input

While-language programs—ones with no secret-dependent control flow—meaning (for such

programs) we can use the parameters to enforce that wr-compiler introduces no secret-

dependent inconsistencies in termination, timing behaviour, or assume–guarantee modes.

In doing so I avoid a direct proof of the cube-shaped refinement diagram (Figure 3.2)

of Murray et al. [67]—which would have involved reasoning about both Rwr and Iwr at

once—and instead prove (with the assistance of abs-stepswr) a square-shaped refinement

diagram for Rwr (Figure 3.3a) more typically found in compiler verification.

3Here, the helper function leftmost-cmd gives the leftmost in a sequence of ;-separated While-language
commands.
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5.4.1 Refinement relation Rwr and its invariants

In this section I introduce the refinement relation Rwr that characterises compilation

of programs from While to RISC using the wr-compiler, and prove it satisfies the two

properties demanded of Rwr (alone) by formal secure-refinement (Definition 3.15):

1. Preservation of modes and all contents of shared memory (preserves-modes-mem,

Definition 3.13), and

2. Closedness under changes by other threads (closed-others, Definition 3.14).

An actual proof of refinement (using the square-shaped diagram of Figure 3.3a) for Rwr

will be deferred to Section 5.4.2, which introduces the abs-stepswr function pacing it.

Just like the earlier example of a secure refinement relation (in Figure 3.1), the re-

finement relation Rwr pairs abstract (here, While-language) with concrete (here, RISC-

language) program configurations. For example, the if expr case of Rwr relates the

expression-evaluation part of the While command if e then c1 else c2 fi, with the corre-

sponding part of the RISC program obtained by running compile-cmd on it, including the

conditional jump Jz after expression evaluation. (This case is depicted in Figure A.1, and

a relevant excerpt of the compile-cmd implementation provided in Figure A.2 for compar-

ison, both on page 131 of Appendix A. An informal description of all the cases of Rwr,

their purpose, and the invariants they maintain, is also relegated to Appendix A.)

I define almost all the cases of Rwr to assert at least one successful run of compile-cmd

(where failed = False). I then define a guard that I impose to restrict the scope of Rwr

only to consider local program configurations consistent with the relevant compilation

record produced by compile-cmd. In short, this ensures the actual values in the register

bank regs equal any expression the register record says they should have, as evaluated

under the current mem; and furthermore, that the assumption record is consistent with

the AsmNoW and AsmNoRW modes in the actual mds. Formally:

Definition 5.7 (Configuration consistency requirements for compiled commands).

compiled-cmd-config-consistent C regs mds mem ≜

regrec-mem-consistent (regrec C) regs mem ∧ asmrec-mds-consistent (asmrec C) mds

where

regrec-mem-consistent Φ regs mem ≜ ∀r e. Φ r = Some e −→ regs r = evexp mem e

(Consistency between register record, register bank, and shared memory)

asmrec-mds-consistent S mds ≜ S = (mds AsmNoW, mds AsmNoRW)

(Consistency between an assumption record and a mode state)

Apart from using compiled-cmd-config-consistent to restrict the scope of Rwr in this

manner, I will also impose it in Section 5.4.4 as initial configuration requirements for
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compiled programs: Only configurations obeying them may be used to initialise a RISC

program compiled by the wr-compiler with initial CompRec C.

The cases of Rwr also tend to assert regrec-stable (Definition 5.2), which I already

proved holds for all compilation records produced by the wr-compiler (Lemma 5.4).

Finally, whenever a case ofRwr is inductive (e.g. the if expr case, for its nested calls to

compile-cmd for each of its “then” and “else” branches) it quantifies over all configurations

that obey compiled-cmd-config-consistent (Definition 5.7) and regrec-stable (Definition 5.2)

relative to the initial compilation record given to each nested call to compile-cmd.

With Rwr thus specified, I can now prove the two requirements for secure-refinement

that pertain to Rwr alone: preserves-modes-mem (Definition 3.13), and closed-others (Def-

inition 3.14). In short, preserves-modes-mem is largely enforced by the definition of Rwr,

but closed-others relies in part on Rwr only ever talking about stable register records:

Lemma 5.8 (Rwr preserves modes and memory).

preserves-modes-mem Rwr

Proof. By induction on the structure of Rwr.

For all cases of (lcw, lcr) ∈ Rwr, lcw =mem
mds lcr is either asserted directly by the guards

or obtainable from the inductive hypothesis.

Lemma 5.9 (Rwr is closed under changes by others).

closed-others Rwr

Proof. By induction on the structure of Rwr.

Changes by others (Definition 3.14) only modify writable variables the same way for

both configurations, so preservation of =mem
mds is immediate. Also, regrec-mem-consistent is

unaffected because by Lemma 5.4, compile-cmd only creates regrec-stable records—i.e. re-

ferring to no writable variables. No other Rwr guards mention shared memory.

5.4.2 Refinement pacing function abs-stepswr

In this section I nominate a pacing function, abs-stepswr, specifying the number of evalu-

ation steps with which a While program should simulate each step of the RISC program

to which the wr-compiler compiled it. Using the square-shaped “refinement preservation”

diagram of Figure 3.3a (part of Definition 3.18), I then prove that the Rwr relation I

introduced in Section 5.4.1 is a refinement when “paced” by abs-stepswr in this manner.

Here I define abs-stepswr to depend only on the current program location; consequently,

as long as the wr-compiler introduces no secret-dependent control flow, it will also introduce

no timing leaks—that is, no secret-dependent variations to the pacing of the program, as

disallowed by Figure 3.3b (part of Definition 3.19)—which we will be obliged to prove in
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Section 5.4.4. To this end, abs-stepswr primarily looks at the form of the RISC instruction

(sometimes While command) about to be executed, dividing them into three categories:

• Instructions output by compile-expr: Load, Op, and MoveK. For these, abs-stepswr

returns 1 if the leftmost-cmd (the leftmost in a sequence of ;-separated commands)

of the While program is “while e do c od”, to allow it to step to “if e then (c ;

while e do c od) else stop fi” concurrently with the first RISC step of the compiled

expression itself. Otherwise, abs-stepswr returns 0, to indicate the While program

standing still while the RISC program takes new steps to evaluate the expression.

• “Epilogue” steps: Jmp and Nop when used for control flow at the end of a smaller

compiled program in the context of a larger one. For these, abs-stepswr returns 0.

• All other RISC instructions are assumed to proceed at a lockstep pace with the While

command they were compiled from, and for these abs-stepswr returns 1.

Having nominated abs-stepswr and Rwr, we now have the parameters over which we are

obliged, by secure-refinement-decomp (Definition 3.18), to prove refinement preservation

(Figure 3.3a). To this end, I prove firstly that every step of execution of a RISC program,

produced by the wr-compiler from a While program, maintains the consistency demanded

by compiled-cmd-config-consistent between configurations and compilation records:

Lemma 5.10 (Successfully compiled programs maintain config consistency requirements).

(PCs, l′,nl ′, C ′, failed) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

failed = False pc < length PCs P = map fst PCs Cs = map snd PCs

compiled-cmd-config-consistent Cs[pc] regs mds mem

⟨((pc, P ), regs),mds,mem⟩r ⇝r ⟨((pc′, P ), regs ′),mds ′,mem ′⟩r)

compiled-cmd-config-consistent (if pc′ < length P then Cs[pc′] else C ′) regs ′ mds ′ mem ′

Proof. Unfolding Definition 5.7, I in fact prove it separately for regrec-mem-consistent and

asmrec-mds-consistent, both times by induction on the structure of the While program c.

In each case, I use the simplifiers for the compile-cmd implementation to yield the

corresponding RISC program fragment in question, and then prove the lemma for each

of the possible locations of pc in the compiled program. For both proofs, there is some

trickiness in accounting for (and ruling out) which destination pc′ must be considered for

each of these cases of pc, particularly for those While programs that compile to RISC

programs that may have jumps in them.

Control flow trickiness aside, the intuition for regrec-mem-consistent is that it tests the

correctness of the compilation of expressions. For this I prove a sub-lemma for maintenance

of compiled-cmd-config-consistent, by induction on the structure of expressions e that are

encountered in the While programs if e then c1 else c2 fi, while e do c′ od, and v := e.

Additionally, unlock(k) flushes register record entries mentioning variables that are to
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become unstable, and while e do c′ od conservatively flushes entries to force evaluation of

the loop condition expression. This is safe trivially because flushing entries can never make

a consistent register record inconsistent. The rest of the cases for c are straightforward

because they do not touch the register record.

Then for asmrec-mds-consistent, the substantial part of the proof is as a test of the cor-

rectness of the compiler’s bookkeeping of assumptions being consistent with the semantics

of lock(k) and unlock(k). The other cases for c do not touch the mode state.

Also, we must prove a correctness lemma for the expression compiler:

Lemma 5.11 (Correctness of the expression compiler).

(PCs, r, C ′,False) = compile-expr C A l e =⇒ (regrec C ′) r = Some e

Proof. By induction on the structure of expressions e, using the simplification rules for

the implementation of compile-expr, and also relying on assumptions of correctness of the

register allocation scheme supplied by the instantiator of the theory.

Armed with these facts, we can now prove the main refinement preservation result:

Lemma 5.12 (Rwr is a refinement paced by abs-stepswr).

∀lcw lcr. (lcw, lcr) ∈ Rwr −→ (∀lc′r. lcr ⇝r lc
′
r −→

(∃lc′w. lcw ⇝
(abs-stepswr lcw lcr)
w lc′w ∧ (lc′w, lc

′
r) ∈ Rwr))

Proof. By induction on the structure of Rwr. (Refer to Appendix A, Section A.3, for an

informal description of all cases of Rwr.)

The base case stop is immediate, as it pertains to a terminated While and RISC

program. The base cases that proceed in one step to a terminating program configuration

(skip nop, assign store, lock acq, lock rel) are fairly straightforward because after

dealing with the single step, the resulting obligation can then be handled by the stop case.

This leaves the last remaining base case assign expr, which proceeds in one step either to

itself, or to assign store. In all these cases, I use Lemma 5.10 to obtain the preservation

of the guards demanded by the Rwr introduction rule for the destination configuration of

the step. Particularly, the assign store case must make use of regrec-mem-consistent and

the correctness of compile-expr (Lemma 5.11) to ensure that once the evaluated expression

is written back to shared memory, lc′w =mem
mds lc′r holds as demanded by the stop case.

The inductive cases that concern expression evaluation (if expr, while expr) are

much like assign expr in that they have the possibility of progressing in one step to

themselves. Unlike assign expr however, their other possibility is a conditional jump

based on the result of that expression. Again I use Lemma 5.11 to obtain that the result

is an accurate calculation of the expression, and this time I prove by the two different cases

whether if expr ends up in if c1 or if c2, or if while expr ends up in while inner or at
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stop (having jumped to the exit label). In these cases, the guards over which the inductive

references to Rwr have been quantified are versatile enough to discharge themselves (when

* expr steps to itself), or to discharge any reachable initial starting state for the nested

compiled RISC program, given that Lemma 5.10 ensures the invariance of these guards.

This just leaves the inductive cases that pertain to configurations inside a nested com-

piled RISC program (if c1, if c2, while inner), or at the end of one (epilogue step,

while loop). In these cases, the inductive hypotheses obtained from the inductive refer-

ence to Rwr are always enough to satisfy the guards demanded by the possible destination

cases. Like in the proof of Lemma 5.10, the trickiness mostly comes from accounting for

all the possible cases of control flow (ruling out spurious destinations) that need to be

considered.

5.4.3 Concrete coupling invariant Iwr

The next element needed is the concrete coupling invariant Iwr. Recall from Section 5.3

that the no-high-branching requirement (Definition 5.5) ensures that input While programs

have no secret-dependent control flow; here I choose Iwr to ensure that the wr-compiler

has not introduced any new secret-dependent control flow in the output RISC program.

I define Iwr formally to assert that the witness strong low-bisimulation (modulo modes)

to be derived for the output program only pairs local configurations that are at the same

location pc = pc′ of the same RISC program P = P ′:

Definition 5.13 (Concrete coupling invariant Iwr for compiled programs).

Iwr ≜ {(⟨((pc, P ), regs),mds,mem⟩r, ⟨((pc′, P ′), regs ′),mds ′,mem ′⟩r) | (pc, P ) = (pc′, P ′)}

From this definition, pc-security (Definition 5.6) is clearly immediate for any concrete

bisimulation BCof B R Iwr (Definition 3.16) derived using Iwr.

5.4.4 Proof of CVDNI-preserving refinement

WithRwr, abs-stepswr, and Iwr nominated, we are ready to prove confidentiality-preserving

refinement using the decomposition principle secure-refinement-decomp (Definition 3.18).

To this end, I now prove the suitability of these three parameters, for While programs

that do not branch on High-sensitivity values (as I specified earlier, in Section 5.3):

Lemma 5.14 (Rwr, abs-stepswr, Iwr are safe for secure-refinement decomposition).

strong-low-bisim-mm B no-high-branching B

decomp-refinement-safe B Rwr Iwr abs-stepswr

Proof. Unfolding Definition 3.19 gives us the following obligations. (See also Figure 3.3.)

For consistent stopping behaviour, I prove a lemma that RISC programs stop if and

only if their pc is outside the program text P , i.e. pc > length P . Because Iwr equates pc
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and P for the two configurations, then clearly both have identical stopping behaviour.

For consistency of change in timing behaviour, abs-stepswr depends only on While and

RISC program locations, and no-high-branching and Iwr forces them (respectively) to be

equal for the local configurations under consideration.

For closedness of Iwr under lockstep execution, the only non-straightforward cases to

consider are conditional branching, and the locking primitives. For conditional branching,

I use no-high-branching for B with memory preservation via Rwr (Lemma 5.8) to ensure

that the conditional branching outcome is the same on both sides.

Finally, as the only operations that touch mode state, the locking primitives are the

only non-straightforward cases for modes-equality maintenance under lockstep execution.

As all lock memory is classified Low (Section 4.1.2), I use strong-low-bisim-mm for B with

memory preservation via Rwr to ensure the RISC configurations behave consistently.

Lemma 5.15 (Rwr, abs-stepswr, Iwr meet decomposed secure-refinement requirements).

strong-low-bisim-mm B no-high-branching B

secure-refinement-decomp B Rwr Iwr abs-stepswr

Proof. Unfolding Definition 3.18, the obligations pertaining only to Rwr and abs-stepswr

are discharged by Lemma 5.12, Lemma 5.9, and Lemma 5.8. Pertaining to Iwr: Clearly

Iwr is symmetric, and furthermore it is cg-consistent (Definition 3.6) because the actions

over which Iwr must be closed modify only the shared memory, and Iwr places only

restrictions on the program text and current location. The final obligation (regarding

decomp-refinement-safe) is discharged by Lemma 5.14.

From this it follows immediately via Theorem 3.20 that Rwr with the help of Iwr
describes a confidentiality-preserving refinement for non-High-branching While programs:

Corollary 5.16 (Rwr is a secure refinement for non-High-branching programs).

strong-low-bisim-mm B no-high-branching B

secure-refinement B Rwr Iwr

Finally I prove that successful compilation produces a RISC program related by Rwr

to its input While program, when started with corresponding (same mds,mem) and rea-

sonable (according to compiled-cmd-config-consistent) initial configurations:

Theorem 5.17 (Successful compilations are refinements in Rwr).

(PCs, l′,nl ′, C ′, failed) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

failed = False compiled-cmd-config-consistent C regs mds mem P = map fst PCs

(⟨c,mds,mem⟩w, ⟨((0, P ), regs),mds,mem⟩r) ∈ Rwr

Proof. By induction on the structure of the While-language.
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The compiler input and initial configuration conditions I impose allow me to have each

of skip, cmd ;cmd , if exp then cmd else cmd fi, while exp do cmd od, v :=exp, lock(k),

and unlock(k) and their compiled output meet the guards of the introduction rules for

the cases skip, seq, if expr, while expr, assign expr, lock acq, and lock rel of Rwr

(described further in Appendix A, Section A.3) that I designed for them, respectively.

5.5 Proof of compositional noninterference preservation

Going beyond the level of detail of our presentation in Sison and Murray [85], I now

present the final few steps to obtain preservation of (1) compositional security properties

down to RISC level on a per-thread basis, and (2) whole-system security for concurrent

compositions of those RISC threads when obtained via compilation by the wr-compiler.

Given the facts established in the preceding sections, we have straightforwardly that

such programs’ executions are captured by the bisimulation derived from B,Rwr, Iwr, when
started with reasonable initial configurations corresponding to those paired by B:

Lemma 5.18 (Programs witnessed by B are captured by BCof B Rwr Iwr once compiled).

strong-low-bisim-mm B (⟨c,mds,mem1⟩w, ⟨c,mds,mem2⟩w) ∈ B

(PCs, l′,nl ′, C ′, failed) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

failed = False compiled-cmd-config-consistent C regs mds mem1 P = map fst PCs

compiled-cmd-config-consistent C regs mds mem2

(⟨((0, P ), regs),mds,mem1⟩r, ⟨((0, P ), regs),mds,mem2⟩r) ∈ BCof B Rwr Iwr

Proof. Straightforward from the definition of BCof (Definition 3.16), using Theorem 5.17

to show membership of Rwr, and the definition of strong-low-bisim-mm (Definition 3.4)

to show that the memories are low-equal modulo modes, as required by BCof. Finally,

membership of Iwr (Definition 5.13) follows from the fact that the paired configurations

are at the same location (program counter 0) of the same program P .

I initialise the compiler with an empty C0 :: CompRec that knows nothing about the

register contents, and assumes no variables to be stable:

Definition 5.19 (Empty compilation record C0).

C0 ≜ ((λ . None), (∅, ∅))

With these definitions we have the desired consistency result:

Lemma 5.20 (Initial C0,mds0 are consistent with no-locks-held).

no-locks-held mem =⇒ compiled-cmd-config-consistent C0 regs mds0 mem
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Proof. This is straightforward by unfolding Definitions 5.7, 4.13, 4.14, and 5.19, also

relying on the cleanliness conditions on locking disciplines specified in Section 4.1.2.

We are ready to state the security preservation result formally. As I explained in

Section 5.3, the Covern wr-compiler’s preservation of security is only for programs with

no-high-branching (Definition 5.5); furthermore, so that we can derive global compatibil-

ity for multiple of these programs run concurrently as threads (as per Section 4.3.2), I

will impose no-locks-held (Definition 4.13) as an initial condition. Therefore, the secu-

rity preservation theorem I choose to prove here demands the input While program be

com-secureno-high-branchingno-locks-held (Definition 3.7, with additional requirements as specified). Given

this, it then promises that the output RISC program is com-securepc-securityno-locks-held:

Theorem 5.21 (Preservation of per-thread confidentiality by the wr-compiler).

com-secureno-high-branchingno-locks-held (c,mds0)

(PCs, l′,nl ′, C ′,False) = compile-cmd C0 l nl c compile-cmd-input-reqs C0 l nl c

com-securepc-securityno-locks-held (((0,map fst PCs), regs),mds0)

Proof. We are given by com-secureno-high-branchingno-locks-held (Definition 3.7) that for low-equal start-

ing configurations (modulo modes) of c with no locks held, there exists some witness B
satisfying both strong-low-bisim-mm and no-high-branching.

From this and Lemma 5.18 we have that the output program’s corresponding execution

is captured by a RISC semantics-level relation BCof B Rwr Iwr derived from this B, with
Lemma 5.20 discharging the compiled-cmd-config-consistent requirements.

Corollary 5.16 then gives us that secure-refinement B Rwr Iwr holds, and from this and

strong-low-bisim-mm B using Theorem 3.17 we have strong-low-bisim-mm (BCof B Rwr Iwr).
This is enough to show com-securepc-securityno-locks-held for the RISC program, by Definition 3.7; as

Section 5.4.3 noted, pc-security (Definition 5.6) is immediate from the definition of Iwr.

To prove a whole-system security result at the RISC level for the compiled program, we

must also prove sound-mode-use (Definition 3.10). To that end, I prove a local and global

result for RISC programs output by the wr-compiler when given a secure While program.

The local compliance result follows from a property of the refinement relation, Rwr:

Lemma 5.22 (Each step from a RISC configuration in Rwr respects its own guarantees).

(⟨c,mds,mem⟩w, ⟨((pc, P ), regs),mds,mem⟩r) ∈ Rwr

∀x. (x ∈ mds GuarNoRW −→ doesnt-read-or-modify ((pc, P ), regs) x) ∧

(x ∈ mds GuarNoW −→ doesnt-modify ((pc, P ), regs) x)

Proof. By induction on the structure of Rwr.
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Knowing that the While command does not access lock-governed variables without

holding the relevant lock (via the stability-checks asserted as part of compile-cmd-input-reqs

by every relevant case of Rwr), we are obliged to show that the RISC instruction paired

to it by Rwr similarly respects the guarantee modes implied by the locking discipline (as

specified in Section 4.1.1). I do so with a mixed Isar/“apply”-style proof that exercises

the RISC semantics for all the relevant cases, making much use of lemmas about control

flow under sequential composition (mentioned in Section 5.2—see also Appendix A).

Lemma 5.23 (Refinements in Rwr ensure local mode compliance).

(⟨c,mds,mem⟩w, ⟨((pc, P ), regs),mds,mem⟩r) ∈ Rwr

local-mode-compliance ⟨((pc, P ), regs),mds,mem⟩r

Proof. Unfolding Definition 3.11, we must show that what was proved by Lemma 5.22

holds for every RISC configuration reachable from ⟨((pc, P ), regs),mds,mem⟩r.
First, I prove a lemma that establishes that every such reachable RISC configuration

is also paired by Rwr to some While configuration. Specifically, I prove that Rwr is closed

under a notion of “pairwise reachability under mode-permitted havoc”, wherein:

1. Every one step by the RISC program is matched by either zero or one step by the

While program, as specified by abs-stepswr (Section 5.4.2).

2. Between each evaluation step, arbitrary changes are allowed to occur to the memory

locations judged by the mode state to be writable (Definition 3.5).

Because all such RISC configurations reachable from the initial one are in Rwr, it then

follows from Lemma 5.22 that they respect their own guarantees, as required.

Lemma 5.24 (Threads compiled by the wr-compiler obey local compliance).

(PCs, l′,nl ′, C ′,False) = compile-cmd C0 l nl c compile-cmd-input-reqs C0 l nl c

no-locks-held mem

local-mode-compliance ⟨((0,map fst PCs), regs),mds0,mem⟩r

Proof. This follows from Theorem 5.17, Lemma 5.20, and Lemma 5.23.

Then I prove invariance of global modes compatibility (as in Section 4.3) for compiled

RISC programs, due to RISC’s identical semantics to While regarding locking and modes:

Lemma 5.25 (Initialising RISC with no-locks-held,mds0 ensures global compatibility).

no-locks-held mem ∀(((pc, P ), regs),mds) ∈ set cmsr. mds = mds0

global-modes-compatibility (cmsr,mem)
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Proof. I firstly prove versions of Lemma 4.10, Lemma 4.11, and Theorem 4.12 for RISC,

following exactly the same reasoning as I did in Section 4.3 for While. This is because the

RISC instructions LockAcq k and LockRel k are (like lock(k) and unlock(k) in While)

the only ones in their language that modify mode state, and their semantics regarding mode

state and lock memory are identical to those of the lock(k) and unlock(k) commands.

The present result then follows for the same reason that Lemma 4.15 did for While.

We now have enough information to derive a whole-system security result, for concur-

rent RISC programs obtained by running the wr-compiler on secure While programs:

Theorem 5.26 (Secure threads compiled by the wr-compiler form a secure system).

∀i < length cmsr. ∃c l nl PCs l′ nl ′ C ′ regs.

com-secureno-high-branchingno-locks-held (c,mds0) ∧

(PCs, l′,nl ′, C ′,False) = compile-cmd C0 l nl c ∧ compile-cmd-input-reqs C0 l nl c ∧

cmsr[i] = (((0,map fst PCs), regs),mds0)

sys-secureno-locks-held cmsr

Proof. By Theorem 3.8 and unfolding Definition 3.10, we are required to prove security and

local mode compliance for every thread of the compiled RISC program, and global modes

compatibility between them all as a whole, assuming no-locks-held and using mds0 initially.

These requirements are immediate using Theorem 5.21, Lemma 5.24, and Lemma 5.25.

5.6 Publications and acknowledgements

The work described in this chapter was first presented by me in the workshop talk already

noted in Section 4.5:

• [83] Robert Sison. Per-thread compositional compilation for confidentiality-preserving

concurrent programs. In 2nd Workshop on Principles of Secure Compilation, Los

Angeles, January 2018. Cătălin Hriţcu.

It subsequently appeared in the publication (also noted in Section 4.5):

• [85] Robert Sison and Toby Murray. Verifying that a compiler preserves concur-

rent value-dependent information-flow security. In 10th International Conference on

Interactive Theorem Proving (ITP 2019), volume 141, pages 27:1–27:19, Portland,

USA, September 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

This chapter recounts a selection of the content of this publication, brings details from

its extended version (arXiv:1907.00713 [cs.LO]) in-line with what was published, and

expands on it with further details to clarify its relationship with the work of the rest

of the thesis. Notably, whereas Sison and Murray [85] stops at the compiler’s fulfilment
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of the refinement notion, Section 5.5 expands the presentation here to formal proofs of

per-thread security property preservation (via the refinement) and whole-system security

property preservation (via compositionality of the per-thread property) by the compiler.

5.7 Summary

This chapter has presented the second major contribution of this thesis: the Covern

wr-compiler from While (of Chapter 4) to RISC (of Section 5.1), which is the first compiler

proved to preserve proofs of noninterference for mixed-sensitivity concurrent programs.

In demonstrating such a proof (in Sections 5.4 and 5.5), this chapter attests to the ap-

plicability to compiler verification of the CVDNI-preserving refinement notion for security

posed by Murray et al. [67], as made feasible by a decomposition principle for proving it

(published alongside this chapter’s contributions, in Sison and Murray [85]). It also shows

that a valid approach to implementing such a compiler (presented in Section 5.2) is to use

assume–guarantee mode state (1) to apply strict checks on the input source, and (2) to

maintain invariants internally, both so as to maintain the absence of race conditions.

Thus, a developer who has used the methods of Chapter 4 to prove confidentiality, for

a mixed-sensitivity concurrent While program with no secret-dependent control flow (as

specified in Section 5.3), can rely on the compiler to preserve that confidentiality to the

output RISC program. Chapter 6 (specifically Section 6.6) will demonstrate the success of

this compiler verification-based approach to security preservation, on a case study.
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Chapter 6

Case study: Cross Domain

Desktop Compositor input handler

This chapter presents the third and central contribution of this thesis, and the main case

study for the contributions of Chapters 4 and 5: the first mixed-sensitivity concurrent

program proved to satisfy a noninterference property, preserved by a compiler down to

an assembly-level model. This contribution validates the central claim of this thesis, that

proving confidentiality and its preservation by a compiler is feasible for such programs.

The Cross Domain Desktop Compositor (CDDC) of Beaumont et al. [13] is a desktop

device that gives trusted users the option of replacing multiple monitor, keyboard, and

mouse setups with a single multi-level secure user interface (via a single monitor, keyboard,

and mouse, as depicted in Figure 6.1a) when using several desktop computers simultane-

ously. Here I present as case study a software program (replacing customised hardware)

that handles the incoming mouse and keyboard inputs to the CDDC. This program has

served as a particularly good case study, because it features both of the characteristics for

which proving information-flow security is this thesis’ main focus:

• Concurrency—here, between software components whose execution is interleaved (by

the seL4 operating-system microkernel [44]), and that interact via shared memory.

• Mixed-sensitivity reuse—here, of system resources (notably the input devices) and

memory locations, for input whose sensitivity level can be different at different times.

By exercising the program verification techniques of Chapter 4—with assume–guarantee

compatibility proved as an invariant of the language—on a While model of this case study,

I show that these techniques constitute a practical, per-component compositional approach

to obtaining a security proof, that handles both of these characteristics successfully.

Then, by exercising the compiler verification result of Chapter 5—a compiler that pre-

serves information-flow security—on this While model, I show this compiler verification-

based approach to be feasible for obtaining the preservation of proved security results,

straightforwardly and for little extra effort, down to a RISC model of the program.
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(a) CDDC hardware use-case setup.

The bar painted at the top of the screen indicates
the computer set to receive all keyboard events.
Mouse events are delivered to the owner of the
topmost window underneath the mouse cursor.

(b) CDDC hardware architecture.

The HID switch—implemented in software on
top of seL4—runs on an ARM Cortex A9 core,
and operates a compositor device implemented
(as in Beaumont et al. [13]) using an FPGA.

Figure 6.1: Functional schematics for Cross Domain Desktop Compositor hardware.
Reproduced from Murray et al. [68].

The chapter will proceed as follows. Following an overview (in Section 6.1) of the main

characteristics of the case study, we will examine certain aspects of the While model in

detail: firstly (in Section 6.2) the device interfaces where the attacker and trusted user are

modelled, then (in Section 6.3) the internal device and inter-component interactions via

shared memory. Discussion of these aspects will focus on the impacts of the case study’s

characteristics on (1) the classification of the locations concerned, and (2) the use of mutex

locks to govern access to those locations. Section 6.4 then presents the formal security

properties I proved subsequently about this While model, and how I obtained them using

the program verification techniques that I presented in Chapter 4; Section 6.5 touches on

the extent to which applying this (mostly automated) process required user intervention.

Finally, Section 6.6 presents the formal preservation of security properties down to a RISC

model, obtained from running the verified wr-compiler of Chapter 5 on the While model.

I conclude with a list of relevant publications (Section 6.7) and a summary (Section 6.8).

6.1 Overview of the case study

The case study is a software implementation of the human interface device (HID) switch in

the CDDC (see Figure 6.1b). In short, this part of the CDDC is responsible for determining

the destination of all HID input (keyboard and mouse device) events, and ensuring that the

user remains informed of that destination (by operating a video compositor device, which

renders display elements for that purpose on a shared monitor, as depicted in Figure 6.1a).
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Figure 6.2: Functional schematic of seL4 component architecture for CDDC HID switch.
Reproduced from Murray et al. [68].

Information-flow security

The HID switch’s responsibilities are security critical, as the CDDC is intended to pro-

vide an interface to multiple desktop computers belonging to different security domains;

hence, the user of the CDDC is expected to choose the sensitivity of the data they input,

based on the computer to which they expect it to be delivered. Furthermore, part of

the CDDC’s functionality is to allow users to choose which computer they are interacting

with, by clicking on (accordingly responsive) display elements using the mouse. Thus, the

desired information-flow security property for the HID switch is that, in providing this

functionality, it never delivers inputs to a destination contrary to the user’s expectations.

Shared-variable concurrency

The software implementation (replacing the original FPGA-based implementation [13]) of

the CDDC’s HID switch is a system of software components written in C, that all run in

user mode on top of the seL4 operating-system microkernel [44].

For this thesis, I have abstracted from the seL4-based C implementation’s details, to

model in the While language the basic functionality of its three main software components

(as depicted in Figure 6.2) as a shared-variable concurrent program of three threads:

• The Input driver is responsible for taking events from input-device interfaces and

placing them on an input-event buffer (for consumption by the Switch).

• The Switch is responsible for inspecting all input events on the buffer (from the In-

put driver), determining (partly by querying the Overlay driver) if any constitute
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a user-directed change to the destination of subsequent events, and if so, updating

the compositor device to display that change. Finally, it is responsible for delivering

all events to their destination computer via the appropriate output-device interface.

• TheOverlay driver is responsible for servicing remote procedure calls (RPCs, made

by the Switch) that query a subset of the compositor-device interface, regarding

the position of certain mouse-clickable elements the compositor is rendering as part

of a visual overlay on the trusted user’s video monitor.

The device interfaces, shared buffers (for input events and RPC mechanisms), and local

variables used by each component are all modelled as program variables in shared memory.

Consequently in the While model, mutex locks will be used to model all synchronisation

and restriction of concurrent access by the components to those variables.

Mixed-sensitivity reuse

Inherently to the CDDC’s role as a multi-level secure user interface, its HID switch receives

data of differing sensitivity levels (at different times) from a single set of input device

memory locations, rather than from those of distinct device sets for each sensitivity level.

Furthermore, the HID switch propagates all input data (regardless of sensitivity)

through a single set of memory locations (the input-event buffer, and Switch-internal

variables), rather than duplicating those memory locations for each security domain.

Consequently in the While model, all of these memory locations that are subject

to mixed-sensitivity reuse will be assigned value-dependent classifications, reflecting the

trusted user’s expectation of the sensitivity level of the data they contain.

6.2 External device interactions

As described in Section 6.1, the information-flow security goal for the CDDC’s HID switch

is—intuitively—to prevent input data going to the “wrong” output-device interface, from

the perspective of the trusted user generating those inputs.

This goal impacts mostly on the classifications of locations modelling (1) the input-

device interfaces, where I have explicitly modelled the trusted user’s perspective and be-

haviour; and (2) the output-device interfaces, where I have modelled the attacker.

Meanwhile, all of the shared variables used to model device interfaces are left unpro-

tected by mutex locks for most of the time. As the analysis assumes that environmental

havoc occurs to all write-unprotected shared variables between evaluation steps, this ef-

fectively models (near-)arbitrary changes by an environment.1 The trusted user and the

attacker merely form part of that environment, with the trust in the user encoded in the

classification of the variables concerned—as opposed to any restrictions on their contents.

1“Near”-arbitrary because, as explained in Chapter 3, the security property does assume that the havoc
will not write High-sensitivity data to any control variables or non–read-protected Low-classified locations.
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lock ( hid_read_atomicity_lock ) ;
temp := hid_keyboard_available ;
unlock ( hid_read_atomicity_lock ) ;
i f ( temp != 0) then

lock ( input_event_lock ) ;
input_event_data := 0 ;
input_event_type := KEYBOARD ;
input_event_data := hid_keyboard_source ;
unlock ( input_event_lock ) ;

else
skip

f i

(a) Receipt from input device by Input driver.
The hid keyboard source variable is value-
dependently classified by the value of its sole
control variable, indicated domain (modelling
trusted user input to the keyboard).

i f ( current_event_type = KEYBOARD ) then
i f ( active_domain = DOM_LOW ) then

output_event_buffer0 :=
↪→ current_event_data

else
output_event_buffer1 :=

↪→ current_event_data

f i
e lse

skip
f i

(b) Delivery to output device by Switch.
The output-event buffers 0 and 1 are statically
classified Low and High respectively (modelling
an attacker-controlled computer that receives
all data written to buffer 0).

Figure 6.3: Examples of external device interactions by the CDDC HID switch model—
here, for the keyboard events.

6.2.1 Attacker model (at the output devices)

I simplify analysis to the classic High ̸→ Low security policy over the basic two-point

{High, Low} security lattice, and model the HID switch to service only two potential desti-

nation computers.2 One computer is designated as belonging to the High security domain,

and is the only legitimate destination for High-sensitivity input events. The other com-

puter is designated as belonging to the Low security domain.

The output-device interfaces are modelled as shared variables, abstracting the hard-

ware and connections that the Switch component uses to forward events to the destination

computers (as depicted in Figure 6.3b). These are classified statically: one High, the other

Low. The attacker is then considered to be an entity that can read at any time from the

output-device interface variable that is classified Low.

Note also that the analysis is in fact robust to a more powerful attacker that may write

to these output-device interfaces.3 (A reason this does not make our analysis harder is

that none of the CDDC components modelled ever reads from them.)

6.2.2 Trusted user model (at the input devices)

The model trusts the user to type sensitive information into the keyboard only when they

see that the compositor device is indicating that it is safe to do so—that is, when it is

indicating that it is the High domain whose computer is active, meaning it is currently the

computer that is set to receive all keyboard events.

I model here explicitly that the user’s perception and actions are entirely faithful to

2The rationale for such simplifications for this thesis is that, aside from presenting a more minimal
case study, any verification for an arbitrary security lattice can be reduced to multiple applications of
verification to the basic High ̸→ Low policy, with the locations reclassified appropriately. Furthermore, the
design of the CDDC’s HID switch program is symmetrical for each user.

3They are still assumed not to write High-sensitivity data of their own to the Low-classified output sink.
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what is indicated by the compositor, following a similar assumption by Beaumont et al.

[13]. I do this by using a shared variable named indicated domain to model the security

domain that the compositor is indicating as active, and then having the Input driver

draw keyboard events from a shared variable (as depicted in Figure 6.3a) that has value-

dependent classification (where DOM HIGH is a designated constant):High, if indicated domain = DOM HIGH

Low, otherwise

Furthermore, the model trusts the user not to encode sensitive information into the

mouse input in any way. I will explain soon (in Section 6.3) that this is because mouse

events (unlike keyboard events) in this program have a potential ability to influence the

future value of control variables, which in turn are not ever permitted to receive any High-

sensitivity data. Thus, the Input driver always draws mouse events from a statically

Low-classified shared variable, regardless of the current value of indicated domain.

6.3 Internal device and inter-component interactions

Recall from Section 6.2 that I modelled the attacker as an entity that can read from a

particular statically Low-classified location—this was so that the security analysis would

flag immediately any possibilities that High-sensitivity data would arrive in that location.

I will also statically classify as Low any internal locations where we do not ever expect

any High-sensitivity information to arrive—the intent is that our security analysis will

then flag immediately, to us as the program verifiers, any such violations of our expecta-

tions. Because mouse events are considered to be of Low sensitivity, this will include the

compositor device interfaces (Section 6.3.1), and everything used for and by the Overlay

driver (Section 6.3.2); these parts are only ever used to process mouse data.

Finally, locations subject to mixed-sensitivity reuse will be assigned value-dependent

classifications. This primarily concerns the input-event buffer between the Input driver

and Switch component (Section 6.3.3), and some Switch-internal local variables, all

of which are used to hold input events regardless of their sensitivity level and eventual

destination. This achieves that the security analysis will flag an arrival of High-sensitivity

data in a location, precisely when their arrival would violate an expectation that only

Low-sensitivity data should be there at that time.

6.3.1 Use of the compositor device (by Overlay driver, Switch)

The CDDC’s HID switch—acting through its Overlay-driver and Switch components—

makes use of a number of interfaces of the compositor device, all of which are modelled

here as shared variables (approximating the usual representation of hardware interfaces

as device registers mapped into a designated portion of the memory space).

86



compositor_cursor_position :=
↪→ current_event_data ;

lock ( compositor_read_atomicity_lock ) ;
cursor_domain :=

↪→ compositor_domain_under_cursor ;
unlock ( compositor_read_atomicity_lock ) ;

i f ( cursor_domain = DOM_INVALID ) then
cursor_domain := active_domain

else
skip

f i

(a) Querying the compositor to determine the
topmost domain under the mouse cursor.

i f ( switch_state_mouse_down = 0 &&
current_event_data = MOUSE_DOWN &&
active_domain != cursor_domain ) then

active_domain := cursor_domain ;
lock ( input_event_lock ) ;
input_event_data := 0 ;
input_event_type := NONE ;
hid_keyboard_source := 0 ;
indicated_domain := active_domain ;
unlock ( input_event_lock )

else
skip

f i

(b) Instructing the compositor to indicate a
change to the active domain.

Figure 6.4: Examples of the Switch component interfacing with the compositor device.

As mentioned in Section 6.2, I model compositor hardware state—specifically, the do-

main it is currently indicating as active—using a shared variable named indicated domain.

This indicated domain variable also models directly the interface by which the Switch

enacts a domain switch—that is, instructs the compositor hardware to change which do-

main it indicates as active. In the model, Switch does so by writing the desired domain

identifier to the variable (as in Figure 6.4b). As a control variable whose value determines

the classification of other variables, the indicated domain is statically classified Low.

To leave the precise behaviour of the compositor device unspecified (as with the input

and output devices) but trusted not to inject secrets, its interfaces are statically classified

Low. As the strong low-bisimulation–based analysis is robust to arbitrary environmental

behaviour that does not inject secrets into Low locations, I use this to model such be-

haviour at these interfaces whenever they are left unlocked. This is sufficient to model all

interactions with the compositor device (an example of which is given in Figure 6.4a), as

these operations are expected to deal only with Low-sensitivity data. Beyond the standard

assumption not to inject secrets, any further requirements on the device’s behaviour (and

by extension, on the rest of the environment acting on it) need to be checked at runtime.

6.3.2 Remote procedure calls (between Switch and Overlay driver)

The Switch component queries the Overlay driver, which functions as a layer of ab-

straction to part of the compositor device interface concerned with visual overlay elements.

These queries only ever concern whether mouse coordinates lie within certain parts of

the overlay. From the perspective of the security analysis, it matters only that the mouse

event data (including the current position of the mouse cursor) is only ever expected to be

of Low sensitivity. Thus, all shared variables implementing the model of this RPC mecha-

nism are statically classified Low, so that any arrival of High data is caught by the analysis.

This is needed because answers returned by the RPC query will influence the Switch’s

decision of whether to initiate a domain switch; recall from Section 6.3.1, as this amounts

to a change in the value of the input-event buffer’s control variable indicated domain (as
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lock ( rpc_lock ) ;
rpc_arg := current_event_data ;
rpc_call := 1 ;
unlock ( rpc_lock ) ;
done_rpc := 0 ;
while ( done_rpc != 0) do

lock ( rpc_lock ) ;
i f ( rpc_call != 0) then

overlay_result := rpc_ret ;
done_rpc := 1

else
skip

f i ;
unlock ( rpc_lock )

od

(a) Switch making an RPC.

while (1 ) do
lock ( rpc_lock ) ;
i f ( rpc_call != 0) then

/∗ . . .
E l ided : Assign to r p c r e t
DOM (LOW|HIGH |OVERLAY| INVALID)
depending on rpc arg ’ s va lue .
. . . ∗/ ;

rpc_call := 0
else

skip
f i ;
unlock ( rpc_lock )

od

(b) Overlay driver RPC server loop.

Figure 6.5: Remote procedure call abstraction between Switch, Overlay components.

depicted in Figure 6.4b), it cannot ever be allowed to be secret-dependent.

For the RPC mechanism itself, I model a rough abstraction in While using shared

variables and a mutex named rpc lock, but its precise details (provided in Figure 6.5)

are largely not security critical. What matters more is that the security analysis, with all

of these locations classified Low, ensures that High-classified data never arrives in these

locations, so that they may never influence the value of any control variable down the line.

6.3.3 Input-event buffer (between Input driver and Switch)

The buffer that propagates events between Input driver and Switch is the only location

in the HID switch that is subject both to mixed-sensitivity reuse, and to concurrent access

by multiple threads. Consequently, value-dependent classifications and mutex locks are

used simultaneously in this part of the model. I address each of these aspects in turn.

Value-dependent classification

I model in While only a single-place buffer, which could easily be extended to a buffer

of arbitrary size by duplicating the same basic pattern of access, classification, and lock-

protection, for multiple places. This single-place buffer is split into a data portion and a

control portion, each modelled by a shared variable, and classified as follows:

• The control portion—a variable named input event type—identifies whether the

data portion describes a keyboard event or a mouse event. As one of the control

variables for the data portion (see next point), it must be statically classified Low.

• The data portion—a variable named input event data, which may contain such

data as mouse coordinates, or keystroke identifiers—is value-dependently classified.

This classification depends both on (1) whether it pertains to a keyboard event,

and also (2) if so, whether the keyboard event was typed in by the user when the
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indicated domain was High. Stated precisely, its classification is:High, if input event type = KEYBOARD ∧ indicated domain = DOM HIGH

Low, otherwise

where KEYBOARD and DOM HIGH are the self-explanatory designated constants.

Note that the input-event buffer’s classification as stated above will always assert mouse

(as non–KEYBOARD-type) event data to be of Low sensitivity. This is important because

the Switch component enacts domain switch in response to mouse events—for example,

clicking on compositor-rendered buttons in the overlay, or clicking on a window belonging

to a domain that is not active. As domain switch entails a change to the control variable

indicated domain (as was depicted in Figure 6.4b), the security type system will reject

any program that allows such changes to be secret-dependent.

Mutex lock-enforced critical sections

Working with value-dependently classified locations subject to concurrency implies a need

to establish a critical section that stabilises not only their contents, but also their clas-

sification (by stabilising the contents of their control variables). In the While model, I

establish such critical sections using mutex locks.

For the input-event buffer in particular, I use a lock named input event lock; fur-

thermore, I model two behaviours of the seL4-based Switch component’s implementation

regarding the buffer, that together allow minimising the size of the critical sections during

which it must be locked in the model:

• I model the seL4-based Switch component’s copying of the event from the shared

input-event buffer into its own local variables. In the While model, Switch-local

variables for the data and control portion are named current event data and

current event type respectively; the copying is depicted in Figure 6.6b.

• Likewise, I model the seL4-based Switch component’s maintenance of its own au-

thoritative view of the currently active domain—in a variable named active domain,

to which it refers instead of ever querying the compositor device’s indicated domain.

Consequently, only small critical sections (locking the input-event buffer) are ever

needed, as opposed to a very large one that would cover the entire duration of the Switch

component’s duties for each incoming event: determining its classification, checking (and

enacting) if it initiates domain switch, and forwarding it to its destination computer.

The Switch component’s internal active domain must remain authoritative with

respect to what is composited by the CDDC into the display. Thus in the While model,

the Switch initialises indicated domain to match the initial value of active domain (as

depicted in Figure 6.6a), and checks at runtime that active domain = indicated domain

when copying data from the buffer to its own private variables (as depicted in Figure 6.6b).
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/∗ Permanently grab t h i s l o c k ∗/
lock ( switch_private_lock ) ;
current_event_data := 0 ;
current_event_type := NONE

lock ( input_event_lock ) ;
input_event_data := 0 ;
hid_keyboard_source := 0 ;
indicated_domain := active_domain ;
unlock ( input_event_lock ) ;

(a) Initialising private variables, input-event
buffer, and compositor-indicated domain, to an
arbitrary initial value for active domain. Ze-
roing the data fields prevents leaking any High-
sensitivity data they might initially contain.

lock ( input_event_lock ) ;
i f ( indicated_domain = active_domain )
then

current_event_type := input_event_type ;
current_event_data := input_event_data

else
skip

f i ;
unlock ( input_event_lock )

(b) Copying from the input-event buffer to pri-
vate variables. The security analysis shows that
repeating the previous event is a safe course of
action when the environment misbehaves by vi-
olating indicated domain = active domain.

Figure 6.6: Examples of the Switch component interacting with the input-event buffer.

Finally, any local variables intended for private use by each component are governed by

a dedicated lock acquired at initialisation time (switch private lock in Figure 6.6a for

Switch), and held permanently. This models the memory protection mechanisms of seL4

that enforce ownership of non-shared memory configured to be private to each component.

6.4 Proof of confidentiality for the While model

Having now presented the While-language model for the CDDC’s HID switch, this section

will give a formal exposition of the verification of its security property. In short, for the

concurrent program of all three software components (Input, Switch, and Overlay), I

prove the whole-system security property (sys-secure, Definition 3.9) from Murray et al.

[65] as presented in Chapter 3, as instantiated to specify that no locks are held initially.

My approach will be to use the security type system of Section 4.4 to establish the per-

thread security property for each component, and then use the compositionality theorem

(Theorem 3.8) to derive the whole system security property from the per-thread ones.

So that we can use the approach I gave in Section 4.3.2 to obtain the global modes

compatibility part of the sound-mode-use side-condition (Definition 3.10), I will specify

no-locks-held (Definition 4.13) as the INIT requirement on memory, and use the initial

mode state mds0 (Definition 4.14) for all of the components in the system. Instantiated

in this way, the security compositionality theorem (Theorem 3.8) is then restated as:

Theorem 6.1 (Compositionality of com-secureno-locks-held).

∀(tps,mds) ∈ set cms. com-secureno-locks-held (tps,mds)

∀mem. no-locks-held mem −→ sound-mode-use (cms,mem)

sys-secureno-locks-held cms

This no-locks-held predicate and mds0 are both defined relative to a lock interpretation

parameter that I supply (as required by Section 4.1.1) for the CDDC model. The locks in
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the CDDC model fall under the following categories:

• The locks coordinating inter-component interactions grant exclusive read–write ac-

cess to the shared variables they govern. Recall from Section 6.3 these were:

– input event lock, for the input-event buffer between Input and Switch, the

value-dependently classified keyboard source (modelling user behaviour), and

their common control variable indicated domain.

– rpc lock, for the Overlay component’s RPC mechanism used by Switch.

• There are also locks granting the Switch and Input components exclusive read–

write access to a set of “private” variables each, for internal use. As depicted in

Figure 6.6a for Switch, the components acquire these prior to entering their main

loop, and never release them.

• Finally the model uses read-atomicity locks—a practice introduced in Section 5.2.1,

and depicted in Figures 6.3a and 6.4a. These grant exclusive write access to shared

variables used to model hardware interfaces, to make explicit an assumption (nor-

mally implicit in the atomicity of expression evaluation in the While language) that

these variables will not have their value changed by the environment during a simple

assignment from those variables.

Note that these read-atomicity locks are not needed for the While model’s confiden-

tiality result proved in this section, but rather for the preservation of that result (via

small-step semantic preservation) down to the RISC model by the wr-compiler (this

will be presented later, in Section 6.6).

As we need to impose no-locks-held as an INIT parameter in order to obtain global

modes compatibility, the per-thread security property we need is com-secureno-locks-held
(Definition 3.7, with INIT ≜ no-locks-held and no extra requirements on the bisimulation).

First I point out that if a program is secure without imposing any initial conditions,

then it remains secure if we impose any, arbitrarily (i.e. any INIT parameter)—note this

holds regardless of any EXTRA requirements imposed on the bisimulation witness:

Lemma 6.2 (Add INIT requirements to com-secure for free).

com-secureEXTRA (c,mds) =⇒ com-secureEXTRA
INIT

Proof. This result is trivial from the definition of com-secure (Definition 3.7).

Following from this, it suffices to use the security type system of Section 4.4 to show

that each of the programs are com-secureno-locks-held when started with mode state mds0.

(From here I will use the identifiers Overlay, Input, and Switch to denote the While

commands for each of the components.)

91



Lemmas 6.3 (Per-thread confidentiality results for CDDC While model).

com-secureno-locks-held (Overlay,mds0)

com-secureno-locks-held (Input,mds0)

com-secureno-locks-held (Switch,mds0)

Proof. For each of the threads, applying the security type system is mostly automated

using Eisbach proof methods [57], with some user intervention (see Section 6.5).

With a thread program successfully type-checked to completion, Theorem 4.27 gives

us that the thread is com-secure. (The theorem’s side-condition yields-stable-types mds is

true trivially for mds0, because by Definition 4.14 mds0’s assumption sets are empty.)

Lemma 6.2 then gives us that each thread is com-secureno-locks-held, as required.

We are now in a position to prove the whole-system confidentiality theorem:

Theorem 6.4 (Whole-system confidentiality result for the CDDC While model).

sys-secureno-locks-held [(Overlay,mds0), (Input,mds0), (Switch,mds0)]

Proof. By Theorem 6.1 (i.e. Theorem 3.8 with INIT ≜ no-locks-held, EXTRA ≜ (λ . True)).

Lemmas 6.3 satisfy our first obligation—that is, to show that com-secureno-locks-held
(Definition 3.7) holds for all three components with the initial mds0.

We are then obliged to show that sound-mode-use (Definition 3.10) holds for all initial

states of the system that obey no-locks-held; this entails proving local-mode-compliance

(Definition 3.11) and global-modes-compatibility (Definition 3.12).

The former I discharge for each component using the compliance check of Section 4.2,

which is sound for local-mode-compliance via Theorem 4.4. Existing automation from

Murray et al. [65], adapted by me for the mutex lock additions of Chapter 4, allows me to

discharge this check for all three components without intervening.

Finally, I use Lemma 4.15 to obtain that imposing no-locks-held as the INIT condition

is enough to ensure global-modes-compatibility.

6.5 Automation and user intervention

I now touch on the extent to which verifying the While model (in Section 6.4) using the

techniques of Chapter 4 was automated, versus requiring manual intervention. In short,

use of the security type system is semi-automated, making use of existing automation

support implemented in Isabelle as Eisbach proof methods [57] that exercise the security

type system rules [65], which I extended [84] for the locking support added by Chapter 4.

User intervention is required in two kinds of cases:

1. Sometimes the automatic typing inference rule for if-conditionals from [67] (and

a fully-automated Eisbach method using it) is not enough to guess an adequate
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final typing environment (including predicates expected to hold) at the end of both

alternatives of the if-conditional. In these cases the user needs to intervene by

applying the full If typing rule, in order to specify the final typing environment with

which to proceed with further type-checking once the conditional has completed.

For the CDDC model, this is required only twice, during the verification of the

Switch component:

• In one instance, it is to reflect a typing environment rewrite (described in more

detail below), which makes both final typing environments of an if-conditional

(to be specific, the one depicted in Figure 6.6b) consistent with each other.

• In the other instance, it is to throw away predicates deduced by the type system

only on one side of an if-conditional branch (wherein Switch handles a mouse

event if present), that are unneeded after that branch has completed.

2. Sometimes, it is necessary to rewrite the typing environment using the security type

system’s Rewrite rule from [67].

For the CDDC model, after Switch copies in the data from the input-event buffer

(as depicted in Figure 6.6b), I rewrite the security type of the local copy of the

incoming event, to make this security type depend only on its own local copies of

control variables for the incoming data.

Use of the local guarantee compliance check of Murray et al. [65] (extended for lock

support by Section 4.2) is also automated using Eisbach methods, and in this case no user

intervention is required when applying it to any components of the CDDC model.

6.6 Confidentiality-preserving compilation to RISC model

I now turn to applying the Covern wr-compiler of Chapter 5 to my While-language model

of the CDDC’s HID switch; we then have automatically that it preserves the security

properties (as proved in Section 6.4) down to the compiler’s RISC-language output.

The wr-compiler is executable in the Isabelle proof assistant [84]. Using Isabelle’s

eval tactic, I execute the wr-compiler’s main function, compile-cmd (whose implementation

was described in Section 5.2) on the While-language models for all three of the CDDC’s

Input driver, Switch, and Overlay driver components, to obtain their RISC-language

compilations. (Recall from Section 5.2 that we obtain the RISC text trivially as the map fst

of the CompRec-annotated RISC program, which is the fst output of compile-cmd.)

Definition 6.5 (RISC-language program texts of CDDC model’s components).

OverlayRISC ≜ map fst (fst (compile-cmd C0 None 0 Overlay))

InputRISC ≜ map fst (fst (compile-cmd C0 None 0 Input))

SwitchRISC ≜ map fst (fst (compile-cmd C0 None 0 Switch))
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My approach to obtain per-thread confidentiality for each of these RISC texts will be

to use the theorem of its preservation by the wr-compiler (Theorem 5.21). Recall, this was:

Theorem 5.21 (Preservation of per-thread confidentiality by the wr-compiler).

com-secureno-high-branchingno-locks-held (c,mds0)

(PCs, l′,nl ′, C ′,False) = compile-cmd C0 l nl c compile-cmd-input-reqs C0 l nl c

com-securepc-securityno-locks-held (((0,map fst PCs), regs),mds0)

Note that this only works for non–High-branching programs. Fortunately, a lemma

present in Murray et al. [65] (and unaffected by the changes in Chapter 4) gives us that

when a thread program typechecks with final typing environment Γ′,S ′, P ′, the bisimula-

tion BΓ′,S′,P ′ constructed by the security type system enforces no-high-branching (Defini-

tion 5.5). Thus, applying the security type system in fact yields com-secureno-high-branching,

a stronger property than com-secure. (The same will not be able to be said after I update

the security type system in Chapter 7 to support High-branching.) This is enough to give

us the needed per-thread properties for preservation by the wr-compiler via Theorem 5.21:

Lemmas 6.6 (Even stronger per-thread confidentiality results for CDDC While model).

com-secureno-high-branchingno-locks-held (Overlay,mds0)

com-secureno-high-branchingno-locks-held (Input,mds0)

com-secureno-high-branchingno-locks-held (Switch,mds0)

Proof. As mentioned above, the security type system is sound for com-secureno-high-branching.

Then once again I use Lemma 6.2 to obtain com-secureno-high-branchingno-locks-held for free.

Then, for compile-cmd to execute successfully (i.e. to return failed = False), the model

must pass the stability-checks discussed in Section 5.2. All three of Overlay, Input, and

Switch pass the checks (1) because they use locks to protect the atomicity of reads from

(otherwise unstable) variables used to model hardware interfaces, and (2) as a consequence

of having passed the security typecheck and local compliance check of Chapter 4.

We are now in a position to prove a whole-system confidentiality result for the compiled

RISC model—here, with each thread’s register bank initialised to zero: regs0 ≜ (λ . 0).

Theorem 6.7 (Whole-system confidentiality result for the CDDC RISC model).

sys-secureno-locks-held [(((0,OverlayRISC), regs0),mds0),

(((0, InputRISC), regs0),mds0),

(((0,SwitchRISC), regs0),mds0)]

Proof. A few approaches are available; I obtained formal proofs of this theorem in Is-

abelle/HOL [84] using all three of the following alternatives:
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Option 1. Use Theorem 5.26 (unfolding Definition 6.5), which established whole-system

security for RISC outputs of the wr-compiler when executed on com-secureno-high-branchingno-locks-held

While programs (which we have here from Lemmas 6.6). This is the easiest option to take

for programs that are already verified in the While language, and then compiled success-

fully to RISC by the wr-compiler. It is possible to take here because all of OverlayRISC,

InputRISC, and SwitchRISC were obtained in this manner.

Option 2. Use Theorem 5.21 and Lemma 5.24 to obtain com-securepc-securityno-locks-held and

local-mode-compliance (resp.) for each of OverlayRISC, InputRISC, and SwitchRISC, and

then use the compositionality result of Murray et al. [67] (Theorem 3.8) directly to obtain

sys-secureno-locks-held. This option can be used for systems where some of the threads are

written directly in RISC; for such threads, com-securepc-securityno-locks-held and local-mode-compliance

would need to be proved directly. However, Lemma 5.25 can still be used to prove the

global-modes-compatibility requirement, provided all threads are initialised with mds0.

Option 3. Use the more generic whole-system refinement framework from Murray et al.

[67] (as formalised in Isabelle/HOL by [66]). This option can be used for systems where

all of the RISC threads are secure refinements (according to Definition 3.15) of some While

program that satisfied sound-mode-use (with no-locks-held initially), but some might be

obtained by other means than the wr-compiler (i.e. not all via the refinement Rwr).

6.7 Publications and acknowledgements

Further work, building on themodelling and program verification efforts of Sections 6.1–6.5

for this case study, has appeared in the publication already noted in Section 4.5:

• [68] Toby Murray, Robert Sison, and Kai Engelhardt. Covern: A logic for compo-

sitional verification of information flow control. In European Symposium on Security

and Privacy, pages 16–30, London, United Kingdom, April 2018. IEEE.

In that publication, an environmental property checked at runtime by the While model in

this chapter (described in Section 6.3) is instead enforced as an explicit assume–guarantee

condition by the Covern program logic derived from the work of Chapter 4. Some func-

tional schematic illustrations (Figures 6.1, 6.2) are also reproduced from that publication.

Meanwhile, a precursor to the verified compiler-based security preservation result of

Section 6.6—for a much earlier While model of this case study—appeared in the publica-

tion already noted in Sections 4.5 and 5.6:

• [85] Robert Sison and Toby Murray. Verifying that a compiler preserves concur-

rent value-dependent information-flow security. In 10th International Conference on

Interactive Theorem Proving (ITP 2019), volume 141, pages 27:1–27:19, Portland,

USA, September 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

That publication presented the compilation to RISC of a 2-component precursor to this

chapter’s 3-component model; this precursor consisted of a combined Input–Switch com-

ponent, alongside the Overlay driver component largely as described in this chapter.
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6.8 Summary

This chapter has validated the main claim of this thesis: that proving confidentiality

and its preservation by a compiler is feasible for mixed-sensitivity concurrent programs.

The case study presented here demonstrated applicability of the techniques presented by

Chapter 4, and of the proved results of Chapter 5, respectively to:

1. Formal verification of confidentiality for a concurrent program with mixed-

sensitivity reuse of system resources, driven by a real-world use case.

This is a concrete demonstration to program verifiers that it is possible to prove

confidentiality for such programs in a compositional manner.

2. Preservation of the verified confidentiality property, via a compiler veri-

fication result, down to a model of the program in a lower-level language.

This is a confirmation to verified compiler developers that it is possible to offer a

compiler capable of preserving formally proved confidentiality properties, even in the

presence of such complicating characteristics.

Here I modelled in the While language of Chapter 4 the HID switch for the Cross

Domain Desktop Compositor [13] (Sections 6.1–6.3). I then proved this model secure using

the program verification techniques of Chapter 4 (Sections 6.4–6.5). Finally, deriving from

that formal proof of security, I used the compiler verification result of Chapter 5 to obtain

automatically that the compilation of that While model yields a secure RISC model of the

program (Section 6.6). As noted in Section 6.4, doing so required the While model to use

read-atomicity locks as described in Section 5.2.1 to protect the atomicity of assignments

needed for small-step semantic (and thereby timing-sensitive security) preservation.

Aside from validating this thesis’ main claims, this case study illustrates characteristics

of modelling and verification that a program verifier should expect from the interaction

between value-dependent classifications needed for mixed-sensitivity reuse of resources,

and concurrency of access to those resources. Furthermore, it highlights to compiler veri-

fiers and programming language designers how the timing sensitivity of the confidentiality

is reliant on the atomicity of the source and target languages’ small-step semantics.
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Chapter 7

Security typing extension for

secret-dependent control flow

This chapter presents a fourth and final contribution: the first instance of syntax-directed

reasoning about secret-dependent control flow for mixed-sensitivity concurrent programs.

Here, I extend the security type system of Chapter 4 to support While programs that

contain limited forms of conditional branching on secrets, and prove that it remains sound.

As explained in Section 2.2.5, an if-conditional branch on a secret can cause implicit

flows of that secret, where the two possible control-flow paths have different observable

effects; when execution time differs, this is a timing leak. Banning all branching on secrets

prevents all such implicit flows, and is a common practice against wall-clock (external)

timing leaks1 because many hardware platforms exhibit nondeterministic wall-clock timing

behaviour. However, enough may be known about a scheduler’s notion of time, to prevent

the storage leaks caused by scheduler-relative (internal) timing leaks2; security analyses

of such scope can be more precise than banning all secret-dependent control flow.

To this end, this chapter relaxes the While-language security type system from Murray

et al. [67] and Chapter 4, to allow secret-dependent if -conditionals, while still remaining

sound with respect to this thesis’ purpose of preventing storage leaks that stem from

internal timing leaks. This entails adding a new typing rule, IfH, which prevents both

(1) internal timing leaks (assuming an instruction-based scheduler that counts time in

While-language evaluation steps), and (2) implicit flows to untrusted memory locations.

This chapter proceeds as follows. Section 7.1 presents the intuitions, and Section 7.2

the formal definition, of the new typing rule, IfH. Then, Section 7.3 presents an update to

the bisimulation construction, which is crucial for the re-establishment of a proof of sound-

ness. Ultimately, Section 7.4 presents proof that the updated security type system, now

supporting limited forms of branching on secrets, remains sound for proving concurrent

value-dependent noninterference (com-secure, Definition 3.7). Section 7.5 summarises.

1To an outsider, as measured by an independent “wall clock” that is external to the system.
2Between threads, as measured in the timing units by which the system’s internal scheduler makes

scheduling decisions, and at which it can interleave the threads’ execution. (Section 1.1.1)
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i f ( h1 != 0) then
h2 := 1

else
h3 := 2

f i ;
l := 3

(a) Assigning to High-classified
variables. Note the final assign-
ment, to an unprotected Low-
classified variable, would be a
timing leak if the branches took
a different number of steps.

lock ( k ) ;
i f ( h1 != 0) then

l := 1
else

l := 2
f i ;
l := 3 ;
unlock ( k ) ;

(b) Assigning to a read-locked
Low-classified variable. The fi-
nal assignment, erasing the h1-
dependent storage leak before
the unlock, is security critical.

lock ( k ) ;
i f ( h1 != 0) then

h1 := h2 && h3 ;
skip ;
h2 := 3 ;
h3 := 7

else
skip ;
l := 2 ;
h3 := h1 ;
skip

f i ;
l := 3 ;
unlock ( k ) ;

(c) Both kinds of assignment,
plus padding so both branches
take the same number of steps.

Figure 7.1: Examples of secret-dependent control flow admitted by typing rule IfH.
In all of these examples, l is a Low-classified variable, h1, h2, etc. are High-classified
variables, and k is a lock granting exclusive read–write access to l.

7.1 Intuitions behind the new security typing rule IfH

In short, the new typing rule allows if-conditional branching if h then c1 else c2 fi on

secrets in h, but restricts the behaviours of the two branches c1 and c2, so that they have

no observable differences between each other in their (1) timing and (2) memory effects.

The restrictions imposed by IfH are permissive enough to admit While-language pro-

grams that branch on High-sensitivity information to operate on variables that are clas-

sified High (as in Figure 7.1a) or assumed not to be readable by other threads (as in

Figure 7.1b), as long as those programs ensure that the two branches have no discernible

timing difference (for example, by padding out the shorter of the two branches, as in

Figure 7.1c)—even if they contain nested branching (as in Figure 7.2, on page 108).

To this end, the new typing rule will enforce the running times of both branches c1 and

c2 to be not only equal to each other, but also a constant (statically determined) number

of steps for all executions. Consequently, the following restrictions will apply:

• Any if-conditionals nested inside each of c1 and c2 must themselves have branches

whose running times are a constant over all executions, and equal to each other.

• Attempts to while-loop or to acquire any locks in either of c1 or c2 are banned,

because they could result in variable running times.3

Then to prevent any observable differences between c1 and c2’s memory effects, the

new typing rule will go further and disallow any observable memory effects in either of c1

or c2.
4 This will come in the form of the following restrictions to c1 and c2:

3I leave for future work any While-language and type system support for for-loops, which could con-
ceivably be judged whether or not to have a constant running time from their loop guards.

4Strictly speaking, this is not always necessary, as two branches could have observable memory effects
as long as those effects are both identical, and well-timed to occur at exactly the same moment. But it
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• Attempts to assign values to memory locations considered observable by the security

property (i.e. v := e for any readable and Low-classified v) are explicitly banned,

regardless of the sensitivity of the value being assigned (i.e. of the expression e).

As this restriction implicitly applies to all control variables—due to their always

being treated as observable by the security property—it also automatically prevents

any changes to the observability of variables via their value-dependent classification.

• Attempts to acquire and release locks are banned, as (1) acquisition attempts can

take variable running time, and (2) restrictions to locking disciplines (in Section 4.1.2)

render any changes to lock variables as observable by the security property.5

Note this automatically prevents any changes to the observability of variables via

changes to assumptions about their readability by other threads.

The upshot of this approach is that well-typedness need not apply to the branches c1

or c2 of any secret-dependent if-conditionals, nor to any of c1 or c2’s intermediate states.

Upon identifying a secret-dependent if-conditional, the updated security type system need

only ensure that the aforementioned restrictions on observable effects apply to c1 and

c2, and its analysis can expect the variables considered observable not to change because

those restrictions prevent changes to control variables and lock state. Consequently, simple

static checks will suffice to enforce these requirements, whose implementations are much

simpler than the rest of the security type system (whose complexity stems from tracking

information to account for possibilities excluded by the bans above).

However, the price paid for the new typing rule tracking less information (in no longer

enforcing well-typedness throughout c1 and c2) is that it makes no guarantees afterwards

about the state of any variables that were modified by either of c1 or c2 (it throws away

the relevant predicates), nor does it retain any nuanced typing information about those

variables (it raises all of their security types to High).

7.2 Updates to While-language security type system

I now move on to describing the implementation of the scheme outlined in Section 7.1, as

an extension to the security type systems of Murray et al. [67, 65] and Chapter 4. (For

more formal definitions, see Appendix B or the Isabelle/HOL theories for this thesis [84].)

To determine running times and prevent them from being secret-dependent, I define

a function H-region-steps :: cmd ⇒ nat option, which returns Some n only if the given

While-language command always completes in a constant time of n evaluation steps. To

this end, it imposes the checks mentioned in Section 7.1: that c does not attempt to ac-

quire or release any locks, nor engage in any while-loops, and that if it does branch on

is arguably a reasonable restriction, because any conditional-branching that does this could just as easily
be refactored to move these simultaneous observable memory effects out of the if-conditional—from that
perspective, there is really no point in putting them in a secret-dependent conditional branch at all.

5Recall that these restrictions were chosen precisely to prevent secrets from leaking into the state of
any lock, from which they would leak into the control flow of any threads attempting to acquire it.
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an if-conditional, then both alternative control flow paths must likewise complete simul-

taneously in constant-time. If any are violated, it returns None.

Then, I define a predicate that the new security typing rule will use to ensure that

no changes to visible memory may occur in secret-dependent control flow paths. This

predicate, vars-modified-NoRW-or-H c S, asserts that all variables modified by any potential

control-flow path of a given program c either (1) are statically classified High, or (2) are

non-control variables over which the current thread is tracked (by S) as having read–write-

exclusive access. Note that these are precisely the ways by which shared variables can be

considered not to be visible by the security property (see Definition 3.3).

Finally, I define two helpers intended to make “safe overapproximations” of the effects

that a region of secret-dependent control flow might have on the typing environment and

predicate set, which will be used for further type checking after the completion of the

if-conditional. Stated simply, we will be pessimistically regarding all variables potentially

modified in that region to contain sensitive data, and making no promises about any

predicates that mention variables potentially modified during that time:

• The helper tyenv-raise-modified Γ c effectively raises to High the sensitivity tracked

by typing environment Γ for the contents of all variables potentially modified by c.

• The helper preds-remove-modified P c then removes all predicates from a given pred-

icate set P that mention any variables potentially modified by the program c.

The new security typing rule IfH then applies when the if-conditional expression e is

judged to be dependent on a secret, on account of the security type t tracked by Γ for e

(i.e. Γ ⊢ e : t) not being Low according to the current predicate set P (i.e. ¬ P ⊢ t). After

using H-region-steps and vars-modified-NoRW-or-H to implement the checks described in

Section 7.1, its remaining guards assert that the final typing environment Γ′ be “equiva-

lent” to the ΓH (resp. final predicate set P ′ be entailed by the PH) that took “all bets off”

for all variables touched by the branches c1 and c2 of the secret-dependent if-conditional.

(See Appendix B for formal definitions for the above notions from Murray et al. [67].)

Definition 7.1 (Security typing rule for secret-dependent if-conditional branching).

Γ ⊢ e : t ¬ P ⊢ t

vars-modified-NoRW-or-H c1 S vars-modified-NoRW-or-H c2 S
H-region-steps c1 ̸= None H-region-steps c1 = H-region-steps c2

ΓH = tyenv-raise-modified (tyenv-raise-modified Γ c1) c2

PH = preds-remove-modified (preds-remove-modified P c1) c2

ΓH =:PH
Γ′ PH ⊢ P ′

∀mds. tyenv-wellformed mds ΓH S PH −→ tyenv-wellformed mds Γ′ S P ′

⊢ Γ,S, P {if e then c1 else c2 fi} Γ′,S, P ′
IfH
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7.3 Updates to bisimulation construction

The addition of the new typing rule IfH means that the security type system is now

liable to allow programs that may take a different control flow path depending on secret

information. However, the strong low-bisimulation (modulo modes) construction BΓ′,S′,P ′

defined by Murray et al. [67, 65] did not allow pairing any program configurations that are

not at the same location (i.e. do not have the same While command). As this construction

will be crucial (in Section 7.4) for re-proving the soundness of the updated security type

system, this section will describe the updates I made for it to capture the wider set of

configuration pairings that may result from programs admitted by IfH.

To explain what needs to be added, I need to dive into further details of BΓ′,S′,P ′

than I did in Chapter 4. In Murray et al. [67, 65], and left unchanged throughout the

security type system improvements described in Chapter 4, this was defined as the union

BΓ′,S′,P ′ ≜ B1
Γ′,S′,P ′ ∪ B3

Γ′,S′,P ′ of two components, with the first (B1
Γ′,S′,P ′) responsible

for pairing atomic commands, and the other (B3
Γ′,S′,P ′) responsible for pairing sequences

of commands that both have a common, well-typed suffix. I recount their definitions from

the Isabelle/HOL formalisation [65] of Murray et al. [67] as follows:

Reproduced definitions (Bisimulation construction components, Murray et al. [67]).

B1
Γ′,S′,P ′ ≜ { (⟨c,mds,mem1⟩, ⟨c,mds,mem2⟩) | ∃Γ S P.

⊢ Γ,S, P {c} Γ′,S ′, P ′ ∧

tyenv-wellformed mds Γ S P ∧ mem1 =Γ mem2 ∧

preds-hold P mem1 ∧ preds-hold P mem2 ∧ tyenv-sec mds Γ mem1 }

B3
Γ′,S′,P ′ ≜ { (⟨c1 ; c,mds,mem1⟩, ⟨c2 ; c,mds,mem2⟩) | ∃Γ S P.

(⟨c1,mds,mem1⟩, ⟨c2,mds,mem2⟩) ∈ B1
Γ,S,P ∪ B3

Γ,S,P ∧

⊢ Γ,S, P {c} Γ′,S ′, P ′ }

This partially followed the structure of the bisimulation RΓ′
≜ RΓ′

1 ∪ RΓ′
2 ∪ RΓ′

3

(whose RΓ′
1 ,RΓ′

3 have the same roles as B1
Γ′,S′,P ′ ,B3

Γ′,S′,P ′ described above) given by the

Isabelle/HOL formalisation [33] of Mantel et al. [54] for their security type system, on

which ours was based. The RΓ′
2 component of that construction (missing an analogue in

Murray et al. [67, 65]) served to relate two individually type-checked branches of a secret-

dependent conditional, but only if the user of the theory could obtain and supply a proof

of bisimulation between them without any further help from their security type system.

In this thesis, I provide a new component B2
Γ′,S′,P ′ for the bisimulation construction,

which (like RΓ′
2 of Mantel et al. [54]) will be responsible for capturing pairings between

alternative branches of a secret-dependent conditional. In this case however, I will prove

(in Section 7.4) that membership of B2
Γ′,S′,P ′ follows automatically from the application of

the new security type system rule IfH (Definition 7.1) and its helpers.

The key differences of B2
Γ′,S′,P ′ from what has already been seen are as follows:
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• Unlike B1
Γ′,S′,P ′ (and RΓ′

2 of Mantel et al. [54]), and as mentioned in Section 7.1,

B2
Γ′,S′,P ′ will not assert the well-typedness of any programs.

• Instead of applying tyenv-raise-modified and preds-remove-modified directly (as IfH

does to obtain “pessimistic” ΓH , PH for the branches on entry), it will instead enforce

that nominated Γ, P are “sufficiently pessimistic” for the branch programs left to be

executed, using the following helpers (defined formally in Appendix B):

– Predicate vars-modified-tyenv-H c Γ′ serves to specify the intended outcome of

applying Γ′ = tyenv-raise-modified Γ c: It effectively asserts that all variables

modified by c have type High in typing environment Γ′.

– Predicate vars-modified-no-preds c P ′ likewise serves to specify the intended

outcome of applying P ′ = preds-remove-modified P c: No predicates in set P ′

should mention any variables modified by c.

Apart from these differences, the formal definition of B2
Γ′,S′,P ′ bears a number of fea-

tures already seen in this chapter (summarised immediately after this definition):

Definition 7.2 (Bisimulation component for secret-dependent conditional branches).

B2
Γ′,S′,P ′ ≜ { (⟨c1,mds,mem1⟩, ⟨c2,mds,mem2⟩) | ∃Γ P.

tyenv-wellformed mds Γ S ′ P ∧ mem1 =Γ mem2 ∧

preds-hold P mem1 ∧ preds-hold P mem2 ∧ tyenv-sec mds Γ mem1 ∧

vars-modified-NoRW-or-H c1 S ′ ∧ vars-modified-NoRW-or-H c2 S ′ ∧

H-region-steps c1 ̸= None ∧ H-region-steps c1 = H-region-steps c2 ∧

vars-modified-tyenv-H c1 Γ ∧ vars-modified-tyenv-H c2 Γ ∧

vars-modified-no-preds c1 P ∧ vars-modified-no-preds c2 P ∧

Γ =:P Γ′ ∧ P ⊢ P ′ ∧

(∀mds ′. tyenv-wellformed mds ′ Γ S ′ P −→ tyenv-wellformed mds ′ Γ′ S ′ P ′)}

In short, this new bisimulation component B2
Γ′,S′,P ′ asserts:

• the same checks as the component B1
Γ′,S′,P ′ (reproduced fromMurray et al. [67] earlier

in this section) with respect to the mode state and memories of the configurations

being paired, regarding: well-formedness, memory equality according to a typing

environment, that all predicates must hold, and type environment security.

• the same checks as IfH (Definition 7.1), enforcing that both branches left to be exe-

cuted will only modify variables considered non-observable by the security property

(according to vars-modified-NoRW-or-H), and take the same number of H-region-steps.

• the same relationships that IfH asserts between the nominated (Γ, P ) and the final

(Γ′, P ′) extended typing environment, regarding typing environment equivalence,
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predicate set entailment, and preservation of well-formedness. Furthermore, like

IfH it does not permit changes to the stable set S (owing to the ban on locking).

Finally, I redefine the bisimulation construction BΓ′,S′,P ′ (and its component for se-

quential composition, B3
Γ′,S′,P ′) to include this new component B2

Γ′,S′,P ′ :

Definition 7.3 (New bisimulation construction, modified from Murray et al. [67]).

B3
Γ′,S′,P ′ ≜ { (⟨c1 ; c,mds,mem1⟩, ⟨c2 ; c,mds,mem2⟩) | ∃Γ S P.

(⟨c1,mds,mem1⟩, ⟨c2,mds,mem2⟩) ∈ B1
Γ,S,P ∪ B2

Γ,S,P ∪ B3
Γ,S,P ∧

⊢ Γ,S, P {c} Γ′,S ′, P ′ }

BΓ′,S′,P ′ ≜ B1
Γ′,S′,P ′ ∪ B2

Γ′,S′,P ′ ∪ B3
Γ′,S′,P ′

7.4 Proof of soundness of the new typing rule

The proof of soundness consists of two parts:

1. Proof that the updated bisimulation construction satisfies the requirements of an

adequate witness to the security of the program. (Section 7.4.1)

2. Proof that the updated bisimulation construction captures the evaluation steps of

programs admitted by the updated type system. (Section 7.4.2)

7.4.1 The new bisimulation construction is still a security witness

Re-establishing that the updated construction BΓ′,S′,P ′ (Definition 7.3) can serve as a wit-

ness to com-secure (Definition 3.7) entails proving that it is still a strong low-bisimulation

(modulo modes)—this was reproduced from Murray et al. [67] in Section 3.1 as follows:

Definition 3.4 (Strong low bisimulation, modulo modes).

strong-low-bisim-mm B ≜ cg-consistent B ∧ sym B ∧

(∀lc1 lc2. (lc1, lc2) ∈ B ∧ lc1 =mds lc2 −→

lc1 =
Low
mds lc2 ∧

(∀lc′1. lc1 ⇝ lc′1 −→ (∃lc′2. lc2 ⇝ lc′2 ∧ lc′1 =mds lc
′
2 ∧ (lc′1, lc

′
2) ∈ B)))

My approach will be to prove that the requirements demanded of the overall bisimula-

tion BΓ′,S′,P ′ apply—directly if possible, or approximately—to its new component B2
Γ′,S′,P ′

(Definition 7.2), and then to use these facts to re-establish them for BΓ′,S′,P ′ as a whole.

I begin with the cg-consistent (Definition 3.6) and symmetry requirements:

Lemma 7.4 (B2
Γ′,S′,P ′ is closed under globally consistent changes).

cg-consistent B2
Γ′,S′,P ′
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Proof. The only 4 conditions of B2
Γ′,S′,P ′ to mention memory are identical to the 4 that

do so in B1
Γ′,S′,P ′ , so I adapt straightforwardly an existing proof for cg-consistent B1

Γ′,S′,P ′ .

In short, the condition mem1 =Γ mem2 would have to be violated by a change to a

variable not tracked by Γ, because Γ only tracks stable variables (accounted for by S)
currently assumed not to be written by other threads. But for variables not tracked by Γ,

this effectively simplifies to mem1 =Low
mds mem2 (for a mds consistent with S), and this is

something already asserted by cg-consistent when considering changes to such variables.

Then, the remaining three conditions (preds-hold P mem1, preds-hold P mem2, and

tyenv-sec mds Γ mem1) cannot be violated because that would similarly require changes

to variables assumed to be stable.

Lemma 7.5 (B2
Γ′,S′,P ′ is symmetric).

sym B2
Γ′,S′,P ′

Proof. The only nontrivial asymmetry in Definition 7.2 is that tyenv-sec is asserted only for

mem1, but it is rather straightforwardly obtained for mem2 using Isabelle’s metis tactic

given mem1 =Γ mem2 (itself symmetric) along with a number of relevant definitions.

This leaves the third conjunct of Definition 3.4, which asserts that the bisimulation

maintains low-equivalence of memory modulo modes (=Low
mds , Definition 3.3), and that it

“progresses to itself” (maintaining modes-equality). The first of these is true because

all three components of BΓ′,S′,P ′ (Definition 7.2 of B2
Γ′,S′,P ′ included) assert equivalence

of memories according to the typing environment (=Γ, Definition 4.25), and this implies

low-equivalence modulo modes (=Low
mds , Definition 3.3 for mds for which Γ is wellformed)

via a pre-existing lemma [65]. Thus for B2
Γ′,S′,P ′ in particular, we have:

Lemma 7.6 (B2
Γ′,S′,P ′ maintains low-equivalence of memory modulo modes).

∀lc1 lc2. (lc1, lc2) ∈ B2
Γ′,S′,P ′ ∧ lc1 =mds lc2 −→ lc1 =

Low
mds lc2

Therefore, it remains just to prove that BΓ′,S′,P ′ “progresses to itself”. To this end, I

first prove a somewhat weaker lemma for B2
Γ′,S′,P ′ that does not assert the existence of any

steps, but merely that if both configurations take a step, then their destinations remain

modes-equal and in the relation:

Lemma 7.7 (B2
Γ′,S′,P ′ is closed under any modes-equal pairwise steps that may occur).

∀lc1 lc2. (lc1, lc2) ∈ B2
Γ′,S′,P ′ ∧ lc1 =mds lc2 −→

(∀lc′1 lc′2. lc1 ⇝ lc′1 ∧ lc2 ⇝ lc′2 ∧ lc′1 =mds lc
′
2 −→ (lc′1, lc

′
2) ∈ B2

Γ′,S′,P ′)

Proof. We are given that the battery of checks asserted by B2
Γ′,S′,P ′ (Definition 7.2) holds

for some Γ,S, P before a pairwise evaluation step, and are obliged to show that they still

hold for the new c1, c2,mds,mem1,mem2 after the step.
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It is easiest just to choose the same Γ,S, P , which discharges the first few checks.

The next few “vars-modified-” checks (each asserting that the variables modified by

c1, c2 satisfy some requirement relating to Γ,S ′, P ) only ever get easier to prove, as the

set of variables still yet to be modified by c1, c2 only shrinks as their executions progress.

For the remaining checks, I prove and use a number of smaller lemmas ensuring that

While-language programs captured by B2
Γ′,S′,P ′ satisfy the intuitions described in Sec-

tion 7.1, by running in constant time, and having “no visible effects”: They do not assign

to any Low-observable variables, nor invoke any locking primitives.

Consequently, we know that the evaluation steps each make no changes to mode state,

and only change memory in such a way that preserves =Γ (Definition 4.25). Furthermore,

the vars-modified-no-preds check ensured that P cannot mention any variables modified by

c1, c2, therefore the preds-hold checks are maintained. Then the absence of visible effects

ensures that there are no changes to control variables; this rules out any instances of

unsafe downgrade—whereby a program lowers a variable’s classification while it contains

sensitive data—which is the only remaining possibility of violation of the tyenv-sec check.

Then, the final two checks are discharged by a lemma that H-region-steps simply returns

a decremented result for the successor of a program already checked by H-region-steps: This

reflects that the programs remain constant-time, but one step closer to finishing.

The result I just proved (Lemma 7.7) will be used with the following, that B2
Γ′,S′,P ′

asserts consistent stopping behaviour for configurations with the same mode state:

Lemma 7.8 (B2
Γ′,S′,P ′ asserts consistent stopping behaviour for modes-equal states).

∀lc1 lc2. (lc1, lc2) ∈ B2
Γ′,S′,P ′ ∧ lc1 =mds lc2 −→ stops lc1 = stops lc2

Proof. B2
Γ′,S′,P ′ (Definition 7.2) asserts that both programs have the same constant number

of steps remaining according to H-region-steps, which in turn only ever gives zero for stop,

the only While-language command that does not evaluate (as demanded by stops).

These enable proving a lemma (established previously for B1
Γ′,S′,P ′ and B3

Γ′,S′,P ′ by

[65]) that any pair related by B2
Γ′,S′,P ′ “progresses to” the overall bisimulation construction

BΓ′,S′,P ′ . Note that—unlike Lemma 7.7—this asserts the existence of a matching step:

Lemma 7.9 (B2
Γ′,S′,P ′ progresses to BΓ′,S′,P ′).

∀lc1 lc2 lc′1. (lc1, lc2) ∈ B2
Γ′,S′,P ′ ∧ lc1 =mds lc2 ∧ lc1 ⇝ lc′1 −→

(∃lc′2. lc2 ⇝ lc′2 ∧ lc′1 =mds lc
′
2 ∧ (lc′1, lc

′
2) ∈ BΓ′,S′,P ′)

Proof. Isabelle’s automation support (sledgehammer) finds a proof that uses Lemma 7.7,

Lemma 7.8, and the new introduction rule for BΓ′,S′,P ′ for its new B2
Γ′,S′,P ′ component.

This covers the major lemmas about B2
Γ′,S′,P ′ that are analogous to properties de-

manded by strong-low-bisim-mm (Definition 3.4) of the overall BΓ′,S′,P ′ .
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There is also some impact on proofs of various lemmas about B3
Γ′,S′,P ′ , because its new

version (Definition 7.3) now references B2
Γ′,S′,P ′—however, the use of analogous lemmas

proved about B2
Γ′,S′,P ′ is mostly straightforward to discharge these.

In all, these results are enough to prove the desired property (to remain a witness to

the security property com-secure, by Definition 3.7) for the updated construction.

Lemma 7.10 (The updated construction is a strong low-bisimulation modulo modes).

strong-low-bisim-mm BΓ′,S′,P ′

Proof. Adaptation of the proof from Murray et al. [65] is trivial, adding invocations of

Lemma 7.6 and Lemma 7.9 where required.

7.4.2 The construction still captures well-typed program execution

I now turn to proving that the updated bisimulation construction (which I just proved

in Section 7.4.1 still serves as an adequate security witness) captures the execution of

well-typed programs admitted by the updated type system.

This falls to the “typed step capture” lemma (whose statement has not changed since

Lemma 4.26, when I re-proved it for the added locking support in Chapter 4):

Lemma 7.11 (Well-typed program evaluation is captured by bisimulation BΓ′,S′,P ′).

⊢ Γ,S, P {c} Γ′,S ′, P ′ mem1 =Γ mem2

tyenv-wellformed mds Γ S P preds-hold P mem1 tyenv-sec mds Γ mem1

⟨c,mds,mem1⟩w ⇝w ⟨c′1,mds ′,mem ′
1⟩w

∃c′2 mem ′
2. ⟨c,mds,mem2⟩w ⇝w ⟨c′2,mds ′,mem ′

2⟩w ∧
⟨c′1,mds ′,mem ′

1⟩w BΓ′,S′,P ′ ⟨c′2,mds ′,mem ′
2⟩w

Proof. By induction over the structure of the type system. As I noted in Section 7.1, the

“preservation” lemma (Lemma 4.24) is now violated by IfH, and here I find a proof that

no longer relies on it. In all other respects, existing cases are unchanged.

For the new IfH case, I invoke the new introduction rule for BΓ′,S′,P ′ for its new

B2
Γ′,S′,P ′ component (Definition 7.2), nominating for Γ and P (resp.) the ΓH raised by

tyenv-raise-modified and the PH trimmed by preds-remove-modified for the variables modi-

fied by both branches c1 and c2 of the if-conditional. It then follows straightforwardly that

vars-modified-tyenv-H and vars-modified-no-preds—which were intended as specifications of

these raise/trim functions—hold for both branches, as required by Definition 7.2.

The remaining checks required by Definition 7.2 that were not immediate from the

assumptions are then satisfied immediately by the guards of IfH (Definition 7.1).

Finally, I can re-prove the major security type system soundness result (whose state-

ment has not changed from that of Theorem 4.27, when I re-proved it in Chapter 4):
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Theorem 7.12 (Soundness of the security type system with IfH added).

⊢ Γmds ,Smds , ∅ {c} Γ′,S ′, P ′ yields-stable-types mds

com-secure (c,mem)

Proof. As for Murray et al. [65] (and Theorem 4.27), but instead derived via the re-

established Lemma 7.10 and Lemma 7.11 for the newly updated bisimulation construction

BΓ′,S′,P ′ (Definition 7.3) and type system (with IfH, Definition 7.1) respectively.

7.5 Summary

This chapter presented, as a final contribution of this dissertation, the first instance of

syntax-directed reasoning about secret-dependent control flow for mixed-sensitivity con-

current programs. Here I demonstrated how a security type system for proving concur-

rent value-dependent noninterference [67] can soundly be relaxed to allow if-conditional

branching on secrets, which is commonly banned to prevent implicit flows of those secrets.

This demonstration took the form of a security typing rule IfH for While that, rather

than rejecting such if-conditionals outright as in Murray et al. [67] and Chapter 4, instead

automatically detects and rejects them if they exhibit implicit flows (Sections 7.1–7.2).

Proving the soundness of the resulting, more precise security type system (in Section 7.4)

required me to adapt a component of the bisimulation construction of Mantel et al. [54]

and specialise it (in Section 7.3) to witness the indistinguishability of the executions of

the two alternative control flow paths of each if-conditional admitted by IfH.

This contribution shows the practical consequence of the timing sensitivity, needed for

noninterference to be compositional across a program’s threads, being relative to the no-

tion of time used by the scheduler of those threads. As I argued in Sections 1.1.1 and 2.2.5,

knowing how the scheduler “sees” time is both necessary and enough to prove the absence

of the kinds of timing leaks that cause storage leaks in concurrent programs; thus I argue

that analyses solely targeting such leaks can and should regain the full precision of rea-

soning about the time taken by a program in scheduler-relative timing units. Finally, this

chapter demonstrated that the value-dependent classifications needed for mixed-sensitivity

reuse are no obstacle to such precision; they can be handled straightforwardly through ap-

propriate treatment of the control variables on which they depend.
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while (1 ) do
lock ( x_lock ) ;
/∗ Note that , because t h i s branch i s on a (NoRW−l o cked ) L var i ab l e , i t i s s a f e

to acqu i re and r e l e a s e l o c k s i n s i d e i t , and there i s no need to e q ua l i s e
i t s branch t iming . ∗/

i f ( x != 0) then
lock ( y_lock ) ;
lock ( z_lock ) ;
/∗ Branch on H−var i a b l e , opening the H−reg ion .

Both branches ( and a l l i n t e r na l nes ted branching ) must have equa l t iming . ∗/
i f ( h1 = 1) then

skip ;
skip ;
skip ;
h2 := 2 ;
skip

else
/∗ Note t h i s branch on (NoW−l o cked ) L va r i a b l e y . ∗/
i f ( y = 0) then

skip ;
h3 := 3 ;
skip ;
skip

else
/∗ Note assignment o f a H va lue to a (NoRW−l o cked ) L va r i a b l e . ∗/
z := h2 ;
i f ( h2 = 1) then

/∗ Note t h i s assignment to a NoRW−l o cked L va r i a b l e . ∗/
x := 4 ;
skip

else
/∗ Note t ha t we are now branching on a H−s e n s i t i v i t y va lue he ld by the

L−c l a s s i f i e d v a r i a b l e z . ∗/
i f ( z = 50) then

skip
else

h1 := 5
f i

f i
f i

f i ;
/∗ We did not as s i gn to y , so i t i s s a f e to unlock here . ∗/
unlock ( y_lock ) ;
/∗ Note we must wipe x and z here , because they were ass i gned to i n s i d e the

reg ion o f secre t−dependent con t ro l f l ow . ∗/
x := 0 ;
z := 0 ;
unlock ( z_lock )

else
/∗ No need to e q ua l i s e the branch l en g t h s o f t h i s branch on x , as i t i s

L−c l a s s i f i e d . ∗/
skip

f i ;
unlock ( x_lock )

od

Figure 7.2: Example program admitted by typing rule IfH with nested branching.
In this example, x,y,z are Low-classified variables; h1, h2, etc. are High-classified variables;
x lock and z lock grant exclusive read–write access to x, z (resp.); and y lock grants
exclusive read access to y.
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Chapter 8

Conclusion

This dissertation has validated my central thesis: Proving noninterference and its

preservation under compilation is feasible for mixed-sensitivity concurrent pro-

grams, using concurrent value-dependent notions of noninterference (CVDNI).

It did so by presenting, for the first time, proofs of the following: (Chapter 4) the

requirements that make CVDNI compositional, (Chapter 5) that a compiler satisfies

CVDNI-preserving refinement, and consequently, (Chapter 6) noninterference for a mixed-

sensitivity concurrent program as a whole, preserved to another language by a compiler.

It also achieves a secondary outcome laying a path for future work, by presenting (Chap-

ter 7) the first instance of syntax-directed reasoning about secret-dependent branching for

mixed-sensitivity concurrent programs.

This conclusion will recap what was shown by each of the achievements presented by

this dissertation, and discuss their implications for software developers and future research.

8.1 What my work showed

The work I have presented in this dissertation showed that the central outcome of my

thesis—formal proof of noninterference for a mixed-sensitivity concurrent program and its

preservation by a compiler—is enabled by (1) assume–guarantee reasoning and (2) decom-

position principles for refinement of confidentiality properties (resp. Sections 8.1.1, 8.1.2).

My work also showed that the secondary outcome, source-level proof support for secret-

dependent control flow in such programs, is enabled by CVDNI’s timing sensitivity allow-

ing syntax-directed reasoning about the time taken by control flow paths (Section 8.1.3).

8.1.1 Assume–guarantee makes it feasible to prove that synchronisation

primitives make CVDNI proofs compositional

Programming language developers can prove the conditions for CVDNI’s compositionality

as invariant from the semantics of synchronisation primitives. In doing so, they can provide

a way for program developers to prove noninterference for mixed-sensitivity concurrent

programs: For users of the language, this reduces to security type checking each thread.
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To demonstrate this principle, Chapter 4 added mutex locking primitives to a While

language, gave them a semantics that manipulates the assumptions and guarantees, and

proved the needed assume–guarantee compatibility condition as an invariant of the up-

dated semantics. It then updated the existing per-thread security-type and guarantee-

compliance checks (from prior work on CVDNI [67, 65]) to be sound for the new semantics.

To show the practicality of this approach for real-world programs, Chapter 6 used

these checks to prove noninterference for a While model for software to handle inputs to

the Cross Domain Desktop Compositor of Beaumont et al. [13].

8.1.2 Decomposition principles make it more feasible to prove that com-

pilers satisfy CVDNI-preserving refinement

Compiler developers wishing to prove CVDNI-preserving refinement can use a decom-

position principle that separates concerns about timing and termination, from those of

semantic preservation. In doing so, they will find it easier to prove that their compiler

preserves noninterference for mixed-sensitivity concurrent programs that it compiles.

To demonstrate this, Chapter 5 used a decomposition principle (first explained in Sison

and Murray [85], a conference paper published about the work of that chapter) to prove

that a compiler preserves CVDNI from While to RISC, a RISC-style assembly language

with mutex locking primitives mirroring the While locking semantics.

To show that this compiler preserves noninterference for mixed-sensitivity concurrent

programs, Chapter 6 obtained automatically the preservation of noninterference down to

the RISC model for the CDDC input-handling model by this compiler.

8.1.3 Security type systems can prove CVDNI automatically for pro-

grams with secret-dependent control flow

Finally, programming language developers can use the CVDNI properties’ timing sensi-

tivity to develop security type systems that prove source-level CVDNI for programs with

secret-dependent control flow. In particular, the proof of CVDNI establishes that any

subsequent shared memory effects do not have any timing leaks that are convertible to

storage leaks, assuming a scheduler making decisions according to the same notion of time.

To provide an example of this, Chapter 7 presents a timing-sensitive security typing rule

for While that admits if -conditional branching on secrets, adds this rule to the security

type system of Chapter 4, and proves that it remains sound for proving CVDNI. As

mentioned earlier, this is the first demonstration of syntax-directed reasoning about secret-

dependent control flow for mixed-sensitivity concurrent programs.

8.2 Why it matters: Scaling up with scarce resources

The vision of this thesis is that software developers can prove noninterference for mixed-

sensitivity concurrent programs by running per-thread (dependent) security type checks,
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knowing that, once proved, it will be preserved down to assembly. To fulfil this vision and

provide these benefits, developers of programming languages and their compilers will need

to replicate the achievements just described by this dissertation.

This matters because mixed-sensitivity reuse and concurrency are fundamental ways

of scaling up the scope of software using scarce resources: Concurrency emerges where

resources are shared between worker threads, and mixed-sensitivity reuse shares them in

the service of different customers. Mixed-sensitivity concurrent programs are those where

the sharing concerns the dedication of workers to customers—that is, where a thread may

service multiple customers, and a customer may be serviced by several threads.

This section will paint a picture of the kinds of real-world programs that are mixed-

sensitivity concurrent, before moving on to characterise how developers of programming

languages and compilers can expect to be guided by the work of this thesis.

8.2.1 For multithreaded system software that implements sharing

Mixed-sensitivity concurrent programs will be trusted wherever worker threads, customers,

and resources are not statically dedicated—that is, wherever multiple threads may service

a single customer, and a single thread may service multiple customers.

This is natural to any system software that provides a platform or interface to multiple

execution instances, wherever it happens to be multithreaded:

• In an operating system, this emerges when a thread, device, or component provides

a certain functionality to multiple security domains, instead of being duplicated for

each domain. For example, the CDDC input handler of Chapter 6 was a compo-

nentised operating system running on top of seL4, an operating-system microkernel.

Its three threads together implemented the sharing of a single set of input devices

between two security domains of differing sensitivity.

• A hypervisor is a kind of operating system designed to host execution instances,

each of which are typically dedicated only to a single cloud service user. However,

mixed-sensitivity concurrent reasoning would be needed if (like the CDDC input

handler) the hypervisor itself is implemented using multiple threads, and if any one

thread is responsible for implementing the sharing of some scarce resource between

execution instances belonging to two or more cloud service users.

As software that hosts multiple execution instances dealing with information of differ-

ing sensitivity, an Internet browser may also feature mixed-sensitivity concurrency—for

example, if there is any thread of execution in the browser’s implementation that is meant

to service both “incognito” and “normal” browsing tabs during its lifetime.

8.2.2 Support by programming languages and their compilers

The ability to replicate the results of this thesis for real programming languages and target

platforms ultimately depends on developers of more fully featured programming languages
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and compilers. If they can implement these principles, their users can enjoy the benefits

that are currently possible for the While and RISC language—with the added benefit that

it will actually apply to real software running on real hardware.

Concurrency demands coordination; it is common knowledge that this is typically

provided by synchronisation primitives. Ultimately, those primitives must be implemented

in some physical manner involving asynchronous communication on shared state. This

thesis guides any programming language developer seeking to provide such synchronisation

primitives, on (1) how to provide their users with a way to make explicit the relationships

between the primitives’ constructs (here, mutex locks) and the resources they protect, and

(2) how to prove they meet the coordination requirements (formalised as assumptions and

guarantees) needed to make noninterference proofs compositional.

Furthermore, for verified compiler developers this thesis shows that decomposition

principles make it easier to prove security preservation requirements (cube-shaped, security-

preserving refinements). Compiler verification is typically a square-shaped refinement ar-

gument. As demonstrated in this thesis, the decomposition principle for CVDNI allows

a separation of concerns between security, and between normal refinement of program se-

mantics. This will allow compiler verification to proceed by existing patterns, rather than

forcing compiler verifiers to adopt an entirely new paradigm of cube-shaped refinements

to prove noninterference. More generally, this thesis guides compiler developers to look for

an appropriate decomposition principle when faced with preserving such hyperproperties.

We note that this has already been borne out in the experiences of Barthe et al. [12] on

the CompCert compiler, concurrent to this thesis.

8.3 What might come next?

As just argued, the usefulness of this work will be in what it shows possible, using the

principles that it demonstrates to developers of real-world programming languages, and

to developers of verified compilers for those languages. For the time being, however, these

two sets of developers are likely to be (respectively) program- and compiler-verification

researchers. Here I suggest some topics for exploration by research in the immediate

future, raised by the work just completed for this dissertation.

8.3.1 Languages with indirect-addressing commands

The While language does not support pointers and arrays, and the RISC language does

not support indirect addressing of memory. However, the formalisation of CVDNI for the

Covern logic [68] (unlike that for this thesis) does allow the read–write footprint of a

command to be expressed in a way that depends on values in memory. We expect future

formulations and instantiations of CVDNI for other languages may take such an approach,

to allow the indirect addressing needed to dereference pointers and array entries.
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8.3.2 More compile-time optimisations on shared memory

The definition of CVDNI-preserving refinement (recalled in Chapter 3 and used by this

thesis) imposes a memory preservation restriction: It requires the contents of all shared

memory locations to be identical for any two configurations paired by the refinement, re-

gardless of their classification level or any assumptions on access by other threads. This is

not unusual for compiler verification for programs expected to be in a concurrent context—

for example, the CompCert C compiler [48] treats operations on volatile-declared mem-

ory as observable events that cannot be optimised away.

This memory preservation restriction does not restrict all optimisations on shared

memory—for example, it allows the wr-compiler to avoid redundant reads from memory. As

explained in Chapter 5, the wr-compiler demonstrates that a compiler can take advantage

of the assume–guarantee reasoning to show that tracking of register contents is stable

enough to enable it to implement this optimisation.

On the other hand, this restriction effectively prevents the wr-compiler from making

any optimisations that would reorder any writes that change the shared memory contents.

Thus, supporting a wider range of compile-time optimisations of shared memory operations

will require a relaxation of the definition of CVDNI-preserving refinement. Future work

will need to explore the best way to generalise any requirements emerging from that relax-

ation, to make them usable for the most common compile-time optimisations. Doing so

will make the kinds of optimisations normally supported only for local variables (e.g. loop

hoisting, dead store elimination) also available for the first time for shared memory.

8.3.3 Compiler preservation of general assume–guarantee reasoning

CVDNI-preserving refinement and the wr-compiler support the preservation of assume–

guarantee modes on read- or write-access, but not the general assume–guarantee conditions

permitted by the Covern logic of Murray et al. [68] (which followed and extended the

work of Chapter 4). Adding such support will require a change to the definition of CVDNI-

preserving refinement. A wr-compiler proved to preserve such conditions would be able to

preserve CVDNI for While programs proved secure using the Covern logic—in practice,

this allows shared data invariants to be relied on to hold whenever locks are acquired,

instead of needing to be checked at runtime.

8.3.4 Further support for secret-dependent control flow

This thesis has left to future work any attempts to verify a compiler to preserve CVDNI

for programs with secret-dependent control flow. Initial work could aim to have a compiler

preserve CVDNI for programs admitted by the security typing rule provided in Chapter 7

of this dissertation. Ideally, the combined contributions could be used to demonstrate

proof and preservation of CVDNI for a real-world use of secret-dependent control flow.
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8.4 Closing remarks

This thesis lays the foundations so that future programming languages and compilers for

programs with mixed-sensitivity reuse and concurrency will be able to treat information-

flow security as a first-class concern, for those software developers who need it. As trusted

solutions to fundamental problems of scale in system software, it is high time that their

developers have the tools and techniques to make firm guarantees about their information

flow, knowing that they will be preserved under compilation. Therefore I argue: This is a

challenge worth meeting.
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[11] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Secure compilation of side-

channel countermeasures: The case of cryptographic “constant-time”. In 31st IEEE

Computer Security Foundations Symposium, CSF 2018, Oxford, United Kingdom,

July 9-12, 2018, pages 328–343. IEEE Computer Society, 2018. doi: 10.1109/CSF.

2018.00031. URL https://doi.org/10.1109/CSF.2018.00031.

[12] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte,
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[32] Joseph Goguen and José Meseguer. Security policies and security models. In Pro-

ceedings of the IEEE Symposium on Security and Privacy, pages 11–20, Oakland,

California, USA, April 1982. IEEE Computer Society.

[33] Sylvia Grewe, Heiko Mantel, and Daniel Schoepe. A formalization of assumptions

and guarantees for compositional noninterference. Archive of Formal Proofs, April

2014. ISSN 2150-914x. http://isa-afp.org/entries/SIFUM_Type_Systems.

html, Formal proof development.

118

http://doi.acm.org/10.1145/359636.359712
https://doi.org/10.1007/978-3-319-66402-6_25
https://doi.org/10.1007/978-3-319-66402-6_25
https://doi.org/10.1007/978-3-030-25543-5_13
http://doi.acm.org/10.1145/321420.321422
http://isa-afp.org/entries/SIFUM_Type_Systems.html
http://isa-afp.org/entries/SIFUM_Type_Systems.html


[34] J. Halpern and K. O’Neill. Secrecy in multiagent systems. In Proceedings 15th IEEE

Computer Security Foundations Workshop CSFW-15, page 32, Los Alamitos, CA,

USA, jun 2002. IEEE Computer Society. doi: 10.1109/CSFW.2002.1021805. URL

https://doi.ieeecomputersociety.org/10.1109/CSFW.2002.1021805.

[35] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, October 1969. ISSN 0001-0782. doi: 10.1145/363235.363259. URL

http://doi.acm.org/10.1145/363235.363259.

[36] Sebastian Hunt and David Sands. On flow-sensitive security types. In Conference

Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’06, pages 79–90, New York, NY, USA, 2006. ACM. ISBN

1-59593-027-2. URL http://doi.acm.org/10.1145/1111037.1111045.

[37] J. Jacob. Security specifications. In Proceedings. 1988 IEEE Symposium on Security

and Privacy, pages 14–23, 1988.

[38] Dean Jacobs and David Gries. General correctness: A unification of partial and

total correctness. Acta Informatica, 22(1):67–83, Apr 1985. ISSN 1432-0525. doi:

10.1007/BF00290146. URL https://doi.org/10.1007/BF00290146.

[39] Anita K. Jones and Richard J. Lipton. The enforcement of security policies for

computation. In Proceedings of the Fifth ACM Symposium on Operating Systems

Principles, SOSP ’75, pages 197–206, New York, NY, USA, 1975. ACM. doi: 10.

1145/800213.806538. URL http://doi.acm.org/10.1145/800213.806538.

[40] C. B. Jones. Tentative steps toward a development method for interfering programs.

ACM Trans. Program. Lang. Syst., 5(4):596–619, October 1983. ISSN 0164-0925.

doi: 10.1145/69575.69577. URL http://doi.acm.org/10.1145/69575.69577.

[41] Cliff B. Jones. Development Methods for Computer Programs including a Notion of

Interference. D.Phil. thesis, University of Oxford, June 1981.

[42] Aleksandr Karbyshev, Kasper Svendsen, Aslan Askarov, and Lars Birkedal. Com-

positional non-interference for concurrent programs via separation and framing. In
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Mohamed, César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in

Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal,

Canada, August 18-21, 2008. Proceedings, volume 5170 of Lecture Notes in Com-

puter Science, pages 28–32. Springer, 2008. URL https://doi.org/10.1007/

978-3-540-71067-7_6.

[87] Geoffrey Smith. Recent developments in quantitative information flow (invited tu-

torial). In Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic

in Computer Science (LICS), LICS ’15, pages 23–31, Washington, DC, USA, 2015.

IEEE Computer Society. ISBN 978-1-4799-8875-4. doi: 10.1109/LICS.2015.13. URL

http://dx.doi.org/10.1109/LICS.2015.13.

[88] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded

imperative language. In Proceedings of the 25th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, POPL ’98, pages 355–364, New

York, NY, USA, 1998. ACM. ISBN 0-89791-979-3. doi: 10.1145/268946.268975.

URL http://doi.acm.org/10.1145/268946.268975.

[89] Gregor Snelting, Dennis Giffhorn, Jürgen Graf, Christian Hammer, Martin Hecker,

Martin Mohr, and Daniel Wasserrab. Checking probabilistic noninterference using

joana. it - Information Technology, 56:280–287, November 2014. doi: 10.1515/

itit-2014-1051.

[90] Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and
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Appendix A

Extra details about the Covern

wr-compiler

A.1 Label allocation and sequential composability

The wr-compiler’s fixing of the label type Lab ≜ nat (noted in Section 5.2) allows it to en-

sure freshness merely by using the highest natural number reached so far on a “next label”

counter (nl in Example 5.1); it then increments the counter before passing it to subsequent

calls, and outputs the next available unused label on return (nl ′ in the example).

Relative to this scheme, I prove that two consecutively compiled RISC programs—in

the sense that the relevant outputs from the first call are fed directly into the second

call—only ever jump to locations within themselves (and not in the other).

Specifically, I define two RISC programs P1, P2 to be joinable if they are both:

• joinable-forward: P1 only ever jumps to labels that are either

– labelling an instruction in P1 itself, or

– the label of the very first instruction in P2.

• joinable-backward: P2 does not jump to any of the labels of instructions in P1.

The lemma I prove then says that two RISC programs output by consecutive invocations

of the wr-compiler are joinable.

Proving that the control flow of programs compiled by the wr-compiler always remains

self-contained in this manner facilitates reasoning about their sequential composition.

A.2 Register allocation scheme model

Like Tedesco et al. [95] I generalise over the (user-supplied) register allocation scheme,

and assume there are enough registers to service the maximum depth of expressions in the

source program. I leave for future work the modelling and analysis of a compiler phase

that spills register contents to memory, in order to make this assumption unnecessary.
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Here I model the (user-supplied) register allocation scheme with two functions reg alloc

and reg alloc cached on the register record Φ (see Section 5.2) and the set A of registers

whose contents are needed to evaluate the current expression. To avoid loading from

memory unnecessarily, the compiler may first call reg alloc cached Φ A v to identify a

register that Φ records as already containing the variable v. When the compiler needs a

fresh register, it will call reg alloc Φ A. Neither function is allowed to allocate a register

in A, so the allocator is permitted to fail if it cannot find any suitable register. However,

registers typically become available again as expression evaluation is resolved.

A.3 Informal descriptions of cases of refinement relation Rwr

A.3.1 Base cases

• stop: This case relates a terminated While program with a terminated RISC program

(i.e. one where the program counter is at the length of the program text).

• skip nop: This case relates the While program skip with the configuration where

the program counter is at the start of the RISC program [Nop].

• assign expr: This case relates the expression evaluation part (for the expression

e) of the While program v := e with the corresponding part of the RISC program

obtained by compiling it with the wr-compiler.

• assign store: As for assign expr, but for the very last Store instruction that

commits the result of the expression evaluation back to shared memory variable v.

It asserts additionally that v must be stable if lock-governed, and non-lock-governed

otherwise. This prevents threads from violating the locking discipline (see Sec-

tion 4.1.1).

• lock acq: This case relates lock(k) with LockAcq k.

• lock rel: This case relates unlock(k) with LockRel k.

A.3.2 Inductive cases

• seq: This case relates the While program c1 ;c2 with the concatenation P1@P2 of the

RISC programs P1 and P2 that are respectively the outputs of successful consecutive

compilation (see Section A.1) of c1 and c2 by the wr-compiler. It is intended for cases

where the While (resp. RISC) program is currently in c1 (resp. P1).

It is an inductive case of Rwr, in that:

– c1 is required to be related by Rwr to the present location in P1.

– For all local configurations that obey the compiled-cmd-config-consistent require-

ments, c2 is required to be related by Rwr to the first instruction of P2. This
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quantification ensures that Rwr remains closed when execution progresses from

the first program to the second program.

It asserts that P1 and P2 are joinable (Section A.1), which is particularly relevant

here to ensure that P1 can only jump to locations within or at the end of itself

(i.e. the start of P2).

• join: This case relates a While program c with an offset pc > length P1 into a RISC

program P1@P2, assuming the inductive hypothesis that c is related by Rwr with

the offset pc − length P1 into the RISC program P2 alone.

It is intended primarily for cases where the While (resp. RISC) program is currently

in the c2 (resp. P2) of some consecutively compiled c1 ;c2 (resp. P1 concatenated with

P2) but applies more broadly to allow any prepend of dead, unreachable instructions

onto the front of a RISC program without breaking Rwr.

It also asserts that P1 and P2 are joinable, which is important here to ensure that

P2 cannot jump back into P1.

• if expr: This case relates the expression evaluation part (for the expression e) of

the While program if e then c1 else c2 fi with the corresponding part (including

the conditional jump Jz at the end of expression evaluation) of the RISC program

obtained by compiling it with the wr-compiler.

It relies on both c1 and c2 being related by Rwr to its compiled RISC counterparts

when started with initialisation states judged valid by compiled-cmd-config-consistent.

This case is depicted in full in Figure A.1, on page 131; for comparison, Figure A.2

depicts the relevant part of the compile-cmd implementation.

• if c1: This case relates some While program c′1 reachable from c1 with the cor-

responding part within the c1 part of the RISC program obtained by compiling

if e then c1 else c2 fi with the wr-compiler.

It relies on c1 being related by Rwr to its compiled RISC counterpart at the appro-

priate program counter offset.

• if c2: As for if c1, but for c2.

• epilogue step: This case relates a terminated While program to the silent control

flow steps navigating to the end of a RISC program from the end of the “then” and

“else” branches of a compiled if-conditional.

It works only for the “epilogue” step forms: Jmp and Nop (see Section 5.4.2).

It is inductive in that it asserts closedness of Rwr over pairwise reachability from the

pair currently under consideration—the only case to do so directly.

• while expr: This case relates the While program (while e do c od)’s initial inter-

mediate step to if e then (c ; while e do c od) else stop fi, and its expression
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evaluation part, with the expression evaluation and conditional jump of the RISC

program that while e do c od was compiled to by compile-cmd.

It relies on c being related by Rwr to its compiled RISC counterpart when started

with initialisation states judged valid by compiled-cmd-config-consistent.

• while inner: This case relates some program cI ;while e do c od reachable from

c ; while e do c od to the loop body part of the RISC program compiled from

while e do c od.

It relies on cI being related by Rwr to its compiled RISC counterpart at the appro-

priate program counter offset.

It also carries around the same reliance on c being related byRwr to its compiled RISC

counterpart for all initialisation states judged valid by compiled-cmd-config-consistent.

• while loop: This case handles epilogue steps for the inner loop body program, and

the final jump back to the beginning of the While-loop.

It requires Rwr to relate the terminated While program to the end of the compiled

loop body, and furthermore also carries around the same reliance on c being related

by Rwr to its compiled RISC counterpart for all initialisation states judged valid by

compiled-cmd-config-consistent.
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c = if e then c1 else c2 fi compile-cmd-input-reqs C l nl c

(PCs, l′,nl2, C
′,False) = compile-cmd C l nl c (Pe, r, C1,False) = compile-expr C ∅ l e

(P1, l1,nl1, C2,False) = compile-cmd C1 None (Suc (Suc nl)) c1 pc ≤ length Pe

(P2, l2,nl2, C3,False) = compile-cmd C1 (Some nl) nl1 c2 Cpc = snd (PCs[pc])

compiled-cmd-config-consistent Cpc regs mds mem regrec-stable Cpc

∀mds ′ mem ′ regs ′. compiled-cmd-config-consistent C1 regs ′ mds ′ mem ′ ∧ regrec-stable C1

−→ ((⟨c1,mds ′,mem ′⟩w, ⟨((0,map fst P1), regs
′),mds ′,mem ′⟩r) ∈ Rwr ∧

(⟨c2,mds ′,mem ′⟩w, ⟨((0,map fst P2), regs
′),mds ′,mem ′⟩r) ∈ Rwr)

(⟨c,mds,mem⟩w, ⟨((pc,map fst PCs), regs),mds,mem⟩r) ∈ Rwr

Figure A.1: Introduction rule for case if expr of refinement relation Rwr.
This case pertains to the expression-evaluation part of an if -conditional compiled by
compile-cmd (see Figure A.2). Variables ignored are in gray.

compile_cmd C l nl (If e c1 c2 ) =
( l et (Pe , r , C1 , faile ) = ( compile_expr C {} l e ) ;

(br , nl ’ ) = (nl , Suc nl ) ; (ex , nl ’ ’ ) = (nl ’ , Suc nl ’ ) ;
(P1 , l1 , nl1 , C2 , fail1 ) = ( compile_cmd C1 None nl ’ ’ c1 ) ;
(P2 , l2 , nl2 , C3 , fail2 ) = ( compile_cmd C1 ( Some br ) nl1 c2 ) ;
(∗ Pre−compi la t ion check ensures asmrec C2 = asmrec C3 ∗)
C ’ = ( regrec C2 ⊓R regrec C3 , asmrec C2 )

in (Pe @ [ ( ( i f Pe = [ ] then l else None , Jz br r ) , C1 ) ] @

P1 @ [ ( ( l1 , Jmp ex ) , C2 ) ] @ P2 @ [ ( ( l2 , Nop ’ ) , C3 ) ] ,
Some ex , nl2 , C ’ , faile ∨ fail1 ∨ fail2 ) )

Figure A.2: Excerpt of wr-compiler implementation: case for if-conditionals.
This case of the Isabelle/HOL function compile-cmd compiles the While command
if e then c1 else c2 fi. Here, @ denotes concatenation between two RISC program texts,
and Φ⊓RΦ′ denotes the subset of mappings on which the register records Φ and Φ′ agree.
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Appendix B

Extra details about the IfH

security typing rule

Here I provide formal definitions that were elided from the exposition of Chapter 7.

A number of definitions to follow use a function vars-modified-by :: cmd ⇒ Var set ,

that I define trivially to return the set of all variables that appear on the left-hand side of

any assignment in the given While-language command.

Definition B.1 (Variables modified by c are not considered visible with stable set S).

vars-modified-NoRW-or-H c S ≜

∀x ∈ vars-modified-by c. Lbexp x = {Falsebexp} ∨ (x /∈ C ∧ x ∈ snd S)

The following definitions are for helpers given in Section 7.2. Here, I use the notation

“m1 ++ m2” to denote the combination of two partial maps, preferring entries from m2;

modified variables are given the default unsatisfiable type predicate set {Falsebexp}.

Definition B.2 (Raising to High in typing environment Γ of variables modified by c).

tyenv-raise-modified Γ c ≜ Γ ++

(λx. if (x ∈ dom Γ ∧ (x ∈ vars-modified-by c)) then Some {Falsebexp} else None)

Definition B.3 (Removal from predicate set P of variables modified by c).

preds-remove-modified P c ≜ {e | e ∈ P ∧ bexp-vars e ⊆ (− vars-modified-by c)}

The following definitions, which are used by the IfH typing rule (Definition 7.1), are

recalled from the background work Murray et al. [67]. Note that, as typing environments

are partial maps, the floor notation ⌊Γ x⌋ denotes the security type that the typing envi-

ronment Γ has recorded for the variable x, assuming one is present.
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Reproduced definitions (From Murray et al. [67], adding to those in Chapter 4).

Γ ⊢ e :
⋃

x∈bexp-vars e
if (x ∈ dom Γ) then ⌊Γ x⌋ else Lbexp x

(Typing rule for boolean expressions.)

P ⊢ P ′ ≜ ∀mem. preds-hold P mem −→ preds-hold P ′ mem

(Predicate set entailment.)

t =:P t′ ≜ t ≤:P t′ ∧ t′ ≤:P t

(Type equivalence between predicate sets t, t′ under predicate set P .)

Γ =:P Γ′ ≜ dom Γ = dom Γ′ ∧ ∀x ∈ dom Γ′. ⌊Γ x⌋ =:P ⌊Γ′ x⌋

(Typing environment equivalence under predicate set P .)

The following definitions are then for helpers given in Section 7.3, and are used by the

definition of the new component B2
Γ′,S′,P ′ (Definition 7.3) of the bisimulation construction.

Definition B.4 (All variables modified by c have type High in typing environment Γ).

vars-modified-tyenv-H c Γ ≜

∀x ∈ vars-modified-by c. x ∈ dom Γ −→ Γ x = Some {Falsebexp}

Definition B.5 (No predicates in set P mention any variables modified by c).

vars-modified-no-preds c P ≜

∀x ∈ vars-determining-preds P. x /∈ vars-modified-by c
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