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Proving confidentiality:

The floor is lava

2 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison



Proving confidentiality:

“secret files can’t

touch the lava” The ﬂOOr |S Iava

game

2 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison



Proving confidentiality:

“secret files can’t

touch the lava” The ﬂOOr |S Iava

game

2 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison



Proving confidentiality:

“secret files can’t n real.lty:
a hotel window;

” 1 /
uchthelva” — The floor is lava the media

game

2 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison



Confidentiality in the face of scale
The desk is lava

Mixed-sensitivity reuse
“We have 2 customers and 1 desk”
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Confidentiality in the face of scale
The desk is lava

Mixed-sensitivity reuse Shared-memory concurrency
“We have 2 customers and 1 desk” “15 of us work in this office”

e Any of us might use the desk

e Any of us might touch the lever

Mixed-sensitivity concurrent programs
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Motivating use case

Beaumont, McCarthy, Murray
(ACSAC 2016)

Cross Domain Desktop Compositor
(DSTG + Trustworthy Systems collaboration)

Finalist entry for 2021 Eureka Prize
(Outstanding Science in Safeguarding Australia)
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Motivating use case

r

Unclassified

TP SECRET PROTECTED
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Cross Domain
Desktop Compositor
(CDDC)
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Cross Domain
Desktop Compositor
(CDDC)
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3 key Cha”enges Cross Domain

Desktop Compositor
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2. Multiple moving parts :
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Concurrent value-dependent information-flow security
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3 key Cha”enges Cross Domain

Desktop Compositor

(CDDC)
2. Multiple moving parts :
(well-synchronised) Doesn't leak secrets
N /
Concurrent value-dependent information-flow security

1. Mixed-sensitivity reuse | 3. Compositionally! Confidentiality
(of devices, space, etc.) (per-thread effort)
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A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

Trusted
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A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

Trusted
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A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

(On video monitor: “Warning, keyboard is LAVA!”)
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seL4 component architecture, functional schematic
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A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

(On video monitor: “Keyboard inputs can be secret”)
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Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

« Program verification h@Pter4

: e : Chapter 5
e Compiler verification P

. Case study: CDDC Chapter®

« Extension to program verification Chapter?7
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Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

S

rwa
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Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

e Local compliance
“I respect my guarantees”

e Global compatibility
“Guarantees meet assumptions”

e Local security

“Iwin ‘floor is lava with levers’
using assumptions”

‘/ T'0P SECRET /
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Program verification: Prior work
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Program verification: My work
(Language designer’s perspective)
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Program verification: My work
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2777/
/

LOCKOUT
“POINT

e A way to assign locks to spaces

e Local compliance
“I respect the locks”

e Global compatibility
“Guarantees meet assumptions”

e Local security

“Iwin ‘floor is lava with levers’
using assumptions”

‘/ T'0P SECRET /

(For a generic While language with locks)

8 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison



Program verification: My work
(Language designer’s perspective)

e A way to assign locks to spaces

e Local compliance
“I respect the locks”

e Global compatibility
“Respecting locks is enough for

guarantees to meet assumptions”

e Local security

. . : . mswnfr/
“I win ‘floor is lava with levers’ using locks”

(For a generic While language with locks)
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Program verification: My work

e A way to assign locks to spaces

(For a generic While language with locks)

8

(Language designer’s perspective)

VIIII

4 LockouT
“POINT

Local compliance
“I respect the locks”

Local security
“I win ‘floor is lava with levers’ using locks”
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Program verification: My work

« Assign locks to spaces ,LOCKOUT /

(Programmer’s perspective)

’ IIII/

POINT
’IIOIII‘ o Slebaleameatibiivy

* For each thread, prove: suaranteestomeet assurmptions”

9

e Local compliance
“I respect the locks”

e Local security
“I win ‘floor is lava with levers’ using locks”

(Type systems provide proof method)
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Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

v
_n.o..-_‘_

o P ficot Chapter 4

_ . _ Chapter 5
e Compiler verification

e Case study: CDDC Chapter 6

: . . Chapter 7
e Extension to program verification P
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Verified secure compilation

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets...

TP SECRET
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Verified secure compilation

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets...

What if your compiler could be proved to preserve it?

Here's how!

Prove confidentiality-preserving refinement,

using a decomposition principle.

- W
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Compiler verification: Prior work
Using interactive theorem proving

e Jinja compiler (Java dialect) - verified in Isabelle/HOL

(Klein and Nipkow, 2006) /'(a|so)

+ JinjaThreads compiler (for multithreaded programs)
(Lochbihler, 2010)

Note: “Usual” refinement

« CompCert C compiler - verified in Coqg
(Leroy, 2009)

e CakeML compiler (Standard ML dialect) - verified in HOL4
(Kumar et al. 2014)
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Compiler verification: Prior work

IH

“Usual” refinement
C refines A

Abstract

Direction
of
compilation
Concrete
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Compiler verification: Prior work

IH

“Usual” refinement

C refines A

Relations

(between)

Program
configurations

For-all
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Compiler verification: Prior work

“Usual” refinement
A simulates C = C refines A
Relations
Exists
(between)
Program
configurations

For-all
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Compiler verification: Prior work

Confidentiality-preserving (Murray, Sison, Pierzchalski, Rizkallah 2016)
refinement
Abstract
Relations
Exists Direction
(between) of
compilation
Program
configurations
\'Z4
Concrete

For-all
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Compiler verification: Prior work

Confidentiality-preserving (Murray, Sison, Pierzchalski, Rizkallah 2016)
refinement

Abstract
Relations
Exists Direction
(between) O.f :
compilation
Program
configurations
YV
Concrete

For-all
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Compiler verification: Prior work

Confidentiality-preserving (Murray, Sison, Pierzchalski, Rizkallah 2016)
refinement

/' For-all

Abstract
Relations
Exists Direction
(between) O.f :
compilation
Program
configurations
YV
Concrete

For-all
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Compiler verification: Prior work
Confidentiality-preserving (Murray, Sison, Pierzchalski, Rizkallah 2016)

refinement
Abstract 9

/' For-all j

Relations
EXiStS Di recftion
0)
(between) Exists compilation
Program
configurations | | YV
Concrete

For-all
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Compiler verification: Prior work
Confidentiality-preserving (Murray, Sison, Pierzchalski, Rizkallah 2016)

refinement
Abstract 9

/' For-all j

Relations
EXiStS Di recftion
0
(between) Exists compilation
Program
configurations | | YV
Concrete 9

For-all
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Compiler verification: My work Compiler based on
Tedesco et al. 2016)

Abstract

Direction
of
compilation

EX1StS

Vv

Concrete

For-all
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Compiler verification: My work Compiler based on
Tedesco et al. 2016)

Generic
While language
with locks

Direction
of
compilation

EX1StS

Vv

Generic

RISC assembly

with locks
For-all
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Compiler verification: My work (Compiler based o

Using a decomposition principle Tedesco et al. 2016)

(Thanks to Toby Murray) :
Generic

While language

/'For-all _\ with locks
Direction
Exists of
compilation
EXIStS
| | YV
Generic
RISC assembly
with locks

For-all
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Compiler verification: My work (Compiler based o

Using a decomposition principle Tedesco et al. 2016)
(Thanks to Toby Murray)

Generic
, While language
e The “usual” refinement, , &4ag
. : with locks
with no changes to locking:
Direction
of
compilation
YV
Generic

RISC assembly
, with locks
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Compiler verification: My work (Compiler based o

Using a decomposition principle Tedesco et al. 2016)
(Thanks to Toby Murray)

Generic
, While language
e The “usual” refinement, , &4ag
: : with locks
with no changes to locking:
+ Using knowledge that
spaces are locked
Direction
of
compilation
YV

Generic

RISC assembly
, with locks
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Compiler verification: My work
Using a decomposition principle

15

(Thanks to Toby Murray)
The “usual” refinement,
with no changes to locking:

al

No new timing, stopping, or branching based
on secret information:

+ Using knowledge that
spaces are locked

g
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Compiler verification: My work
Using a decomposition principle

15

(Thanks to Toby Murray)
The “usual” refinement,
with no changes to locking:

O

No new timing, stopping, or branching based
on secret information:

+ Using knowledge that
spaces are locked

g
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Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

o Program verification ChePter4

-y Chapter6
. Case study CDDC

» Extension to program verification
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Case study
Methodology in Isabelle/HOL

Program verification I SIS
| JLockouT” -
» Assign locks to spaces % POINT » Globalcompatibility
7

e For each thread, prove:

e Local compliance
“I respect the locks”

e Local security
“I win ‘floor is lava with levers’ using locks”

Compiler application

—=>
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Case study

Cross Domain Desktop Compositor HID switch

Trusted
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Case study

Cross Domain Desktop Compositor HID switch

Trusted

4 Switch

Input
Driver

AmeEnErrrREERREm
!l.‘ll'll!llll!
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Ll B LA il B A -

==
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Case study
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Case study
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Case study
Cross Domain Desktop Compositor HID switch
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Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.
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Extension to program verification: W Chapter 7

Allow conditional branching on /

' TP SECRET
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Explicit flow

T'0P SECRET
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Explicit flow

T'0P SECRET

output := secret
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Explicit flow

Analysis (rightly)

output := secret ) :
P rejects this!
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Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then
...do stuff, then...

T'0P SECRET

output =0
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Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then else
...do stuff, then... ...do other stuff, then...

T'0P SECRET

output :=0 output :=1
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else
...do other stuff, then...

output :=1

Also (rightly)
rejected



Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then else
...do stuff, then... ...do other stuff, then...
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Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then else
...do stuff, then... ...do other stuff, then...
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output =0 output :=0

Is this safe?
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Conditional branching on secrets
Implicit flow #2: timing leak

if (secret) then ..do stuff, then...

T'0P SECRET
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Conditional branching on secrets
Implicit flow #2: timing leak

if (SECFEt) then ..do stuff, then...

oy

...do other stuff, then...
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else

T'0P SECRET




Conditional branching on secrets
Implicit flow #2: timing leak

if (secret) then ..do stuff, then...

oy

...do other stuff, then...
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else

T'0P SECRET
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Conditional branching on secrets

Disallowed in previous Chps 4-6 of thesis!

if (secret)

T'0P SECRET
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Conditional branching on secrets
Allowed by Chp 7 extension to type system

if (secret) then ..dostuff wait.., then..

else
...do other stuff, then...

g
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