Proving confidentiality and its
preservation under compilation for

mixed-sensitivity concurrent programs

PhD thesis (2016-2020), UNSW
https://doi.org/fimt

SSS2, 25 January 2023

Dr Robert Sison

Research Fellow, The University of Melbourne
Visiting Fellow, UNSW Sydney

https://doi.org/fjmt

Proving confidentiality and its
preservation under compilation for

mixed-sensitivity concurrent programs

PhD thesis (2016-2020), UNSW
https://doi.org/fimt

SSS2, 25 January 2023

Dr Robert Sison

Research Fellow, The University of Melbourne
Visiting Fellow, UNSW Sydney

Note: Interactive theorem proving (Isabelle)

https://doi.org/fjmt

Proving confidentiality and its
preservation under compilation for

mixed-sensitivity concurrent programs

PhD thesis (2016-2020), UNSW
https://doi.org/fimt

SSS2, 25 January 2023

Dr Robert Sison

Research Fellow, The University of Melbourne
Visiting Fellow, UNSW Sydney

Note: Interactive theorem proving (Isabelle)

https://doi.org/fjmt

Proving confidentiality:

The floor is lava

2 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Proving confidentiality:

“secret files can’t

touch the lava” The ﬂOOr |S Iava

game

2 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Proving confidentiality:

“secret files can’t

touch the lava” The ﬂOOr |S Iava

game

2 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Proving confidentiality:

“secret files can’t n real.lty:
a hotel window;

” 1 /
uchthelva” — The floor is lava the media

game

2 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Confidentiality in the face of scale
The desk is lava

Mixed-sensitivity reuse
“We have 2 customers and 1 desk”

3 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Confidentiality in the face of scale
The desk is lava

Mixed-sensitivity reuse
“We have 2 customers and 1 desk”

I'0P SECRET

3 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Confidentiality in the face of scale
The desk is lava

Mixed-sensitivity reuse Shared-memory concurrency
“We have 2 customers and 1 desk” “15 of us work in this office”

I'0P SECRET

3 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Confidentiality in the face of scale
The desk is lava

Mixed-sensitivity reuse Shared-memory concurrency
“We have 2 customers and 1 desk” “15 of us work in this office”

e Any of us might use the desk

I'0P SECRET

3 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Confidentiality in the face of scale
The desk is lava

Mixed-sensitivity reuse Shared-memory concurrency
“We have 2 customers and 1 desk” “15 of us work in this office”

e Any of us might use the desk

e Any of us might touch the lever

3 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Confidentiality in the face of scale
The desk is lava

Mixed-sensitivity reuse Shared-memory concurrency
“We have 2 customers and 1 desk” “15 of us work in this office”

e Any of us might use the desk

e Any of us might touch the lever

Mixed-sensitivity concurrent programs

3 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Motivating use case

Beaumont, McCarthy, Murray
(ACSAC 2016)

Cross Domain Desktop Compositor
(DSTG + Trustworthy Systems collaboration)

Finalist entry for 2021 Eureka Prize
(Outstanding Science in Safeguarding Australia)

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Motivating use case

r

Unclassified

TP SECRET PROTECTED

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Motivating use case

r

Unclassified

TP SECRET PROTECTED

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Cross Domain
Desktop Compositor
(CDDC)

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Cross Domain
Desktop Compositor
(CDDC)

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Cross Domain
Desktop Compositor
(CDDC)

QQQ

\

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

DOMAIN 1

- Microsoft Outlook
Send / Receive Folder

Jlanore 23 Move to: ?
) X3 Move to

& Meeting

CleanUp ~ 33 Team E-mail | 0 -~
New New De Rephy orward B W

A y : vore ~ . -
m Bome v unk ~ 2k Reply & Delete 7 Create Nev
E-mail Ttems - | @ Junk - B o e agelmon

Cambria (Headings) ~ 14

P

4 Favorites

B 7 U ~ae x, XX
W A-A AN

- Inbox (1
Unread Mail

Far Foltow Up

€ Security News and Views for the World » The Register - Windows Internet Explorer
@ L) ® |A hit i theregister.co.uk

Favorites A Security News and Views for the World « The Regi... . s v Pagev Safetyv Toolsv @~

Login Sknup ashn'Carrior hitepaper The Channe!l The Nexd Platform

A, DATA CENTRE SOFTWARE NETWORKS SECURITY INFRASTRUCTURE DEVOPS BUSINESS HARDWARE SCENCE BOOTNOTES FORUMS

SECURITY
Most read
Touchnote breach:
Wrote a postcard
with us? Thieves
have your pal's

name, address 4 Space fans eye launch of
8 Lego Saturn V

Cryptowall 4.0: Update
makes world's worst

ransomware worse shll

The gift that keeps on
giving. (Yes they have your
details too)
Here's the little-known legal
oophole that permitted
mass survelllance in the
UK

1. Done ¢ & Internet | Protected Mode: On

Page:1of1 Words: 0

—

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Cross Domain
Desktop Compositor
(CDDC)

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

3 key Cha”enges Cross Domain

Desktop Compositor
(CDDC)

Doesn't leak secrets

/

value-dependent information-flow security

1. Mixed-sensitivity reuse Confidentiality
(of devices, space, etc.)

SECRET
| roreer, /

?

T — —

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

3 key Cha”enges Cross Domain

Desktop Compositor
(CDDC)

Doesn't leak secrets

/

value-dependent information-flow security

1. Mixed-sensitivity reuse Confidentiality
(of devices, space, etc.)

o B ‘
A P
i
- l
- -

| SECRET, /4

| ,
or ?

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

S—

3 key Cha”enges Cross Domain

Desktop Compositor

(CDDC)
2. Multiple moving parts :
(well-synchronised) Doesn't leak secrets
N /
Concurrent value-dependent information-flow security

1. Mixed-sensitivity reuse Confidentiality
(of devices, space, etc.)

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

3 key Cha”enges Cross Domain

Desktop Compositor

(CDDC)
2. Multiple moving parts :
(well-synchronised) Doesn't leak secrets
N /
Concurrent value-dependent information-flow security

1. Mixed-sensitivity reuse | 3. Compositionally! Confidentiality
(of devices, space, etc.) (per-thread effort)

4 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

Trusted

EREREFREFRRPRRRNE
rtEPPRRERRRIARRRE

OO EEEPEEEEREEEEEEDR

o
-

Hﬁ- Sas
nFE
l"’

FrE
ERnRcE

LAVA

5 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

Trusted

EREREFREFRRPRRRNE
rtEPPRRERRRIARRRE

Input
Driver

JOAEREFEEAEREREEE D
-4--‘? il B A _:

IB- Sas

"FF

I"If .
FrE

LAVA

Overlay
Driver

seL4 component architecture, functional schematic

5 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

(On video monitor: “Warning, keyboard is LAVA!”)

4 4 Switch
WA, o oo]—u—\ ‘}]
~ Lpavad LAVA
LAVA (]
Driver
LAVA

Trusted

LAVA

seL4 component architecture, functional schematic

5 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

A mixed-sensitivity concurrent program
CDDC’s HID switch as software components

(On video monitor: “Keyboard inputs can be secret”)

Trusted

Keyboard inputs are
sent to Trusted

4 ShNnchj:>

Mouse inputs may
be sent to LAVA T HAVA

Overlay
Driver

LAVA

[

EREREFREFRRPRRRNE
rtEPPRRERRRIARRRE

Input
Driver

JOAEREFEEAEREREEE D
-4--‘? il B A -

EEE Qe
nFE

LAVA

seL4 component architecture, functional schematic

5 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

« Program verification h@Pter4

: e : Chapter 5
e Compiler verification P

. Case study: CDDC Chapter®

« Extension to program verification Chapter?7

o) Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

« Program verification h@Pter4

: e : Chapter 5
e Compiler verification P

. Case study: CDDC Chapter®

« Extension to program verification Chapter?7

o) Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

« Program verification <"2Pt"4

: e : Chapter 5
e Compiler verification P

. Case study: CDDC Chapter®

« Extension to program verification Chapter?7

o) Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

« Program verification <"2Pt"4

» Extension to program verification Chapter?7

o) Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

« Program verification h@Pter4

« Extension to program verification Chapter?7

o) Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

« Program verification h@Pter4

« Extension to program verification Chapter?7 <]|:,

o) Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

« Extension to program verification Chapter?7

o) Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

S

rwa

7 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads

(Jones 1983 via Mantel et al. 2011) :
A
“When I’'m not sitting at this desk, | guarantee
not to touch it.”

LR

7 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads

(Jones 1983 via Mantel et al. 2011) :
A
&
“When I’'m not sitting at this desk, | guarantee g//
not to touch it.”

“When I'm sitting at this desk, | assume that
nobody else will pull the lever.”

7 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads

(Jones 1983 via Mantel et al. 2011) :
A
&
e Local compliance ;';
“I respect my guarantees” _

“When I'm sitting at this desk, | assume that
nobody else will pull the lever.”

7 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

e Local compliance
“I respect my guarantees”

e Global compatibility
“Guarantees meet assumptions”

“When I'm sitting at this desk, | assume that
nobody else will pull the lever.”

7 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

e Local compliance
“I respect my guarantees”

e Global compatibility
“Guarantees meet assumptions”

e Local security

“Iwin ‘floor is lava with levers’
using assumptions”

‘/ T'0P SECRET /

7 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

V'

e Local compliance
“I respect my guarantees”

e Global compatibility
“Guarantees meet assumptions”

» Local security _

“I win ‘floor is lava with levers’
using assumptions”

‘/ T'0P SECRET /

(Type systems for a generic While language)

7 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: Prior work
(Murray, Sison, Pierzchalski, Rizkallah 2016)

Assume-guarantee contracts between threads
(Jones 1983 via Mantel et al. 2011)

e Local compliance
“I respect my guarantees”

———

Global compatibility

“Guarantees meet assumptions”

» Local security _

“I win ‘floor is lava with levers’
using assumptions”

(Type systems for a generic While language)

7 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: My work
(Language designer’s perspective)

e Local compliance
“| respect my guarantees”

e Global compatibility
“Guarantees meet assumptions”

e Local security

“I win ‘floor is lava with levers’
using assumptions”

|/ T'0P SECRET /

8 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: My work
(Language designer’s perspective)

e Local compliance
“| respect my guarantees”

e Global compatibility
“Guarantees meet assumptions”

e Local security

“I win ‘floor is lava with levers’
using assumptions”

|/ T'0P SECRET /

(For a generic While language with locks)

8 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: My work

(Language designer’s perspective)

SO ILY

LOCKOUT
“POINT

e A way to assign locks to spaces

e Local compliance
“| respect my guarantees”

e Global compatibility
“Guarantees meet assumptions”

e Local security

“Iwin ‘floor is lava with levers’
using assumptions”

|/ T'0P SECRET /

(For a generic While language with locks)

8 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: My work

(Language designer’s perspective)

SO ILY

LOCKOUT
“POINT

e A way to assign locks to spaces

e Local compliance
“| respect my guarantees”

e Global compatibility
“Guarantees meet assumptions”

e Local security

“Iwin ‘floor is lava with levers’
using assumptions”

‘/ T'0P SECRET /

(For a generic While language with locks)

8 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: My work

(Language designer’s perspective)

2777/
/

LOCKOUT
“POINT

e A way to assign locks to spaces

e Local compliance
“I respect the locks”

e Global compatibility
“Guarantees meet assumptions”

e Local security

“Iwin ‘floor is lava with levers’
using assumptions”

‘/ T'0P SECRET /

(For a generic While language with locks)

8 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: My work
(Language designer’s perspective)

e A way to assign locks to spaces

e Local compliance
“I respect the locks”

e Global compatibility
“Respecting locks is enough for

guarantees to meet assumptions”

e Local security

. . : . mswnfr/
“I win ‘floor is lava with levers’ using locks”

(For a generic While language with locks)

8 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Program verification: My work

e A way to assign locks to spaces

(For a generic While language with locks)

8

(Language designer’s perspective)

VIIII

4 LockouT
“POINT

Local compliance
“I respect the locks”

Local security
“I win ‘floor is lava with levers’ using locks”

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

T'0P SECRET /

Program verification: My work

« Assign locks to spaces ,LOCKOUT /

(Programmer’s perspective)

’ IIII/

POINT
’IIOIII‘ o Slebaleameatibiivy

* For each thread, prove: suaranteestomeet assurmptions”

9

e Local compliance
“I respect the locks”

e Local security
“I win ‘floor is lava with levers’ using locks”

(Type systems provide proof method)

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

v
n.o..-‘_

o P ficot Chapter 4

_ . _ Chapter 5
e Compiler verification

e Case study: CDDC Chapter 6

: . . Chapter 7
e Extension to program verification P

10 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

o Program verification ChePter4

e Case study: CDDC Chapter 6

» Extension to program verification

10 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Verified secure compilation

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets...

TP SECRET

11 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Verified secure compilation

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets...

No leaks!

11 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Verified secure compilation

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets...

How do you know your compiler won’t introduce leaks?

No leaks!

11 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Verified secure compilation

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets...

How do you know your compiler won’t introduce leaks?

No leaks!

What if your compiler could be proved to preserve it?

11 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Verified secure compilation

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets...

What if your compiler could be proved to preserve it?

12 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Verified secure compilation

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets...

What if your compiler could be proved to preserve it?

Here's how!

12 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Verified secure compilation

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets...

What if your compiler could be proved to preserve it?

Here's how!

Prove confidentiality-preserving refinement,

12 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Verified secure compilation

Say you’ve proved your mixed-sensitivity concurrent program
doesn’t leak secrets...

What if your compiler could be proved to preserve it?

Here's how!

Prove confidentiality-preserving refinement,

using a decomposition principle.

- W

12 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: Prior work
Using interactive theorem proving

e Jinja compiler (Java dialect) - verified in Isabelle/HOL

(Klein and Nipkow, 2006) /'(a|so)

+ JinjaThreads compiler (for multithreaded programs)
(Lochbihler, 2010)

Note: “Usual” refinement

« CompCert C compiler - verified in Coqg
(Leroy, 2009)

e CakeML compiler (Standard ML dialect) - verified in HOL4
(Kumar et al. 2014)

13 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: Prior work

IH

“Usual” refinement
C refines A

Abstract

Direction
of
compilation
Concrete

14 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: Prior work

IH

“Usual” refinement

C refines A

Relations

(between)

Program
configurations

For-all

14 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Vv

Abstract

Direction
of
compilation

Concrete

Compiler verification: Prior work

“Usual” refinement
A simulates C = C refines A
Relations
Exists
(between)
Program
configurations

For-all

14 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Vv

Abstract

Direction
of
compilation

Concrete

Compiler verification: Prior work

Confidentiality-preserving (Murray, Sison, Pierzchalski, Rizkallah 2016)
refinement
Abstract
Relations
Exists Direction
(between) of
compilation
Program
configurations
\'Z4
Concrete

For-all

14 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: Prior work

Confidentiality-preserving (Murray, Sison, Pierzchalski, Rizkallah 2016)
refinement

Abstract
Relations
Exists Direction
(between) O.f :
compilation
Program
configurations
YV
Concrete

For-all

14 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: Prior work

Confidentiality-preserving (Murray, Sison, Pierzchalski, Rizkallah 2016)
refinement

/' For-all

Abstract
Relations
Exists Direction
(between) O.f :
compilation
Program
configurations
YV
Concrete

For-all

14 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: Prior work
Confidentiality-preserving (Murray, Sison, Pierzchalski, Rizkallah 2016)

refinement
Abstract 9

/' For-all j

Relations
EXiStS Di recftion
0)
(between) Exists compilation
Program
configurations | | YV
Concrete

For-all

14 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: Prior work
Confidentiality-preserving (Murray, Sison, Pierzchalski, Rizkallah 2016)

refinement
Abstract 9

/' For-all j

Relations
EXiStS Di recftion
0
(between) Exists compilation
Program
configurations | | YV
Concrete 9

For-all

14 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: My work Compiler based on
Tedesco et al. 2016)

Abstract

Direction
of
compilation

EX1StS

Vv

Concrete

For-all

15 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: My work Compiler based on
Tedesco et al. 2016)

Generic
While language
with locks

Direction
of
compilation

EX1StS

Vv

Generic

RISC assembly

with locks
For-all

15 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: My work (Compiler based o

Using a decomposition principle Tedesco et al. 2016)

(Thanks to Toby Murray) :
Generic

While language

/'For-all _\ with locks
Direction
Exists of
compilation
EXIStS
| | YV
Generic
RISC assembly
with locks

For-all

15 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: My work (Compiler based o

Using a decomposition principle Tedesco et al. 2016)
(Thanks to Toby Murray)

Generic
, While language
e The “usual” refinement, , &4ag
. : with locks
with no changes to locking:
Direction
of
compilation
YV
Generic

RISC assembly
, with locks

15 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: My work (Compiler based o

Using a decomposition principle Tedesco et al. 2016)
(Thanks to Toby Murray)

Generic
, While language
e The “usual” refinement, , &4ag
: : with locks
with no changes to locking:
+ Using knowledge that
spaces are locked
Direction
of
compilation
YV

Generic

RISC assembly
, with locks

15 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Compiler verification: My work
Using a decomposition principle

15

(Thanks to Toby Murray)
The “usual” refinement,
with no changes to locking:

al

No new timing, stopping, or branching based
on secret information:

+ Using knowledge that
spaces are locked

g

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

(Compiler based on
Tedesco et al. 2016)

Generic
While language
with locks

Direction
of
compilation

Vv

Generic
RISC assembly
with locks

Compiler verification: My work
Using a decomposition principle

15

(Thanks to Toby Murray)
The “usual” refinement,
with no changes to locking:

O

No new timing, stopping, or branching based
on secret information:

+ Using knowledge that
spaces are locked

g

Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

(Compiler based on
Tedesco et al. 2016)

Generic
While language
with locks

Direction
of
compilation

Vv

Generic
RISC assembly

with locks

Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

o Program verification ChePter4

-y Chapter6
. Case study CDDC

» Extension to program verification

10 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study
Methodology in Isabelle/HOL

Program verification I SIS
| JLockouT” -
» Assign locks to spaces % POINT » Globalcompatibility
7

e For each thread, prove:

e Local compliance
“I respect the locks”

e Local security
“I win ‘floor is lava with levers’ using locks”

Compiler application

—=>

17 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

Trusted

EREREFREFRRPRRRNE
rtEPPRRERRRIARRRE

OO EEEPEEEEREEEEEEDR

Hi- Sas
nFE
'l'l

FrE
ERnRcE

LAVA

18 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

Trusted

4 Switch

Input
Driver

AmeEnErrrREERREm
!l.‘ll'll!llll!

DOAEREEPFEEAEREEEEER
Ll B LA il B A -

==
II;I'
FrE ==

T

Overlay
Driver

LAVA

-

seL4 component architecture, functional schematic

18 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

(On video monitor: “Warning, keyboard is LAVA!”)

4 Switch
WA, o oo].WF\)l
~ Lava' T LAVA

\ _J
T LAVA

Overlay
Driver

Trusted

LAVA

LAVA (
LAVA

seL4 component architecture, functional schematic

18 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

(On video monitor: “Keyboard inputs can be secret”)

Trusted

Keyboard inputs are
sent to Trusted

4 EhNnchj:>

Mouse inputs may
be sent to LAVA

Overlay
Driver

LAVA

[

Input
Driver

AmeEnErrrREERREm
!l.‘ll'll!llll!

DOAEREEPFEEAEREEEEER
Ll B LA il B A -

EEE Qe

" FF
II‘I'

FrE = -

LAVA

LAVA

seL4 component architecture, functional schematic

18 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

(On video monitor: “Keyboard inputs can be secret”)

Trusted

Keyboard inputs are
sent to Trusted

4 EhNnchj:>

Mouse inputs may
be sent to LAVA

Overlay
Driver

Program verification A LAVA
o Assign locks to spaces @

Input
Driver

AmeEnErrrREERREm
!l.‘ll'll!llll!

DOAEREEPFEEAEREEEEER
Ll B LA il B A -

EEE Qe
" FF
FrE = =

LAVA

LAVA

|

18 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

(On video monitor: “Keyboard inputs can be secret”)

Trusted

Keyboard inputs are
sent to Trusted

EREREFREFRRPRRRNE
rtEPPRRERRRIARRRE

Input
Driver

OO EEEPEEEEREEEEEEDR

Mouse inputs may
be sent to LAVA

LAVA (

EEE Qe

nFE
'l'l

FrE

"
IFIE

LAVA

Overlay
Driver

Program verification a LAVA
o Assign locks to spaces @

18 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

(On video monitor: “Keyboard inputs can be secret”)

Trusted

Keyboard inputs are
sent to Trusted

Input
Driver

AmeEnErrrREERREm
!&.llllll'.'llﬂ

OO EEEPEEEEREEEEEEDR

Mouse inputs may
be sent to LAVA

EEE Qe

nFE
'l'l

FrE

"
IFIE

LAVA

LAVA

Overlay
Driver

Program verification a LAVA

« Assign locks to spaces

T0P SECRET
~ =

« For each thread, prove:

e Local compliance e Local security
“I respect the locks” “I win ‘floor is lava with levers and locks

»m

18 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

(On video monitor: “Keyboard inputs can be secret”)

Trusted

Keyboard inputs are
sent to Trusted

4 EhNnchj:>

Mouse inputs may
be sent to LAVA T

rtEPPRRERRRIARRRE
AN EFFELAEREREEER

Input
Driver

AmeEnErrrREERREm
!l.ﬂl.ll!llllﬂ

EEE Qe
nFE

LAVA

LAVA

Overlay
Driver

Program verification a

« Assign locks to spaces @ |L§ ~ B

« For each thread, prove:]
e Local compliance e Local security
“I respect the locks” “I win ‘floor is lava with levers and locks’”

18 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

(On video monitor: “Keyboard inputs can be secret”)

Trusted

Keyboard inputs are
sent to Trusted

4 EhNnchj:>

Mouse inputs may
be sent to LAVA T

rtEPPRRERRRIARRRE
AN EFFELAEREREEER

Input
Driver

AmeEnErrrREERREm
!l.ﬂl.ll!llllﬂ

EEE Qe
nFE

LAVA

LAVA

pe

T0P SECRET
~ =

Overlay
Driver

Program verification a

 Assign locks to spaces @ L&

« For each thread, prove:]
e Local compliance e Local security
“I respect the locks” “I win ‘floor is lava with levers and locks’”

18 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

4 Switch

EREREFREFRRPRRRNE
rtEPPRRERRRIARRRE

Input
Driver

OO EEEPEEEEREEEEEEDR

EEE Qe

nFE [+]
'l'l

FFE
ERnRcE

Overlay
Driver

19 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

Compiler application

4 Switch

Input
Driver

EREREFREFRRPRRRNE
rtEPPRRERRRIARRRE

OO EEEPEEEEREEEEEEDR

Hi- Sas
nFE
'l'l

FrE
ERnRcE

Overlay
Driver

19 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study

Cross Domain Desktop Compositor HID switch

Compiler application

While language with locks

Overlay
Driver

19 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Case study
Cross Domain Desktop Compositor HID switch

Compiler application

While language with locks Generic RISC assembly with locks
R
, “g Switch
: - ’ ’?
i

Overla
Overlay Drivery
Driver

19 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Thesis (PhD, 2020)

That “Proving Confidentiality and Its

Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible. <j

]
. Program verification <"®Pte4 [0

] L Chapter 5
« Compiler verification 9 :DQ

. Case study: CDDC chapter®

R «C
R L - 0®
h

» Extension to program verification: Chapter?7

20 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Thesis (PhD, 2020)

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

. Program verification “"2Ptr4

Chapter 6

e Case study CDDC

‘.
-5 _90

Extension to program verification: W Chapter 7

Allow conditional branching on /

' TP SECRET

20 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Explicit flow

T'0P SECRET

21 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Explicit flow

T'0P SECRET

output := secret

21 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Explicit flow

Analysis (rightly)

output := secret) :
P rejects this!

21 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then
...do stuff, then...

T'0P SECRET

output =0

21 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then else
...do stuff, then... ...do other stuff, then...

T'0P SECRET

output :=0 output :=1

21 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Dangers of conditional branching on secrets

Implicit flow #1: “storage” leak

if (secret) then
...do stuff, then...

| | \
{
‘ !

: \

\

T
\
:
)

T'0P SECRET

output =0

21 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

else
...do other stuff, then...

output :=1

Also (rightly)
rejected

Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then else
...do stuff, then... ...do other stuff, then...

\N

o

T'0P SECRET

output =0 output :=0

21 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Dangers of conditional branching on secrets
Implicit flow #1: “storage” leak

if (secret) then else
...do stuff, then... ...do other stuff, then...

B‘ \

\

T'0P SECRET

output =0 output :=0

Is this safe?

21 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Conditional branching on secrets
Implicit flow #2: timing leak

if (secret) then ..do stuff, then...

T'0P SECRET

22 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Conditional branching on secrets
Implicit flow #2: timing leak

if (SECFEt) then ..do stuff, then...

oy

...do other stuff, then...

22 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

(3pm)

else

T'0P SECRET

Conditional branching on secrets
Implicit flow #2: timing leak

if (secret) then ..do stuff, then...

oy

...do other stuff, then...

S

else

T'0P SECRET

22 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Conditional branching on secrets

Disallowed in previous Chps 4-6 of thesis!

if (secret)

T'0P SECRET

22 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

Conditional branching on secrets
Allowed by Chp 7 extension to type system

if (secret) then ..dostuff wait.., then..

else
...do other stuff, then...

g

22 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

T'0P SECRET

Thesis (PhD, 2020)

https://doi.org/fimt

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

. Program verification <"?Pt"4

. Case study: CDDC Charter6

» Extension to program verification: Chapter?7
Allow conditional branching on secrets

23 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

https://doi.org/fjmt

Thesis (PhD, 2020) and publications

https://doi.org/fijmt WWW.robs-cse.com

That “Proving Confidentiality

for
Mixed-Sensitivity Concurrent Programs” is feasible.

 Program verification

e Case study: CDDC

24 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

https://doi.org/fjmt
https://www.robs-cse.com

Thesis (PhD, 2020) and publications

https://doi.org/fijmt WWW.robs-cse.com

That “Proving Confidentiality

for
Mixed-Sensitivity Concurrent Programs” is feasible.

Joint work with
Toby Murray

« Program verification (Uni Melbourne)

e Case study: CDDC
- Murray, Sison & Engelhardt (EuroS&P 2018)

24 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

https://doi.org/fjmt
https://www.robs-cse.com

Thesis (PhD, 2020) and publications

https://doi.org/fijmt www.robs-cse.com

That “Proving Confidentiality

for
Mixed-Sensitivity Concurrent Programs” is feasible.

Joint work with
Toby Murray

« Program verification (Uni Melbourne)

e Case study: CDDC

- Murray, Sison & Engelhardt (EuroS&P 2018)

- Part of Eureka Prize 2021 finalist entry
(w/ Beaumont et al. ACSAC 2016)

24 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

https://doi.org/fjmt
https://www.robs-cse.com

Thesis (PhD, 2020) and publications

https://doi.org/fijmt WWW.robs-cse.com

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

Joint work with
Toby Murray .
(Uni Melbourne) P

 Program verification

e Case study: CDDC

- Murray, Sison & Engelhardt (EuroS&P 2018)
- Part of Eureka Prize 2021 finalist entry]] -

decomposition principle

(w/ Beaumont et al. ACSAC 2016)

implies

« Compiler verification 9={>Q
. N

24 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

https://doi.org/fjmt
https://www.robs-cse.com

Thesis (PhD, 2020) and publications

https://doi.org/fijmt WWW.robs-cse.com

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

Joint work with
Toby Murray
(Uni Melbourne)

 Program verification

J 1

e Case study: CDDC

- Murray, Sison & Engelhardt (EuroS&P 2018)
- Part of Eureka Prize 2021 finalist entry]] -

decomposition principle

(w/ Beaumont et al. ACSAC 2016)

« Compiler verification 9={>9
- Sison & Murray (ITP 2019) -

implies

—

24 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

https://doi.org/fjmt
https://www.robs-cse.com

Thesis (PhD, 2020) and publications

https://doi.org/fijmt www.robs-cse.com

That “Proving Confidentiality and Its
Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

Joint work with
Toby Murray

« Program verification (Uni Melbourne)

» Case study: CDDC

- Murray, Sison & Engelhardt (EuroS&P 2018)
- Part of Eureka Prize 2021 finalist entry]] W

decomposition principle

(w/ Beaumont et al. ACSAC 2016)

« Compiler verification 9={>9

- Sison & Murray (ITP 2019)
- J. Funct. Programming vol. 31, 2021

implies

—

24 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

https://doi.org/fjmt
https://www.robs-cse.com

Thesis (PhD, 2020) and publications

https://doi.org/fijmt www.robs-cse.com

Thank you!
That “Proving Confidentiality and Its Q&A

Preservation Under Compilation for
Mixed-Sensitivity Concurrent Programs” is feasible.

Joint work with
Toby Murray

« Program verification (Uni Melbourne)

i/ N
o

» Case study: CDDC

- Murray, Sison & Engelhardt (EuroS&P 2018)
- Part of Eureka Prize 2021 finalist entry]] W

decomposition principle

(w/ Beaumont et al. ACSAC 2016)

« Compiler verification 9={>9

- Sison & Murray (ITP 2019)
- J. Funct. Programming vol. 31, 2021

implies

—

24 Proving confidentiality and its preservation under compilation for mixed-sensitivity concurrent programs | Rob Sison

https://doi.org/fjmt
https://www.robs-cse.com

