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Calypso is a virtual memory subsystem for L4, featuring fast software page table lookup, ar-
bitrar y page size mixtures, shared page table subtrees, and domain-based MMU protection.

While Calypso currently only runs in L4/MIPS, it should be reasonably portable to other
machines and L4 implementations. Even L4 implementations on machines with hardware
page table formats could benefit from a port of Calypso if only to provide an efficient and
flexible mapping database implementation.

This paper outlines the API extensions made by Calypso to support newer hardware fea-
tures, and documents some of its internals and implementation techniques.

Motivation
The main advantage of micro-ker nel based systems is that system components can be protected
from each other with hardware memor y protection.

How ever, if the cost of address spaces is too high, system designers will be forced either to accept a
per for mance penalty over monolithic systems, or to avoid memory protection altogether. Thus
Mach and Windows NT have migrated many components back in to the kernel, losing all the flexibil-
ity and reliability advantages of a component-based design. Ev en Linux has demonstrated
per for mance improv ements in benchmarks by migrating services such as NFS and even Apache
back into the kernel, lending memory protection a reputation as being expensive and unnecessary.

L4 has addressed the problem of poor IPC perfor mance by providing highly optimized IPC.
How ever, the cost switching address spaces remains high: each TLB miss costs over 30 cycles on
moder n microprocessors, and ever deeper pipelining increases this penalty. Each cross-address
space IPC incurs many of these misses. Fur ther more, ser vices decomposed into multiple address
spaces touch many more pages, and require corresponsingly higher TLB coverage, than the equiva-
lent services in a monolithic kernel.

Calypso attempts to address this problem by optimizing page table lookup on machines with soft-
ware TLB handling, allowing mixtures of large and small page sizes to increase TLB coverage and
reduce misses, and taking advantage of domain-tagged TLBs to share TLB entries between address
spaces.

Domains

The ARM domain, HP Precision Architecture region ID , and IA-64 protection key are generalized tags
which allow TLB entries to be shared between address spaces, possibly with different protection at-
tr ibutes.

Domains on the StrongARM can be used in fast address space switching (Wiggins 1999). How ever,
this is not the only (or even the primar y) use of domains. Domains are intended for shared librar ies.
Shar ing librar y TLB entries between address spaces has the potential to reduce TLB misses on cross-
address space IPC.

Using domains for shared librar ies can also be combined with the use of domains for small address
space switching. Use of shared librar ies can also help small address spaces from exceeding 32M on
the StrongARM.
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Domains are also ideal for single address space systems (SASOS’s) such as Mungi. In order to
achieve the simplifications and perfor mance improv ements possible in a SASOS, kernel support for
domains is essential. Other wise, Mungi on L4 will be forced to emulate a SASOS expensively using
many separate address spaces.

Page Sizes

Many microprocessor TLBs support multiple page sizes. Making use of this capability can reduce
the frequency of both compulsory and capacity TLB misses, which can be a significant overhead if
address space switches are frequent or if the hardware TLB has low capacity.

machine ITLB DTLB page sizes

Intel StrongARM 32 32 4k, 64k, 1M

Intel Pentium III 32 64 4k, 4M

4k, 8k, 16k, 64k, 256k, 1M,

4M, 16M, 64M, 256M, 4G
Intel Itanium 64 96

Alpha 21264 128 128 8k, 64, 512k, 4M

UltraSPARC 64 8k, 64k, 512k, 4M

MIPS R4000 96 4k, 16k, 64k, 256k, 1M, 4M, 16M

Pow erPC 601 256 4k

Table 1: TLB and page sizes of some CPUs

Most operating systems only use larger page sizes for kernel virtual memory, or special-purpose
mappings such as frame buffers. Calypso allows any mixture of page sizes to be used, provided the
user specifies large fpage sizes. This gives the user freedom to mix page sizes in any desired policy.

Portablility

Another potential advantage of micro-ker nel based systems is portability. As far as possible, Calypso
expor ts a unifor m inter face to the user regardless of the capabilities of the underlying hardware. Use
of super-pages is completely transparent; users can map or unmap fpages of any size and in any
combination. (But for perfor mance reasons, a  minimum page size is configurable at compile-time.)
Use of TLB domain tags is enabled by an API which can also be implemented on hardware with no
domains, and in fact can be implemented efficiently by shar ing branches of a multi-level page table.

Concurrency

Another challenge is concurrency. Protecting the VM subsystem with a single global lock (as in Lin-
ux) would be a significant barrier to multiprocessor scalability. This coarse-grained locking would
also block high-prior ity threads from accessing the VM subsystem while a low-pr ior ity thread is in
the middle of updating it. The latency of many L4 VM system calls is unbounded.

Calypso addresses this by protecting page table entries and memory manager data structures with
individual spin-locks, and by preventing a thread from being pre-empted while holding on to a lock.
The ‘timeslice donation’ solution to the prior ity inversion problem is unnecessary, because the
length of time to wait for any lock should be bounded above by a limit in the microsecond range.

Further more, with locks on each PTE and separate arenas for each address space, no locks should be
encountered unless two threads are updating mappings in the same address space at a time. High-
pr ior ity threads in a separate address space or threads in address spaces on different CPUs should
suffer no penalty from fine-grained locking, as the locks should never be contested.
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1. An L4 API for domains

Why the current API is inadequate

In L4, a page cannot be mapped into multiple address spaces simultaneously. Therefore, L4 cannot
tag a shared librar y page with a domain until it is mapped, one by one, into all members of that do-
main. If the pager must also wait for a page fault to be received from all such members, the map
operations do not even occur together in time, because map is bound to IPC.

Also, L4 has to keep track of the set of address spaces sharing each page to assign domains to each
such set. This information is present in the mapping database, but the amount of bookkeeping re-
quired to assign domains automatically from such sets is considerable. Transparent assignment of
domains by the kernel is even less attractive when it is realized that the ARM has only 16 of
them — the decision of how to assign domains should be up to the user.

Exactly the same problem occurs on architectures which do not have domains but do wish to take
advantage of sharing by shar ing page tables. Shar ing page tables mostly saves space but can also
save time when paging in and out shared librar y pages (a situation in which Linux perfor ms a
quadratic brute-force search of all page tables (Dillon 2000)).
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Figure 1: Shar ing page tables on the Intel 80386 (Intel 1999)

These problems would be neatly solved if there was a primitive which could map a page into all
members of a domain at once rather than into one address space at a time.

Link

It would seem that to take advantage of domains, primitives would need to be added to L4 for allo-
cating domains, adding and removing domain membership, and mapping and unmapping pages in
a domain. How ever, this would be a rather large change to the L4 API, and would require significant
code changes to L4 applications. Fur ther more, since domains are not available on all machines,
por table L4 applications would have to refrain from using such primitives if not present, and include
code for both APIs. Finally, unlike map which is bound to IPC and protected by the usual L4 confine-
ment mechanisms, new primitives would require a new privilege model to ensure that domains
could not be abused by untr ustwor thy applications.

Therefore, instead of inventing new primitives, Calypso extends the existing model with (yet anoth-
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er) type of fpage, a link fpage. Link is like map except that instead of just copying a snapshot of the
fpage, future updates to the mappings in the pager’s address space are also reflected in the destina-
tion address space. This relationship may be cancelled with an unmap.

L4 primitive Unix analogy

unmap rm

map cp

grant mv

link ln -s

Table 2: Unix analogy explaining link

The first time an fpage is linked, it is allocated a domain. Calypso even maintains domain identifiers
for linkages on hardware with no domain support, to remember shared page table references. A do-
main table internally keeps track of address spaces which are members of each domain and its
vir tual address range.

Link may specify different protection bits in different address spaces. For machines without do-
mains, this is implemented by stor ing a protection mask in a linked internal nodes. If the fpage is
completely unmapped in all address spaces, the domain is deallocated.

Link also allows pages to be mapped asynchronously (that is, without IPC), after the fpage is linked.
Thereafter, pages mapped into the pager’s address space also appear in the destination address
space without further IPC. This provides the benefit of asynchronous map without bypassing L4’s
IPC confinement.

Limitations

Calypso only links pages with identical virtual addresses in all address spaces. This restr iction is a
requirement for hardware domains, and simplifies the data structures for software page table format
substantially. The check that enforces this restr iction also prevents normal mappings that would
cause inconsistency in virtually-indexed caches such as those on the MIPS R4000 and UltraSPARC.

A linked fpage may only be modified by the pager; attempts by other threads to accept mappings in a
linked fpage fail. Similarly linked pages are only mappable to other address spaces by the pager.
This restr iction simplifies the mapping database substantially.

Domains are allocated first-come-first-served, and so may be abused by untr ustwor thy applications.
While this problem also occurs with traditional ASID recycling, the small number (16) of domains on
the ARM gives the problem greater urgency.

An alternative approach would be to generalize address space identifiers to include domains, and al-
low a thread to be a member of multiple domains. How ever, the link primitive descr ibed here fits in
well with the existing IPC and address space model, and so requires ver y little change to application
code and to the rest of the kernel.

2. Globally tagged pages
Not all machines support domains in hardware. Pentium and Pow erPC do not even support ASIDs,
and require the TLB to be invalidated on ever y address space switch.

How ever, almost all machines support a global bit in the TLB entry indicating that it should not be
invalidated on context switch (Pentium), or that the entry is always valid regardless of the current
ASID (Alpha, MIPS, SPARC). Machines with hardware domains can easily emulate a global bit by re-
ser ving domain 0 as a global domain in which ever y address space is a member.

In most systems, the global bit is only used to tag kernel pages. How ever, this feature could also be
usefully applied to widely shared pages such as Unix libc or Mungi active protection domain 0.
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In order to analyse the perfor mance impact of using globally tagged pages, I propose to add an L4 in-
ter face to allow applications to use this feature. Address space 0 is reser ved as the global address
space. Pages in address space 0 are visible in all address spaces. A ker nel thread in address space 0
accepts mappings in a window of its address space. The whole of address space 0 is not available for
global mappings, because it is implicitly linked in all page tables, and because the potential for over-
lap between private and global mappings is too risky.

Permission to create global mappings is protected by the usual L4 IPC confinement mechanisms,
and is initially available only to the root servers.

Again, a cleaner interface to this feature could be provided if L4 supported domains directly.

3. Kernel Memory Protocol
At boot time, σ0 reser ves a fraction of memory for the kernel to allocate TCBs, page tables, mapping
database nodes, and other data structures. The rest of memory is available to initial servers on a
first-come-first-ser ved basis.

This fixed partition wastes memory if the reser ved fraction is too high, or causes system calls to re-
tur n errors (or worse) if the fraction is too low.

Some L4 implementations define a σ1 task and a protocol allowing initial servers to provide the ker-
nel with memory when it starts to run short. This solves the problem of fixed partition, but still
allows malicious applications to consume unlimited kernel memory by creating many threads and
mappings.

Calypso uses a similar protocol which both solves both problems. A separate free list is maintained
for each address space. Whenever the kernel needs to allocate memory and this free list is exhaust-
ed, it suspends the thread and generates a page fault IPC to its pager. This IPC is exactly like the
nor mal page fault IPC, except that the EPC (or faulting instruction pointer) is a magic kernel address
not possible for a normal page fault. The pager then grants a page or pages which are added by the
ker nel to the thread’s free list, and it is restar ted. The pager must be the sole owner of any granted
pages. (Calypso already enforces this restr iction on grant, to avoid problems with directed unmap.)

Initial servers are provided with kernel memory by σ0, which reser ves a small amount of memory for
this purpose.

No protocol is currently defined for getting pages back out of the kernel. It is not yet clear how to do
this without the kernel taking over some of the function of σ0, or putting σ0 (back) into the kernel.

4. Internals

Page Table

Most 32-bit page tables do not perfor m well in 64-bit address spaces. For example, the common
multi-level page table for 64-bit addresses would either require megabyte tables, or over five levels.

The guarded page table (Liedtke 1994) is a generalization of multi-level tables which allow redun-
dant levels to be bypassed in the common case where the enormous 264-byte address space is
populated only in a few sparse regions. How ever, the data structure is somewhat complex to search
and maintain, and has only been implemented with a fixed level size that fails to adapt to sparse and
dense regions of address space. In practice, the guarded page table is not fast enough to be used di-
rectly for TLB refill, and is usually accelerated by a software TLB.

The level- and path-compressed trie (Andersson & Nilsson 1993) is similar to the guarded page table,
but is simpler and more general. Levels can be any power-of-two size, controlled by shift amounts in
the internal node. No guards are explicitly stored in the nodes, and hit detection is deferred until the
leaves.
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Figure 2: a level- and path-compressed trie

The size of each level can be any power of two, and is a tradeoff. Smaller levels save memor y but
larger levels provide faster lookup. In the extreme case of σ0 and the initial servers, with address
spaces one-to-one with physical memory, a single level page table can be allocated, resulting in a
simple array index for page table lookup. This approaches the perfor mance of translation using a
software TLB.

For more complex address spaces, one or more levels of internal nodes are inser ted. The lookup al-
gor ithm only tests necessary bits of the address. All other bits are skipped without checking, and are
only ver ified at the PTE where a single comparison instruction suffices to check for page fault. This
is similar to checking for a hit after looking up a bucket in a hash table, except that collisions do not
occur. In fact, the trie can be considered as a form of collision-free hashing.

m f prot size skip

ptr

Figure 3: inter nal branching node

The allocation strategy is left to a memory manager, which attempts to allocate levels as large as pos-
sible given the available memory. If large levels remain unused for a long time, the memory
manager reser ves the right to reduce their size, reclaiming memory for other purposes. When sepa-
rate arenas for each address space are used, this exports the policy of resolving the time–space
tradeoff to the user. A system with plentiful memory can grant many pages for each address space’s
ker nel memor y. One with a tighter memory budget can allocate fewer pages to some or all address
spaces, reducing perfor mance of certain tasks to save memor y.

The trie data structure also incorporates mixed page sizes naturally, unlike hash tables or software
TLBs which require either multiple hash tables or duplicated entries.

Calypso prefers only a small number of page sizes to be present in a trie at a time. Too many differ-
ent sizes would cause the trie levels to be fragmented and be expensive in lookup and memory
management time. Therefore, page sizes will only be used if they can be accommodated in trie lev-
els of a reasonable size (as allocated by the memory manager). In practice, this limits most address
spaces to two or three different page sizes. (If this simple solution prov es insufficient, the next possi-
bility would be to replicate PTEs across levels.)

Large pages are especially beneficial for σ0 and the initial servers, whose address spaces are one-to-
one with physical memory. These address spaces often require only one PTE (and therefore only one
TLB entry), vastly reducing address space switching costs.
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Mapping Database

The VM data structures of most L4 implementations consist of a page table (either hardware-defined
or GPT) per address space, a global frame table, and a mapping database with one entry for each
PTE. The mapping database logs ever y map operation so that it can be undone with the unmap
pr imitive.

The mapping database nodes are often implemented with pointers to lists of children and sibling
nodes, and a back-pointer to the parent. Because one of these is allocated for each PTE, the map-
ping database is usually the single biggest consumer of kernel memory. Because the frame table and
mapping database are shared data structures, they must also be protected by locks in a pre-empt-
able or multiprocessor kernel. Finally, the mapping database implementation becomes more
complicated if the nodes can represent different page sizes. Recall that the Itanium supports a page
size of 4G. Incorporating support for this feature is clearly desirable but requires careful implemen-
tation if the mapping database is not to consume large blocks of memory or require expensive linear
searches.

page

table

frame

table

mapping

database

Figure 3: traditional L4 data structures

The first simplification to the mapping database is to represent the complex linked structure as a
singly-linked list, by topologically sorting the mapping graph. The depth in the mapping graph is
recorded as a small integer in each node: the generation number.
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Figure 4: example mapping graph and topological sort order

7



In the software page table format used in Calypso, much of the information in the PTE and mapping
database nodes was duplicated. Calypso therefore took the next simplifying step and merges the
PTE and mapping database node into a single structure. This vastly accelerates unmapping, which
is a simple linked list traversal. Merging the information in this way also eliminates the need for a
frame table.

m f gen task size skip

ptr

m 0 phys c w v g

virt

Figure 5: struct pte: combined page table entry and mapping database node

Each quadword is tagged with a magic bit, distinguishing internal and external nodes. This is re-
quired for the fast lookup loop, and is also assumed by the memory manager. The memory manager
also requires an additional ‘fencepost’ bit to distinguish the head of a kernel memory block. Recall
that the user can grant fpages to the kernel anywhere in the physical address space.

Updates to each PTE (map, unmap, per mission changes, etc.) are protected by locking loads and
stores. On RISC machines which support locking via load locked and store conditional instr uctions,
such an update can fail due to contention. In this case, the update simply backs out and tries again.
Lengthy spinning in the kernel (possibly with high prior ity) is not expected, because updates are
shor t and pre-emptable.

The simple linked list representation gets complicated when page sizes are mixed. One PTE, which
may represent a page of many megabytes in size, can be mapped piecewise thousands of times. If
these child mappings were inser ted into the list in random order, updates would require expensive
linear searches. The desire to suppor t sets of page sizes as large as the Itanium (with eleven sizes up
to 4G) also ruled out the use of a simple multi-level array to cope with this problem. Instead a level
and path compressed trie is used, almost identical to the page table data structure. The same rou-
tines which manipulate page tables are also used, with some modification, in the mapping database.

The internal page table node and mapping database internal node use a similar structure.

m f guard size skip

ptr

Figure 6: struct dir: inter nal page table and mapping database node

In the common case of mapping pages all of the same size, ptr from the PTE points directly to the
next PTE, as before. (This is a singleton trie.) Other wise, it points to an array of struct dirs,
which is allocated by the same memory manager as the page table. A guard must be included be-
cause the hit comparison cannot be deferred until the leaves in the mapping database — the virtual
address of a PTE gives no information about the virtual address it was mapped from in the pager.

This allows even ver y large pages to be mapped sparsely or in any page size combination without us-
ing too much memory.

Updates to each struct dir, whether in the page table or mapping database, are not protected by
locks. Rather, if the array referenced by ptr is resized, or a new level inserted, it is first allocated and
initialized, and the entire struct dir is written atomically with the new information. Provided
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memor y barr iers are added between these operations for those machines that require them, this
should keep trees consistent at all times, without the need for the fast page table lookup path to in-
spect locks.

Memory Manager

Calypso’s memor y manager is tailored to the demands of the page table. The buddy system is used
to manage power-of-two sized regions and ensure that the largest possible free blocks are available.

Memor y is allocated in two distinct phases. First, a block is allocated with buddy_borrow. The VM
subsystem severely overestimates the amount of memory it needs to borrow, expecting the memory
manager to retur n a smaller size. The memory manager applies a worst-fit algorithm, retur ning the
largest block it has available, but typically much less than what was asked for.

At any time, the memory manager may call back some or all of the borrow ed memor y, unless the VM
subsystem has called buddy_lock to declare that the memory is in use. buddy_unlock reverses
this, making the memory available to the memory manager again. buddy_lock and buddy_un-

lock immediately split and join adjacent buddy blocks, per for ming at most lg(N ) iterations, where
N is the size of the arena in 16-byte units. How ever, when amortized over all units in the arena, the
average number of iterations is lg(lg(n)), where n is the average page table size. The arena must be
locked for the duration of these routines, preventing any other update of the same address space.

The buddy blocks themselves are simple doubly linked lists.

m f size

back

m

forw

Figure 7: free block header

The page tables aggressively allocate as much memory as possible using worst-fit to build levels as
large as possible when constructing new page table branches. Other memory (for TCBs etc.) is allo-
cated using buddy_alloc_best, which allocates power-of-two sized memory regions from the
same free list using a best-fit policy.

5. Status
Calypso is currently tailored for best perfor mance in L4/MIPS. Many data structures are optimized
for the MIPS PTE format and even MIPS instructions. Also, it relies on several L4/MIPS data struc-
tures, especially the TCB. Work is proceeding to remove this dependence, both for portability and
because when debugging many L4 data structures are a crowded and dangerous place for Calypso to
store data.

All MIPS-specific parameters and routines are in separate source files, so that Calypso should be eas-
ily retargetable to other similar machines. The data structures are even por table to 32-bit machines,
where for debugging purposes they can be simulated on an Intel PC.

Work is still required to complete the locking support, and to test all features (especially link) ex-
haustively. Work is also progressing on measurement of the perfor mance impact of each of the new
features described here.
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