
© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

@
Gelato

www.gelato.unsw.edu.au

Performance and

Scalability on Itanium

peterc@gelato.unsw.edu.au c© Gelato@UNSW 1

Neil Brown, the maintainer of the Linux NFS client, uses SpecSFS’97
to test NFS performance, and so do most people.
But 1997 was a long time ago... Does the SpecSFS ’97 accurately
reflect the way that NFS is used today?

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Improving NFS performance
Work In Progress

Shehjar Tikoo and Peter Chubb

Gelato Project

National ICT Australia and The University of New South Wales

April 2006

peterc@gelato.unsw.edu.au c© Gelato@UNSW 2

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

NFS too slow?

• Many reports of slowness

• No real data

peterc@gelato.unsw.edu.au c© Gelato@UNSW 3

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

This talk

• Work in progress Incomplete

Attempt to:

– validate current benchmarks

– Find and fix bottlenecks

– and maybe ... verify reports of slowness

peterc@gelato.unsw.edu.au c© Gelato@UNSW 4

So what do you do if you have no data? Try to measure.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Measurements

• Standard filesystem benchmarks

– Reflect single-client load (e.g., Bonnie, iozone)

– Multiple client machines perturb file access patterns

– Nice for quick’n’dirty evaluation

– Nice for whole-system (client plus server) evaluation

peterc@gelato.unsw.edu.au c© Gelato@UNSW 5

You can use standard filesystem benchmarks such as iozone, but these
measure too much: I want to be able to split client and server issues as
far as possible. For initial ‘is there a problem’ benchmarks they can be
very valuable, however.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Measurements

• Network filesystem benchmarks

– Old (NFSstone)

– Old (SpecSFS ’97) and proprietary

peterc@gelato.unsw.edu.au c© Gelato@UNSW 6

The Network file system benchmarks are either old (NFSstone) or both
old and proprietary (SFS). That being so, SFS ’97 version 3.0 (SFS3.0)
is still the most commonly used NFS benchmark.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Query:

Does SpecSFS ’97

represent

today’s workloads?

peterc@gelato.unsw.edu.au c© Gelato@UNSW 7

Given that SpecSFS ’97 version 3.0 was based on workloads measured
in ’96–’97 on NFS version 2, and extrapolated to version 3, is it still the
most useful tool?

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

SpecSFS ’97

• Generates load according to preset pattern

• Parameterisable

• SPECified benchmark set of reportable parameters

peterc@gelato.unsw.edu.au c© Gelato@UNSW 8

SPEC always gives very tight specifications of a ‘reportable’ benchmark
run. The SFS code itself can be tailored to reproduce many different
loads; but it comes pre-set-up for the reportable load.
The reportable load was derived by taking measurements on a large
number (> 1000) of different systems, then doing statistical analysis to
find a common load. The resulting operation mix was then extraploated
to NFS version 3, and verified on a few servers at Sun Microsystems.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Changes since ’97

Attribute 1997 2006

Network 10BMb/s 1Gb/s

Client Memory 16MB 1 GB

Server Memory 1GB 4–16G

NFS version 2 3

Average file size ?? ??

peterc@gelato.unsw.edu.au c© Gelato@UNSW 9

Lots of things have changed in ten years. In 1997, 10-base-T was the
most common interconnect — 100MB/s gear was available, but expen-
sive — in 2006, 100MB/s is common, and new equipment comes stan-
dard with 1000Mb. In 1997, I upgraded one of my servers from 1M of
memory to 4M, and thought I was getting a good deal. In 2006, a server
with less than a gigabyte of memory isn’t worthy of the name, and even
desktops tend to have more than 512M. Disk sizes have also increased
massively.
Have file sizes increased as well? See below...

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

What we collect

• timestamp, anonymised request and reply parameters,

• For 24 hours (around 8G data)

What we do NOT collect

• real user names, ids

• file names

• IP addresses

These are replaced with

cookies

peterc@gelato.unsw.edu.au c© Gelato@UNSW 10

The nfsdump tool from Daniel Ellard (Harvard) is a modification of tcp-
dump; it collects NFS traffic by monitoring a network interface. It has to
be run either on the server, or on another machine connected via port
replicators (so it can see the same traffic that the server sees).
The raw data is very large — a 24 hour run can be hundreds of Giga-
bytes. After it has been anonymised, it shrinks somewhat, so the largest
trace (for the OSC ‘b’ server) is only 31Gbytes.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Our Data

24 hour traces from

• UNSW CSE

• Ohio Supercomputer Center

peterc@gelato.unsw.edu.au c© Gelato@UNSW 11

Courtesy of Neil Brown (UNSW) and Doug Johnson (OSC), 24-hours’
worth of traces were collected from eight servers — seven at OSC and
one at UNSW.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

The CSE trace

• From UNSW School of Computer Science and Engineering

• Large number (> 300) of desktop clients, most with < 1G

memory

• ‘Academic’ workload (whatever that means)

• Out of session → no undergraduates

• Server and most clients running Linux 2.6.x

• Home directories, and /usr/local

peterc@gelato.unsw.edu.au c© Gelato@UNSW 12

The UNSW CSE trace covers twenty-four hours of low activity. It was
taken when the University was not in session, so there were few or
no undergraduates about. Most of the traffic, therefore, is for routine
system administration, and postgraduate and staff work. The set up
is that almost all the teaching laboratory machines and the worksta-
tions of many of the academics and postgrads, mount home directories
and /usr/local from the server being traced. /usr/local contains
locally modified programs and specially licensed programs. It is read-
only. Home directories are of course mounted read-write.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

OSC traces

• Around 600 clients, each with around 4G memory

• Some clients grouped into clusters (e.g, ˜255-node dual I2

or xeon)

• Gigabit ethernet interconnect

• Server running Linux 2.6.7

• Home directories; ‘HPC’ workload.

peterc@gelato.unsw.edu.au c© Gelato@UNSW 13

The Ohio Supercomputer Center runs seven NFS servers, each running
with 4G memory, Linux 2.6.7. The clients are as follows:

Number Type Amount memory
255 dual cpu Itanium 4GB
258 dual cpu xeon 4GB memory
1 dual cpu xeon 2GB
5 dual cpu Itaniums 12GB
3 16 cpu altix 32GB
1 32 cpu altix 64GB
72 dual cpu Opteron 4GB
10 dual cpu Opteron 8GB
2 dual cpu Opteron 16GB

During the run, some users were running large HPC jobs on the clus-
ters; others were doing editing/compiling etc.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

 0

 5

 10

 15

 20

 25

 30

 35

1M512k256k128k64k32k16k8k4k2k1k

P
ro

po
rt

io
n

(%
)

File size

File size distribution: SFS-3.0

33

21

13

10

8

5
4

3
2

0
1

0

peterc@gelato.unsw.edu.au c© Gelato@UNSW 14

The specified file sizes are from a long-tailed distribution. The largest
file used is a Megabyte.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

 0

 10

 20

 30

 40

 50

 60

51
2M

25
6M

12
8M64

M

32
M

16
M8M4M2M1M

51
2k

25
6k

12
8k64

k

32
k

16
k8k4k2k1k

P
ro

po
rt

io
n

(%
)

File size

File size distribution: CSE

176954

19089

54145

9704799157084281342519981427571 371 271 171 86 54 14 4 0 1 0

peterc@gelato.unsw.edu.au c© Gelato@UNSW 15

Note the long tail: there are significant numbers of files larger than 2G.
Moreover, there are a very large number of 0-length and 1-length files,
presumably used as timestamps. (These inflate the 0–1k bar). The
y-axis is percentage; the numbers above each column are the actual
counts.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

 0

 5

 10

 15

 20

 25

 30

4G2G1G

51
2M

25
6M

12
8M

k

64
M

32
M

16
M8M4M2M1M

51
2k

25
6k

12
8k64

k

32
k

16
k8k4k2k1k

P
ro

po
rt

io
n

(%
)

File size

File size distribution: OSC ’b’ server

1638

388

946

391

255 241

151
111 136113116 93

248

75 81
36 30 11 30 14

138

1 1

peterc@gelato.unsw.edu.au c© Gelato@UNSW 16

A trace obtained by Doug Johnson at the Ohio Supercomputer Center
(OSC) is even more extreme. There are significant numbers of files
larger than 4M, and even at 4G. Some of the other traces from the OSC
show even bigger files. Again, the y-axis is percentage; the numbers
above each column are the actual counts.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

 0

 5

 10

 15

 20

 25

co
m

m
it

ac
ce

ss

re
ad

di
rp

lu
s

se
ta

ttr

fs
st

at

re
m

ov
e

cr
ea

te

re
ad

di
r

re
ad

lin
k

ge
ta

ttr

w
rit

e

re
ad

lo
ok

up

P
er

ce
nt

ag
e

Operation

Operation mix: SFS-3.0

27

18

9

11

7

2
1 1 1 1

9

7

5

peterc@gelato.unsw.edu.au c© Gelato@UNSW 17

Reportable SpecSFS ’97 version 3.0 results have to be generated ac-
cording to a standard pattern of operations. Lookups, and reads domi-
nate; also readdirplus and getattr take a significant part.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

 0

 5

 10

 15

 20

 25

 30

sy
m

lin
k

fs
in

fo

re
na

m
e

rm
di

r

m
kn

od

re
ad

di
rp

lin
k

m
kd

ir

co
m

m
it

ac
ce

ss

re
ad

di
rp

lu
s

se
ta

ttr

fs
st

at

re
m

ov
e

cr
ea

te

re
ad

di
r

re
ad

lin
k

ge
ta

ttr

w
rit

e

re
ad

lo
ok

up

P
er

ce
nt

ag
e

Operation

Operation mix: SFS-3.0 unsw CSE

sfs-3.0
 unsw CSE

peterc@gelato.unsw.edu.au c© Gelato@UNSW 18

But the trace derived from UNSW CSE doesn’t show this pattern at all!
There are almost no lookups; the top three operations are read, getattr
and access. My conjecture is that people are running make and find
a lot — especially as the GETATTR operations are predominantly on the
zero-length files.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

 0

 10

 20

 30

 40

 50

st
at

fs

sy
m

lin
k

re
na

m
e

fs
in

fo

rm
di

r

re
ad

di
rp

lin
k

m
kd

ir

co
m

m
it

ac
ce

ss

re
ad

di
rp

lu
s

se
ta

ttr

fs
st

at

re
m

ov
e

cr
ea

te

re
ad

di
r

re
ad

lin
k

ge
ta

ttr

w
rit

e

re
ad

lo
ok

up

P
er

ce
nt

ag
e

Operation

Operation mix: SFS-3.0 OSC ’h’

sfs-3.0
 OSC ’h’

peterc@gelato.unsw.edu.au c© Gelato@UNSW 19

The ‘h’ server from OSC shows yet another pattern. Read and write
dominate; and there are slightly more writes than reads. This is sur-
prising; conventional wisdom says that reads almost always outnumber
writes by a large proportion.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

 0

 20

 40

 60

 80

 100

sy
m

lin
k

st
at

fs

re
na

m
e

fs
in

fo

rm
di

r

re
ad

di
rp

lin
k

m
kd

ir

co
m

m
it

ac
ce

ss

re
ad

di
rp

lu
s

se
ta

ttr

fs
st

at

re
m

ov
e

cr
ea

te

re
ad

di
r

re
ad

lin
k

ge
ta

ttr

w
rit

e

re
ad

lo
ok

up

P
er

ce
nt

ag
e

Operation

Operation mix: SFS-3.0 OSC ’b’

sfs-3.0
 OSC ’b’

peterc@gelato.unsw.edu.au c© Gelato@UNSW 20

The ‘b’ server shows an even more surprising result: more than 90%
writes! And the reads shown are largely from the same files as the
writes. Moreover these are the few largest files that appear in the trace.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Observed patterns

Three major patterns:

1. Write-intensive

2. Getattr-intensive

3. Balanced load

None represent the SFS 3.0 load!

 0

 20

 40

 60

 80

 100

sy
m

lin
k

st
at

fs

re
na

m
e

fs
in

fo

rm
di

r

re
ad

di
rp

lin
k

m
kd

ir

co
m

m
it

ac
ce

ss

re
ad

di
rp

lu
s

se
ta

ttr

fs
st

at

re
m

ov
e

cr
ea

te

re
ad

di
r

re
ad

lin
k

ge
ta

ttr

w
rit

e

re
ad

lo
ok

up

P
er

ce
nt

ag
e

Operation

Operation mix: SFS-3.0 OSC ’b’

sfs-3.0
 OSC ’b’

 0

 5

 10

 15

 20

 25

 30

sy
m

lin
k

fs
in

fo

re
na

m
e

rm
di

r

m
kn

od

re
ad

di
rp

lin
k

m
kd

ir

co
m

m
it

ac
ce

ss

re
ad

di
rp

lu
s

se
ta

ttr

fs
st

at

re
m

ov
e

cr
ea

te

re
ad

di
r

re
ad

lin
k

ge
ta

ttr

w
rit

e

re
ad

lo
ok

up

P
er

ce
nt

ag
e

Operation

Operation mix: SFS-3.0 unsw CSE

sfs-3.0
 unsw CSE

 0

 10

 20

 30

 40

 50

st
at

fs

sy
m

lin
k

re
na

m
e

fs
in

fo

rm
di

r

re
ad

di
rp

lin
k

m
kd

ir

co
m

m
it

ac
ce

ss

re
ad

di
rp

lu
s

se
ta

ttr

fs
st

at

re
m

ov
e

cr
ea

te

re
ad

di
r

re
ad

lin
k

ge
ta

ttr

w
rit

e

re
ad

lo
ok

up

P
er

ce
nt

ag
e

Operation

Operation mix: SFS-3.0 OSC ’h’

sfs-3.0
 OSC ’h’

peterc@gelato.unsw.edu.au c© Gelato@UNSW 21

So what we see are three different kinds of workloads in the 8 traces
gathered so far. None of them match SFS3.0; but as yet we have too
few traces to draw any firm conclusions.
What is certain, is that individual workloads vary quite a bit, and it’s
advisable to test performance on your own workload.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Why the differences?

• Conjecture: Caching

– Few lookups → Directory names cached on client

• Conjecture: Faster interconnect

– NFS becomes more attractive for large files

• Conjecture: Delayed Commit

– NFS more attractive for write-intensive loads

• Conjecture: Stupidity

– Non-computer-science user base using NFS instead of

local storage

peterc@gelato.unsw.edu.au c© Gelato@UNSW 22

I’m conjecturing that increased memory on client and server machines
is the single biggest reason for the lack of lookup operations. Name
to inode translations have always been a potential bottleneck; current
operating systems have caches of various kinds to avoid performing
them as far as possible.
In addition the faster interconnect means that it’s faster in many in-
stances to get a file contents out of a server’s memory than to read
it off local disk.
And with delayed commit, NFS3 allows similar performance gain for
writes.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Experiments

• Trace replay — later

• Simple throughput

peterc@gelato.unsw.edu.au c© Gelato@UNSW 23

There are two sets of experiments we want to do. Ultimately we want to
be at the point where replaying arbitrary traces is easy, so that reported
problems can be explored quickly. The aim is to replay a trace, but faster
(possibly using multiple network links to avoid saturating the network),
until the server becomes a bottleneck. Then by careful profiling on the
server, the problem can be identified.
However, at present, the tools we obtained from Harvard crash on our
traces. Until this can be fixed (and we’re working on it) we cannot easily
replay traces.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Test Bed

4−way, 8G, 15k SCSI
HP Procurve 8−port

2−way, 2G

peterc@gelato.unsw.edu.au c© Gelato@UNSW 24

The test-bed we used consisted of an HP Procurve 8-port gigabit un-
managed switch (which we chose for its low latency — around 4 ns),
some number of load-generating client machines (currently either up to
2 HP zx6000, with 2 Madison processors and 2G memory, or up to 7
Celeron procesors with 1G memory; all with gigabit ethernet); and a
server. The server is either an Altix 350 with 2 nodes, 2 processors per
node, and 8G memory split across the two nodes, or another zx6000.
We used the Altix for two reasons:

1. It had more memory than any other machine we have

2. It is often sold as an NFS server

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Sustained Read/Write

• Measure elapsed, real, system time on server and client

• Read/write different-sized files

• Try different parameters: tcp/udp, O SYNC, etc

• Different underlying filesystems: XFS, ext[23], reiserFS

peterc@gelato.unsw.edu.au c© Gelato@UNSW 25

Given that streaming (or almost streaming) read and write loads are
important (and a prime source of complaints of slowness on the Linux
Kernel Mainling List), we decided to test them first (it’s also easier to do
than some of the other things)

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 10 100 1000 10000

tim
e

(s
)

filesize (kB)

local sync write
local cache write

local write plus sync
local read

peterc@gelato.unsw.edu.au c© Gelato@UNSW 26

First we timed local operations on the server. This is on ReiserFS ver-
sion 3 — as you can see, operations on large files are relatively slow.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 10 100 1000 10000

tim
e

(s
)

filesize (kB)

local sync write
nfs sync write (UDP)

local cache write
nfs cache write (UDP)

local write plus sync
nfs write plus sync (UDP)

local read
nfs read (UDP)

peterc@gelato.unsw.edu.au c© Gelato@UNSW 27

Using NFS over UDP, the synchronous write load shows a slight speedup
for large files. I believe this is because the data can be transferred di-
rectly from the network buffer to the disk, without going through the CPU
cache on the server, but haven’t yet been able to confirm this.
Reads are significantly faster. In each case, the filesystem was un-
mounted and remounted between tests; so the local read is off the disk,
but the remote read is from the server’s cache.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 10 100 1000 10000

tim
e

(s
)

filesize (kB)

local sync write
nfs sync write (TCP)

local cache write
nfs cache write (TCP)

local write plus sync
nfs write plus sync (TCP)

local read
nfs read (TCP)

peterc@gelato.unsw.edu.au c© Gelato@UNSW 28

NFS over tcp results are very similar to the UDP results.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Some Observations

• Streaming I/O seems to perform adequately.

– Amount of memory on server and client for caching

crucial for good performance.

• As clients are added, aggregate performance falls

• Because server sees almost random activity

peterc@gelato.unsw.edu.au c© Gelato@UNSW 29

So everything looks good so far... but we haven’t yet tried replaying real
loads.

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Tentative Conclusions

• SpecSFS ’97 version 3.0 does not represent today’s

workloads

• Single client streaming read/write performance doesn’t look

too bad

• Improved cache coherence protocols could make a big
difference

– Maybe NFS 4 will show improvement here.

peterc@gelato.unsw.edu.au c© Gelato@UNSW 30

Given the large number of GETATTR calls, something that allows clients
to know that a file hasn’t changed could reduce a lot of latency. NFS
version 4 has the notion of a file lease, that says that a file is (at least
temporarily) owned by an individual client. If another client wants to
modify the file, the lease has to be broken. Using mechanisms like this,
I expect that in NFS version 4 traces GETATTR will almost disappear
(rather as LOOKUP has in the NFS 3 traces).

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Conjecture

An Itanium makes a great

NFS server
• Gigabit ethernet (or 10G) faster than single spindle local disc

• Huge address space enables massive server page cache

• Leverage sharing across client network

peterc@gelato.unsw.edu.au c© Gelato@UNSW 31

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Where to from here?

• Start replaying real traces (to find bottlenecks)

• Get more traces

You can help

http://www.gelato.unsw.edu.au/IA64wiki/

NFSBenchmarking

• Use Markov techniques to synthesize similar traces

• Analyse server and client behaviours under load.

peterc@gelato.unsw.edu.au c© Gelato@UNSW 32

Replaying traces should start happening soon.
But we really need more traces. We have too few to make any kind of
categorical statement that the Spec SFS workload is non-representative.
You can help here, if you run an NFS server, and can capture some traf-
fic and ship us the anonymised results...
But the traces are huge; one thing we’re thinking about is to analyse
the traces on-site, then generate a set of Markov matrices that can be
shipped to us for analysis and reply. (A Markov matrix is a set of prob-
abilities, that given the last event was x that the next event is y. For
NFS the events would be (file, operation) pairs; we’re still working out
exactly what form they should take, and what the minimum information
we need is to be able to recreate traces of the same character as those
observed.
Markov matrices have two major advantages:

1. They are a lot easier to check (to make sure no sensitive infor-
mation is shipped to us)

2. They are a lot smaller than the corresponding traces (a few kB
as opposed to tens of GB).

© Cyrille CARRY

Work In Progress: NFS Benchmarking April 2006

Acknowledgements

Neil Brown (UNSW) Provided CSE traces

Doug Johnson (Ohio Supercomputing Center) Provided

OSC traces

SGI provided an Altix machine

HP provided servers and clients

Daniel Ellard (Harvard) provided trace capture/replay tools

This work was funded by the Australian Research

Council, HP, UNSW, and National ICT Australia.

peterc@gelato.unsw.edu.au c© Gelato@UNSW 33

Nothing we do is on our own; thanks to everyone who helped.

