®

Check for
updates

A Rely-Guarantee-Based Simulation
for Cooperative Semantics

Kevin Tran'®) Johannes Aman Pohjola23®, Rob Sison!®,
and Gerwin Klein'#

! UNSW Sydney, Sydney, Australia
{k.q.tran,r.sison}@unsw.edu.au
2 Chalmers University of Technology, Gothenburg, Sweden
pohjola@chalmers.se, johannes.aman.pohjola@gu.se
3 University of Gothenburg, Gothenburg, Sweden
4 Proofcraft, Sydney, Australia
gerwin.klein@proofcraft.systems

Abstract. Compared to semantics with preemptively executing
threads, ones with cooperative threads permit easier specification of
atomicity in concurrent programs. We introduce a semantics of cooper-
ative programs, and a simulation notion compatible with rely-guarantee
proofs. We prove our simulation composes in parallel and sequentially,
and that it can establish a standard trace-based notion of refinement.

Keywords: Concurrency - rely-guarantee reasoning - simulation

1 Introduction

Most semantics of concurrency suitable for reasoning about implementations use
a preemptive semantics, where execution may alternate between threads after
each step. This fine-grained concurrency is needed to model many efficiently
executing programs, but makes reasoning about them more difficult. To limit
concurrency, there might be constructs like atomic blocks which specify that the
code inside must execute atomically. However, consider the example below on
the left, a client of a lock-protected stack:

lock() while —isEmpty(stack) do
while —isEmpty(stack) do x «— pop(stack)

x <— pop(stack) yield

unlock(); f(x); lock() - f(x)

How do we specify the desired critical section, where checking the stack
is empty and then popping it must be atomic, but the computation f(x) on
the popped value need not be? This is awkward, because atomic blocks are
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026

Z. Liu et al. (Eds.): ICTAC 2025, LNCS 16237, pp. 87-105, 2026.
https://doi.org/10.1007/978-3-032-11176-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-11176-0_7&domain=pdf
http://orcid.org/0000-0002-6406-7875
http://orcid.org/0000-0003-0313-9764
http://orcid.org/0000-0001-8883-0559
https://doi.org/10.1007/978-3-032-11176-0_7

88 K. Tran et al.

constrained by syntactic structure. Instead, consider a cooperative semantics,
where a thread, once executed, keeps executing until it decides to yield. The
desired granularity of atomicity is shown to the right.

The purpose of our cooperative semantics is not to be implementable for
all programs, but to describe programs with arbitrary granularity of atomicity,
from fine-grained efficient implementations with many yields to coarse-grained
specifications with few yields. We are not advocating for (or against) cooperative
multitasking as an implementation technique. Using cooperative semantics is a
choice that can be made independently of whether the implementation is coop-
erative; a program that executes preemptively can be modelled in a cooperative
semantics by yielding after every step.

Programs with coarse-grained atomicity are usually easier to reason about.
For example, when verifying a program using Owicki-Gries [13] or rely-guarantee
[7], one needs to consider interference at the yield points, of which there are
fewer with coarse-grained atomicity. We want the properties of the specification
we have proven to carry over to the fine-grained implementation, which requires
a notion of atomicity refinement to justify. We use a standard event trace refine-
ment based on set inclusion of (partial) traces of events.

We aim to prove atomicity refinement as part of the future verification of
multicore configurations of the seL4 kernel [8]. There are two such configura-
tions: one where most in-kernel execution is protected by one lock around the
entire kernel, and a multi-kernel configuration where separate kernel instances
run on separate cores and share no or almost no data structures. In both cases,
the goal is to use atomicity refinement to reduce a large part of the concurrency
verification to the existing sequential proofs about seL.4 and only deal with con-
currency in those parts where it matters. A cooperative semantics is well suited
to specify such parts. However, event trace refinement is not compositional with
respect to parallel composition. To scale, we therefore need a proof method for
refinement that supports compositional reasoning.

To the best of our knowledge, this paper develops the first compositional
technique for proving refinement between cooperatively executing concurrent
programs. We prove soundness with respect to refinement (Theorem 2), tran-
sitivity (Sect.5.1), and derive decomposition principles for parallel composition
(Sect. 5.2) and sequential composition (Sect. 5.3). All these results are formalized
in the proof assistant Isabelle/HOL [12].

Our technique is based on the rely-guarantee-based simulation of Liang et
al. (RGSim) [11], a compositional proof technique for refinement in a preemptive
semantics. Adapting it to cooperative semantics is non-trivial: the treatment of
sequential composition is subtle, and requires decoupling the tracking of inter-
ference points from the tracking of the current state.

2 Syntax

Our language is based on Complx [2], a preemptively concurrent extension of
Simpl [14], used in the sel4 verification to model the behavior of C programs [16].

A Rely-Guarantee-Based Simulation for Cooperative Semantics 89

We choose Complx because our aim in the future is to reason about the multicore
configurations of seL.4. The syntax is as follows:

op: State — State b,g C State
f € Fault e: State — Event
¢, ¢ € Com ::= skip | basic op | ¢;¢' | if b then c else ¢’ | while b do ¢

| yield g | assert f b | print e

The first line of the definition of Com (for command) consists of standard
imperative programming constructs [18] (basic used to update state), while the
second line has more unusual constructs. The syntax is parametrized on a set
of states State, and does not fix any particular syntax for expressions. Instead,
conditions and state updates are shallowly embedded as sets and functions on
states, respectively. The command assert f b checks if the current state satisfies
b, faults with f if it does not, and resumes execution otherwise. It is used to
model undefined behavior in C.

These two commands are our additions, and are not present in Complx:

— yield g yields control, permitting other threads to execute. A thread that has
yielded becomes blocked until the state satisfies the guard g. This permits
various synchronization mechanisms like blocking locks to be defined outside
the core language.

— print e emits an event based on the current state. It has no effect on the
state, but will be important for defining refinement and simulation later.

Unlike Complx, there is no syntax for parallel composition. Instead, a con-
current program is represented by a thread pool which includes one command
(element of Com) per thread. Thread pools will be discussed further in Sect. 3.

3 Semantics

Our semantics is a small-step reduction semantics inspired by Abadi and
Plotkin’s [1] cooperative semantics. The steps are between configurations, which
consist of a thread pool, the thread id of the active thread (if any), and a status
(either a normal state or a fault). A thread pool is a partial map from thread
ids to a command and a guard. The guard controls when the thread can be
activated. For thread ids, N is merely a convenient choice of a countable set with
equality.

Definition 1 (Configuration). A configuration cfg = (i, T, st) consists of:

— an optional thread id i € dom(T) U {None}
— a partial map T : N — Com x P(State)
— and a status st € Status.

90 K. Tran et al.

s € State f € Fault st € Status :=N s | F f

Given T'(i) = (¢, g), we say com(T'(i)) = ¢ and guard(T'(i)) = g. In this paper,
we write thread pools as sets of pairs i.e. T = {(i, (¢, g)),-. .}

For brevity in later definitions, we define some types of configurations. Those
where the status is a fault, such as by failing an assertion, we call faulting. Con-
figurations with an active thread, we call active configurations. Configurations
without an active thread, and for convenience, not faulting, we call inactive
configurations.

Definition 2. We say that a configuration (i,T), st) is

faulting if there exists f such that st =F f;

active if i € dom(T'), where com(T'(i)) is called the active command;
inactive if i = None and there exists s such that st = N s; and

terminated if it is inactive and, for alli € dom(T), it holds that com(T'()) =
skip.

T Lo o~

The semantics uses evaluation contexts, inductively defined by the grammar
CeECtxt :==[]|C;c

As usual, [] is a hole, and C[-]: Com — Com fills the hole in a context C with
a command. In this case, C allows us to select the first command in a series
of potentially nested (or empty) sequential compositions, which simplifies the
formulation of our small-step rules.

We can now define the main step relation — of the semantics. See below
for a selection of the rules. Here, we denote updating the function f at x to y
by f(z := y)(z), which is y if 2 = x and f(z) otherwise. The omitted rules for
constructs such as if, while, etc. are standard. We focus here on the rules that
are non-standard or important for cooperative semantics. If there is an active
command, we perform a step by finding a redex and a corresponding evaluation
context. Based on the redex, we can apply the appropriate rule. Exactly one
redex exists, except in the case of skip where there are none. Otherwise, if there
is no active command, the Activate rule lets us nondeterministically choose a
thread whose guard holds, and whose command is not skip, to activate.

ieN T(i) = (C[basic op), g)
(i,T,N s) = (i, T(i := (C[skip], 9)), N op(s))

Basic

ieN T(i) = (C[skip;], g)
(t,T,N s) = (¢,T(i := (C[c], 9)),N s)

SeqSkip

A Rely-Guarantee-Based Simulation for Cooperative Semantics 91

ieN T'(i) = (Clyield g,)

Yield (i,T,N s) — (None, T'(i := (C[skip],g)),N s)
ieN T(i) = (Classert f b],9) seb

Assert e TG TN S) - 10 = (Clskip),)N)
ieN T(i) = (Classert f b],9) s¢b

Assertiabe T TN) .7 = (Clskipl,), F)

Print 1e€N T(i) = (C[print €], g)
(1,T,N s) — (i, T(i := (C[skip],g)),N s)

Activate ieN T(i) = (¢, 9) ¢ # skip s€yg

(None, T,N s) — (i,T,N s)

Following Abadi and Plotkin, we call steps using the Activate rule choice
steps, and write —., and the other steps active steps, and write —,. As befits a
semantics for cooperative execution, once a thread has been activated, it contin-
ues execution until it yields, faults, or reaches skip. Unlike Abadi and Plotkin, we
do not automatically yield when the active command is skip. Instead, execution
is suspended in what is called an incomplete configuration, a notion that will
be important for sequential compositionality because in a cooperative seman-
tics, not every sequential composition is a preemption point. For a thread to
“properly” terminate, it must end with a yield rather than a skip.

Definition 3 (Incomplete configuration). A configuration (i,T,st) is
incomplete if i € N, com(T'(:)) = skip and there exists s such that st = N s.
Incomplete configurations are active: they have a thread that is still selected for
execution, but that cannot make any further progress.

Ezxample 1. We now give a sample execution from our semantics, where State =
N. We abbreviate basic(z — z + 2) to = < x + 2. We name the rules used at
each step and underline the redex when taking an active step.

None, {(1, (z <z + 2;yield T,{0,42}))}, N 0)

—c (1, {1, (z < o + 2;yield T,{0,42}))}, N 0) (Activate)
1, {(1, (skip;yield T,{0,42}))}, N 2) (Basic)

—a 17 {(17 (yield T’ {0’42}))}7 N 2) (SeqSkip)
)

—4 (None, {(1, (skip, T))}, N 2) (Yield

92 K. Tran et al.

We start in an inactive but not terminated configuration, and the last con-
figuration is terminated. Since the status is N 0 in the initial configuration and
the guard contains 0, the thread can be chosen for execution in the first Activate
step. The next two steps, Basic and SeqSkip, are thread-internal, and the last
step, Yield, returns execution to the thread pool, which contains no other active
threads. Execution therefore terminates.

Ezample 2. Now suppose the thread did not end in a yield. We instead have:

(None, {(1, (x + z+2,{0,42}))}, N 0)
—e (1, {(1,(z =2 +2,{0,42}))}, N 0) (Activate)
—aq (1, {(1, (skip, {0,42}))}, N 2) (Basic)

The last configuration is not terminated, but incomplete.

4 Event Trace Refinement

This section defines our notion of event trace refinement. To define our traces of
events, we will not use the small-step relation directly, but introduce an analog
of a preemptive step, which we call a fragment.

4.1 Fragments

With cooperative execution, other threads cannot run while a thread is run-
ning, so intermediate states between yield points are inaccessible from the out-
side. Intermediate states can be made observable via print, but they cannot be
affected by other threads. That means execution between yield points is sequen-
tial.

We can therefore coalesce the fine-grained small-step execution of the pro-
gram into a more coarse-grained sequence of fragments that model the state
transition and events output between yield points, or an initially active config-
uration and a yield point.

It is also here that print comes into play: when executing a fragment, we
track the sequence of events e(s) emitted by each print e command at state s.

Definition 4. If we can execute a sequence of zero or more active steps from
. / . .
one configuration cfg to another cfg’, emitting the event sequence es, we write

cfg >, cfy-
For compositionality later, it will be important to track not just the current

state, but also the state at the most recent yield point. We therefore extend
configurations as follows:

A Rely-Guarantee-Based Simulation for Cooperative Semantics 93

Definition 5 (Extended configuration). An extended configuration is a pair
xzcfg = (cfg, s) of a configuration cfg = (i,T, st) and the state s € State at the
last yield command. When cfg is inactive, we require the (normal) status and
the last yield state to coincide: st = N s.

Now we can define fragments.

Definition 6 (Fragments). Given extended configurations (cfg,s) and
(cfg',s"), let (cfg,s) == (cfg’,s') denote a fragment from (cfg,s) to (cfg’,s’)

emitting the sequence of events es. We define it as the conjunction of:

cfg is not faulting or incomplete
cfg’ is inactive, faulting, or incomplete
*
if cfg is inactive, then there*e:vists cfg” s.t. cfg = cfg” and cfg” <>, cfg’
if cfg is active, then cfg <>, cfg’
if cfg’ is active (including faulting or incomplete), then s’ = s.

Grds o o =

Definition 7. If we can execute a sequence of zero or more fragments from an
extended configuration xcfg to another configuration zcfg', emitting the sequence
of events es, we write

xcfg %* zcfg’

In the previous two definitions, if es is omitted, it is taken to mean the empty
list, that is, no events being emitted.

We now give an example of a fragment, with State = Event = N. We use
print z to emit the current state as an event. Steps with something above —
emit an event, the rest emit no event. Consider the following small-step sequence:

(None, {(2, (print z;yield T, T))},N 0)
—c (2,{(2, (print z;yield T,T))},N 0) (Activate)
a (2,{(2. (skip; yield T, T))},N 0) (Print)
—q (2,{(2,(yield T,T))},N0) (SeqSkip)
—a (None, {(2, (skip, T))},N 0) (Yield)

Example 3. The sequence forms a single fragment that we can write as follows:

((None, {(2, (print z;yield T, T))},N 0),0)
9. (None, {(2, (skip, T))}, N 0),0)

94 K. Tran et al.

We can also conclude that
((2,{(2, (print z;yield T,T))},N 0),0)
1, (None, {(2, (skip, T))},N 0),0)

Ezample 4. Here is an example execution of several fragments:

((None, {(1, (z + = + 1;yield T;z + x + 1;yield T, T))
, (2, (print z;yield T,T))},N 0),0)
= ((None, {(1, (skip;z < x + 1;yield T, T)
(2
1

)
, (print z;yield T,T))},N 1),1)
)

% ((None, {(1, (skip;z < x + 1;yield T, T)
,(2,(skip, T))},N 1), 1)

4.2 Refinement

Given the notion of fragments from the previous section, we can now define
event trace refinement. When executing fragments, a trace of events is gener-
ated. This trace could be partial or end in a terminated, faulting or incomplete
configuration. We denote these results P, T, F, I, respectively.

We define the partial traces PT from an extended configuration zcfg induc-
tively by the following rules. Here we use @ for list concatenation and [] for the
empty list. Note that, as the name suggests, the trace only records events, not
states.

zefg = ((4,T,N s),5) xefg = ((i,T,F f),s)
(I, P) € PT(xcfg) (I, F) € PT(xcfy)
xzcfg = (cfg, s) cfg is terminated zcfg = (cfyg, s) c¢fg is incomplete
([, T) € PT(zcfg) (1) € PT(acfg)

zefg == xcfy’ (tr,r) € PT(zcfg)
(es@Qtr,r) € PT(zcfg)

Using the first of the above rules and the execution from Example 1:

{(, P), ([, T)} € PT(((None, {(1,(z + =+ 2;yield T,{0,42}))},N 0),0))(1)

A Rely-Guarantee-Based Simulation for Cooperative Semantics 95

The program does not emit any events, so both traces record the empty list. For
an example where PT is instead bound from above, we take a slightly different
program that increments z twice, and yields in between. By induction on PT,

PT(((None, {(1,(z < =z + 1;yield T;z < z + 1;yield T,T))},N 0),0))
<A, P, ([, 1)} (2)

We can now define event trace refinement as follows:

Definition 8 (Event trace refinement). Let acfg, xcfg’ be extended configu-
rations. We say that xcfg C xcfg’ (wcfg refines zcfg’) if PT(xcfg) C PT(zcfg’).

Refinement states that after executing some number of fragments from the
concrete extended configuration, we can match the event trace and result by
executing some number of fragments from the abstract extended configuration.
The number of fragments may differ. This admits atomicity refinement where we
decrease or increase the number of yield points between abstract and concrete
levels, which our work aims to enable. Note that the statement of refinement here
is for configurations zcfg and zcfg’, not for programs. That is, the definition is
for specific initial states of the thread pool, not over all of them.

Ezxample 5 (Refinement). Since we showed in Eq. 1 and 2 that the traces of one
program are above {([], P), ([],7)} and the other below, we have

((None, {(1, (x < x + 1;yield T;x + x + 1;yield T,{0,42}))},N 0),0)
C ((None, {(1, (z + = + 2;yield T,T))},N 0),0)

If the programs emitted their state as events before the last yield, refinement
would still hold, but only for configurations starting in the same state. Refine-
ment would no longer hold if these threads were composed with another set of
abstract and concrete threads that also modify x, even if refinement were to hold
separately for these threads.

Ezample 6 (Non-refinement). Let

zcfg, = ((None, {(1, (z < z + 1;yield T;x < x + 1;yield T,{0,42}))
, (2, (print z;yield T,T))},N 0),0)

zcfg, = ((None, {(1, (z + =+ 2;yield T, T))

, (2, (print z;yield T,T))},N 0),0)

From Example 4, we have ([1], P) € PT(zcfg.). By induction on PT, we have
PT(zcfg,) € {([l. P), ([0], P), ([0], T), ([2], P), (2], 7)}. Hence zcfg, £ zcfy,.
Together with Example 5 and Example 3 (noting that the fragment ends
in a terminated configuration), this shows that event trace refinement is not
compositional with respect to parallel composition (to be defined in Sect. 5.2).

96 K. Tran et al.

5 Simulation

As just mentioned, although event trace refinement is an intuitive notion of
behavioral preservation, it does not compose with respect to parallel composi-
tion. Since compositionality is indispensable for scalable reasoning, we follow the
usual path of defining a compositional simulation instead that can be used for
reasoning. To this end, we adapt the rely-guarantee-based simulation RGSim [11]
to a cooperative semantics. We prove it implies our event trace refinement and
is compositional with respect to parallel (Sect.5.2) and sequential composition
(Sect. 5.3).

The key difference between cooperative and preemptive semantics is that in
preemptive semantics, every execution step is a yield point and therefore observ-
able as a step. In cooperative semantics, we need to distinguish between execu-
tion states in the middle of a fragment and execution states that have reached a
yield point where interference from other threads is possible. For the simulation
to stay compositional, this needs additions to both the internal definition of the
simulation itself, and the parameters the simulation operates on.

Our simulation is between two extended configurations, one concrete and one
abstract, with additional parameters we introduce below. Let CState and AState
be the concrete and abstract state set, respectively. The extra parameters are:

- R.,G. C CState x CState, the concrete rely and guarantee relations

- R,, G, C AState x AState, the abstract rely and guarantee relations

— « C CState x AState, the state relation

— @ C CState x (N — P(CState)) x AState x (N — P(AState)), the normal
postcondition, which is a predicate on the states and the guards of all threads.

— @Q; C CState x CState x AState x AState, the incomplete postcondition, which
is a predicate on the current states and the states at the last yield point.

The first three items are the same as in the original RGSim, but the normal
postcondition now keeps track of the guards. The incomplete postcondition is a
new addition needed for sequential compositionality in Sect. 5.3. As is customary
with rely-guarantee reasoning, we assume the rely relations R., R, are reflexive.

As with the original RGSim, we will need the following definition:

Definition 9 (a-related transitions). We call (R., Ry)o the a-related tran-
sitions in R, and R,. They are the set of all tuples (Sc, s., Sq,5,) € CState x
CState x AState x AState such that (sc, $q) € &, (S, S.) € Re, (S4,5,) € Ry and
(sl,sl) € a.

Let zcfg. = (cfg., sc) be the concrete extended configuration, where cfg, =
(ic, T, st.), and similarly for the abstract extended configuration zcfg,. We now
define the simulation between zcfg, and zcfg, coinductively.

Definition 10. If R.,G.,a, R,,Gs F zcfg, < xcfyg, Q,Q: then all of the fol-
lowing must hold:

1. (8¢, 8q) € @

A Rely-Guarantee-Based Simulation for Cooperative Semantics 97

2. if i, = None then i, = None

3. neither cfg. nor cfg, are faulting or incomplete

4. if cfg. is terminated, then there exists an extended configuration xcfg!, such
that zcfg, =* zcfgl,, cfgl, is terminated, (s¢,Sc,Sa,5,) € (GeyGE)o and
(8c,guard o Ty, s, guard o V) € Q, where o is function composition.

5. if wcfg. == xcfgl, and cfgl, is inactive, then there ewists an extended con-

figuration xcfg,, such that zcfg, Ny zcfgl, cfgl is inactive, (¢, 8., 5q,5,) €

(Ge, G%)o and R.,Ge, o, Ry, Gy F 2cfgl. < acfgl, Q,Q;.
6. if xcfg, == xcfg. and st. = F f, then there exists an extended configuration

zcfgl, such that zcfg, 28,7 zcfgl, and st), =F f.
7. if zcfg, == xcfgl. and cfgl, is incomplete, then there exists an extended config-

uration xcfq,, such that zcfg, Ny zcfgl, cfgl, is incomplete, (Se, Scy Sa, Sh) €
(G.,G*)o, and there exists s, s such that st. = N s, st/ = N s and
((8673/0/)7 (S:zvsg)) € Qz

8. if zcfgl, and xcfg), are extended configurations such that cfg. and cfg) are
inactive and (Sc,s., 8q,5,) € (Re, R:)o, then Re,Ge,, Ry, Gy F zcfgl, =
xcfg; Qan

Case 1 states that the last yield states of the concrete and abstract configu-
rations must be related by the state relation. Case 2 states that if the concrete
configuration is inactive, then the abstract one must be too. It is used to pre-
vent situations where we are free to pick a thread on the concrete level, but on
the abstract level, we are forced to execute a thread. For case 3, the simulation
only includes inactive configurations and active, but not faulting or incomplete
configurations. Faulting and incomplete configurations are dealt with by execut-
ing fragments from a configuration in the simulation. Case 4 is the “base case”
of the simulation, when the concrete configuration is terminated. The abstract
configuration is allowed to do some work before terminating. The final states
and guards of all threads must satisfy the normal postcondition. Cases 5, 6, 7
require that when we execute a fragment on the concrete level, we must match it
with zero or more fragments on the abstract level. The fragments must preserve
the state relation and also obey the guarantee relations (if we end in an inac-
tive configuration). Case 7 also requires that when we end up in an incomplete
configuration, that the last yield states and current states obey the incomplete
postcondition. Case 8 requires that the simulation be robust against interference
from the environment, bounded by the rely relations and the state relation.

We can strengthen rely relations and weaken the guarantee relations and
postconditions:

Theorem 1. If R.,G.,a, R, Gy & xcfg, X zcfg, Q,Q; and

- R, C R. and R], C R, (strengthening relies)
- G.C G, and G, C G, (weakening guarantees)
- QCQ and Q; C Q) (weakening postconditions)

98 K. Tran et al.

then R, G, o, Ry, Gi, - xcfg, = wcfg, Q', Q5

We then prove the simulation sound with respect to the more intuitive trace
refinement. First we prove a lemma, then obtain soundness as a corollary:

Lemma 1. Let Id be the identity relation and T be the universal relation. If
Id, T, o, 1d, T+ zcfg. = wcfg, Q,Qi, then PT(xzcfg.) € PT(zcfg,).

Proof. By induction over PT.

Theorem 2 (Soundness). Let R., R, be reflexive rely relations.
[f RC7 GC7 «, R(La GCL - ‘chgc = ZBCfga Qa Qi7 then iL’Cfgc C fL’Cfga-

Proof. Using Theorem 1, we strengthen the relies to the Id relation and weaken
the guarantees to the T relation. Unfold the definition of C and apply Lemma
1.

5.1 Transitivity

By focusing on the extended configurations, we can think of the simulation
as a binary relation. Thus we might wonder whether or not our simulation is
transitive, which would allow stepwise simulation proofs. Assuming that the rely
relations and state relations are in some sense compatible, we can answer in the
affirmative. The compatibility condition can informally be described as: given
a o (-related transitions, we can factor them into some a-related transitions and
[B-related transitions. More formally,

Definition 11. Let Ry, R,,, Rn be rely relations on the low, middle and
high levels. Let o be a state relation between the low and middle levels,
and let B be a state relation between the middle and high levels. We say
that compat(R;, o, R, 5, Ry), if for all (s, s),sn,5,) € (Ri,Rn)aop and sm,
s.t. (s1,8m) € o and (Sm, Sn) € B, there exists s, s.t. (S, 8], Sm, i) € (Ris Rm)a
and (S, Shys Shs $5) € (R, Ri)g-

Theorem 3 (Transitivity). Let Ry, Ry, Ry, be rely relations on the low, middle
and high levels. Let o be a state relation between the low and middle levels, and
let B be a state relation between the middle and high levels. If

Rl; Gla «, RTer Gm F mCfgl = ICfgm Q7 QZ
Rma Gmaﬂa Rh7 Gh F chgm ._< l’Cfgh Qla Q{L
— and compat(R;, o, R, B, R})

then Ry, Gy, a0 B, Ry, Gp, - zcfg; < zcfg), QoQ', Q;0Q), where o means relational
composition and Rj is the reflexive transitive closure.

A Rely-Guarantee-Based Simulation for Cooperative Semantics 99

5.2 Parallel Composition

Although our language lacks a parallel composition operator, by taking the dis-
joint union of thread pools, we can obtain a somewhat restricted analog of it.
This shallow embedding as a disjoint union allow us to inherit properties like
associativity automatically. We can break down a simulation into simulations on
each part of the disjoint union, abstracting away the behavior of the other part
of the disjoint union using the rely and guarantee relations.

Given normal postconditions @, @’ for the parts, what should the normal
postcondition of the whole be? We need the states to agree, and the guards to
be the disjoint union of the guards for the parts. Thus, we define QUQ’, the set of
tuples (S¢, gsc U gsh, Sa, gSq U gsb,) where (S¢, gSc, Sas 9Sa) € Q, (Se, gSh, Sa, gS,,) €
Q’, dom(gs.) Ndom(gs.) = 0 and dom(gs,) N dom(gs,,) = 0.

As with rely-guarantee reasoning, we need the normal postconditions to
be stable under interference from the environment. Let @ C CState x (N —
P(CState)) x AState x (N — P(AState)) be a normal postcondition and A C
CState x CState x AState x AState. We say Sta(Q, A), if for all (s, gsc, Sa, gSa) €
Q and (s, s, 84, 5,,) € A, we have (s, gsc, $5, 9sa) € Q.

We now can state our parallel composition rule:

Theorem 4 (Parallel composition). If

1' RC7 GC7 O[, Raa GLL }_ ((ic, TC7 StC)) SC) j ((iaa Taa 8ta)7 Sa) Q7 Qz

2. R, G, o, Ry, G E ((ie, T, sty), se) 2 ((ig, 15, stg)s Sa) @, Qi

3. G:.CR,G.CR., Gy, CR, and G, C R,

4. dom(T.) Ndom(T,) =0 and dom(T.) Ndom(T.) =

5. Sta(Q, (Re, RE) o) and Sta(Q’, (R., R.X)4)

6. (i, st!l, i, st!!,None, None) € {(ic, Stc,ia, Sta,in, i), (iL, sth, il st i, ia)}
then

R.NR.,G.UG.,a,R,NR.,,G, UG,
(i, Te U Ty, sty)), s0) = (i, Ta U Ty, sty),50) QUQ',Q;

Assumptions 1 and 2 are the simulations on the “parallel components”. Assump-
tion 3 states the rely and guarantee relations between the components are com-
patible. Assumption 4 states that the thread pools must have disjoint thread
ids. Assumption 5 states that the normal postconditions are stable under inter-
ference. Assumption 6 is meant to formalize the idea of picking one half of the
parallel composition to execute.

5.3 Sequential Composition

Even for concurrent programs, there is often a substantial amount of sequential
reasoning to be done. In the preemptive case, every sequential composition is a
preemption point, but with cooperative semantics this is not always the case.
When executing a fragment with a sequential composition, we could either yield

100 K. Tran et al.

or not before executing the second part. This leads us to distinguish between
normal and incomplete execution of a fragment. To propagate information from
the first part to the second part of a sequential composition, we use the distinc-
tion between normal and incomplete postconditions. The normal postcondition,
in addition to states, tracks thread guards at the end of executing the first part
so that the second part can reason about them. The incomplete postcondition
of the first part allows us to take the first part of the execution into account for
checking the guarantee and state relations when the second part encounters a
yield instruction. We now state our sequential composition rule:

Theorem 5 (Sequential composition). If

RC7 GC7 O[, R(La Ga }_
((ia {(tca (Cca gc))}> Stc); Sc) = ((ia; {(tm (Caa ga))}7 5ta)7 Sa) Q, Qi
2. For all (s., gs., s, 9sa") € Q such that (s, s)) € a,

cr<a

R.,Ge,a, Ry, Gg }—((None, {(tCa (C:c: 956/(tc)))}a N Slc)a Slc)
= ((None, {(ta; (cq» 954’ (ta)))}, N 83), 55) Q' Q;

3. For all (s., s, sh,s)) € Q; and guards g.., gh,

crTcr“a’-a

Re, Gy, R, Ga F((te {(te, (cc, 90)) 1 N s7), 57)
= ((tas {(ta, (¢ 90)) 1N 85),50) @, Q;

4. For all (s, gs.', s, 9s.") € Q, we have t. € dom(gs.') and t, € dom(gs,’),
and s, € guard(gs.'(t.)) and s, € guard(gs,’(t.))
5. . # skip and ¢, # skip

then

RC7GC7a7Ra7Ga l_
((im{(tm (CC;C;,gC))},StC),SC) = ((iaa{(ta> (Ca;C;vga))}aSta)>sa) Q/aQ;

Assumption 1 is the simulation on the first part of the sequential composition.
Assumption 2 is the simulation on the second part, assuming the first part ter-
minated normally. Assumption 3 is the simulation on the second part of the
sequential composition, assuming the first part terminated in an incomplete
configuration. The guards are actually irrelevant since we deal with active con-
figurations. Assumption 4 specifies that when the first part terminates normally,
we are not in a state blocked by the guard.

5.4 Example

We borrow the following example from Liang et al. [11, Section 4.3]. We wish to
establish a simulation between incrementing an abstract atomic counter x € N
by 2 and incrementing a concrete lock-protected counter by 1 twice. The concrete

A Rely-Guarantee-Based Simulation for Cooperative Semantics 101

state consists of a counter € N, an optional thread id ¢ € NU{None} indicating
the lock owner, and a ghost copy X of the abstract state. Then define for ¢ € N:

lock ¢ = (if owner = None then skip else yield owner = None); owner <+ ¢

unlock i = assert (owner = i); owner < None
The commands on each level are:

ce =(lock w;yield T); (x « z + L;yield T); (z < x + 1;yield T);
unlock w;yield T
Cq =x < x+2;yield T

We have rely and guarantee relations, parametrized by a thread id ¢ € N.

R.(i) = {(s¢, 5%) | owner(s.) =i = s, = s.}
Ge(i) = {(¢,5.) | 5. = sc V ((owner(s.) = None = owner(s.) = i)
A(3i" € N. owner(s.) =i = i’ =i Aowner(s..) € {i,None}))}
The rely relation states that if a thread ¢ holds the lock, then the environment is
not allowed to change the state. The guarantee relation states that thread ¢ can
take, hold or release the lock, and cannot make any other state changes unless
they have the lock.

The state relation says that X on the concrete level indeed copies the abstract
z, and that when the lock is not held, the abstract and concrete x are equal:

a={(s¢8q) | (sa) = X(sc) A (owner(s.) = None = z(s.) = X (s¢))}

Our normal postcondition @ is just « on the states, and that the writer’s
guard is T. The incomplete postcondition @Q); is not used for this example.

Q = {(s¢; 98¢, Sas 984) | (S¢y8a) € @A gse = {(w, T)} A gsa = {(w, T)}}
Ezample 7. For any pair of states (s¢, Sq) in «, we have:

Re(w),Ge(w),a, T, T
(None, {(w, (cc, T))}, N s) = (None, {(w, (¢a, T))}, N sa) Q, Qs
Ezample 8. When we repeat the execution of ¢. and ¢,, we would also expect
the simulation to hold. Indeed, using the sequential composition rule, we have:
Rc(’LU), Gc(w)7 «, Ta T |_
(None, {(w, (cc; e, T))} N sc) = (None, {(w, (caica,)} N 84) Q, Qi
Liang et al.’s example also contains printer threads. Our Isabelle formaliza-

tion similarly proves the simulation between these, and uses the parallel compo-
sition rule to prove simulation for the entire system.

102 K. Tran et al.

6 Limitations and Future Work

The aim to use this work in the multicore sell4 verification informs some of
its limitations. For instance, constructs for dynamically creating threads are not
necessary for a static number of concurrent kernel instances. Parallel composition
in a cooperative semantics is challenging to specify. A fork command would be
a more natural extension but is unnecessary for our purposes.

The language we present is based on Complx [2]. Complx has exceptions,
which are useful for modelling C constructs such as break and continue. We
leave this for future work to focus on the main compositionality results first.

In our semantics there are “deadlocked” configurations: inactive configura-
tions with threads that have not reached skip, but no guards are satisfied so
no thread can run. Also, an active thread may run forever without yielding.
Neither situation creates any fragments, thus satisfying our simulation and con-
sequently, event trace refinement. Thus, deadlock freedom and termination are
not preserved by our simulation, only safety properties on states.

We have not investigated how weak memory models would affect the seman-
tics and have so far targeted sequential consistency only.

7 Related Work

Our mechanization of cooperative semantics is loosely based on the ideas of
Abadi and Plotkin [1]. Their aim is not program verification, but instead explor-
ing denotational semantics and connections to algebraic effects.

Liang et al. [11] introduce RGSim, a rely-guarantee-based simulation compo-
sitional with respect to constructs like parallel and sequential composition. Their
work is formalized in Coq using a language with preemptive semantics. We adapt
the simulation to a language with cooperative semantics while preserving paral-
lel and sequential composition. As preemptive semantics can be expressed using
cooperative semantics, our work in some ways generalizes RGSim.

For the treatment of atomicity refinement more broadly, linearizability [6] is
a safety property widely used as a correctness condition for concurrent objects. It
roughly states that each history of method invocations and responses is equiv-
alent to a history where methods are executed sequentially. However, not all
programs are naturally expressed as objects with methods; in particular, not
those that we are interested in applying our method to.

Later work by the RGSim authors Liang and Feng [10]| enables the use of
liveness properties for blocking synchronization in addition to linearizability, so
the same generalization may be possible in our setting. For our application, event
trace refinement is sufficient, so we have not yet explored this direction further.

Elmas et al. [3,4] prove atomicity refinement and linearizability using reduc-
tion, which checks whether individual steps of a thread commute with steps of
other threads, and which does not compose with respect to parallel composition.
Elmas et al. use a preemptive semantics, but Civl [9] extends this line of work to
use cooperative semantics. Their notion of refinement associates program steps

A Rely-Guarantee-Based Simulation for Cooperative Semantics 103

with assertions, and checks for preservation of end-to-end behavior and absence
of assertion failures. These methods are not proven sound in a proof assistant.

Compositional notions of refinement have been used to verify concurrent
compiler optimizations. Simuliris [5] uses a separation logic-based simulation to
prove a fair termination preserving contextual refinement of concurrent optimiza-
tions. Contextual refinement considers the termination behavior of a program
(terminating with a value, infinite execution or getting stuck) when composed
with arbitrary well-formed contexts. Their language has preemptive semantics,
does not consider I/O and assumes non-blocking execution.

Timany and Birkedal [15] provide a compositional separation logic-based
proof method for refinement of programs with continuations, which they use
as a compilation target for a cooperative concurrent language. Although they
prove refinement between the target and source programs, they do not define
refinement between programs in the cooperative source language. The compiler
eliminates some nondeterminism on the concrete level by assuming a particu-
lar scheduling implementation using a queue, whereas we continue to allow for
arbitrary interleaving of threads at yield points. Arbitrary interleaving better
models the possible range of behavior of programs at the implementation level,
such as when running on multiple cores and using different schedulers.

Vistrup et al. [17] use interaction trees [19] to enable reusable program logic
fragments for effects on top of a pure language, including cooperative concur-
rency. Their program logics deal with single programs and not refinement rela-
tions between programs.

8 Conclusion

This paper has presented a concurrent imperative language with cooperative
execution semantics. The language is generic over state and can be instantiated
to model the behavior of a variety of more concrete imperative languages.

A cooperative semantics, unlike the usual preemptive concurrency semantics,
lets us easily model different degrees of atomicity of executions within the same
language without being constrained by the block structure of the language.

We have adapted the standard notion of trace refinement for cooperative
semantics as a basis for the soundness of a compositional simulation that can be
used for reasoning about such programs.

Our simulation for cooperative concurrent semantics is based on RGSim [11],
an existing simulation formalization for the preemptive setting. The coopera-
tive setting requires a number of subtle changes to enable compositional proof
rules for reasoning about parallel and sequential composition. We have proved in
Isabelle/HOL that the simulation is sound with respect to refinement, that it is
compositional, and that it satisfies basic desirable properties such as transitivity.

Acknowledgement. This research was funded by the Australian Government’s RTP
scholarship. We thank the reviewers and Thomas Sewell for their feedback.

Disclosure of Interests. The authors have no competing interests.

104

K. Tran et al.

References

10.

11.

12.

13.

14.

15.

16.

. Abadi, M., Plotkin, G.: A model of cooperative threads. In: Proceedings of the

36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’09, pp. 29-40. Association for Computing Machinery, New York
(2009). https://doi.org/10.1145/1480881.1480887

. Amani, S.,; Andronick, J., Bortin, M., Lewis, C., Rizkallah, C., Tuong, J.: COM-

PLX: a verification framework for concurrent imperative programs. In: Inter-
national Conference on Certified Programs and Proofs, pp. 138-150. SIGPLAN
Notices, Paris (2017)

Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Tasiran, S.: Simplifying linearizability
proofs with reduction and abstraction. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 296-311. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12002-2 25

Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’09, pp. 2-15. Association for Computing Machinery, New
York (2009). https://doi.org/10.1145/1480881.1480885

Géher, L., et al.: Simuliris: a separation logic framework for verifying concurrent
program optimizations. Proc. ACM Program. Lang. 6(POPL) (2022). https://doi.
org/10.1145/3498689

Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463-492 (1990). https://doi.org/
10.1145/78969.78972

Jones, C.B.: Tentative steps towards a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596-619 (1983)

Klein, G., et al.: Comprehensive formal verification of an OS microkernel. ACM
Trans. Comput. Syst. 32(1), 2:1-2:70 (2014)

Kragl, B., Qadeer, S.: The civl verifier. In: 2021 Formal Methods in Computer
Aided Design (FMCAD), pp. 143-152 (2021)

Liang, H., Feng, X.: A program logic for concurrent objects under fair scheduling.
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’16, pp. 385-399. Association for Com-
puting Machinery, New York (2016). https://doi.org/10.1145/2837614.2837635
Liang, H., Feng, X., Fu, M.: A rely-guarantee-based simulation for verifying con-
current program transformations. SIGPLAN Not. 47(1), 455-468 (2012). https://
doi.org/10.1145/2103621.2103711

Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-
Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer, Heidelberg
(2002)

Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Informatica 6, 319-340 (1976)

Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL.
Ph.D. thesis, Technische Universitdt Miinchen (2006)

Timany, A., Birkedal, L.: Mechanized relational verification of concurrent programs
with continuations. Proc. ACM Program. Lang. 3(ICFP) (2019). https://doi.org/
10.1145/3341709

Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 97—
108. ACM, Nice (2007)

https://doi.org/10.1145/1480881.1480887
https://doi.org/10.1145/1480881.1480887
https://doi.org/10.1145/1480881.1480887
https://doi.org/10.1145/1480881.1480887
https://doi.org/10.1145/1480881.1480887
https://doi.org/10.1145/1480881.1480887
https://doi.org/10.1145/1480881.1480887
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/3498689
https://doi.org/10.1145/3498689
https://doi.org/10.1145/3498689
https://doi.org/10.1145/3498689
https://doi.org/10.1145/3498689
https://doi.org/10.1145/3498689
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/2103621.2103711
https://doi.org/10.1145/2103621.2103711
https://doi.org/10.1145/2103621.2103711
https://doi.org/10.1145/2103621.2103711
https://doi.org/10.1145/2103621.2103711
https://doi.org/10.1145/2103621.2103711
https://doi.org/10.1145/2103621.2103711
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3341709

17.

18.

19.

A Rely-Guarantee-Based Simulation for Cooperative Semantics 105

Vistrup, M., Sammler, M., Jung, R.: Program logics a la carte. Proc. ACM Pro-
gram. Lang. 9(POPL) (2025). https://doi.org/10.1145/3704847

Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

Xia, L.Y., et al.: Interaction trees: representing recursive and impure programs
in coq. Proc. ACM Program. Lang. 4(POPL) (2019). https://doi.org/10.1145/
3371119

https://doi.org/10.1145/3704847
https://doi.org/10.1145/3704847
https://doi.org/10.1145/3704847
https://doi.org/10.1145/3704847
https://doi.org/10.1145/3704847
https://doi.org/10.1145/3704847
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119

	A Rely-Guarantee-Based Simulation for Cooperative Semantics
	1 Introduction
	2 Syntax
	3 Semantics
	4 Event Trace Refinement
	4.1 Fragments
	4.2 Refinement

	5 Simulation
	5.1 Transitivity
	5.2 Parallel Composition
	5.3 Sequential Composition
	5.4 Example

	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	References

