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Abstract. Compared to semantics with preemptively executing 
threads, ones with cooperative threads permit easier specification of 
atomicity in concurrent programs. We introduce a semantics of cooper-
ative programs, and a simulation notion compatible with rely-guarantee 
proofs. We prove our simulation composes in parallel and sequentially, 
and that it can establish a standard trace-based notion of refinement. 
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1 Introduction 

Most semantics of concurrency suitable for reasoning about implementations use 
a preemptive semantics, where execution may alternate between threads after 
each step. This fine-grained concurrency is needed to model many efficiently 
executing programs, but makes reasoning about them more difficult. To limit 
concurrency, there might be constructs like atomic blo cks which specify that the
code inside must execute atomically. However, consider the example below on
the left, a client of a lock-protected stack:

lock() 
while ¬isEmpty(stack) do 

x ← pop(stack) 
unlock(); f(x); lock() 

while ¬isEmpty(stack) do 
x ← pop(stack) 
yield 
f(x )

How do we specify the desired critical section, where checking the stack 
is empty and then popping it must be atomic, but the computation f(x) on 
the popped value need not be? This is awkward, because atomic blocks are
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constrained by syntactic structure. Instead, consider a cooperative semantics, 
where a thread, once executed, keeps executing until it decides to yield. The 
desired granularity of atomicity is shown to the right.

The purpose of our cooperative semantics is not to be implementable for 
all programs, but to describe programs with arbitrary granularity of atomicity, 
from fine-grained efficient implementations with many yields to coarse-grained 
specifications with few yields. We are not advocating for (or against) cooperative 
multitasking as an implementation technique. Using cooperative semantics is a 
choice that can be made independently of whether the implementation is coop-
erative; a program that executes preemptively can be modelled in a cooperative
semantics by yielding after every step.

Programs with coarse-grained atomicity are usually easier to reason about. 
For example, when verifying a program using Owicki-Gries [13] or rely-guaran tee
[7], one needs to consider interference at the yield points, of which there are 
fewer with coarse-grained atomicity. We want the properties of the specification 
we have proven to carry over to the fine-grained implementation, which requires 
a n otion of atomicity refinement to justify. We use a standard event trace refine-
ment based on set inclusion of (partial) traces of events.

We aim to prove atomicity refinement as part of the future verification of 
multicore configurations of the seL4 kernel [8]. There are two such configura-
tions: one where most in-kernel execution is protected by one lock around the 
entire kernel, and a multi-kernel configuration where separate kernel instances 
run on separate cores and share no or almost no data structures. In both cases, 
the goal is to use atomicity refinement to reduce a large part of the concurrency 
verification to the existing sequential proofs about seL4 and only deal with con-
currency in those parts where it matters. A cooperative semantics is well suited
to specify such parts. However, event trace refinement is not compositional with
respect to parallel composition. To scale, we therefore need a proof method for
refinement that supports compositional reasoning.

To the best of our knowledge, this paper develops the first compositional 
technique for proving refinement between cooperatively executing concurrent
programs. We prove soundness with respect to refinement (Theorem 2), tran-
sitivity (Sect. 5.1), and derive decomposition principles for p arallel composition
(Sect. 5.2) and sequential composition (Sect. 5.3). All these results are formalized 
in the proof assistant Isabelle/HOL [12]. 

Our technique is based on the rely-guarantee-based simulation of Liang et
al. (RGSim) [11], a compositional proof technique for refinement in a preemptive 
semantics. Adapting it to cooperative semantics is non-trivial: the treatment of 
sequential composition is subtle, and requires decoupling the tracking of inter-
ference points from the tracking of the current state.

2 Syntax 

Our language is based on Complx [2], a preemptively concurrent extension of
Simpl [14], used in the seL4 verification to model the behavior of C programs [16].
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We choose Complx because our aim in the future is to reason about the mu lticore
configurations of seL4. The syntax is as follows:

. 

op : State → State b, g ⊆ State
f ∈ Fault e : State → Event

c, c ∈ Com ::= skip | basic op | c; c | if b then c else c | while b do c
| yield g | assert f b | print e

The first line of the definition of Com (for command) consists o f standard
imperative programming constructs [18]  (.basic used to update state), while the 
second line has more unusual constructs. The syntax is parametrized on a set
of states .State, and does not fix any particular syntax for expressions. Instead, 
conditions and state updates are shallowly embedded as sets and functions on
states, respectively. The command .assert f b checks if the curren t state satisfies
. b, faults with . f if it does not, and resumes execution otherwise. It is used to 
model undefined behavior in C.

These two commands are our additions, and a re not present in Complx:

– .yield g yields control, permitting other threads to execute. A thread that has 
yielded becomes blocked until the state satisfies the guard . g.  This  permits  
various synchronization mechanisms like blocking locks to be defined outside
the core language.

– .print e emits an event based on the current state. It has no effect on the 
state, but will be important for defining refinement and simulation later.

Unlike Complx, there is no syntax for parallel composition. Instead, a con-
current program is represented by a thread pool which includes one command
(element of .Com) per thread. Thread pools will be discussed further in Sect. 3. 

3 Semantics 

Our semantics is a small-step reduction semantics inspired by Abadi and
Plotkin’s [1] cooperative semantics. The steps are between configurations,  which  
consist of a thread pool, the thread id of the active thread (if any), and a status 
(either a normal state or a fault). A thread pool is a partial map from thread
ids to a command and a guard. The guard controls when the thread can be
activated. For thread ids, . N is merely a convenient choice of a coun table set with
equality.

Definition 1 (Configuration). A configuration .cfg = (i, T, st) consists of: 

– an optional thread id . i ∈ dom(T ) None}
– a partial map . T : N Com× P(State)
– and a status .st ∈ Status.
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s ∈ State f ∈ Fault st ∈ Status ::= N s | F f

Given .T (i) = (c, g),  we  say .com(T (i)) = c and .guard(T (i)) = g.  In  this  paper,  
we write thread pools as sets of pairs i.e. .T = {(i, (c, g)), . . .}. 

For brevity in later definitions, we define some types of configurations. Those 
where the status is a fault, such as by failing an assertion, we call faulting.  Con-
figurations with an a ctive thread, we call active configurations. Configurations
without an active thread, and for convenience, not faulting, we call inactive
configurations.

Definition 2. We say that a configuration .(i, T, st) is 

1. faulting if there exists . f such that .st = F f ; 
2. active if .i ∈ dom(T ),  wher  e .com(T (i)) is called the active command ;
3. inactive if .i = None and there exists . s such that .st = N s;  an  d
4. terminated if it is inactive and, for al l .i ∈ dom(T ), it holds that . com(T (i)) =
skip. 

The semantics uses evaluation contexts, inductively defined by the grammar

. C ∈ ECtxt ::= [ ] | C; c

As usual, .[ ] is a hole, and .C[·] : Com → Com fills the hole in a context . C with 
a command. In this case, . C allows us to select the first command in a series 
of potentially nested (or empty) sequen tial compositions, which simplifies the
formulation of our small-step rules.

We can now define the main step relation .→ of the semantics. See below 
for a selection of the rules. Here, we denote updating the function . f at . x to . y
by .f(x := y)(z),  which is . y if .z = x and .f(z) otherwise. The omitted rules for 
constructs such as if, while, etc. are standard. We focus here on the rules that 
are non-standard or important for cooperative semantics. If there is an active 
command, we perform a step by finding a redex and a corresponding evaluation
context. Based on the redex, we can apply the appropriate rule. Exactly one
redex exists, except in the case of .skip where there are none. Otherwise, if there 
is no active command, the Activate rule lets us nondeterministically c hoose a
thread whose guard holds, and whose command is not .skip, to a ctivate.

.i ∈ N . T (i) = (C[basic op], g)
Basic 

. (i, T,N s) → (i, T (i := (C[skip], g)),N op(s))

.i ∈ N . T (i) = (C[skip; c], g)
SeqSkip 

.(i, T,N s) → (i, T (i := (C[c], g)),N s)
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.i ∈ N . T (i) = (C[yield g],_)
Yield 

. (i, T,N s) → (None, T (i := (C[skip], g)),N s)

.i ∈ N .T (i) = (C[assert f b], g) . s ∈ b
AssertTrue

. (i, T,N s) → (i, T (i := (C[skip], g)),N s)

.i ∈ N .T (i) = (C[assert f b], g) . s /∈ b
AssertFalse

. (i, T,N s) → (i, T (i := (C[skip], g)),F f)

.i ∈ N . T (i) = (C[print e], g)
Print 

. (i, T,N s) → (i, T (i := (C[skip], g)),N s)

.i ∈ N .T (i) = (c, g) .c = skip . s ∈ g
Activate

. (None, T,N s) → (i, T,N s)

Following Abadi and Plotkin, we call steps using the Activ ate rule choice
steps, and write .→c, and the other steps active steps, and write .→a.  As  befits  a  
semantics for cooperative execution, once a thread has been activated, it cont in-
ues execution until it yields, faults, or reaches .skip. Unlike Abadi and Plotkin, we 
do not automatically yield when the active command is .skip. Instead, execution 
is suspended in what is called an incomplete configuration, a notion that will 
be important for sequential compositionality because in a cooperative seman-
tics, not every sequential composition is a preemption point. For a thread to
“properly” terminate, it must end with a .yield rather than a .skip. 

Definition 3 (Incomplete configuration). A configuration .(i, T, st) is 
incomplete if .i ∈ N, .com(T (i)) = skip and there exists . s such that .st = N s. 
Incomplete configurations are active: they have a thread that is still selected for 
execution, but that cannot make any further progress. 

Example 1. We now give a sample execution from our semantics, where . State =
N. We abbreviate .basic(x x + 2) to .x ← x + 2. We name the rules used at 
each step and underline the redex when taking an active step.

. (None, {(1, (x ← x+ 2;yield , {0, 42}))}, N 0)

→c (1, {(1, (x ← x+ 2;yield , {0, 42}))}, N 0) (Activate) 
→a (1, {(1, (skip; yield , {0, 42}))}, N 2) (Basic) 
→a (1, {(1, (yield , {0, 42}))}, N 2) (SeqSkip) 
→a (None, {(1, (skip, ))}, N 2) (Yield)
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We start in an inactive but not terminated configuration, and the last con-
figuration is terminated. Since the status is .N 0 in the initial configuration and 
the guard contains . 0, the thread can be chosen for execution in the first Activate 
step. The next two steps, Basic and SeqSkip, are thread-internal, and the last 
step, Y ield, returns execution to the thread pool, which contains no other active
threads. Execution therefore terminates.

Example 2. Now suppose the thread did not end in a yield. We instead have:

. (None, {(1, (x ← x+ 2, {0, 42}))}, N 0)

→c (1, {(1, (x ← x+ 2, {0, 42}))}, N 0) (Activate) 
→a (1, {(1, (skip, {0, 42}))}, N 2) (Basic) 

The last configuration is not terminated, but incomplete.

4 Event Trace Refinement 

This section defines our notion of event trace refinement. To define our traces of 
events, we will not use the small-step relation directly, but in troduce an analog
of a preemptive step, which we call a fragment.

4.1 Fragments 

With cooperative execution, other threads cannot run while a thread is run-
ning, so intermediate states between yield points are inaccessible from the out-
side. Intermediate states can be made observable via .print, but they cannot be 
affected by other threads. That means execution bet ween yield points is sequen-
tial.

We can therefore coalesce the fine-grained small-step execution of the pro-
gram into a more coarse-grained sequence of fragments that model the state 
transition and events output between yield points, or an initially active config-
uration and a yield point.

It is also here that .print comes into play: when executing a fragment, we 
track the sequence of events .e(s) emitted by each .print e command at state . s. 

Definition 4. If we can execute a sequence of zero or more active steps from 
one configuration .cfg to another .cfg , emitting the event sequence . es, we write 

. cfg
es−→∗

a cfg .

For compositionality later, it will be important to track not just the current 
state, but also the state at the most recent yield point. We therefore extend
configurations as follows:
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Definition 5 (Extended configuration). An extended configuration is a pair
.xcfg = (cfg , s) of a configuration .cfg = (i, T, st) and the state .s ∈ State at the 
last yield command. When .cfg is inactive, we require the (normal) status and 
the last yield state to coincide: .st = N s. 

Now we can define fragments.

Definition 6 (Fragments). Given extended configurations .(cfg , s) and 
.(cfg , s ),  le  t .(cfg , s)

es
==⇒ (cfg , s ) denote a fragment from .(cfg , s) to . (cfg , s )

emitting the sequence of events . es. We define it as the conjunction of: 

1. .cfg is not faulting or incomplete 
2. .cfg is inactive, faulting, or incomplete 
3. if .cfg is inactive, then there exists .cfg s.t. .cfg →c cfg and . cfg es−→∗

a cfg

4. if .cfg is active, then . cfg es−→∗
a cfg

5. if .cfg is active (including faulting or incomplete), then .s = s. 

Definition 7. If we can execute a sequence of zero or more fragments from an 
extended configuration .xcfg to another configuration .xcfg , emitting the sequence 
of events . es, we write 

. xcfg
es
==⇒∗

xcfg

In the previous two definitions, if .es is omitted, it is taken to mean the empty 
list, that is, no events being emitted.

We now give an example of a fragment, with .State = Event = N.  We  u  se
.print x to emit the current state as an event. Steps with something above . →
emit an event, the rest emit no event. C onsider the following small-step sequence:

. (None, {(2, (print x;yield , ))},N 0)

→c (2, {(2, (print x;yield , ))},N 0) (Activate) 
0−→a (2, {(2, (skip; yield , ))},N 0) (Print) 
→a (2, {(2, (yield , ))},N 0) (SeqSkip) 
→a (None, {(2, (skip, ))},N 0) (Yield) 

Example 3. The sequence forms a single fragment that we c an write as follows:

.((None, {(2, (print x;yield , ))},N 0), 0)

[0]
==⇒ ((None, {(2, (skip, ))},N 0), 0)
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We can also c onclude that

. ((2, {(2, (print x;yield , ))},N 0), 0)

[0]
==⇒ ((None, {(2, (skip, ))},N 0), 0)

Example 4. Here is an example execution of sev eral fragments:

. ((None, {(1, (x ← x+ 1;yield ;x ← x+ 1;yield , ))

, (2, (print x;yield , ))},N 0), 0)

⇒ ((None, {(1, (skip;x ← x+ 1;yield , ))

, (2, (print x;yield , ))},N 1), 1)

[1]
==⇒ ((None, {(1, (skip;x ← x+ 1;yield , ))

, (2, (skip, ))},N 1), 1)

4.2 Refinement 

Given the notion of fragments from the previous section, we can now define 
event trace refinement. When executing fragments, a trace of events is gener-
ated. This trace could be partial or end in a terminated, faulting or incomplete
configuration. We denote these results P, T, F, I, respectively.

We define the partial traces .PT from an extended configuration .xcfg induc-
tively by the following rules. Here we use . @ for list concatenation and . [] for the 
empty list. Note that, as the name suggests, the t race only records events, not
states.

xcfg =  ((i, T, N s),  s  ) 
([],  P  ) ∈ PT(xcfg) 

xcfg =  ((i, T, F f ),  s  ) 
([],  F  ) ∈ PT(xcfg) 

xcfg =  (cfg ,  s) cfg is terminated 
([],  T  ) ∈ PT(xcfg) 

xcfg =  (cfg ,  s) cfg is incomplete 
([], I) ∈ PT(xcfg)

xcfg
es
=⇒ xcfg (tr , r) ∈ PT(xcfg )

(es@tr , r) ∈ PT(xcfg)

Using the first of the above rules and the execution from Example 1: 

. {([], P ), ([], T )} ⊆ PT(((None, {(1, (x ← x + 2;yield , {0, 42}))},N 0), 0))
(1)
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The program does not emit any events, so both traces record the empty list. For 
an example where PT is instead b ound from above, we take a slightly different
program that increments . x twice, and yields in between. B y induction on PT,

. PT(((None, {(1, (x ← x+ 1;yield ;x ← x+ 1;yield , ))},N 0), 0))

⊆ {([], P ), ([], T )} (2) 

We can now define event trace refinement as follows:

Definition 8 (Event trace refinement). Let .xcfg, .xcfg be extended configu-
rations. We say that .xcfg xcfg (.xcfg refines .xcfg )  i  f .PT(xcfg) ⊆ PT(xcfg ). 

Refinement states that after executing some number of fragments from the 
concrete extended configuration, we can match the event trace and result by 
executing some number of fragments from the abstract extended configuration. 
The number of fragments may differ. This admits atomicity refinement where we 
decrease or increase the num ber of yield points between abstract and concrete
levels, which our work aims to enable. Note that the statement of refinement here
is for configurations .xcfg and .xcfg , not for programs. That is, the definition is 
for specific initial states of the thread pool, not over all of them.

Example 5 (Refinement). Since we showed in Eq. 1 and 2 that the traces of one 
program are above .{([], P ), ([], T )} and the other below, w e have

. ((None, {(1, (x ← x+ 1;yield ;x ← x+ 1;yield , {0, 42}))},N 0), 0)

((None, {(1, (x ← x+ 2;yield , ))},N 0), 0)

If the programs emitted their state as events before the last yield, refinement 
would still hold, but only for configurations starting in the same state. Refine-
ment would no longer h old if these threads were composed with another set of
abstract and concrete threads that also modify . x, even if refinement were to hold 
separately for these threads.

Example 6 (Non-refinement). Let 

. xcfgc = ((None, {(1, (x ← x+ 1;yield ;x ← x+ 1;yield , {0, 42}))
, (2, (print x;yield , ))},N 0), 0)

xcfga = ((None, {(1, (x ← x+ 2;yield , ))

, (2, (print x;yield , ))},N 0), 0)

From Example 4,  we  have .([1], P ) ∈ PT(xcfgc). By induction on PT, w e have
.PT(xcfga) ⊆ {([], P ), ([0], P ), ([0], T ), ([2], P ), ([2], T )}. Hence .xcfgc xcfga. 

Together with Example 5 and Example 3 (noting that the fragment ends 
in a terminated configuration), this shows that event trace refinement is not 
compositional with respect to parallel composition (to be defined in Sect. 5.2).
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5 Simulation 

As just mentioned, although event trace refinement is an intuitive notion of 
behavioral preservation, it does not compose with respect to parallel composi-
tion. Since compositionality is indispensable for scalable reasoning, we follow the 
usual path of defining a compositional simulation instead that can be used for
reasoning. To this end, we adapt the rely-guarantee-based simulation RGSim [11] 
to a cooperative semantics. We prove it implies our event trace refinement and 
is compositional with respect to parallel (Sect. 5.2) and sequential comp osition
(Sect. 5.3). 

The key difference between cooperative and preemptive semantics is that in 
preemptive semantics, every execution step is a yield point and therefore observ-
able as a step. In cooperative semantics, we need to distinguish between execu-
tion states in the middle of a fragment and execution states that have reached a 
yield point where interference from other threads is possible. For the simulation
to stay compositional, this needs additions to both the internal definition of the
simulation itself, and the parameters the simulation operates on.

Our simulation is between two extended configurations, one concrete and one 
abstract, with additional parameters we introduce below. Let .CState and . AState
be the concrete and abstract state set, respectiv ely. The extra parameters are:

– .Rc, Gc ⊆ CState× CState,  the  concrete rely and guarantee relations
– .Ra, Ga ⊆ AState×AState,  the  abstract rely and guarantee relations
– .α ⊆ CState×AState,  the  state relation
– .Q ⊆ CState × (N P(CState)) × AState × (N P(AState)),  the  normal 

postcondition, which is a predicate on the states and the guards of all threads.
– .Qi ⊆ CState×CState×AState×AState,  the  incomplete postcondition,  which  

is a predicate on the current states and the states at the last yield point.

The first three items are the same as in the original RGSim, but the normal 
postcondition now keeps track of the guards. The i ncomplete postcondition is a
new addition needed for sequential compositionality in Sect. 5.3. As is customary 
with rely-guarantee reasoning, we assume the rely relations .Rc, Ra are reflexiv e.

As with the original RGSim, we will need the following definition:

Definition 9 (.α-related transitions). We call . Rc, Ra α the .α-related tran-
sitions i n .Rc and .Ra. They are the set of all tuples . (sc, sc, sa, sa) ∈ CState ×
CState×AState×AState such that .(sc, sa) ∈ α, .(sc, sc) ∈ Rc, .(sa, sa) ∈ Ra and 
.(sc, sa) ∈ α. 

Let .xcfgc = (cfgc, sc) be the concrete extended configuration, where . cfgc =
(ic, Tc, stc), and similarly for the abstract extended configuration .xcfga.  We  now  
define the simulation between .xcfgc and .xcfga coinductively. 

Definition 10. If .Rc, Gc, α,Ra, Ga xcfgc xcfga Q,Qi then all of the fol-
lowing must hold: 

1. .(sc,  sa) ∈ α
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2. if .ic = None then . ia = None
3. neither .cfgc nor .cfga are faulting or incomplete 
4. if .cfgc is terminated, then there exists an extended configuration .xcfga such 
that .xcfga ⇒∗ xcfga, .cfga is terminated, .(sc, sc, sa, sa) Gc, G

∗
a α and 

.(sc, guard ◦ Tc, sa, guard ◦ Ta) ∈ Q,  wher  e . ◦ is function composition. 
5. if .xcfgc

es
==⇒ xcfgc and .cfgc is inactive, then there exists an extended con-

figuration .xcfga such that .xcfga
es
==⇒∗

xcfga, .cfga is inactive, . (sc, sc, sa, sa) ∈
Gc, G

∗
a α and .Rc, Gc, α,Ra, Ga xcfgc xcfga Q,Qi. 

6. if .xcfgc
es
==⇒ xcfgc and .stc = F f , then there exists an extended configuration 

.xcfga such that .xcfga
es
==⇒∗

xcfga and .sta = F f . 

7. if .xcfgc
es
==⇒ xcfgc and .cfgc is incomplete, then there exists an extended config-

uration .xcfga such that .xcfga
es
==⇒∗

xcfga, .cfga is incomplete, . (sc, sc, sa, sa) ∈
Gc, G

∗
a α and there exists .sc , sa such that .stc = N sc , .sta = N sa and 

.((sc, sc ), (sa, sa)) ∈ Qi. 
8. if .xcfgc and .xcfga are extended configurations such that .cfgc and .cfga are 
inactive and .(sc, sc, sa, sa) Rc, R

∗
a α, then . Rc, Gc, α,Ra, Ga xcfgc

xcfga Q,Qi. 

Case 1 states that the last yield states of the concrete and abstract configu-
rations must be related by the state relation. Case 2 states that if the concrete 
configuration is inactive, then the abstract one must be too. It is used to pre-
vent situations where we are free to pick a thread on the concrete level, but on
the abstract level, we are forced to execute a thread. For case 3, the simulation 
only includes inactive configurations and active, but not faulting or incomplete 
configurations. Faulting and incomplete configurations are dealt w ith by execut-
ing fragments from a configuration in the simulation. Case 4 is the “base case” 
of the simulation, when the concrete configuration is terminated. The abstract 
configuration is allowed to do some work before terminating. T he final states
and guards of all threads must satisfy the normal postcondition. Cases 5, 6, 7 
require that when we execute a fragment on the concrete level, we must match it 
with zero or more fragments on the abstract level. The fragments must preserve 
the state relation and also obey the guarantee relations (if we end in an inac-
tive configuration). Case 7 also requires that when we end up in an incomplete 
configuration, that the last yield states a nd current states obey the incomplete
postcondition. Case 8 requires that the simulation be robust against interference 
from the environment, bounded b y the rely relations and the state relation.

We can strengthen rely relations and weaken the guaran tee relations and
postconditions:

Theorem 1. If .Rc, Gc, α,Ra, Ga xcfgc xcfga Q,Qi and 

– .Rc ⊆ Rc and .Ra ⊆ Ra (strengthening relies) 
– .Gc ⊆ Gc and .Ga ⊆ Ga (weakening guarantees) 
– .Q ⊆ Q and .Qi ⊆ Qi (weakening postconditions)



98 K. Tran et al.

then .Rc, Gc, α,Ra, Ga xcfgc xcfga Q ,Qi. 

We then prove the simulation sound with respect to the more intuitive trace 
refinement. First we p rove a lemma, then obtain soundness as a corollary:

Lemma 1. Let .Id be the identity relation and . be the universal relation. If 
.Id, , α, Id, xcfgc xcfga Q,Qi, then .PT(xcfgc) ⊆ PT(xcfga). 

Proof. By induction over .PT. 

Theorem 2 (Soundness). Let .Rc, Ra be reflexive rely relations. 
If .Rc, Gc, α,Ra, Ga xcfgc xcfga Q,Qi, then .xcfgc xcfga. 

Proof. Using Theorem 1, we strengthen the relies to the .Id relation and weaken 
the guarantees to the . relation. Unfold the definition of . and apply L emma
1. 

5.1 Transitivity 

By focusing on the extended configurations, we can think of the simulation 
as a binary relation. Thus we might wonder whether or not our simulation is 
transitive, which would allow stepwise simulation proofs. Assuming that the rely 
relations and state relations are in some sense compatible, we can answer in the
affirmative. The compatibility condition can informally be described as: given
.α ◦β-related transitions, we can factor them into some .α-related transitions and
.β-related transitions. More f ormally,

Definition 11. Let .Rl, Rm, Rh be rely relations on the low, middle and 
high levels. Let .α be a state relation between the low and middle levels, 
and let .β be a state relation between the middle and high levels. We say 
that .compat(Rl, α,Rm, β, Rh),  if  for  a  ll .(sl, sl, sh, sh) Rl, Rh α◦β and . sm
s.t. .(sl, sm) ∈ α and .(sm, sh) ∈ β, there exists .sm s.t. . (sl, sl, sm, sm) Rl, Rm α

and .(sm, sm, sh, sh) Rm, Rh β. 

Theorem 3 (Transitivity). Let .Rl, Rm, Rh be rely relations on the low, middle 
and high levels. Let . α be a state relation between the low and middle levels, and 
let . β be a state relation between the middle and high levels. If 

– . Rl, Gl, α,Rm, Gm xcfg l xcfgm Q,Qi

– . Rm, Gm, β, Rh, Gh xcfgm xcfgh Q ,Qi

– and . compat(Rl, α,Rm, β, R∗
h)

then .Rl, Gl, α◦β,Rh, Gh xcfg l xcfgh Q◦Q ,Qi◦Qi,  wher  e . ◦ means relational 
composition and .R∗

h is the reflexive transitive closure.
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5.2 Parallel Composition 

Although our language lacks a parallel composition operator, by taking the dis-
joint union of thread pools, we can obtain a somewhat restricted analog of it. 
This shallow embedding as a disjoint union allow us to inherit properties like 
associativity automatically. We can break down a simulation into sim ulations on
each part of the disjoint union, abstracting away the behavior of the other part
of the disjoint union using the rely and guarantee relations.

Given normal postconditions .Q,Q for the parts, what should the normal 
postcondition of the whole be? We need the states to agree, and the guards to 
be the disjoint union of the guards for the parts. Thus, we define .Q Q ,  the  se  t of
tuples .(sc, gsc ∪ gsc , sa, gsa ∪ gsa) where .(sc, gsc , sa, gsa) ∈ Q, . (sc, gsc , sa, gsa) ∈
Q , .dom(gsc) ∩ dom(gsc) = ∅ and .dom(gsa) ∩ dom(gsa) = ∅. 

As with rely-guarantee reasoning, we need the normal postconditions to 
be stable under interference from the environment. Let . Q ⊆ CState × (N
P(CState)) × AState × (N P(AState)) be a normal postcondition and . Λ ⊆
CState×CState×AState×AState.  We  s  ay .Sta(Q,Λ), if for all . (sc, gsc , sa, gsa) ∈
Q and .(sc, sc, sa, sa) ∈ Λ,  we  have .(sc, gsc , sa, gsa) ∈ Q. 

We now can state our parallel composition rule:

Theorem 4 (Parallel composition). If 

1. . Rc, Gc, α,Ra, Ga ((ic, Tc, stc), sc) ((ia, Ta, sta), sa) Q,Qi

2. . Rc, Gc, α,Ra, Ga ((ic, Tc, stc), sc) ((ia, Ta, sta), sa) Q ,Qi

3. .Gc ⊆ Rc, .Gc ⊆ Rc, .Ga ⊆ Ra and . Ga ⊆ Ra

4. .dom(Tc) ∩ dom(Ta) = ∅ and . dom(Tc) ∩ dom(Ta) = ∅
5. .Sta(Q, Rc, R

∗
a α) and . Sta(Q , Rc, Ra α)

6. . (ic , stc , ia, sta ,None,None) ∈ {(ic, stc , ia, sta , ic, ia), (ic, stc , ia, sta , ic, ia)}
then 

. Rc ∩Rc, Gc ∪Gc, α,Ra ∩Ra, Ga ∪Ga

((ic , Tc ∪ Tc, stc ), sc) ((ia, Ta ∪ Ta, sta ), sa) Q Q ,Qi

Assumptions 1 and 2 are the simulations on the “parallel compo nents”. Assump-
tion 3 states the rely and guarantee relations between the compo nents are com-
patible. Assumption 4 states that the thread pools must have d isjoint thread
ids. Assumption 5 states that the normal postconditions are stable under inter-
ference. Assumption 6 is meant to formalize the idea of picking one half of the
parallel composition to execute.

5.3 Sequential Composition 

Even for concurrent programs, there is often a substantial amount of sequential 
reasoning to be done. In the preemptive case, every sequential composition is a 
preemption point, but with cooperative semantics this is not always the case.
When executing a fragment with a sequential composition, we could either yield
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or not before executing the second part. This leads us to distinguish between 
normal and incomplete execution of a fragment. To propagate information from 
the first part to the second part of a sequential composition, we use the distinc-
tion between normal and incomplete postconditions. The normal postcondition, 
in addition to states, tracks thread guards at the end of executing the first part 
so that the second part can reason about them. The incomplete postcondition
of the first part allows us to take the first part of the execution into account for
checking the guarantee and state relations when the second part encounters a
yield instruction. We now state our sequential composition rule:

Theorem 5 (Sequential composition). If 

1. . 
Rc, Gc, α,Ra, Ga

((ic, {(tc, (cc, gc))}, stc), sc) ((ia, {(ta, (ca, ga))}, sta), sa) Q,Qi

2. For all .(sc, gsc , sa, gsa ) ∈ Q such that .(sc, sa) ∈ α, 

. Rc, Gc, α,Ra, Ga ((None, {(tc, (cc, gsc (tc)))},N sc), sc)

((None, {(ta, (ca, gsa (ta)))},N sa), sa) Q ,Qi

3. For all .(sc, sc , sa, sa) ∈ Qi and guards .gc, ga, 

. Rc, Gc, α,Ra, Ga ((tc, {(tc, (cc, gc))},N sc ), sc)

((ta, {(ta, (ca, ga))},N sa), sa) Q ,Qi

4. For all .(sc, gsc , sa, gsa ) ∈ Q, we have .tc ∈ dom(gsc ) and .ta ∈ dom(gsa ), 
and .sc ∈ guard(gsc (tc)) and . sa ∈ guard(gsa (ta))

5. .cc = skip and . ca = skip

then 

. Rc, Gc, α,Ra, Ga

((ic, {(tc, (cc; cc, gc))}, stc), sc) ((ia, {(ta, (ca; ca, ga))}, sta), sa) Q ,Qi

Assumption 1 is the simulation on the first part of the sequential composition.
Assumption 2 is the simulation on the second part, assuming the first p art ter-
minated normally. Assumption 3 is the simulation on the second part of the 
sequential composition, assuming the first part terminated in an incomplete 
configuration. The guards are actually irrelevant since we deal with active con-
figurations. Assumption 4 specifies that when the first part terminates normally, 
we are not in a state blocked by the guard.

5.4 Example 

We borrow the following example from Liang et al. [11, Section 4.3]. We wish to 
establish a simulation between incrementing an abstract atomic counter . x ∈ N

by 2 and incrementing a concrete lock-protected counter by 1 twice. The concrete
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state consists of a counter .x ∈ N, an optional thread id .i ∈ N None} indicating 
the lock owner, and a ghost copy .X of the abstract state. Then define for .i ∈ N: 

. lock i = (if owner = None then skip else yield owner = None); owner ← i

unlock i = assert (owner = i); owner ← None

The commands on each lev el are:

. cc =(lock w;yield ); (x ← x+ 1;yield ); (x ← x+ 1;yield );

unlock w;yield

ca =x ← x+ 2;yield

We have rely and guarantee relations, parametrized by a thread id .i ∈ N. 

. Rc(i) = {(sc, sc) | owner(sc) = i =⇒ sc = sc}
Gc(i) = {(sc, sc) | sc = sc ∨ ((owner(sc) = None =⇒ owner(sc) = i)

∧(∃i ∈ N. owner(sc) = i =⇒ i = i ∧ owner(sc) ∈ {i,None}))}

The rely relation states that if a thread . i holds the lock, then the environment is 
not allowed to change the state. The guarantee relation states that thread . i can 
take, hold or release the lock, and cannot make any other state c hanges unless
they have the lock.

The state relation says that .X on the concrete level indeed copies the abstract
. x, and that when the lock is not held, the abstract and concrete . x are e qual:

. α = {(sc, sa) | x(sa) = X(sc) ∧ (owner(sc) = None =⇒ x(sc) = X(sc))}

Our normal postcondition .Q is just . α on the states, and that t he writer’s
guard is . . The incomplete postcondition .Qi is not used f or this example.

. Q = {(sc, gsc , sa, gsa) | (sc, sa) ∈ α ∧ gsc = {(w, )} ∧ gsa = {(w, )}}
Example 7. For any pair of states .(sc, sa) in . α,  we  h  ave:

. Rc(w), Gc(w), α, ,

(None, {(w, (cc, ))},N sc) (None, {(w, (ca, ))},N sa) Q,Qi

Example 8. When we repeat the execution of .cc and . ca, we would also expect 
the simulation to hold. Indeed, using the sequent ial composition rule, we have:

. Rc(w), Gc(w), α, ,

(None, {(w, (cc; cc, ))},N sc) (None, {(w, (ca; ca, ))},N sa) Q,Qi

Liang et al.’s example also contains printer threads. Our Isabelle formaliza-
tion similarly proves the simulation between these, and uses the parallel compo-
sition rule to prove simulation for the entire system.
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6 Limitations and Future Work 

The aim to use this work in the multicore seL4 verification informs some of 
its limitations. For instance, constructs for dynamically creating threads are not 
necessary for a static number of concurrent kernel instances. Parallel composition 
in a cooperativ e semantics is challenging to specify. A fork command would be
a more natural extension but is unnecessary for our purposes.

The language we present is based on Complx [2]. Complx has exceptions, 
which are useful for modelling C constructs such as break and continue.  We  
leave this f or future work to focus on the main compositionality results first.

In our semantics there are “deadlocked” configurations: inactive configura-
tions with threads that have not reached .skip, but no guards are satisfied so 
no thread can run. Also, an active thread may run forever without yielding. 
Neither situation creates any fragments, thus satisfying our simulation and con-
sequently, event trace refinement. T hus, deadlock freedom and termination are
not preserved by our simulation, only safety properties on states.

We have not investigated how weak memory models would affect the seman-
tics and have so far targeted sequential consistency only.

7 Related Work 

Our mechanization of cooperative semantics is loosely based on t he ideas of
Abadi and Plotkin [1]. Their aim is not program verification, but instead explor-
ing denotational semantics and connections to algebraic effects.

Liang et al. [11] introduce RGSim, a rely-guarantee-based simulation compo-
sitional with respect to constructs like parallel and sequential composition. Their 
work is formalized in Coq using a language with preemptive semantics. We adapt 
the simulation to a language with cooperative semantics while preserving paral-
lel a nd sequential composition. As preemptive semantics can be expressed using
cooperative semantics, our work in some ways generalizes RGSim.

For the treatment of atomicity refinement more broadly, linearizability [6]  is  
a safety property widely used as a correctness condition for concurrent objects. It 
roughly states that each history of method invocations and responses is equiv-
alent to a history where methods are executed sequentially. However, not all 
programs are naturally expressed as objects with methods; in particular, not
those that we are interested in applying our method to.

Later work by the RGSim authors Liang and Feng [10] enables the use of 
liveness properties for blocking synchronization in addition to linearizability, so 
the same generalization may be possible in our setting. For our application, event 
trace refinement is sufficient, so we have not yet explored this direction further.

Elmas et al. [3, 4] prove atomicity refinement and linearizability using reduc-
tion, which checks whether individual steps of a thread commute with steps of 
other threads, and which does not comp ose with respect to parallel composition.
Elmas et al. use a preemptive semantics, but Civl [9] extends this line of work to 
use cooperative semantics. Their notion of refinement associates program steps
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with assertions, and checks for preservation of end-to-end behavior and absence 
of assertion failures. These metho ds are not proven sound in a proof assistant.

Compositional notions of refinement have been used to verify c oncurrent
compiler optimizations. Simuliris [5] uses a separation logic-based simulation to 
prove a fair termination preserving contextual refinement of concurrent optimiza-
tions. Contextual refinement considers the termination behavior of a program 
(terminating with a value, infinite execution or getting stuck) when comp osed
with arbitrary well-formed contexts. Their language has preemptive semantics,
does not consider I/O and assumes non-blocking execution.

Timany and Birkedal [15] provide a compositional separation logic-based 
proof method for refinement of programs with continuations, which they use 
as a compilation target for a cooperative concurrent language. Although they 
prove refinement between the target and source programs, they do not define 
refinement between programs in the cooperative source language. The compiler 
eliminates some nondeterminism on the concrete level by assuming a particu-
lar scheduling implementation using a queue, whereas we continue to allow f or
arbitrary interleaving of threads at yield points. Arbitrary interleaving better
models the possible range of behavior of programs at the implementation level,
such as when running on multiple cores and using different schedulers.

Vistrup et al. [17] use interaction trees [19] to enable reusable program logic 
fragments for effects on top of a pure language, including cooperative concur-
rency. Their p rogram logics deal with single programs and not refinement rela-
tions between programs.

8 Conclusion 

This paper has presented a concurrent imperative language with cooperative 
execution semantics. The language is generic over state and can be instantiated 
to model the behavior of a variety of more concrete imperative languages.

A cooperative semantics, unlike the usual preemptive concurrency semantics, 
lets us easily model different degrees of atomicity of executions within t he same
language without being constrained by the block structure of the language.

We have adapted the standard notion of trace refinement for cooperative 
semantics as a basis for the soundness of a comp ositional simulation that can be
used for reasoning about such programs.

Our simulation for cooperative concurrent semantics is based on RGSim [11], 
an existing simulation formalization for the preemptive setting. The coopera-
tive setting requires a number of subtle changes to enable compositional proof 
rules for reasoning about parallel and sequential composition. We have proved in 
Isabelle/HOL that the simulation is sound with respect to refinement, that it is 
compositional, and that it satisfies basic desirable properties such as transitivity. 
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