
Formal Memory Models for Verifying

C Systems Code

Doctor of Philosophy
School of Computer Science and Engineering

The University of New South Wales

Harvey Tuch

2008

Abstract

Systems code is almost universally written in the C programming language
or a variant. C has a very low level of type and memory abstraction and
formal reasoning about C systems code requires a memory model that is
able to capture the semantics of C pointers and types. At the same time,
proof-based verification demands abstraction, in particular from the aliasing
and frame problems.

In this thesis, we study the mechanisation of a series of models, from
semantic to separation logic, for achieving this abstraction when performing
interactive theorem-prover based verification of C systems code in higher-
order logic. We do not commit common oversimplifications, but correctly
deal with C’s model of programming language values and the heap, while
developing the ability to reason abstractly and efficiently. We validate our
work by demonstrating that the models are applicable to real, security-
and safety-critical code by formally verifying the memory allocator of the
L4 microkernel. All formalisations and proofs have been developed and
machine-checked in the Isabelle/HOL theorem prover.

i

ii

Copyright Statement

I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to
the provisions of the Copyright Act 1968. I retain all proprietary rights, such
as patent rights. I also retain the right to use in future works (such as articles
or books) all or part of this thesis or dissertation. I also authorise University
Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract
International (this is applicable to doctoral theses only). I have either used
no substantial portions of copyright material in my thesis or I have obtained
permission to use copyright material; where permission has not been granted
I have applied/will apply for a partial restriction of the digital copy of my
thesis or dissertation.

Signed:

Date:

iii

iv

Authenticity Statement

I certify that the Library deposit digital copy is a direct equivalent of the
final officially approved version of my thesis. No emendation of content has
occurred and if there are any minor variations in formatting, they are the
result of the conversion to digital format.

Signed:

Date:

v

vi

Originality Statement

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for
the award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare
that the intellectual content of this thesis is the product of my own work,
except to the extent that assistance from others in the project’s design and
conception or in style, presentation and linguistic expression is acknowledged.

Signed:

Date:

Portions of this work were previously published in the following papers:

• Harvey Tuch. Structured Types and Separation Logic. In Proceedings
of the 3rd International Workshop on Systems Software Verification
(SSV), 2008.

• Harvey Tuch, Gerwin Klein and Michael Norrish. Types, Bytes and
Separation Logic. In Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 2007.

• Harvey Tuch and Gerwin Klein. A Unified Memory Model for Point-
ers. In Proceedings of the 12th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR-12), 2005.

• Harvey Tuch, Gerwin Klein and Gernot Heiser. OS Verification —
Now!. In Proceedings of the 10th Workshop on Hot Topics in Operating
Systems (HotOS), 2005.

vii

viii

Acknowledgements

I would like to thank my family, in particular my parents Jeff and Sandy,
and siblings Laurie and Sharni, for their encouragement, understanding and
endless support for me throughout my studies.

The advice and guidance of my thesis supervisors has been invaluable. As
a student of Gerwin Klein I have benefited from his insight, direction, exper-
tise and patience. Gernot Heiser’s vision, teaching and research instruction
sparked my continuing interest in systems.

It has been a privilege to have worked in the Kernel Experimentation
Group and L4.verified team at UNSW and NICTA, alongside many excellent
researchers, engineers and fellow students, past and present. While there
are too many individuals that I have had the pleasure of working with to
name here, I would like to acknowledge the influential mentoring of Adam
Wiggins.

The feedback received from anonymous paper reviewers, conference atten-
dees, during my internship at Intel and while traveling is greatly appreciated,
as is the insightful analysis and suggestions provided by my thesis examiners,
Manuel Chakravarty, John Matthews and Tobias Nipkow. Comments on
drafts of this thesis from my thesis supervisors, David Cock, Rafal Kolanski,
Michael Norrish, Leonid Ryzhyk, Norbert Schirmer, Bastian Schlich, Thomas
Sewell and Simon Winwood have been highly useful. Any remaining mistakes
are entirely my own.

Finally, I would like to express my profound appreciation for my girlfriend
Gabrielle Gareau and her wonderful ways.

ix

x

Contents

Abstract i

Copyright Statement iii

Authenticity Statement v

Originality Statement vii

1 Introduction 1
1.1 Motivation . 1

1.1.1 C systems code . 2
1.1.2 Formal verification . 4

1.2 HOL, Isabelle and Hoare logic 6
1.3 Proving pointer programs . 7
1.4 Related work . 10
1.5 Contributions . 12
1.6 Notation . 12
1.7 Outline . 14

2 Semantic model 17
2.1 Execution model . 18
2.2 Csys assumptions . 19
2.3 State space . 21

2.3.1 Relaxed Object Lifetime Model (ROLM) 22
2.3.2 Heap . 24
2.3.3 Store . 25

2.4 Type encoding . 29
2.4.1 Type information . 31
2.4.2 Scalar types . 33
2.4.3 Aggregate types . 36

2.5 Csys-com translation . 38
2.5.1 com syntax and semantics 39
2.5.2 Notation . 41
2.5.3 Types . 41

xi

xii CONTENTS

2.5.4 Statements . 43
2.5.5 Guards . 48
2.5.6 Side-effect free expressions 49
2.5.7 Lvalues . 51
2.5.8 Example translation 53

3 Unified memory model 57
3.1 Inter-type aliasing . 57
3.2 Heap type description . 59

3.2.1 Ghost variable . 59
3.2.2 Validity . 60
3.2.3 Retyping . 62
3.2.4 Annotations . 64

3.3 Lifting . 65
3.4 Rewriting . 70

3.4.1 Proof obligations . 70
3.4.2 Conditional rewrite set 71
3.4.3 Rewrite properties . 74
3.4.4 Rules for unsafe code 75

3.5 Typed heap equivalence . 76
3.5.1 Inter-type framing . 76
3.5.2 Callee rules . 78
3.5.3 Caller rules . 80

3.6 Example: In-place list reversal 81

4 Separation logic embedding 87
4.1 Intra-type aliasing and framing 87
4.2 Shallow embedding . 90

4.2.1 Definitions . 90
4.2.2 Properties . 92

4.3 Lifting proof obligations . 99
4.4 Frame rule . 105

4.4.1 Globalised specifications 105
4.4.2 Heap-state type class 106
4.4.3 Memory safety . 106
4.4.4 Soundness . 114
4.4.5 Instantiation . 115

4.5 Examples . 117
4.5.1 In-place list reversal revisited 117
4.5.2 Factorial . 117

CONTENTS xiii

5 Structured types 121
5.1 C’s struct, union and array types 121
5.2 Structured type encoding . 123

5.2.1 Field descriptions . 124
5.2.2 Extended type tags . 124
5.2.3 Type constraints . 128
5.2.4 Type combinators . 131
5.2.5 Type installation . 133
5.2.6 Heap semantics . 134
5.2.7 Representation normalisation 134

5.3 Structured UMM . 136
5.3.1 Extended heap type description 137
5.3.2 Lifting . 141
5.3.3 Update dependency order 142
5.3.4 Generalised rewrites 144
5.3.5 Non-interference . 149

5.4 Structured separation logic 149
5.4.1 Domain . 150
5.4.2 Shallow embedding . 150
5.4.3 Properties . 151
5.4.4 Unfolding . 151
5.4.5 Lifting proof obligations 157
5.4.6 Retyping . 158

5.5 Example: In-place list reversal revisited 159

6 Case study: L4 kmalloc 163
6.1 Kernel memory management 164
6.2 Data structures . 165
6.3 Implementation code . 165
6.4 Specifications . 167
6.5 Invariants . 173
6.6 Results . 175

7 Conclusion 181
7.1 Discussion . 181
7.2 Implementation experience 182
7.3 Future work . 183
7.4 Concluding remarks . 187

A Csys syntax 189

B Type description functions 195

C Type combinator proof rules 201

xiv CONTENTS

D Separation property proofs 211

Bibliography 231

Index 243

List of Figures

2.1 Execution DAG for abstract C machine. 19
2.2 Mixed-endian integer encoding. 30
2.3 Example typ-infos. 32
2.4 Csys translation and verification processes. 39

3.1 Example heap state. 61
3.2 First stage lifting. 66
3.3 Second stage lifting. 68
3.4 Combined lifting. 69
3.5 Lifted heap updates when the heap is of the same type. . . . 72
3.6 Lifted heap updates when the heap is of a different type. . . . 73

4.1 Pre-, intermediate and post-state for two consecutive invoca-
tions of list append. 88

4.2 Empty heap predicate. 90
4.3 Singleton heap predicate. 91
4.4 Separation connectives. 92
4.5 Pre-order tree traversal representation and abstraction. . . . 97
4.6 factorial data structure transformation. 118

5.1 Heap update dependencies. 123
5.2 Type description for struct a. 126
5.3 Normalisation mapping to byte list equivalence classes. 135
5.4 Previous heap type description with a valid struct a pointer. 137
5.5 Extended heap type description with a valid struct a pointer. 138
5.6 Example heap-state. 142
5.7 Two-stage lifting. 143
5.8 Example heap-state for a masked mapping assertion. 154

6.1 Management data structure of the L4 memory allocator. . . . 165
6.2 Allocator states across operations. 166
6.3 Partition of free list. 174

xv

xvi LIST OF FIGURES

List of Tables

2.1 Address derivation in the L4Ka::Pistachio µ-kernel source. . . 26
2.2 tree min definition. 28
2.3 typ-size definition. 32
2.4 typ-align definition. 32
2.5 Type translations. 42
2.6 Arithmetic type conversions [1, 6.3.1.8–1]. 43
2.7 Conditional type conversions [1, 6.5.15–5]. 43
2.8 Integral type promotion [1, 6.3.1.1–2]. 43
2.9 Expression type conversions [1, 6.3]. 44
2.10 Expression statement translation. 46
2.11 Valid assignment expression types. 47
2.12 Compound statement translation. 47
2.13 Selection statement translation. 47
2.14 Iteration statement translation. 48
2.15 Jump statement translation. 49
2.16 Guard translations. 50
2.17 Side-effect free expression translations. 52
2.18 Side-effect free expression translations (cont.). 53
2.19 Lvalue address translations. 54
2.20 Modifiable lvalue translations. 55
2.21 tree min com translation. 56

3.1 f specification and definition. 70
3.2 g specification and definition. 76
3.3 alloc specification and definition. 79
3.4 cube specification and definition. 82
3.5 h specification and definition. 82
3.6 reverse specification and definition. 83

4.1 Standard and derived separation logic rules. 94
4.2 Pure separation assertions. 95
4.3 Intuitionistic separation assertions. 96
4.4 Strictly exact separation assertions. 97

xvii

xviii LIST OF TABLES

4.5 Domain exact separation assertions. 98
4.6 insert node specification and definition. 104
4.7 Intra-procedural rewrites. 109
4.8 Intra-procedural side-condition conditional rewrites. 112
4.9 Inter-procedural dependency definition. 113
4.10 swap specification and definition. 116
4.11 test swap specification and definition. 116
4.12 factorial specification and definition. 120

5.1 Type description functions. 127
5.2 α::mem-type axioms. 129
5.3 reverse struct specification and definition. 160

6.1 alloc definition. 168
6.2 init definition. 169
6.3 free definition. 169
6.4 kmalloc test specification and definition. 171
6.5 Multiple typed heaps allocator invariants. 176
6.6 Proof script sizes. 177

7.1 Isabelle/HOL model implementation metrics. 182

B.1 map-td definition (5.2.4). 195
B.2 size-td definition (5.2.5). 195
B.3 align-td definition (5.2.5). 196
B.4 lookup definition (5.2.6). 196
B.5 td-set definition (5.2.7). 196
B.6 access-ti definition (5.2.9). 196
B.7 update-ti definition (5.2.9). 197
B.8 wf-desc definition (5.2.12). 197
B.9 wf-size-desc definition (5.2.13). 197
B.10 wf-field-desc definition (5.2.15). 198
B.11 norm-tu definition (5.2.23). 198
B.12 typ-slice definition (5.3.1). 199
B.13 field-names definition (5.3.6). 199

Chapter 1

Introduction

1.1 Motivation

Since its inception, computer science has strived as a discipline to develop
methods that allow systems to be reasoned about with the same degree of
exactness and clarity as a mathematical proof. In favour of this approach
is the mechanistic nature of computation, an improving understanding of
how to architect for this goal and advances in computer systems themselves
yielding improved tools to assist. Working against this enterprise has been
the immense and increasing complexity of computer-based systems and a
patchy history of success.

At this juncture, there is increasing practical pressure to provide a high
degree of assurance of a computer system’s security and functionality. This
pressure stems from the deployment of computer systems in mission-critical
scenarios, the growing economic consequences of failure and the need to
protect computing and communication infrastructure against attack. This
requires end-to-end guarantees of system functionality, from applications
down to hardware.

In this thesis, we address some of the challenges in reasoning about the
correctness of the lowest level of the software stack. This poses challenges
distinct to other layers as a result of the common choices of implementation
languages — typically machine assembly, C or C++ — that have a very
low level of type and memory abstraction, and the unshielded interaction
with hardware. The lowest level of the software stack may be an operating
system, hypervisor, firmware, garbage-collected language run-time, real-time
executive, etc. Collectively, we refer to software at this level as systems code.

In the rest of this section we further develop the motivation for reasoning
about the correctness of systems code, elaborate on the technical problems
we intend to address during the course of the thesis, and provide the case for
certain formal tools being of use in the pursuit of a solution.

1

2 CHAPTER 1. INTRODUCTION

1.1.1 C systems code

The vast majority of systems code today is implemented in the C program-
ming language or some variant such as C++ and Objective-C. To understand
why this is the case we consider first the history of C and then its nature as
a language.

Along with moon landings, tie-dye shirts and the Beatles, the 1960s
and 1970s brought us many significant systems developments, including
the C language and Unix operating system. As described in Ritchie’s
detailed history of the development of the language [82], it followed earlier
efforts at implementing Unix on the PDP-7 in assembler and the typeless
B language. C was simple and small, suited to the machines of the day
and limited in the degree of hardware abstraction of types and language
constructs. Nonetheless, C evolved a non-trivial type system and portability
while maintaining the correspondence between its primitives and hardware
operations, hence providing efficient compiled output that was competitive
with handwritten assembly code. For these reasons, the success of Unix and
its derivatives, and perhaps also simply as a result of first-mover advantage,
C has established itself as the language de rigueur of systems.

Today, Unix derivatives continue to enjoy great popularity and almost
every significant operating system is implemented at some level in C or a
variant. This is true in the commercial world (Windows XP/Vista, Mac OS
X, Linux, Free/Open/NetBSD, Solaris, HP-UX, AIX), microkernel research
(Mach, L4, Fluke, EROS, Exokernel, MINIX) and embedded systems (Vx-
Works, QNX, Windows CE). Not just traditional operating systems, but
hypervisors (Xen) and even “safe” language runtimes (Sun Hotspot, Mono)
follow the rule.

Systems impose on languages many abstraction breaking requirements
and are not usually considered amenable to implementation in higher-level
languages like Java and ML. For example, zero-copy I/O and address trans-
lation are crucial features and programmers demand the freedom to control
data structure layout [87], in particular when optimising the cache and TLB
footprint that is typically opaque in such languages. Inside the research
community there are recent promising efforts at harnessing the gains of the
last three decades of programming language research [8, 22,29, 37,46, 68, 89],
with an emphasis on types and static checking, when implementing systems.
However, these advances are yet to be popularised in industry and still face
enormous scepticism from systems implementors who are highly obsessed
with efficiency, sometimes to the extreme where clock cycles are the metric
of choice.

Having established C’s rise to dominance, we now consider the language
itself. C is a sequential imperative language with (mostly) nested control
structures. Side effects occur through expression evaluation and the language
provides a number of primitive types and operations corresponding closely

1.1. MOTIVATION 3

in spirit and often in practice to CPU integer, floating point and address
registers and instructions. C also allows programmers to derive further types
from the primitive types in a curious mixture of first- and second-class types
through its struct, union and array types.

The C type system evolved from the typeless B language, motivated by
convenience, and in earlier versions there were few checks for type safety,
for example it was possible to assign pointer values to integers without the
need to cast [82]. Even today, it is easy to violate the C type system by its
cast mechanism and through address arithmetic. The programmer is given,
intentionally, access to low-level bit and byte representations of values in
memory. There are no checks on array bounds when indexing — this would
violate C’s design philosophy. With great power comes great responsibility
and it is easy to violate invariants of the system by accessing unallocated
memory, exceeding the bounds of arrays, dereferencing a dangling pointer,
etc.

A key aspect of systems programming is managing memory. C does not
have garbage collection and the programmer is responsible for allocation
and deallocation of memory through library calls. A systems implementor
may even develop his or her own memory allocator that replaces this already
low-level interface, enabling direct management of the physical memory in a
system. Memory management in C is one of the sweet spots we target in
this thesis.

We consider the above features of C’s types and memory model to be one
of the fundamental differentiators of formal systems code verification from
the general problem of software correctness. We now elaborate on the specific
problems that formal reasoning about C’s memory interactions brings about.

Pointers, types and safety

Type safety is the guarantee that the evaluation of an expression does
not result in the machine entering an erroneous state and that it yields
the expected type. This has been shown for C when considering strictly
conforming programs [1, 4–5] (see §2.1) by Norrish [74]. Unfortunately,
systems code is by no means strictly conforming and we could say by definition
requires the ability to violate the standard’s strict rules on how memory can
be accessed. As a result, when describing type safety with respect to a C
program in this thesis, we refer to a looser notion, where we may require
expressions that designate a memory object to have a type corresponding to
the expected value stored in memory. Program fragments can be type-safe if
all their expressions have this property and later we formalise what is meant
by the expected value’s type.

Memory management code tracks the free memory that can be allocated
and also sometimes the memory that has been allocated. This is commonly
done through pointer-linked data structures, and this use of what are also

4 CHAPTER 1. INTRODUCTION

called mutable inductively-defined data structures is the cause of a great
degree of the difficulty in reasoning about such code formally. This difficulty,
a direct consequence of the use of indirection, can be broken down as the
aliasing [14] and frame [61] problems.

For an example of aliasing, consider a program with two pointer variables
int * p and int * q and the following triple:

{| True |} ∗p = 37 ; ∗q = 42 ; {| ∗p = ? |}

We are unable to ascertain the value pointed to by p as it may refer to the
same location as q. We need to state that p = q or p 6= q in the pre-condition
to be able to determine the value of ∗p in the post-state. We refer to aliasing
between pointers of the same type in this thesis as intra-type aliasing.

The aliasing problem is much worse for inductively-defined data structures,
where it is possible that structural invariants can be violated, and where we
need more sophisticated recursive predicates to stipulate aliasing conditions.
These predicates appear in specifications, invariants and proofs, and their
discovery is often a time consuming trial-and-error process.

The aliasing situation becomes untenable when code is type-unsafe and
we are forced to seek improved methods. If instead we had a variable float
* p:

{| True |} ∗p = 3 .14 ; ∗q = 42 ; {| ∗p = ? |}

then not only do we have to consider aliasing between pointers of different
types, but also the potential for p to be pointing inside the encoding of ∗q
and vice versa. We talk about this phenomenon as inter-type aliasing.

The frame problem is apparent in Hoare triples. While specifications may
mention some state that is affected by the intended behaviour of a program,
it is hard to capture the state that is not changed. In the above example, a
client verification that also dereferences a pointer r, not mentioned in the
specification, has no information on its value after execution of the code
fragment. This limits reusability and hence scalability of verifications.

There have been several solutions proposed in the literature to these
problems, which we examine in §1.3. Our intention is not to propose a
completely new method, but to study the mechanisation of these solutions,
unite them in a common framework and adapt them to type-unsafe C systems
code.

1.1.2 Formal verification

Formal reasoning with the usual process of pen-and-paper mathematical proof
neither scales as we would like in software verification nor has the expected
degree of rigour. For example, formal proofs can unintentionally abstract
away critical details and miss boundary conditions, as Bloch observes with the

1.1. MOTIVATION 5

textbook binary search algorithm [12]. There are two main, complementary,
approaches to technology that can assist here — algorithmic verification and
theorem proving.

Algorithmic verification techniques typically target a limited subset of
the language and a restricted class of properties where there are decidability
results or procedures that are efficient in practice. Research in this area
has produced impressive results in recent years with improvements in the
underlying theory and increased available computing power. They can catch
increasingly wider classes of programmer errors and even guarantee the
absence of certain types of bugs. We touch on some of the algorithmic
techniques that have been aimed at C systems code verification in §1.4.
However, it is easy to lose track of the fact that such techniques only
currently help with the low hanging fruit and the verification story does not
end here. In particular, we wish to show more general properties such as
functional correctness, i.e. that a system does what we intend it to do.

To provide for a wider set of properties, we use the theorem proving
approach that involves describing the intended properties of the system
and a model of its source code in a formal logic, and then deriving a
mathematical proof showing that the model satisfies these properties. Only
the expressiveness of the logic limits the properties that can be shown, at
least in principle. Contrary to algorithmic techniques, theorem proving is
usually not an automatic procedure unless we restrict ourselves to decidable
logics, e.g. quantifier-free first-order logic. Such restrictions have the same
drawback as algorithmic techniques, and so we require human interaction in
our proofs. While modern theorem provers remove some of the tedium from
the proof process by providing rewriting, decision procedures, automated
search tactics, etc., it is ultimately the user who guides the proof, provides
the structure, or comes up with suitably strong induction statements. Proofs
are developed interactively but can be checked automatically for validity once
derived, making the size and complexity of the proof irrelevant to soundness.

Proof creation has a high cost associated with it. To give an idea, it
has been the author’s experience [93, 94, 96] that, in an interactive theorem
prover, verifying the functional correctness of C code can require between
one and two orders of magnitude more proof steps than line count, and in a
single person year, we may be limited to verifying no more than something in
the order of 1000 lines-of-code (LoC). Little data exists for how proof-based
projects scale, but it is unlikely to be linear.

The economics of verification have two significant consequences. First,
the range of systems we can hope to verify is limited, but is still large enough
to be practically interesting. Modern microkernels, with implementations
around 10,000 LoC are hopefully within the realm of possibility. Verification
of such systems can bring significant improvements to the reliability of the
entire software stack as above the microkernel layer hardware protection
domains limit the impact any incorrectly behaving software has on the

6 CHAPTER 1. INTRODUCTION

trusted computing base [83]. L4 [57] is a member of this class of kernels and
the work undertaken during this thesis has been a part of the L4.verified
project [28] that aims to prove that the behaviours of a C implementation
for a next-generation L4 design conform to a high-level abstract API [26].
We use L4 examples in various places in the following1.

The second consequence of cost is that it is important to have formal
models that are as abstract as possible while remaining sound. The construc-
tion of these models for reasoning about memory is a recurring theme in this
thesis.

1.2 HOL, Isabelle and Hoare logic

We use higher-order logic (HOL) as the logical substrate of our specifications
and proofs. It goes beyond first-order logic in allowing quantification over
functions and is typed. HOL is highly expressive and allows us to model most
mathematical concepts in an intuitive manner. In fact, it is quite common
to embed others logics and mathematical theories in HOL, and it has been
successfully used in a number of hardware and software formalisations and
verifications [21,32,38,39,48,51,74,77].

The generic Isabelle theorem prover [78] has a HOL instantiation, called
Isabelle/HOL, and we take this as our technological infrastructure. Isabelle
is an interactive theorem proving system with powerful automated rewriting
support [72], a high-level proof language [102], rich set of HOL libraries and
is built on an LCF-style proof kernel [34, 35]. This last point, where LCF
stands for Logic for Computable Functions, is of special interest as theorem
provers themselves are complex and we trust them to be reliable. LCF-
style architectures enhance our confidence in this by reducing the trusted
components of the theorem prover to a minimal set of code that is isolated
from the rest by the type system of ML, Isabelle’s implementation language.
It would not be a stretched analogy to liken it to the microkernel approach
to system architecture.

Above the HOL layer, we use Schirmer’s verification environment [85]
that enables us to write HOL pre/post specifications, model our C code, and
perform verification using the axiomatic techniques of Hoare [43]. We give
more details of this environment in §2.5.1. Hoare triples, where a block of
code is preceded by a pre-condition and followed by a post-condition, have
already appeared in §1.1.1. Formally, {| P |} c {| Q |} has the meaning that
if the block of code c is entered in a state satisfying the pre-condition P
and the code terminates, then the system will be in a state satisfying the
post-condition Q. This is known as partial correctness2.

1For logistical reasons these were based on an earlier implementation of L4, the
L4Ka::Pistachio kernel [90].

2If we are also guaranteed termination then this becomes total correctness.

1.3. PROVING POINTER PROGRAMS 7

A Hoare logic is a set of rules that allow the step-by-step syntactic
transformation of a triple to a set of logical statements, in our case HOL
goals, which we refer to as proof obligations. A simple example is the
transformation of the triple for int n:

{| n > 1 |} n = n − 1 ; {| n > 0 |}

to the HOL goal n > 1 −→ n − 1 > 0, which is trivially true.
A verification condition generator (VCG) can, when supplied suitable

invariant annotations, automatically perform the transformation, freeing the
user from this initial mechanical aspect of the proof process. Schirmer’s
entire verification environment, including the verification condition generator,
is implemented in Isabelle/HOL, providing the soundness benefits of the
LCF-style architecture, and allows the full HOL machinery to be available
to the program verifier in specifications and proofs.

Above we dwell on details not just to provide some preliminaries, but
because the choice of our underlying logic, tools and verification methodology
are not entirely orthogonal to how we chose to represent memory. While we
believe the developments in this thesis are more general than this specific
point in the design space, there is no doubt that the tools and logics chosen
influence the direction taken to a great extent.

1.3 Proving pointer programs

There are three approaches to reasoning about memory in C that we consider
in this thesis — semantic, multiple typed heaps and separation logic. While
these by no means provide exhaustive coverage of the literature, they are
representative of the models that are commonly used today in Hoare logic
verification. We mention some models used in other verification techniques
and earlier work in §1.4.

Semantic models

When we go beyond a toy language that only allows a set of named discrete
variables in a program’s state space, and introduce pointers as a language
feature, we want to be able to describe the effects of memory accesses and
updates through pointer expressions.

A reasonable approach from a descriptive language semantics perspective
is to regard memory simply as a function from some type addr representing
addressable locations to some type value, i.e. addr ⇀ value. This works fine
for typeless languages, while for type-safe languages we can make value a
disjoint union of languages types, e.g.:

datatype value = Int int | Float float | IntPtr addr | . . .

8 CHAPTER 1. INTRODUCTION

The semantics of access and update dereferences are easy to express as
they translate to function application and update. Address arithmetic can
be modeled by having addr be an integer type.

It is straightforward to adapt the Hoare logic assignment rule:

{| P [x/v] |} x = v ; {| P |}

where P [x/v] indicates that all occurrences of program variable x in assertion
P are replaced with v. To do so, we treat memory as a variable with a function
type. If this variable was called h then the rule would be:

{| h p 6= ⊥ ∧ P [h/h(p 7→ v)] |} ∗p = v ; {| P |}

We are not overwhelmed in the resultant proof obligations by function
updates as the scope of a function update is limited to the enclosing function,
loop or specification block.

With type-unsafe languages like C, we run into trouble with this typed
model as it becomes quickly apparent in the programmer’s model that an int
representation is not contained in a single location, and we need to replace
value with byte. We then require functions from language values to sequences
of bytes and their inverses that map the other way. Heap function update is
replaced by a series of function updates for the byte encoding. This is the
model used to describe C and C++ semantics by Norrish [74] and Hohmuth
et al [44] respectively. We adopt a similar model in Chapter 2 as the basis
for our semantics.

While it is possible to formally reason in this way about the effects of
pointer operations, we are still at a loss as to how to avoid the aliasing
and frame problems. One can derive point-wise rewrites [44] that simplify
proof obligations when we know that an update can be ignored, but there is
no abstraction from the aliasing or frame problems. The next two models
describe approaches where first inter-type aliasing and then intra-type aliasing
and the frame problem are addressed.

Multiple typed heaps

With type-safe languages, we can rule out the adverse effects of inter-type
aliasing in our memory model by having a separate heap variable for each
language type in the program’s state space, e.g. float-heap :: float ptr ⇀ float,
int-heap :: int ptr ⇀ int, int-ptr-heap :: int ptr ptr ⇀ int ptr, etc. Updates
to one heap do not affect others, and hence we get that any assertion that is
only a function of an int heap is preserved across a float * update without
any additional work needing to be done.

Bornat [14] describes how we can further rule out potential aliasing with
structure or record types in the situation where there is no pointer arithmetic
and these types are second-class, that is their values cannot be dereferenced

1.3. PROVING POINTER PROGRAMS 9

or assigned directly. With these restrictions, each field in each structured
type can be given its own heap, as it is impossible for an update to one field
to ever affect an access of another field in the same or different object.

Unfortunately, C does not guarantee type-safety and hence multiple typed
heaps are unsound as a fundamental memory model for the language. They
also do not support language features we require such as casts and pointer
arithmetic. In addition, Bornat’s restrictions do not apply to the language.
We see later in this thesis how multiple typed heaps can be used as a proof
technique without compromising soundness, and how abstract reasoning
about first-class structured types can occur.

Separation logic

Multiple typed heaps only help with inter-type aliasing. A popular approach
to managing the aliasing and frame problems currently is the separation logic
of Reynolds, O’Hearn and others [45, 81]. Separation logic is an extension of
Hoare logic that provides a language and inference rules for specifications and
programs that both concisely allows for the expression of aliasing conditions
in assertions and ensures modularity of specifications.

Separation logic introduces new logical connectives, separation conjunc-
tion ∧∗ and implication −→∗. We can now write (p 7→ 37 ∧∗ q 7→ 42) to
mean that in the heap, the dereferenced p and q map to their respective
values and do so in disjoint regions of the heap. Separation conjunction im-
plicitly includes anti-aliasing information, making specifications clearer and
providing an intuitive way to write inductive definitions for data structures
on the heap. Our earlier example becomes:

{| (p 7→ −) ∧∗ (q 7→ −) |} ∗p = 37 ; ∗q = 42 ; {| (p 7→ 37) ∧∗ (q 7→ 42) |}

Separation logic extends the usual Hoare logic rules with additional rules
to manage heap assignments and dereferences, and with the frame rule:

{| P |} c {| Q |}
{| P ∧∗ R |} c {| Q ∧∗ R |}

The frame rule allow us to take an arbitrary triple for a pointer program
and globalise it to be used in the proof of a calling procedure. This works
because separation logic forces any heap state that might be shared with the
caller to appear inside P or Q. A separation logic specification then tells the
reader what the program does not do, as well as what it does.

Even though separation logic has been developed with low-level languages
in mind, there are complications with type-unsafe languages. In particular,
there is the problem of skewed sharing [81] related to inter-type aliasing,
which we discuss at the end of §4.2.2. The frame rule as well requires special
treatment to be applicable to C programs that use a more relaxed notion of
memory safety — we consider this in §4.4.

10 CHAPTER 1. INTRODUCTION

1.4 Related work

The earliest work in program verification focused on establishing axioms
to enable mathematical reasoning about programs in imperative languages.
McCarthy [60] and Hoare [43] were influential in this endeavour. Later papers
tackled rules for assignment, procedures, recursion and heap allocation prim-
itives in the presence of pointers, reference variables and arrays. Cartwright
and Oppen [19], Morris [64], Bijlsma [10] and Burstall [16] are examples
of this. The result of applying these rules was a sequence of updates that
could then be further reasoned about in proofs, as in semantic models, or in
some cases the multiple typed heaps model, where distinct fields, arrays and
language types could be used to reduce the effects of aliasing. The languages
targeted were type-safe or typeless. Most work at this time was through
pen-and-paper formalisation.

More recently, Bornat [14] revisited the work of Morris and Burstall, and
produced a mechanised proof in the Jape editor of a number of examples in-
cluding the Schorr-Waite graph marking algorithm. A similar mechanisation
and study has been performed by Mehta and Nipkow [62] in Isabelle/HOL.
The Caduceus tool [31] also uses what now seems to be commonly called
the Burstall-Bornat model and Moy [65] extends this to cope with some
well-behaved cases of unions and type casts.

Leroy and Blazy [56] have a memory model in the Coq theorem prover
for C that is aimed at compiler verification. It contains a far more thorough
approach to C’s memory than we consider in this thesis, including the
modeling of stack variables, but has in-built allocation primitives and is
faithful to the C standard, making it not as suitable for offending systems
code. In addition, verifying functional properties of C pointer programs
requires higher-level models than those needed for reasoning about semantics
and compiler transformations, e.g. Burstall-Bornat or separation logic, which
are the focus of our work.

Norrish [74] and Hohmuth et al [44] provide mechanised C/C++ semantics
in HOL and PVS respectively, which include low-level memory models, and
provide the basis for our own semantic model in Chapter 2. In our HOL type
encoding in §2.4, the approach is similar to that of Blume’s [13] encoding of
the C type system in ML that utilises phantom typing to express pointer
types and operators for the purpose of a foreign-function interface.

Separation logic was also inspired by Burstall’s work, and has been
developed in the papers of Reynolds [80, 81], O’Hearn [75], Yang [105],
Ishtiaq [45] and Calcagno [18]. This has since been mechanised for simple
languages in Isabelle/HOL by Weber [100], Preoteasa [79] in PVS based on
a predicate transformer semantics and Marti et al [59] in Coq for a version
of C without dealing with its types. Tuch et al [96] gave the first treatment
of separation logic that unified the byte-level and logical views of memory in
Isabelle/HOL. Appel and Blazy [3] later gave a mechanised separation logic

1.4. RELATED WORK 11

for a C intermediate language in Coq with the strict standard’s memory
view.

We work with a subset of C, and there have been numerous other defini-
tions of C subsets and variants aimed at taming the language for formalisation
or as an intermediate language for transformations. These include C0 [53],
Cminor [55], Clight [11], BitC [89], CCured [68] and CIL [69]. We make no
special claim about our subset in relation to this body of research other than
that it has a lower-level memory model than most and is well suited to the
target verification environment.

Algorithmic techniques attract a lot of attention today. The main relevant
approaches are software model checking, static analysis and separation
logic decision procedures. C language software model checkers [86] include
SLAM [4] and BLAST [42], which have had success in checking safety
properties such as correct API use in device drivers. Similarly, Hallem et
al [36] use static analyses to find bugs in system code. More sophisticated
abstract domains are used in shape analyses [63,84], which can show some
structural invariants, such as the absence of loops in linked lists. Separation
logic decision procedures [6] can also show similar properties. At this point in
time, these techniques tend to be specialised for limited language fragments
or data structures, but there are promising developments that may improve
this situation [17].

We complete the related work with a brief look at what has been achieved
to date in verifying functional properties of operating systems. Some of the
earliest work on OS verification was in the PSOS [70] and UCLA Secure
Unix [99] systems. The rudimentary tools available at the time meant that the
proofs had to end at the design level; full implementation verification was not
feasible. Later, Bevier [9] describes verification of process isolation properties
down to object code level for the simplified KIT kernel in the Boyer-Moore
theorem prover. A number of case studies [20, 27, 97] have modeled the IPC
and scheduling subsystems of microkernels in PROMELA and analysed them
with the SPIN model checker. Manually constructed, these abstractions were
not necessarily sound, and so while useful for discovering concurrency bugs,
they could not provide a guarantee of correctness. The VeriSoft project [33]
is attempting to verify a whole system stack, including hardware, compiler,
applications, and a simplified microkernel called VAMOS that is inspired
by, but not very close to, L4. Most closely related to our case study in
Chapter 6 is the successful verification of the kernel memory allocator from
the teaching-oriented Topsy operating system by Marti et al [59] in Coq. The
major difference is the heavy use of pointer arithmetic and casting in L4’s
memory allocator that we are able to handle confidently and conveniently
due to our more detailed semantic model and type encoding.

12 CHAPTER 1. INTRODUCTION

1.5 Contributions

This thesis makes a number of contributions, primarily in the areas of
interactive theorem proving, formal memory models and language semantics:

• A rigorous treatment of the multiple typed heaps and separation logic
proof abstractions is provided, in a unified framework that demon-
strates the soundness of these techniques and their relationship to
the underlying byte-level view of system memory and each other. We
mechanise this treatment in higher-order logic in the Isabelle theorem
prover.

• A type encoding and semantics for C types and objects is developed in
Isabelle/HOL. This makes elegant use of the HOL type system, reduc-
ing specification and proof type annotation overhead, and integrates
with an existing Hoare logic environment and verification condition
generator. General properties of C types as given by the standard
are formalised and a mechanism to supply implementation-defined be-
haviour for specific compilers and architectures is established. We cope
fully with many language features that are often ignored in language
semantics — size, alignment, padding, type-unsafe casts and pointer
address arithmetic, to name a few.

• Limitations in the multiple typed heaps and separation logic proof
abstractions when structured types appear are exposed, and the models
are extended to accommodate these types. We show that the earlier
models are special cases of the generalised development and present
new features that are available to proofs about pointer programs with
structured types.

• A study in the application of the framework to the verification of a kernel
memory allocator for the L4Ka::Pistachio microkernel implementation
is given. This contains unsafe code that exercises our framework and
provides an opportunity to compare the two proof abstractions studied
in the same setting.

To the best of our knowledge, while some aspects of each contribution
above are mentioned in §1.4, each point constitutes a novel contribution and
no such study as this has been attempted before either in a theorem proving
system or without.

1.6 Notation

This thesis makes heavy use of formal notation from Isabelle/HOL. Mostly
this can be thought of as conforming to standard mathematical and functional

1.6. NOTATION 13

programming notation. Here we describe some of the non-standard aspects
of the language and some key types. For a more thorough introduction, the
Isabelle/HOL tutorial [73] is an excellent resource.

All definition, theorems and formulas are built up from terms. Each
term t in HOL has a type τ . Most of the time this is implicit, with Isabelle
performing type checking and inference, however we can make typing explicit
through a type annotation t ::τ . Type variables are written α, β, γ, etc. Any
two types α and β can be paired to give a new type α × β. Functions in
HOL are total, and we write function types with α ⇒ β. Type synonyms
are introduced with the types keyword and algebraic datatypes (disjoint
unions) with datatype, for example:

datatype α option = None | Some α

Compound types can be formed from pair types, e.g. tuples α × β × γ,
and Isabelle/HOL provides a means to introduce types with named fields
using the record keyword, e.g.:

record point = x :: nat
y :: nat

Each field in a record has an access and update function supplied by Isabelle.
For the field x above these are x::point ⇒ nat and x-update::(nat ⇒ nat)
⇒ point ⇒ point respectively. We use the syntax v(|x := k |) for x-update
(λ-. k) v .

While HOL is a logic of total functions, we can model partial functions
with the α option type, i.e. α ⇒ β option where None represents no mapping
and Some a the existence of a mapping with value a. Since this is a
frequent occurrence, we have special syntax, and write α ⇀ β, ⊥ and bac
respectively. There are also some additional concepts related to partial
functions. The Some constructor has an underspecified inverse called the,
satisfying the bxc = x . Function update is written f (x := y) where f ::α ⇒ β,
x ::α, y ::β and f (x 7→ y) stands for f (x := Some y). Domain restriction is
written f �A where f ::α ⇀ β and (f �A) x = (if x ∈ A then f x else ⊥).

Finite integers are represented by the type α word where α determines the
word length. This is backed by a bit-vector library with support for the usual
arithmetic and bitwise operators. For succinctness, we use abbreviations like
word8 and word32. The functions IN⇐ and IN⇒ convert to and from natural
numbers. Arithmetic operations on bit-vector values are modulo 2n, where n
is the word length.

Isabelle supports type classes [101] similar to, but more restrictive than
Haskell’s. Isabelle’s type classes are axiomatic in the sense that a set of
properties, or “axioms”, can be associated with a class, forcing all types in
that class to have the specified properties. The notation α::ring restricts

14 CHAPTER 1. INTRODUCTION

the type variable α to those types that support the axioms of class ring. So,
restricting a polymorphic term t to a type in class ring appears as t ::α::ring.
Type classes can be reasoned about abstractly, with recourse just to the
defining axioms. Furthermore, a type τ can be shown to belong to a type
class given a proof that the class’s axioms hold for τ , a process referred to
as instantiation. All abstract consequences of the class’s axioms then follow
for τ .

For every Isabelle/HOL type α we can derive a type α itself , consisting
of a single element denoted by TYPE(α). This reflects types at the term
level and provides a convenient way to restrict the type of a term when
working with polymorphic definitions. We exploit axiomatic type classes
and α itself to a great extent in this thesis, as they allow Isabelle’s type
system to manage many of the type correctness and other typing issues we
encounter.

Two final non-type related aspects of our notation deserve some attention.
First, we represent addresses with bit-vectors, and write address intervals
as {p..+n}, where p is the base address and n is the size of the interval.
Intervals wrap around the end of the address space. Hoare triples are written
{|P |} c {|Q |} where P and Q are assertions and c is a program. In assertions,
we use the syntax x́ to refer to the program variable x in the current state,
while σx means x in state σ. Program states can be bound across triples by
{|σ. P |} c {|Q |}.

1.7 Outline

This thesis is structured as a series of successive models for reasoning about
memory and pointer programs, each building upon the previous, followed by
a case study.

In Chapter 2 we introduce a subset of C designed to remove many of the
unnecessarily troublesome features of the language yet still be of relevance
to systems verification. We present a model for C types and memory and
give details of how C expressions and statements are translated to HOL.

Chapter 3 and Chapter 4 take the semantic model of Chapter 2 and
develop proof techniques above it that allow for some abstraction in the
treatment of memory updates and aliasing. Chapter 3 is concerned with the
multiple typed heaps abstraction where we unify the low-level semantic byte
granularity model with typed heaps. Chapter 4 explores a shallow embedding
of separation logic in HOL with a focus on the validity of the frame rule in
our setting.

Dealing with C’s structured types, e.g. structs and arrays, brings new
challenges which we examine in Chapter 5. We generalise the developments
of Chapter 3 and Chapter 4 and give some new rules for reasoning about
C’s non-primitive types.

1.7. OUTLINE 15

Chapter 6 is a real-world case study, on the memory allocator of an
implementation of the L4 microkernel, that both demonstrates the utility of
the models in previous chapters when verifying C systems code and allows
for a comparison of their effectiveness.

We conclude in Chapter 7 by summarising the results and experiences of
this thesis and consider future directions that might be fruitful in further
research.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Semantic model

In this chapter we give a description of the semantics for the effects of C
expressions and statements, with an emphasis on the aspects related to types
and the memory model. This provides the formal grounding for C that we
build on in later chapters where we develop proof techniques that allow us
to effectively reason about C pointer programs.

Following some introductory definitions, we give a description of the
assumptions that underlie our model and the strict subset of C utilised,
termed Csys. We present the state space and a simple model for C’s store and
heap, with semantics for accesses and updates affecting these components, in
the next section. As this is an Isabelle/HOL mechanisation, detail is provided
on how C types are encoded in HOL, taking advantage of theorem prover
features such as type inference and polymorphism to provide convenient and
compact descriptions of operations such as pointer arithmetic and reducing
the burden of type annotations in specifications and proofs.

The focus in this chapter is on memory access and update, other seman-
tic concerns with C have been treated elsewhere in the literature [74]. Of
particular interest in the present thesis is how the usually safe and standard
conforming semantics for C can be extended to cope with the system pro-
grammer’s view of C as essentially a portable assembler layer, where the
memory model is at odds with that of the strict standard. While it may be
argued that code written with such a model in mind is by definition incorrect,
the fact remains that the vast majority of operating system kernel imple-
mentations are written with C/C++ code in this way, and formal modeling
and verification can still help increase the confidence in the correctness of
the implementation. We formally state our semantic model here, achieving a
separation of concerns between the verification enterprise and checking the
validity of the model.

17

18 CHAPTER 2. SEMANTIC MODEL

2.1 Execution model

There are several key concepts from the ISO/IEC draft standard [1] that
we refer to in this chapter, introduced below. References to the relevant
paragraphs are provided with [1, Clause–Paragraph] annotations. The C
programming language has a long history and has been defined, standardised
and then revised several times since 1978 [82]. This standard for C99 comes
later than the ANSI C standard described by Kernighan and Ritchie [47] and
specifies a technically different language, with additional features. However
the spirit of the language is retained and the pertinent sections in this thesis
are common to both, so we use the ISO/IEC standard here for the clarity
its definitions bring.

The C standard does not provide a formal semantics for the language. It
does however provide a natural language definition of an abstract machine [1,
5.1.2.3], supplying the abstract semantics. This machine has a notion of state,
called the execution environment [1, 5.1.2], containing objects [1, 3.14]1. As a
C program is effectively evaluated by the abstract machine, at the granularity
of (sub-)expressions and statement evaluation, the state transitions through
side effects [1, 5.1.2.3–2]. In general there is non-determinism in the order
of expression evaluation, however the standard defines a notion of sequence
points that restricts this. One way of thinking about this is to view a program
as having a trace semantics given by an execution DAG rooted at the initial
state, branching during the evaluation of expressions, depicted in Fig. 2.1.
We include sequence points as special nodes in the DAG. The branching of
the abstract semantics is not merely on the choice of which sub-expression
to evaluate when there is a choice, but can involve partial evaluation of
sub-expressions, and can be captured as a partial order [30]. The edge labels
in this DAG are actions — object accesses and updates. Externally visible
actions are those related to volatile objects and are denoted αi. Termination
of the program may also be observed and is labeled δ. Other actions are not
further relevant and are labeled τ .

The actual semantics are provided by a set of hardware and software
that constitute the implementation. The standard places restrictions on the
behaviour of an implementation. A behaviour in the standard is considered
an “external appearance or action” [1, 3.4]. Ignoring files and I/O, we take
the trace set derived from the execution DAG to constitute these behaviours.
The standard mandates certain deterministic steps in the execution DAG,
and leaves others as:

• Implementation-defined [1, 3.4.1] — here the implementation may make
a choice, but it must be consistent with documentation.

1The standard also mentions files [1, 5.1.2.3–2], but this is only relevant in the presence
of library functions that interact with these components of state, which are outside the
scope of this thesis.

2.2. CSY S ASSUMPTIONS 19

Sequence point

Figure 2.1: Execution DAG for abstract C machine.

• Undefined [1, 3.4.3] — the standard imposes no requirements. This
would appear in the execution DAG as a node branching with every
possible action.

• Unspecified [1, 3.4.4] — the abstract semantics give more than one
possibility, i.e. branches the execution DAG in a stated manner.

Conforming programs [1, 4–7] are those programs that a conforming im-
plementation [1, 4–6] considers valid and implements the intended semantics
for. Conforming implementations should provide a subset of the behaviours
of the abstract semantics. The standard provides the notion of a strictly
conforming program [1, 4–5], imposing a well-formedness requirement on the
DAG in its abstract semantics. Any branching as a result of implementa-
tion behaviour, i.e. not an input action, should lead to states that produce
identical trace sets.

2.2 Csys assumptions

In a treatment of language semantics suitable for use as the basis of a
program verification tool, i.e. not purely descriptive, it is desirable to gain
abstraction where possible for the class of programs to be verified to simplify
the resulting proof obligations. This necessitates making certain assumptions
and restrictions. As well, since target systems code tends not to be strictly
conforming, and may rely on implementation-defined, unspecified or even
undefined behaviour as a result of knowledge about a particular implementa-
tion, we require the ability to incorporate known features of implementation
behaviour in the semantics, for example the size of a pointer representation.

20 CHAPTER 2. SEMANTIC MODEL

The implementation behaviours may be derived from documentation,
which is rarely formal, from header files, architecture reference manuals
and ABIs, compiler internals, or even, quite commonly, the behaviours
observed. There is clearly a possibility of error in this process, however
without a fully formalised and verified C implementation we are left with
the task of managing this error. We state our assumed behaviours clearly
in the following, noting where they deviate from the standard. Should an
assumption be mistaken, it is possible to update the model and recheck proofs,
giving a more rigorous approach to unifying the programmer’s model and the
implementation. Outside of the scope of this thesis, there is the orthogonal
task of checking correspondence between the model presented below and
implementation behaviour — there exists an active body of literature on
compiler and hardware verification [7,11,15,53–55,98].

Here we give some of the significant assumptions underpinning the se-
mantics used in this thesis and their justification:

• Sequential execution is assumed. It is of course desirable to provide a
concurrent semantics, as even non-preemptable systems code requires
this formal support on SMP systems. However, this goes beyond the
C standard and we consider this outside of the scope of the thesis,
requiring consideration of rather involved issues such as memory or-
dering on contemporary processors [58]. The later case studies do not
feature concurrency, demonstrating the utility of this work with this
restriction.

• Only the standard C control structures are supported. Code may not
modify either itself or its execution stack other than through standard
language features. We also disallow function pointers. In this thesis we
are primarily interested in the verification of systems code responsible
for memory management. As a result, we provide a simple and sound
model of C that does not feature any extensions such as notifications,
continuations or context switches. For example, while initialisation
code for an operating system kernel may require explicitly manipulating
stack frames and the kernel’s own virtual memory mappings, the vast
majority of kernel code, including the case studies we present later, do
not do this and hence it is possible to use a model that elides this.

• The heap is assumed to be a subset of physical memory that functions,
with alignment restrictions, as a map between addresses and bytes.
No aliasing via address translation or cache incoherence is expected.
Work in this area by Tews [92] has started to examine how we may
establish this for those parts of a systems program that do not violate
the abstraction and Kolanski [50] intends to extend the later separation
logic embedding in this thesis to overcome the limitation.

2.3. STATE SPACE 21

• Csys eschews some of the more troublesome features of C, such as
non-deterministic ordering in expression evaluation. This is not a case
of expressing the ordering explicitly, as this is unspecified and not even
necessarily consistent in an implementation. Instead, expressions are
restricted such that they remain within a syntactic subset of standard
C yet have deterministic side effects. These restrictions are described
in §2.5. While they aid in making the semantics simpler and proofs
more tractable, the actual restrictions are somewhat orthogonal to the
models presented in this thesis, and so we do not consider this to be a
significant limitation.

• The C standard library is not included. We consider this a feature of our
development, as the systems we target are freestanding implementations
that do not include the library, and we may wish to verify the library
implementation itself where this does exist.

• Low-level details of data structure layout and a direct correspondence
between pointer values and addresses is required in §2.3.1. Since the
motivation in developing the models and abstractions in this thesis is
reasoning about code that relies on these details for its correctness, it
is reasonable to assume the implementation makes these consistent and
knowable.

• The pre-processor is assumed to have been run prior to verification,
so we do not include any discussion of C’s macro language and other
pre-processing directives. typedef synonyms are also assumed to be
handled similarly.

Other technical Csys limitations are introduced later in this chapter, in
particular we forbid taking the address of automatic variables and restrict
some aggregate types.

2.3 State space

The execution environment or state for C programs is modelled with a
record in Schirmer’s verification environment [85]. Program variables are
treated as fields of the record and the heap is also a member field with a
function type.

Example 2.3.1. A program whose entire state is a single variable n::int
could be modelled with state:

record simple-state = n- ′ :: int

where the - ′ suffix allows syntactic identification of variable field names. A
shallow embedding of an increment operation on this state space would be
λs. s(|n- ′ := n- ′ s + 1 |).

22 CHAPTER 2. SEMANTIC MODEL

In this section we define our object model and detail how the verification
environment’s state representation is used to model C’s heap and variable
store.

2.3.1 Relaxed Object Lifetime Model (ROLM)

According to the standard, an object [1, 3.14–1] is a

region of data storage in the execution environment, the contents
of which can represent values

An lvalue is an expression that designates some object [1, 6.3.2.1–1], e.g.
∗(p + 1).

Objects have a lifetime [1, 6.2.4–2], described by a storage duration [1,
6.2.4–1], during which the object is guaranteed to exist and may be accessed
and updated through lvalues. Static storage duration is the same as that of
the program’s lifetime [1, 6.2.4–3], automatic is restricted to the scope of a
block [1, 6.2.4–5] and allocated storage duration is determined by explicit
invocations of malloc and free [1, 7.20.3–1].

Objects may overlap hierarchically, for example a struct object contains
member objects in its storage region. An object that has been initialised with
a value of a specific type may be accessed through an expression expecting
a value of that type, but the region itself does not necessarily have a type
associated with it, i.e. the type of an object depends on the value stored in it,
or more precisely the expression used to designate it [1, 6.3.2.1–1]. This is a
result of C not having a typed memory allocator, and hence calls to malloc
return a void *, requiring appropriate casting and initialisation prior to
use. It is a necessary condition that the base of the object be appropriately
aligned prior to use. Alignment is determined by type [1, 3.2–1], and if a
type α has alignment n then n divides the base address of any object of type
α. In practice, ∃ k . n = 2 k, since the alignment restriction is motivated by
architectural restrictions on the lower-order bits of addresses, and we make
this restriction in the rest of the thesis.

In this work we adopt less stringent requirements on the lifetime of
objects than the ISO C standard and impose some restrictions on the use of
pointer-related operators. The intent is that this view corresponds to one
acceptable to system implementers and is shared by the compiler and other
aspects of the load- and run-time utilised.

malloc and free are in a sense both language constructs and library
functions. In systems running outside of a hosted environment, e.g. a
microkernel or standalone JVM, one often requires explicit control over
allocated storage, and the ability to implement one or more allocators to
manage regions of memory. We also wish to have the ability to verify these
allocator implementations, which are themselves typically written in C.

2.3. STATE SPACE 23

Example 2.3.2. In the L4Ka::Pistachio kernel there are two memory allo-
cators arranged in hierarchy:

• alloc/free — manages regions of memory of size and alignment a
multiple of 1K for the purpose of page tables and thread control blocks.

• mdb alloc buffer/mdb free buffer — based on storage acquired
through alloc allows smaller allocations for the purpose of nodes in
a tree data structure tracking the relationship of pages and frames
between address spaces.

Implementing these memory allocators requires that the allocated storage
duration be sidestepped in favour of a view of memory in which we are able
to manage the allocation of objects, their values and types in C code.

A further motivation for venturing into the realm of the implementation-
defined behaviour of the object model is the necessity that interactions with
memory-mapped devices take place at specific physical addresses. Implement-
ing critical functionality in C, such as timer and interrupt control, requires
that one is able to take integer values representing these addresses, cast them
to a corresponding pointer and be able to consider the target object valid.
The C standard in fact allows for this technique in address constants [1, 6.6–9].
This is required elsewhere too, as pointer representations are often directly
visible in systems code, e.g. in alignment tests or explicit pointer construction
from a base and offset derived from different calculations.

Definition 2.3.1. The relaxed object lifetime model (ROLM) assumption is
a notion of object lifetime that dispenses with the allocated storage duration
and is detailed below. ROLM is motivated by the above examples requiring
implementation-defined (and what the standard considers unspecified and
undefined) behaviour to be taken into account.

First we draw a distinction between automatic program variables and
other objects. Automatic variables are stored in the execution stack. All
other objects, i.e. those with static storage duration and allocated storage,
exist in the heap component of state, modelled as a single field described in
§2.3.2. We focus the discussion on heap objects here and deal with automatic
variables in §2.3.3.

We consider an α object in the heap to be an interval of length size-of
TYPE(α) based at a particular address. Objects exist in a potentially non-
contiguous subset of the domain of the heap, leaving some non-accessible
memory for the implementation to place the code segment, automatic vari-
ables and other runtime machinery.

Within the heap, we do not impose any restrictions on which addresses
may be used for objects beyond the alignment requirements — e.g. a block
of C code is free to regard {x ..+size-of TYPE(float)} as containing a float
and then later have {x + 2 ..+size-of TYPE(short)} contain a short value.

24 CHAPTER 2. SEMANTIC MODEL

Objects in the heap no longer have an explicit lifetime, and storage duration
is determined by program semantics. Pointers are considered to have a direct
correspondence with addresses and to be convertible through casts between
different pointer types and integer representations. Programs may directly
manipulate pointer contents as a result. It is clear that this is a very liberal
view of heap memory and objects, but also this is a view that is adopted
commonly in systems programming idioms and practice.

The C standard introduces constraints on initialisation and use of objects.
For automatic variables, an indeterminate value [1, 3.17.2] is placed in the
object each time the scoping block is entered [1, 6.2.4–5]. Any attempt to
use this value prior to initialisation results in undefined behaviour [1, J.2–1].
malloced objects and padding components of structured types [1, 7.21.4.1–
2] also receive indeterminate values [1, 7.20.3.3–2], but objects with static
storage duration are automatically initialised to 0 or NULL values [1, 6.7.8–
10].

In different verification scenarios and implementations, one may wish to
adopt a more or less strict notion of initialisation. In ROLM, we leave this as
a parameter of the framework we are developing. In the translation provided
later in this chapter, we make the choice of having values of automatic
variables when entering a block underspecified and static and heap objects
deriving values from previous contents. To avoid the incorrect dependence on
these values, one can use the guard mechanism of §2.5.5 to protect expressions
that have such references. This may require some additional book-keeping
state as in Norrish’s [74] “initialised addresses” state component.

2.3.2 Heap

It is common in language semantics to treat the heap or memory as a partial
function int ⇀ lang-val, where int is the type of addresses and lang-val the
type of all language values. While greatly simplifying the formalisation, this
makes several assumptions that are not valid in our setting:

• Addresses range over an infinite integer type. In C, addresses are
constrained by a finite addressable memory, which affects the semantics
of pointer arithmetic and memory allocation, e.g. ∗(x+1)= y may in
fact be a NULL pointer dereference.

• Value representations are atomic. C language types have represen-
tations spanning multiple locations, and it is possible to have value
updates at one location affect values in other cells. This calls for a
semantic model that both captures values’ storage sizes and reflects
these update semantics accurately. E.g. ∗x = 0xdeadbeef affects not only
the byte at location x, but also the bytes at locations x + 1, x + 2, and
x + 3. An additional complication is alignment, a per-type restriction

2.3. STATE SPACE 25

on address validity. For example, 16-bit short values may be forced
to be stored at even addresses. Expressing alignment conditions in
dereferencing and update semantics requires a constant byte granularity
for addressing.

• Heap partiality. Heap partiality is often used in the heap dereferencing
semantics in memory or type-safety checks. Much weaker variants of
these properties hold for C programs and it is not always necessary
to introduce them in the dereference semantics. This is particularly
important in making it possible to verify low-level code that manages
details such as the layout of its own address space or implements the
functionality of malloc.

To overcome these limitations, we adopt a view of memory close to
that of hardware. In our model, heap memory state is a total function
from addresses, represented by a bit-vector type corresponding to machine
addresses, to bytes, also a bit-vector type. This function is a field in the state
record, treated by the verification environment as a variable. On a machine
with 32-bit addresses and 8-bit bytes the heap memory state will be:

types addr = word32
byte = word8
heap-mem = addr ⇒ byte

The connection between this low-level view of state and typed language
values in the theorem prover is made in §2.4.

2.3.3 Store

There are two kinds of variables according to the ISO C standard, those
with scope and lifetime tied to some function or block, known as automatic
variables, and those lacking this dependency, called static variables. In our
setting, we map automatic variables to distinct fields of the state record, and
variables with static storage duration are considered to be part of the heap,
with all accesses translated as indirection through the heap function.

Automatic variables

Each automatic variable in the program appears as a field in the state record.
The convention we employ here is to name these fields with a - ′ suffix, e.g.
n- ′. This supports the use of an antiquotation syntax in assertions, where
ń refers to the variable in the current state and sn in state s, i.e. n- ′ s.

The type of this field is an encoding of the C type in the HOL type system,
described in §2.4. The verification environment limits the lifetime of these
variables to the enclosing block. A difficulty arises when there are two or
more variables of the same name with different types — we simply rule this

26 CHAPTER 2. SEMANTIC MODEL

Usage Size (words)
Pass Return 1 2 > 2

C++ method invocation 385 68 352 64 0
Pass-by-reference 8 28 2 20 6

Table 2.1: Address derivation in the L4Ka::Pistachio µ-kernel source.

out as a possibility in the Csys subset, but this is a technical issue which
could be resolved with appropriate namespace mangling.

Our treatment of automatic variables produces reasonable verification
goals when programs operate on local state as we have abstracted from
the details of stack frames and variable allocation. The most significant
drawback of this is that we are unable to easily support references or pointers
to automatic variables, and these are excluded from the Csys subset. We
justify this on the grounds that the focus in this thesis is on memory models
and proof abstractions for pointer programs featuring inductively-defined
data structures. If we accept the hypothesis that the main use of references
to local storage in systems code is to allow a callee to return by reference
rather than by value, then this has little influence on such data structures —
indirection is being used merely to improve efficiency by reducing copying.

The validity of this hypothesis is not immediately obvious. To provide
some evidence for this claim, we have undertaken a study of the use of
pointers to automatic variables in the L4Ka::Pistachio 0.4 kernel, targeting
the ARM/StrongARM/PLEB platform. The compiler flags were extended
in the build scripts with the -fdump-tree-original option, instructing
GCC to generate the corresponding abstract syntax tree for each function.
Occurrences of the & operator were identified through addr expr nodes.
Stack-allocated arrays were also examined manually with grep. Kernel
debug functions were ignored, as were method invocations on anonymous
objects. The results from 137 function bodies in 25 files are summarised
in Table 2.1. The first column gives the number of occurrences of pass-by-
reference where & appears. This is subdivided into cases where the data
is being passed and returned, and between the cases where the call is an
implicit self-reference in a C++ method invocation and where an explicit
pointer parameter is given. The second column gives the size of the data
being transferred.

Almost all operations taking the address of an automatic variable are
C++ method invocations, where a self-reference for the invoked object is
provided. These are typically word-sized objects such as threadid t. When
operator overloading is utilised, sometimes a reference is also provided as one
of the arguments to another object, e.g. for equality comparisons, or when
more than one value is effectively returned as in an overloaded post-increment.
Since the objects are only word sized, it would be possible and in fact likely

2.3. STATE SPACE 27

that references would not be used in a pure C implementation of the kernel,
as the indirection is not warranted in these cases.

The remaining appearances of & occur explicitly in the code. The bulk
of these are related to the lookup mapping and calculate errorcodes
functions that return 2 words. A call to perform exregs requires the
transfer in and out by reference of 6 words. Rewriting these to take and
return a struct would be possible and an optimising compiler should be able
to hide the overhead if this is a problem.

No use of pointer casting or arithmetic on the result of local & obtained
pointers was observed. Neither was the linking of automatic storage to or
from inductively-defined data structures in the store or heap. All stack-
allocated arrays were used only within the declaring functions, and only
directly through array indexing and update, i.e. they were not passed as
arguments nor converted to pointer values. Automatic arrays could then, for
this code base, be modelled as fixed-sized lists of the appropriate type.

In summary, it can be seen that the use of automatic storage is significantly
different to the general case of memory in Pistachio, and that prohibiting
taking the address of automatic variables does not reduce the applicability
of Csys to the kernel.

In other code bases, it may be necessary to model these features. A reason-
able solution in the absence of recursion would be to treat automatic variables
as static variables (described below), having fixed addresses allocated in some
global memory pool, with addresses given by some underspecified function.
It would then be necessary to introduce guards in the language embedding
to avoid the possibility of dangling pointers to stack frames.

Static variables

Static variables are referred to through their addresses, contained in a pointer
constant of the same name with an -addr suffix, e.g. variable n would have its
address in n-addr. All accesses and updates to these variables are translated
as dereferences. A locale [5] provides the assumptions that these constants
reside in a distinct region of memory and are disjoint — to discharge the
obligation this assumption introduces we require that more concrete details
are made available about variable allocation. Since this is an entirely standard
assumption to make, usually inside the semantics tacitly, this does not need
to occur for most verifications other than those where there is genuine concern
over whether there may be sufficient space for static variable placement.

In contrast to automatic variables, there are static variables in the
Pistachio source code that have their addresses taken, linked with inductive
data structures on the heap and are involved in pointer casts, e.g. kfree-list in
§6.2. Hence these variables do play a role in the proof abstractions related to
memory and this level of abstraction is required to provide sensible semantics
for these language features.

28 CHAPTER 2. SEMANTIC MODEL

Example 2.3.3. Table 2.2 provides a running example in this chapter,
finding the minimum value x in some ordered binary tree y. The state space
representation for this program, globals state, in the verification environment
is2:

consts x-addr :: word32 ptr
y-addr :: bin-tree ptr

record globals = h-state :: heap-mem

record γ state = t- ′ :: bin-tree ptr
tree-min-ret- ′ :: word32
globals :: γ

The distinction between the scoped variables used to model C’s automatic
variables and globally persistent variables, in this case used for the heap
mapping function, is made explicit through the use of distinct records. In
addition to the function parameter t, a variable is used for the return value
tree-min-ret. This is a feature of the verification environment that allows
a clean separation of procedure call statements and the later use of the
returned value in expressions. Types are explained in the next section.

int x;

struct bin tree {
int item;
struct bin tree ∗l , ∗r;

} y;

int tree min(struct bin tree ∗t)
{

while (t−>l)
t = t−>l;

return t−>item;
}

void f(void)
{

x = tree min(&y);
}

Table 2.2: tree min definition.

2This example is based on the preceding discussion in this chapter. The state represen-
tation used in actual verifications includes additional global fields introduced later, such as
the heap type description in Chapter 3 and exception type variable in §2.5.4.

2.4. TYPE ENCODING 29

2.4 Type encoding

Each language type is assigned a unique type in the theorem prover’s logic.
This allows for both an intuitive definition of language operators as functions
in HOL, and the harnessing of the theorem prover’s type inference mechanism
to avoid unnecessary type annotations in assertions and proofs.

For each C language type, the following steps are taken:

1. A unique type is assigned to model it in the theorem prover. For
example, for char, we can use word8. If another language type had a
similar representation in HOL, we would need to create a distinct type,
based on or with the same properties as word8. This is because later
we rely on the fact that distinct language types have distinct HOL
types to recreate the abstraction of multiple typed heaps in Chapter 3.
If there existed synonyms here, we would be left with the undesirable
result of identical typed heaps for the responsible language types.

2. The type is placed in a type class providing functions to allow heap
dereferencing expression semantics to be defined.

Definition 2.4.1. The α::c-type class introduces several constants that
connect the low-level byte representation, referred to in the standard
as the object representation [1, 6.2.6.1–4], and HOL values for encoded
language types:

consts to-bytes :: α ⇒ byte list
from-bytes :: byte list ⇀ α
typ-tag :: α itself ⇒ typ-tag
typ-info :: α itself ⇒ typ-info

Example 2.4.1. Fig. 2.2 illustrates the relationship between the func-
tions in the α::c-type class for a 32-bit integer type with a mixed-endian
representation.

The functions to-bytes and from-bytes convert between Isabelle values
and lists of bytes suitable for writing to or reading from the raw heap
state. from-bytes is partial to allow for object representations that do
not correspond to a value of a type, known as trap representations [1,
6.2.6.1–5]. The function typ-tag associates a unique type tag with each
α::c-type, providing a means of treating language types as first-class
values in HOL. Type tags are somewhat similar to the standard’s notion
of a tag [1, 6.7.2.3], which is essentially the identifier naming a struct,
union or enum type. typ-info contains enough structure to allow size
and alignment information for the type to be calculated, as described
in §2.4.1. We use this to define functions size-of :: α::c-type itself ⇒

30 CHAPTER 2. SEMANTIC MODEL

0xA0

0x3E

0xC5

0x00siz
e_

of
 T

YP
E(

in
t) from_bytes

to_bytes

0x3EA000C5

int

byte list

Figure 2.2: Mixed-endian integer encoding.

nat and align-of :: α::c-type itself ⇒ nat respectively. The syntax T τ

and T t are used for typ-info T and typ-tag T respectively.

Structured types may have internal padding fields that are not reflected
at the HOL level [1, 6.2.6.1–6, 6.7.2.1–13]. Correct treatment of these
either requires failure semantics for padding field access, which can
be achieved with the technique described in §2.5.5, or a model for
the implementation’s treatment of padding. The latter may require
to-bytes to be extended as in §5.2.2 where we revisit the function with a
focus on structures. The standard also allows for the fact that to-bytes
may provide more than a single object representation [1, 6.2.6.1–8].
If such behaviour were to be modelled we would also need to extend
these definitions using non-determinism or the technique described in
the footnote of page 132.

3. A set of properties are automatically shown by the Csys parser to
hold for the encoded type, placing the type in the α::c-type subclass
α::mem-type. These properties are provided by the C standard and/or
implementation and support proofs featuring language types.

Definition 2.4.2. The α::mem-type axiomatic type class requires the
following properties to hold on an α::c-type for instantiation:

from-bytes (to-bytes x) = bxc [Inv]

|to-bytes (x ::α)| = size-of TYPE(α) [Len]

0 < size-of TYPE(α) [SzNZero]

size-of TYPE(α) < |addr| [MaxSize]

align-of TYPE(α) dvd |addr| [Align]

align-of TYPE(α) dvd size-of TYPE(α) [AlignDvdSize]

2.4. TYPE ENCODING 31

where the constant |addr| represents the size of the address space, e.g.
232.

These conditions follow mostly from requirements in the C standard,
with the exception of the alignment constraint [Align] which we add
to make pointer arithmetic better behaved, and which holds with the
power-of-two alignment restriction. Providing the intended semantics
of operators such as assignment [1, 6.5.16–3] implies [Inv]. [Len] gives
that object representations have a constant size for all values [1, 6.2.6.1–
4]. The [SzNZero] axiom is stated explicitly in [1, 6.2.6.1–2] and
[MaxSize] is an obvious prerequisite for any type whose value is to be
stored in an object. Finally, for tiling in an array, [AlignDvdSize] is
needed.

Following this process, the encoded language type may be used in the
program’s state and appear inside translated expressions and statements.

2.4.1 Type information

Definition 2.4.3. To derive the required size and alignment information
from typ-info, we include the structure of the type in the value:

datatype typ-info = TypScalar nat nat |
TypAggregate (typ-info × field-name) list

where field-name is a string.

This nested recursive definition describes a tree structure, capable of
describing C’s aggregate types as well as its scalar types. The structure
of a scalar type consists of the constructor TypScalar followed by its size
and alignment. Size and alignment for aggregate types is implicit and
calculated below. There is not a one-to-one correspondence between fields in
this structure and those in a C struct, as fields in this definition are also
intended to explicitly represent padding.

Example 2.4.2. Fig. 2.3 gives several instances of typ-info. The C type
corresponding to the type information is indicated in parentheses at each
node in the trees. The alignment in the case of long is less than the size,
and in the struct x and array examples the size and alignment are such
that no additional padding is required.

Definition 2.4.4. Type size is calculated with:

size-of t ≡ typ-size tτ

where typ-size is defined in Table 2.3.

32 CHAPTER 2. SEMANTIC MODEL

TypScalar 8 4 (long)

TypAggregate [(...,"x"),(...,"y")] (struct x)

TypScalar 4 4 (int) TypScalar 4 4 (struct x *)

TypAggregate [(...,"0"),(...,"1"),(...,"2")] (short[3])

TypScalar 2 2 (short) TypScalar 2 2 (short) TypScalar 2 2 (short)

struct x {
 int x;
 struct x *y;
};

long

short[3]

Figure 2.3: Example typ-infos.

typ-size (TypScalar sz algn) ≡ sz
typ-size (TypAggregate ts) ≡ typ-size-list ts

typ-size-list [] ≡ 0
typ-size-list (x ·xs) ≡ typ-size-pair x + typ-size-list xs

typ-size-pair 〈t ,n〉 ≡ typ-size t

Table 2.3: typ-size definition.

An advantage of explicit representation of padding is that size can be
found easily, without having to simultaneously reason about alignment, as
would be necessary if padding had to be inferred while finding the size.

Definition 2.4.5. Type alignment is calculated with:

align-of t ≡ typ-align TYPE(α)τ

where typ-align is defined in Table 2.4.

typ-align (TypScalar sz algn) ≡ algn
typ-align (TypAggregate ts) ≡ typ-align-list ts

typ-align-list [] ≡ 0
typ-align-list (x ·xs) ≡ max (typ-align-pair x) (typ-align-list xs)

typ-align-pair 〈t ,n〉 ≡ typ-align t

Table 2.4: typ-align definition.

2.4. TYPE ENCODING 33

As required by the C standard, structured types must be aligned such
that all members are aligned [1, 6.7.2.1–12]. From this we can infer that the
offset of a field must be divisible by the alignment of a field’s type so that
this property holds when placed at the base of the address space. Hence
the aggregate alignment must be also divisible by the field’s type alignment.
Thus aggregate type alignment is a multiple of the LCM of the individual
field alignments. Since we are restricting alignment to 2n for some n, this is
equivalent to a multiple of the maximum of field alignments.

Defn. 2.4.5 captures a necessary condition. The implementation may
impose a stricter alignment. In that case, the above definition would require
strengthening and/or additional alignment guards can be introduced.

In Chapter 5 we extend typ-info and reformulate the theory such that the
relationship between to-bytes, from-bytes, typ-tag and typ-info is made clearer.
There is a potential for a mismatch between typ-infos. For example, the
typ-info for a short may state the alignment is 2, but a short field of some
other struct type may have alignment as 1. This does not pose a problem
for the theory in Chapter 3 and Chapter 4, as these developments do not
utilise the internal structure of types, but in Chapter 5 we also discuss the
well-formedness and consistency conditions that must hold to avoid problems
like this.

2.4.2 Scalar types

C provides a number of types to manipulate integer, floating-point data
and addresses. These are fixed for a specific implementation [1, 6.2.6.1–2].
In this section we detail how they are treated in the semantics and where
appropriate how they are instantiated as α::c-types and α::mem-types.

Void

The void type is an incomplete type [1, 6.2.5–1], meaning it lacks sufficient
information to calculate size, and may not be made complete [1, 6.2.5–19].
We mention it here as its derived pointer type is somewhat more interesting.
It is an empty type, but since such types are not available in Isabelle/HOL’s
type system, we model this with the singleton type unit. As there is no size
information we do not instantiate void as an α::mem-type.

Integer

C provide a number of distinct integer types of various sizes, given by the
types char, short int, int, long int and long long int [1, 6.2.5–4]. These
are available in both signed and unsigned flavours [1, 6.2.5–6]. Enumerated
types are additional integer types, which consist of a set of constants from
one of these types [1, 6.2.5–16].

34 CHAPTER 2. SEMANTIC MODEL

The relationship between the ranges of values represented by different
integer types with the same sign is given by |char | ≤ |short int | ≤ |int |
≤ |long int | ≤ |long long int | [1, 6.2.5–8, 6.3.1.1–1]. The non-negative
range of a signed type is a subset of the range of a corresponding unsigned
type [1, 6.2.5–9]. There are minimum sizes given by the standard for the
integer types, found in the header file limits.h, e.g. unsigned ints must
have a maximum value of at least 216 − 1 [1, 5.2.4.2.1–1].

The standard provides some specification of how integer types are en-
coded. It mandates a binary representation [1, 6.2.6.2–1] and requires that
bits in the object representation either are used to encode the value or are
used for padding. It also leaves much to the implementation, for example,
whether signed types are sign and magnitude, one’s complement or two’s
complement [1, 6.2.6.2–2]. Padding bits can also be used for trap representa-
tions, e.g. as parity bits. The ordering of the bits representing the value is
not specified, and so there are various possibilities such as little-, mixed- or
big-endian encodings.

In this thesis we mostly make use of the unsigned integer types, and
provide the details for this instantiation below. It is not difficult to see how
this may be extended to signed and enum integer types. We represent
these types with bit-vectors of the appropriate width3, in contrast to the
usual approach of using mathematical integer types such as nat and int.

Definition 2.4.6. Unsigned integer types are α::c-types4:
to-bytes w ≡ rev (word-rsplit w)

from-bytes bs ≡ if |bs| = size-of TYPE(α word) then bword-rcat (rev bs)c else ⊥

t t ≡ ′′word ′′ @ replicate (len-of TYPE(α)) CHR ′′1 ′′

tτ ≡ let sz = len-of TYPE(α) div 8 in TypScalar sz sz

where word-rsplit takes a bit-vector and returns a representation as a list
of bytes, most-significant-byte first, and word-rcat has the property that
word-rcat (word-rsplit w) = w . The tag is simply a string and we make it
unique for each distinct integer type by appending a unary encoding of the
width. len-of provides the number of bits in the index type, where t ::α::len8
word itself. The α::len8 type class restricts the index type to bit lengths
divisible by a byte, with the axioms:

8 dvd len-of TYPE(α) [Len8Dv8]

len-of TYPE(α) div 8 < |addr| [Len8Sz]

len-of TYPE(α) div 8 dvd |addr| [Len8Dvd]

3The implementation currently uses the same type for both signed and unsigned integers
of a given width. This does not have soundness implications, but could reduce the gains
from the multiple typed heaps abstraction developed in the next chapter. In any case, this
can be fairly easily rectified with some additional phantom typing in the bit-vector library.

4Here we use a 32-bit little-endian encoding as might be witnessed on the x86 or ARM
architectures.

2.4. TYPE ENCODING 35

Theorem 2.4.1. Unsigned integer types are α::mem-types:

Proof. We discharge the proof obligations resulting from each of the class
axioms:

• [Inv] — from rev (rev xs) = xs, word-rcat (word-rsplit w) = w and
|word-rsplit w | = len-of TYPE(α) div 8.

• [Len] — also from |word-rsplit w | = len-of TYPE(α) div 8.

• [SzNZero] — by [Len8Dv8].

• [MaxSize] — by [Len8Sz].

• [Align] — size and alignment are the same, hence [Len8Dvd].

• [AlignDvdSize] — as with [Align].

Example 2.4.3. Alternative encodings are also supported. For example, an
implementation with a singly redundant encoding of unsigned chars could
have the instantiations performed with the following definitions:

to-bytes w ≡ [w , w]

from-bytes bs ≡ if |bs| = 2 ∧ bs[0] = bs[1] then b bs[0]c else ⊥
t t ≡ ′′uchar ′′

tτ ≡ TypScalar 2 2

Floating point

C has three floating-point types [1, 6.2.5–10], float, double and long double.
Since these do not appear inside the systems we study in this thesis we omit
an encoding. We are not presently aware of any limitation in using our style
of type encoding for floating-point types.

Pointer

From any α::c-type a pointer type may be derived [1, 6.2.5–20]. This applies
recursively. The C standard provides few restrictions on the representation
and alignment of pointers [1, 6.2.5–26], and it is possible for pointers derived
from different types to be represented differently. They are convertible to
integer types and back in an implementation-defined manner [1, 6.3.2.3–5].
In Csys we assume an implementation that has an interchangeability with
word-sized integer address representations.

We introduce a distinct Isabelle pointer type for each Isabelle type, used
to model C pointer types:

36 CHAPTER 2. SEMANTIC MODEL

datatype α ptr = Ptr addr

The additional α on the left-hand side can now be used to associate the
pointer type information with pointer values in Isabelle’s type system. Since
the type variable does not appear on the right-hand side it is a phantom type.
Nonetheless, the type information is used to constrain the action of various
pointer operators by making use of the type information associated with an
α value. The destructor ptr-val retrieves the address from a pointer value;
we write p& as an abbreviation of ptr-val p. The pointer types α::c-type ptr
can be shown to be instances of α::mem-type for all pointer types.

Definition 2.4.7. Pointer types are α::c-types:

to-bytes p ≡ rev (word-rsplit p&)

from-bytes bs ≡ if |bs| = 4 then bPtr (word-rcat (rev bs))c else ⊥
pt ≡ TYPE(α)t @ ′′+ptr ′′

pτ ≡ TypScalar 4 4

Again, we create a unique string for each pointer type’s tag to allow us to
treat C types as first-class values in HOL.

Theorem 2.4.2. Pointer types are α::mem-types:

Proof. By Thm. 2.4.1 as encoding is just a special case of Defn. 2.4.6.

Later on, in §2.5.6, we need to express the effects of pointer addition.
The following polymorphic function provides this.

Definition 2.4.8. Pointer addition is defined for p::α::c-type ptr as:

Ptr p +p n ≡ Ptr (p + n ∗ IN⇒ (size-of TYPE(α)))

2.4.3 Aggregate types

C allows for the grouping of related objects as aggregate types. Here we
explore the treatment of these types in the Csys type encoding.

Array

As with pointers, any α::c-type has a corresponding derivable array type [1,
6.2.5–20]. Arrays are not first-class types in C. There are two distinct
situations in which they require treatment. First, when appearing as objects
in the heap. Here, array expressions are given pointer semantics [1, 6.3.2.1–3].
We do not require pointer arithmetic to be restricted to the bounds of a

2.4. TYPE ENCODING 37

memory object, as with ROLM, in contrast to the strict C standard [1, 6.5.6–
8] which provides for undefined behaviour here. In the other situation,
where arrays appear as members of other objects or as automatic variables,
they must have a constant size and are represented using the techniques
of Harrison [39]. In this case, array α::c-type definitions and α::mem-type
instantiations are similar to those of structs, as the fixed size allows us to
treat each object in the array like a field.

Structure

structs can be used to describe a sequentially ordered collection of α::c-type
objects [1, 6.2.5–20]. We can model a struct using Isabelle/HOL’s record or
datatype types, to-bytes/from-bytes using the member types’ functions and
type structure in typ-info. We also need to insert padding fields between fields
appearing in the declaration and at the end to ensure alignment restrictions
are met. While it is possible to describe structs in this way, as we did
in an earlier encoding [96], and instantiate with an Isabelle/HOL tactic as
α::mem-types, we present a more compelling approach in Chapter 5.

structs may contain bitfields as members, which are integer types with
a specifiable width [1, 6.2.6.1–4]. They present a problem in our setting
as they differ from other α::c-types by operating on a potentially sub-byte
granularity. The solution is to rule them out as fields of regular structs, but
instead allow a special form struct which may only contain bit-fields that
fit exactly inside their corresponding integer type. This also has the benefit
of simplifying the understanding required of the compiler’s struct packing.

Union

unions describe a collection of overlapping objects [1, 6.2.5–20]. Only one
of these objects may be accessible at any time [1, 6.7.2.1–14], although if
some members have a common prefix then any fields in the common prefix
are accessible through any relevant member [1, 6.5.2.3–5].

The treatment of unions in ROLM and the type encoding presents sev-
eral problems. One may first ask what Isabelle/HOL type may correspond
to these C types. A disjoint union in the form of a datatype is the most
straightforward answer, but a datatype carries around information addi-
tional to the current member’s value, i.e. which member is active. This
information does not appear in the memory contents of the object repre-
senting the union, except in some well-behaved cases such as tagged unions,
where a common field in each union member provides a tag indicating the
currently active member. A fixed array of bytes could be used to model union
values, possibly abstracted as a quotient type with to-bytes representation
equivalence, at the expense of losing a conveniently typed encoding.

Under ROLM, objects may overlap but only hierarchically. We could

38 CHAPTER 2. SEMANTIC MODEL

simply consider a snapshot of the current active members in an aggregate type
featuring unions as providing the object type, which may be expressed in
terms of structs, however this requires each time an active member changes
the entire object have its type changed. This is particularly a problem for a
union nested deep inside an aggregate type as assignment has effects that
are non-local.

To avoid these problems, we introduce some restrictions that could allow
unions to work in Csys. We can drop unions as first-class types, prohibit
them as automatic variables and from being nested inside aggregate types.
This would then allow us to give a semantics in terms of their members and
express the . and −> operators in terms of pointer casts.

Performing a similar analysis with unions as in §2.3.3, we found 18 type
definitions in ARM L4Ka::Pistachio. Of these, 12 were simply reinterpre-
tations of a type as a sequence of words or bytes, 2 were tagged unions, 2
supported disjoint use of the same memory based on external tags or implicit
in the code path, 1 contained only a single field and 1 supported a non-trivial
punning of page table entries as address space specific variables. Three of
the unions were nested, the last being the most tricky. Here, the union
supporting the pun contained an array of page table entries, themselves a
union of disjoint unions. We hypothesise that it would be reasonable to
rewrite the code to use explicit casting in the nested cases to support the
above restrictions.

Since no union types were present in our case study, they are currently
unimplemented in our translation and we leave to future work an improved
treatment of C unions.

2.5 Csys-com translation

The syntax for the Csys language is provided in Appendix A. The grammatical
constructs are mostly a subset of corresponding constructs in the C standard,
however there are several places where new non-terminals are introduced —
here the language recognised does not change as the additional non-terminals
have a correspondence with a production in the standard C grammar. In
addition, we do not describe unions, bit-fields or enums. While in previous
sections we have stated sensible encodings for these types, these are not yet
implemented in the translation tool at the time of writing.

Semantics are provided through a two-stage process. First, the abstract
syntax tree for Csys undergoes a mapping, described below, to the com
language introduced in §2.5.1, then the existing operational semantics for
com [85] yields a program’s meaning.

Fig. 2.4 provides the flow for the Csys-com mapping, referred to henceforth
as translation, and the verification process.

2.5. CSY S-COM TRANSLATION 39

Csys

program
Lex/Yacc Csys AST

State space
synthesis

+
Procedure
definitions

Shallow
translation

(ML)
VCG

Proof
obligations

Typed
com

embedding

Figure 2.4: Csys translation and verification processes.

2.5.1 com syntax and semantics

In this section we summarise the com language and verification environment
of Schirmer [85]. This language is intended to be a generic target for
embeddings of sequential imperative programming languages, and provides
a number of primitive constructs which the language features of Csys can
be mapped to. We consider the use of an existing verification framework,
complete with a machine-checked HOL operational semantics, Hoare logic
and verification condition generator, a distinct advantage, as it has allowed us
to focus on the goals of the thesis without having to develop these specialised
but somewhat standard theories and tools from scratch, as is common in the
verification literature.

40 CHAPTER 2. SEMANTIC MODEL

Definition 2.5.1. The syntax of the com language is given by:

types σ bexp = σ set

datatype (σ, η, χ) com = Skip
| Basic “σ ⇒ σ”
| Spec “(σ × σ) set”
| Seq “(σ, η, χ) com” “(σ, η, χ) com”
| Cond “σ bexp” “(σ, η, χ) com” “(σ, η, χ) com”
| While “σ bexp” “(σ, η, χ) com”
| Call η
| DynCom “σ ⇒ (σ, η, χ) com”
| Guard χ “σ bexp” “(σ, η, χ) com”
| Throw
| Catch “(σ, η, χ) com” “(σ, η, χ) com”

The type parameters allow one to select a state space σ suitable for an
embedding. In our case we synthesise a state space during translation based
on §2.3. η is used for procedure names, and χ to name fault conditions.

Basic models the atomic transitions in the embedded language’s state
space, e.g. variable assignment or heap update. Seq provides sequential
composition, Cond and While conditional and iterative statements respectively.
It should be observed that the condition expressions are side-effect free. Spec
can be used to describe non-deterministic transitions, but we do not make
any use of this in the following. Function call semantics map to Call and
DynCom statements. Throw and Catch give an exception mechanism with
which one can model abrupt termination in language statements like return.
Finally, Guards lead to failure semantics if guard expressions do not hold
prior to execution of parameter programs. We drop the χ parameter when
describing Guard programs in the following, as from a soundness point-of-view
the cause of failure semantics is irrelevant.

com provides a mixed embedding, where statements are deeply embedded
using the datatype constructors, but expressions and the core language
state transformers are HOL sets and functions. com statements form the
primitives for our embedding, where Csys statements such as for and break
translate to multiple statements in com.

Further details on com are available from Schirmer [85], who describes
a small- and big-step operational semantics, Hoare logics for partial and
total correctness, soundness and completeness proofs, a verification condition
generator and the embedding of many higher-level language features together
with the C0 [53] language.

Details of the translation of Csys statements and expressions to com are
given in the next sections.

2.5. CSY S-COM TRANSLATION 41

2.5.2 Notation

As the translation takes place externally to the theorem prover’s logic, we do
not have the luxury of Isabelle/HOL machine-checked theories to describe
the process. Instead we introduce some semi-formal notation here. We write:

• 〈X 〉T for the Isabelle/HOL α::c-type of Csys expression X, described
in §2.5.3. When we wish to introduce a type variable that is restricted
to the class of integer types, α::c-type is written τA, and for α::c-type
ptrs we use τP .

• 〈P〉S for the com object translation of Csys statement P , described in
§2.5.4.

• 〈X 〉G for the guard for Csys expression X, described in §2.5.5.

• 〈X 〉E for the side-effect free Csys expression X ’s embedding σ ⇒ 〈X 〉T ,
where σ is the program’s state space type. This is described in §2.5.6.

• 〈X 〉A for the function σ ⇒ addr giving the address of lvalue X ’s object
in program state σ, described in §2.5.7.

• 〈X 〉L for the state update function 〈X 〉T ⇒ σ ⇒ σ, that takes a value of
type 〈X 〉T and updates the program’s state σ, representing assignment
to modifiable lvalue expression X. This is described in §2.5.7.

• 〈f 〉F for the vector 〈r ,p1,p2,. . .,pn〉, where f is a Csys function with
n formal parameters, r is a variable in the program’s state space
for passing f ’s return value and pm gives a variable for each formal
parameter for value passing during calls.

• ⊥ for translation failure resulting from a missing rule.

2.5.3 Types

The typing of Csys expressions is described in Table 2.5. This is a type
translation, rather than judgement, as the intent here is to describe a process
rather than provide an explicit semantics. There is not sufficient information
in this table to perform type checking, as the expression, statement and lvalue
translations also contain type restrictions that do not require duplication here.
Table 2.6, Table 2.7 and Table 2.8 give various type promotion conversions
that occur inside expressions, in the situation where an operator requires
unification of the types in its sub-expressions or with the expected type of
the expression.

The translation mostly follows the standard for this subset, however on
occasion we have made some implementation assumptions, in particular we
assume long and int to be the same width in the conversions, short to be

42 CHAPTER 2. SEMANTIC MODEL

TypCond
〈e0 ? e1 : e2〉T = cond-conv 〈e1〉T 〈e2〉T

TypPlusPtr
〈e0〉T = τP ∨ 〈e1〉T = τP

〈e0 + e1〉T = τP

TypPlus
〈e0〉T = τA

0 〈e1〉T = τA
1

〈e0 + e1〉T = arith-conv τA
0 τA

1

TypSubPtr
〈e0〉T = τP 〈e1〉T = τA

〈e0 − e1〉T = τP

TypSubPtrDiff
〈e0〉T = τP 〈e1〉T = τP

〈e0 − e1〉T = sint

TypSub
〈e0〉T = τA

0 〈e1〉T = τA
1

〈e0 − e1〉T = arith-conv τA
0 τA

1

TypArith
〈e0 f e1〉T = arith-conv 〈e0〉T 〈e1〉T where f ∈ {∗, / , %, &, | , ˆ}

TypLogicRelEq
〈e0 f e1〉T = sint where f ∈ { || , &&, <, <=, >, >=, ==, !=}

TypShift
〈e0 f e1〉T = integral-promote 〈e0〉T where f ∈ {<<, >>}

TypCast
〈(t)e〉T = τ where τ is an α::c-type encoding for type t

TypSizeOf
〈sizeof e〉T = sint

TypAddrOf
〈&e〉T = 〈e〉T ptr

TypDeref
〈e〉T = τ ptr
〈∗e〉T = τ

TypUnary
〈f e〉T = integral-promote 〈e〉T where f ∈ {+ , −, ˜}

TypNot
〈 !e〉T = sint

TypDot
〈e .n〉T = τ where 〈e〉T is a struct type with field n::τ

TypArrow
〈e−>n〉T = τ where 〈e〉T is a pointer to a struct type with field n::τ

TypArray
〈e0〉T = τ ptr ∨ 〈e0〉T = (τ ,n) array

〈e0 [e1]〉T = τ

TypConst
〈c〉T = sint where c is a constant

TypVar
〈v〉T = τ where v ::τ is an in-scope variable

TypParen
〈(e)〉T = 〈e〉T

Table 2.5: Type translations.

2.5. CSY S-COM TRANSLATION 43

arith-conv ulong τ = ulong
τ ulong = ulong
uint slong = ulong
slong uint = ulong
slong τ = slong
τ slong = slong
uint τ = uint
τ uint = uint
τ0 τ1 = sint

Table 2.6: Arithmetic type conversions [1, 6.3.1.8–1].

cond-conv τA
0 τA

1 = arith-conv τA
0 τA

1

τ τ = τ
τP void ptr = void ptr
void ptr τP = void ptr

Table 2.7: Conditional type conversions [1, 6.5.15–5].

narrower than int and an interchangeability of pointer values and unsigned
ints. The semantics for conversion are given in Table 2.9. Here, scast and
ucast are polymorphic (in the size and sign of the word) bit-vector library
functions that perform the appropriate size and sign conversions. Not all
conversions are valid in all situations, e.g. the conversions performed in an
assignment are more restricted than in a type cast. The details are deferred
to the specific translation rule below.

2.5.4 Statements

Here we describe the translation of the statement non-terminal in Appendix
A. Csys has most of the statements found in the C standard [1, 6.8], however
it lacks some of the statements that result in control flow that is cumbersome
to express in com. Specifically, switch and goto statements are not in the
language. switch is not a simple case distinction in C, but provides the
ability to enter a case anywhere inside the statement’s scope [1, 6.8.4.2–4].
Both statements violate the block structure of a program, and their semantics

integral-promote {uchar, schar, ushort, sshort} = sint
τA = τA

Table 2.8: Integral type promotion [1, 6.3.1.1–2].

44 CHAPTER 2. SEMANTIC MODEL

convert τ τ f = f
{schar, sshort, sint, slong} τA f = scast ◦ f
{uchar, ushort, uint, ulong} τA f = ucast ◦ f
{schar, sshort, sint, slong} τP f = scast ◦ ptr-val ◦ f
{uchar, ushort, uint, ulong} τP f = ucast ◦ ptr-val ◦ f
τP τA f = Ptr ◦ ucast ◦ f
τP τP f = Ptr ◦ ptr-val ◦ f

Table 2.9: Expression type conversions [1, 6.3].

have been treated elsewhere in the literature [91].

Expression

In C, expression statements may contain arbitrary expressions. Expressions
may have side effects such as assignment and function invocation. This
introduces non-determinism as the order of evaluation is not fully specified.
While com’s Spec statement provides a natural target for this, the resulting
proof obligations after verification condition generation are not as pleasant
as those that arise when the language is fully deterministic. This can be
achieved with some benign changes to syntax. First, we disallow all side
effects in expressions and then provide several limited forms of expression
statements to produce side effects deterministically. Any C program can
in principle be rewritten to the form described here, with some additional
state to hold intermediate results. Any standard C compiler will continue to
recognise the expression statements below as they are indistinguishable from
cases of the C expression statement.

The translation for expression statements in Csys is given in Table 2.10.
Table 2.11 provides the restrictions on the types of expressions in an as-
signment. Assignment makes a relatively straightforward use of the Basic
and Guard primitives, with type conversion performed for compatible assign-
ments. Function calls are more complicated, as they involve several steps
and more than one assignment. The call::(σ ⇒ σ) ⇒ η ⇒ (σ ⇒ σ ⇒ σ)
⇒ (σ ⇒ σ ⇒ (σ,η,χ) com) ⇒ (σ,η,χ) com translation is provided by the
verification environment and makes use of DynCom, Seq and Call to provide
parameter-passing function call semantics. The first argument gives the
state update that is performed prior to the function call, in our case this is
call-by-value state update. The second argument is the function name. After
the function completes, various parts of the program’s state space may have
been mutated. We wish to discard the effects on local variables and call takes
a third argument which provides a means of selecting which parts of the
state to preserve — in our case we take the heap and other static variables
in the globals component of the program’s state space in the post-function

2.5. CSY S-COM TRANSLATION 45

call state t and set the new state to the pre-function call state s with this
component updated. Finally, we supply call with a continuation that, in the
case of a combined assignment and function call, updates the post-function
call state with the return value. The LHS of the assignment may only have
the form of a single variable expression to prevent dependence on state that
might be updated during the function call in the evaluation of the modifiable
lvalue expression. Further details of call are provided by Schirmer [85].

Compound

The translation for compound statements is detailed in Table 2.12, where dn

represents declarations and cn statements. The main point of interest here
is a detail that is lacking from the translation — we do not describe how
variable scoping is handled. This is due to additional checks performed by
the translation tool that reject programs with variables declared in a block
where outside the block there is already a visible variable with the same
name. This restriction is not fundamental, with namespace mangling we
could ensure all variables have unique names.

Where explicit initialisers are missing, we assign arbitrary as a value,
preventing much of interest being shown. A more conservative approach
would be to introduce additional initialisation guards for expressions that
feature potentially uninitialised variables and/or force the value to depend
on program location and state.

Selection

Table 2.13 contains the translation for selection statements. Here we limit
ourselves to if statements.

Iteration

while and for statements in Table 2.14 are implemented using the exception
mechanism of the verification environment to allow for abrupt termination
of the loop with continue and break statements. An additional variable is
introduced to the program’s state space, called global-exn-var, with type:

datatype c-exntype = Break | Continue | Return

and checked when an exception is detected to provide the correct loop
semantics. A similar wrapper for the entire function is generated to catch
return exceptions.

Since the comma operator is not included in ordinary expressions in Csys,
for statements have this syntax as a special case to list expression statements.

do statements can be handled as above, although are not currently
implemented.

46 CHAPTER 2. SEMANTIC MODEL

〈e0 := e1〉 = (λs. 〈e0〉L (convert 〈e0〉T 〈e1〉T 〈e1〉E s) s)

StmtExprAssign
assign-valid 〈e0〉T 〈e1〉T

〈e0 = e1 ;〉S = Guard (〈e0〉G ∩ 〈e1〉G) (Basic 〈e0 := e1〉)

StmtExprCallAssign
〈f 〉F = 〈r ,p1,. . .,pn〉

assign-valid 〈e0〉T 〈r〉T
assign-valid 〈p1〉T 〈e1〉T . . . assign-valid 〈pn〉T 〈en〉T

e0 is a variable expression
〈e0 = f (e1, e2, . . ., en) ;〉S =

Guard (〈e0〉G ∩ 〈e1〉G ∩ 〈e2〉G ∩ . . . ∩ 〈en〉G)
(call (〈p1 := e1〉 ◦ . . . ◦ 〈pn := en〉) f (λs t . s(| globals := globals t |))

(λs t . Basic (〈e0〉L (convert 〈e0〉T 〈r〉T 〈r〉E t))))

StmtExprCall
〈f 〉F = 〈r ,p1,. . .,pn〉

assign-valid 〈p1〉T 〈e1〉T . . . assign-valid 〈pn〉T 〈en〉T
〈f (e1, e2, . . ., en) ;〉S =

Guard (〈e1〉G ∩ 〈e2〉G ∩ . . . ∩ 〈en〉G)
(call (〈p1 := e1〉 ◦ . . . ◦ 〈pn := en〉) f (λs t . s(| globals := globals t |))

(λs t . Skip))

StmtExprPostInc

〈e++; 〉S = 〈e = e + 1; 〉S

StmtExprPostDec

〈e−−;〉S = 〈e = e − 1;〉S

StmtExprEmpty

〈 ;〉S = Skip

Table 2.10: Expression statement translation.

2.5. CSY S-COM TRANSLATION 47

assign-valid τA
0 τA

1

τ τ
τP void ptr
void ptr τP

Table 2.11: Valid assignment expression types.

StmtCompound

〈{d0 d1 . . . dn c0 c1 . . . cm}〉S =
〈d0〉S ‘Seq‘ 〈d1〉S ‘Seq‘ . . . ‘Seq‘ 〈dn〉S ‘Seq‘

〈c0〉S ‘Seq‘ 〈c1〉S ‘Seq‘ . . . ‘Seq‘ 〈cm〉S ‘Seq‘ Skip

StmtDecl

〈t v ;〉S = 〈v = arbitrary ;〉S

StmtDeclAssign

〈t v = e;〉S = 〈v = e;〉S

Table 2.12: Compound statement translation.

Jump

Jump statements, in Table 2.15, set the exception cause variable and throw
an exception to modify the control flow. In the case of return this also
involves updating the function return variable in the program’s state when
the function’s return type is not void.

cond-valid e = ∃ τ . 〈e〉T = τA ∨ 〈e〉T = τP

StmtIf
cond-valid e

〈 if (e) c〉S = Guard 〈e〉G (Cond {s. 〈e〉E s 6= 0} 〈c〉S Skip)

StmtIfElse
cond-valid e

〈 if (e) c0 else c1〉S = Guard 〈e〉G (Cond {s. 〈e〉E s 6= 0} 〈c0〉S 〈c1〉S)

Table 2.13: Selection statement translation.

48 CHAPTER 2. SEMANTIC MODEL

loop-body c d = Seq (Catch c
(Cond {s. global-exn-var s = Continue} Skip Throw)) d

while e c = Guard 〈e〉G (While {s. 〈e〉E s 6= 0} (Seq c (Guard 〈e〉G Skip)))

loop e c d = Catch (while e (loop-body 〈c〉S 〈d〉S))
(Cond {s. global-exn-var s = Break} Skip Throw)

StmtWhile
cond-valid e

〈while (e) c〉S = loop e c Skip

StmtFor
cond-valid e

〈for (c0, c1, . . ., cn ; e ; d0, d1, . . ., dm) c〉S =
〈c0;〉S ‘Seq‘ 〈c1;〉S ‘Seq‘ . . . ‘Seq‘ 〈cn;〉S ‘Seq‘ Skip ‘Seq‘

loop e c (〈d0;〉S ‘Seq‘ 〈d1;〉S ‘Seq‘ . . . ‘Seq‘ 〈dm;〉S ‘Seq‘ Skip)

Table 2.14: Iteration statement translation.

2.5.5 Guards

The generation of guards that perform run-time checks is given in Table
2.16. Guards are a semantic construction used during verification and do
not result in any modification to the code or compilation.

Only a few examples of guards are included to provide a flavour. Our
framework allows a verifier to customise the guards to a particular verification
scenario. For example, a verification that is aimed at a strict interpretation
of the standard may require guards on pointer and array arithmetic to ensure
that bounds are not violated, checks on the correct initialisation of variables,
for trap representations, etc. In another scenario, we may wish to remove
the NULL pointer guard to allow the operating system to interact with the
base of memory. An important use of guards could be to limit the heap to a
subset of the address space to prevent unintentional damage to the run-time
stack, page tables and code segment.

The other aspects of translation remain mostly unchanged when we
modify the guard translation, lowering the cost of specialising to a particular
implementation, although in some cases it may be necessary to track some
additional state, e.g. the initialisation state of variables [74].

Definition 2.5.2. Pointer expressions have guards on alignment and NULL
values:

2.5. CSY S-COM TRANSLATION 49

throw r = Seq (Basic (λs. s(| global-exn-var := r |))) Throw

StmtContinue

〈continue;〉S = throw Continue

StmtBreak

〈break;〉S = throw Break

StmtReturnVoid

〈return;〉S = throw Return

StmtReturn
〈f 〉F = 〈r ,p1,. . .,pn〉

statement enclosed by function f
〈return e ;〉S = Seq (〈r = e;〉S) (throw Return)

Table 2.15: Jump statement translation.

c-null-guard p ≡ 0 /∈ {p&..+size-of TYPE(α)}
ptr-aligned p ≡ align-of TYPE(α) dvd IN⇐ p&

c-guard (p::α ptr) ≡ ptr-aligned p ∧ c-null-guard p

The pointer guard definitions are polymorphic and only need to be specified
once for all pointer types.

2.5.6 Side-effect free expressions

The shallow embedding of side-effect free expressions is given in Table
2.17 and Table 2.18. Pointer addition is restricted to where the integer
sub-expression is an uint, and pointer subtraction completely elided. This
already relies on implementation-defined behaviour, namely the equivalence
of addresses and uint, and could be generalised to other integer types with
more such detail. Pointer relational and equality operators only allow same
typed sub-expressions to be compared, rather than also allowing the void ptr
in comparisons. Again, these limitations are not fundamental.

The embedding is split between two tables as it is quite lengthy, with the
second table containing the embedding of expressions that interact with the
program’s state.

Definition 2.5.3. Heap dereferences in expressions, e.g. ∗p + 1 are given a
semantics by first lifting the raw heap state with a polymorphic lift function,
e.g. lift s p + 1 where s is the current state.

heap-list :: heap-mem ⇒ nat ⇒ addr ⇒ byte list
heap-list h 0 p ≡ []
heap-list h (Suc n) p ≡ h p·heap-list h n (p + 1)

50 CHAPTER 2. SEMANTIC MODEL

GuardCond
〈e0 ? e1 : e2〉G = 〈e0〉G ∩ 〈e1〉G ∩ 〈e2〉G

GuardArith
〈e0 f e1〉G = 〈e0〉G ∩ 〈e1〉G where f ∈ {+ , −, ∗, &, | , ˆ}

GuardDivMod
〈e0 f e1〉G = 〈e0〉G ∩ 〈e1〉G ∩ {s. 〈e1〉E s 6= 0} where f ∈ {/, %}

GuardLogicRelEq
〈e0 f e1〉G = 〈e0〉G ∩ 〈e1〉G where f ∈ { || , &&, <, <=, >, >=, ==, !=}

GuardShift
〈e0 f e1〉G = 〈e0〉G ∩ 〈e1〉G ∩ {s. 〈e1〉E s ≥ 0} where f ∈ {<<, >>}

GuardCast
〈(t)e〉G = 〈e〉G

GuardDeref
〈∗e〉G = 〈e〉G ∩ {s. c-guard (〈e〉E s)}

GuardUnary
〈f e〉G = 〈e〉G where f ∈ {+ , −, ˜ , !, &, sizeof}

GuardDot
〈e .n〉G = 〈e〉G

GuardArrow
〈e−>n〉G = 〈∗e〉G

GuardArray
〈e0〉T = (τ ,n) array

〈e0 [e1]〉G = 〈e0〉G ∩ 〈e1〉G

GuardArrayDegen
〈e0〉T = τ ptr

〈e0 [e1]〉G = 〈∗(e0 + e1)〉G

GuardConst
〈c〉G = U

GuardVar
〈v〉G = U

GuardParen
〈(e)〉G = 〈e〉G

Table 2.16: Guard translations.

2.5. CSY S-COM TRANSLATION 51

h-val :: heap-mem ⇒ α::c-type ptr ⇀ α
h-val h p ≡ from-bytes (heap-list h (size-of TYPE(α)) p&)

lift :: heap-mem ⇒ α::c-type ptr ⇒ α
lift h ≡ λp. the (h-val h p)

This is a core concept in the expression semantics, as it provides the formal
machinery for splitting values across multiple locations in the heap. lift and
h-val are polymorphic, with their types inferred from context, e.g. from an
applied pointer. A byte list of the type’s size is retrieved from memory with
heap-list and lifted with from-bytes to the HOL level. It should be noted that
this is a semantic model and updates to the heap state affect all lifted heaps,
regardless of type.

The struct field . operator has two cases. If the first expression does
not have an address in the heap then it must be an automatic variable and
we retrieve the value from the program state by applying the record access
function. Otherwise, we use the &(p→n) operator, defined in Chapter 5, to
obtain the address of the field. This is a HOL term that takes an α::c-type
ptr p and field name n and gives the address of the field in the heap (see
Defn. 5.2.8). A pointer of the field type can then be formed and the value
lifted from the heap.

2.5.7 Lvalues

The address of an lvalue’s object can be found with Table 2.19. Modifiable
lvalue expressions can be embedded as state update functions with Table
2.20.

Definition 2.5.4. Updates to lvalues in the heap are given a semantics with
heap-update:

heap-update-list :: addr ⇒ byte list ⇒ heap-mem ⇒ heap-mem
heap-update-list p [] h ≡ h
heap-update-list p (x ·xs) h ≡ heap-update-list (p + 1) xs (h(p := x))

heap-update :: α::c-type ptr ⇒ α ⇒ heap-mem ⇒ heap-mem
heap-update p v h ≡ heap-update-list p& (to-bytes v) h

For example, the assignment ∗p = ∗q + 5 is translated to the state transformer
λs. heap-update p (lift s q + 5) s. As with lift, this is a place where the
semantics maps between the HOL value and byte list representation. We
develop rules to abstract these terms when they appear in proof obligations
in the following chapters.

52 CHAPTER 2. SEMANTIC MODEL

ExprCond
cond-valid e0

convert 〈e0 ? e1 : e2〉T 〈e1〉T 〈e1〉E = eR
1

convert 〈e0 ? e1 : e2〉T 〈e2〉T 〈e2〉E = eR
2

〈e0 ? e1 : e2〉E = λs. if 〈e0〉E s 6= 0 then e1
R s else e2

R s

ExprPlus
〈e0〉T = τP 〈e1〉T = uint

〈e0 + e1〉E = λs. (〈e0〉E s) +p (〈e1〉E s)

ExprPlus2
〈e0〉T = uint 〈e1〉T = τP

〈e0 + e1〉E = λs. (〈e1〉E s) +p (〈e0〉E s)

ExprArith
〈e0〉T = τA

0 〈e1〉T = τA
1 convert 〈e0 f e1〉T τA

0 〈e0〉E = eR
0

convert 〈e0 f e1〉T τA
1 〈e1〉E = eR

1 f ∈ {+ , −, ∗, / , %, &, | , ˆ}
g is a HOL bit-vector operator corresponding to f

〈e0 f e1〉E = λs. g (eR
0 s) (eR

1 s)

ExprLogic
cond-valid e0 cond-valid e1

f ∈ { || , &&} g is a HOL boolean operator corresponding to f
〈e0 f e1〉E = λs. if g (〈e0〉E s 6= 0) (〈e1〉E s 6= 0) then 1 else 0

ExprRelEq
〈e0〉T = τA

0 〈e1〉T = τA
1 convert 〈e0 + e1〉T τA

0 〈e0〉E = eR
0

convert 〈e0 + e1〉T τA
1 〈e1〉E = eR

1 f ∈ {<, <=, >, >=, ==, !=}
g is a HOL relational operator corresponding to f

〈e0 f e1〉E = λs. if g (eR
0 s) (eR

1 s) then 1 else 0

ExprRelEqPtr
〈e0〉T = τP 〈e1〉T = τP f ∈ {<, <=, >, >=, ==, !=}

g is a HOL relational operator corresponding to f

〈e0 f e1〉E = λs. if g (ptr-val eR
0 s) (ptr-val eR

1 s) then 1 else 0

ExprShift
〈e0〉T = τA

0 〈e1〉T = τA
1 convert 〈e0 f e1〉T τA

0 〈e0〉E = eR
0

f ∈ {<<, >>} g is a HOL bit-vector operator corresponding to f

〈e0 f e1〉E = λs. g (eR
0 s) (IN⇐ (〈e1〉E s))

ExprUnary
〈e〉T = τA convert 〈f e〉T τA 〈e〉E = eR

f ∈ {+,−,∼} g is a HOL bit-vector operator corresponding to f

〈f e〉E = λs. g (eR s)

ExprNot
cond-valid e

〈 !e〉E = λs. if 〈e〉E s = 0 then 1 else 0

Table 2.17: Side-effect free expression translations.

2.5. CSY S-COM TRANSLATION 53

ExprAddrOf
〈&e〉E = λs. Ptr (〈e〉A s)

ExprDeref
〈∗e〉E = λs. lift (h-state s) (〈e〉E s)

ExprSizeOf
〈sizeof e〉E = λs. size-of TYPE(〈e〉T)

ExprCast
〈(t)e〉E = convert 〈(t)e〉T 〈e〉T 〈e〉E

ExprDot
〈e〉A = ⊥

〈e .n〉E = λs. n (〈e〉E s)

ExprArrow
〈e−>n〉E = 〈(∗e) .n〉E

ExprDotLvalue
〈e〉A 6= ⊥

〈e .n〉E = λs. lift (h-state s) (Ptr (&(〈&e〉E s)→n))

ExprArrayPtr
〈e0〉T = τ ptr

〈e0 [e1]〉E = 〈∗(e0 + e1)〉E

ExprArray
〈e0〉T = (τ ,n) array

〈e0 [e1]〉E = λs. array-index (〈e0〉E s) (IN⇐ (〈e1〉E s))

ExprConst
〈c〉E = λs. IN⇒ c

ExprParen
〈(e)〉E = 〈e〉E

ExprVarAuto
v is automatic
〈v〉E = v- ′

ExprVarStatic
v is static

〈v〉E = λs. lift (h-state s) v-addr

Table 2.18: Side-effect free expression translations (cont.).

2.5.8 Example translation

Example 2.5.1. Table 2.21 contains a translation of tree min’s function
body in Exmp. 2.3.3. This appears to be a quite large and unwieldy object
for such a simple program, but this is processed by the VCG before the
program verifier interacts with it. The resulting proof obligations, as seen in
later examples, are reasonable since the VCG is able to simplify significantly
— e.g. the Catchs are never used other than in a trivial way and disappear.

Acknowledgments

The content in this chapter represents joint work with Michael Norrish and
Gerwin Klein. The aspects of the translation process not related to the

54 CHAPTER 2. SEMANTIC MODEL

AddrDeref
〈∗e〉A = λs. ptr-val (〈e〉E s)

AddrDot
〈e .n〉A = λs. &(〈&e〉E s)→n

AddrArrow
〈e−>n〉A = 〈(∗e) .n〉A

AddrArray
〈e0〉T = τ ptr

〈e0 [e1]〉A = 〈∗(e0 + e1)〉A

AddrVarStatic
v is static

〈v〉A = λs. ptr-val v-addr

Table 2.19: Lvalue address translations.

type encoding, struct operators, pointer and heap semantics have been
formalised after the fact, using a combination of the C standard and an ML
implementation of the translation process developed by Michael Norrish.

2.5. CSY S-COM TRANSLATION 55

MLvalDeref
〈∗e〉L = λv s. heap-update (〈e〉E s) v s

MLvalDot
〈e〉A = ⊥

〈e .n〉L = λv s. 〈e〉L ((〈e〉E s)(| n := v |)) s

MLvalDotHeap
〈e〉A 6= ⊥

〈e .n〉L = λv s. heap-update (Ptr (&(〈&e〉E s)→n)) v s

MLvalArrow
〈e−>n〉L = 〈(∗e) .n〉L

MLvalArrayPtr
〈e0〉T = τ ptr

〈e0 [e1]〉L = 〈∗(e0 + e1)〉L

MLvalArray
〈e0〉T = (τ ,n) array

〈e0 [e1]〉L = λv s. 〈e0〉L (array-update (〈e0〉E s) (IN⇐ (〈e1〉E s)) v) s

MLvalVarAuto
v is automatic

〈v〉L = λk s. s(| v- ′ := k |)

MLvalVarStatic
v is static

〈v〉L = heap-update v-addr

Table 2.20: Modifiable lvalue translations.

56 CHAPTER 2. SEMANTIC MODEL

Catch (
Catch (

Guard {s. c-guard (t- ′ s)} (
While {s. lift (h-state s) (Ptr &(t- ′ s→[′′l ′′])) 6= 0} (

Catch (
Guard {s. c-guard (t- ′ s)} (

Basic (λs. s(| t- ′ := lift (h-state s) (Ptr &(t- ′ s→[′′l ′′]))|))
)

) (
Cond {s. global-exn-var s = Continue} Skip Throw

) ‘Seq‘
Skip ‘Seq‘
Guard {s. c-guard (t- ′ s)} Skip

)
)

) (
Cond {s. global-exn-var s = Break} Skip Throw

) ‘Seq‘
Guard {s. c-guard (t- ′ s)} (

Basic (λs. s(| tree-min-ret- ′ := lift (h-state s)
(Ptr &(t- ′ s→[′′item ′′])) |))

) ‘Seq‘
Basic (λs. s(| global-exn-var := Return |)) ‘Seq‘
Throw

) Skip

Table 2.21: tree min com translation.

Chapter 3

Unified memory model

3.1 Inter-type aliasing

The pointer dereferencing semantics presented in Chapter 2 are sufficient
to describe the behaviour of a C program, but they do not provide an
adequate basis for writing assertions or describing proofs for the obligations
resulting from verification condition generation. Aliasing, under the ROLM
assumption, in C is apparent in several possibilities:

• Conventional aliasing between pointers of the same type, as introduced
in §1.3.

Example 3.1.1. For two char pointers the following Hoare triples
hold:

{|σ. ṕ 6= q́ |} ∗p = 1 ; ∗q = 2 ; {| ∗(σp) = 1 |}
{|σ. ṕ = q́ |} ∗p = 1 ; ∗q = 2 ; {| ∗(σp) = 2 |}

We refer to this as intra-type aliasing and its treatment in conjunction
with the aliasing issues identified below is the subject of Chapter 4.

• Pointers of different types may point to the same object. This may be
intentional, as in physical sub-typing [88], or unwanted, where aliasing
should not occur if the program is correct.

Example 3.1.2. Consider the following declarations:
struct bin tree { int item; struct bin tree ∗ left , ∗right ; };
struct llist { int item; struct llist ∗next; };

If linked data structures of these types are intended to make disjoint
use of memory then the following triple regarding ordered insertion
into a list should be true:

{|σ. balanced-tree ṕ |}
insert-ordered((p::bin-tree ptr)→item, (q ::llist ptr));
{| balanced-tree σp |}

57

58 CHAPTER 3. UNIFIED MEMORY MODEL

Unfortunately, additional information is required to rule out aliasing in
the pre-condition. Stating p& 6= q& is insufficient, as it is possible that
the node modified during insertion in the list rooted at q is also linked
as a node in the tree rooted at p. We require a stronger conjunct, as
with intra-type aliasing, giving disjointness between the addresses of
pointers occurring in the tree and those in the list.

If C were type-safe then predicates ruling out potential aliasing between
differently typed pointers would be unnecessary1 and it is troubling
that the program verifier is burdened with the requirement to add
these predicates to assertions and reason about them.

• Pointers do not alias only on an object’s base address, but may alias in-
side the encoding. This again may be a deliberate feature in a program,
such as using an unsigned int * to efficiently read consecutive 32-bit
blocks in a struct when computing a checksum of the same width, or
performing endianess conversion on a received network packet. How-
ever, this further complicates the problem of having to state aliasing
conditions.

Alignment provides some relief, for example two ints with 4 byte size
and alignment may not alias into the encodings of one another under
ROLM. In general, however, the C standard and implementations we
consider only guarantee that align-of TYPE(α) dvd size-of TYPE(α), a
condition required to allow tiling of objects in arrays. Hence it may
still be possible for a struct bin tree * pointer to reference inside a
llist object representation. The addresses that need to be considered
in an anti-aliasing predicate must include the entire heap footprint of
each object.

Collectively we refer to the last two aliasing possibilities as inter-type
aliasing.

While ROLM allows programs the ability to exhibit inter-type aliasing, it
should be the case that well-written systems code has very little of this form
of aliasing, confining it to only the parts where this is necessary, such as the
motivating examples in §2.3.1. By remaining inside the type-safe fragment
of the language it is possible to leverage what type checks the compiler and
other pointer analysis tools offer, in addition to simplifying the proofs we
consider here.

Based on this observation, we would like to ignore inter-type aliasing in
most proofs. The multiple typed heaps model from §1.3 provides an abstract
state representation that allows for this, but does not apply under either
ROLM or many other reasonable implementation specialisations of the strict

1If we ignore updates through member objects in structs, an assumption that is
revisited in Chapter 5.

3.2. HEAP TYPE DESCRIPTION 59

C standard. In the following, we unify the semantic model in §2.3.2 with this
abstract view of memory, providing the best of both worlds — the ability
to express the semantics of programs that exhibit inter-type aliasing where
needed and multiple typed heaps as a proof abstraction where the program
remains within a type-safe fragment of C.

3.2 Heap type description

3.2.1 Ghost variable

Definition 3.2.1. The notion of object lifetime and type can be recovered
by introducing an additional ghost component in the program state, which
we call the heap type description:

types heap-typ-desc = addr ⇀ typ-tag option

This captures the implicit mapping from addresses to types and object
footprints. The heap type description is partial, since it only maps memory
actually used by the program. Each object representation has the typ-tag
corresponding to its type stored at the base address. The rest of the heap
footprint of the value is also mapped, but with a b⊥c value padding instead
of a tag. It is helpful to consider the three possible cases for entries at an
address — ⊥ meaning no value is present, bbtcc that the location represents
the base of a footprint for some object of type t and b⊥c giving some location
inside the footprint other than the base.

To understand why this is useful, consider a heap type description addr
⇀ typ-tag, where only the base of the object footprint is stored. In principle,
this could also describe the intended mapping if we add a well-formedness
invariant [93]:

wf-heap d ≡
∀ x y t . d x = btc ∧ 0 < y ∧ y < typ-size t −→ d (IN⇒ (IN⇐ x + y)) = ⊥

This requires that wf-heap is carried around in proofs and assertions and
that it is reestablished on updates to the heap type description resulting
from retype operations. Further problematic is that pointer validity is non-
monotonic, i.e. if d ⊆m d ′ then if a pointer is valid in d it should be valid in
d ′. This would complicate the later separation logic development of Chapter
4, where performing map addition d ++ d ′, with wf-heap d, wf-heap d ′ and
dom d ∩ dom d ′ = ∅, does not preserve pointer validity or even the wf-heap
invariant.

The heap type description is a ghost variable. It exists as a proof
convenience and plays no role in the semantic interpretation — programs

60 CHAPTER 3. UNIFIED MEMORY MODEL

are free to violate this mapping and do anything that ROLM permits. The
proof following verification condition generation will not benefit from the
information contained in the heap type description in this case, but remains
sound.

3.2.2 Validity

Definition 3.2.2. We write d ,g |=t p to mean that the pointer p::α::c-type
ptr is valid in heap type description d with guard g :

valid-footprint d x t n ≡ d x = bbtcc ∧
(∀ y . y ∈ {x + 1 ..+n − 1} −→ d y = b⊥c)

d ,g |=t p ≡ valid-footprint d p& TYPE(α)t (size-of TYPE(α)) ∧ g p

The guard g strengthens the assertion to restrict validity based on the
language’s pointer dereferencing rules. For example, alignment can be
captured with d ,ptr-aligned |=t p. The stronger assertion is motivated by the
need to satisfy the guard proof obligation generated whenever a pointer is
dereferenced — if it is necessary to establish validity of a pointer p for the
purpose of a proof about a code fragment involving p, it is usual that one or
more guard related proof obligations for p will also need to be discharged. By
parameterising the guard, the framework presented in this chapter becomes
reusable in settings with different guard restrictions.

The type signature of valid-footprint is heap-typ-desc ⇒ addr ⇒ typ-tag ⇒
nat ⇒ bool and does not contain any type variables, unlike the polymorphic
|=t. By removing the dependency on the type variable we are able to write
Isabelle/HOL definitions involving validity where there is no free type variable
on the RHS of the definition unmatched on the LHS, such as .= in §3.5, as
one cannot quantify over types in Isabelle/HOL. This idiom of splitting a
definition into a polymorphic wrapper for a monomorphic definition is used
later in the definitions of Chapter 5 as well.

Example 3.2.1. A heap memory and type description state is given in
Fig. 3.1. Locations in the footprint of a valid pointer are shaded. If
the heap type description is the variable d, then d ,ptr-aligned |=t s and
d ,ptr-aligned |=t u, but ¬ d ,ptr-aligned |=t t and ¬ d ,ptr-aligned |=t v . The
pointer t ::char ptr is not valid because the correct heap footprint is miss-
ing from the heap type description, and v ::int ptr is invalid because it is
unaligned.

Theorem 3.2.1. Pointer validity is monotonic:

3.2. HEAP TYPE DESCRIPTION 61

s

u

v

t

align_of TYPE(int)

align_of TYPE(char)

siz
e_

of
 T

YP
E(

in
t)

siz
e_

of
 T

YP
E(

in
t)

siz
e_

of
 T

YP
E(

ch
ar

)
...

heap_mem

0xA0

0x3E

0xC5

0x00

0x07

0xDE

0x00

0x00

0xFF

0xFF

0x37

...

...

┗int_tag┛
⊥

⊥

⊥

-

┗char_tag┛

┗int_tag ┛

⊥

-

...

heap_typ_desc

⊥

⊥

Figure 3.1: Example heap state.

d ⊆m d ′

d ,g |=t p −→ d ′,g |=t p

Proof. By unfolding Defn. 3.2.2.

Theorem 3.2.2. Two valid pointers, p::α::c-type ptr and q ::β::c-type ptr,
with unequal address values do not have overlapping footprints:

d ,g |=t p d ,g ′ |=t q p& 6= q&

{p&..+size-of TYPE(α)} ∩ {q&..+size-of TYPE(β)} = ∅

Proof. Observe that p& /∈ {q&..+size-of TYPE(β)}, since if it were it would
have to be a member of the interval {q& + 1 ..+size-of TYPE(β) − 1} as
p& 6= q&. From d ,g ′ |=t q and the definition of validity we then have that d
p& = b⊥c. However, from d ,g |=t p and the definition of validity d p& =
bbTYPE(α)tcc.

Similarly, q& /∈ {p&..+size-of TYPE(α)}. If there is overlap then ei-
ther p& ∈ {q&..+size-of TYPE(β)} or q& ∈ {p&..+size-of TYPE(α)}, so a
contradiction is obtained.

Definition 3.2.3. A pointer p::α::c-type ptr is safe w.r.t. a heap type
description d if its footprint is a subset of the domain of d :

62 CHAPTER 3. UNIFIED MEMORY MODEL

ptr-safe p d ≡ {p&..+size-of TYPE(α)} ⊆ dom d

Theorem 3.2.3. Pointer validity implies safety:

d ,g |=t p
ptr-safe p d

Proof. By unfolding Defn. 3.2.3 and Defn. 3.2.2.

3.2.3 Retyping

In this section we describe how the heap type description can be updated by
the ptr-tag function, a process also referred to as retyping.

Definition 3.2.4. ptr-tag updates the heap type description such that it
includes the given pointer p’s footprint:

ptr-clear p n d ≡ d({p& + 1 ..+n − 1}{7→}⊥)

ptr-set p t d ≡ d(p& 7→ bt tc)
ptr-tag (p::α ptr) ≡ ptr-set p TYPE(α) ◦ ptr-clear p (size-of TYPE(α))

It is intended that retyping occurs once for all variables of static storage
duration. If automatic variables were included in the heap area they would
also require retyping on block entry/exit. During a program’s execution,
retyping occurs at the call sites of and inside memory (de)allocator functions,
where the intended type and use of a block of memory changes.

Theorem 3.2.4. Following retyping, a target pointer p::α::mem-type ptr is
valid:

g p
ptr-tag p d ,g |=t p

Proof. Unfold definitions and note that size-of TYPE(α) < |addr|, hence the
required footprint can be represented in the heap type description.

Theorem 3.2.5. A previously valid pointer q ::β::mem-type ptr remains valid
across a retype as long as its footprint and p::α::mem-type ptr’s are disjoint:

d ,g |=t q {p&..+size-of TYPE(α)} ∩ {q&..+size-of TYPE(β)} = ∅
ptr-tag p d ,g |=t q

Proof. We have x /∈ {p&..+size-of TYPE(α)} =⇒ ptr-tag p d x = d x by
noting 0 < size-of TYPE(α) prevents the disjointness assumption from not
accounting for the effect of ptr-set with empty type object representations.
The rule then follows by unfolding and application of this fact.

3.2. HEAP TYPE DESCRIPTION 63

One of the motivations in developing the heap type description and a
notion of validity was the desire to avoid having to reason about footprint
intervals. The above rule requires consideration of the entire footprint
however, though the need to invoke this rule occurs usually only at memory
(de)allocation time. Based on the above rule we can derive additional rules
that do not involve interval reasoning in their use:

• The specifications for allocators can explicitly provide for validity
preservation.

Example 3.2.2. Consider an allocator for struct llist nodes. Inter-
nally it may use types distinct to the rest of the program and perform
a retype immediately before a successful return. A property such as
the following could then be provided:

{|σ. d́ ,g |=t (́p:: α ptr) ∧ typ-tag TYPE(α) /∈ ll-alloc-typ-tags |}
q = ll-alloc();
{| d́ ,g |=t

σp |}

Here, any pointer p has its validity preserved during the execution
of ll alloc providing it is not of a type modified by the allocator’s
execution, i.e. not in the set of types used to implement the free list.

• Application-specific rules based on the types utilised and the rela-
tionship between retype targets and existing valid pointers can be
added.

Example 3.2.3. If a retype is performed on the address of a valid
pointer r ::γ ptr and the size of the object representation of the target
type β is less than or equal to the size of γ’s representation, then a
distinct pointer p::α ptr has its validity preserved:

d ,g |=t p
d ,g ′ |=t r q& = r& size-of TYPE(β) ≤ size-of TYPE(γ)

TYPE(α)t 6= TYPE(γ)t ∨ p& 6= q&

ptr-tag q d ,g |=t p

Proof. We first establish

valid-footprint d p s m
{p..+m} ∩ {q&..+size-of TYPE(β)} = ∅ 0 < m

valid-footprint (ptr-tag q d) p s m

by Defn. 3.2.2, interval reasoning and observing from Defn. 3.2.4:

x /∈ {q&..+size-of TYPE(β)}
ptr-tag q d x = d x

64 CHAPTER 3. UNIFIED MEMORY MODEL

From this we can deduce

valid-footprint d p s m valid-footprint d r t n
q& = r size-of TYPE(β) ≤ n s 6= t ∨ p 6= q& 0 < m

valid-footprint (ptr-tag q d) p s m

since

valid-footprint d p s m valid-footprint d r t n p 6= r
{p..+m} ∩ {r ..+n} = ∅

using the same reasoning as in the proof of Thm. 3.2.2, which solves
the goal after unfolding with Defn. 3.2.2.

3.2.4 Annotations

Code annotations are added to update the heap type description when the
intended type of a region of memory changes. Syntactically, they are C
comments of the form:

/∗∗ AUXUPD : (g, f) ∗/

where f is an expression that may depend on any program variable or the
heap type description and yields a new heap type description, and g is a
guard predicate on the current state. A guard could require that retypes
only affect locations in the existing domain of the heap type description,
such as ptr-safe in §4.4, providing a form of memory safety on retypes. An
example annotation for such a retype would be:

/∗∗ AUXUPD : (ptr-safe ṕ d́, ptr-tag (ṕ:: á ptr) d́) ∗/

Annotations are translated to the com language as the following state-
ment:

Guard SafetyError {s. g s} (Basic (λs. s(| d := f s |)))

Annotations are flexible and allow for additional retype operations to be
defined for an application, e.g. for retyping arbitrary sized arrays inside an
allocator. They only introduce additional guards and modify the state of
the heap type description ghost variable. Consequently, there is no effect on
soundness.

3.3. LIFTING 65

3.3 Lifting

So far, the effect of updates on the lifted heap can only be expressed point-
wise; we can determine that a heap derived with lift at pointer p is not
affected by an update at pointer q if both are valid. We cannot determine
that if the float incarnation of the lifted heap changes, the whole unsigned
int incarnation, as a function, is unaffected.

This means that if we had, for instance, a heap invariant or abstraction
function for a linked list structure that only uses the unsigned int * incar-
nation of the lifted heap, we would need to prove a separate rule for that
abstraction function to show that it remains unchanged under float updates
— even if the abstraction function explicitly states that all its pointers are
valid.

In this section we lift the heap-mem and heap-typ-desc state to a set of
independent heap functions, providing the ability to write assertions and
reason about multiple typed heaps in proofs. This follows a two-stage process,
where first the two components are combined and then transformed into
a polymorphic lifting function. The split facilitates later layering of the
separation logic embedding. We describe the stages in the process here and
then the properties of the composed lifting function.

1. The two heap related components are combined into a single function.

Definition 3.3.1. The first stage results in an intermediate heap-state.

types heap-state = addr ⇀ typ-tag option × byte

Definition 3.3.2. The function lift-state takes as a single parameter
a heap-mem × heap-typ-desc tuple, filters out locations that are ⊥ in
the heap type description, removing values that should not affect the
final lifted typed heaps, and yields a heap-state:

lift-state ≡ λ(h, d) x . case d x of ⊥ ⇒ ⊥ | btc ⇒ b(t , h x)c

Theorem 3.3.1. Equality between lifted heaps is pointwise component
equality modulo the heap type description domain:

(lift-state (h, d) = lift-state (h ′, d ′)) = ((∀ x∈dom d . h x = h ′ x) ∧ d = d ′)

Proof. It is required that both heap type descriptions have the same
domain and are pointwise equal, since they are directly visible after the
lift-state in the first component of the range. The proof is completed
by applying definitions and function extensionality.

66 CHAPTER 3. UNIFIED MEMORY MODEL
align_of TYPE(int)

align_of TYPE(char)

...

heap_mem

0xA0

0x3E

0xC5

0x00

0x07

0xDE

0x00

0x00

0xFF

0xFF

0x37

...

...

┗int_tag┛
⊥

⊥

⊥

-

┗char_tag┛

┗int_tag ┛

⊥

-

...

heap_typ_desc

⊥

⊥

siz
e_

of
 T

YP
E(

in
t)

siz
e_

of
 T

YP
E(

in
t)

siz
e_

of
 T

YP
E(

ch
ar

)

lift_state

...

(┗int_tag ┛,0xA0)

(⊥,0x3E)

(⊥,0xC5)

(⊥,0x00)

-

(┗char_tag┛,0xDE)

(┗int_tag ┛,0x00)

(⊥,0xFF)

-

...

(⊥,0xFF)

(⊥,0x00)

heap_state

Figure 3.2: First stage lifting.

Example 3.3.1. Fig. 3.2 illustrates the effect of lift-state on a running
example for this section. The only locations dropped in the lifted
state are those with ⊥ in the heap type description — even incorrectly
aligned locations and those with invalid footprints are preserved. These
are filtered out at the next lifting stage.

The following additional definitions are useful later when operating at
the heap-state level.

Definition 3.3.3. Projection functions proj-h and proj-d, from the
intermediate heap-state, that satisfy x ∈ dom d =⇒ proj-h (lift-state
(h, d)) x = h x and proj-d (lift-state (h, d)) = d can be defined as:

proj-h s ≡ λx . case s x of ⊥ ⇒ arbitrary | b(t , k)c ⇒ k

proj-d s ≡ λx . case s x of ⊥ ⇒ ⊥ | b(t , k)c ⇒ btc

Definition 3.3.4. These projection functions then allow us to define
lifted validity and heap-list on heap-states with s,g |=s p and heap-list-s
respectively:

s,g |=s p ≡ proj-d s,g |=t p

heap-list-s s n p ≡ heap-list (proj-h s) n p

3.3. LIFTING 67

2. The second lifting stage results in multiple typed heaps again. We
supply a single polymorphic definition that provides a distinct heap
for each language type. The intended heap type in a specification or
proof is implicit — there are usually no type annotations. Instead the
type is discovered from use through Isabelle’s type inference, based on
the phantom pointer types in §2.4.2.

Definition 3.3.5. The lift-typ-heap function, with the type signature
α ptr-guard ⇒ heap-state ⇒ (α::c-type ptr ⇀ α), restricts the domain
such that the only values affecting the resultant heap are inside the
heap footprint of valid pointers of the corresponding type. It also
converts appropriately sized byte lists at the address of valid pointers
to typed values:

lift-typ-heap g s ≡
(from-bytes ◦ heap-list-s s (size-of TYPE(α)) ◦ ptr-val)�{p | s,g |=s p}

This is equivalent to the following definition, which is sometimes easier
to reason about:

lift-typ-heap g s ≡
λp. if s,g |=s p then from-bytes (heap-list-s s (size-of TYPE(α)) p&) else ⊥

Example 3.3.2. In the term lift-typ-heap c-guard s q = b−1 c −→
(∃ j . lift-typ-heap c-guard s p = bj c ∧ k = j + 1), where 1 ::word32,
type inference gives that p is of type unsigned int * and q is some
signed pointer type, with these types then forming the domain of the
lifted heaps respectively. Hence two distinct heaps occur in the term.

Example 3.3.3. Fig. 3.3 illustrates the effect of lift-typ-heap on a
heap-state resulting from lift-state. As well as now mapping to multiple
distinct heaps, this lifting stage filters out invalid pointer locations and
performs decoding of the object representation.

Definition 3.3.6. The two stages are combined with liftτ , shown in Fig. 3.4:

liftτ g ≡ lift-typ-heap g ◦ lift-state

Like lift, liftτ is polymorphic and returns a heap abstraction of type α
typ-heap = α ptr ⇀ α. The program text itself can continue to use the
functions lift and heap-update, while pre/post conditions and invariants use
the stronger liftτ to make more precise statements.

The characteristic properties used in later proofs are provided below.

68 CHAPTER 3. UNIFIED MEMORY MODEL
align_of TYPE(int)

align_of TYPE(char)

siz
e_

of
 T

YP
E(

in
t)

siz
e_

of
 T

YP
E(

in
t)

siz
e_

of
 T

YP
E(

ch
ar

)
...

(┗int_tag ┛,0xA0)

(⊥,0x3E)

(⊥,0xC5)

(⊥,0x00)

-

(┗char_tag┛,0xDE)

(┗int_tag ┛,0x00)

(⊥,0xFF)

-

...

(⊥,0xFF)

(⊥,0x00)

heap_state

-

-

... ...

-

-

-

int ptr⇀ int char ptr⇀ char

0x3EA000C5

-

-

-

-

-

-

0xDE

-

lift_typ_heap

-

-

-

-

-

-

-

-

... ...

Figure 3.3: Second stage lifting.

Lemma 3.3.2. Lifted validity after lift-state is equivalent to pointer validity
on the underlying heap state:

lift-state (h, d),g |=s p = d ,g |=t p

Proof. Note proj-d (lift-state (h, d)) = d by expanding definitions and exten-
sionality, the result follows from unfolding Defn. 3.2.2 and simplifying.

Lemma 3.3.3. The value of the lifted heap-list-s on a lift-state at the address
given by a valid pointer p::α ptr, when considering a byte list of length size-of
TYPE(α) is equivalent to heap-list applied to the underlying heap state:

d ,(λx . True) |=t p
heap-list-s (lift-state (h, d)) (size-of TYPE(α)) p&

= heap-list h (size-of TYPE(α)) p&

Proof. Via induction on k we can establish {n..+k} ⊆ dom d =⇒ heap-list-s
(lift-state (h, d)) k n = heap-list h k n. Thm. 3.2.3 and Defn. 3.2.3 can
then be used to derive from pointer validity an instantiation of this result to
complete the proof.

Theorem 3.3.4. An alternative definition of liftτ that provides a connection
with lift is:

3.3. LIFTING 69

...

heap_mem

0xA0

0x3E

0xC5

0x00

0x07

0xDE

0x00

0x00

0xFF

0xFF

0x37

...

...

┗int_tag┛
⊥

⊥

⊥

-

┗char_tag┛

┗int_tag ┛

⊥

-

...

heap_typ_desc

⊥

⊥

siz
e_

of
 T

YP
E(

in
t)

siz
e_

of
 T

YP
E(

in
t)

siz
e_

of
 T

YP
E(

ch
ar

)

lift

align_of TYPE(int)

align_of TYPE(char)
-

-

... ...

-

-

-

int ptr⇀ int char ptr⇀ char

0x3EA000C5

-

-

-

-

-

-

0xDE

-

-

-

-

-

-

-

-

-

... ...

Figure 3.4: Combined lifting.

liftτ g (h, d) ≡ λp. if d ,g |=t p then h-val h p else ⊥

Proof. After expanding liftτ and the alternate definition for lift-typ-heap,
letting s = lift-state (h, d), Lem. 3.3.2 and Lem. 3.3.3 yield the above.

Corollary. Existence of a typed heap mapping at p implies validity:

liftτ g (h, d) p = bxc
d ,g |=t p

This alternate definition is somewhat simpler than the two-stage lifting
process, but we develop the framework based on the original definition as the
intermediate heap-state also supports the later separation logic embedding
and we are able to then reuse proofs developed on this definition. This
provides a link in unifying the multiple typed heaps and separation logic
memory views.

Theorem 3.3.5. Pointwise component equality modulo pointer validity is
sufficient for lifted heap equality:∧

p. d ,g |=t p = d ′,g |=t p∧
p. d ,g |=t p −→ (∀ x∈{p&..+size-of TYPE(α)}. h x = h ′ x)

liftτ g (h, d) = liftτ g (h ′, d ′)

70 CHAPTER 3. UNIFIED MEMORY MODEL

Proof. First we simplify the goal with Thm. 3.3.4. The validity equivalence
assumption then reduces the goal to comparison of h-val applied to the two
heaps h and h ′, at locations where there exist valid pointers. We can establish
(
∧

x . x ∈ {p..+n} =⇒ h x = h ′ x) =⇒ heap-list h n p = heap-list h ′ n p by
induction on n and then apply the second assumption to instantiate this to
complete the proof.

3.4 Rewriting

In this section we present the key results of this chapter, where a set of rewrites
are derived to tie together the memory semantics and proof abstraction of
the previous section.

3.4.1 Proof obligations

Specifications now feature occurrences of liftτ on the pre- and post-state
and the program semantics make use of lift and heap-update. Following
verification condition generation, we are left with proof obligations featuring
a mix of these terms.

Example 3.4.1. Table 3.1 presents a definition for a function containing
a sequence of assignments containing pointer dereferences, together with a
specification.

∀σ k . {|σ. Φ q́ = bkc ∧ D |=t ć ∧ D |=t ṕ|}
f́-ret :== f (ṕ, q́ , ć)
{| f́-ret = 2 ∗ k2 + (if σp = σq then k2 else k) + 5 |}

int f(int ∗p, int ∗q, char ∗c)
{

∗c = 5;
∗p = ∗q ∗ ∗q;
∗q = ∗p + ∗p + ∗q;

return ∗q + ∗c;
}

Table 3.1: f specification and definition.

Here, and in the rest of this thesis, sH is used as an abbreviation for the
heap state in program state s, sD is used for just the heap type description
and sΦ for the lifted heap state liftτ c-guard sH in assertions to provide greater
clarity. The antiquotation s- is dropped when referring to the current state
in these abbreviations.

3.4. REWRITING 71

The post-condition is complicated by the possible aliasing between pa-
rameters p and q, causing the second assignment to exhibit rather different
behaviour in each case.

A fragment of the resulting proof obligation features the mix of abstraction
levels mentioned above:

[[(liftτ c (h,d)) q = bkc; d |=t c; d |=t p]] =⇒
. . . lift (heap-update q (3 ∗ (lift (heap-update c 5 d) q ∗

lift (heap-update c 5 d) q)) (heap-update q (lift (heap-update
c 5 d) q ∗ lift (heap-update c 5 d) q) (heap-update c 5 d)))

. . . = 3 ∗ k2 + 5

To solve this problem we provide conditional rewrites in Thm. 3.4.1,
Thm. 3.4.5, and Thm. 3.4.6, that can be applied with Isabelle’s simplifier
and leave only liftτ terms in the goal when updates are type-safe and enough
detail is known in the pre-state2.

3.4.2 Conditional rewrite set

Theorem 3.4.1. The value of lift at valid pointers is equivalent to the value
at the same location in the corresponding typed heap:

d ,g |=t p
lift h p = the (liftτ g (h, d) p)

Proof. Follows from Thm. 3.3.4 and the definition of lift.

Lemma 3.4.2. The heap function resulting from encoding a value v and
updating a heap function at p::α::mem-type ptr can have a size-of TYPE(α)
byte list read back from p and decoded to v:

h-val (heap-update p v h) p = bvc

Proof. First, via structural induction on vs, we establish the stronger inter-
mediate result for lists:

|vs| ≤ |addr|
heap-list (heap-update-list p vs h) |vs| p = vs

The base case is trivial, and the v ·vs case can be seen from

0 < k k ≤ |addr| − |vs|
heap-update-list (p + IN⇒ k) vs h p = h p

2E.g. In Exmp. 3.4.1 we required D |=t ć. In a proof system for a type-safe language
we would still require knowledge of a reference’s validity, so this does not introduce new
overhead.

72 CHAPTER 3. UNIFIED MEMORY MODEL

λs. s(p := ┗v┛)

lift
τ

lift
τ

heap_update p v

Figure 3.5: Lifted heap updates when the heap is of the same type.

which also follows by structural induction on vs.
The intermediate result can be instantiated with to-bytes v and size-of

TYPE(α), and with the α::mem-type properties and relevant definitions gives
the lemma.

Lemma 3.4.3. Heap updates do not affect heap reads providing the regions
do not overlap:

{p..+|v |} ∩ {q ..+k} = ∅
heap-list (heap-update-list p v h) k q = heap-list h k q

Proof. By induction on k.

Lemma 3.4.4. Updates to the heap function at a valid pointer p do not
affect h-val at distinct valid pointer locations:

d ,g |=t p d ,g ′ |=t q p& 6= q&

h-val (heap-update p v h) q = h-val h q

Proof. Starting with Lem. 3.4.3, we can then apply Defn. 2.5.4, Defn. 2.5.4
and Thm. 3.2.2 to give a complete proof.

Theorem 3.4.5. The effect of heap-update at p::α::mem-type ptr on lifted
heaps of type α typ-heap is function update. Fig. 3.5 depicts this rewrite.

d ,g |=t p
liftτ g (heap-update p v h, d) = liftτ g (h, d)(p 7→ v)

Proof. We first simplify the goal with Thm. 3.3.4, then by extensionality
we compare the functions point-wise, case splitting on whether the point is
equal to p. Lem. 3.4.2 and Lem. 3.4.4 finish the proof for each case.

3.4. REWRITING 73

id

lift
τ

lift
τ

heap_update p v

Figure 3.6: Lifted heap updates when the heap is of a different type.

Theorem 3.4.6. There is no effect of a heap-update at p::α::mem-type ptr
on lifted heaps of type β typ-heap, where α and β are distinct. Fig. 3.6
depicts this rewrite.

d ,g ′ |=t p TYPE(α)t 6= TYPE(β)t

liftτ g (heap-update p v h, d) = liftτ g (h, d)

Proof. Similar to Thm. 3.4.5, except only require Lem. 3.4.4 since valid
pointers are distinct always based on type.

Example 3.4.2. We continue Exmp. 3.4.1 by applying the above rewrites,
grouped as c-typ-rewrs together with some additional rewrites including the
corollary from Thm. 3.3.4 and some for handling pointer guards on alignment
and non-NULLness, to discharge the proof obligation:

by (auto simp: c-typ-rewrs)

It is sometimes necessary to supply the simplifier with additional facts.
As a technical aside, Isabelle’s simplifier does not pursue conditions in the
rewrites that introduce schematic variables (i.e. do not appear on the LHS
of the rewrite) unless they are a direct match with the assumptions. With
this rewrite set we have d, g and g ′ potentially appearing as schematics, so
validity conditions are not always further reduced. One way to get around
this is to manually instantiate these variables in the rules prior to application,
however, this is not so straightforward since d may be bound by the goal’s
meta-quantifier3.

The problem here is that information is lost during verification condition
generation, during application of the assignment weakest pre-condition rule,

3In our setup g and g ′ correspond to c-guard which can be handled in this manner as it
is a constant.

74 CHAPTER 3. UNIFIED MEMORY MODEL

if the two heap state variables are treated as distinct components of state.
Not only is the intended interleaving of heap-updates and ptr-tags lost, but the
intended heap type description for a lift reduction is not present. The solution
is to bundle the heap components as a tuple heap-mem × heap-typ-desc in
the program’s state.

Definition 3.4.1. During C translation, lifts, heap-updates and ptr-tags
interact with the tuple heap state through projection and update functions:

hrs-mem ≡ fst
hrs-mem-update f ≡ λ(h, d). (f h, d)

hrs-htd ≡ snd
hrs-htd-update f ≡ λ(h, d). (h, f d)

This forces a serialisation of heap state and type description updates,
and provides a target type description for lift reductions. E.g. where before
we had lift h we now have lift (hrs-mem (h, d)).

In this thesis, rules are given as earlier in this section, but when applied
they require expressing in a form based on the tuple state and Defn. 3.4.1.

3.4.3 Rewrite properties

Since the rewrite set of the previous section is the core contribution of this
chapter, we address some important properties of the rules here. Ideally we
would like to prove that they are confluent, terminating and complete, in the
sense that they perform the desired goal transformation. Unfortunately we are
unable to do so inside Isabelle/HOL proper, since these are meta-statements,
but we provide some justification here for these properties holding.

The desired result of applying the rewrites is that any lift p h ′ and liftτ g
(heap-update p v h ′, d) terms are reduced to terms that only reference the
heap state through liftτ g (h, d) where (h, d) is the original state. By original
state we refer to the state in the resultant proof obligations corresponding
to the pre-state. It is assumed that the required validity information for
all pointers in the terms to be reduced is available, either directly in the
assumption or through conditional rewrites supplied by the user — even
with the usual multiple typed heaps view weakest pre-condition Hoare rules
produce obligations requiring this information. In addition we only consider
simple blocks here. Weakest pre-condition loop proof obligations are similar
in appearance, with the invariant taking the place of the pre/post conditions.
Function call rules introduce potentially multiple heap states and type
descriptions — this may require multiple rewrites targeting different heap
type descriptions and use of the function specifications to connect the states
in between, but in each specific rewrite there will only be one target heap
type description. The functions need to have sufficient specifications to allow

3.4. REWRITING 75

this to work, again this would be required to tackle the validity conditions
in a type-safe language.

We proceed to show completeness by showing lifts and then heap-updates
can always be eliminated through rewriting. First note that any lift h ′ p
can be reduced to the (liftτ g (h ′, d) p) using Thm. 3.4.1, providing d ,g |=t

p. Since changes to the heap type description do not occur in the type-safe
fragment, d refers to the original state, and so all lift h ′ p terms can be
reduced, as we are assuming we can obtain validity for p.

This leaves terms in the form liftτ g (heap-update p v h ′, d) to reduce —
the only way in which the semantics produces updates to the heap-mem com-
ponent of the heap state is through heap-update. Thm. 3.4.5 and Thm. 3.4.6
can reduce these terms as required, based on whether the type of p and the
lifted heap match. Validity is taken from the original heap type description
as above. The typ-tag disequality is handled by unfolding the definitions and
comparing literals. Therefore, the set of rewrites is complete.

At each step, the LHS of only one rule matches any term and subterms
that may be further reduced are left unchanged. The rewrite set is hence
confluent.

Finally, the number of lifts and heap-updates decreases with each rule.
The additional goals arising from conditions in the rewrites produce either
direct matches with the assumptions or are not further reduced by this set.
Hence the rewrite set is terminating.

These last two properties are given for the rewrite set of the previous
section, but if the user supplies additional rewrites or function specifications
are added, they may need to be reconsidered on a case-by-case basis.

3.4.4 Rules for unsafe code

The rules of §3.4.2 apply when dereferences respect the heap type description,
i.e. when the C program is inside the type-safe fragment of the language.
When the code strays, all is not lost, as additional rewrites can be developed,
at the expense of additional proof effort. We consider this to be a satisfactory
situation — TANSTAAFL [40].

Example 3.4.3. In Table 3.2 a pointer cast is added to Exmp. 3.4.1, and
all arithmetic is unsigned.

The rewrite set in §3.4.2 gets stuck on this example, unable to reduce the
lift on the heap access through the dereferenced pointer resulting from the
cast. The following rule can be proven to hold for little-endian encodings:

hrs-htd s,g |=t q
ucast (lift (hrs-mem s) (ptr-coerce q)) = the (liftτ g s q) mod 256

where ptr-coerce q = Ptr q&. Adding this to the rewrite set allows auto to
complete the proof.

76 CHAPTER 3. UNIFIED MEMORY MODEL

∀σ k . {|σ. Φ q́ = bkc ∧ D |=t ć ∧ D |=t ṕ|}
ǵ-ret :== g(ṕ, q́ , ć)
{| ǵ-ret = 2 ∗ k2 + (if σp = σq then k2 else k) mod 256 + 5 |}

unsigned int g(unsigned int ∗p, unsigned int ∗q, char ∗c)
{

∗c = 5;
∗p = ∗q ∗ ∗q;
∗q = ∗p + ∗p + ∗(unsigned char ∗)q;

return ∗q + ∗c;
}

Table 3.2: g specification and definition.

The rule added for the example depended on endianess, the size of
encodings, sign and the semantics of integer promotion in C. Rules for unsafe
code can be highly application and/or implementation specific, but there are
situations where it is possible to be a bit more general, such as the following
theorem.

Example 3.4.4. If a retype is performed on the address of a valid pointer
r ::γ ptr and the size of the value representation of the target β::mem-type is
less than or equal to the size of γ’s representation, then distinct typed lifted
heaps α::mem-type typ-heap are equivalent to their value prior to the retype:

d ,g ′ |=t r q& = r& size-of TYPE(β) ≤ size-of TYPE(γ)
TYPE(α)t 6= TYPE(β)t TYPE(α)t 6= TYPE(γ)t

liftτ g (h, ptr-tag q d) = liftτ g (h, d)

The proof follows from Thm. 3.3.4, the rule from Exmp. 3.2.3 and a
similar rule that can be derived in the other direction.

A piece is missing from the story however and that is how we handle the
affected heaps. Inside allocators this is a messy business as it will involve
the details of the data structures used to manage free memory, but clients
should not be exposed to this. Exmp. 3.5.2 in §3.5 provides an idea of how
this can achieved.

3.5 Typed heap equivalence

3.5.1 Inter-type framing

When writing specifications for functions that mutate the heap state, it is
desirable to be able to express what the the code does not do, as well as what

3.5. TYPED HEAP EQUIVALENCE 77

it does, i.e. which areas in the heap remain unchanged. This is an example
of the frame problem [61]. At the granularity of typed heaps, we call this
problem inter-type framing. In this section we provide predicates and rules
to express in specifications concisely the typed heaps that are unchanged
by the code. We take advantage of the feature in the C type encoding that
allows language types to be expressed as first-class values in the theorem
prover in doing so.

Definition 3.5.1. The heap footprint for a language type is the set of
locations that fall within the footprint of valid pointers of that type in the
heap type description:

heap-footprint d t n ≡ {x | ∃ y . valid-footprint d y t n ∧ x ∈ {y} ∪ {y ..+n}}

The key predicate used in specifications follows from this.

Definition 3.5.2. Two raw heap states s::heap-mem × heap-typ-desc and
s ′ are identical modulo a set of language types given by a type tag set T if
for all t /∈ T the heap states have identical heap footprints for t and are
pointwise equivalent inside these heap footprints:

s .=f
−T s ′ ≡

∀ t x . t /∈ T ∧
(x ∈ heap-footprint (snd s) t (f t) ∨
x ∈ heap-footprint (snd s ′) t (f t)) −→

lift-state s x = lift-state s ′ x

The second parameter, f, is a function typ-tag ⇒ nat. This supplies the type
size information that is only otherwise available through the size-of function,
which requires α itself, i.e. not the tag alone. It can be thought of as a cache,
with later rules having consistency conditions that need to be resolved prior
to being able to make use of the predicate in relation to specific typed heaps.
We drop f in examples where it is a constant.

Theorem 3.5.1. .= is monotonic and has the usual equivalence relation
properties:

T ⊆ T ′

s .=f
−T s ′ −→ s .=f

−T ′
s ′

[HMono]

sa .=f
−T s ′ s ′ .=f

−T ′
s

sa .=f
−T ∪ T ′

s
[HUn]

s .=f
−T s [HRefl]

(s .=f
−T s ′) = (s ′ .=f

−T s) [HSym]

78 CHAPTER 3. UNIFIED MEMORY MODEL

Proof. Follows from unfolding the .= definition.

3.5.2 Callee rules

Inside a function that modifies the heap, rules are required to establish .= in
the specification.

Theorem 3.5.2. Heap updates through a valid pointer p::α::mem-type ptr
only affect locations in the heap footprint of the target type:

d ,g |=t p

(heap-update p v h, d) .=f
−{TYPE(α)t} (h, d)

Proof. heap-updates only modify locations inside the target pointer footprint.
This footprint is inside the target type’s heap footprint. Since p is valid, it
cannot directly alias another valid pointer of a different type. Thm. 3.2.2
gives that valid footprints do not overlap in this case, so other types’ heap
footprints will be disjoint and hence unaffected.

Corollary. The above can be expressed as a rewrite suitable for reducing
over multiple heap updates:

d ,g |=t p TYPE(α)t ∈ T

((heap-update p v h, d) .=f
−T (h ′, d ′)) = ((h, d) .=f

−T (h ′, d ′))

In addition, rules are required to cope with ptr-tag, but these will be
application specific.

Example 3.5.1. A typed allocator for unsigned ints is specified in Ta-
ble 3.3.

The pre-condition contains only the allocator’s invariant as the predicate
alloc-inv, which is also preserved in the post-condition (clients require this for
future calls). The details of the predicate are specific to the implementation,
but depend only on the state of two allocator-related global variables.

In the post-condition, there are two possibilities. Either the allocator
returns NULL, indicating potentially resource exhaustion, or a non-NULL
unsigned int * pointer that has not been previously valid in the heap
type description. The next two conjuncts describe how pointer validity and
the lifted typed heap for unsigned int change as a result of a successful
outcome.

In all cases, the .= component states that the only affected heaps are
those belonging to allocator variables and unsigned int. This is required
by clients that have valid pointers to objects of other types that need to be
preserved across the call.

A simple implementation is also contained in Table 3.3. It only manages
one memory location, so would not be very useful in practice, but serves an

3.5. TYPED HEAP EQUIVALENCE 79

∀σ. {|σ. alloc-inv (Φ free-flag-addr) (Φ free-mem-addr)|}
álloc-ret :== alloc()
{|(álloc-ret = NULL ∨
¬ σD |=t álloc-ret ∧
(∀ p. D |=t p = (σD |=t p ∨ p = álloc-ret)) ∧ Φ = σΦ(álloc-ret 7→ 0)) ∧
H .=−{TYPE(free-mem)t, TYPE(free-flag)t, TYPE(word32)t} σH ∧
alloc-inv (Φ free-flag-addr) (Φ free-mem-addr)|}

struct free mem {
int block;

} free mem;

struct free flag {
char flag;

} free flag ;

unsigned int ∗alloc(void)
{

if (free flag . flag) {
unsigned int ∗p;

/** AUXUPD:
(λx . True, ptr-tag ((ptr-coerce free-mem-addr)::word32 ptr)) */

free flag . flag = 0;

p = (unsigned int ∗)&(free mem.block);
∗p = 0;

return p;
}

return 0;
}

Table 3.3: alloc specification and definition.

80 CHAPTER 3. UNIFIED MEMORY MODEL

illustrative purpose. More complete allocator verifications are the subject of
Chapter 6.

Two global variables are used, declared as structs to hide implementation
details and make clear the distinction from normal client variables. The
invariant is defined as:

alloc-inv ff fm ≡ ∃ k . ff = bkc ∧ (flag k 6= 0 −→ fm 6= ⊥)

While this is a simple function, the verification is non-trivial, as it requires
developing additional rules for the retype operation. The main proof is about
50 lines, with about 15 lines relating to invariant preservation. The most
significant rules required are the typed heap rewrites, Thm. 3.5.2, Thm. 3.2.4,
Exmp. 3.4.4, and the following, derived for this example, but not included in
the line count as they are somewhat reusable:

d ,g |=t q p& = q& size-of TYPE(β) ≤ size-of TYPE(α)
{TYPE(α)t, TYPE(β)t} ⊆ T (h, d) .=f

−T (h ′, d)

(h, ptr-tag p d) .=f
−T (h ′, d)

d ,g ′ |=t q p& = q& size-of TYPE(β) ≤ size-of TYPE(α) g p
ptr-tag p d ,g |=t r = (p = r ∨ d ,g |=t r)

where q ::α::mem-type ptr and p::β::mem-type ptr.
It can be seen that verifying unsafe code is not easy, but, as the next

example in this section demonstrates, once this unsafe code is isolated behind
a specification, type-safe client code verification is much simpler.

3.5.3 Caller rules

Several additional .=-related rewrites are useful in the verification of calling
functions.

Theorem 3.5.3. Heap type descriptions that are equivalent in the footprint
of types given by .= have equivalent pointer validity for these types:

(h, d) .=f
−T (h ′, d ′) TYPE(α)t /∈ T size-of TYPE(α) = f TYPE(α)t

d ,g |=t p = d ′,g |=t p

where p::α::c-type ptr.

Proof. Since the footprint of p is inside heap-footprint d TYPE(α)t, the
definition of .= states it remains unchanged. The rest of the proof follows by
unfolding the definitions and some interval reasoning.

Theorem 3.5.4. Heap states that are equivalent in the footprint of types
given by .= have equivalent typed lifted heaps for these types:

3.6. EXAMPLE: IN-PLACE LIST REVERSAL 81

(h, d) .=f
−T (h ′, d ′) TYPE(α)t /∈ T size-of TYPE(α) = f TYPE(α)t

liftτ g (h, d) = liftτ g (h ′, d ′)

Proof. Using, and by similar reasoning as, Thm. 3.5.3.

Example 3.5.2. Continuing Exmp. 3.5.1, a calling function h is specified
and verified here. The Hoare triple and source code for h, together with a
helper function cube, are given in Table 3.5 and Table 3.4.

In contrast to alloc, the proof obligations for each of these functions
required less than 10 lines of proof script, mostly applications of rewrites. No
heap-related rules other than the generic rewrites presented in this chapter
as theorems were required and reasoning was mostly automatic.

3.6 Example: In-place list reversal

The examples given in this chapter so far have contained relatively straight-
forward simple blocks of code and function calls. We conclude this chapter
by giving the standard in-place list reversal example from the literature in
Table 3.6, which features a linked inductively-defined data structure, abstrac-
tion predicate in specifications, iteration, and pointer casts, i.e. the features
that create non-trivial aliasing conditions. Mehta and Nipkow [62] use the
same example in their more abstract setting.

This features an unsafe pointer cast, however this does not complicate the
proof as it respects the heap type description as implied by the abstraction
predicate in the pre-condition.

The list abstraction predicate is defined as:

list s [] i ≡ i = NULL
list s (x ·xs) i ≡ ∃ j . i& = x ∧ x 6= 0 ∧ s i = bj c ∧ list s xs (Ptr j)

The loop invariant again is almost the same as in Mehta and Nipkow.
We use distinct to say that the list zs does not contain duplicate addresses
and rev to reverse the abstract HOL list:

{|∃ xs ys.
list Φ xs í ∧
list Φ ys (Ptr j́) ∧
rev zs = rev xs @ ys ∧ distinct (rev zs) ∧ H .=−{TYPE(word32)t} σH|}

To give a more concrete idea of what the proof obligations and verification
proofs look like, we give the proof obligations here and then describe the
bulk of the proof after.

82 CHAPTER 3. UNIFIED MEMORY MODEL

∀σ k . {|σ. Φ ṕ = bkc|}
cube(ṕ)
{|Φ = σΦ(σp 7→ k3) ∧ H .=−{TYPE(word32)t} σH ∧ D = σD|}

void cube(unsigned int ∗p)
{

∗p = ∗p ∗ ∗p ∗ ∗p;
}

Table 3.4: cube specification and definition.

∀σ j k .
{|σ. Φ ṕ = bj c ∧

Φ q́ = bkc ∧ alloc-inv (Φ free-flag-addr) (Φ free-mem-addr)|}
h́-ret :== h(ṕ, q́)
{|(h́-ret = NULL ∨ Φ h́-ret = b8 ∗ j 3 + ucast kc) ∧
alloc-inv (Φ free-flag-addr) (Φ free-mem-addr)|}

unsigned int ∗h(unsigned int ∗p, unsigned char ∗q)
{

unsigned int ∗r;

r = alloc() ;

if (! r)
return 0;

∗p = 2 ∗ ∗p;

cube(p);

∗r = ∗p + ∗q;

return r;
}

Table 3.5: h specification and definition.

3.6. EXAMPLE: IN-PLACE LIST REVERSAL 83

∀ zs σ.
{|σ. list Φ zs í |}
ŕeverse-ret :== reverse(í)
{|list Φ (rev zs) (Ptr ŕeverse-ret) ∧ H .=−{TYPE(word32)t} σH|}

word t reverse(word t ∗i) {
word t j = 0;

while (i) {
word t ∗k = (word t ∗)∗i;

∗i = j;
j = (word t)i;
i = k;

}

return j;
}

Table 3.6: reverse specification and definition.

1 .
∧

zs t-hrs i .
list (liftτ c t-hrs) zs i =⇒
∃ xs ys.

list (liftτ c t-hrs) xs i ∧
list (liftτ c t-hrs) ys (Ptr (ucast 0)) ∧
rev zs = rev xs @ ys ∧
distinct (rev zs) ∧ t-hrs .=−{TYPE(word32)t} t-hrs

2 .
∧

zs t-hrs t-hrsa j i .
[[∃ xs ys.

list (liftτ c t-hrsa) xs i ∧
list (liftτ c t-hrsa) ys (Ptr j) ∧
rev zs = rev xs @ ys ∧
distinct (rev xs @ ys) ∧ t-hrsa .=−{TYPE(word32)t} t-hrs;

i 6= NULL]]
=⇒ i 6= NULL ∧

ptr-aligned i ∧
(∃ xs ys.

list (liftτ c (hrs-mem-update (heap-update i j) t-hrsa)) xs
(Ptr (lift (hrs-mem t-hrsa) i)) ∧

list (liftτ c (hrs-mem-update (heap-update i j) t-hrsa)) ys
(Ptr i&) ∧

rev zs = rev xs @ ys ∧
distinct (rev xs @ ys) ∧
hrs-mem-update (heap-update i j)
t-hrsa .=−{TYPE(word32)t} t-hrs)

3 .
∧

zs t-hrs t-hrsa j i .

84 CHAPTER 3. UNIFIED MEMORY MODEL

[[∃ xs ys.
list (liftτ c t-hrsa) xs i ∧
list (liftτ c t-hrsa) ys (Ptr j) ∧
rev zs = rev xs @ ys ∧
distinct (rev zs) ∧ t-hrsa .=−{TYPE(word32)t} t-hrs;

¬ i 6= NULL]]
=⇒ list (liftτ c t-hrsa) (rev zs) (Ptr j) ∧

t-hrsa .=−{TYPE(word32)t} t-hrs

where liftτ
c is an abbreviation for liftτ c-guard.

Most of the proof is simply rewriting based on the following rules.

Lemma 3.6.1.

list s xs NULL = (xs = []) [empty]

list s xs p
distinct xs

[distinct]

list s xs p p 6= NULL

p& ∈ set xs
[mem]

x& /∈ set xs
list (s(x 7→ v)) xs p = list s xs p

[ign]

list (liftτ c (h, d)) xs p q& ∈ set xs
d |=t q

[valid]

Proof. [empty] and [mem] follow from case splitting on xs. The proof for
[distinct] involves inductive proofs to establish [[list s xs p; list s ys p]] =⇒
xs = ys and list s (xs @ ys) p =⇒ ∃ q . list s ys q first. [valid] follows from
[[list s xs p; q& ∈ set xs]] =⇒ ∃ x . s q = bxc and Thm. 3.3.4. Finally, [ign]
is the result of an induction on xs giving Ptr ‘ set xs ⊆ X =⇒ list (s�X) xs
p = list s xs p.

Most of these proofs are single line calls to Isabelle’s induction and auto
tactics with the appropriate facts.

The proof is completed with the following lines of tactic script following
the VCG invocation (where the typed heap rewrites have already been added
to the default simplification set):

apply (clarsimp simp del : distinct-rev)
apply (case-tac xs, fastsimp)
apply clarsimp
apply (rule-tac x=list in exI)
by (auto dest : liftτ -h-t-valid)

3.6. EXAMPLE: IN-PLACE LIST REVERSAL 85

In total, the proof script was 90 lines, which does not appear unrea-
sonable for a non-trivial transformation of a linked data structure. When
the automation in the proof is taken into consideration, it appears to be
comparable to other efforts in the literature [62,85,100].

86 CHAPTER 3. UNIFIED MEMORY MODEL

Chapter 4

Separation logic embedding

4.1 Intra-type aliasing and framing

The previous chapter presented a proof technique that tames inter-type
aliasing. However, the problem of intra-type aliasing remains, where two
valid same-typed pointers may have identical values. Dealing with this often
requires explicit anti-aliasing invariants on typed heaps, a problem that has
been recognised in the literature [14].

Example 4.1.1. Consider a list ADT where head and tail pointers are
maintained for efficient append operations:

struct list obj { struct llist ∗ list hd , ∗ list tl ; };

A naive specification for the allocation, cons and append operations
might be, based on suitable definitions for the allocator invariant and list
abstraction predicate, list-alloc-inv and list respectively:

{| list-alloc-inv Φ |} p = list-alloc(); {| list Φ [] ṕ ∧ list-alloc-inv Φ |}
{|σ. list Φ xs ṕ |} list-cons(p, x); {| list Φ (σx#xs) σp |}
{|σ. list Φ xs ṕ ∧ list Φ ys q́ |} list-append(p, q); {| list Φ (xs@ys) σp |}

The pre-condition for list append is unfortunately not strong enough
to verify the following implementation of list append:

void list append(struct list obj ∗p, struct list obj ∗q)
{

p−>list tl−>next = q−>list hd;
p−>list tl = q−>list tl;

}

This is due to the possibility that the lists described by p and q might
overlap in some way (e.g. as a result of a previous list append call), and
adjusting these pointers will introduce a cycle in the list, as in Fig. 4.1.

Repairing this situation requires an additional predicate to be added to
the pre-condition stating the no-overlap condition and then the pre- and

87

88 CHAPTER 4. SEPARATION LOGIC EMBEDDING

p q

p q

p q

Initial state

list_append(p,q);

list_append(p, q);
list_append(q, p);

Figure 4.1: Pre-, intermediate and post-state for two consecutive invocations
of list append.

4.1. INTRA-TYPE ALIASING AND FRAMING 89

post-conditions and invariants on all the other operations to be updated to
propagate this information so that clients may satisfy it. A less adhoc and
more transparent means of achieving this is desirable. One further motivating
factor in seeking a better way is that there is a hidden cost in providing
these anti-aliasing predicates — the program verifier’s time. As they can be
non-obvious and are discovered as a result of a failed proof effort, this can
be costly. Invariant discovery is already hard enough without the addition of
aliasing concerns.

Similarly, while providing a solution to the frame problem at the typed
heap level in §3.5, we cannot yet conveniently express frame conditions about
regions of the heap of the same type as those locations modified by a specified
function or block.

Example 4.1.2. Suppose a client performs a list append:

p = list alloc () ;
q = list alloc () ;
r = list alloc () ;

/∗ ... p, q & r filled with data ... ∗/

list append(p, q);

After this point, it is not possible to say anything about the list r, since
the specification does not express any frame conditions. The h-id-except
predicate is not much use here as all lists share the same typed heaps, struct
list obj and struct llist.

Separation logic provides an approach in which anti-aliasing information
may be expressed implicitly in assertions, potentially simplifying specifica-
tions and proofs. A significant feature of this assertion language is that it
offers a general and scalable solution to the frame problem.

In this chapter we present a development of separation logic based on
the preceding memory model. Utilising the HOL encoding of C types,
the heap type description and typed heap lifting functions, an embedding
of separation logic is described that is able to express assertions about
C variables and pointers, rather than the usual typeless and memory-safe
languages targeted in the literature. Another novel aspect of this work is that
it builds on and effectively reuses two existing foundations — the classical
Hoare logic verification environment and the multiple typed heaps memory
model development. This necessitates a different approach to tackling proof
obligations, as discussed in §4.3 and a careful consideration of the soundness
of the frame rule in §4.4.

90 CHAPTER 4. SEPARATION LOGIC EMBEDDING

Figure 4.2: Empty heap predicate.

4.2 Shallow embedding

4.2.1 Definitions

Below we describe a shallow embedding for separation assertions, where the
semantic constructs of assertions are translated to HOL, as opposed to a deep
embedding where the syntax of assertions would be considered a distinct
type in the logic. There is a tradeoff involved in the choice of embedding
approach — shallow embeddings are often more pragmatic and expressive,
while deep embeddings allow for language meta-theory reasoning and proof
optimisations [104]. We opt for the former since our focus in this work is on
applications to code verification. In this chapter we do show many properties
of the language’s connectives and the relation to existing features of the
verification environment, but these do not go as far as, for example, showing
a completeness result for the proof rules.

Separation assertions are modelled as predicates on heap-states, applied
in assertions of the verification environment to the result of the first lifting
stage of §3.3. For example, a loop invariant with the separation assertion P is
written {| P (lift-state H) |}, which we abbreviate as {|Psep|}. Automatic vari-
ables can be referenced in separation assertions using the usual antiquotation
mechanism, described in §2.3.3, for variables in the verification environment.
They do not require special treatment as there already exist Hoare rules for
these — here we in fact treat the heap state as a variable and then build
additional support for separation logic assertions above.

Definition 4.2.1. As in the development of Reynolds [81] there is an empty
heap predicate (Fig. 4.2):

� ≡ λs. s = empty

Definition 4.2.2. The definition of the singleton heap assertion is more
involved in our embedding and is provided below. p 7→g v asserts that the
heap contains exactly one mapping matching the guard g, at the location
given by pointer p::α::c-type ptr to value v (Fig. 4.3):

p 7→g v ≡ λs. lift-typ-heap g s p = bvc ∧ dom s = {p&..+size-of TYPE(α)}

4.2. SHALLOW EMBEDDING 91

p С (v::int)

size_of TYPE(int)

align_of TYPE(int)

Figure 4.3: Singleton heap predicate.

The guard is an addition to the usual p 7→ v and serves the same purpose
as in Defn. 3.2.2, i.e. strengthening the assertion to aid in discharging
guard proof obligations and thereby making the treatment of guards in the
framework generic.

The singleton heap assertion requires that predicates be on heap-states,
while the empty heap assertion does not, only that the state be a partial
function. In the following, definitions of the separation connectives and their
properties, with the exception of those involving a singleton heap assertion,
are expressed and proven about polymorphic assertions (α, β) map-assert
= (α ⇀ β) ⇒ bool. The theory is hence somewhat reusable with different
heap models, such as in Chapter 5. Here, heap-state predicates are the
instantiation (addr , typ-tag option × byte) map-assert.

Definition 4.2.3. There are two significant separation connectives, conjunc-
tion and implication:

s0 ⊥ s1 ≡ dom s0 ∩ dom s1 = ∅
s0 ++ s1 ≡ λx . case s1 x of ⊥ ⇒ s0 x | byc ⇒ byc
P ∧∗ Q ≡ λs. ∃ s0 s1. s0 ⊥ s1 ∧ s = s0 ++ s1 ∧ P s0 ∧ Q s1

P −→∗ Q ≡ λs. ∀ s ′. s ⊥ s ′ ∧ P s ′ −→ Q (s ++ s ′)

Lemma 4.2.1. The heap merge and disjointness operators are commutative
and associative:

s0 ++ s1 ++ s2 = s0 ++ (s1 ++ s2)

s0 ⊥ s1 = s1 ⊥ s0

s0 ⊥ s1

s0 ++ s1 = s1 ++ s0

s0 ⊥ s1

s0 ++ (s1 ++ s2) = s1 ++ (s0 ++ s2)

Proof. By unfolding Defn. 4.2.3.

92 CHAPTER 4. SEPARATION LOGIC EMBEDDING

P Q

P

Q

P Q

P

Q

Figure 4.4: Separation connectives.

The definitions are standard, with the intuition behind separation con-
junction that (P ∧∗ Q) s asserts that s can be partitioned into two subheaps
such that P holds on one subheap and Q on the other. The utility of separa-
tion implication is easiest to understand in context in §4.3. Example heap
states where predicates involving these connectives may hold are shown in
Fig. 4.41.

Definition 4.2.4. Some additional mapping assertions are common:

sep-true ≡ λs. True
p 7→g − ≡ λs. ∃ v . (p 7→g v) s
p ↪→g v ≡ p 7→g v ∧∗ sep-true
p ↪→g − ≡ λs. ∃ x . (p ↪→g x) s

4.2.2 Properties

The standard commutative, associative and distributive properties apply to
the connectives, and we have formalised pure, intuitionistic, domain and
strictly exact assertions and their properties [81] — see Table 4.1, Table 4.2,
Table 4.3, Table 4.4 and Table 4.5 for their Isabelle/HOL formulation. This
exercise was a useful sanity check on the definitions, as earlier attempts at
providing a singleton heap assertion based on a weaker non-monotonic notion
of validity failed to have some of the intuitionistic properties. Unlike other
developments, the singleton heap assertion is not strictly exact, as there can
be more than one byte encoding of the heap for which p 7→g v holds. Also,
the existential quantification of a predicate with a free variable does not

1In the separation implication states in this example, either P is strictly exact or it
would be necessary to examine all disjoint states P might hold in.

4.2. SHALLOW EMBEDDING 93

syntactically preserve domain exactness. The proofs for these properties are
given in Isar format in Appendix D.

Some of the properties, and others derived from them, are routinely used
in verification proofs and have been added to the default simplification set.
Those added to the simplification set tend to be quite specific and direct,
e.g. (p 7→g v) s =⇒ (p ↪→g v) s, and are not intended to be part of any
lengthy sequence of rewrites, as separation logic proofs tend to follow a more
rule-oriented approach. The exception to this is the ∧∗ commutative and
associative rewrites, that are completed with a derived left-commutative rule
to provide a permutative rewrite set for normalising expressions involving this
connective. The [Sci] rule is extremely important in proofs, as it provides a
means of splitting the problem based on corresponding distinct regions of
the heap in the pre- and post-states of proof obligations.

Since this is a shallow embedding, HOL connectives, quantifiers, and
constants can be freely mixed with the separation connectives, for example
λs. P s ∧ (∃ x . (p ↪→ fib x) s ∧ x ∈ X) ∧ (Q ∧∗ list-sum X) s.

A key feature of this embedding is that it avoids the problem of skewed
sharing [81]. This is essentially the problem of inter-type aliasing in separation
logic, where for example λs. (p ↪→ u) s ∧ (q ↪→ v) s describes not only
heaps where p = q ∧ u = v or p 6= q and the pointer footprints are distinct,
but also the possibilities where p and q point into each other’s encoding. An
approach where a ghost variable like the heap type description is introduced
was suggested as a future direction for separation logic by Reynolds. The
embedding given in this chapter has developed this as a machine-checked
formalisation.

Another notable gain from the development presented here is the har-
nessing of Isabelle’s type inference to avoid explicit type annotations in
assertions. Since language types are assigned Isabelle types and pointer
types are derived from these, asserting that p 7→ v, where p is a program
variable, automatically constrains the type of v. The alternative of having
to write p 7→unsigned int v is somewhat cumbersome and contributes little to
the readability of specifications.

Example 4.2.1. Abstraction predicates can be defined linking algebraic
datatypes, sets and functions in Isabelle/HOL with their heap representation.
Consider a pre-order traversal representation of a tree, stored in a NULL-
terminated linked list with a depth field2:

struct node {
unsigned int depth;
struct node ∗next;

};

2A similar data structure, utilising a doubly-linked list instead for efficient node removal,
features in the mapping database of L4Ka::Pistachio [49].

94 CHAPTER 4. SEPARATION LOGIC EMBEDDING

P ∧∗ sep-false = sep-false

P ∧∗ � = P

sep-false −→∗ P = sep-true

P −→∗ sep-true = sep-true

P ∧∗ Q = Q ∧∗ P [ScComm]

(P ∧∗ Q) ∧∗ R = P ∧∗ Q ∧∗ R [ScAssoc]

((λs. P s ∨ Q s) ∧∗ R) s = (P ∧∗ R) s ∨ (Q ∧∗ R) s [ScdDist]

((λs. ∃ x . P x s) ∧∗ Q) s = ∃ x . (P x ∧∗ Q) s [SExists]

((λs. ∀ x . P x s) ∧∗ Q) s
(P x ∧∗ Q) s

[SUniv]

((λs. P s ∧ Q s) ∧∗ R) s
(P ∧∗ R) s ∧ (Q ∧∗ R) s

[SccDist]

∧
s. P s −→ P ′ s

∧
s. Q s −→ Q ′ s

(P ∧∗ Q) s −→ (P ′ ∧∗ Q ′) s
[Sci]

∧
s. (P ∧∗ Q) s −→ R s

P s −→ (Q −→∗ R) s
[ScSi]

∧
s. P s −→ (Q −→∗ R) s

(P ∧∗ Q) s −→ R s
[SiSc]

(p ↪→g v) s (p ↪→h v ′) s
v = v ′

[Sinj]

(P ∧∗ Q) s
∧

s. P s −→ (p ↪→g −) s
∧

s. Q s −→ (p ↪→g −) s

False
[Sinter]

(P ∧∗ (P −→∗ Q)) s
Q s

[ScSiSame]

Table 4.1: Standard and derived separation logic rules.

4.2. SHALLOW EMBEDDING 95

pure P ≡ ∀ s s ′. P s = P s ′

pure P = (P = sep-true ∨ P = sep-false)

P s ∧ Q s pure P ∨ pure Q
(P ∧∗ Q) s

(P ∧∗ Q) s pure P pure Q
P s ∧ Q s

pure P
(λs. P s ∧ Q s) ∧∗ R = (λs. P s ∧ (Q ∧∗ R) s)

(P −→∗ Q) s pure P
P s −→ Q s

P s −→ Q s pure P pure Q
(P −→∗ Q) s

Table 4.2: Pure separation assertions.

A mutually recursive abstraction predicate for the tree, maintaining the
list structural invariants is given:

datatype tree = Node “node ptr” “tree list”

tree :: tree ⇒ node ptr ⇒ (node ptr ⇒ heap-assert) ⇒ nat ⇒ heap-assert
tree-list :: tree list ⇒ node ptr ⇒ (node ptr ⇒ heap-assert) ⇒ nat ⇒

heap-assert

tree (Node p ns) q c d ≡ λs. q = p ∧
(∃ v . (p 7→ v ∧∗ tree-list ns (next v) c (d + 1)) s

∧ d = IN⇐ (depth v))
tree-list [] q c d ≡ c q
tree-list (n·ns) q c d ≡ tree n q (λr . tree-list ns r c d) d

The abstraction predicate traverses the tree, following its structure in the
first parameter, with the second parameter providing the current point in the
linked-list. The third parameter is a continuation, used when visiting a node
to remember how to continue the traversal at the node’s next sibling. In a
NULL-terminated list this might be initially passed as λp s. p = NULL ∧ � s.
Each node in the abstract tree contains a pointer back to the corresponding
linked-list node — if additional information was stored in nodes then this

96 CHAPTER 4. SEPARATION LOGIC EMBEDDING

intuitionistic P ≡ ∀ s s ′. P s ∧ s ⊆m s ′ −→ P s ′

pure P
intuitionistic P

intuitionistic (p ↪→g v)

intuitionistic (P ∧∗ sep-true) intuitionistic (sep-true −→∗ P)

intuitionistic P intuitionistic Q
intuitionistic (λs. P s ∧ Q s)

intuitionistic P intuitionistic Q
intuitionistic (λs. P s ∨ Q s)∧

x . intuitionistic (P x)

intuitionistic (λs. ∀ x . P x s)

∧
x . intuitionistic (P x)

intuitionistic (λs. ∃ x . P x s)

intuitionistic P
intuitionistic (P ∧∗ Q)

intuitionistic Q
intuitionistic (P −→∗ Q)

(P ∧∗ sep-true) s intuitionistic P
P s

P s intuitionistic P
(sep-true −→∗ P) s

Table 4.3: Intuitionistic separation assertions.

4.2. SHALLOW EMBEDDING 97

strictly-exact P ≡ ∀ s s ′. P s ∧ P s ′ −→ s = s ′

strictly-exact P strictly-exact Q
strictly-exact (P ∧∗ Q)

(Q ∧∗ sep-true) s P s strictly-exact Q
(Q ∧∗ (Q −→∗ P)) s

Table 4.4: Strictly exact separation assertions.

would provide indirection to it. Fig. 4.5 illustrates related tree and linked-list
representation states.

1 2 2 1 NULL0

tree

Figure 4.5: Pre-order tree traversal representation and abstraction.

Using these definitions and the rules in Table 4.1, it is possible to prove
the following:

(q 7→ − ∧∗ tree (Node p ns) p c d) s (p ↪→ v) s d < |word32 | − 1
insert-update p v q (tree (Node p (Node q []·ns)) p c d) s

where

98 CHAPTER 4. SEPARATION LOGIC EMBEDDING

dom-exact P ≡ ∀ s s ′. P s ∧ P s ′ −→ dom s = dom s ′

strictly-exact P
dom-exact P

dom-exact (p 7→g v)

dom-exact (P x)
dom-exact (λs. ∀ x . P x s)

dom-exact P dom-exact Q
dom-exact (P ∧∗ Q)

(P ∧∗ R) s (Q ∧∗ R) s dom-exact R
((λs. P s ∧ Q s) ∧∗ R) s

∀ x . (P x ∧∗ Q) s dom-exact Q
((λs. ∀ x . P x s) ∧∗ Q) s

Table 4.5: Domain exact separation assertions.

insert-update p v q R ≡
q 7→ − ∧∗
(q 7→ (| depth = depth v + 1 , next = next v |) −→∗

p 7→ − ∧∗ (p 7→ v(|next := q |) −→∗ R))

This rule is similar to the proof obligation resulting from a series of
updates inserting a new node q under the root p, as the left-most child. Note
that the correctness conditions here are subtle — if the abstraction predicate
did not require child nodes to be exactly one deeper than their parent it is
possible that insertion could cause the new node to collect children of the
root. Also, q must not already be part of the tree — this is simply expressed
through separation conjunction.

The reasoning in this example was entirely at the level of separation
logic and the abstracted algebraic datatype — there was no need to unfold
definitions of the separation connectives. We revisit this example again
later in Exmp. 4.3.2, where we use the same reasoning to discharge proof
obligations resulting from C code, with a specification based on the tree

4.3. LIFTING PROOF OBLIGATIONS 99

predicate, that performs the insertion list updates.

4.3 Lifting proof obligations

The verification condition generator applies weakest pre-condition rules to
transform Hoare triples to HOL goals that can then be solved by applying
theorem prover tactics. In §3.4.2 rewrites were given that could automatically
lift the raw heap component of these proof obligations, and in this section
rules are provided that allow the low-level applications of lift and heap-update
in assertions to be expressed in terms of a separation predicate on the
original state. This is desirable as reasoning can then use the derived rules
for separation logic, whereas the alternative of unfolding the definitions and
working with accesses and updates to the underlying heap state produces a
massively more complex goal and proof.

The approach taken here is quite different to the usual separation Hoare
logic proof technique employed in the literature, where a new Hoare logic
is developed based on separation logic and individual rules are applied at
the Hoare logic level. The advantage of our approach is two-fold; we avoid
having to manually apply Hoare rules, a task easily automated, and we can
take advantage of an existing verification framework and condition generator.
On the other hand, there is the disadvantage that applying the rules in this
section requires the program verifier to understand the relationship between
components of the HOL goals and the original program, since this structure
is lost during verification condition generation, and some additional work
must be done to transform the proof obligations to the correct form.

We require some supporting lemmas to establish the first separation logic
lifting rule.

Lemma 4.3.1. Validity is preserved by right merges:

s1,g |=s p
s0 ++ s1,g |=s p

Proof. Follows from Defn. 3.2.2, Defn. 3.3.4 and proj-d (s ++ t) = proj-d s
++ proj-d t.

Lemma 4.3.2. heap-list-s for a valid pointer p::α::c-type ptr is unchanged
by right merge:

s1,g |=s p
heap-list-s (s0 ++ s1) (size-of TYPE(α)) p& = heap-list-s s1 (size-of TYPE(α)) p&

Proof. We first show the stronger statement:

100 CHAPTER 4. SEPARATION LOGIC EMBEDDING

s1,g |=s p n ≤ size-of TYPE(α)
heap-list-s (s0 ++ s1) n (p& + IN⇒ (size-of TYPE(α) − n)) =

heap-list-s s1 n (p& + IN⇒ (size-of TYPE(α) − n))

by induction on n. The base case is trivial and the inductive case can be
solved with proj-h (s ++ t) = (λx . if x ∈ dom t then proj-h t x else proj-h s
x) and the inductive hypothesis. The proof is completed by instantiation of
n with size-of TYPE(α).

Lemma 4.3.3. A valid mapping given by lift-typ-heap is preserved by right
merge:

lift-typ-heap g s1 p = bvc
lift-typ-heap g (s0 ++ s1) p = bvc

Proof. By unfolding Defn. 3.3.5, Lem. 4.3.1 and Lem. 4.3.2.

Lemma 4.3.4. Separation mapping assertions imply a corresponding value
at the lifted underlying heap:

(p ↪→g v) s
lift-typ-heap g s p = bvc

Proof. From Defn. 4.2.2, Defn. 4.2.3, Lem. 4.3.3 and Lem. 4.2.1.

Theorem 4.3.5. lifts and separation mapping assertions are connected by:

(p ↪→g v) (lift-state (h, d))
lift h p = v

Proof. Let s = lift-state (h, d) in Lem. 4.3.4 and apply Thm. 3.4.1 to the
goal. Unfold the definition of liftτ to complete the proof.

Example 4.3.1. With the Hoare triple resulting from replacing dereferences
in the code with their semantic equivalents:

{|(p ↪→ x ∧∗ Q)sep|}
a = lift (hrs-mem H) p + lift (hrs-mem H) p
{|a = 2 ∗ x |}

the following proof obligation:

(p ↪→ x ∧∗ Q) (lift-state (h, d)) =⇒ 2 ∗ lift h p = 2 ∗ x

requires the value of x in terms of lift h p or vice versa. By deriving from the
assumption of the goal that (p ↪→ x) (lift-state (h, d)) using the standard
rules of separation logic, Thm. 4.3.5 can be applied to solve the goal.

4.3. LIFTING PROOF OBLIGATIONS 101

While Thm. 4.3.5 is fine for simplifying the lifts we encounter in goals,
it can branch the proof tree before we start reasoning exclusively at the
separation logic level. If we want to approach the lifting from a weakest pre-
condition perspective, as done in verification condition generators, we need
to express the relationship between lift and separation mapping assertions
differently.

Theorem 4.3.6. The connection in Thm. 4.3.5 can be expressed in a similar
form to the Hoare logic backwards reasoning rule for heap accesses [81]:

∃ v . (p 7→g v ∧∗ (p 7→g v −→∗ P v)) (lift-state (h, d))
P (lift h p) (lift-state (h, d))

Proof. We can use Thm. 4.3.5 on the goal by deriving the separation mapping
assertion from the assumption. The proof is completed with [ScSiSame].

Heap update dereferences produce proof goals of the form:

P (lift-state (h, d)) =⇒
Q (lift-state (heap-update p0 v0 (heap-update p1 v1

(heap-update p··· v ··· (heap-update pn vn h))),d))

Definition 4.3.1. To reduce heap-updates to a separation assertion on the
original state we first introduce a new predicate for validity at the separation
logic level:

g `s p ≡ λs. s,g |=s p ∧ dom s = {p&..+size-of TYPE(α)}

This is related to the idea of the singleton heap predicate p 7→g −, but
the implication only works in one direction, (p 7→g v) s =⇒ (g `s p) s, since
it is possible to have both liftτ g s p = ⊥ and a valid footprint at p.

Definition 4.3.2. Also, the concept of the singleton state is helpful:

singleton p v ≡ lift-state (heap-update p v arbitrary, ptr-tag p empty)

This is the state whose only valid mapping has the footprint of p and byte
encoding of v. It can be shown that g p =⇒ (p 7→g v) (singleton p v).

Lemma 4.3.7. After the first lifting stage, a heap-update at valid pointer p
with v is equivalent to the original lifted state right merged with a singleton
heap representing v at p:

d ,g |=t p
lift-state (heap-update p v h, d) = lift-state (h, d) ++ singleton p v

102 CHAPTER 4. SEPARATION LOGIC EMBEDDING

Proof. By extensionality, letting the point under consideration be called
x. When x ∈ dom (singleton p v), the goal can be simplified to lift-state
(heap-update p v h, d) x = singleton p v x. Examining the two state compo-
nents independently, heap-update p v h x = heap-update p v arbitrary x and
∃ t . ptr-tag p empty x = btc ∧ d x = btc, based on the observation that
[[d ,g |=t p; x ∈ {p&..+size-of TYPE(α)}]] =⇒ ptr-tag p d ′ x = d x and that
the domain of singleton p v is the same as the footprint of p.

If x /∈ dom (singleton p v) then lift-state (heap-update p v h, d) x =
lift-state (h, d) x based on x /∈ {p..+|v |} =⇒ heap-update-list p v h x = h x.

Theorem 4.3.8. The following rules allow for the reduction of heap-updates:

(g `s p ∧∗ (p 7→g v −→∗ P)) (lift-state (h, d))
P (lift-state (heap-update p v h, d))

(g `s p ∧∗ P) (lift-state (h, d))
(p 7→g v ∧∗ P) (lift-state (heap-update p v h, d))

Proof. The first rule can be derived by unfolding the definition of separation
conjunction and applying Lem. 4.3.7 to the goal. The assumption partitions
the state lift-state (h, d) into two states s0 and s1 such that (g `s p) s0

and (p 7→g v −→∗ P) s1. After unfolding the separation implication and
instantiating with singleton p v, we are left with P (s1 ++ singleton p v).
Based on the original partitioning, the goal is P (s1 ++ s0 ++ singleton p
v) and s0 ++ singleton p v = singleton p v as both terms on the LHS have
identical domains.

The second rule is derived from the first with [Sci] and [ScSi].

These rules are analogous to the backwards and global reasoning Hoare
logic mutation rules [81]. The first rule provides a weakest pre-condition
style rule that will match any separation assertion, while the second rule may
be used on goal assertions that can be manipulated into the matching form.

When the heap type description may also be modified with ptr-tag the
resulting goal has the more general form:

P (lift-state (h, d)) =⇒
Q (lift-state (heap-update p0 v0 (heap-update p1 v1

(heap-update p··· v ··· (heap-update pm vm h))),
ptr-tag q0 (ptr-tag q1 (ptr-tag q ··· (ptr-tag qn d)))))

We provide a rule for ptr-tag reductions that establishes separation validity
from sep-cut, yet another supplemental separation predicate.

Definition 4.3.3. sep-cut asserts that the locations in the heap-state domain
are the supplied interval, i.e. ownership of a region of memory:

4.3. LIFTING PROOF OBLIGATIONS 103

sep-cut x y ≡ λs. dom s = {x ..+y}

Lemma 4.3.9. Inside the retyped region, lifted heaps do not depend on the
original heap type description:

x ∈ {p&..+size-of TYPE(α)}
lift-state (h, ptr-tag p d) x = lift-state (h, ptr-tag p empty) x

where p::α::mem-type ptr.

Proof. Based on x ∈ {p&..+size-of TYPE(α)} =⇒ ptr-tag p d x = ptr-tag p
empty x which can be derived from Defn. 3.2.4.

Corollary. Lifted heaps restricted to the retyped region do not depend on
the original heap type description:

lift-state (h, ptr-tag p d)�{p&..+size-of TYPE(α)} = lift-state (h, ptr-tag p empty)

Lemma 4.3.10. Outside the retyped region, the lifted heap remains un-
changed:

x /∈ {p&..+size-of TYPE(α)}
lift-state (h, ptr-tag p d) x = lift-state (h, d) x

where p::α::mem-type ptr.

Proof. Based on x /∈ {p&..+size-of TYPE(α)} =⇒ ptr-tag p d x = d x which
can be derived from Defn. 3.2.4.

Theorem 4.3.11. Retyping yields separation validity in a disjoint region of
the heap corresponding to the target footprint:

(sep-cut p& (size-of TYPE(α)) ∧∗ P) (lift-state (h, d)) g p
(g `s p ∧∗ P) (lift-state (h, ptr-tag p d))

(sep-cut p& (size-of TYPE(α)) ∧∗ (g `s p −→∗ P)) (lift-state (h, d)) g p
P (lift-state (h, ptr-tag p d))

Proof. Partition lift-state (h, d) as s0 and s1 where dom s0 = {p&..+size-of
TYPE(α)} and P s1. It can be shown that the goal state lift-state (h, ptr-tag
p d) is equivalent to s1 ++ lift-state (h, ptr-tag p d)�dom s0

by considering
both states at x, case splitting on x ∈ dom s0 and Lem. 4.3.10. The corollary
of Lem. 4.3.9 leads to (g `s p) (lift-state (h, ptr-tag p d)�dom s0

) holding,
hence there is a partition for the goal state on which the conjuncts hold
independently, allowing them to be combined with separation conjunction.

The weakest pre-condition style rule follows from this by [ScSiSame]
instantiated with g `s p and P.

104 CHAPTER 4. SEPARATION LOGIC EMBEDDING

The shallow embedding gives the flexibility to add separation predicates
that express information about a region of memory at different levels of
abstraction, from p 7→g v to sep-cut. Once the above reduction rules are
applied the reasoning can continue using the standard rules of separation
logic without requiring additional proof goals or side-conditions.

In deriving these rules we have primarily been concerned with sound-
ness, which was required prior to Isabelle admitting the rules. The focus in
this thesis on real-world verification examples has resulted in less attention
being paid to the completeness of the system, particularly as it is estab-
lished that one can always drop down to the lower more concrete levels if
required. However, completeness results have been explored elsewhere in the
literature [45,105].

Example 4.3.2. The insert operation in Exmp. 4.2.1 can be specified and
implemented in C as in Table 4.6. The single proof obligation is first lifted
to the separation logic level by applying the WP-style rules in Thm. 4.3.6,
Thm. 4.3.8 and Thm. 4.3.11. The proof then essentially3 follows from the
rules in Table 4.1, (p 7→g v) s =⇒ (g `s p) s and some bit-vector arithmetic
reasoning.

∀ns c d .
{|(sep-cut q́& (size-of TYPE(node)) ∧∗ tree (Node ṕ ns) ṕ c d)sep ∧
c-guard q́ ∧ d < |word32 | − 1 |}

insert-node(q́ , ṕ)
{|(tree (Node ṕ (Node q́ []·ns)) ṕ c d)sep|}

void insert node(struct node ∗q, struct node ∗p)
{

/** AUXUPD: (λx . True, ptr-tag q́) */

q−>depth = p−>depth + 1;
q−>next = p−>next;
p−>next = q;

}

Table 4.6: insert node specification and definition.

3This example uses an earlier version of the Csys-com translation that treats field
dereferences as entire struct object accesses, since we do not yet have the development of
Chapter 5. As a result, we also had to show the existence of a singleton mapping assertion
implied by validity post-retyping, which works for struct nodes as from-bytes is total for
this type.

4.4. FRAME RULE 105

4.4 Frame rule

4.4.1 Globalised specifications

The separation frame rule [105] is often seen as the key to the scalability of
the separation logic approach to verification. It allows for deriving a global
specification from a local specification of a program’s behaviour, with an
arbitrary conjoined separation assertion on a part of the heap preserved by
the program. That is, one can verify a function working in one region of the
heap and then utilise its specification in the context of a function operating
on a superset of the region.

The frame rule has the form:

{|Psep|} c {|Qsep|}
{|(P ∧∗ R)sep|} c {|(Q ∧∗ R)sep|}

Note that this is a Hoare logic rule, that can be applied to a specification
triple prior to verification condition generation, as opposed to the rules in
§4.3 that are applied after. If R is universally quantified in the globalised
specification, it can be instantiated as required when solving the proof
obligations of the calling function.

Unfortunately, such a general rule cannot be expressed in a shallow
embedding since:

• The state-space type is program dependent. The type of programs in
the verification environment is (σ, η, χ) com, where σ is the state space.
lift-state requires two variables from this as an argument in a (. . .)sep

expression, the heap memory and heap type description functions. The
output from C translation names these t-hrs, but when writing this
rule on a σ state space this information is unavailable.

• c is an arbitrary program in the underlying verification framework for
which this rule may not be true. Since there are no restrictions on
heap updates other than those imposed by the guard mechanism, the
following triple holds:

{| �sep |} ∗p = 0 ; {| �sep |}
However, after applying the frame rule with R = ṕ 7→ v, the triple
below does not:

{| (� ∧∗ (ṕ 7→ v))sep |} ∗p = 0 ; {| (� ∧∗ (ṕ 7→ v))sep |}
The problem here is that the frame rule depends on a specific notion
of memory safety. In other developments of separation logic, it is
a requirement that heap locations can only be modified if they are
described in the pre-condition of the specification. This is backed by a
semantic restriction on updates, where the state includes information
on which parts of the heap are acceptable to update.

106 CHAPTER 4. SEPARATION LOGIC EMBEDDING

Such a restriction would be contrary to ROLM — memory safety in the
framework presented in this thesis is enforced by the guard mechanism
and is far coarser, e.g. a guard may only require that all updates occur
within a 1MB region representing the heap in a system.

It is however possible to prove this rule for specific programs and state-
spaces and below we explain how this can be automated and made generic
for Csys.

4.4.2 Heap-state type class

To solve the first problem, we make further use of type classes to define
α::heap-state-type, which provides access and update functions for the heap
state and heap type description.

Definition 4.4.1. The α::heap-state-type class provides constants hst-mem,
hst-mem-update, hst-htd and hst-htd-update giving the access and update
functions for the heap state and type description components of the state
respectively. The class is constrained by the following axioms:

hst-htd (hst-htd-update d s) ≡ d (hst-htd s)
hst-mem (hst-mem-update h s) ≡ h (hst-mem s)
hst-mem (hst-htd-update d s) ≡ hst-mem s

where h::heap-mem ⇒ heap-mem and d ::heap-typ-desc ⇒ heap-typ-desc are
state transformers for their respective components of the heap state.

This is sufficient to reason over the state spaces of all target programs
of interest in the following sections. A concrete program’s state space is
instantiated as a member of this type class by defining the access and update
functions, applying the standard Isabelle/HOL tactics for class instantiation
and then simplifying the resulting proof obligations using these definitions.
This is possible as the state record representation already includes concrete
rewrites analogous to the axioms of α::heap-state-type.

The (. . .)sep syntax is extended to assertions on lifted α::heap-state-type
states using the following definition:

lift-hst s ≡ lift-state (hst-mem s, hst-htd s)

4.4.3 Memory safety

The frame rule can then be expressed for programs c with a state space in
α::heap-state-type as:

∀σ. {|σ. Psep|} c {|Qsep|} mem-safe c Γ
∀σ. {|σ. (P ∧∗ R)sep|} c {|(Q ∧∗ R)sep|}

4.4. FRAME RULE 107

The mem-safe c Γ4 assumption addresses the second problem by requiring
programs on which one wishes to apply the frame rule to provide a form of
memory safety. Such programs generate a guard failure if either:

• The program modifies the heap state or heap type description outside
of the initial domain of the heap type description.

• The program depends on the heap type description outside this domain
in any expression. The program is still free to depend on the heap
memory state outside the domain of the heap type description.

These conditions are not met by the normal output of the C translation
stage, since guards are only generated to prevent undefined behaviour as the
Csys semantics understands it. Here the verifier optionally enables additional
memory safety guard generation, and consequently imposes a slightly higher
proof effort, to gain a property — if the frame rule is not required in a
verification, the framework allows these guards to be suppressed.

Definition 4.4.2. Memory safety with respect to the heap type description
is defined:

mem-safe C Γ ≡ ∀ s t . Γ` 〈C ,Normal s〉 ⇒ t −→ restrict-safe s t C Γ

This definition has some unfamiliar concepts. On the LHS of the implication,
we have a big-step semantics predicate from the verification environment,
that asserts that program C, in an initially normal state s, with environment
Γ, leads to state t. This then implies:

restrict-safe s t C Γ ≡
∀X . (case t of Normal t ′⇒ Γ ` 〈C ,s〉 ⇒X Normal,t ′

| Abrupt t ′⇒ Γ ` 〈C ,s〉 ⇒X Abrupt,t ′ | - ⇒ False) ∨
exec-fatal C Γ (s d|X)

A program’s execution can end in normal or abrupt (used for the exception
mechanism) termination, or in some failure state that would prohibit us from
proving anything about the program. The intuition behind this definition is
that, given a computation leading from state s to t, restricting the domain of
the heap type description in s to X should either result in t with a similarly
restricted heap type description, or a failure state. That is, the program does
not modify or depend on state outside the heap type description domain
without triggering a guard.

4Γ is a component of the verification environment’s state that we have so far hidden as
it has not had any direct relevance. It provides a map from procedure names to bodies, i.e.
η ⇀ (σ, η, χ) com.

108 CHAPTER 4. SEPARATION LOGIC EMBEDDING

The Γ ` 〈C ,s〉 ⇒X f ,t predicate is similar to the big-step semantics,
but restricts the heap type description domain prior to execution and then
ensures the resulting state has a similarly restricted heap type description
and that the state components are unchanged by execution outside of X. It
is parametrised by f which can be either the constructor Normal or Abrupt:

Γ ` 〈C ,s〉 ⇒X f ,t ≡
Γ` 〈C ,Normal (s d|X)〉 ⇒ f (t d|X) ∧
hst-mem t =−X hst-mem s ∧ hst-htd t =−X hst-htd s

where

s d|X ≡ s(|hst-htd := hst-htd s�X|)
f =−X g ≡ ∀ x . x /∈ X −→ f x = g x

An execution leading to failure can be expressed in the verification
environment as5:

exec-fatal C Γ s ≡
(∃ f . Γ` 〈C ,Normal s〉 ⇒ Fault f) ∨ Γ` 〈C ,Normal s〉 ⇒ Stuck

This notion of memory safety is motivated by the introduced memory
safety guards’ effect on program semantics. The C translation inserts addi-
tional guards for memory safety; for a heap update dereference asserting that
the lvalue’s heap footprint is contained entirely in the heap type description’s
domain. AUXUPD annotations also contain a guard for this purpose, which
should prevent heap type description updates or dependencies outside the
current domain. The ptr-safe guard (Defn. 3.2.3) is used to achieve this. An
example guarded expression statement is:

Guard MemSafe {| ptr-safe ṕ D |} (Basic (λs. heap-update sp v (hrs-mem sH)))

It should be noted that we do not require type safety, nor do we require
guards for most expressions as only heap type description updates may
depend on the heap type description, i.e. the output of the C translation
stage does not feature heap type description accesses except in such updates.

Once the guards are inserted, it is then necessary to perform some
automatic analysis to provide the link between the augmented program
object and Defn. 4.4.2. We consider first the intra-procedural case, then
explain how this can be used in the presence of function calls.

5The Stuck state does not model non-termination, but instead the inability for forward
progression of a computation, e.g. the invocation of a non-existent procedure.

4.4. FRAME RULE 109

Intra-procedural analysis

A primitive recursive algorithm that performs syntactic decomposition at
the statement level and checks expression properties using only rewriting
is supplied in Table 4.7. By using the intra-safe conditional rewrites the
com object output of the C translation stage can be automatically shown to
posses the mem-safe property.

intra-safe Skip ≡ True
intra-safe (Basic f) ≡ comm-restrict-safe U f ∧

point-eq-mod-safe U f hst-mem ∧
point-eq-mod-safe U f hst-htd

intra-safe (Seq C D) ≡ intra-safe C ∧ intra-safe D
intra-safe (Cond P C D) ≡ expr-htd-ind P ∧ intra-safe C ∧ intra-safe D
intra-safe (While P C) ≡ expr-htd-ind P ∧ intra-safe C
intra-safe (Call p) ≡ True
intra-safe (DynCom f) ≡ fun-htd-ind f ∧ (∀ s. intra-safe (f s))
intra-safe (Guard f G C) ≡ mono-guard G ∧

(case C of
Basic g ⇒

comm-restrict-safe G g ∧
point-eq-mod-safe G g hst-mem ∧
point-eq-mod-safe G g hst-htd

| - ⇒ intra-safe C)
intra-safe Throw ≡ True
intra-safe (Catch C D) ≡ intra-safe C ∧ intra-safe D

where
point-eq-mod-safe P f g ≡ ∀ s X . s d|X ∈ P −→ g (f s) =−X g s

comm-restrict f s X ≡ f (s d|X) = f s d|X
comm-restrict-safe P f ≡ ∀ s X . s d|X ∈ P −→ comm-restrict f s X

mono-guard G ≡ ∀ s X . s d|X ∈ G −→ s ∈ G

fun-htd-ind f ≡ ∀ d s. f (hst-htd-update d s) = f s

expr-htd-ind P ≡ ∀ d s. (s(|hst-htd := d |) ∈ P) = (s ∈ P)

Table 4.7: Intra-procedural rewrites.

In this section we focus on the correctness of the intra-safe analysis and
how it may be applied on a single procedure, assuming this check has been
completed for all other procedures in the environment. In the next section
we examine how this assumption can be efficiently discharged.

Theorem 4.4.1. A procedure C is mem-safe if intra-safe holds for C and
all procedures in the environment:

110 CHAPTER 4. SEPARATION LOGIC EMBEDDING

intra-safe C
∧

n C .
Γ n = bC c
intra-safe C

mem-safe C Γ

Proof. The proof is via induction on the big-step semantic relation given by
the definition of mem-safe, i.e.:

Γ` 〈C ,Normal s〉 ⇒ t intra-safe C
∧

n C .
Γ n = bC c
intra-safe C

restrict-safe s t C Γ

We sketch the non-trivial base and inductive cases here6:

• Guard C f G s t — this is the case where s ∈ G. If ∃ g . C = Basic g
then the goal follows from considering the cases of t. Only the Normal
case is possible, as primitive Basic steps do not fail in the semantics,
and is handled by observing the following from definitions:

exec-fatal (Guard f G C) Γ s = (s ∈ G −→ exec-fatal C Γ s)

comm-restrict-safe G f s d|X ∈ G

f s d|X = f (s d|X)

point-eq-mod-safe G f g s d|X ∈ G x /∈ X
g (f s) x = g s x

The intuition behind this aspect of the intra-safe definition and proof
is that changes to the heap memory state and heap type description
only take place when correctly guarded.

Otherwise, use the inductive hypothesis and the rule:

restrict-safe s t C Γ
restrict-safe s t (Guard f G C) Γ

• GuardFault C f G s — here s /∈ G and t = Fault f. Guard monotonicity
gives:

s /∈ G mono-guard G
restrict-safe s (Fault f) (Guard f G C) Γ

6We refer the interested reader to the big-step semantics relation of com [85] for a
complete explanation of the cases.

4.4. FRAME RULE 111

• Basic f s — this is similar to the first case of Guard C f G s t, except that
the guard does not allow the initial states considered to be restricted,
hence we require the safety predicates to hold on all states. This
prevents unguarded Basic statements from modifying the heap state or
type description and from depending on the heap type description at
all.

• Seq C D s s ′ t — given by case splitting on s ′, inductive hypothesis
and transitivity of f =−X g.

• CondTrue P C D s t, CondFalse P C D s t, WhileTrue P C s s ′ t,
WhileFalse P C s, DynCom f s t — since the expression is independent
of the heap type description, control flow is not influenced by restriction.
Hence these cases can be discharged with the inductive hypothesis.

• Throw s, CatchMatch C D s s ′ t, CatchMiss C D s t — no dependency
on any aspect of the program state in the control flow here, so as above.

• Call C p s t — by the environment assumption.

Table 4.8 provides a set of conditional rewrites for discharging the side-
conditions resulting from intra-safe evaluation. They follow from definitions,
with the rules relating to ptr-tags requiring some additional reasoning about
footprint intervals. The rules are presented in a format designed to take
advantage of the simplifier’s pattern matching — a concrete heap access
function will not immediately match with hst-mem for example, but the
equality can be established during rewriting of the assumption using the
definition of hst-mem which is placed in the default simplifier set.

Inter-procedural analysis

Thm. 4.4.1 expresses sufficient syntactic conditions for the frame rule to hold.
It requires all procedures in Γ to have the intra-safe property. This is not as
practical as we would like, as it should not be the case that anything needs
to be proved about procedures that are not reachable from C in the call
graph. Also, the verification environment provides definitions for Γ at each
procedure present using Isabelle’s locale mechanism, but does not provide a
full definition for Γ. In this section we remedy this problem by providing
a means to restrict the intra-safe proof obligation to only the procedures
reachable from C in Γ.

Table 4.9 presents an inductive definition proc-deps C Γ that gives the
names of reachable procedures.

112 CHAPTER 4. SEPARATION LOGIC EMBEDDING

∧
s X . (s(|hst-htd := X |) ∈ G) = (s ∈ G)

mono-guard G

∧
s. d s = hst-htd s fun-htd-ind p

mono-guard {s | ptr-safe (p s) (d s)}

∧
s. g (f s) = g s

point-eq-mod-safe P f g

d = hst-htd f = (λs. hst-mem-update (heap-update (p s) (v s)) s)
h = hst-mem fun-htd-ind p

point-eq-mod-safe {s | ptr-safe (p s) (d s)} f h

d = hst-htd
d ′ = hst-htd f = (λs. hst-htd-update (ptr-tag (p s)) s) fun-htd-ind p

point-eq-mod-safe {s | ptr-safe (p s) (d s)} f d ′

∧
s X . f (s(|hst-htd := hst-htd s�X|)) = f s(|hst-htd := hst-htd (f s)�X|)

comm-restrict-safe P f

d = hst-htd f = (λs. hst-htd-update (ptr-tag (p s)) s) fun-htd-ind p∧
d d ′ s. hst-htd-update (d s) (hst-htd-update (d ′ s) s)

= hst-htd-update ((d s) ◦ (d ′ s)) s
comm-restrict-safe {s | ptr-safe (p s) (d s)} f

Table 4.8: Intra-procedural side-condition conditional rewrites.

Lemma 4.4.2. A procedure p may be safely removed from the environ-
ment during calculation of proc-deps providing its reachable procedures are
considered independently and merged with the result.

proc-deps C Γ ⊆ proc-deps C (Γ(p := ⊥)) ∪ proc-deps (Call p) Γ

Proof. The proof is by induction on the proc-deps definition from the LHS.
The base case is straightforward. In the inductive case we require that for
all x and y where x ∈ proc-deps C Γ, Γ x = bDc and y ∈ intra-deps D,
that ∀ p. y ∈ proc-deps C (Γ(p := ⊥)) ∪ proc-deps (Call p) Γ. If we fix p
and assume y /∈ proc-deps (Call p) Γ then all that needs to be shown is that
y ∈ proc-deps C (Γ(p := ⊥)). This can be achieved by considering the cases
for x = p, application of the proc-deps introduction rules and the inductive
hypothesis.

4.4. FRAME RULE 113

x ∈ intra-deps C
x ∈ proc-deps C Γ

x ∈ proc-deps C Γ Γ x = bDc y ∈ intra-deps D
y ∈ proc-deps C Γ

where
intra-deps Skip ≡ ∅
intra-deps (Basic f) ≡ ∅
intra-deps (Seq C D) ≡ intra-deps C ∪ intra-deps D
intra-deps (Cond P C D) ≡ intra-deps C ∪ intra-deps D
intra-deps (While P C) ≡ intra-deps C
intra-deps (Call p) ≡ {p}
intra-deps (DynCom f) ≡

⋃
{intra-deps (f s) | True}

intra-deps (Guard f G C) ≡ intra-deps C
intra-deps Throw ≡ ∅
intra-deps (Catch C D) ≡ intra-deps C ∪ intra-deps D

Table 4.9: Inter-procedural dependency definition.

Theorem 4.4.3. It is valid to restrict the environment to only the reachable
procedures as given by proc-deps when establishing memory safety:

mem-safe C Γ = mem-safe C (Γ�proc-deps C Γ)

Proof. Induct on the big-step semantics relation to give

Γ�X` 〈C ,s〉 ⇒ t proc-deps C Γ ⊆ X
Γ` 〈C ,s〉 ⇒ t

and

Γ` 〈C ,s〉 ⇒ t proc-deps C Γ ⊆ X
Γ�X` 〈C ,s〉 ⇒ t

hence

Γ�proc-deps C Γ` 〈C ,s〉 ⇒ t = Γ` 〈C ,s〉 ⇒ t

Most of the cases are trivial and can be solved with the appropriate
introduction rules, however Call C p s t requires Lem. 4.4.2.

The proof then follows from Defn. 4.4.2.

So far it is possible to restrict the environment to the proc-deps set. To
use this in a proof requires calculation of this inductively-defined set, which
cannot be automated directly from such a definition. Instead rewrites are
derived, which look mostly like those for intra-deps in Table 4.9 with the
exception of:

114 CHAPTER 4. SEPARATION LOGIC EMBEDDING

proc-deps (Call p) Γ =
{p} ∪ (case Γ p of ⊥ ⇒ ∅ | bC c ⇒ proc-deps C (Γ(p := ⊥)))

It is evident that the analysis in this section is conservative. A more
restricted set of procedures could be obtained at the expense of having to
consider program semantics and perform manual proofs. This is not desirable
as we would like the frame rule to be cheap to apply. In cases where the frame
rule is needed, it seems reasonable to require that all reachable procedures
in the call graph are proven safe.

4.4.4 Soundness

The above presentation of the frame rule is somewhat simplified in that P, Q
and R are not functions of the local variable state. Here we derive the more
general rule where they are and R does not depend on variables modified
by C. In the below presentation of the frame rule, a separation assertion
takes as a parameter a function applied to the current state, representing the
extraction of local variables. A fun-htd-ind7 side-condition is then introduced
for the function to prevent it depending on the global heap type description
state.

Theorem 4.4.4. The frame rule is sound:

∀σ. {s | σ = s ∧ (P (f s))sep} C {s | (Q (g σ s))sep}
fun-htd-ind f fun-htd-ind g ∀ s. fun-htd-ind (g s) mem-safe C Γ

∀σ. {s | σ = s ∧ (P (f s) ∧∗ R (h s))sep} C {s | (Q (g σ s) ∧∗ R (h σ))sep}

Proof. By using the Hoare logic completeness result, the goal can be shifted
to the semantic level:

Γ` 〈C ,Normal s〉 ⇒ t
(P (f s) ∧∗ R (h s)) (lift-hst s) t /∈ Fault ‘ ∅ t /∈ Abrupt ‘ ∅

t ∈ Normal ‘ {s ′ | (Q (g s s ′) ∧∗ R (h s)) (lift-hst s ′)}

where s is the pre-state and t the post-state under consideration.
From the separation conjunction in the assumptions, we can obtain s0

and s1 where P (f s) s0, R (h s) s1, s0 ⊥ s1 and lift-hst s = s1 ++ s0.
The proof is completed by case splitting on t :

• Normal t ′ — Using the Hoare soundness result and original specification
assumption, it is easy to see that ¬ exec-fatal C Γ (s d|dom s0), as if
the program does terminate, the Hoare triple semantics gives that it
is in a non-fatal post-state. Using this, the mem-safe assumption and
definition and the execution assumption in the above intermediate goal
we can conclude the following:

7See Table 4.7 for definition.

4.4. FRAME RULE 115

Γ` 〈C ,Normal (s d|dom s0)〉 ⇒ Normal (t ′ d|dom s0)
hst-mem t ′ =−dom s0 hst-mem s
hst-htd t ′ =−dom s0 hst-htd s

From soundness, Q (g s (t ′ d|dom s0)) (lift-hst (t ′ d|dom s0)) and since
s1 = lift-hst t ′�(U − dom s0) we also have R (h s) (lift-hst (t ′ d|dom s1)).
Hence the two disjoint heap states can be merged to introduce the goal
separation conjunction.

• Abrupt t ′ — the theorem does not mention abrupt termination post-
states, as these are not relevant across function calls in the output of
the C translation. As a result, the above reasoning can be applied with
an empty post-condition to achieve the goal.

• Fault f, Stuck — follow from the ¬ exec-fatal C Γ (s d|dom s0) result.

4.4.5 Instantiation

Using Thm. 4.4.4, a local specification can be globalised. The program
verifier will typically do this as an explicit step in the proof script, universally
quantifying R, h and other aspects of the local specification in addition to
the pre-state before supplying the globalised specification to the verification
condition generator in a client proof. In the resultant proof obligation, the
specification is then available and can be instantiated during proof.

Example 4.4.1. Table 4.10 gives a simple swap operation in C and a
separation logic specification. After verification condition generation, we can
derive p ↪→ x and q ↪→ y from the pre-state. The single proof obligation
can then be lifted to the separation logic level with the rules in §4.3 and
the proof completed in a single step. The guards are also dischargeable in a
single simplification step during the proof, with (p ↪→g v) (lift-state (h, d))
=⇒ ptr-safe p d handling the additional ptr-safe p and ptr-safe q guards we
require for memory safety.

With the new guards in place, we can use Isabelle’s automatic tactics to
apply the intra-procedural rewrites and establish mem-safe (swap(ṕ, q́)) Γ.
The frame rule can then be applied to yield the globalised specification:

∀σ x y R h.
{|σ. (ṕ 7→ x ∧∗ q́ 7→ y ∧∗ R (h σ))sep|}
swap(ṕ, q́)
{|(σp 7→ y ∧∗ σq 7→ x ∧∗ R (h σ))sep|}

116 CHAPTER 4. SEPARATION LOGIC EMBEDDING

∀σ x y .
{|σ. (ṕ 7→ x ∧∗ q́ 7→ y)sep|}
swap(ṕ, q́)
{|(σp 7→ y ∧∗ σq 7→ x)sep|}

void swap(unsigned int ∗p, unsigned int ∗q)
{

unsigned int x;

x = ∗p;
∗p = ∗q;
∗q = x;

}

Table 4.10: swap specification and definition.

Table 4.11 contains a client function that invokes swap twice. The proof
here is also very simple, although rather verbose at 47 LoP for such a simple
function. The breakdown includes 20 lines related to guards, which just
involved the extraction of the appropriate ↪→ assertions to discharge, 13 lines
to apply the lifting rules and 10 LoP to instantiate the quantifiers in the
globalised specification for swap (5 LoP per instantiation). The discharge of
guards and application of lifting rules should be easy to automate through
Isabelle tactics, as only explicit mappings appearing in the assumption were
involved.

∀σ x y .
{|σ. (á 7→ x ∧∗ b́ 7→ y ∧∗ ć 7→ −)sep|}
test-swap(á, b́, ć)
{|(σa 7→ (x + y) ∧∗ σb 7→ x ∧∗ σc 7→ y)sep|}

void test swap(unsigned int ∗a, unsigned int ∗b, unsigned int ∗c)
{

swap(a,b);
∗c = ∗a + ∗b;
swap(c,a);

}

Table 4.11: test swap specification and definition.

4.5. EXAMPLES 117

4.5 Examples

4.5.1 In-place list reversal revisited

We now revisit the list reversal example in §3.6. The implementation of
reverse remains the same as in Table 3.6, and the specification in separation
logic is similar on the pre/post level, although without the need to explicitly
state the typed heap frame condition:

∀ zs. {|(list zs í)sep|}
ŕeverse-ret :== reverse(í)
{|(list (rev zs) (Ptr ŕeverse-ret))sep|}

The abstraction predicate is defined differently:

list [] i ≡ λs. i = NULL ∧ � s
list (x ·xs) i ≡ λs. i = Ptr x ∧ x 6= 0 ∧ (∃ j . (i 7→ j ∧∗ list xs (Ptr j)) s)

The invariant is a bit shorter, because the separating conjunction takes care
of distinctness:

{|∃ xs ys. (list xs í ∧∗ list ys (Ptr j́))sep ∧ rev zs = rev xs @ ys|}

The proof remains easy, but does not have the same degree of automa-
tion any more, requiring some manual application of rules for separating
conjunction. This is not surprising, since separating conjunction is an exis-
tential statement which can lead to manual intervention. The proof of the 3
verification conditions comes to a total of 32 lines, which we might be able
to improve with specialised tactics for separation logic connectives, as again
almost half of this is related to ↪→ derivation from assertions.

In this separation logic verification, there was no specific automation setup
for the list data structure apart from the derivation of the rewrite lemma
list xs NULL = (λs. xs = [] ∧ � s), which brings the total proof effort for
this example to 62 lines, as opposed to 90 lines in the UMM setting. Most
of those 90 lines could be reused for programs on the same data structure,
though, which is not the case for the separation logic proof.

4.5.2 Factorial

The largest verification example we have seen so far appears in Table 4.12.
This is an artificial example, intended to demonstrate recursion, linked
structures and some aspects of memory management, not the simplest means
of computing the given function. The factorial function takes a single
parameter n and returns a linked list of objects containing the values n!,
(n−1)!, . . ., 1 if there is enough free memory to represent this, otherwise it

118 CHAPTER 4. SEPARATION LOGIC EMBEDDING

leaves the system with the same amount of memory as when it was invoked,
i.e. factorial does not leak memory. A significant aspect of this specification
is that we can be very precise with our characterisation of the memory usage,
allocation and deallocation behaviour of a program.

The data structure used to represent the list is simply two adjacent
unsigned ints, with the second punned as a pointer. This seems somewhat
puzzling as we have developed the type encoding to gain some representation
abstraction. The explanation for this is that even though Exmp. 4.2.1 features
a struct, our struct semantics and proof tools are still underdeveloped, and
it is simpler to perform proofs using only primitive types until we have the
rules in Chapter 5.

2free_pool

factorial 2
free_pool

1 1 NULL

Figure 4.6: factorial data structure transformation.

Fig. 4.6 illustrates the operation of factorial. We start with a free pool
of memory and, assuming it has sufficient size, end up with the intended list
and a reduced free pool. The function is divided into two parts; the base and
recursive cases. The base case is when n = 0 and the allocated storage is
filled as expected. In the recursive case n > 0, first the function attempts to
gain a pointer to the remaining list by a self-call on n − 1. Then an attempt
is made to allocate storage for the current node. If this fails, factorial has
cleanup code that traverses the currently allocated list and frees all nodes.
The entire list is allocated before the return path begins and the contents of
the allocated storage are then filled as intended.

Formally, we characterise the free pool with an underspecified separation
assertion free-pool::nat ⇒ heap-assert, taking the number of free blocks as a
parameter. Specifications can then be given for alloc and free:

4.5. EXAMPLES 119

∀σ k . {|σ. (free-pool k)sep|}
álloc-ret :== alloc()
{|(λs. if 0 < k

then (`s álloc-ret ∧∗ `s (álloc-ret +p 1) ∧∗ free-pool (k − 1)) s
else free-pool 0 s ∧ álloc-ret = NULL)sep|}

∀σ k . {|σ. (sep-cut ṕ& (2 ∗ size-of TYPE(word32)) ∧∗ free-pool k)sep|}
free(ṕ)
{|(free-pool (k + 1))sep|}

For the specification of factorial, in the post-condition we can describe
the list similarly to the previous section:

list [] p ≡ λs. p = NULL ∧ � s
list (x ·xs) p ≡ λs. ∃ j . (p 7→ x ∧∗ (p +p 1) 7→ j ∧∗ list xs (Ptr j)) s

where the supplied list n!, (n−1)!, . . ., 1 is given by:

fac-list 0 ≡ [1]
fac-list (Suc n) ≡ fac (Suc n)·fac-list n

fac 0 ≡ 1
fac (Suc n) ≡ IN⇒ (Suc n) ∗ fac n

These definitions are combined in the separation assertion:

sep-fac-list n p ≡ list (fac-list (IN⇐ n)) p

The proof follows the now familiar structure of globalisation of the alloc
and free functions, additional lemmas for reasoning about the new separation
assertions, verification condition generation and then the proof obligation
discharging, involving lifting to the separation logic level and proofs at this
level. The cleanup loop invariant is:

{|∃ xs. (list xs q́ ∧∗ free-pool (k − |xs|))sep ∧ |xs| ≤ k |}

Many of the steps are essentially manipulating assertions into the desired
form, to either apply some rule such as the lifting rule for heap-update or a
lemma from earlier in the proof about the list data structure, and to match
up components in the assumption and goal. The other significant parts of the
main proof include extracting information to discharge guards, mostly from
conjuncts where the information is available explicitly and some arithmetic
reasoning. The entire proof script is 386 LoP for 39 LoC.

120 CHAPTER 4. SEPARATION LOGIC EMBEDDING

∀σ k . {|σ. (free-pool k)sep|}
f́actorial-ret :== factorial(ń)
{|if f́actorial-ret 6= NULL
then (sep-fac-list σn f́actorial-ret ∧∗

free-pool (k − (IN⇐ σn + 1)))sep ∧
IN⇐ σn + 1 ≤ k

else (free-pool k)sep|}

unsigned int ∗factorial(unsigned int n)
{

unsigned int ∗p, ∗q;

if (n == 0) {
p = alloc() ;

if (!p)
return NULL;

∗p = 1;
∗(p + 1) = 0;

return p;
}

q = factorial (n − 1);

if (!q)
return NULL;

p = alloc() ;

if (!p) {
while (q) {

unsigned int ∗r = (unsigned int ∗)∗(q + 1);

free (q);
q = r;

}

return NULL;
}

∗p = n ∗ ∗q;
∗(p + 1) = (unsigned int)q;

return p;
}

Table 4.12: factorial specification and definition.

Chapter 5

Structured types

5.1 C’s struct, union and array types

In the C-HOL type encoding of Chapter 2, each C type was given a unique
type in the theorem prover. All such types belonged to an axiomatic type class
α::c-type in Isabelle, which introduced a number of constants that connected
the low-level byte representation and the HOL values. Primitive types such as
char and long * could be defined in a library for each architecture/compiler
in the expected way.

C’s aggregate, or structured, types could also be modeled inside the
theorem prover, e.g. struct types as Isabelle record types1. Structured
types warrant further investigation, however, as they require additional
work behind the scenes to instantiate and expose limitations in the existing
notion of independently typed heaps which the developments of Chapter
3 and Chapter 4 are based upon. Structured types are also crucial in the
implementation of systems code — while, in principle, programs could be
implemented without them, this is impractical, as witnessed by Ritchie [82]:

The language and compiler were strong enough to permit us to
rewrite the Unix kernel for the PDP-11 in C during the summer
of that year. (Thompson had made a brief attempt to produce a
system coded in an early version of C — before structures — in
1972, but gave up the effort.)

A verification framework should therefore provide convenient rules for com-
mon usage cases with these types. We treat structured types as first-class C
types in the following to provide the benefits of abstraction and typing in
proofs, while still allowing direct references to members.

1In our implementation of this work, a record package substitute based on Is-
abelle/HOL’s datatypes was used to allow for structured C types that introduce a
circular type dependency, e.g. a struct x with a field of type struct x *.

121

122 CHAPTER 5. STRUCTURED TYPES

Each structured type appearing in a program required the Csys transla-
tor, implemented as an Isabelle tactic in ML, to perform an α::mem-type
instantiation, e.g. for struct types:

• A corresponding record declaration.

• Definitions of functions appearing in α::c-type, requiring full structure
information to appear shallowly at the HOL level.

• Lvalue calculations, requiring the full structure information inside the
ML parser, as well as offset/size/alignment calculations.

Since the translation stage is trusted it is highly desirable to minimise and
simplify it. In our framework the first two steps need to be in the ML, since
Isabelle/HOL does not reflect these aspects of the theorem prover’s runtime.
The last step introduces redundant information that can be mostly pushed
to the HOL level and we endeavour to achieve this reduction in the trusted
code in §5.2.4.

Example 5.1.1. As a running example, consider the following struct dec-
larations:

struct x {
short y;
char z;

};

struct a {
int b;
struct x c;

};

The following triple demonstrates the most significant limitation with
the earlier memory model:

{| ∗p = (| y = 2 , z = ′m ′ |) |} p→y = 1 ; {| ∗p = ? |}

The problem here is that even though the update and dereference are type-
safe, and we do not need to consider aliasing, the proof rules we have
developed so far consider this update to be type-unsafe, as any region of
memory can only have a single type, and p and &(p→y) share a common
address despite having different but related types. There is a similar problem
for the effect of updates through struct references on enclosed field pointer
values.

Fig. 5.1 demonstrates how this problem manifests itself in the multiple
typed heaps abstraction. Typed heaps now have locations in common, and
there is an update dependency given by the arrows between the heaps:

5.2. STRUCTURED TYPE ENCODING 123

struct a struct k

struct x

short char int

Figure 5.1: Heap update dependencies.

• Updating a field type’s heap may affect typed heaps of enclosing
structs, indicated in the figure by a dashed arrow.

• Updating a struct affects typed heaps of field types (fields-of-fields,
etc.), indicated in the figure by a solid arrow.

• Update effects are no longer simple function update, they involve
potentially multiple field updates and accesses.

The solution we propose in this chapter is to treat structured type
information as first-class HOL values and generalise the definitions, rewrites
and rules of the previous development making use of this.

The above discussion focused on structs. We maintain the approach
to modeling arrays and unions as HOL types described in §2.4.3. In the
following discussion, arrays inside structs can be considered structs with
fields of the same type and with names derived from the index. Since we
have not yet implemented unions in the Csys-com translation, we do not
treat them below, but refer the interested reader to the discussion in §7.3 on
how they may be handled.

5.2 Structured type encoding

The solution proposed in §5.1 requires that structured type meta-data be
available at the HOL level. This needs to include the same information as
in §2.4.1 — type structure, size, and alignment. In addition, a fine grained
description of the value representation encoding and decoding functions, such
that it is possible to extract the functions for specific fields as well as the
structure as a whole, is desirable.

124 CHAPTER 5. STRUCTURED TYPES

5.2.1 Field descriptions

At the HOL level, we represent structure objects using potentially nested
Isabelle/HOL records. Each field has access and update functions defined
by the record package, e.g. for struct a represented as HOL record type
a-struct, the functions b::a-struct ⇒ int and b-update::(int ⇒ int) ⇒ a-struct
⇒ a-struct are supplied. Where possible, it is helpful to use these record
functions when reasoning about field accesses and updates, rather than the
more detailed, lower-level view of fields as a subsequence of the byte-level
value representation — the connection between these two views is explored
in §5.3.4. To facilitate this, functions derived from the corresponding record
functions are included in the type meta-data.

Definition 5.2.1. We can capture abstract record access and update func-
tions for fields as field descriptions:

record α field-desc = field-access :: α ⇒ byte list ⇒ byte list
field-update :: byte list ⇒ α ⇒ α

These functions provide a connection between the structure’s value as a typed
HOL object and the value of a field in the structure as a byte list. field-access
takes an additional byte list parameter, utilised in the semantics to provide
the existing state of the byte sequence representing the field being described.
This allows padding fields the ability to “pass through” the previous state
during an update2.

Example 5.2.1. The field description for field b in struct a is:

(|field-access = to-bytes ◦ b,
field-update =

λbs v .
if |bs| = size-of TYPE(word32) then v(|b := from-bytes bs|) else v |)

The update function only has an effect on byte lists of the correct length, a
constraint that runs through later definitions and properties.

5.2.2 Extended type tags

Definition 5.2.2. The type meta-data is captured in a type description
with the following mutually-inductive definitions:

datatype α typ-desc = TypDesc “α typ-struct” typ-name
α typ-struct = TypScalar nat nat α |

TypAggregate (α typ-desc × field-name) list

2A more conservative, standard compliant approach, would be to use non-determinism
or an oracle here.

5.2. STRUCTURED TYPE ENCODING 125

A type description is a tree, with structures as internal nodes, branches
labeled with field names and leaves corresponding to fields with primitive
types. At leaves, size, alignment and an α is provided. The α is free and can
be used to carry primitive type encoding and decoding functions. Alignment
is now considered to be an exponent, enforcing the power-of-two restriction
in §2.3.1 structurally. An example type description for struct a is given in
Fig. 5.2.

As in §2.4.1, there is not a one-to-one correspondence between fields in
this structure and those in a C struct, as fields in this definition are also
intended to explicitly represent the padding inserted by the compiler to
ensure alignment restrictions are met.

The previous typ-info and typ-tag types are now instances of α typ-desc,
with field descriptions included in the type information:

types α typ-info = α field-desc typ-desc
typ-tag = unit typ-desc

The type information provides the information required to describe the
encoding and decoding of the representation. TYPE(α)τ gives the type
information for an α::c-type and TYPE(α)ν provides a type description
similar to a typ-tag, explained in §5.2.7. Here the subscript operators are
functions from α::c-type itself to type information and descriptions.

Definition 5.2.3. A field name used to access and update structure fields
with the C . and −> operators can be viewed as a field-name list of .-
separated fields leading to a sub-structure, which we refer to as a qualified
field name. A qualified field name may lead to a field with a primitive or
structure type, e.g. [] is the structure itself. Array members are named by
index, e.g. [′′--array-37 ′′].

Example 5.2.2. [], [′′b ′′], and [′′c ′′, ′′z ′′] are valid qualified field names in
Exmp. 5.1.1 for struct a, corresponding to the entire structure, b field and
nested z field respectively.

A number of functions can be defined on type descriptions which allow the
lifting and update rules of §5.3.4 and §5.4.5 to be expressed and proven. We
summarise all these and the other key functions defined over type descriptions
introduced in this chapter in Table 5.1. All functions are backed by primitive
recursive definitions in Isabelle/HOL, however in some definitions below we
replace what constitutes a lengthy and verbose but somewhat trivial HOL
term with explanation and examples. In such cases a reference to a table in
Appendix B is provided next to the definition.

Definition 5.2.4. [B.1] map-td applies the given function f at leaf nodes,
modifying the contents of a type description’s leaves while not affecting the
structure. f is a function of the size and alignment at a leaf node but does
not modify these values.

126 CHAPTER 5. STRUCTURED TYPES

TypDesc (TypAggregate ...) "struct x"

TypDesc (TypScalar 2 1 y_field_desc) "short"

TypDesc (TypScalar 1 0 z_field_desc) "char"

"y"

"z"

TypDesc (TypScalar 4 2 b_field_desc) "int"

TypDesc (TypAggregate ...) "struct a"

"b"

"c"

TypDesc (TypScalar 1 0 pad_desc) "!pad"

"!pad"

Figure 5.2: Type description for struct a.

Definition 5.2.5. [B.2, B.3] Type size size-td and alignment align-td are
found by summing and taking the maximum of the leaf node sizes and align-
ments respectively, similar to the calculations in Defn. 2.4.4 and Defn. 2.4.5.

Definition 5.2.6. [B.4] lookup :: α typ-desc ⇒ qualified-field-name ⇒ nat
⇀ α typ-desc × nat follows a path f from the root of a type description t
and returns a sub-tree and offset if it exists. We write tBf as an abbreviation
for lookup t f 0.

Example 5.2.3. A lookup on the field c in struct a yields:

TYPE(a-struct)νB[′′c ′′] = b(TYPE(x-struct)ν , 4)c

A lookup on an invalid field name fails:

TYPE(a-struct)νB[′′c ′′, ′′b ′′] = ⊥

Lemma 5.2.1. The size of a type description is no smaller than the sum of
the size of any field’s type description and offset:

TYPE(α)τBf = b(t , n)c
size-td t + n ≤ size-td TYPE(α)τ

5.2. STRUCTURED TYPE ENCODING 127

map-td :: (nat ⇒ nat ⇒ α ⇒ β) ⇒ α typ-desc ⇒ β typ-desc
Transforms leaf α values to β values.
size-td :: α typ-desc ⇒ nat
Type size, e.g. size-td TYPE(a-struct)τ = 8.
align-td :: α typ-desc ⇒ nat
Type alignment exponent, e.g. align-td TYPE(a-struct)τ = 2.
- B - :: α typ-desc ⇒ qualified-field-name ⇀ α typ-desc × nat
The sub-tree and offset from the base of the structure that a valid qualified field
name leads to.
td-set :: α typ-desc ⇒ (α typ-desc × nat) set
The set of all sub-trees and their offset from the base of a structure.
access-ti :: α typ-info ⇒ (α ⇒ byte list ⇒ byte list)
Derived field access for the entire structure represented by the type information.
update-ti :: α typ-info ⇒ (byte list ⇒ α ⇒ α)
Derived field update for the entire structure represented by the type information.
export-uinfo :: α typ-info ⇒ typ-uinfo
Export type information (see §5.2.7 for typ-uinfo).
norm-tu :: typ-uinfo ⇒ (byte list ⇒ byte list)
Derived normalisation for the entire structure represented by the exported type
information.
- ≤ - :: α typ-desc ⇒ α typ-desc ⇒ bool
Update dependency order, e.g. TYPE(x-struct)ν ≤ TYPE(a-struct)ν .

Table 5.1: Type description functions.

Proof. By structural induction on the type description.

Definition 5.2.7. [B.5] A related concept is the type description set, td-set
t , of a type description t where all sub-trees and their offsets are returned.

Example 5.2.4. The type description set for struct x is:

td-set TYPE(x-struct)ν = {(TYPE(x-struct)ν , 0), (TYPE(word16)ν , 0),
(TYPE(word8)ν , 2), (pad-export 1 , 3)}

Definition 5.2.8. The address corresponding to an lvalue expression con-
taining a structure field access or update can be found with:

&(p→f) ≡ p& + IN⇒ (snd (the (TYPE(α)νBf)))

Lvalue terms appear in the semantics and proof obligations for statements
like p−>f = v; as described in §2.5.6 and §2.5.7.

Example 5.2.5. The lvalue address for an a-struct ptr dereference on the c
field is given by:

&(p→[′′c ′′]) = p& + IN⇒ (size-of TYPE(word32))

128 CHAPTER 5. STRUCTURED TYPES

Lemma 5.2.2. The heap interval footprint of a field is a subset of that of
an enclosing structure:

TYPE(α)τBf = b(t , n)c
{&(p→f)..+size-td t} ⊆ {p&..+size-of TYPE(α)}

Proof. By interval reasoning and Lem. 5.2.1.

Definition 5.2.9. [B.6, B.7] Access access-ti and update update-ti functions
compose their respective primitive leaf functions (from the field descriptions)
sequentially to provide the expected encoding and decoding for an aggregate
type. Since a given type information may represent an entire structure type
or just a field, the access and update functions generalise the earlier notion
of to-bytes and from-bytes for a C type.

Example 5.2.6. The access function for struct a is given by:

access-ti TYPE(a-struct)τ = λv bs.
to-bytes (b v)
(take (size-of TYPE(word32)) bs) @

to-bytes (c v)
(take (size-of TYPE(x-struct))

(drop (size-of TYPE(word32)) bs))

Definition 5.2.10. The connection between the HOL typed value, type
information, size, alignment and underlying byte representation can be made
through the following function definitions:

to-bytes ≡ access-ti TYPE(α)τ

from-bytes bs ≡ update-ti TYPE(α)τ bs arbitrary
size-of TYPE(α) ≡ size-td TYPE(α)τ

align-of TYPE(α) ≡ 2 align-td TYPE(α)τ

to-bytes is now also a function of the previous byte list representation, with
the same rationale as field-access in Defn. 5.2.1. We write access-ti0 and
to-bytes0 when a list of zero bytes with length equal to that of the type’s size
is to be supplied for the padding state. We generalise the constraints on and
properties of α::mem-types in the next section.

5.2.3 Type constraints

In this section we describe the fundamental properties that need to hold
for each Isabelle/HOL type we use to model a C type. These generalise
Defn. 2.4.2, and we show the earlier properties to follow in Thm. 5.2.3 at
the end of the section.

Definition 5.2.11. Table 5.2 gives the constraints on an α::c-type for instan-
tiation in the α::mem-type axiomatic type class. [MaxSize], [AlignDvd-
Size] and [AlignField] give some basic size and alignment related properties.

5.2. STRUCTURED TYPE ENCODING 129

size-of TYPE(α) < |addr| [MaxSize]

align-of TYPE(α) dvd size-of TYPE(α) [AlignDvdSize]

TYPE(α)τBf = b(s, n)c −→ 2 align-td s dvd n [AlignField]

|bs| = size-of TYPE(α)
update-ti TYPE(α)τ bs v = update-ti TYPE(α)τ bs w

[Upd]

wf-desc TYPE(α)τ [WFDesc]

wf-size-desc TYPE(α)τ [WFSizeDesc]

wf-field-desc TYPE(α)τ [WFFD]

Table 5.2: α::mem-type axioms.

The [MaxSize] and [AlignDvdSize] conditions are taken directly from
Defn. 2.4.2 and [AlignField] is implied by the C standard’s requirement
that derived field pointers posses the alignment of their type [1, 6.7.2.1–12].

[Upd] states that the result of an update to the entire structure is
independent of the original value.

Finally, three well-formedness conditions on the type information ensure
sensible values for field names, node sizes and field descriptions. These
conditions are detailed below in Defn. 5.2.12, Defn. 5.2.13 and Defn. 5.2.15.

Definition 5.2.12. [B.8] A type description t is well-formed w.r.t. field
names, wf-desc t , when no node has two or more branches labelled with the
same field name.

Definition 5.2.13. [B.9] A type description t is well-formed w.r.t. size,
wf-size-desc t , when every node has a non-zero size.

Definition 5.2.14. A field description d and size n are considered consistent,
fd-cons-desc d n, when the following properties hold:

∀ v bs bs ′.
|bs| = |bs ′| −→
field-update d bs (field-update d bs ′ v) = field-update d bs v

[FuFu]

∀ v bs. |bs| = n −→ field-update d (field-access d v bs) v = v
[FuFaId]

∀ bs bs ′ v v ′.
|bs| = n −→
|bs ′| = n −→
field-access d (field-update d bs v) bs ′ =
field-access d (field-update d bs v ′) bs ′

[FaFu]

130 CHAPTER 5. STRUCTURED TYPES

∀ v bs. |bs| = n −→ |field-access d v bs| = n
[FaLen]

The properties are similar to those already provided by Isabelle’s record
package at the HOL level and can be established automatically.

Definition 5.2.15. [B.10] Type information t is well-formed w.r.t. field
descriptions, wf-field-desc t , if the field descriptions of all leaf fields are
consistent, and for every pair of distinct leaf fields, s and t, the following
properties hold:

∀ v bs bs ′.
update-ti s bs (update-ti t bs ′ v) =
update-ti t bs ′ (update-ti s bs v)

[FuCom]

∀ v bs bs ′.
|bs| = size-td t −→
|bs ′| = size-td s −→
access-ti s (update-ti t bs v) bs ′ =
access-ti s v bs ′

[FaFuInd]

Again, these are standard commutativity and non-interference properties
that we have at the HOL level and wish to preserve in field descriptions.

We now show that the earlier axioms follow from the generalised axioms
presented in this section, allowing the reuse of many of the further derived
properties and program verification proofs.

Theorem 5.2.3. The α::mem-type axioms from this section imply the re-
maining axioms in Defn. 2.4.2:

|bs| = size-of TYPE(α)
from-bytes (to-bytes x bs) = x

[Inv]

|bs| = size-of TYPE(α)
|to-bytes x bs| = size-of TYPE(α)

[Len]

0 < size-of TYPE(α) [SzNZero]

align-of TYPE(α) dvd |addr| [Align]

Proof. For [Inv], we unfold Defn. 5.2.10 and transform the arbitrary to a v
using [Upd]. [WFFD] gives that field descriptions at leaves are consistent,
which inductively provides this property for derived field descriptions at
internal nodes. The proof is completed by using [FuFaId] at the root.
[Len] follows from Defn. 5.2.10 and [FaLen]. [SzNZero] is implied by
[WFSizeDesc]. Finally, for [Align], observe align-of TYPE(α) < |addr|
from [AlignDvdSize], hence the alignment as a power-of-two divides |addr|,
a larger power-of-two.

5.2. STRUCTURED TYPE ENCODING 131

5.2.4 Type combinators

The constraints of the previous section require both the construction of
suitable type information and a corresponding α::mem-type instantiation
proof for each type appearing in programs we wish to verify. This can be
done entirely at the ML level during C-HOL translation, by synthesising
both the intended HOL term for the type information directly and a proof
on the unfolded definition, but this is fragile and does not scale well.

An improved approach to type information construction is to do so using
constructor combinators for which generic proof rules can be given. This then
reduces the proof effort at the ML level to discharging simple side-conditions
resulting from applying the proof rules from the library, greatly reducing the
complexity of the ML instantiation code and improving the performance of
this step. In this section we detail the combinators and proof rules.

The construction of type information occurs field-wise, in the order of the
fields as declared. The importance of this becomes apparent in Defn. 5.2.20,
where the correct calculation of padding fields requires this ordering. We
now give 5 type information combinators — the empty type information,
field extension, padding extension, field-with-padding extension and type
information finalisation.

Definition 5.2.16. The empty type information for a type name tn is given
by:

empty-typ-info tn ≡ TypDesc (TypAggregate []) tn

Definition 5.2.17. Type information ti ::α typ-info can be extended with a
given additional field’s type t ::β::c-type itself, access f a::α ⇒ β and update
f u::β ⇒ α ⇒ α functions and name:

ti-typ-combine t f a f u fn ti ≡ extend-ti ti (adjust-ti TYPE(β)τ f a f u) fn

where the functions adjust-ti and extend-ti adapt the existing field descriptions
in the new field’s type information to work as a field in the combined
type information and extend the existing type information with the field,
respectively:

extend-ti (TypDesc st nm) t fn ≡ TypDesc (extend-ti-struct st t fn) nm
extend-ti-struct (TypAggregate ts) t fn ≡ TypAggregate (ts @ [〈t ,fn〉])

update-desc f a f u d ≡ (|field-access = field-access d ◦ f a,
field-update = λbs v . f u (field-update d bs (f a v)) v |)

adjust-ti t f a f u ≡ map-td (λn algn. update-desc f a f u) t

132 CHAPTER 5. STRUCTURED TYPES

Definition 5.2.18. Type information can be extended with a padding field
n bytes wide:

ti-pad-combine n ti ≡
let fn = foldl op @ ′′!pad- ′′ (field-names-list ti);

td = (|field-access = λv . id, field-update = λbs. id|);
nf = TypDesc (TypScalar n 0 td) ′′!pad-typ ′′

in extend-ti ti nf fn

where field-names-list provides a list of the field names in a type description.
In this way, a unique field name for the padding field is generated to pre-
serve [WFDesc]. Padding fields are anonymous with the access functions
preserving existing state and update functions not affecting the value of the
structure.

This treatment of padding is somewhat idealised. In reality, the C
standard allows the implementation to treat padding fields in an arbitrary
fashion during update. Hence the definition of the ti-pad-combine combinator
invokes implementation-dependent behaviour, as do the padding calculations
in Defn. 5.2.20 and Defn. 5.2.21 below. These combinators may require
modification if the target implementation behaves differently3. An alternative
to the reliance on this behaviour would be to explicitly supply padding fields
inside structure declarations in C programs such that the compiler has no
need to introduce its own padding.

Definition 5.2.19. The padding needed to meet the given alignment align
for a structure of size n is:

padup align n ≡ (align − n mod align) mod align

The next definition builds on ti-typ-combine and ti-pad-combine to pro-
vide a combinator we use to add a new field while meeting C’s alignment
requirements.

Definition 5.2.20. Type information ti ::α typ-info can be extended with a
given additional field’s type t ::β::c-type itself, access f a::α ⇒ β and update
f u::β ⇒ α ⇒ α functions, name and any necessary padding to meet alignment
requirements by:

ti-typ-pad-combine t f a f u fn ti ≡
let pad = padup (align-of TYPE(β)) (size-td ti)
in ti-typ-combine t f a f u fn (if 0 < pad then ti-pad-combine pad ti else ti)

3 In less ideal situations it may be necessary to construct an underspecified oracle
function to provide the correct padding behaviours.

5.2. STRUCTURED TYPE ENCODING 133

A padding field is inserted before the intended field if necessary — an empty
padding field would violate [WFSizeDesc].

After each field has been added, padding has been introduced to ensure
alignment requirements are met for the fields, but it may still be necessary
to place an additional padding field to meet [AlignDvdSize].

Definition 5.2.21. Termination of type information construction is achieved
by appending a padding field to meet the alignment requirements of the
entire structure:

final-pad ti ≡
let n = padup 2 align-td ti (size-td ti)
in if 0 < n then ti-pad-combine n ti else ti

Example 5.2.7. Type information for a-struct can be created with:

final-pad
(ti-typ-pad-combine TYPE(x-struct) c (c-update ◦ (λx -. x)) ′′c ′′

(ti-typ-pad-combine TYPE(word32) b (b-update ◦ (λx -. x)) ′′b ′′

(empty-typ-info ′′a-struct ′′)))

So far we have combinators that allow the construction of the type
information, but we still require a proof to place a type with the constructed
type information in α::mem-type. The rules to do this are rather detailed,
and the proofs are involved, so we relegate this to Appendix C. It is sufficient
to note here that they are a complete set of rules, in the sense that they
cover all the α::mem-type axioms and above combinators, and can be applied
as introduction rules, with the aid of the simplifier for some side-conditions.

5.2.5 Type installation

During the state space synthesis of Fig. 2.4, the Isabelle/HOL type for a
structured type is created and the combinators are used to construct the
type information. The translation process then applies the proof rules and
the new type is available as an α::mem-type.

At the same time, some additional rewrites are shown by the system, and
placed in the default simplification set, to allow efficient rewriting of lookup
terms for the new type and to improve the scalability of the instantiation
process. The lookup rewrites are of great import when applying the later
UMM or separation logic rules in this chapter, as B terms appear frequently
as side-conditions.

Example 5.2.8. The following rule for resolving field names beginning with
′′z ′′ is installed for x-struct :

134 CHAPTER 5. STRUCTURED TYPES

lookup TYPE(x-struct)τ (′′z ′′·fs) m =
lookup (adjust-ti TYPE(word8)τ z (z-update ◦ (λx -. x))) fs
(m + size-of TYPE(word16))

Simplifications for size-td and align-td on the entire structure are also
installed. This has the advantage that when structure s occurs as a field of
t, the α::mem-type type instantiation of t does not need to unfold the type
information for s.

5.2.6 Heap semantics

The translation of §2.5 remains mostly unchanged with the new type encoding,
with the exception of heap-update in Defn. 2.5.4, which now supplies to-bytes
with the existing heap state underneath the target footprint to facilitate
padding field semantics:

heap-update p v h ≡
heap-update-list p& (to-bytes v (heap-list h (size-of TYPE(α)) p&)) h

Structured types introduce a new initialisation concern, where an object
may be partially initialised. This is not directly relevant to the type encoding,
as any potential exception conditions or other undefined behaviour that
may result can be treated separately with guards in §2.5.5. We do not
supply initialisation guards but believe that the framework is sufficient to
accommodate these if required.

5.2.7 Representation normalisation

In later sections of this chapter, we make frequent use of the concepts of
exported type information and normalisation, which we introduce in this
section.

Type information may be “exported” to remove the α dependency by
collapsing leaf field descriptions to byte list normalisation functions, resulting
in a typ-uinfo:

types typ-uinfo = (byte list ⇒ byte list) typ-desc

Normalisation is motivated by the observation that padding fields are ignored
when reading structured values from their byte representation. Also, there
may exist more than one byte representation for a value in C, even for
primitive types. Export of the type information also provides us with a
means to quantify over and compare C types.

5.2. STRUCTURED TYPE ENCODING 135

7::int

{ 3, { 42, 'a' }}::struct a

normalise
0x00
0x00
0x00
0x07

0xac

0x00
0x00
0x00
0x07

0x61
0x00
0x2a
0x00
0x00
0x00
0x03

0x12
0xe1
0x00
0x2a
0x00
0x00
0x00
0x03

0x8f
0xe1
0x00
0x2a
0x00
0x00
0x00
0x03

0x00
0x61
0x00
0x2a
0x00
0x00
0x00
0x03

Figure 5.3: Normalisation mapping to byte list equivalence classes.

Example 5.2.9. Fig. 5.3 demonstrates two example normalisations. The
byte lists are arranged with the least-significant byte at the bottom and the
shaded bytes indicate padding. In the struct a case, the padding field is
transformed to zero and the MSB in the char field is ignored.

Definition 5.2.22. Type information is exported with export-uinfo:

export-uinfo ti ≡
map-td
(λn algn d bs.

if |bs| = n
then field-access d (field-update d bs arbitrary) (replicate n 0)
else [])

ti

We write TYPE(α)ν for export-uinfo TYPE(α)τ .

We can no longer obtain derived access and update functions using
access-ti and update-ti from exported type information. Instead, we can derive
a normalisation function for the entire structure from the leaf normalisation
functions.

Definition 5.2.23. [B.11] Normalisation norm-tu for type information is
derived by the sequential composition of leaf normalisation functions. We
write norm-bytes TYPE(α) for norm-tu (export-uinfo TYPE(α)τ).

136 CHAPTER 5. STRUCTURED TYPES

Theorem 5.2.4. norm-tu applied to exported type information is equivalent
to normalisation with the access and update functions derived from the type
information:

wf-field-desc ti wf-desc ti |bs| = size-td ti
norm-tu (export-uinfo ti) bs = access-ti0 ti (update-ti ti bs arbitrary)

Proof. By structural induction on the type information ti. The base case
occurs at the leaves and matches the definitions. For internal nodes, we
use the inductive hypothesis and the commutativity and non-interference
properties derivable from [WFFD].

Theorem 5.2.5. Normalisation does not affect the HOL value of a byte list:

|bs| = size-of TYPE(α)
from-bytes (norm-bytes TYPE(α) bs) = from-bytes bs

Proof. From definitions, Thm. 5.2.4 and Defn. 5.2.14 properties.

Theorem 5.2.6. Field access is equivalent to normalisation of the corre-
sponding fragment of the underlying byte list representation:

TYPE(α)τBf = b(t , n)c |bs| = size-of TYPE(α)
access-ti0 t (from-bytes bs) =

norm-tu (export-uinfo t) (take (size-td t) (drop n bs))

Proof. By Thm. 5.2.4 and:

sBf = b(t , n)c
|bs| = size-td s |bs ′| = size-td t wf-lf (lf-set s []) wf-desc s

access-ti t (update-ti s bs v) bs ′ =
access-ti t (update-ti t (take (size-td t) (drop n bs)) arbitrary) bs ′

This auxiliary rule can be shown by structural induction on the type infor-
mation.

5.3 Structured UMM

While the unified memory model (UMM) of Chapter 3 provides a basis for
the construction of the typed heaps and separation logic proof abstractions
for all α::mem-types, there are some shortcomings when using this in proofs
about structured types. These were introduced at the end of §5.1 and in
this section we give an extended and generalised UMM that overcomes these
limitations.

5.3. STRUCTURED UMM 137

struct a

addr

Figure 5.4: Previous heap type description with a valid struct a pointer.

5.3.1 Extended heap type description

The heap type description of §3.2 provided a ghost variable, capturing the
implicit mapping between memory locations and types. Fig. 5.4 depicts an
example valid pointer in the heap type description for struct a.

The problem with this notion of the heap type description is that only a
single pointer may be valid at any location. This gives rise to the inability to
abstractly reason about updates through pointers to fields. With structured
types, we would like that at the base address a pointer for the structure type
and that of the first field’s type be valid. In general, for valid qualified field
names f, we desire a field monotonicity property, i.e. d ,g |=t p =⇒ d ,g |=t

Ptr &(p→f).
To accomplish this, we introduce a new definition for the heap type

description:

types typ-base = bool
typ-slice = nat ⇀ typ-uinfo × typ-base
heap-typ-desc = addr ⇒ bool × typ-slice

Each location maps to a tuple, with the first component a bool indicating
whether there is a value located at the address4. The second component
is a typ-slice, providing an indexed map5 to the typ-uinfos that may reside
at a particular address. The index for the exported type information of a
field type at a particular offset is calculated from the depth of the tree at
the offset, where zero corresponds to the deepest field type and the highest
index to the root type. The typ-base value indicates whether the location is
the base or some other part of a value’s footprint6.

4This approach is taken in preference to a partial function to aid in partitioning state
in §5.4.

5A list could also have been used, however the map allows for separation logic predicates
in §5.4.6 that cannot have states modeled with finite lists.

6This is for the same reason as in §3.2.1, i.e. allowing consideration of the potential
overlap of values of the same type to be eliminated for valid pointers, thus overcoming the
problem of skewed sharing.

138 CHAPTER 5. STRUCTURED TYPES

An example of the extended heap type description is provided in Fig. 5.5.
Presence or absence of a value is not indicated. Each point is a typ-uinfo
× bool pair, with the colour determined by the first component and shape
by the second. Here a struct a, from Exmp. 5.1.1, footprint extends on
the horizontal axis above the footprints of its members. The vertical axis
indicates a position in the typ-slice at the address. The second half of the
a-struct is higher than the first, as the tree is deeper due to the x-struct
changing the depth past this offset. That is, at (p,1), (p+1 ,1),. . .,(p+3 ,1)
we have an entry for the exported type information of a-struct, as the tree
has only a depth of 2 at offsets 0–3, but at offsets 4–7, we have a-struct at
(p+4 ,2),. . .,(p+7 ,2), as the tree is one deeper. An observation about the
intuition behind pointer validity that can be taken from this figure is that it
is independent of the presence or absence of type information from enclosing
structured types in the ghost variable. The validity of the short entry at q
requires only the entries at (q ,0) and (q+1 ,0), identical in the situations
where q is a field of a structure or an independent object.

Rest of footprint (typ_uinfo)

Encoding base (typ_uinfo)

nat

addr

struct a
struct x
int
short
char
padding

p q
0
1
2

Figure 5.5: Extended heap type description with a valid struct a pointer.

Validity

Definition 5.3.1. [B.12] Pointer validity is defined for the heap type de-
scription as:

valid-footprint d x t ≡
let n = size-td t
in 0 < n ∧

(∀ y<n. list-map (typ-slice t y) ⊆m snd (d (x + IN⇒ y)) ∧
fst (d (x + IN⇒ y)))

d ,g |=t (p::α::c-type ptr) ≡ valid-footprint d p& TYPE(α)ν ∧ g p

5.3. STRUCTURED UMM 139

where list-map::α list ⇒ (nat ⇀ α) converts a list to the expected map and
typ-slice::typ-uinfo ⇒ nat ⇒ (typ-uinfo × typ-base) list takes a vertical slice
of the intended heap footprint from the type description at an offset, e.g.:

typ-slice TYPE(a-struct)ν 4 = [(TYPE(word16)ν , True), (TYPE(x-struct)ν ,
True), (TYPE(a-struct)ν , False)]

corresponding to (q ,0), (q ,1) and (q ,2) in Fig. 5.5 respectively.
The use of the map subset operator ⊆m provides monotonicity.

Definition 5.3.2. Field monotonicity for a guard is defined as:

guard-mono (g ::α ptr ⇒ bool) (g ′::β ptr ⇒ bool) ≡
∀n f p. g p ∧ TYPE(α)νBf = b(TYPE(β)ν , n)c −→ g ′ (Ptr (p& + IN⇒ n))

In normal usage, both arguments are the same polymorphic function, e.g.
guard-mono ptr-aligned ptr-aligned. This allows us to indirectly quantify over
types when using this definition in theorems below.

Theorem 5.3.1. Validity has field monotonicity:

TYPE(α)τBf = b(s, n)c export-uinfo s = TYPE(β)ν guard-mono g g ′

d ,g |=t p −→ d ,g ′ |=t Ptr &(p→f)

where p::α ptr and Ptr &(p→f)::β ptr.

Proof. Unfold definitions and consider the typ-slice at some offset y in the
field. Since n + y < size-of TYPE(α), from Lem. 5.2.1, we can infer from
p’s validity that the first component of the tuple at p& + IN⇒ n + IN⇒ y is
true and that list-map (typ-slice TYPE(α)ν (y + n)) ⊆m snd (d (p& + IN⇒

n + IN⇒ y)). The proof is completed with ⊆m transitivity and:

(s, n) ∈ td-set t k < size-td s
typ-slice s k ≤ typ-slice t (n + k)

which can be shown with structural induction on the type description.

Theorem 5.3.2. The guards in §2.5.5 introduced by the VCG for pointer
dereferences are field monotonic:

guard-mono c-guard c-guard

Proof. guard-mono ptr-aligned ptr-aligned follows from [AlignField] and:

tBf = b(s, n)c
align-td s ≤ align-td t

which can be seen by structural induction on the type description. c-null-guard
is monotonic by Lem. 5.2.2.

140 CHAPTER 5. STRUCTURED TYPES

Retyping

As in Defn. 3.2.4, we have a retyping function ptr-retyp::α::c-type ptr ⇒
heap-typ-desc ⇒ heap-typ-desc that updates the heap type description such
that the given pointer is valid and locations outside the pointer’s footprint
remain untouched.

Definition 5.3.3. A region of memory may be retyped such that p::α::c-type
ptr is valid:

htd-update-list p [] d ≡ d
htd-update-list p (x ·xs) d ≡ htd-update-list (p + 1) xs

(d(p := (True, snd (d p) ++ x)))

typ-slices TYPE(α) ≡
map (λn. list-map (typ-slice TYPE(α)ν n)) [0 ..<size-of TYPE(α)]

ptr-retyp p ≡ htd-update-list p& (typ-slices TYPE(α))

htd-update-list is similar to heap-update-list, but transforms the heap type
description instead of heap memory. The typ-slices gives the slices of the
type description that occur at the offsets corresponding to list indices.

ptr-retyp is a little different to ptr-tag in that it does not clear the locations
being retyped, but instead merges the new map with the existing contents at
each updated location. Additional entries in the indexed map at a location in
the heap type description do not affect the validity of the target pointer, and
hence do not require removal. In §5.4.6 we exploit this to provide separation
logic predicates that use dummy type entries above a value’s footprint to
reserve space for later retyping.

Lemma 5.3.3. Inside the retyped region, ptr-retyp (p::α::mem-type ptr)
provides the expected heap type description value:

x ∈ {p&..+size-of TYPE(α)}
ptr-retyp p d x =

(True, snd (d x) ++ list-map (typ-slice TYPE(α)ν (IN⇐ (x − p&))))

Proof. By induction on the list.

Using Defn. 5.3.3 we can restate and demonstrate Thm. 3.2.4 and Thm. 3.2.5.

Theorem 5.3.4. Following retyping, a target pointer p::α::mem-type ptr is
valid:

g p
ptr-retyp p d ,g |=t p

5.3. STRUCTURED UMM 141

Proof. By unfolding definitions, considering a point in the footprint and
Lem. 5.3.3.

Theorem 5.3.5. A previously valid pointer q ::β::mem-type ptr remains valid
across a retype as long as its footprint and p::α::mem-type ptr’s are disjoint:

d ,g |=t q {p&..+size-of TYPE(α)} ∩ {q&..+size-of TYPE(β)} = ∅
ptr-retyp p d ,g |=t q

Proof. We have x /∈ {p&..+size-of TYPE(α)} =⇒ ptr-retyp p d x = d x by
list induction. The rule then follows by unfolding and application of this fact
to show each point in the footprint remains unchanged.

As before, application-specific rules can be developed to provide a conve-
nient interface to retyping that avoids interval reasoning.

5.3.2 Lifting

Two lifting stages are again used to provide an abstract heap view for proofs.
The stages differ from those in §3.3 in the underlying state space for the
heap type description and the intermediate heap state.

Definition 5.3.4. The first stage, lift-state, results in a new intermediate
heap-state:

datatype s-heap-index = SIndexVal | SIndexTyp nat
datatype s-heap-value = SValue byte | STyp typ-uinfo × typ-base
types s-addr = addr × s-heap-index

heap-state = s-addr ⇀ s-heap-value

An example of this state is provided in Fig. 5.6, with an x-struct footprint.
This should be read as with Fig. 5.5, the vertical axis now the second
component of s-addr rather than an index. The rationale for this model is
based on the requirements of the separation logic embedding and is provided
in §5.4.1.

The function lift-state filters out locations that are False or ⊥ in the heap
type description, depending on the index, removing values that should not
affect the final lifted typed heaps. Equality between lifted heaps is then
modulo the heap type description locations of interest for valid pointers.

lift-state ≡
λ(h, d) (x , y).

case y of SIndexVal ⇒ if fst (d x) then bSValue (h x)c else ⊥
| SIndexTyp n ⇒ option-case ⊥ (Some ◦ STyp) (snd (d x) n)

The second lifting stage results in typed heaps again, defined as in
Defn. 3.3.5. The two stages, shown in Fig. 5.7, are combined with liftτ :

142 CHAPTER 5. STRUCTURED TYPES

addr

SIndexVal

SIndexTyp 0

SIndexTyp 1

SIndexTyp 2

.....

p
0 0 3 97

Figure 5.6: Example heap-state.

liftτ g ≡ lift-typ-heap g ◦ lift-state

Theorem 5.3.6. A mapping in a heap lifted from the intermediate heap state
implies the existence of a mapping for all valid fields at the corresponding
offset in the field type’s lifted heap, with a value derived using the field access
function:

TYPE(α)τBf = b(t , n)c
lift-typ-heap g s p = bvc export-uinfo t = TYPE(β)ν guard-mono g g ′

lift-typ-heap g ′ s (Ptr &(p→f)) = bfrom-bytes (access-ti0 t v)c

where p::α::mem-type ptr and Ptr &(p→f)::β::mem-type ptr.

Proof. Thm. 5.3.1 provides field monotonicity for validity. It is left for us
to show from-bytes (heap-list-s s (size-of TYPE(β)) &(p→f)) = from-bytes
(access-ti0 t (from-bytes (heap-list-s s (size-of TYPE(α)) p&))). This can be
achieved with Thm. 5.2.6 and Thm. 5.2.5.

Corollary. The property in Thm. 5.3.6 also applies with liftτ :

TYPE(α)τBf = b(t , n)c
liftτ g s p = bvc export-uinfo t = TYPE(β)ν guard-mono g g ′

liftτ g ′ s (Ptr &(p→f)) = bfrom-bytes (access-ti0 t v)c

5.3.3 Update dependency order

At the end of §5.1 it was clear that the effects of heap updates on typed heaps
depended on the structural relationship between types. In this section we
formalise this notion, allowing update rules in the next section to distinguish
between cases of this relation.

Definition 5.3.5. An order can be defined on type descriptions that ex-
presses the update dependency between heaps::

5.3. STRUCTURED UMM 143

heap_mem

heap_typ_desc

a_struct ptr⇀ a-struct

nat

addr

lift_state

addrSIndexVal
SIndexTyp 0
SIndexTyp 1
SIndexTyp 2

.....

x_struct ptr ⇀ x-struct

int ptr ⇀ int

short ptr ⇀ short

char ptr ⇀ char

lift_typ_heap

Figure 5.7: Two-stage lifting.

144 CHAPTER 5. STRUCTURED TYPES

s ≤ t ≡ ∃n. (s, n) ∈ td-set t

This can be lifted to a predicate on α::c-type itself and β::c-type itself s:

TYPE(α) ≤τ TYPE(β) ≡ TYPE(α)ν ≤ TYPE(β)ν

Example 5.3.1. Using the running example, it can be easily observed that
TYPE(x-struct) <τ TYPE(a-struct) and TYPE(word32) <τ TYPE(a-struct).
An update to an a-struct will always affect the lifted int heap, but an update
of an x-struct will only sometimes affect the lifted a-struct heap.

Theorem 5.3.7. ≤ is a partial order:

s ≤ s
s ≤ t t ≤ s

s = t
s ≤ t t ≤ u

s ≤ u

Proof. Reflexivity is trivial. Antisymmetry can be shown with (s, n) ∈
td-set-offset t m =⇒ size s = size t ∧ s = t ∧ n = m ∨ size s < size
t, by structural induction. Transitivity is given by (s, n) ∈ td-set-offset
t m =⇒ td-set-offset s n ⊆ td-set-offset t m, also derivable by structural
induction.

5.3.4 Generalised rewrites

In this section we develop rewrites that allow the effects of updates on
lifted typed heaps to be evaluated, generalising the results in §3.4. First we
present some auxiliary definitions and then the key theorems, Thm. 5.3.8
and Thm. 5.3.10. These theorems have the form of conditional rewrites, but
require some additional support to be efficiently applicable, so are followed
by this detail.

Definition 5.3.6. [B.13] A list of names of all fields matching an ex-
ported type information can be obtained with field-names :: α typ-info
⇒ typ-uinfo ⇒ qualified-field-name list . E.g. field-names TYPE(a-struct)τ

TYPE(word16)ν = [[′′c ′′, ′′y ′′]].

Definition 5.3.7. From td-set, a predicate may be derived that checks
whether a given pointer p::α ptr is to a field of a structured type with base
q ::β ptr :

field-of p q ≡ (TYPE(α)ν , IN⇐ (p& − q&)) ∈ td-set TYPE(β)ν

5.3. STRUCTURED UMM 145

Definition 5.3.8. From lookup, functions may be derived that provide the
first and second components of the result for a valid qualified field name:

field-typ TYPE(α) n ≡ fst (the (TYPE(α)τBn))
field-offset TYPE(α) n ≡ snd (the (TYPE(α)νBn))

We now give the rule for β heaps when an α update occurs and TYPE(α)
≤τ TYPE(β). The intuition here is that locations that are not the base of
valid β pointers or where the α ptr does not correspond to a field of β are
unaffected. When the update pointer does correspond to a field of β, we
traverse the α fields of the enclosing β, looking for a field offset that matches
the difference between the enclosing pointer base and p. When found, the
field’s update function is applied.

Theorem 5.3.8. The lifted β heap following an update of a valid α ptr p,
where α is a sub-type of β is given by:

d ,g ′ |=t p TYPE(α) ≤τ TYPE(β)
liftτ g (heap-update p v h, d) = super-field-update p v (liftτ g (h, d))

where

super-field-update p v s ≡
λq . if field-of p q

then case s q of ⊥ ⇒ ⊥
| bwc ⇒

bupdate-value (field-names TYPE(β)τ TYPE(α)ν) v w
(IN⇐ (p& − q&))c

else s q

update-value [] v w x ≡ w
update-value (f ·fs) v w x ≡ if x = field-offset TYPE(β) f

then update-ti (field-typ TYPE(β) f) (to-bytes0 v) w
else update-value fs v w x

Proof. Equality of the two heaps can be shown with extensionality and
unfolding of super-field-update, letting the pointer be called q. Expand liftτ
terms with Thm. 3.3.4 and it is easy to see that locations without valid β
ptrs remain unchanged as ⊥. Locations corresponding to valid pointers can
be shown to contain values that are equivalent by case splitting on whether
the update pointer p is a field of the value at q.

When field-of p q, on the LHS the representation of the raw updated heap
value at q may be considered to consist of 3 parts, those bytes before p&

− q&, those following, corresponding to the representation of v, and those
remaining. The from-bytes inside the liftτ gives rise to an update-ti term
on the LHS, which can then be seen to be the same as the original value,
obtained from the byte representation with from-bytes/update-ti, after an
update-ti with v ’s representation, using the rule:

146 CHAPTER 5. STRUCTURED TYPES

tBf = b(s, n)c
wf-field-desc t wf-desc t |bs| = size-td t |v | = size-td s

update-ti t (take n bs @ v @ drop (n + |v |) bs) w =
update-ti s v (update-ti t bs w)

obtained by structural induction and list fragment reasoning. On the RHS,
the update-value can be transformed to the same form — this can be shown
by induction on the list of field names supplied to update-value.

If ¬ field-of p q then there is a further case split on TYPE(α)ν = TYPE(β)ν .
If the types are the same then the treatment is similar to Lem. 3.4.4. Other-
wise, we can generalise Thm. 3.2.2 as:

d ,g |=t p d ,g ′ |=t q ¬ TYPE(β) <τ TYPE(α) ¬ field-of p q
{p&..+size-of TYPE(α)} ∩ {q&..+size-of TYPE(β)} = ∅

using the following rules:

valid-footprint d p s valid-footprint d q t ¬ t < s
p ∈ {q ..+size-td t} −→ (s, IN⇐ (p − q)) ∈ td-set t

valid-footprint d p s valid-footprint d q t ¬ t < s
q /∈ {p..+size-td s} ∨ p = q

and Lem. 3.4.3.

While Thm. 5.3.8 gives a conditional rewrite that allows an update to
be lifted to the typed heap level of §5.3.2, making use of the updated typed
heap could involve unfolding this complex definition in general. However,
additional rewrites can be given for well-behaved updates.

Theorem 5.3.9. For a valid qualified field name f, a super-field-update for
a pointer Ptr (&(p→f))::α::mem-type ptr, where p::β::mem-type ptr can be
reduced to the field update obtained from the type information:

TYPE(β)τBf = b(s, n)c liftτ g h p = bwc TYPE(α)ν = export-uinfo s
super-field-update (Ptr &(p→f)) v (liftτ g h) =

liftτ g h(p 7→ update-ti s (to-bytes0 v) w)

Proof. field-of (Ptr &(p→f)) p holds from the assumption that f is a valid
qualified field name. Again, applying extensionality and unfolding the
definition of super-field-update, letting the pointer be called q, gives two cases
to consider when the pointers are valid.

When p = q, the LHS can be reduced to the intended field update as in
the proof of Thm. 5.3.8. In the case when p 6= q, then ¬ field-of (Ptr &(p→f))
q, since p and q are valid pointers of the same type and hence may not
overlap. This then leaves both the LHS and RHS heaps at q unchanged.

5.3. STRUCTURED UMM 147

As detailed in §5.2.5, the lookup side-condition can be resolved without
having to unfold the type information definition using field specific rewrites
installed during type information construction at the ML level. The update-ti
is also rewritten to an Isabelle/HOL record field update function.

Example 5.3.2. For a safe update at the next field for a struct:

liftτ g s p = bwc
super-field-update (Ptr &(p→[′′next ′′])) v (liftτ g s)

= liftτ g s(p 7→ w(|next := v |))

A rewrite can also be given for the two remaining cases, where TYPE(β)
<τ TYPE(α) or TYPE(α) ⊥τ TYPE(β). This may involve no updates if the
types are disjoint, or several updates of the β heap when α has multiple
fields of type β. The heap update function sub-field-update takes a list of all
such fields and applies an update at each.

Theorem 5.3.10. The lifted β heap following an update of a valid α ptr p,
where α is not a sub-type of β is given by:

d ,g ′ |=t p ¬ TYPE(α) <τ TYPE(β)
liftτ g (heap-update p v h, d) =

sub-field-update (field-names TYPE(α)τ TYPE(β)ν) p v (liftτ g (h, d))

where

sub-field-update [] p v s ≡ s
sub-field-update (f ·fs) p v s ≡ (let s ′ = sub-field-update fs p v s

in s ′(Ptr &(p→f) 7→
from-bytes
(access-ti0

(field-typ TYPE(α) f) v)))�dom s

Proof. This can be proven by induction on the list of field names. To do this
we first strengthen the induction hypothesis:

d ,g ′ |=t p
¬ TYPE(α) <τ TYPE(β) set fs ⊆ set (field-names TYPE(α)τ TYPE(β)ν)
K = U − (field-ptrs p (field-names TYPE(α)τ TYPE(β)ν) − field-ptrs p fs)
liftτ g (heap-update p v h, d)�K = sub-field-update fs p v (liftτ g (h, d))�K

where

field-ptrs p fs ≡ {Ptr &(p→f) | f ∈ set fs}

The heaps are again compared pointwise, but with the mask K hiding those
β ptrs affected by the update yet not present in the field names supplied to
sub-field-update.

In the base case, where fs = [], we can use a generalised Lem. 3.4.4:

148 CHAPTER 5. STRUCTURED TYPES

d ,g |=t p d ,g ′ |=t q ¬ TYPE(α) <τ TYPE(β) ¬ field-of q p
h-val (heap-update p v h) q = h-val h q

to give equality of the values at unmasked locations with valid pointers. The
field-of condition is discharged by K covering all relevant fields.

In the inductive case, where fs = y ·ys, we can perform a case split on
both Ptr &(p→y) ∈ dom (liftτ g (h, d)) and q = Ptr &(p→y), where q is
the point being considered with extensionality:

• When Ptr &(p→y) ∈ dom (liftτ g (h, d)) ∧ q = Ptr &(p→y) — the
update at this location needs to be shown to be equivalent to that
given by sub-field-update. This is done by simplifying the RHS update
for y with:

TYPE(α)τBf = b(s, n)c
bs = to-bytes v (heap-list h (size-of TYPE(α)) p&)

access-ti0 s v = norm-tu (export-uinfo s) (take (size-td s) (drop n bs))

and the LHS with:

n + x ≤ |v | ∧ |v | < |addr|
heap-list (heap-update-list p v h) n (p + IN⇒ x) = take n (drop x v)

Since the comparison after unfolding the liftτ is at the typed level, after
applying from-bytes, Thm. 5.2.5 can be used to complete this case.

• When Ptr &(p→y) ∈ dom (liftτ g (h, d)) ∧ q 6= Ptr &(p→y) — we
can use the inductive hypothesis.

• When Ptr &(p→y) /∈ dom (liftτ g (h, d)) ∧ q = Ptr &(p→y) — then
q is not in the domain of the LHS and the domain restriction in the
inductive case of sub-field-update removes this from the domain of the
RHS.

• When Ptr &(p→y) /∈ dom (liftτ g (h, d)) ∧ q 6= Ptr &(p→y) — we
can use the inductive hypothesis.

A sub-field-update version of Thm. 5.3.9 is not as easy to state, as the
β heap will be updated at multiple locations. Inter-type framing is hence
not as reasonable to handle as in §3.5. This motivates strongly the use of
separation logic when reasoning about programs with structured types.

5.4. STRUCTURED SEPARATION LOGIC 149

5.3.5 Non-interference

Theorem 5.3.11. The rewrites for an update to a lifted typed heap through a
valid pointer of the same type, or a disjoint type are the same as in Thm. 3.4.5
and Thm. 3.4.6:

d ,g |=t p
liftτ g (heap-update p v h, d) = liftτ g (h, d)(p 7→ v)

d ,g ′ |=t p TYPE(α)ν ⊥t TYPE(β)ν

liftτ g (heap-update p v h, d) = liftτ g (h, d)

Proof. By Thm. 5.3.10 and reducing the field-names term with field-names ti
(export-uinfo ti) = [[]] and TYPE(α)ν ⊥t TYPE(β)ν =⇒ field-names TYPE(β)τ
TYPE(α)ν = [], respectively.

Bornat [14] describes multiple independent heaps based on distinct field
names. Updates through a pointer dereference to a specific field only affect
that heap. This does not work directly in the presence of the &(p→f)
operator and address arithmetic. However, the following can be shown:

Theorem 5.3.12. When the base pointers are of the same type β, and
neither of the field names is a prefix of the other, updates through an α
pointer derived from one field do not affect a value in the γ lifted heap at
the other:

d ,g ′ |=t p d ,g ′′ |=t q TYPE(β)τBf = b(s, m)c
TYPE(β)τBf ′ = b(t , n)c size-td s = size-of TYPE(α)
size-td t = size-of TYPE(γ) ¬ f ≤ f ′ ¬ f ′ ≤ f

liftτ g (heap-update (Ptr &(p→f)) v h, d) (Ptr &(q→f ′)) =
liftτ g (h, d) (Ptr &(q→f ′))

Proof. Unfold definitions and then use Lem. 3.4.3. Disjointness of the two
field heap footprints can be found by case splitting on p& = q&. If they
match then field disjointness is given by structural induction on the common
type description. Otherwise, the two valid pointers have disjoint footprints,
field footprints derived from the pointers will be subsets of the base pointer
footprints and hence disjoint.

5.4 Structured separation logic

We concluded §5.3.4 with the observation that the use of separation logic
when reasoning about structured types is well motivated, since even inter-
type aliasing can be difficult to reason about in the multiple typed heaps
abstraction with first-class structured types.

150 CHAPTER 5. STRUCTURED TYPES

In this section we describe how the shallow embedding of separation logic
in Chapter 4 can be extended to structured types. We first describe the heap
state model and shallow embedding, where the focus is on the singleton heap
assertion p 7→g v, and several variants, as other definitions and properties
remain mostly unchanged. The singleton heap assertion has new properties
of interest for structured types. In particular, we are able to decompose
singleton mapping assertions to reason independently about field mapping
assertions.

Following this, generalisation of proof obligation lifting is given, and in
the next section we again revisit the separation logic in-place list reversal
example, armed with the development of this section.

5.4.1 Domain

We maintain the model of separation assertions as predicates on heap-states,
applied in assertions of the verification environment to the result of the first
lifting stage of §5.3.2. Here, heap-state predicates can also be seen as the
specialisation (addr × s-heap-index , s-heap-value) map-assert of the (α, β)
map-assert state in §4.2.1.

The rationale for this choice of domain is that it allows for more expressive
separation assertions than are possible with simpler models. From the earlier
intermediate state, addr ⇀ typ-tag option × byte for unstructured types,
a naive extension might be something like addr ⇀ typ-uinfo list × byte.
Unfortunately, this does not allow for two assertions separated by ∧∗ to refer
to distinct type information levels at the same address, necessary to provide
flexible rules for retyping and unfolding. Hence we have a two-dimensional
address space in heap-states, with the first component providing the physical
address and the second the type index.

Example 5.4.1. Ignoring padding, we would expect that (p 7→ (| y = 3 , z =
′r ′ |)) = (Ptr (&(p→[′′y ′′])) 7→ 3) ∧∗ (Ptr (&(p→[′′z ′′])) 7→ ′r ′) ∧∗ typ-outline
p, where typ-outline p contains the root type information for the enclosing
structure. By adding a type level index to the domain of the heap-state
we are able to write typ-outline p separate to (Ptr (&(p→[′′y ′′])) 7→ 3) and
hence reason about the y field independently.

5.4.2 Shallow embedding

Definition 5.4.1. The s-footprint::α::c-type ptr ⇒ s-addr set gives a set of
addresses inside a pointer’s heap-state footprint:

s-footprint-untyped p t ≡
{(p + IN⇒ x , SIndexVal) | x < size-td t} ∪
{(p + IN⇒ x , SIndexTyp n) | x < size-td t ∧ n < |typ-slice t x |}

s-footprint (p::α ptr) ≡ s-footprint-untyped p& TYPE(α)ν

5.4. STRUCTURED SEPARATION LOGIC 151

Definition 5.4.2. p 7→g v asserts that the heap contains exactly one map-
ping matching the guard g, at the location given by pointer p to value
v :

p 7→g v ≡
λs. lift-typ-heap g s p = bvc ∧ dom s = s-footprint p ∧ wf-heap-val s

wf-heap-val states that the type, SValue or STyp, of a value in the heap-state,
if present, matches the type of the index, SIndexVal or SIndexTyp respectively.

Definition 5.4.3. Defn. 4.3.1 can be similarly extended to the new definition
of heap-state:

g `s p ≡ λs. s,g |=s p ∧ dom s = s-footprint p

The rest of the definitions, Defn. 4.2.1, Defn. 4.2.3 and Defn. 4.2.4, in
§4.2.1 remain unchanged.

5.4.3 Properties

The properties in §4.2.2 continue to hold. Proofs of properties not involving
the singleton mapping assertions are the same, and those that do involve the
assertion can be generalised in a straightforward manner.

The frame rule of §4.4 also still applies in this development. The approach
to showing this is the same, however we have to change ptr-safe to reflect
the extended heap type description, i.e.:

ptr-safe p d ≡
s-footprint p
⊆ {(x , SIndexVal) | fst (d x)} ∪ {(x , SIndexTyp n) | snd (d x) n 6= ⊥}

The structure of and other definitions used in the proof are similar, with
the main change being domain restriction now operating on a tuple space.

5.4.4 Unfolding

Inside a proof it may be necessary or helpful to extract the mapping assertions
of individual fields from a mapping assertion for a structured value. For
example, a function call that has field references as parameters, with a
specification unaware of the enclosing structure, will have a proof obligation
demanding this. The field monotonicity given in Thm. 5.3.6 hints at this
being possible with Defn. 5.4.2, and in this section we provide the rules to
accomplish this.

152 CHAPTER 5. STRUCTURED TYPES

Exmp. 5.4.1 gives a “complete” unfolding of the outer structure for a
value. This is generally not all that useful, for two reasons. First, when
the structure contains padding fields they need to also be expanded as
mapping assertions, since padding has no special treatment other than at
type information construction time. These clutter the proof state and do not
aid in advancing towards the goal. The same applies to fields that do not
need to be unfolded for a proof. The second problem with this approach is
that later in a proof one might want to take fields that have been updated and
independently reasoned about after unfolding, and fold them back together
to resume reasoning at the granularity of the structured value. While it is
not too difficult to do a complete unfolding with rewriting, this is harder in
the opposite direction.

To avoid these problems, instead of complete unfolding we give rules to
unfold and fold individual, potentially nested, fields. To do so, we make
use of a new separation predicate, called a masked mapping assertion, that
allows us to express the existence of a structured mapping assertion sans a
set of fields that have been extracted through unfolding. Defining masked
mapping requires first several auxiliary definitions.

Definition 5.4.4. The singleton state in Defn. 4.3.2 is revised for the
extended state space as:

singleton p v ≡
lift-state (heap-update p v (λx . 0), ptr-retyp p (λx . (False, empty)))

Lemma 5.4.1. The domain of a singleton state is given by:

dom (singleton p v) = s-footprint p

Proof. Examining the lift-state definition, the domain is determined by the
heap type description. Lem. 5.3.3 gives the existence of mappings inside the
footprint, and the absence of mappings outside can be shown with:

x /∈ {p&..+size-of TYPE(α)}
ptr-retyp p (λx . (False, empty)) x = (False, empty)

which follows from Defn. 5.3.3 and induction on the list.

Definition 5.4.5. The set of all valid qualified field names for a type is
given by:

fields TYPE(α) ≡ {f | TYPE(α)τBf 6= ⊥}

5.4. STRUCTURED SEPARATION LOGIC 153

Definition 5.4.6. The footprint for a set of qualified field names for a type
α, with respect to a base pointer p::α ptr, is given by:

fs-footprint p F ≡⋃
{s-footprint-untyped (p& + IN⇒ (field-offset TYPE(α) f))

(export-uinfo (field-typ TYPE(α) f)) | f ∈ F}

Lemma 5.4.2. The footprint for a subset of valid qualified field names for
a type α is a subset of a base pointer p::α ptr’s footprint:

F ⊆ fields TYPE(α)
fs-footprint p F ⊆ s-footprint p

Proof. Each field can be shown to be contained by s-footprint p with the
following, derivable directly from definitions:

TYPE(α)τBf = b(s, n)c
s-footprint-untyped &(p→f) (export-uinfo s) ⊆ s-footprint p

Definition 5.4.7. p 7→g
F v asserts that the heap contains exactly one

mapping matching the guard g, at the location given by pointer p::α ptr to
value v, with the set of valid fields F masked:

p 7→g
F v ≡

λs. lift-typ-heap g (singleton p v ++ s) p = bvc ∧
F ⊆ fields TYPE(α) ∧
dom s = s-footprint p − fs-footprint p F ∧ wf-heap-val s

The footprint of this assertion excludes the masked fields, and the lifted
value has the expected value for the masked fields supplied by singleton.

Example 5.4.2. Fig. 5.8 gives a state where p 7→g
{[′′c ′′, ′′y ′′]} v holds.

Theorem 5.4.3. A masked mapping assertion with an empty set of fields is
equivalent to a singleton mapping assertion:

p 7→g v = p 7→g
∅ v

Proof. From the definitions, F = ∅ hence fs-footprint p F = ∅. s then covers
the domain of singleton p v as a result of Lem. 5.4.1, giving singleton p v ++
s = s.

154 CHAPTER 5. STRUCTURED TYPES

SIndexVal
addr

SIndexTyp 0
SIndexTyp 1
SIndexTyp 2

Figure 5.8: Example heap-state for a masked mapping assertion.

From a masked mapping assertion, a valid field may be extracted, provid-
ing the qualified field name is not in a prefix relation with any member of F.
Intuitively this is reasonable, as if the field is inside another that has already
been extracted or covers the same footprint then it will not be possible to
partition the state of the masked mapping assertion as required for unfolding.

Example 5.4.3. The [′′c ′′, ′′y ′′] field can be independently extracted when
[′′b ′′] is masked, but not if [′′c ′′] is masked.

Definition 5.4.8. A qualified field name is said to be disjoint from a set of
qualified field names with:

disjoint-fn f F ≡ ∀ f ′∈F . ¬ f ≤ f ′ ∧ ¬ f ′ ≤ f

Lemma 5.4.4. A field disjoint from a set of valid qualified field names has
a footprint disjoint from the set’s footprint:

disjoint-fn f F F ⊆ fields TYPE(α) TYPE(α)τBf = b(t , n)c
fs-footprint p F ∩ fs-footprint p {f } = ∅

Proof. For each field in the set, the following rule derivable by structural
induction on the type information gives disjointness:

lookup t f m = b(d , n)c lookup t f ′ m = b(d ′, n ′)c
¬ f ≤ f ′ ∧ ¬ f ′ ≤ f wf-field-desc t wf-desc t size-td t < |addr|

{IN⇒ n..+size-td d} ∩ {IN⇒ n ′..+size-td d ′} = ∅

The unfolding and folding rules can now be given.

5.4. STRUCTURED SEPARATION LOGIC 155

Theorem 5.4.5. A valid disjoint field may be unfolded from a masked
mapping assertion with:

TYPE(α)τBf = b(t , n)c
disjoint-fn f F guard-mono g g ′ export-uinfo t = TYPE(β)ν

p 7→g
F v = p 7→g

({f } ∪ F) v ∧∗ Ptr &(p→f) 7→g
′ from-bytes (access-ti0 t v)

where p::α::mem-type ptr and Ptr &(p→f)::β::mem-type ptr.

Proof. Equality of the LHS and RHS assertions can be shown with exten-
sionality, letting the heap-state be s.

First we show that if the LHS holds on s then the RHS also holds on s.
The state can be partitioned as two states s�(dom s − fs-footprint p {f }) and
s�fs-footprint p {f }. The singleton mapping assertion can then be shown to
hold on its partitioned state with:

TYPE(α)τBf = b(t , n)c disjoint-fn f F
guard-mono g g ′ export-uinfo t = TYPE(β)ν (p 7→g

F v) s
(Ptr &(p→f) 7→g

′ from-bytes (access-ti0 t v)) (s�fs-footprint p {f })

which is a result of Thm. 5.3.6 and fs-footprint p {f } ⊆ dom s, from Lem. 5.4.2
and Lem. 5.4.4. The masked mapping assertion on the RHS, with f now
included in the set of masked fields, then holds on the remaining state:

(p 7→g
F v) s TYPE(α)τBf = b(t , n)c

(p 7→g
({f } ∪ F) v) (s�(dom s − fs-footprint p {f }))

This can be seen by observing that validity at p is preserved by the domain
restriction, since p is valid in the singleton p v ++ s from the assumption,
where dom s = s-footprint p − fs-footprint p F, with:

singleton p v ++ s�(s-footprint p − fs-footprint p F − fs-footprint p {f })
= singleton p v ++ s ++ singleton p v�fs-footprint p {f }

and [[s,g |=s p; t ,g ′ |=s p]] =⇒ s ++ t�X,g |=s p. The contents of the heap
may change as a result of the domain restriction though, as the singleton
state supplies normalised value representations for removed fields in the map
addition. To show the lifted value remains v, we utilise the approach in the
proof of Thm. 5.3.8, where the underlying representation is split into three
components, the field f ’s representation and the segments before and after.
The map addition of the heap state covering the field’s footprint, singleton p
v�fs-footprint p {f } is then an update-ti t on v with f ’s byte representation in
singleton p v�fs-footprint p {f }. That this does not modify v can be seen with
[FuFaId] and:

TYPE(α)τBf = b(t , n)c
heap-list-s (singleton p v�fs-footprint p {f }) (size-td t) &(p→f) = access-ti0 t v

156 CHAPTER 5. STRUCTURED TYPES

In the other direction we demonstrate that the LHS holds on s, given this
for the RHS. Now the separation conjunction gives the partitioning of the
heaps. The non-trivial part of the proof is again to show equivalence of lifted
values at p. To do so we split the heap representation into three segments
as before and hence have the singleton map assertion for f providing a field
update on the lifted value. The proof is then completed with the aid of the
field description consistency conditions.

Corollary. A mapping assertion for a valid qualified field name can be
derived from a singleton heap assertion with:

(p 7→g v) s
TYPE(α)τBf = b(d , n)c export-uinfo d = TYPE(β)ν guard-mono g g ′

(Ptr &(p→f) ↪→g
′ from-bytes (access-ti0 d v)) s

where p::α::mem-type ptr and Ptr &(p→f)::β::mem-type ptr.

Theorem 5.4.6. A valid disjoint field may be folded into a masked mapping
assertion with:

TYPE(α)τBf = b(t , n)c f ∈ F
disjoint-fn f (F − {f }) guard-mono g g ′ export-uinfo t = TYPE(β)ν

p 7→g
F v ∧∗ Ptr &(p→f) 7→g

′ w = p 7→g
(F − {f }) update-ti t (to-bytes0 w) v

where p::α::mem-type ptr and Ptr &(p→f)::β::mem-type ptr.

Proof. Thm. 5.4.5 can be applied to the RHS. The two singleton mapping
assertions for f then cancel out, leaving us to establish:

TYPE(α)τBf = b(t , n)c f ∈ F
disjoint-fn f (F − {f }) guard-mono g g ′ export-uinfo t = TYPE(β)ν

p 7→g
F v = p 7→g

F update-ti t (to-bytes0 w) v

The v value on the RHS can be expanded as update-ti t (to-bytes0 (from-bytes
(access-ti0 t v))) v with the field consistency conditions. The proof is
completed by expanding definitions, the field consistency conditions and on
the RHS:∧

s. from-bytes
(heap-list-s (singleton p (update-ti t (to-bytes0 w) v) ++ s)

(size-of TYPE(α)) p&) =
update-ti t (to-bytes0 w)
(from-bytes (heap-list-s (singleton p v ++ s) (size-of TYPE(α)) p&))

This can be seen by reducing the map addition to a field update as in the
unfolding proof.

Example 5.4.4. The y field of an x-struct can be unfolded as:

5.4. STRUCTURED SEPARATION LOGIC 157

p 7→ptr-aligned (|y = 3 , z = 65 |) = Ptr &(p→[′′y ′′]) 7→ptr-aligned 3 ∧∗

p 7→ptr-aligned
{[′′y ′′]} (|y = 3 , z = 65 |)

Later, after an update to y setting it to the value 1, it can be folded back to
the structured value to give the expected update:

Ptr &(p→[′′y ′′]) 7→ptr-aligned 1 ∧∗

p 7→ptr-aligned
{[′′y ′′]} (|y = 3 , z = 65 |)

= p 7→ptr-aligned (|y = 1 , z = 65 |)

The masked mapping assertion is a constructive approach to unfolding.
It may seem that separation implication could offer a simpler approach,
where masked fields could be placed in the premise. Unfortunately it has
not been our experience that this is the case. Separation implication leaves
us with a non-domain exact predicate, and even if a dedicated predicate for
non-constructive masking is used, problems arise due to singleton mapping
not being strictly exact, which leads us to rely on properties of the singleton
mapping assertion and with proofs no simpler than the above.

5.4.5 Lifting proof obligations

The proof obligations output by the verification condition generator still have
the same form as in §4.3. To solve these, we can make use of the existing
rules for reasoning about lifts and heap-updates, as well as new rules that
can be derived for structured types.

Theorem 5.4.7. Thm. 4.3.5, Thm. 4.3.6 and Thm. 4.3.8 continue to hold:

(p ↪→g v) (lift-state (h, d))
lift h p = v

∃ v . (p 7→g v ∧∗ (p 7→g v −→∗ P v)) (lift-state (h, d))
P (lift h p) (lift-state (h, d))

(g `s p ∧∗ (p 7→g v −→∗ P)) (lift-state (h, d))
P (lift-state (heap-update p v h, d))

(g `s p ∧∗ R) (lift-state (h, d))
(p 7→g v ∧∗ R) (lift-state (heap-update p v h, d))

Proof. As before, but for the heap-update rules we use a slightly different
notion of the singleton state to Defn. 4.3.2 and Defn. 5.4.4:

singleton p v h d ≡ lift-state (heap-update p v h, d)�s-footprint p

158 CHAPTER 5. STRUCTURED TYPES

This avoids the normalising behaviour of Defn. 5.4.4 when revising Lem. 4.3.7.

Theorem 5.4.8. For updates of a Ptr &(p→f)::α::mem-type ptr correspond-
ing to a field of p::β::mem-type ptr, where we have a singleton mapping
assertion for p, we can use:

(p 7→g u ∧∗ R) (lift-state (h, d)) TYPE(β)τBf = b(t , n)c
export-uinfo t = TYPE(α)ν w = update-ti t (to-bytes0 v) u
(p 7→g w ∧∗ R) (lift-state (heap-update (Ptr &(p→f)) v h, d))

Proof. Convert to a masked mapping assertion with Thm. 5.4.3. Unfold f
with Thm. 5.4.5. Apply the heap-update rule of Thm. 5.4.7 and fold f back in
with Thm. 5.4.6. The proof is complete by returning to a singleton mapping
assertion with Thm. 5.4.3 again. At various points it is necessary to simplify
with the field description consistency conditions.

Thm. 5.4.8 can be applied in goals in similar situations to Thm. 5.3.8
and Thm. 5.3.9.

5.4.6 Retyping

To be able to express backwards compatible ptr-retyp rules, we need to
consider how the type information space is managed. Suppose we know at
p that an int pointer is valid, and wish to retype it to an x-struct. Since
they are the same size, this should be perfectly reasonable and Thm. 4.3.11
provides rules at the separation logic level for this.

With the heap-state in Defn. 5.3.4 we encounter a problem, as a validity
or singleton mapping assertion for int restricts the s-heap-index component
of the domain to SIndexTyp 0, and the retyping to x-struct affects SIndexTyp
1 as well. The problem is that retyping can affect an arbitrary amount of
s-heap-index space in an addr interval, and the singleton mapping and validity
assertions are domain exact. A solution is to carry around an additional
predicate stating ownership of all the type information space in the heap
interval concerned, in a stronger singleton mapping assertion that needs to
be available to code performing retyping. Code that does not need to retype
can continue to use Defn. 5.4.2 and Defn. 5.4.3. We now give the definitions
for these stronger assertions.

Definition 5.4.9. The inverse footprint assertion for a p::α::c-type ptr is
given by:

inv-footprint p ≡
λs. dom s = {(x , y) | x ∈ {p&..+size-of TYPE(α)}} − s-footprint p

5.5. EXAMPLE: IN-PLACE LIST REVERSAL REVISITED 159

This asserts ownership on the type information footprint of the interval of a
pointer that is not covered by the singleton mapping assertion.

Definition 5.4.10. The singleton mapping and validity assertions can be
strengthened with the inverse footprint assertion:

p 7→i
g v ≡ p 7→g v ∧∗ inv-footprint p

g `s
i p ≡ g `s p ∧∗ inv-footprint p

The other definitions in §4.2.1 have similar counterparts. sep-cut can also be
stated on the new heap-state:

sep-cut p n ≡ λs. dom s = {(x , y) | x ∈ {p..+n}}

Theorem 5.4.9. Thm. 4.3.11 can be shown for ptr-retyp with the strength-
ened validity assertion:

(sep-cut p& (size-of TYPE(α)) ∧∗ P) (lift-state (h, d)) g p
(g `s

i p ∧∗ P) (lift-state (h, ptr-retyp p d))

(sep-cut p& (size-of TYPE(α)) ∧∗ (g `s
i p −→∗ P)) (lift-state (h, d)) g p

P (lift-state (h, ptr-retyp p d))

where p::α::mem-type ptr.

Proof. Similar to the proof of Thm. 4.3.11.

We use the non-strengthened assertions in the next section’s in-place list
reversal example, but in Chapter 6 we use the developments of this section
to cope with retyping annotations.

5.5 Example: In-place list reversal revisited once more

We continue the in-place list reversal example of §3.6 and §4.5.1 in Table 5.3
using a struct type to represent nodes. This time there is no casting and
the updates are safe. The list abstraction predicate is now defined as:

list [] i ≡ λs. i = NULL ∧ � s
list (x ·xs) i ≡ λs. i 6= NULL ∧

(∃ j . item j = x ∧ (i 7→g j ∧∗ list xs (next j)) s)

Theorem 5.5.1. reverse struct implements its specification.

Proof. After running the verification condition generation, we are left with
the 3 resulting proof obligations arising from the while Hoare logic rule with
the invariant:

160 CHAPTER 5. STRUCTURED TYPES

∀ zs. Γ` {|(list zs ṕtr)sep|}
ŕeverse-struct-ret :== reverse-struct(ṕtr)
{|(list (rev zs) ŕeverse-struct-ret)sep|}

struct node {
int item;
struct node ∗next;

};

struct node ∗reverse struct (struct node ∗ptr)
{

struct node ∗last = NULL;

while (ptr) {
struct node ∗temp = ptr−>next;

ptr−>next = last;
last = ptr;
ptr = temp;

}

return last;
}

Table 5.3: reverse struct specification and definition.

{|∃ xs ys. (list xs ṕtr ∧∗ list ys ĺast)sep ∧ rev zs = rev xs @ ys|}

The Pre =⇒ Inv and Inv ⇒ Post conditions are trivial. The loop
invariant preservation proof requires we show:

1 .
∧

zs a b last ptr ys list j .
[[ptr 6= NULL; rev zs = rev list @ item j ·ys;
(ptr 7→g j ∧∗ list list (next j) ∧∗ list ys last)
(lift-state (a, b))]]

=⇒ (ptr 7→g j (|next := last |) ∧∗
list ys last ∧∗ list list (lift a (Ptr &(ptr→[′′next ′′]))))
(lift-state (heap-update (Ptr &(ptr→[′′next ′′])) last a, b))

This follows from Thm. 5.4.8. The first side-condition may be discharged with
Thm. 4.3.5 and Thm. 5.4.5, eliminating the lift. The other side-conditions
are discharged by rewriting, using the rules of §5.2.5.

An interesting point in the proof is when we have to show:

5.5. EXAMPLE: IN-PLACE LIST REVERSAL REVISITED 161

1 .
∧

zs a b last ptr ys list j .
[[ptr 6= NULL; rev zs = rev list @ item j ·ys;
(ptr 7→g j ∧∗ list list (next j) ∧∗ list ys last)
(lift-state (a, b))]]

=⇒ j (|next := last |) = update-ti
(adjust-ti TYPE(node ptr)τ next

(next-update ◦ (λx -. x)))
(to-bytes0 last) j

Here, applying the reverse definition of from-bytes and the α::mem-type
axioms lifts the RHS to the HOL record level to simplify for the goal.

Compared to the earlier in-place list reversal examples, the proof script
was about the same structure and size, 67 lines. We can then see that for
this example, the sophisticated machinery of this chapter does not unduly
burden a verification that remains in the type-safe fragment of C.

162 CHAPTER 5. STRUCTURED TYPES

Chapter 6

Case study: L4 kernel memory
allocator

So far, all examples have been toy ones, in some cases positively contrived.
In this chapter we present a case study in the application of our models to
the verification of real-world C systems code derived from an implementation
of the L4 [57] microkernel. Not only does this provide an opportunity to
validate the models against realistic code, but it also allows us to compare
and contrast the multiple typed heaps and separation logic abstractions in
practice. While separation logic enjoys clear superiority in its ability to
cope with intra-type aliasing and the frame problem, on smaller, specialised,
verifications we may benefit from the easier automation of multiple typed
heaps verification, so the winner is not clear a priori.

The microkernel concept is simple — only place what needs to execute in
the CPU’s privileged modes in the kernel and execute the rest of the system
above this level. This provides the benefits of hardware enforced process
isolation to the rest of the OS, as well as applications, and massively reduces
the trusted computing base. Early microkernels were not performant or
entirely minimal and developed a reputation as being impractical for real
systems. L4 is a second-generation microkernel, with only a small number
of primitives concerned with three abstractions provided by the kernel —
threads, address spaces and inter-process communication (IPC). Liedtke [57]
demonstrated through L4 that paying close attention to IPC overheads and
cache footprint is key to performance.

The implementation we target is L4Ka::Pistachio [90]. Pistachio is a
mostly C++ implementation, with a small amount of architecture and
platform dependent assembler, of the L4 X.2 API [52] and has been ported to
many architectures (x86, ARM, Alpha, MIPS, Itanium, PowerPC) without
sacrificing high performance. We have chosen this to study as Pistachio has
been used in industry as well as academia [41], has a relatively mature code
base, was the basis of early exploratory work on the L4.verified project [94]

163

164 CHAPTER 6. CASE STUDY: L4 KMALLOC

and also as a result of the author’s familiarity with the kernel [103].
While Pistachio is implemented in C++, no essential use of C++ features

is made apart from using classes to structure the code. For the sample of the
kernel under investigation, we configure the kernel for the x86 architecture,
preprocess the source code, strip debugging statements and irrelevant coarse-
grained locks for multiprocessor implementations and end up with something
that is essentially C, albeit with function signatures including classes which
we also drop as they are of no import inside the memory allocator itself.
The result of this process is then valid Csys code which can be input to the
translation stage of the verification flow.

We now examine the subsystem we have selected for the case study —
the internal kernel memory allocator. The following sections detail the role
of the kernel memory allocator, its implementation data structures, code,
specifications and proofs in both models.

6.1 Kernel memory management

To support L4’s abstractions, Pistachio requires heap-allocated storage for
dynamic kernel data structures like page tables and thread control blocks.
At the kernel level, the usual C library functions for this task, malloc and
free, are not available yet and have to be provided internally. This presents
an ideal target for the memory models we have developed so far as the
implementation of a memory allocator will have both safe and unsafe C
expressions.

Three functions define the interface of the kernel memory allocator:

void init(void ∗start, void ∗end);
void ∗alloc(word t size) ;
void free(void ∗address, word t size) ;

init takes a contiguous region of memory and sets this as the free pool. This
should be aligned and sized a multiple of the allocator’s “chunk” size, which
we take as 1KB. alloc returns an aligned pointer to a block of memory of
the requested size if available, otherwise NULL. If the size is less than 1KB,
it is rounded up to the kilobyte. The alignment is that of the request size if
it is a power-of-two. The final function, free, allows allocated memory to
be returned to the free pool. The given size should be that of the original
request size. This is different to the standard C library’s allocator which
tracks the size of allocated memory for each block.

The granularity of allocation is quite coarse — other kernel subsystems like
the mapping database implement their own second-level memory management
that is ultimately backed by the kernel memory allocator.

6.2. DATA STRUCTURES 165

6.2 Data structures

kfree_list

KMC

NULL

..

Figure 6.1: Management data structure of the L4 memory allocator.

Fig. 6.1 depicts the internal data structure that is used to manage memory.
It is a NULL-terminated, singly-linked list of chunks of memory of a fixed
1KB size. A single global variable word t ∗ kfree list provides a pointer to the
start of the free list. Rather than storing the meta-information apart from
the free memory, for efficiency, the first 4 bytes of each free memory block
are used to point to the next one. The blocks are often, but not always,
adjacent in memory, and are ordered by base address. This has the effect of
reducing fragmentation.

In Fig. 6.2 some free list states and transformations are given. The initial
list state is just the original region divided into 1KB chunks linked to their
next neighbour. After allocation, links are adjusted and when a block is later
returned during deallocation it is inserted at the correct point in the list.

6.3 Implementation code

The Csys source code for alloc, init and free is given in Table 6.1, Table 6.2
and Table 6.3 respectively. Annotations are omitted as they differ in the
two verifications and instead are supplied in §6.5. Since init is simply
a call to free we do not need to provide it any special treatment in the
verification and focus instead on alloc and free. The source code is mostly
platform independent, with the platform dependency in the parameters
supplied to init. However, the code is also not strictly conforming either,
with assumptions made about the interchangeability of pointers and integers
in the casting and pointer arithmetic and a ROLM-like treatment of memory
objects.

alloc performs any necessary rounding on the supplied size to bring it
to at least 1KB, which we use the constant KMC to represent, and then
executes its outer loop, traversing the free list. If a chunk is found with the
intended alignment, an inner loop is entered that traverses the list from the
found block, attempting to establish that a contiguous region of memory

166 CHAPTER 6. CASE STUDY: L4 KMALLOC

kfree_list

KMC

NULL

........................

kfree_list

NULL

..

alloc

kfree_list

NULL

...

alloc

kfree_list

NULL

........

free

init

....................................

...................................

Figure 6.2: Allocator states across operations.

6.4. SPECIFICATIONS 167

of the desired size exists in the free list there. If found, the link from the
previous chunk’s next pointer is adjusted to point to the chunk following the
contiguous region in the list, the region is zeroed and a pointer to its base is
returned to the caller. Otherwise, traversal continues in the outer loop. If
no suitable contiguous region is found a NULL value is returned.

The free function is shorter and also begins with an adjustment of size
to a minimum of 1KB. The returning region is divided into 1KB chunks
and a list is threaded through the chunks in the first loop. The free list is
then traversed in the second loop to find the correct location to maintain the
base address ordering invariant and the appropriate pointers are adjusted to
perform the insertion.

6.4 Specifications

We now give in detail the multiple typed heaps and separation logic specifica-
tions. At the specification stage the separation logic description of behaviours
is clearer and stronger as we can globalise with the frame rule.

Multiple typed heaps

The data abstraction predicate for the free list is very similar to the simple
linked list of §3.6:

list s p q [] ≡ p = q
list s p q (x ·xs) ≡ p = Ptr x ∧ p 6= q ∧ (∃ y . s p = byc ∧ list s (Ptr y) q xs)

We supply an additional parameter for the tailing pointer as we require the
ability to reason about list fragments in the proofs, which are not in general
NULL terminated.

For the specification of alloc, we first need to define the abstract be-
haviour. For this, we are not interested in the list structure itself, but only
in the set of chunks in the free pool:

free-set s p q F ≡ ∃ xs. list s p q xs ∧ distinct xs ∧ F = set xs
alloc p n F ≡ F − chunks p (p& + (n − KMC))

The function chunks p q in the definition above refers to a set of locations
starting with pointer p, ending with address q, that consists of base addresses
of adjacent memory chunks:

chunks p y ≡
{x | p& ≤ x ∧ x ≤ y ∧ (∃n≥0 . ZZ⇐ x = ZZ⇐ p& + n ∗ ZZ⇐ KMC)}

To make subtraction better behaved we map our bit-vectors to the integers
rather than natural numbers in this definition and extend the IN syntax to
ZZ.

168 CHAPTER 6. CASE STUDY: L4 KMALLOC

void ∗alloc(word t size)
{

word t i ;
word t ∗prev, ∗curr, ∗tmp;

size = size >= KMC ? size : KMC;

for (prev = (word t ∗)&kfree list , curr = kfree list ;
curr;
prev = curr, curr = (word t ∗)∗curr) {

if (!((word t)curr & (size − 1))) {
tmp = (word t ∗)∗curr;

for (i = 1; tmp && (i < (size / KMC)); i++) {

if ((word t)tmp != ((word t)curr + KMC ∗ i)) {
tmp = 0;
break;

}

tmp = (word t ∗)∗tmp;
}

if (tmp) {
∗prev = (word t)tmp;

for (i = 0; i < (size / sizeof(word t)); i++)
curr[i] = 0;

return curr;
}

}
}

return 0;
}

Table 6.1: alloc definition.

6.4. SPECIFICATIONS 169

void init(void ∗start, void ∗end)
{

kfree list = 0;

free (start , (word t)end − (word t)start);
}

Table 6.2: init definition.

void free(void ∗address, word t size)
{

word t ∗p, ∗prev, ∗curr;

size = size >= KMC ? size : KMC;

for (p = (word t ∗)address;
p < ((word t ∗)(((word t)address) + size − KMC));
p = (word t ∗)∗p)
∗p = (word t)p + KMC;

for (prev = (word t ∗)&kfree list , curr = kfree list ;
curr && (address > (void ∗)curr);
prev = curr, curr = (word t ∗)∗curr)

;

∗prev = (word t)address;
∗p = (word t)curr;

}

Table 6.3: free definition.

One final definition is required. free-set allows us to talk about fragments
of the free list, but the data structure also has a header sentinel node,
kfree-list, that does not contribute a chunk. This node must also be disjoint
from the free pool. As it is not necessarily KMC aligned, we need to show
disjointness not just with the base addresses of chunks but the entire area of
memory described. We also require that for all true free list members that
the base addresses are aligned. An abstraction predicate that takes this into
account is:

free-set-h sw sp p r F ≡
∃ q . sp p = bqc ∧ free-set sw q r F ∧ disjoint-chunks p& F ∧ aligned F

where

170 CHAPTER 6. CASE STUDY: L4 KMALLOC

disjoint-chunks p F ≡ ∀ q∈F . p /∈ {q ..+IN⇐ KMC}
x udvd y ≡ IN⇐ x dvd IN⇐ y
aligned P ≡ P ∩ {p | KMC udvd p} = P

In the free-set-h definition, the sw and sp parameters correspond to the lifted
word t and word t ∗ heaps respectively.

With these definitions, the Hoare logic specification of alloc is given by
the triple:

∀F σ. Γ` {|σ. free-set-h Φ Φ kfree-list-addr NULL F ∧
KMC udvd max śize KMC|}

álloc-ret :== alloc(śize)
{|(álloc-ret 6= NULL −→

size-aligned álloc-ret (max σsize KMC) ∧
álloc-ret& ≤ álloc-ret& + max σsize KMC − KMC ∧
chunks álloc-ret
(álloc-ret& + (max σsize KMC − KMC))
⊆ F ∧
free-set-h Φ Φ kfree-list-addr NULL
(alloc álloc-ret (max σsize KMC) F)) ∧

(álloc-ret = NULL −→ H = σH)|}

where the returned memory is guaranteed to be aligned to the effective
request size, if a power-of-two, by:

size-aligned p n ≡ (∃ k . n = 2 k) −→ n udvd p&

Here we supply the lifted heaps with Φ, which was defined back in Exmp. 3.4.1
as the polymorphic liftτ c-guard H.

The pre-condition requires that the free list rooted at kfree-list-addr
describe some set of free memory chunks F and that the effective requested
size be aligned with KMC. Alignment is expressed using the non-overflowing
version of divisibility on finite integers with udvd. The post-condition refers
to the pre-state σ for size and the heap.

In the post-condition there are two cases. Either some memory was
returned, álloc-ret 6= NULL, or the kernel ran out of memory, álloc-ret =
NULL. In the latter case, we claim that nothing changes in the heap. In
the former case, the new set of free memory chunks is equivalent to the
set obtained by evaluation of the abstract alloc on the returned pointer.
If the request size is a power-of-two then the returned pointer will have
this alignment. We rule out the possibility of the returned region wrapping
around the address space with álloc-ret& ≤ álloc-ret& + max σsize KMC −
KMC and state that the returned blocks are a subset of F.

The abstract specification of free is:

6.4. SPECIFICATIONS 171

free p n F ≡ F ∪ chunks p (p& + (n − KMC))

Unfortunately, the triple for free is more complicated:

∀F σ. Γ` {|σ. free-set-h Φ Φ kfree-list-addr NULL F ∧
F ∩ { áddress&..+IN⇐ (max śize KMC)} = ∅ ∧
áddress 6= NULL ∧
KMC udvd áddress& ∧
KMC udvd max śize KMC ∧
áddress& ≤ áddress& + max śize KMC − KMC ∧
disjoint-chunks kfree-list-addr&
(chunks áddress (áddress& + (max śize KMC − KMC)))|}

free(áddress, śize)
{|free-set-h Φ Φ kfree-list-addr NULL

(free σaddress (max σsize KMC) F)|}

The additional complexity is entirely in the pre-condition and is related to
the anti-aliasing conditions that need to be expressed. This is particularly a
problem here as we do not know anything about the type of returned memory
and hence cannot rely on pointer validity to help. The free pre-condition can
be established from the post-condition of alloc and with these specifications
we can prove the correctness of client code such as kmalloc test in Table 6.4.

∀F σ. Γ` {|σ. free-set-h Φ Φ kfree-list-addr NULL F ∧
KMC udvd max śize KMC|}

kmalloc-test(śize)
{|free-set-h Φ Φ kfree-list-addr NULL F |}

void kmalloc test(word t size)
{

void ∗p;

p = alloc(size) ;

if (!p) return;

free (p, size) ;
}

Table 6.4: kmalloc test specification and definition.

These specifications are not completely satisfying. We would ideally like
to know that nothing else in the heap changes. This “nothing else” is hard to
nail down formally. The set F as used in the specification above is too loose

172 CHAPTER 6. CASE STUDY: L4 KMALLOC

as it would miss the heap changes caused by zeroing out the freshly allocated
memory in alloc. Separation logic handles this more naturally below.

Separation logic

The separation logic version of the abstraction predicate is the following:

list p r [] ≡ λs. p = r ∧ � s
list p r (x ·xs) ≡ λs. (p = Ptr x ∧ p 6= r) ∧

(∃ q . (block p q ∧∗ list q r xs) s)

block p q ≡ λs. KMC udvd p& ∧ (p ↪→ q&) s ∧ sep-cut p& KMC s

free-set p q F ≡ λs. ∃ xs. list p q xs s ∧ F = set xs
free-set-h p r F ≡ λs. ∃ q . (ptr-coerce p 7→ q& ∧∗ free-set q r F) s

In addition to performing data abstraction, free-set now asserts ownership
over the entire footprint of each chunk through the block predicate.

The separation logic specification of alloc is then given by:

∀F σ. Γ` {|σ. (free-set-h kfree-list-addr NULL F)sep ∧
KMC udvd max śize KMC|}

álloc-ret :== alloc(śize)
{|(álloc-ret 6= NULL −→

size-aligned álloc-ret (max σsize KMC) ∧
álloc-ret& ≤ álloc-ret& + max σsize KMC − KMC ∧
chunks álloc-ret
(álloc-ret& + (max σsize KMC − KMC))
⊆ F ∧
(free-set-h kfree-list-addr NULL

(alloc álloc-ret (max σsize KMC) F) ∧∗
zero álloc-ret (max σsize KMC))sep) ∧

(álloc-ret = NULL −→
(free-set-h kfree-list-addr NULL F)sep)|}

The pre-condition here is as before and the post-condition has the same
two cases. If we have run out of memory, álloc-ret = NULL, we now only
say that F does not change and by the frame rule it can be derived that
nothing else in the heap changes either.

In the success case, álloc-ret 6= NULL, we still state that the new set
of free memory chunks is the same as that given by evaluating the abstract
function alloc. Additionally, we now explicitly say that the memory returned
is a separate, contiguous block of the right size, filled with zero words:

zero p n ≡ zero-block (ptr-coerce p) (IN⇐ (n div 4))

zero-block p 0 ≡ �
zero-block p (Suc n) ≡ (p +p IN⇒ n) 7→ 0 ∧∗ zero-block p n

6.5. INVARIANTS 173

The zero conjunct can be directly used by client code operating on the
freshly allocated memory. All other memory is implicitly left unchanged by
alloc.

The free triple is much clearer than in the previous section:

∀F σ. Γ` {|σ. (free-set-h kfree-list-addr NULL F ∧∗
sep-cut áddress& (max śize KMC))sep ∧
áddress 6= NULL ∧
KMC udvd áddress& ∧
KMC udvd max śize KMC ∧
áddress& ≤ áddress& + max śize KMC − KMC|}

free(áddress, śize)
{|(free-set-h kfree-list-addr NULL

(free σaddress (max σsize KMC) F))sep|}

The returned memory is transferred with the sep-cut assertion and there
is no need to state explicit anti-aliasing conditions. The advantages of
separation logic assertions are even greater when we consider the invariants
which are more detailed than the outer specifications.

6.5 Invariants

In this section we describe the loop invariants that were used to structure
the verifications. These provide the key proof steps and insight into how
the allocator works. We focus our attention on alloc here and present the
separation logic invariants first as they are simpler.

Separation logic

The outer loop invariant is:

{|(∃G H . (ṕrev = ptr-coerce kfree-list-addr ∨ ṕrev& ∈ G) ∧
(free-set-h kfree-list-addr ćurr G ∧∗
free-set ćurr NULL H)sep ∧

F = G ∪ H) ∧
(free-set-h kfree-list-addr NULL F)sep ∧
H = σH ∧
śize = max σsize KMC ∧ KMC udvd śize ∧ (ṕrev ↪→ ćurr&)sep|}

The pointer curr partitions the free list during the traversal. While the
heap may be modified inside the loop body, if this occurs a return is always
performed, so at the point where the invariant must hold, the heap state
is never modified. The rest of the invariant mostly just carries information
from the pre-condition.

Inside the outer loop, in the first inner loop, the situation is more tricky:

174 CHAPTER 6. CASE STUDY: L4 KMALLOC

{| ćurr& ≤ ćurr& + (í − 1) ∗ KMC ∧
(∃G H . (ṕrev = ptr-coerce kfree-list-addr ∨ ṕrev& ∈ G) ∧

(free-set-h kfree-list-addr ćurr G ∧∗
free-set ćurr t́mp
(chunks ćurr (ćurr& + (í − 1) ∗ KMC)) ∧∗

free-set t́mp NULL H)sep ∧
F = G ∪ chunks ćurr (ćurr& + (í − 1) ∗ KMC) ∪ H) ∧

(free-set-h kfree-list-addr NULL F)sep ∧
H = σH ∧
śize = max σsize KMC ∧
KMC udvd śize ∧
1 ≤ í ∧
í ≤ śize div KMC ∧
ćurr 6= NULL ∧ size-aligned ćurr śize ∧ (ṕrev ↪→ ćurr&)sep|}

Now the free list is partitioned three ways — the fragment up to curr, the
candidate allocation block between curr and tmp and the rest of the list. This
is illustrated in Fig. 6.3. We also ensure the candidate block does not wrap
around the address space, carry some information from the pre-condition and
establish size-aligned as we have passed the alignment test prior to entering
the loop. Still, the heap remains unmodified at this point.

NULL

..

curr tmp

candidate
allocation block

kfree_list_addr

Figure 6.3: Partition of free list.

If the test for a suitably sized block in this first inner loop fails then we
can show the outer loop invariant is implied by the inner loop invariant. If it
succeeds then the block will be de-linked from the list structure, zeroed, and
returned to the user. The second inner loop witnesses the zeroing and its
invariant is:

6.6. RESULTS 175

{| ćurr& ≤ ćurr& + (śize − KMC) ∧
(free-set-h kfree-list-addr NULL

(alloc (ptr-coerce ćurr) (max σsize KMC) F) ∧∗
sep-cut (ćurr& + í ∗ 4) (śize − í ∗ 4) ∧∗
zero-block ćurr (IN⇐ í))sep ∧

chunks ćurr (ćurr& + (max σsize KMC − KMC)) ⊆ F ∧
śize = max σsize KMC ∧
KMC udvd śize ∧
KMC udvd ćurr& ∧
í ≤ śize div 4 ∧ size-aligned ćurr śize ∧ ćurr 6= NULL|}

When we enter the loop, the heap is partitioned such that the free-set-h
conjunct describes the post-allocation free list state. The remainder of the
heap is partitioned by the offset into the allocated block given by the loop
counter i. The loop gradually retypes the allocated block as it zeroes it with
a ptr-retyp (ćurr +p í) annotation in the body. When the loop condition
fails, i.e. ¬ i < (size / sizeof(word t)), the post-condition is implied.

Multiple typed heaps

We give the multiple typed heaps invariants in Table 6.5. They are quite
similar in many respects to those in the previous section, but more verbose.
Some parts have the appearance of an unfolded separation logic assertion.
The main thing to observe is the additional number of anti-aliasing conditions
— the structure of the proof itself does not differ significantly. It is clear that
separation logic for specifications and invariants is far more concise in this
case study and naturally suits the problem domain.

6.6 Results

With the invariants in place, the proof obligations post-VCG can be dis-
charged. For this study we wrote mostly tactic-style proofs that we now
discuss.

Multiple typed heaps

Table 6.6 lists the size of each proof script. For the specific code verification
theories, in parenthesis we give the size of the main proof. The proof of the
verification conditions for alloc takes about 400 LoP with an additional 190
LoP of specific supporting lemmas, a further 1400 LoP of lemmas shared1

1Shared lemmas are considered those lemmas found in theories imported by more than
a single verification. They contain lemmas either used in more than one code proof or that
are general properties of the data abstraction predicates.

176 CHAPTER 6. CASE STUDY: L4 KMALLOC

Outer loop invariant:

{|(∃G H . (ṕrev = ptr-coerce kfree-list-addr ∨ ṕrev& ∈ G) ∧
free-set-h Φ Φ kfree-list-addr ćurr G ∧
free-set Φ ćurr NULL H ∧ G ∩ H = ∅ ∧ F = G ∪ H) ∧

H = σH ∧
śize = max σsize KMC ∧
KMC udvd śize ∧
lift (hrs-mem t́-hrs) ṕrev = ćurr& ∧
disjoint-chunks kfree-list-addr& F ∧ aligned F |}

First inner loop invariant:

{| ćurr& ≤ ćurr& + (í − 1) ∗ KMC ∧
(∃G H . (ṕrev = ptr-coerce kfree-list-addr ∨ ṕrev& ∈ G) ∧

free-set-h Φ Φ kfree-list-addr ćurr G ∧
free-set Φ ćurr t́mp
(chunks ćurr (ćurr& + (í − 1) ∗ KMC)) ∧

free-set Φ t́mp NULL H ∧
G ∩ chunks ćurr (ćurr& + (í − 1) ∗ KMC) = ∅ ∧
H ∩ chunks ćurr (ćurr& + (í − 1) ∗ KMC) = ∅ ∧
G ∩ H = ∅ ∧
F = G ∪ chunks ćurr (ćurr& + (í − 1) ∗ KMC) ∪ H) ∧

H = σH ∧
śize = max σsize KMC ∧
KMC udvd śize ∧
1 ≤ í ∧
í ≤ śize div KMC ∧
ćurr 6= NULL ∧
lift (hrs-mem t́-hrs) ṕrev = ćurr& ∧
size-aligned ćurr śize ∧
disjoint-chunks kfree-list-addr& F ∧ aligned F |}

Second inner loop invariant:

{|(ćurr& ≤ ćurr& + (śize − KMC) ∧
free-set-h Φ Φ kfree-list-addr NULL
(alloc (ptr-coerce ćurr) śize F)) ∧

chunks ćurr (ćurr& + (max σsize KMC − KMC)) ⊆ F ∧
śize = max σsize KMC ∧
KMC udvd śize ∧
KMC udvd ćurr& ∧
ćurr 6= NULL ∧
size-aligned ćurr śize ∧
disjoint-chunks kfree-list-addr&
(chunks ćurr (ćurr& + (śize − KMC)))|}

Table 6.5: Multiple typed heaps allocator invariants.

6.6. RESULTS 177

Theory LoP
Shared (all) 1400
Shared (multiple typed heaps) 330
Shared (separation logic) 688
alloc (multiple typed heaps) 581 (387)
alloc (separation logic) 975 (660)
free (multiple typed heaps) 924 (403)
free (separation logic) 736 (550)

Table 6.6: Proof script sizes.

between alloc and free in multiple typed heaps and separation logic settings
and 330 LoP shared for only the multiple typed heaps. The free main proof
is also about 400 LoP but with 520 LoP of specific supporting lemmas. The
greater length of the latter appears to be a result of free retyping memory
prior to its first loop (not shown in the earlier source code) where it threads
the list structure through the returned memory. This requires a set of rules
to cope with this unsafe operation. The reported sizes are based on a specific
organisation of lemmas into theories and a particular proof style, so should
be read only as an approximation. We should take from these results the
order-of-magnitude as a guide and that free, despite having shorter source
code than alloc, had a more difficult proof.

Separation logic

The proof of the verification conditions induced by the alloc specification
takes 660 LoP with around an additional 320 LoP of specific supporting
lemmas, 690 LoP shared with free and the 1400 LoP shared with the other
parts of the verification. free this time has 550 LoP with 190 LoP supporting.
This is more in line with alloc and may be shorter than above as retyping
was not a special case, since we asserted ownership of returning memory in
the pre-condition. While the effort appears to be a little higher for alloc,
we have a stronger post-condition as a result. Much of the additional length
in the alloc case can be attributed to verbose but not difficult proof steps,
where perhaps we could in the future benefit from some automation.

Discussion

This case study corresponds to 136 lines of code in the original Pistachio
source and 62 lines of code after configuring and preprocessing2. The functions
are not very large, but the fact that the originals contain close to 40% tracing
and debugging code indicates that they were not easy to get right. We did

2We only count function body sizes here.

178 CHAPTER 6. CASE STUDY: L4 KMALLOC

not find any clear bugs in the code during verification, which is encouraging
for a system with several years of deployment. There are however some
subtleties that the specifications expose and would be useful for a kernel
developer to be aware of. For example, size-aligned gives us alignment with
the effective requested size, but only if this is a power-of-two. If a non-power-
of-two is given, not only may we not get back a correctly aligned block, but
the allocator may fail to allocate despite having sufficient resources as the
alignment test in the source code will be incorrect. The full proof document
for this case study, including code and invariants is available online [95].

The proofs were developed over several person months, simultaneously
with the original separation logic embedding. It is hard to get a direct
measure of how much time was spent as a result. The proofs are definitely
not optimal with respect to length and there is the occasional redundancy
or copy-and-paste evidence. This is not surprising — while it is reasonable
to expect one to make an effort at providing clean theories for the memory
models or other theory developments, the specific nature of a code verification
proof makes this an unattractive expenditure of time.

Many of the proof steps were somewhat mechanical. At the leaves of the
proofs we typically had some problem involving bit-vector arithmetic and
intervals, reasoning about chunks, extracting mapping assertions from under
a separation conjunction, massaging a separation assertion into the desired
form or some property of the data abstraction predicates.

Even though the proofs were time consuming, we managed to prove
some strong functional properties of some tricky low-level code. It should be
noted that we chose alloc and free because they constitute a challenging
case for this framework. While there are some type-safe accesses, e.g. the
free list traversal and update, there are many pointer accesses that are
unsafe and require additional reasoning, such as the first loop in free or
the alignment test. Our framework provides both a means of coping with
the unsafe parts and abstraction inside the safe fragment. In other pointer
program verification developments in the literature this is impossible or leads
to unsoundness if applied näıvely, here it is merely more work than usual.
Once the allocator verification is completed, client code does not need to
go to the same level of detail to use the pre/post conditions provided. The
complexity is hence hidden.

Even small verifications such as this benefit from separation logic. While
we did not use the frame rule, the stronger data abstraction predicates and
specifications that are natural in this approach proved beneficial.

Looking ahead, with further experience we should be able to build up a
set of libraries that amortise some of the proof effort, in particular on large
verification projects like L4.verified. Even in this case study we managed to
share a number of lemmas across verifications. Automation improvements
would be welcomed, in particular tactics for manipulating separation logic
assertions.

6.6. RESULTS 179

It would be fair to conclude that we have demonstrated the feasibility
of verifying real systems code with the models presented in this thesis and
interactive theorem proving. While proofs are lengthy and not cheap, we can
show functional correctness and have a high degree of trust in the soundness
of our tools, methods and models, going far beyond what is possible today
with more automated algorithmic techniques.

Acknowledgments

The free specification and proof in the multiple typed heaps abstraction was
joint work with Gerwin Klein.

180 CHAPTER 6. CASE STUDY: L4 KMALLOC

Chapter 7

Conclusion

7.1 Discussion

We have seen that providing mechanised proof techniques for C, built on a
low-level view of underlying memory and capable of managing the aliasing
and frame problems, is feasible, although a technically involved process.
The exercise has enhanced our understanding of the relationship between
the models and how they can be extended to cope with language features
such as unrestricted pointer arithmetic, casts, first-class structure types and
relaxation of type- and memory-safety.

The L4 memory allocator case study and other earlier examples give us
confidence that these developments are useful and not merely well-intentioned
impractical explorations. We would go as far as to say that these code
verifications would have been impossible or at least far more tedious and
verbose without multiple typed heaps and separation logic, and we would
likely have ended up reinventing the techniques in an ad-hoc manner anyway.

While we consider the effort to be a success, we should acknowledge
limitations. Completeness has been mostly ignored due to the use of shallow
embeddings of both C and the assertion languages. The case studies focus
on a restricted subset of systems code, which we hope is representative. We
have chosen to compromise on features such as pointers to stack-allocated
storage, function pointers, virtual memory and concurrency. We assume some
compiler behaviour that has not yet been independently verified. Nonetheless,
the models developed in this thesis are being used in the L4.verified project
for a complete microkernel verification. We anticipate that the only major
extension needed will be the addition of virtual addressing to the model
and even this will not be necessary in the vast majority of the code base.
We believe the limitations can be addressed in future complementary work
without invalidating the results of this thesis and that our contributions
provide one of the necessary steps towards a body of knowledge that we
require to be able to effectively verify C systems code.

181

182 CHAPTER 7. CONCLUSION

C does not appear to be going away in the near future as a systems
implementation language. While today it is becoming more common to use
algorithmic techniques to analyse C systems code for some classes of bugs,
we envision that the routine verification of functional properties of C systems
code, albeit at relatively higher cost, is attainable and that a theorem prover
like Isabelle/HOL provides the correct infrastructure for this task. The next
two sections provide some more details of the mechanisation experience and
suggested future directions to achieve this state of affairs.

7.2 Implementation experience

The core chapters of this thesis provide results and proofs, but do not contain
a discussion of the effort required to attain them. The work occurred in
two phases, where first the unified memory model (UMM) and separation
logic abstractions were developed. At this point we carried out the memory
allocator case study and followed this with the structured types extension.
This involved a significant change to the underlying theory. We present in
Table 7.1 the number of definitions, theorems and the size of the Isabelle/HOL
theory files that are behind each model in the respective developments,
measured in lines of proof (LoP) script.

Initial development Structured types
Defs Thms LoP Defs Thms LoP

Semantic 41 60 846 152 566 6945
UMM 19 143 1190 45 220 3072
Separation logic 36 246 2010 48 396 4665
Total 96 449 4046 245 1182 14682

Table 7.1: Isabelle/HOL model implementation metrics.

These are simple metrics to obtain, but do not give a true picture of
complexity on their own — the reader is referred to the relevant chapters to
assess this. The structured types extension is not as mature as the initial
development, with only a small number of the overall proofs being written in
the high-level Isar proof language, the rest being tactic style. In the initial
development, almost all proofs were in Isar.

The combined total of the initial development and structured types work
is 18,728 LoP. The semantic model is the most significant increase in the
generalised development, an order of magnitude larger than the original,
compared to the UMM and separation logic models that are a factor of 2–3
larger. The reason for this substantial increase is that the deep embedding
of structure information and its use requires many supporting lemmas to
reason about. The proofs of these lemmas are through mutual induction,

7.3. FUTURE WORK 183

which can be quite verbose. Often there is a need to derive a fairly intuitive
well-formedness result from the generalised axioms. A further reason for the
growth is the type information combinators, which required 1,415 LoP, and
array treatment that had an additional 610 LoP in the semantic model.

Several iterations of the structured types extension took place, where
we reduced the complexity of the underlying axioms and generalised them.
Properties like Thm. 5.2.6 were axiomatised initially, but it became apparent
later that these followed from the more fundamental set in §5.2.3. This
style of development seems reasonable, albeit time consuming when many
thousand LoP undergo revision.

The technical details of the models in Isabelle/HOL are lengthy, and some
concepts seem intuitively obvious and unnecessary in their formal treatment.
However, the mechanisation has the advantage of giving a high degree of
trust in the soundness of the system that is unattainable in pen-and-paper
formalisations and the user of the system is shielded from much of the
implementation detail. It is easy to miss side-conditions such as alignment
when reasoning about pointer programs and it is precisely this kind of
detail that makes pointer program correctness in type-unsafe languages, even
informally, a more difficult problem than general software correctness.

We benefited greatly from the maturity of tools and libraries in our
work. Schirmer’s verification environment clocks in at 27,400 LoP [85], the
bit-vector libraries at 8,300 LoP and basic HOL libraries at around 35,000
LoP. Clearly if we had to engage in the development of these components it
would not have been practical to carry out our developments and case study.
The implementation in this thesis will in turn provide a basis for further
layering and allow later research to reap the benefits of these models.

The case study in Chapter 6 was a success. As discussed in §6.6 we
had many tedious bit-vector arithmetic proofs to carry out manually and a
large number of the proofs were specialised to the free-list data structure in
use, making it unlikely the proofs will be reusable for significantly different
memory allocators. The loop invariants, with copious amounts of alignment
detail, were quite large, although the specifications were compact enough to
hide the details from clients. In both the multiple typed heaps and separation
logic proofs, the effort required to apply the appropriate rewrites or inference
rules for safe updates and accesses was relatively small compared to the
overall proof burden, although retyping was non-trivial. From this we can
conclude an achievement of our goals in the proof abstraction implementation
and interface to the user.

7.3 Future work

There are many potential directions to take in further research. These can be
clustered as language features, automation, experience and trustworthiness

184 CHAPTER 7. CONCLUSION

improvements. Some additions should be fairly straightforward, such as
dealing with physical sub-typing. Others, like integration with algorithmic
techniques, will require more than just improvements to our models but also
significant changes to the underlying verification infrastructure and theory.
The significance of each possible direction will depend on the specifics of
the verifications one wishes to perform. We make the general observation
that carrying out what some may consider boring and laborious mechanical
verification proofs, of actual real-world systems code, provides a learning ex-
perience that allows one to prioritise and understand the relative significance
of various theories and technologies.

Language features

Chapter 5 deals with structs and arrays, but does not discuss unions. As
we comment in §2.4.3, these types are not so easy to even encode in HOL
in the first place, if a general treatment is the goal. Given that the use of a
different union member indicates effectively a retype operation, it does not
make sense to treat them as first-class types in our setting. As second-class
types, they could be handled as with casts. Moy [65] observes that tagged
unions and physical sub-typing [88] casts in C are much better behaved than
the general case. When two structured types share a common prefix, the
prefix fields of these types remain valid across a retype of the heap type
description. Relaxing the suggested restrictions in §2.4.3 could be necessary
in some verifications. In this case retyping will have non-local effects, and
we may require fundamental changes in the way structure information is
represented in the embedding to avoid this.

The Csys-com translation could be extended to handle the missing stan-
dard C control structures, such as switch and goto, possibly adapting the
techniques of Tews [91]. com can support function pointers, and in standard
compliant use we do not have to worry about adding functions to the memory
model. In the case of self-modifying code, which does occur in some bootstrap
systems code, one may have to reconsider this. Pointers to stack-allocated
storage are more troublesome, as they can violate the validity of modeling
local state as record fields, and could force all state to be moved into the
memory model. As we move further from the C standard, other features
that appear in systems code become interesting possibilities in future work.
An integration with work like Myreen et al [66, 67], where a sound Hoare
logic is developed to reason about ARM assembler, could make it possible to
verify code with in-line assembler blocks. XCAP’s treatment of non-standard
control structures [71] appears useful and we could also stand to benefit from
interfacing this type of reasoning with our C model. One other advanced
feature is concurrency, which would require some fundamental changes to
the way we treat the semantics of heap accesses and updates, as they could
no longer be considered atomic. Depending on the level of realism required,

7.3. FUTURE WORK 185

one may have to consider the details of memory ordering on contemporary
processors [58].

Systems code may execute in the presence of address translation provided
by the processor’s memory management unit (MMU). This introduces new
aliasing problems, as even pointers with distinct footprints in the virtual
address space may alias. In addition, systems code executes in privileged
mode and may modify virtual-physical mappings through page table updates.
This could be an exciting target for separation logic, and Kolanski [50] has
begun explorations that may pave the way here.

An extension of C with data refinement [25], where only vanilla C makes
it to the compiler at the lowest level of refinement, could make an interesting
project. Through data hiding and invariant isolation the verifier would gain
abstraction, and as well as C’s typed heaps, states could also contain ADT
abstract state. Related work here includes the hypothetical frame rule [76]
that facilitates hiding module invariants from client code, thus avoiding, for
example, threading allocator invariants from Chapter 6 through the rest of
the kernel proofs.

Automation

Our separation logic code proofs have many manual steps that could benefit
from some simple tactic support, for example extracting existential quanti-
fiers from inside separation conjuncts and also tactics that better support
reordering conjuncts to fit a particular form. Appel [2] has done some recent
work on this topic which we could build on.

Using Isabelle/HOL as the core verification platform and adopting a proof
oriented approach does not prohibit us from benefiting from algorithmic
techniques like software model checking and shape analysis. There are
some problems though in how to structure verifications to take advantage
of these methods. First, we usually only get a yes/no/don’t-know response,
possibly with counter-example, from these tools and after proof obligation
generation it may be too late to apply them. The interactive proof paradigm
requires that the proof state be advanced and then returned to the user,
unless we are at the leaf of a proof. Bit-vector decision procedures are the
exception, and we would benefit greatly from having these available to tackle
the leaves of some of our proofs. Daum et al [24] make use of the verification
environment’s ability to discharge guard proof obligations separately. Not all
of C’s language features are always supported by these tools. This situation
is improving, e.g. having structural invariants as given by shape analysis
available to the verifier could be a benefit, and some more recent research has
relaxed constraints that disallowed pointer arithmetic [17]. Model checkers
and static analysers have their own memory models for C [23], and we would
need to reconcile these views with those of this thesis when importing proof
certificates.

186 CHAPTER 7. CONCLUSION

How useful any of this is in practice depends on the code undergoing
verification, the effort to interface the technique with Isabelle, the desired
degree of maintainability and how hard the property is to prove without the
technique. The last point is important — if memory safety is going to be
implied by code invariants anyway, why bother with a tool that checks this?

Experience

We present a framework for verifying pointer programs and there are several
parameters that could be varied. It could be seen how reasonable it is to
implement different compiler and architecture assumptions, and how much
work is involved in updating code verification proofs with these dependencies.
The guards generated during translation could be enriched. ROLM could
be strengthened and we could develop memory models that incorporate
allocation primitives for code that does not need to implement its own.

More code verifications would help address any concerns over complete-
ness, enrich the libraries for reasoning about unsafe code, expose limitations,
help in understanding the scalability of Hoare logic verification of C systems
code and provide us with greater experience in determining where next to
focus attention. The L4.verified project should be very fruitful from this
perspective.

Trust

While the proofs in this thesis are entirely machine-checked and sit above an
LCF-style proof kernel, we still have various places where our confidence in
soundness can be even further improved. The most obvious is the guards
generated — we only provide a minimal set of guards in §2.5.5 to exercise
the framework. At the very least there should be guards added to ensure
the C run-time, i.e. code and stack, is protected from heap updates. This
omission is not as serious as it may appear though in our case study, as
our specifications and invariants, at least in the separation logic case, assert
ownership over any memory that is modified.

The various compiler assumptions need to be validated. This could take
the form of a code inspection, or even better a formally specified and verified
compiler. Leroy [55] and Blazy et al [11] have developed such a compiler for
a C subset Clight, targeting PowerPC, in Coq. Leinenbach et al [53, 54] also
have a verified compiler for C0 in Isabelle/HOL.

The Csys-com translation is about 5,200 LoC in ML, and we could
reduce the trusted base in a few ways. First we could move to a deep
embedding, as long as we could discard the additional structure during
verification condition generation and have the translation executable. We
could embed the translator itself inside an executable subset of Isabelle/HOL
and prove correctness properties of it. There will probably always be some

7.4. CONCLUDING REMARKS 187

trusted code involved for generating state spaces and the type encoding,
since Isabelle/HOL does not reflect these aspects. This is another way in
which the development of Chapter 5 is useful, as it allows at least the lvalue
calculations to be pushed from trusted ML to the HOL level.

7.4 Concluding remarks

Verification of real-world systems code is hard and the devil is in the detail.
We want to model systems faithfully, but at the same time can be easily
overwhelmed by the lack of abstraction inherent in our systems languages.
Through providing sound abstractions built on low-level system representa-
tions we can bridge the gap, and we have achieved this for memory models
in C verification.

188 CHAPTER 7. CONCLUSION

Appendix A

Csys syntax

A semi-formal description of the C subset targeted in this thesis is presented
below. Since the purpose of the grammar is to highlight differences between
the C standard and Csys, this level of detail is preferred. The following is
largely based on Kernighan and Ritchie [47], section A.13 and the formal
YACC and LEX grammars of Norrish [74,96].

constant =
integer-constant

struct-or-union =
struct | union

unary-operator =
& | * | + | - | ~ | !

type-qualifier =
const | volatile

type-qualifier-list =
type-qualifier |
type-qualifier-list type-qualifier

pointer =
* type-qualifier-list option |
* type-qualifier-list option pointer

storage-class-specifier =
auto |
register |
static |
extern |
typedef

struct-declarator =
declarator |
declarator option : constant

struct-declarator-list =
struct-declarator |
struct-declarator-list , struct-declarator

struct-declaration =
specifier-qualifier-list struct-declarator-list ;

189

190 APPENDIX A. CSY S SYNTAX

struct-declaration-list =
struct-declaration |
struct-declaration-list struct-declaration

parameter-declaration =
declaration-specifiers declarator |
declaration-specifiers abstract-declarator option

parameter-list =
parameter-declaration |
parameter-list , parameter-declaration

direct-declarator =
identifier |
(declarator) |
direct-declarator [constant option] |
direct-declarator (parameter-list)

declarator =
pointer option direct-declarator

declaration-specifiers =
storage-class-specifier declaration-specifiers option |
type-specifier declaration-specifiers option |
type-qualifier declaration-specifiers option

struct-or-union-specifier =
struct-or-union identifier option { struct-declaration-list } |
struct-or-union identifier

type-specifier =
void | char | short | int | long | signed | unsigned |
struct-or-union-specifier

specifier-qualifier-list =
type-specifier specifier-qualifier-list option |
type-qualifier specifier-qualifier-list option

direct-abstract-declarator =
(abstract-declarator) |
direct-abstract-declarator option [constant option] |
direct-abstract-declarator option (parameter-list option)

abstract-declarator =
pointer |
pointer option direct-abstract-declarator

type-name =
specifier-qualifier-list abstract-declarator option

primary-expression =
identifier |
constant |
(expression)

postfix-expression =
primary-expression |
postfix-expression [expression] |
postfix-expression . identifier |
postfix-expression -> identifier

unary-expression =

191

postfix-expression |
unary-operator cast-expression |
sizeof unary-expression |
sizeof (type-name)

cast-expression =
unary-expression |
(type-name) cast-expression

multiplicative-expression =
cast-expression |
multiplicative-expression * cast-expression |
multiplicative-expression / cast-expression |
multiplicative-expression % cast-expression

additive-expression =
multiplicative-expression |
additive-expression + multiplicative-expression |
additive-expression - multiplicative-expression

shift-expression =
additive-expression |
shift-expression << additive-expression |
shift-expression >> additive-expression

relational-expression =
shift-expression |
relational-expression < shift-expression |
relational-expression > shift-expression |
relational-expression <= shift-expression |
relational-expression >= shift-expression

equality-expression =
relational-expression |
equality-expression == relational-expression |
equality-expression != relational-expression

and-expression =
equality-expression |
and-expression & equality-expression

exclusive-or-expression =
and-expression |
exclusive-or-expression ^ and-expression

inclusive-or-expression =
exclusive-or-expression |
inclusive-or-expression | exclusive-or-expression

logical-and-expression =
inclusive-or-expression |
logical-and-expression && inclusive-or-expression

logical-or-expression =
logical-and-expression |
logical-or-expression || logical-and-expression

constant-expression =
conditional-expression

conditional-expression =
logical-or-expression |

192 APPENDIX A. CSY S SYNTAX

logical-or-expression ? conditional-expression : conditional-expression
expression =
Expression conditional-expression

init-declarator =
declarator |
declarator = expression

init-declarator-list =
init-declarator |
init-declarator-list , init-declarator

c-declaration =
declaration-specifiers init-declarator-list option

declaration-list =
c-declaration |
declaration-list c-declaration

argument-expression-list =
expression |
argument-expression-list , expression

jump-statement =
continue ; |
break ; |
return expression option ;

call-expression =
identifier (argument-expression-list option)

expression-statement =
unary-expression = expression ; |
unary-expression = call-expression ; |
call-expression ; |
unary-expression ++ ; |
unary-expression -- ; |
;

for-expression-list =
expression-statement auxupd option |
expression-statement auxupd option , for-expression-list

iteration-statement =
while (expression) statement |
while (expression) annotation statement |
for (for-expression-list option ; expression option ; for-expression-list option)

statement
selection-statement =
if (expression) statement |
if (expression) statement else statement

statement-list =
statement |
statement-list statement

compound-statement =
{ declaration-list option statement-list option }

statement =
expression-statement |
compound-statement |

193

selection-statement |
iteration-statement |
jump-statement |
auxupd

function-definition =
declaration-specifiers option declarator declaration-list option compound-statement

external-declaration =
function-definition |
c-declaration

translation-unit =
external-declaration |
translation-unit external-declaration

194 APPENDIX A. CSY S SYNTAX

Appendix B

Type description functions

In this appendix, we give the full Isabelle/HOL definitions for the type
description functions in §5.2, where they were omitted. Each definition
appears in a table with a reference to the original definition in which it was
introduced. Many of these functions can also be expressed in a concise fashion
using higher-order map and fold functions for type descriptions, however the
explicit primitive recursive definitions are somewhat clearer and easier to
understand.

map-td f (TypDesc st nm) ≡ TypDesc (map-td-struct f st) nm

map-td-struct f (TypScalar n algn d) ≡ TypScalar n algn (f n algn d)
map-td-struct f (TypAggregate xs) ≡ TypAggregate (map-td-list f xs)

map-td-list f [] ≡ []
map-td-list f (x ·xs) ≡ map-td-pair f x ·map-td-list f xs

map-td-pair f 〈t ,n〉 ≡ 〈map-td f t ,n〉

Table B.1: map-td definition (5.2.4).

size-td (TypDesc st nm) ≡ size-td-struct st

size-td-struct (TypScalar n algn d) ≡ n
size-td-struct (TypAggregate xs) ≡ size-td-list xs

size-td-list [] ≡ 0
size-td-list (x ·xs) ≡ size-td-pair x + size-td-list xs

size-td-pair 〈t ,n〉 ≡ size-td t

Table B.2: size-td definition (5.2.5).

195

196 APPENDIX B. TYPE DESCRIPTION FUNCTIONS

align-td (TypDesc st nm) ≡ align-td-struct st

align-td-struct (TypScalar n algn d) ≡ algn
align-td-struct (TypAggregate xs) ≡ align-td-list xs

align-td-list [] ≡ 0
align-td-list (x ·xs) ≡ max (align-td-pair x) (align-td-list xs)

align-td-pair 〈t ,n〉 ≡ align-td t

Table B.3: align-td definition (5.2.5).

lookup (TypDesc st nm) f m ≡ if f = [] then b(TypDesc st nm, m)c else
lookup-struct st f m

lookup-struct (TypScalar n algn d) f m ≡ ⊥
lookup-struct (TypAggregate ts) (f ·fs) m ≡ lookup-list ts (f ·fs) m

lookup-list [] f m ≡ ⊥
lookup-list (x ·xs) (f ·fs) m ≡ case lookup-pair x (f ·fs) m of

⊥ ⇒ lookup-list xs (f ·fs) (m + size-td (dt-fst x))
| byc ⇒ byc

lookup-pair 〈t ,nm〉 (f ·fs) m ≡ if nm = f then lookup t fs m else ⊥

Table B.4: lookup definition (5.2.6).

td-set t ≡ td-set-offset t 0

td-set-offset (TypDesc st nm) m ≡ {(TypDesc st nm, m)} ∪ td-set-struct st m

td-set-struct (TypScalar n algn d) m ≡ ∅
td-set-struct (TypAggregate xs) m ≡ td-set-list xs m

td-set-list [] m ≡ ∅
td-set-list (x ·xs) m ≡ td-set-pair x m ∪ td-set-list xs (m + size-td (dt-fst x))

td-set-pair 〈t ,nm〉 m ≡ td-set-offset t m

Table B.5: td-set definition (5.2.7).

access-ti (TypDesc st nm) ≡ access-ti-struct st

access-ti-struct (TypScalar n algn d) ≡ field-access d
access-ti-struct (TypAggregate xs) ≡ access-ti-list xs

access-ti-list [] ≡ λv bs. []
access-ti-list (x ·xs) ≡ λv bs.

access-ti-pair x v (take (size-td (dt-fst x)) bs) @
access-ti-list xs v (drop (size-td (dt-fst x)) bs)

access-ti-pair 〈t ,nm〉 ≡ access-ti t

Table B.6: access-ti definition (5.2.9).

197

update-ti t ≡ λbs. if |bs| = size-td t then update-ti-val t bs else id

update-ti-val (TypDesc st nm) ≡ update-ti-struct st

update-ti-struct (TypScalar n algn d) ≡ field-update d
update-ti-struct (TypAggregate xs) ≡ update-ti-list xs

update-ti-list [] ≡ λbs. id
update-ti-list (x ·xs) ≡ λbs v .

update-ti-pair x (take (size-td (dt-fst x)) bs)
(update-ti-list xs (drop (size-td (dt-fst x)) bs) v)

update-ti-pair 〈t ,nm〉 ≡ update-ti-val t

Table B.7: update-ti definition (5.2.9).

wf-desc (TypDesc ts n) ≡ wf-desc-struct ts

wf-desc-struct (TypScalar n algn d) ≡ True
wf-desc-struct (TypAggregate ts) ≡ wf-desc-list ts

wf-desc-list [] ≡ True
wf-desc-list (x ·xs) ≡ wf-desc-pair x ∧ dt-snd x /∈ dt-snd ‘ set xs ∧ wf-desc-list

xs

wf-desc-pair 〈x ,n〉 ≡ wf-desc x

Table B.8: wf-desc definition (5.2.12).

wf-size-desc (TypDesc ts n) ≡ wf-size-desc-struct ts

wf-size-desc-struct (TypScalar n algn d) ≡ 0 < n
wf-size-desc-struct (TypAggregate ts) ≡ ts 6= [] ∧ wf-size-desc-list ts

wf-size-desc-list [] ≡ True
wf-size-desc-list (x ·xs) ≡ wf-size-desc-pair x ∧ wf-size-desc-list xs

wf-size-desc-pair 〈x ,n〉 ≡ wf-size-desc x

Table B.9: wf-size-desc definition (5.2.13).

198 APPENDIX B. TYPE DESCRIPTION FUNCTIONS

wf-field-desc t ≡ wf-lf (lf-set t [])

record α leaf-desc = lf-fd :: α field-desc
lf-sz :: nat
lf-fn :: qualified-field-name

lf-set (TypDesc st nm) fn ≡ lf-set-struct st fn

lf-set-struct (TypScalar n algn d) fn ≡ {(|lf-fd = d , lf-sz = n, lf-fn = fn|)}
lf-set-struct (TypAggregate xs) fn ≡ lf-set-list xs fn

lf-set-list [] fn ≡ ∅
lf-set-list (x ·xs) fn ≡ lf-set-pair x fn ∪ lf-set-list xs fn

lf-set-pair 〈t ,n〉 fn ≡ lf-set t (fn @ [n])

wf-lf D ≡
∀ x . x ∈ D −→

fd-cons-desc (lf-fd x) (lf-sz x) ∧
(∀ y. y ∈ D −→

lf-fn y 6= lf-fn x −→
fu-commutes (field-update (lf-fd x)) (field-update (lf-fd y)) ∧
fa-fu-ind (lf-fd x) (lf-fd y) (lf-sz y) (lf-sz x))

fu-commutes f g ≡ ∀ v bs bs ′. f bs (g bs ′ v) = g bs ′ (f bs v)

fa-fu-ind d d ′ n n ′ ≡
∀ v bs bs ′.
|bs| = n −→
|bs ′| = n ′ −→
field-access d (field-update d ′ bs v) bs ′ = field-access d v bs ′

Table B.10: wf-field-desc definition (5.2.15).

norm-tu (TypDesc st nm) ≡ norm-tu-struct st

norm-tu-struct (TypScalar n aln f) ≡ f
norm-tu-struct (TypAggregate xs) ≡ norm-tu-list xs

norm-tu-list [] ≡ λbs. []
norm-tu-list (x ·xs) ≡ λbs. norm-tu-pair x (take (size-td-pair x) bs) @

norm-tu-list xs (drop (size-td-pair x) bs)

norm-tu-pair 〈t ,n〉 ≡ norm-tu t

Table B.11: norm-tu definition (5.2.23).

199

typ-slice (TypDesc st nm) m ≡ typ-slice-struct st m @
[if m = 0 then (TypDesc st nm, True) else (TypDesc
st nm, False)]

typ-slice-struct (TypScalar n algn d) m ≡ []
typ-slice-struct (TypAggregate xs) m ≡ typ-slice-list xs m

typ-slice-list [] m ≡ []
typ-slice-list (x ·xs) m ≡ if m < size-td (dt-fst x) ∨ xs = [] then typ-slice-pair

x m
else typ-slice-list xs (m − size-td (dt-fst x))

typ-slice-pair 〈t ,n〉 m ≡ typ-slice t m

Table B.12: typ-slice definition (5.3.1).

field-names (TypDesc st nm) t ≡ if t = export-uinfo (TypDesc st nm) then [[]] else
field-names-struct st t

field-names-struct (TypScalar m algn d) t ≡ []
field-names-struct (TypAggregate xs) t ≡ field-names-list xs t

field-names-list [] t ≡ []
field-names-list (x ·xs) t ≡ field-names-pair x t @ field-names-list xs t

field-names-pair 〈s,f 〉 t ≡ map (op # f) (field-names s t)

Table B.13: field-names definition (5.3.6).

200 APPENDIX B. TYPE DESCRIPTION FUNCTIONS

Appendix C

Type combinator proof rules

The rules for α::mem-type instantiation of type information built with the
combinators of §5.2.4 are given here, together with a summary of the corre-
sponding Isabelle/HOL proofs. Where definitions are required, this appendix
should be read in conjunction with Appendix B.

[MaxSize]

Theorem C.0.1. The [MaxSize] axiom can be shown for the combinators by
the simplifier with the following rewrite rules, Defn. 5.2.19 and Defn. 5.2.101:

aggregate (empty-typ-info tn) [AgEmpty]

aggregate (ti-typ-combine t f g fn ti) [AgTyp]

aggregate (ti-pad-combine n ti) [AgPad]

aggregate (ti-typ-pad-combine t f g fn ti) [AgTypPad]

align-td (empty-typ-info tn) = 0 [AlgnEmpty]

aggregate ti
align-td (ti-typ-combine t f g fn ti)

= max (align-td ti) (align-td TYPE(α)τ)

[AlgnTyp]

aggregate ti
align-td (ti-pad-combine n ti) = align-td ti

[AlgnPad]

1The aggregate predicate asserts that the type description has a TypAggregate constructor
at the root.

201

202 APPENDIX C. TYPE COMBINATOR PROOF RULES

aggregate ti
align-td (ti-typ-pad-combine t f g fn ti)
= max (align-td ti) (align-td TYPE(α)τ)

[AlgnTypPad]

aggregate ti
align-td (final-pad ti) = align-td ti

[AlgnFinal]

size-td (empty-typ-info tn) = 0 [SzEmpty]

aggregate ti
size-td (ti-typ-combine t f g fn ti)
= size-td ti + size-td TYPE(β)τ

[SzTyp]

aggregate ti
size-td (ti-pad-combine n ti) = size-td ti + n

[SzPad]

aggregate ti
size-td (ti-typ-pad-combine t f g fn ti) = let k = size-td ti in

k + size-td TYPE(β)τ + padup 2 align-td TYPE(β)τ k

[SzTypPad]

aggregate ti
size-td (final-pad ti) = let k = size-td ti in

k + padup 2 align-td ti k

[SzFinal]

Proof. The size and alignment values are evaluated by rewriting and then
Isabelle performs arithmetic evaluation for the constants.

[AgEmpty], [AgTyp], [AgPad], [AgTypPad], [SzEmpty], [SzTyp],
[SzPad], [SzTypPad], [SzFinal], [AlgnEmpty], [AlgnTyp], [AlgnPad],
[AlgnTypPad] and [AlgnFinal] follow trivially from definitions and
simplification.

[AlignDvdSize]

Theorem C.0.2. [AlignDvdSize] is given by Defn. 5.2.10 and:

aggregate ti

2 align-td (final-pad ti) dvd size-td (final-pad ti)
[ADSFinal]

Proof. First unfold final-pad. In the case where there is a padding field at
the end of the structure, simplifying with [SzPad] and observing 0 < x =⇒
x dvd y + padup x y gives the rule. When there is no padding, it is sufficient
to observe 0 < x =⇒ (padup x y = 0) = (x dvd y), since padup 2 align-td ti

(size-td ti) = 0.

203

[AlignField]

Theorem C.0.3. The combinator proofs rule for [AlignField] are:

align-field (empty-typ-info tn)
[AFEmpty]

align-field ti
align-field (ti-pad-combine n ti) [AFPad]

align-field ti 2 align-td TYPE(α)τ dvd size-td ti
align-field (ti-typ-combine t f g fn ti) [AFTyp]

align-field ti aggregate ti
align-field (ti-typ-pad-combine t f g fn ti) [AFTypPad]

align-field ti
align-field (final-pad ti) [AFFinal]

where

align-field ti ≡ ∀ f s n. tiBf = b(s, n)c −→ 2 align-td s dvd n

Proof. [AFEmpty] is trivially shown by unfolding and simplification. [AF-
Pad] is a consequence of the following result, with the alignment of padding
fields being defined as 1 allowing the dvd side-condition to be discharged:

align-field ti align-field t 2 align-td t dvd size-td ti
align-field (extend-ti ti t fn)

[AFExtend]

There are three cases for extend-ti ti t fnBf = b(s, n)c. fn = [] is trivial
as there is no offset. If the field is in ti, the alignment result is obtained
from align-field ti. Otherwise, it is arrived at by the extended field fn, and
we need to show 2 align-td s dvd size-td ti to use align-field t. Since alignments
are powers-of-two, and align-td s ≤ align-td t, it is evident that 2 align-td s dvd
2 align-td t and the desired result is given by dvd transitivity.

[AFFinal] is a direct result of [AFPad]. [AFTyp] can be seen from
[AFExtend] and adjust-ti not affecting alignment or offset. [AFTypPad]
follows the definition simplification with [AFTyp] and [AFPad], and the
dvd side-condition handled as in Thm. C.0.2.

204 APPENDIX C. TYPE COMBINATOR PROOF RULES

[Upd]

Definition C.0.1. The proof rules for [Upd] make use of an additional
constant:

fu-eq-mask ti f ≡
∀ bs v v ′.
|bs| = size-td ti −→
update-ti ti bs (f v) = update-ti ti bs (f v ′)

This is [Upd] modulo a “mask” f. The intuition behind the mask is that
[Upd] only holds for the structure as a whole. A field-wise decomposition
proof involves progressively masking out fields as their combinators are
reduced.

Theorem C.0.4. The combinator proof rules for [Upd] can then be stated
as:

∃ k . ∀ v . f v = k
fu-eq-mask t f [FuEqConst]

fu-eq-mask ti f aggregate ti
fu-eq-mask (ti-pad-combine n ti) f [FuEqPad]

fu-eq-mask ti (λv . g (f arbitrary) (h v))∧
u v . f (g u v) = u∧

u u ′ v . g u (g u ′ v) = g u v
∧

v . g (f v) v = v
fu-commutes (update-ti ti) g aggregate ti

fu-eq-mask (ti-typ-combine t f g fn ti) h [FuEqTyp]

fu-eq-mask ti (λv . g (f arbitrary) (h v))∧
u v . f (g u v) = u∧

u u ′ v . g u (g u ′ v) = g u v
∧

v . g (f v) v = v
fu-commutes (update-ti ti) g aggregate ti
fu-eq-mask (ti-typ-pad-combine t f g fn ti) h [FuEqTypPad]

fu-eq-mask ti f aggregate ti
fu-eq-mask (final-pad ti) f [FuEqFinal]

|bs| = size-td ti fu-eq-mask ti id

update-ti ti bs v = update-ti ti bs w [FuEqUpd]

205

with additional proof rules:

fu-commutes (update-ti (empty-typ-info tn)) f
[FCEmpty]

fu-commutes (update-ti ti) f
fu-commutes (update-ti (ti-pad-combine n ti)) f [FCPad]

fu-commutes (update-ti ti) h∧
v u u ′. g u (h u ′ v) = h u ′ (g u v)∧

u v . f (h u v) = f v
∧

u v . f (g u v) = u∧
u u ′ v . g u (g u ′ v) = g u v

∧
v . g (f v) v = v

fu-commutes (update-ti (ti-typ-combine t f g fn ti)) h [FCTyp]

fu-commutes (update-ti ti) h∧
v u u ′. g u (h u ′ v) = h u ′ (g u v)∧

u v . f (h u v) = f v
∧

u v . f (g u v) = u∧
u u ′ v . g u (g u ′ v) = g u v

∧
v . g (f v) v = v

fu-commutes (update-ti (ti-typ-pad-combine t f g fn ti)) h [FCTypPad]

Proof. The [Upd] proof obligation is discharged by first applying [FuEqUpd],
and reducing the type information with [FuEqFinal] and [FuEqTypPad]
until there is only the empty type information remaining. [FuEqConst]
completes a proof, with the existential instantiated with arbitrary. The intu-
ition here is that the mask is built up from id to λv . arbitrary as each field is
considered. The fu-commutes side-conditions are discharged by applying [FC-
TypPad] and [FCEmpty]. Other assumptions are handled automatically by
rewriting using the record generated simplification set. The entire process
should run in O(n2), as each field is compared against those preceding it in
the fu-commutes side-condition proof branch.

[FuEqUpd], [FuEqConst] and [FuEqPad] can be shown from defi-
nitions. [FuEqFinal] is a result of [FuEqPad]. For [FuEqTyp], in the
assumption we have a simple equality of update-ti terms for ti, but in the
goal the extended field results in a comparison of terms consisting of the
sequential composition of update-ti, for the new field, followed by update-ti
for ti. For the new field, the assumed access/update properties and adjust-ti
definition give that update-ti (adjust-ti t f g) bs v = g (update-ti t bs (f
v)) v. Then the goal and assumption have a similar form, differing in the
applied argument to g in the mask (the assumption has f arbitrary while
goal has an update-ti term. This can be reconciled by using [Upd] for α
where t ::α::mem-type itself and fu-commutes to swap the ti and new field
updates to allow the assumption to be used. [FuEqTypPad] then follows
from [FuEqTyp] and [FuEqPad].

206 APPENDIX C. TYPE COMBINATOR PROOF RULES

[FCEmpty] is trivial from the definitions. For [FCPadEmpty], we can
show:

fu-commutes (update-ti s) h
fu-commutes (update-ti t) h

fu-commutes (update-ti (extend-ti s t fn)) h [FCExtend]

and fu-commutes holds for the identity padding field access and update
functions. [FCTyp] is derived from [FCExtend] and update-ti (adjust-ti
t f g) bs v = g (update-ti t bs (f v)) v (as above). Here the additional
assumptions relating f, g and h provide commutativity for the extension field.
The proof rules are completed with [FCTypPad], following from [FCPad]
and [FCTyp].

[WFDesc]

Theorem C.0.5. The combinator proof rules for [WFDesc] are:

wf-desc (empty-typ-info tn)
[WFDescEmpty]

wf-desc ti
wf-desc (ti-pad-combine n ti) [WFDescPad]

wf-desc ti fn /∈ set (field-names-list ti)
wf-desc (ti-typ-combine t f g fn ti) [WFDescTyp]

wf-desc ti
fn /∈ set (field-names-list ti) hd fn 6= CHR ′′! ′′

wf-desc (ti-typ-pad-combine t f g fn ti) [WFDescTypPad]

wf-desc ti
wf-desc (final-pad ti) [WFDescFinal]

Proof. By unfolding definitions, wf-desc (map-td f t) = wf-desc t for adjust-ti
and s 6= [] =⇒ foldl op @ s xs /∈ set xs giving that padding field names do
not clash in ti-pad-combine. The hd fn 6= CHR ′′! ′′ assumption prevents the
new field name in ti-typ-pad-combine from conflicting with the name given to
any potential padding field.

[WFSizeDesc]

Theorem C.0.6. The combinator proof rules for [WFSizeDesc] are:

207

wf-size-desc ti
wf-size-desc (ti-typ-combine t f g fn ti) [WFSzTyp]

wf-size-desc ti 0 < n
wf-size-desc (ti-pad-combine n ti) [WFSzPad]

wf-size-desc ti
wf-size-desc (ti-typ-pad-combine t f g fn ti) [WFSzTypPad]

wf-size-desc (ti-typ-pad-combine t f g fn (empty-typ-info tn))
[WFSzEmpty]

wf-size-desc ti
wf-size-desc (final-pad ti) [WFSzFinal]

Proof. There is no rule for empty-typ-info on its own, as this has a zero size.
Instead [WFSzEmpty] is used when only a single field extension remains
after rule application.

The proofs are again by simplifying with definitions and wf-size-desc
(map-td f t) = wf-size-desc t for adjust-ti.

[WFFD]

Theorem C.0.7. The combinator proof rules for [WFFD] are:

wf-lf ∅
[WFLFEmpty]

wf-lf (lf-set ti [])
wf-lf (lf-set (ti-pad-combine n ti) []) [WFLFPad]

wf-lf (lf-set ti []) fn /∈ set (field-names-list ti)∧
v . g (f v) v = v

∧
w u v . g w (g u v) = g w v∧

w v . f (g w v) = w
g-ind (lf-set ti []) g f-ind f (lf-fd ‘ lf-set ti [])

fa-ind (lf-fd ‘ lf-set ti []) g
wf-lf (lf-set (ti-typ-combine t f g fn ti) []) [WFLFTyp]

208 APPENDIX C. TYPE COMBINATOR PROOF RULES

wf-lf (lf-set ti [])
fn /∈ set (field-names-list ti) hd fn 6= CHR ′′! ′′∧
v . g (f v) v = v

∧
w u v . g w (g u v) = g w v∧

w v . f (g w v) = w
g-ind (lf-set ti []) g f-ind f (lf-fd ‘ lf-set ti [])

fa-ind (lf-fd ‘ lf-set ti []) g
wf-lf (lf-set (ti-typ-pad-combine t f g fn ti) []) [WFLFTypPad]

wf-lf (lf-set ti [])
wf-lf (lf-set (final-pad ti) []) [WFLFFinal]

where

g-ind X g ≡ ∀ x . x ∈ field-update ‘ lf-fd ‘ X −→ fu-commutes x g
f-ind f X ≡ ∀ x bs v . x ∈ X −→ f (field-update x bs v) = f v
fa-ind X g ≡ ∀ x bs v . x ∈ X −→ field-access x (g bs v) = field-access x v

with proof rules:

g-ind ∅ g
[GIndEmpty]

g-ind (lf-set ti []) g
g-ind (lf-set (ti-pad-combine n ti) []) g [GIndPad]

g-ind (lf-set ti []) h∧
w u v . g w (h u v) = h u (g w v)∧

w v . f (h w v) = f v
∧

v . g (f v) v = v

g-ind (lf-set (ti-typ-combine t f g fn ti) []) h [GIndTyp]

g-ind (lf-set ti []) h∧
w u v . g w (h u v) = h u (g w v)∧

w v . f (h w v) = f v
∧

v . g (f v) v = v

g-ind (lf-set (ti-typ-pad-combine t f g fn ti) []) h [GIndTypPad]

f-ind f ∅
[FIndEmpty]

f-ind f (lf-fd ‘ lf-set t [])
f-ind f (lf-fd ‘ lf-set (ti-pad-combine n t) []) [FIndPad]

209

f-ind h (lf-fd ‘ lf-set ti [])∧
v w . h (g w v) = h v

∧
v . g (f v) v = v

f-ind h (lf-fd ‘ lf-set (ti-typ-combine t f g fn ti) []) [FIndTyp]

f-ind h (lf-fd ‘ lf-set ti [])∧
v w . h (g w v) = h v

∧
v . g (f v) v = v

f-ind h (lf-fd ‘ lf-set (ti-typ-pad-combine t f g fn ti) []) [FIndTypPad]

fa-ind ∅ g
[FAIndEmpty]

fa-ind (lf-fd ‘ lf-set ti []) g
fa-ind (lf-fd ‘ lf-set (ti-pad-combine n ti) []) g [FAIndPad]

fa-ind (lf-fd ‘ lf-set ti []) h∧
v w . f (h w v) = f v

∧
v . g (f v) v = v

fa-ind (lf-fd ‘ lf-set (ti-typ-combine t f g fn ti) []) h [FAIndTyp]

fa-ind (lf-fd ‘ lf-set ti []) h∧
v w . f (h w v) = f v

∧
v . g (f v) v = v

fa-ind (lf-fd ‘ lf-set (ti-typ-pad-combine t f g fn ti) []) h [FAIndTypPad]

Proof. [WFLFEmpty], [GIndEmpty], [FIndEmpty] and [FAIndEmpty]
are trivially true. As in earlier proofs in this appendix, the final-pad
and ti-typ-pad-combine derivations build on those for ti-typ-combine and
ti-pad-combine, which are the cases we now give.

[WFLFTyp] and [WFLFPad] essentially follow from the assumptions
giving local counterparts of wf-lf and the intermediate results:

wf-lf (lf-set t []) wf-lf (lf-set ti [])
wf-desc t fn /∈ set (field-names-list ti)

ti-ind (lf-set ti []) (lf-set t [])
wf-lf (lf-set (extend-ti ti t fn) []) [WFLFExtend]

wf-lf (lf-set t [])
∧

v . g (f v) v = v∧
bs bs ′ v . g bs (g bs ′ v) = g bs v∧

bs v . f (g bs v) = bs

wf-lf (lf-set (adjust-ti t f g) []) [WFLFUpdate]

where

210 APPENDIX C. TYPE COMBINATOR PROOF RULES

ti-ind X Y ≡
∀ x y . x ∈ X ∧ y ∈ Y −→

fu-commutes (field-update (lf-fd x)) (field-update (lf-fd y)) ∧
fa-fu-ind (lf-fd x) (lf-fd y) (lf-sz y) (lf-sz x) ∧
fa-fu-ind (lf-fd y) (lf-fd x) (lf-sz x) (lf-sz y)

[WFLFExtend] can be demonstrated by unfolding definitions and then:

lf-fn ‘ X ∩ lf-fn ‘ Y = ∅
wf-lf (X ∪ Y) = (wf-lf X ∧ wf-lf Y ∧ ti-ind X Y)

with simplification using the assumed properties. [WFLFUpdate] is a
consequence of:

t ∈ lf-set (adjust-ti ti f g) []
∧

v . g (f v) v = v

∃ s. s ∈ lf-set ti [] ∧ lf-fd t = update-desc f g (lf-fd s) [LFUpdate]

[FIndPad], [FIndTyp], [GIndPad], [GIndTyp], [FAIndPad] and
[FAIndTyp] are arrived at by a similar process using [LFUpdate].

Appendix D

Separation property proofs

theory Separation imports TypHeap begin

types (′a, ′b) map-assert = (′a ⇀ ′b) ⇒ bool
types heap-assert = (addr ,typ-tag option × byte) map-assert

constdefs sep-emp :: (′a, ′b) map-assert (�)
� ≡ (op =) empty

lemma sep-empD :
� s =⇒ s = empty
by (simp add : sep-emp-def)

lemma sep-emp-empty [simp]:
� empty
by (simp add : sep-emp-def)

constdefs sep-true :: (′a, ′b) map-assert
sep-true ≡ λs. True

lemma sep-true [simp]:
sep-true s
by (simp add : sep-true-def)

constdefs sep-false :: (′a, ′b) map-assert
sep-false ≡ λs. False

lemma sep-false [simp]:
¬ sep-false s
by (simp add : sep-false-def)

declare sep-false-def [symmetric, simp add]

211

212 APPENDIX D. SEPARATION PROPERTY PROOFS

constdefs singleton :: ′a::c-type ptr ⇒ ′a ⇒ heap-state
singleton p v ≡ lift-state (heap-update p v arbitrary ,ptr-tag p empty)

lemma singleton-dom:
dom (singleton p (v :: ′a::mem-type)) = {ptr-val p..+size-of TYPE (′a)}
by (force simp: singleton-def ptr-tag-dom-lift-state)

lemma singleton-s-valid :
g p =⇒ singleton p (v :: ′a::mem-type),g |=s p
by (simp add : singleton-def ptr-tag-s-valid)

lemma singleton-lift-typ-heap-Some:
g p =⇒ lift-typ-heap g (singleton p v) p = Some (v :: ′a::mem-type)
by (simp add : singleton-def liftτ liftτ -heap-update ptr-tag-h-t-valid)

constdefs sep-map :: ′a::c-type ptr ⇒ ′a ptr-guard ⇒ ′a ⇒ heap-assert
(- 7→- - [150 ,150 ,150] 150)
p 7→g v ≡ λs. lift-typ-heap g s p = Some v ∧

dom s = {ptr-val (p:: ′a ptr)..+size-of TYPE (′a)}

lemma sep-map-g :
(p 7→g v) s =⇒ g p
by (force simp: sep-map-def dest : lift-typ-heap-g)

lemma sep-map-singleton:
g p =⇒ ((p:: ′a::mem-type ptr) 7→g v) (singleton p v)
by (simp add : sep-map-def singleton-lift-typ-heap-Some singleton-dom)

lemma sep-mapD :
(p 7→g v) s =⇒ lift-typ-heap g s p = Some v ∧

dom s = {ptr-val (p:: ′a::c-type ptr)..+size-of TYPE (′a)}
by (simp add : sep-map-def)

lemma sep-map-lift-typ-heapD :
(p 7→g v) s =⇒ lift-typ-heap g s p = Some (v :: ′a::c-type)
by (simp add : sep-map-def)

lemma sep-map-dom:
(p 7→g (v :: ′a::c-type)) s =⇒ dom s = {ptr-val p..+size-of TYPE (′a)}
by (simp add : sep-map-def)

lemma sep-map-inj :
[[(p 7→g (v :: ′a::c-type)) s; (p 7→h v ′) s]] =⇒ v = v ′

by (clarsimp simp: sep-map-def lift-typ-heap-if split : split-if-asm)

constdefs sep-map-any :: ′a ::c-type ptr ⇒ ′a ptr-guard ⇒ heap-assert
(- 7→- − [150 ,150] 150)
p 7→g − ≡ λs. ∃ v . (p 7→g v) s

213

lemma sep-map-anyI [simp]:
(p 7→g v) s =⇒ (p 7→g −) s
by (force simp: sep-map-any-def)

lemma sep-map-anyD :
(p 7→g −) s =⇒ ∃ v . (p 7→g v) s
by (force simp: sep-map-any-def)

lemma sep-map-any-singleton:
g i =⇒ (i 7→g −) (singleton i (v :: ′a::mem-type))
by (unfold sep-map-any-def , rule-tac x=v in exI , erule sep-map-singleton)

constdefs heap-disj :: (′a ⇀ ′b) ⇒ (′a ⇀ ′b) ⇒ bool (- ⊥ - [90 ,90] 980)
s0 ⊥ s1 ≡ dom s0 ∩ dom s1 = {}

lemma heap-disj-empty-right [simp]:
s ⊥ empty
by (simp add : heap-disj-def)

lemma heap-disj-com:
s0 ⊥ s1 = s1 ⊥ s0

by (simp add : heap-disj-def , fast)

lemma heap-disj-dom:
s0 ⊥ s1 =⇒ dom s0 ∩ dom s1 = {}
by (simp add : heap-disj-def)

lemma proj-h-heap-merge:
proj-h (s ++ t) = (λx . if x ∈ dom t then proj-h t x else proj-h s x)
by (force simp: proj-h-def intro: ext split : option.splits)

lemma proj-d-heap-merge:
proj-d (s ++ t) = proj-d s ++ proj-d t
by (force simp: proj-d-def map-add-def intro: ext split : option.splits)

lemma s-valid-heap-merge-right :
s1,g |=s p =⇒ s0 ++ s1,g |=s p
by (simp add : s-valid-def h-t-valid-def valid-footprint-def

proj-d-heap-merge)

lemma heap-list-s-heap-merge-right ′:
[[s1,g |=s (p:: ′a::c-type ptr); n ≤ size-of TYPE (′a)]] =⇒

heap-list-s (s0 ++ s1) n (ptr-val p + of-nat (size-of TYPE (′a) − n))
= heap-list-s s1 n (ptr-val p + of-nat (size-of TYPE (′a) − n))

proof (induct n)
case 0 thus ?case by (simp add : heap-list-s-def)

next
case (Suc n)

214 APPENDIX D. SEPARATION PROPERTY PROOFS

hence ptr-val p + (of-nat (size-of TYPE (′a) − Suc n)) ∈ dom s1

by − (drule-tac x=size-of TYPE (′a) − Suc n in s-valid-Some, auto)
with Suc show ?case
by (simp add : heap-list-s-def proj-h-heap-merge compare-rls)

qed

lemma heap-list-s-heap-merge-right :
s1,g |=s p =⇒ heap-list-s (s0 ++ s1) (size-of TYPE (′a)) (ptr-val p) =

heap-list-s s1 (size-of TYPE (′a)) (ptr-val (p:: ′a::c-type ptr))
by (force dest : heap-list-s-heap-merge-right ′)

lemma lift-typ-heap-heap-merge-right :
lift-typ-heap g s1 p = Some v =⇒

lift-typ-heap g (s0 ++ s1) (p:: ′a::c-type ptr) = Some v
by (force simp: lift-typ-heap-if s-valid-heap-merge-right

heap-list-s-heap-merge-right split : split-if-asm)

lemma lift-typ-heap-heap-merge-sep-map:
(p 7→g v) s1 =⇒ lift-typ-heap g (s0 ++ s1) p = Some (v :: ′a::c-type)
by − (drule sep-map-lift-typ-heapD , erule lift-typ-heap-heap-merge-right)

lemma heap-merge-com:
s0 ⊥ s1 =⇒ s0 ++ s1 = s1 ++ s0

by (drule heap-disj-dom, rule map-add-comm, force)

declare map-add-assoc [simp del]

lemma heap-merge-ac:
s0 ⊥ s1 =⇒ s0 ++ (s1 ++ s2) = s1 ++ (s0 ++ s2)
by (simp add : heap-merge-com heap-disj-com map-add-assoc)

lemmas heap-merge = map-add-assoc [symmetric] heap-merge-com heap-disj-com
heap-merge-ac

lemma heap-merge-disj :
s0 ⊥ s1 ++ s2 = (s0 ⊥ s1 ∧ s0 ⊥ s2)
by (simp add : heap-disj-def , fast)

constdefs sep-conj :: (′a, ′b) map-assert ⇒ (′a, ′b) map-assert ⇒ (′a, ′b) map-assert

(infixr ∧∗ 90)
P ∧∗ Q ≡ λs. ∃ s0 s1. s0 ⊥ s1 ∧ s = s1 ++ s0 ∧ P s0 ∧ Q s1

lemma sep-conjI :
[[P s0; Q s1; s0 ⊥ s1; s = s1 ++ s0]] =⇒ (P ∧∗ Q) s
by (force simp: sep-conj-def)

lemma sep-conjD :
(P ∧∗ Q) s =⇒ ∃ s0 s1. s0 ⊥ s1 ∧ s = s1 ++ s0 ∧ P s0 ∧ Q s1

215

by (force simp: sep-conj-def)

constdefs sep-map ′ :: ′a::c-type ptr ⇒ ′a ptr-guard ⇒ ′a ⇒ heap-assert
(- ↪→- - [150 ,150 ,150] 150)
p ↪→g v ≡ (p 7→g v) ∧∗ sep-true

lemma sep-map ′I :
((p 7→g v) ∧∗ sep-true) s =⇒ (p ↪→g v) s
by (simp add : sep-map ′-def)

lemma sep-map ′D :
(p ↪→g v) s =⇒ ((p 7→g v) ∧∗ sep-true) s
by (simp add : sep-map ′-def)

lemma sep-map ′-g :
(p ↪→g v) s =⇒ g p
by (force simp add : sep-map ′-def dest : sep-conjD sep-map-g)

lemma sep-conj-sep-true:
P s =⇒ (P ∧∗ sep-true) s
by (erule-tac s1=empty in sep-conjI , simp+)

lemma sep-map-sep-map ′ [simp]:
(p 7→g v) s =⇒ (p ↪→g v) s
by (unfold sep-map ′-def , erule sep-conj-sep-true)

lemma sep-conj-true [simp]:
sep-true ∧∗ sep-true = sep-true
by (rule ext , simp, rule-tac s0=x and s1=empty in sep-conjI , auto)

lemma sep-conj-assocD :
assumes l : ((P ∧∗ Q) ∧∗ R) s
shows (P ∧∗ (Q ∧∗ R)) s

proof −
from l obtain s ′ s2 where disj-o: s ′ ⊥ s2 and merge-o: s = s2 ++ s ′ and

l-o: (P ∧∗ Q) s ′ and r-o: R s2 by (force dest : sep-conjD)
then obtain s0 s1 where disj-i : s0 ⊥ s1 and merge-i : s ′ = s1 ++ s0 and

l-i : P s0 and r-i : Q s1 by (force dest : sep-conjD)
from disj-o disj-i merge-i have disj-i ′: s1 ⊥ s2

by (force simp: heap-merge heap-merge-disj)
with r-i and r-o have r-o ′: (Q ∧∗ R) (s2 ++ s1) by (fast intro: sep-conjI)
from disj-o merge-i disj-i disj-i ′ have s0 ⊥ s2 ++ s1

by (force simp: heap-merge heap-merge-disj)
with r-o ′ l-i have (P ∧∗ (Q ∧∗ R)) ((s2 ++ s1) ++ s0)
by (force intro: sep-conjI)

moreover from merge-o merge-i disj-i disj-i ′ have s = ((s2 ++ s1) ++ s0)
by (simp add : map-add-assoc [symmetric])

ultimately show ?thesis by simp
qed

216 APPENDIX D. SEPARATION PROPERTY PROOFS

lemma sep-conj-com [simp]:
P ∧∗ Q = Q ∧∗ P
by (force simp: heap-merge intro: ext sep-conjI dest : sep-conjD)

lemma sep-conj-false-right [simp]:
P ∧∗ sep-false = sep-false
by (force dest : sep-conjD intro: ext)

lemma sep-conj-false-left [simp]:
sep-false ∧∗ P = sep-false
by simp

lemma sep-conj-comD :
(P ∧∗ Q) s =⇒ (Q ∧∗ P) s
by simp

lemma exists-left :
(Q ∧∗ (λs. ∃ x . P x s)) = ((λs. ∃ x . P x s) ∧∗ Q) by simp

lemma sep-conj-assoc [simp]:
(P ∧∗ Q) ∧∗ R = P ∧∗ (Q ∧∗ R) (is ?x = ?y)

proof (rule ext , rule)
fix s
assume ?x s
thus ?y s by − (erule sep-conj-assocD)

next
fix s
assume ?y s
hence ((R ∧∗ Q) ∧∗ P) s by simp
hence (R ∧∗ (Q ∧∗ P)) s by − (erule sep-conj-assocD)
thus ?x s by simp

qed

lemma sep-conj-left-com [simp]:
P ∧∗ (Q ∧∗ R) = Q ∧∗ (P ∧∗ R) (is ?x = ?y)

proof −
have ?x = (Q ∧∗ R) ∧∗ P by simp
also have . . . = Q ∧∗ (R ∧∗ P) by (subst sep-conj-assoc, simp)
finally show ?thesis by simp

qed

lemma sep-conj-empty :
P ∧∗ � = P

proof (rule ext , rule)

217

fix x
assume (P ∧∗ �) x
thus P x by (force simp: sep-emp-def dest : sep-conjD)

next
fix x
assume P x
moreover have � empty by simp
ultimately show (P ∧∗ �) x by − (erule (1) sep-conjI , auto)

qed

lemma sep-conj-empty ′ [simp]:
� ∧∗ P = P
by (simp add : sep-conj-empty)

lemma sep-conj-true-P [simp]:
sep-true ∧∗ (sep-true ∧∗ P) = (sep-true ∧∗ P)
by simp

lemma sep-map ′-unfold :
(p ↪→g v) = ((p ↪→g v) ∧∗ sep-true)
by (simp add : sep-map ′-def)

lemma sep-conj-disj :
((λs. P s ∨ Q s) ∧∗ R) s = ((P ∧∗ R) s ∨ (Q ∧∗ R) s) (is ?x = (?y ∨ ?z))

proof rule
assume ?x
then obtain s0 s1 where s0 ⊥ s1 and s = s1 ++ s0 and P s0 ∨ Q s0 and

R s1

by − (drule sep-conjD , auto)
moreover hence ¬ ?z =⇒ ¬ Q s0

by − (clarsimp, erule notE , erule (2) sep-conjI , simp)
ultimately show ?y ∨ ?z by (force intro: sep-conjI)

next
have ?y =⇒ ?x
by (force simp: heap-merge intro: sep-conjI dest : sep-conjD)

moreover have ?z =⇒ ?x
by (force simp: heap-merge intro: sep-conjI dest : sep-conjD)

moreover assume ?y ∨ ?z
ultimately show ?x by fast

qed

lemma sep-conj-conj :
((λs. P s ∧ Q s) ∧∗ R) s =⇒ (P ∧∗ R) s ∧ (Q ∧∗ R) s
by (force intro: sep-conjI dest !: sep-conjD)

lemma sep-conj-exists:
((λs. ∃ x . P x s) ∧∗ Q) s = (∃ x . (P x ∧∗ Q) s)
by (force intro: sep-conjI dest : sep-conjD)

218 APPENDIX D. SEPARATION PROPERTY PROOFS

lemma sep-conj-forall :
((λs. ∀ x . P x s) ∧∗ Q) s =⇒ (P x ∧∗ Q) s
by (force intro: sep-conjI dest : sep-conjD)

lemma sep-conj-impl :
[[(P ∧∗ Q) s;

∧
s. P s =⇒ P ′ s;

∧
s. Q s =⇒ Q ′ s]] =⇒ (P ′ ∧∗ Q ′) s

by (force intro: sep-conjI dest : sep-conjD)

lemma sep-conj-sep-true-left :
(P ∧∗ Q) s =⇒ (sep-true ∧∗ Q) s
by (erule sep-conj-impl , simp+)

lemma sep-conj-sep-true-right :
(P ∧∗ Q) s =⇒ (P ∧∗ sep-true) s
by (subst (asm) sep-conj-com, drule sep-conj-sep-true-left , simp)

lemma sep-globalise:
[[(P ∧∗ R) s; (

∧
s. P s =⇒ Q s)]] =⇒ (Q ∧∗ R) s

by (fast elim: sep-conj-impl)

constdefs sep-impl :: (′a, ′b) map-assert ⇒ (′a, ′b) map-assert ⇒
(′a, ′b) map-assert
(infixr −→∗ 85)
x −→∗ y ≡ λs. ∀ s ′. s ⊥ s ′ ∧ x s ′ −→ y (s ++ s ′)

lemma sep-implI :
∀ s ′. s ⊥ s ′ ∧ x s ′ −→ y (s ++ s ′) =⇒ (x −→∗ y) s
by (force simp: sep-impl-def)

lemma sep-implD :
(x −→∗ y) s =⇒ ∀ s ′. s ⊥ s ′ ∧ x s ′ −→ y (s ++ s ′)
by (force simp: sep-impl-def)

lemma sep-impl-sep-true [simp]:
P −→∗ sep-true = sep-true
by (force intro: sep-implI ext)

lemma sep-impl-sep-false [simp]:
sep-false −→∗ P = sep-true
by (force intro: sep-implI ext)

lemma sep-impl-sep-true-P :
(sep-true −→∗ P) s =⇒ P s
by (auto dest !: sep-implD , drule-tac x=empty in spec, simp)

lemma sep-impl-sep-true-false [simp]:
sep-true −→∗ sep-false = sep-false
by (force intro: ext dest : sep-impl-sep-true-P)

219

lemma sep-conj-sep-impl :
[[P s;

∧
s. (P ∧∗ Q) s =⇒ R s]] =⇒ (Q −→∗ R) s

proof (rule sep-implI , clarsimp)
fix s ′

assume P s and s ⊥ s ′ and Q s ′

hence (P ∧∗ Q) (s ++ s ′) by (force simp: heap-merge intro: sep-conjI)
moreover assume

∧
s. (P ∧∗ Q) s =⇒ R s

ultimately show R (s ++ s ′) by simp
qed

lemma sep-conj-sep-impl2 :
[[(P ∧∗ Q) s;

∧
s. P s =⇒ (Q −→∗ R) s]] =⇒ R s

by (force simp: heap-merge dest : sep-implD sep-conjD)

constdefs sep-map ′-any :: ′a ::c-type ptr ⇒ ′a ptr-guard ⇒ heap-assert
(- ↪→- − [150] 150)
p ↪→g − ≡ λs. ∃ x . (p ↪→g x) s

lemma sep-map ′-anyI [simp]:
(p ↪→g v) s =⇒ (p ↪→g −) s
by (force simp: sep-map ′-any-def)

lemma sep-map ′-anyD :
(p ↪→g −) s =⇒ ∃ v . (p ↪→g v) s
by (force simp: sep-map ′-any-def)

lemma sep-map ′-any-unfold :
(i ↪→g −) = ((i ↪→g −) ∧∗ sep-true)
by (rule ext , simp add : sep-map ′-any-def)

(subst sep-map ′-unfold , subst sep-conj-com, subst sep-conj-exists, simp)

lemma sep-map-sep-map ′-any [simp]:
(p 7→g v) s =⇒ (p ↪→g −) s
by (rule-tac v=v in sep-map ′-anyI , simp)

lemma map-add-right-dom-eq :
[[x ++ y = x ′ ++ y ′; dom y = dom y ′]] =⇒ y = y ′

by (unfold map-add-def , rule ext , rule ccontr ,
drule-tac x=xa in fun-cong , clarsimp split : option.splits,
drule sym, drule sym, force+)

lemma sep-map ′-inj :
assumes pv : (p ↪→g (v :: ′a::c-type)) s and pv ′: (p ↪→h v ′) s
shows v = v ′

proof −
from pv pv ′ obtain s0 s1 s0

′ s1
′ where pv-m: (p 7→g v) s1 and

pv ′-m: (p 7→h v ′) s1
′ and s0 ++ s1 = s0

′ ++ s1
′

by (force simp: sep-map ′-def heap-merge dest !: sep-conjD)

220 APPENDIX D. SEPARATION PROPERTY PROOFS

hence s1 = s1
′ by (force dest !: map-add-right-dom-eq sep-map-dom)

with pv-m pv ′-m show ?thesis by (force dest : sep-map-inj)
qed

lemma sep-map ′-any-dom:
((p:: ′a::mem-type ptr) ↪→g −) s =⇒ ptr-val p ∈ dom s
by (clarsimp simp: sep-map ′-def sep-map ′-any-def dest !: sep-conjD)

(subgoal-tac s1 (ptr-val p) 6= None, force simp: heap-merge,
force dest : sep-map-dom)

lemma sep-map ′-dom:
(p ↪→g (v :: ′a::mem-type)) s =⇒ ptr-val p ∈ dom s
by (drule sep-map ′-anyI , erule sep-map ′-any-dom)

lemma sep-map ′-lift-typ-heapD :
(p ↪→g v) s =⇒ lift-typ-heap g s p = Some (v :: ′a::c-type)
by (force simp: sep-map ′-def heap-merge dest : sep-conjD

lift-typ-heap-heap-merge-sep-map)

lemma sep-map ′-merge:
assumes map ′-v : (p ↪→g v) s0 ∨ (p ↪→g v) s1 and disj : s0 ⊥ s1

shows (p ↪→g v) (s0 ++ s1) (is ?x)
proof cases
assume (p ↪→g v) s0

with disj show ?x
by (clarsimp simp: sep-map ′-def dest !: sep-conjD)

(rule-tac s1=s1
′ and s0=s0 ++ s1 in sep-conjI ,

auto simp: heap-merge-disj heap-merge)
next
assume ¬ (p ↪→g v) s0

with map ′-v have (p ↪→g v) s1 by simp
with disj show ?x
by (clarsimp simp: sep-map ′-def dest !: sep-conjD)

(rule-tac s1=s1 and s0=s0 ++ s0
′ in sep-conjI ,

auto simp: heap-merge-disj heap-merge)
qed

lemma sep-conj-overlapD :
[[(P ∧∗ Q) s;

∧
s. P s =⇒ ((p:: ′a::mem-type ptr) ↪→g −) s;∧

s. Q s =⇒ (p ↪→h −) s]] =⇒ False
by (drule sep-conjD , clarsimp simp: heap-disj-def)

(subgoal-tac ptr-val p ∈ dom s0 ∧ ptr-val p ∈ dom s1,
auto intro!: sep-map ′-any-dom)

lemma sep-no-skew :
[[(p ↪→g v) s; (q ↪→h w) s]] =⇒

p=q ∨ {ptr-val (p:: ′a::c-type ptr)..+size-of TYPE (′a)} ∩
{ptr-val q ..+size-of TYPE (′a)} = {}

by (force simp: lift-typ-heap-if s-valid-def

221

dest : h-t-valid-neq-disjoint sep-map ′-lift-typ-heapD
split : split-if-asm)

lemma sep-no-skew2 :
[[(p ↪→g v) s; (q ↪→h w) s; typ-tag-t TYPE (′a) 6= typ-tag-t TYPE (′b)]]

=⇒ {ptr-val (p:: ′a::c-type ptr)..+size-of TYPE (′a)} ∩
{ptr-val (q :: ′b::c-type ptr)..+size-of TYPE (′b)} = {}

by (drule sep-map ′-lift-typ-heapD)+
(clarsimp simp: lift-typ-heap-if s-valid-def split : split-if-asm,
frule (1) h-t-valid-neq-disjoint ,
auto simp: h-t-valid-def valid-footprint-def)

lemma sep-conj-impl-same:
(P ∧∗ (P −→∗ Q)) s =⇒ Q s
by (drule sep-conjD , auto simp: heap-disj-com dest : sep-implD)

constdefs pure :: (′a, ′b) map-assert ⇒ bool
pure P ≡ ∀ s s ′. P s = P s ′

lemma pure-sep-true:
pure sep-true
by (simp add : pure-def)

lemma pure-sep-false:
pure sep-false
by (simp add : pure-def)

lemma pure-split :
pure P = (P = sep-true ∨ P = sep-false)
by (force simp: pure-def intro!: ext)

lemma pure-sep-conj :
[[pure P ; pure Q]] =⇒ pure (P ∧∗ Q)
by (force simp: pure-split)

lemma pure-sep-impl :
[[pure P ; pure Q]] =⇒ pure (P −→∗ Q)
by (force simp: pure-split)

lemma pure-for-all :
(
∧

x . pure (P x)) =⇒ pure (λs. ∀ x . P x s)
by (auto simp: pure-def)

lemma pure-exists:
(
∧

x . pure (P x)) =⇒ pure (λs. ∃ x . P x s)
by (auto simp: pure-def)

222 APPENDIX D. SEPARATION PROPERTY PROOFS

lemma pure-conj-sep-conj :
[[(λs. P s ∧ Q s) s; pure P ∨ pure Q]] =⇒ (P ∧∗ Q) s
by (force simp: pure-split intro: sep-conj-sep-true)

lemma pure-sep-conj-conj :
[[(P ∧∗ Q) s; pure P ; pure Q]] =⇒ (λs. P s ∧ Q s) s
by (force simp: pure-split)

lemma pure-conj-sep-conj-assoc:
pure P =⇒ (λs. P s ∧ Q s) ∧∗ R = (λs. P s ∧ (Q ∧∗ R) s)
by (force simp: pure-split)

lemma pure-sep-impl-impl :
[[(P −→∗ Q) s; pure P]] =⇒ P s −→ Q s
by (force simp: pure-split dest : sep-impl-sep-true-P)

lemma pure-impl-sep-impl :
[[P s −→ Q s; pure P ; pure Q]] =⇒ (P −→∗ Q) s
by (force simp: pure-split)

constdefs intuitionistic :: (′a, ′b) map-assert ⇒ bool
intuitionistic P ≡ ∀ s s ′. P s ∧ s ⊆m s ′ −→ P s ′

lemma intuitionisticI :
(
∧

s s ′. [[P s; s ⊆m s ′]] =⇒ P s ′) =⇒ intuitionistic P
by (unfold intuitionistic-def , fast)

lemma intuitionisticD :
[[intuitionistic P ; P s; s ⊆m s ′]] =⇒ P s ′

by (unfold intuitionistic-def , fast)

lemma pure-intuitionistic:
pure P =⇒ intuitionistic P
by (clarsimp simp: intuitionistic-def pure-def , fast)

lemma None-com:
(None = x) = (x = None)
by fast

lemma Some-com:
(Some y = x) = (x = Some y)
by fast

lemma map-le-restrict :
s ⊆m s ′ =⇒ s = s ′ |‘ dom s
by (force simp: map-le-def restrict-map-def None-com intro: ext)

223

lemma map-add-restrict-comp-right [simp]:
(s |‘ P ++ s |‘ (UNIV − P)) = s
by (force simp: map-add-def restrict-map-def split : option.splits intro: ext)

lemma map-add-restrict-comp-left [simp]:
(s |‘ (UNIV − P) ++ s |‘ P) = s
by (subst map-add-comm, auto)

lemma heap-disj-comp [simp]:
s ⊥ s ′ |‘ (UNIV − dom s)
by (force simp: heap-disj-def)

lemma map-le-dom-restrict-add :
s ′ ⊆m s =⇒ s |‘ (dom s − dom s ′) ++ s ′ = s
by (auto simp: None-com map-add-def restrict-map-def map-le-def

split : option.splits
intro!: ext)

(force simp: Some-com)+

lemma intuitionistic-sep-conj-sep-true:
intuitionistic (P ∧∗ sep-true)
by (rule intuitionisticI , drule sep-conjD , clarsimp)

(erule-tac s1=s ′|‘ (dom s ′ − dom s0) in sep-conjI , simp,
force simp: heap-disj-def ,
force intro: map-le-dom-restrict-add map-add-le-mapE sym)

lemma intuitionistic-sep-map ′:
intuitionistic (p ↪→g v)
by (unfold sep-map ′-def)

(rule intuitionistic-sep-conj-sep-true)

lemma heap-disj-map-le:
[[s ⊆m s ′; s ′ ⊥ s ′a]] =⇒ s ⊥ s ′a
by (force simp: heap-disj-def map-le-def)

lemma intuitionistic-sep-impl-sep-true:
intuitionistic (sep-true −→∗ P)

proof (rule intuitionisticI , rule sep-implI , clarsimp)
fix s s ′ s ′a
assume (sep-true −→∗ P) s and le: s ⊆m s ′ and s ′ ⊥ s ′a
moreover hence P (s ++ (s ′ |‘ (dom s ′ − dom s) ++ s ′a))
by − (drule sep-implD ,

drule-tac x=s ′|‘ (dom s ′ − dom s) ++ s ′a in spec,
force simp: heap-disj-def dest : heap-disj-map-le)

moreover have dom s ∩ dom (s ′ |‘ (dom s ′ − dom s)) = {} by force
ultimately show P (s ′ ++ s ′a)
by (force simp: map-le-dom-restrict-add map-add-assoc dest !: map-add-comm)

qed

224 APPENDIX D. SEPARATION PROPERTY PROOFS

lemma intuitionistic-conj :
[[intuitionistic P ; intuitionistic Q]] =⇒ intuitionistic (λs. P s ∧ Q s)
by (force intro: intuitionisticI dest : intuitionisticD)

lemma intuitionistic-disj :
[[intuitionistic P ; intuitionistic Q]] =⇒ intuitionistic (λs. P s ∨ Q s)
by (force intro: intuitionisticI dest : intuitionisticD)

lemma intuitionistic-forall :
(
∧

x . intuitionistic (P x)) =⇒ intuitionistic (λs. ∀ x . P x s)
by (force intro: intuitionisticI dest : intuitionisticD)

lemma intuitionistic-exists:
(
∧

x . intuitionistic (P x)) =⇒ intuitionistic (λs. ∃ x . P x s)
by (force intro: intuitionisticI dest : intuitionisticD)

lemma map-le-dom-subset-restrict :
[[s ′ ⊆m s; dom s ′ ⊆ P]] =⇒ s ′ ⊆m (s |‘ P)
by (force simp: restrict-map-def map-le-def)

lemma intuitionistic-sep-conj :
intuitionistic (P ::(′a, ′b) map-assert) =⇒ intuitionistic (P ∧∗ Q)

proof (rule intuitionisticI , drule sep-conjD , clarsimp)
fix s ′ s0 s1

assume le: s1 ++ s0 ⊆m s ′ and disj : s0 ⊥ (s1:: ′a ⇀ ′b)
hence le-restrict : s0 ⊆m s ′ |‘ (dom s ′ − dom s1)
by − (rule map-le-dom-subset-restrict , erule map-add-le-mapE ,

force simp: heap-disj-def dest : map-le-implies-dom-le
map-add-le-mapE)

moreover assume intuitionistic P and P s0

ultimately have P (s ′ |‘ (dom s ′ − dom s1))
by − (erule (2) intuitionisticD)

moreover from le-restrict have s ′ |‘ (dom s ′ − dom s1) ⊥ s1

by (force simp: heap-disj-def dest : map-le-implies-dom-le)
moreover from le disj have s1 ⊆m s ′

by (subst (asm) map-add-comm, force simp: heap-disj-def)
(erule map-add-le-mapE)

hence s ′ = s1 ++ s ′ |‘ (dom s ′ − dom s1)
by (subst map-add-comm, force simp: heap-disj-def ,

force simp: map-le-dom-restrict-add map-add-comm heap-disj-def)
moreover assume Q s1

ultimately show (P ∧∗ Q) s ′

by − (erule (3) sep-conjI)
qed

lemma intuitionistic-sep-impl :
intuitionistic (Q ::(′a, ′b) map-assert) =⇒ intuitionistic (P −→∗ Q)

proof (rule intuitionisticI , rule sep-implI , clarsimp)
fix s s ′ s ′a

225

assume le: (s:: ′a ⇀ ′b) ⊆m s ′ and disj : s ′ ⊥ s ′a
moreover hence s ++ s ′a ⊆m s ′ ++ s ′a
proof −
from le disj have s ⊆m s ++ s ′a
by (subst heap-merge-com)

(force simp: heap-disj-def dest : map-le-implies-dom-le, simp)
with le show ?thesis
by − (rule map-add-le-mapI , subst heap-merge-com,

auto elim: map-le-trans)
qed
moreover assume (P −→∗ Q) s and intuitionistic Q and P s ′a
ultimately show Q (s ′ ++ s ′a)
by (fast elim: heap-disj-map-le intuitionisticD dest : sep-implD)

qed

lemma strongest-intuitionistic:
¬ (∃Q . (∀ s. (Q s −→ (P ∧∗ sep-true) s)) ∧ intuitionistic Q ∧

Q 6= (P ∧∗ sep-true) ∧ (∀ s. P s −→ Q s))
by (force intro!: ext dest !: sep-conjD intuitionisticD)

lemma weakest-intuitionistic:
¬ (∃Q . (∀ s. ((sep-true −→∗ P) s −→ Q s)) ∧ intuitionistic Q ∧

Q 6= (sep-true −→∗ P) ∧ (∀ s. Q s −→ P s))
by (auto intro!: ext sep-implI)

(drule-tac s=x and s ′=x ++ s ′ in intuitionisticD , auto,
subst heap-merge-com, simp+)

lemma intuitionistic-sep-conj-sep-true-P :
[[(P ∧∗ sep-true) s; intuitionistic P]] =⇒ P s
by (force dest : intuitionisticD sep-conjD)

lemma intuitionistic-sep-conj-sep-true-simp:
intuitionistic P =⇒ P ∧∗ sep-true = P
by (fast intro: sep-conj-sep-true ext elim: intuitionistic-sep-conj-sep-true-P)

lemma intuitionistic-sep-impl-sep-true-P :
[[P s; intuitionistic P]] =⇒ (sep-true −→∗ P) s
by (force simp: heap-merge-com intro: sep-implI dest : intuitionisticD)

lemma intuitionistic-sep-impl-sep-true-simp:
intuitionistic P =⇒ (sep-true −→∗ P) = P
by (fast intro: ext

elim: sep-impl-sep-true-P intuitionistic-sep-impl-sep-true-P)

constdefs dom-exact :: (′a, ′b) map-assert ⇒ bool
dom-exact P ≡ ∀ s s ′. P s ∧ P s ′ −→ dom s = dom s ′

226 APPENDIX D. SEPARATION PROPERTY PROOFS

lemma dom-exactI :
(
∧

s s ′. [[P s; P s ′]] =⇒ dom s = dom s ′) =⇒ dom-exact P
by (unfold dom-exact-def , fast)

lemma dom-exactD :
[[dom-exact P ; P s0; P s1]] =⇒ dom s0 = dom s1

by (unfold dom-exact-def , fast)

lemma dom-exact-sep-conj :
[[dom-exact P ; dom-exact Q]] =⇒ dom-exact (P ∧∗ Q)
by (rule dom-exactI , (drule sep-conjD)+, clarsimp)

(drule (2) dom-exactD , drule (2) dom-exactD , simp)

lemma dom-exact-forall :
dom-exact (P x) =⇒ dom-exact (λs. ∀ x . P x s)
by (rule dom-exactI , (drule-tac x=x in spec)+)

(force dest : dom-exactD)

lemma heap-merge-dom-exact :
assumes merge: a ++ b = c ++ d and d : dom a = dom c and

ab-disj : a ⊥ b and cd-disj : c ⊥ d
shows b = d

proof (rule ext)
fix x
from merge have merge-x : (a ++ b) x = (c ++ d) x by simp
with d ab-disj cd-disj show b x = d x
by − (case-tac b x , case-tac d x , simp, fastsimp simp: heap-disj-def ,

case-tac d x , clarsimp, simp add : Some-com,
force simp: heap-disj-def , simp)

qed

lemma dom-exact-sep-conj-conj :
[[(P ∧∗ R) s; (Q ∧∗ R) s; dom-exact R]] =⇒ ((λs. P s ∧ Q s) ∧∗ R) s
by ((drule sep-conjD)+, clarsimp, rule sep-conjI , fast , rule conjI)

(fast , drule (2) dom-exactD , drule (1) heap-merge-dom-exact ,
auto simp: heap-merge)

lemma sep-conj-conj-simp:
dom-exact R =⇒ ((λs. P s ∧ Q s) ∧∗ R) = (λs. (P ∧∗ R) s ∧ (Q ∧∗ R) s)
by (fast intro!: sep-conj-conj dom-exact-sep-conj-conj ext)

constdefs dom-eps :: (′a, ′b) map-assert ⇒ ′a set (ι -)
ι P ≡ THE x . ∀ s. P s −→ x = dom s

syntax
restrict-map :: (′a ⇀ ′b) ⇒ ′a set ⇒ (′a ⇀ ′b) (-|- [90 ,91] 90)

lemma map-add-restrict :
(s0 ++ s1)|P = ((s0|P) ++ (s1|P))

227

by (force simp: map-add-def restrict-map-def intro: ext)

lemma dom-epsI :
[[dom-exact P ; P s; x ∈ dom s]] =⇒ x ∈ ι P
by (unfold dom-eps-def , rule-tac a=dom s in theI2)

(fastsimp simp: dom-exact-def , clarsimp+)

lemma dom-epsD [rule-format]:
[[dom-exact P ; P s]] =⇒ x ∈ ι P −→ x ∈ dom s
by (unfold dom-eps-def , rule-tac a=dom s in theI2)

(fastsimp simp: dom-exact-def , clarsimp+)

lemma dom-eps:
[[dom-exact P ; P s]] =⇒ dom s = ι P
by (force intro: dom-epsI dest : dom-epsD)

lemma map-restrict-dom-exact :
[[dom-exact P ; P s]] =⇒ s|ι P = s
by (force simp: restrict-map-def None-com intro: dom-epsI ext)

lemma map-restrict-dom-exact2 :
[[dom-exact P ; P s0; s0 ⊥ s1]] =⇒ (s1|ι P) = empty
by (force simp: restrict-map-def heap-disj-def intro: ext dest : dom-epsD)

lemma map-restrict-dom-exact3 :
[[dom-exact P ; P s]] =⇒ s|(UNIV − ι P) = empty
by (force simp: restrict-map-def intro: ext dest : dom-epsI)

lemma [simp]:
option-case None Some P = P
by (simp split : option.splits)

lemma restrict-map-dom:
dom s ⊆ P =⇒ s|P = s
by (fastsimp simp: restrict-map-def None-com intro: ext)

lemma map-add-restrict-dom-exact :
[[dom-exact P ; s0 ⊥ s1; P s1]] =⇒ (s1 ++ s0) |‘ (ι P) = s1

by (simp add : map-add-restrict map-restrict-dom-exact)
(subst map-restrict-dom-exact2 , auto simp: heap-disj-def)

lemma map-add-restrict-dom-exact2 :
[[dom-exact P ; s0 ⊥ s1; P s0]] =⇒ (s1 ++ s0) |‘ (UNIV − ι P) = s1

by (force simp: map-add-restrict heap-disj-def dom-eps
intro: restrict-map-dom dest : map-restrict-dom-exact3)

lemma dom-exact-sep-conj-forall :
assumes sc: ∀ x . (P x ∧∗ Q) s and de: dom-exact Q
shows ((λs. ∀ x . P x s) ∧∗ Q) s

228 APPENDIX D. SEPARATION PROPERTY PROOFS

proof (rule-tac s0=s |‘ (UNIV − ι Q) and s1=s |‘ ι Q in sep-conjI)
from sc de show ∀ x . P x (s |‘ (UNIV − ι Q))
by (force simp: map-add-restrict-dom-exact2 dest : sep-conjD)

next
from sc de show Q (s |‘ ι Q)
by (force simp: map-add-restrict-dom-exact dest !: sep-conjD spec)

next
from sc de show s |‘ (UNIV − ι Q) ⊥ s |‘ ι Q
by (force simp: map-add-restrict-dom-exact2 heap-merge

dest : map-add-restrict-dom-exact dest !: sep-conjD spec)
next
show s = s |‘ ι Q ++ s |‘ (UNIV − ι Q) by simp

qed

lemma sep-conj-forall-simp:
dom-exact Q =⇒ ((λs. ∀ x . P x s) ∧∗ Q) = (λs. ∀ x . (P x ∧∗ Q) s)
by (fast dest : sep-conj-forall dom-exact-sep-conj-forall intro: ext)

lemma dom-exact-sep-map:
dom-exact (i 7→g x)
by (clarsimp simp: dom-exact-def sep-map-def)

constdefs strictly-exact :: (′a, ′b) map-assert ⇒ bool
strictly-exact P ≡ ∀ s s ′. P s ∧ P s ′ −→ s = s ′

lemma strictly-exactD :
[[strictly-exact P ; P s0; P s1]] =⇒ s0 = s1

by (unfold strictly-exact-def , fast)

lemma strictly-exactI :
(
∧

s s ′. [[P s; P s ′]] =⇒ s = s ′) =⇒ strictly-exact P
by (unfold strictly-exact-def , fast)

lemma strictly-exact-dom-exact :
strictly-exact P =⇒ dom-exact P
by (force simp: strictly-exact-def dom-exact-def)

lemma strictly-exact-sep-conj :
[[strictly-exact P ; strictly-exact Q]] =⇒ strictly-exact (P ∧∗ Q)
by (force intro!: strictly-exactI dest : sep-conjD strictly-exactD)

lemma strictly-exact-conj-impl :
[[(Q ∧∗ sep-true) s; P s; strictly-exact Q]] =⇒ (Q ∧∗ (Q −→∗ P)) s
by (force intro: sep-conjI sep-implI dest : strictly-exactD dest !: sep-conjD)

229

lemma pure-conj-right : Q ∧∗ (λs. P ′ ∧ Q ′ s) = (λs. P ′ ∧ (Q ∧∗ Q ′) s)
by (rule ext , rule, rule, clarsimp dest !: sep-conjD)

(erule sep-conj-impl , auto)

lemma pure-conj-right ′: Q ∧∗ (λs. P ′ s ∧ Q ′) = (λs. Q ′ ∧ (Q ∧∗ P ′) s)
by (simp add : conj-comms pure-conj-right)

lemma pure-conj-left : (λs. P ′ ∧ Q ′ s) ∧∗ Q = (λs. P ′ ∧ (Q ′ ∧∗ Q) s)
by (simp add : pure-conj-right)

lemma pure-conj-left ′: (λs. P ′ s ∧ Q ′) ∧∗ Q = (λs. Q ′ ∧ (P ′ ∧∗ Q) s)
by (subst conj-comms, subst pure-conj-left , simp)

lemmas pure-conj = pure-conj-right pure-conj-right ′ pure-conj-left
pure-conj-left ′

declare pure-conj [simp add]

lemma sep-conj-sep-conj-sep-impl-sep-conj :
(P ∧∗ R) s =⇒ (P ∧∗ (Q −→∗ (Q ∧∗ R))) s
by (erule (1) sep-conj-impl , erule sep-conj-sep-impl , simp)

lemma sep-map ′-conjE1 :
[[(P ∧∗ Q) s;

∧
s. P s =⇒ (i ↪→g v) s]] =⇒ (i ↪→g v) s

by (subst sep-map ′-unfold , erule sep-conj-impl , simp+)

lemma sep-map ′-conjE2 :
[[(P ∧∗ Q) s;

∧
s. Q s =⇒ (i ↪→g v) s]] =⇒ (i ↪→g v) s

by (subst (asm) sep-conj-com, erule sep-map ′-conjE1 , simp)

lemma sep-map ′-any-conjE1 :
[[(P ∧∗ Q) s;

∧
s. P s =⇒ (i ↪→g −) s]] =⇒ (i ↪→g −) s

by (subst sep-map ′-any-unfold , erule sep-conj-impl , simp+)

lemma sep-map ′-any-conjE2 :
[[(P ∧∗ Q) s;

∧
s. Q s =⇒ (i ↪→g −) s]] =⇒ (i ↪→g −) s

by (subst (asm) sep-conj-com, erule sep-map ′-any-conjE1 , simp)

lemma sep-conj-mapD :
((i 7→g v) ∧∗ P) s =⇒ (i ↪→g v) s ∧ ((i 7→g −) ∧∗ P) s
by (force intro: sep-conj-impl sep-map ′-conjE2)

syntax
-sep-assert :: bool ⇒ heap-state ⇒ bool ((-)sep [1000] 100)

end

230 APPENDIX D. SEPARATION PROPERTY PROOFS

Bibliography

[1] Programming languages — C. Technical Report 9899:TC2, ISO/IEC
JTC1/SC22/WG14, May 2005.

[2] A. W. Appel. Tactics for separation logic, Jan 2006. http://www.cs.
princeton.edu/∼appel/papers/septacs.pdf.

[3] A. W. Appel and S. Blazy. Separation logic for small-step Cminor.
In K. Schneider and J. Brandt, editors, Proceedings of the 20th In-
ternational Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2007), volume 4732 of Lecture Notes in Computer Science,
pages 5–21. Springer, Sep 2007.

[4] T. Ball and S. K. Rajamani. Automatically validating temporal safety
properties of interfaces. In M. B. Dwyer, editor, Proceedings of the 8th
International SPIN Workshop on Model Checking Software, volume
2057 of Lecture Notes in Computer Science, pages 103–122. Springer,
May 2001.

[5] C. Ballarin. Locales and locale expressions in Isabelle/Isar. In S. Be-
rardi, M. Coppo, and F. Damiani, editors, Revised Selected Papers of
the International Workshop on Types for Proofs and Programs (TYPES
2003), volume 3085 of Lecture Notes in Computer Science. Springer,
Apr 2003.

[6] J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of
separation logic. In K. Lodaya and M. Mahajan, editors, Proceedings
of the 24th International Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2004), volume
3328 of Lecture Notes in Computer Science, pages 97–109. Springer,
Dec 2004.

[7] S. Berghofer and M. Strecker. Extracting a formally verified, fully
executable compiler from a proof assistant. In Proceedings of the 2nd
International Workshop on Compiler Optimization Meets Compiler
Verification (COCV 2003), volume 82 of Electronic Notes in Theoretical
Computer Science, pages 33–50. Elsevier, Apr 2003.

231

http://www.cs.princeton.edu/~appel/papers/septacs.pdf
http://www.cs.princeton.edu/~appel/papers/septacs.pdf

232 BIBLIOGRAPHY

[8] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fiuczyn-
ski, C. Chambers, and S. Eggers. Extensibility, safety and performance
in the SPIN operating system. In Proceedings of the Fifteenth ACM
Symposium on Operating System Principles (SOSP 95), volume 29 of
Operating System Review, pages 267–284. ACM, Dec 1995.

[9] W. R. Bevier. Kit: A study in operating system verification. IEEE
Transactions on Software Engineering, 15(11):1382–1396, 1989.

[10] A. Bijlsma. Calculating with pointers. Science of Computer Program-
ming, 12(3):191–205, 1989.

[11] S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C com-
piler front-end. In J. Misra, T. Nipkow, and E. Sekerinski, editors,
Proceedings of the 14th International Symposium on Formal Methods
(FM 2006), volume 4085 of Lecture Notes in Computer Science, pages
460–475. Springer, Aug 2006.

[12] J. Bloch. Nearly all binary searches and mergesorts
are broken. http://googleresearch.blogspot.com/2006/06/
extra-extra-read-all-about-it-nearly.html, Jun 2006.

[13] M. Blume. No-longer-foreign: Teaching an ML compiler to speak C
“natively”. Electronic Notes in Theoretical Computer Science, 59(1),
2001.

[14] R. Bornat. Proving pointer programs in Hoare Logic. In R. C. Back-
house and J. N. Oliveira, editors, Proceedings of the 5th International
Conference on Mathematics of Program Construction (MPC 2000),
volume 1837 of Lecture Notes in Computer Science, pages 102–126.
Springer, Jul 2000.

[15] B. C. Brock, W. A. Hunt, Jr., and M. Kaufmann. The FM9001
microprocessor proof. Technical Report 86, Computational Logic, Inc.,
1994.

[16] R. Burstall. Some techniques for proving correctness of programs which
alter data structures. In B. Meltzer and D. Michie, editors, Machine
Intelligence 7, pages 23–50. Edinburgh University Press, 1972.

[17] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond
reachability: Shape abstraction in the presence of pointer arithmetic.
In K. Yi, editor, Proceedings of the 13th International Symposium on
Static Analysis (SAS 2006), volume 4134 of Lecture Notes in Computer
Science, pages 182–203. Springer, Aug 2006.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

BIBLIOGRAPHY 233

[18] C. Calcagno, H. Yang, and P. W. O’Hearn. Computability and com-
plexity results for a spatial assertion language for data structures. In
R. Hariharan, M. Mukund, and V. Vinay, editors, Proceedings of the
21st Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2001), volume 2245 of Lecture Notes in
Computer Science, pages 108–119. Springer, Dec 2001.

[19] R. Cartwright and D. C. Oppen. The logic of aliasing. Technical
Report STAN-CS-79-740, Stanford University, Sep 1979.

[20] T. Cattel. Modelization and verification of a multiprocessor realtime OS
kernel. In D. Hogrefe and S. Leue, editors, Proceedings of the 7th IFIP
WG6.1 International Conference on Formal Description Techniques
(FORTE 94), volume 6 of IFIP Conference Proceedings, pages 55–70.
Chapman & Hall, 1994.

[21] A. Cohn. A proof of correctness of the Viper microprocessor: the
first level. Technical Report 104, University of Cambridge Computer
Laboratory, Jan 1987.

[22] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula. De-
pendent types for low-level programming. In R. D. Nicola, editor,
Proceedings of the 16th European Symposium on Programming on
Programming Languages and Systems (ESOP 2007), volume 4421 of
Lecture Notes in Computer Science, pages 520–535. Springer, 2007.

[23] B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem
proving for program verification. In K. Etessami and S. K. Rajamani,
editors, Proceedings of the 17th International Conference on Com-
puter Aided Verification (CAV 2005), volume 3576 of Lecture Notes in
Computer Science, pages 296–300. Springer, Jul 2005.

[24] M. Daum, S. Maus, N. Schirmer, and M. N. Seghir. Integration of a
software model checker into Isabelle. In G. Sutcliffe and A. Voronkov,
editors, Proceedings of the 12th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR 2005),
volume 3835 of Lecture Notes in Computer Science, pages 381–395.
Springer, Dec 2005.

[25] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented
Proof Methods and their Comparison. Number 47 in Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1998.

[26] P. Derrin, D. Elkaduwe, and K. Elphinstone. seL4 Reference Manual.
National ICT Australia, Sep 2006. http://www.ertos.nicta.com.au/
research/sel4/sel4-refman.pdf.

http://www.ertos.nicta.com.au/research/sel4/sel4-refman.pdf
http://www.ertos.nicta.com.au/research/sel4/sel4-refman.pdf

234 BIBLIOGRAPHY

[27] G. Duval and J. Julliand. Modelling and verification of the RU-
BIS µ-kernel with SPIN. In Proceedings of the 1st International
SPIN Workshop on Model Checking Software (SPIN 95), INRS-
Télécommunications, Montréal, Quebec, Oct 1995.

[28] K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser. Towards
a practical, verified kernel. In Proceedings of the 11th Workshop on
Hot Topics in Operating Systems (HotOS XI), page 6, San Diego, CA,
USA, May 2007. Online proceedings at http://www.usenix.org/events/
hotos07/tech/.

[29] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt,
J. R. Larus, and S. Levi. Language support for fast and reliable
message-based communication in Singularity OS. In Y. Berbers and
W. Zwaenepoel, editors, Proceedings of the 2006 EuroSys Conference,
pages 177–190. ACM, 2006.

[30] C. Feather. A formal model of sequence points and related issues:
Working draft. Technical Report N925, ISO/IEC JTC1/SC22/WG14,
Sep 2000.

[31] J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs.
In J. Davies, W. Schulte, and M. Barnett, editors, Proceedings of the 6th
International Conference on Formal Methods and Software Engineering
(ICFEM 2004), volume 3308 of Lecture Notes in Computer Science,
pages 15–29. Springer, Nov 2004.

[32] A. Fox. Formal verification of the ARM6 micro-architecture. Technical
Report 548, University of Cambridge Computer Laboratory, Nov 2002.

[33] M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the
correctness of operating system kernels. In J. Hurd and T. F. Melham,
editors, Proceedings of the 18th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2005), volume 3603 of
Lecture Notes in Computer Science, pages 1–16. Springer, Aug 2005.

[34] M. Gordon. From LCF to HOL: a short history. In Proof, language,
and interaction: essays in honour of Robin Milner, pages 169–185,
Cambridge, MA, USA, 2000. MIT Press.

[35] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF:
A Mechanised Logic of Computation, volume 78 of Lecture Notes in
Computer Science. Springer, 1979.

[36] S. Hallem, B. Chelf, Y. Xie, and D. R. Engler. A system and language
for building system-specific, static analyses. In Proceedings of the 2002
ACM SIGPLAN Conference on Programming Language Design and

http://www.usenix.org/events/hotos07/tech/
http://www.usenix.org/events/hotos07/tech/

BIBLIOGRAPHY 235

Implementation, volume 37 of SIGPLAN Notices, pages 69–82. ACM,
2002.

[37] T. Hallgren, M. P. Jones, R. Leslie, and A. P. Tolmach. A principled
approach to operating system construction in Haskell. In O. Danvy
and B. C. Pierce, editors, Proceedings of the 10th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2005),
volume 40 of SIGPLAN Notices, pages 116–128. ACM, Sep 2005.

[38] J. Harrison. Theorem Proving with the Real Numbers. Springer, 1998.

[39] J. Harrison. A HOL theory of Euclidean space. In J. Hurd and T. F.
Melham, editors, Proceedings of the 18th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs 2005), volume 3603
of Lecture Notes in Computer Science, pages 114–129. Springer, Aug
2005.

[40] R. A. Heinlein. The moon is a harsh mistress. Tom Doherty Associates,
1966.

[41] G. Heiser, K. Elphinstone, I. Kuz, G. Klein, and S. M. Petters. Towards
trustworthy computing systems: Taking microkernels to the next level.
Operating Systems Review, 41(3), Jul 2007.

[42] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with BLAST. In T. Ball and S. K. Rajamani, editors, Pro-
ceedings of the 10th International SPIN Workshop on Model Checking
Software (SPIN 2003), volume 2648 of Lecture Notes in Computer
Science, pages 235–239. Springer, May 2003.

[43] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969.

[44] M. Hohmuth, H. Tews, and S. G. Stephens. Applying source-code
verification to a microkernel — the VFiasco project. Technical Report
TUD-FI02-03-März, TU Dresden, 2002.

[45] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for
mutable data structures. In Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL
2001), volume 36 of SIGPLAN Notices, pages 14–26. ACM, 2001.

[46] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C. In C. S. Ellis, editor, Proceedings of
the 2002 USENIX Annual Technical Conference, General Track, pages
275–288. USENIX, Jun 2002.

236 BIBLIOGRAPHY

[47] B. W. Kernighan and D. M. Ritchie. The C Programming Language,
Second Edition. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[48] G. Klein. Verified Java Bytecode Verification. PhD thesis, Institut für
Informatik, Technische Universität München, 2003.

[49] G. Klein and H. Tuch. Towards verified virtual memory in L4. In
K. Slind, editor, Emerging Trends: Proceedings of the 17th International
Conference on Theorem Proving in Higher Order Logics (TPHOLS
2004), Technical Report UUCS-05-004, School of Computing, Univer-
sity of Utah, Sep 2004.

[50] R. Kolanski. A logic for virtual memory. In Proceedings of the 3rd
International Workshop on Systems Software Verification (SSV 2008)
— to appear, Sydney, Australia, Feb 2008.

[51] D. Kroening. Application specific higher order logic theorem proving. In
S. Autexier and H. Mantel, editors, Proceedings of the 2nd Verification
Workshop (VERIFY 2002), Technical Report no. 2002/07, pages 5–15,
DIKU, July 2002.

[52] L4Ka Team. L4 eX perimental Kernel Reference Manual Version X.2.
University of Karlsruhe, Oct 2001. http://l4ka.org/projects/version4/
l4-x2.pdf.

[53] D. Leinenbach, W. Paul, and E. Petrova. Towards the formal verifica-
tion of a C0 compiler: Code generation and implementation correctnes.
In B. K. Aichernig and B. Beckert, editors, Proceedings of the 3rd
IEEE International Conference on Software Engineering and Formal
Methods (SEFM 2005), pages 2–12. IEEE Computer Society, 2005.

[54] D. Leinenbach and E. Petrova. Pervasive compiler verification — from
verified programs to verified systems. In Proceedings of the 3rd Inter-
national Workshop on Systems Software Verification (SSV 2008) — to
appear, Sydney, Australia, Feb 2008.

[55] X. Leroy. Formal certification of a compiler back-end or: programming
a compiler with a proof assistant. In J. G. Morrisett and S. L. P. Jones,
editors, Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2006), pages 42–54.
ACM, Jan 2006.

[56] X. Leroy and S. Blazy. Formal verification of a C-like memory model
and its uses for verifying program transformations. Accepted to the
Journal of Automated Reasoning, Oct 2007.

http://l4ka.org/projects/version4/l4-x2.pdf
http://l4ka.org/projects/version4/l4-x2.pdf

BIBLIOGRAPHY 237

[57] J. Liedtke. On µ-kernel construction. In Proceedings of the Fifteenth
ACM Symposium on Operating System Principles (SOSP 95), vol-
ume 29 of Operating System Review, pages 267–284. ACM, Dec 1995.

[58] P. N. Loewenstein, S. Chaudhry, R. Cypher, and C. Manovit. Multi-
processor memory model verification. In Automated Formal Methods,
Seattle, USA, Aug 2006.

[59] N. Marti, R. Affeldt, and A. Yonezawa. Verification of the heap manager
of an operating system using separation logic. In Third workshop
on Semantics, Program Analysis, and Computing Environments For
Memory Management (SPACE 2006), pages 61–72, Charleston, South
Carolina, Jan 2006.

[60] J. McCarthy. Towards a mathematical science of computation. In
Proceedings of the IFIPS Congress 1962, pages 21–28. North-Holland
Publishing Company, 1963.

[61] J. McCarthy and P. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In D. Michie and B. Meltzer, editors,
Machine Intelligence 4, pages 463–502. Edinburgh University Press,
1969.

[62] F. Mehta and T. Nipkow. Proving pointer programs in higher-order
logic. Information and Computation, 199(1-2):200–227, 2005.

[63] A. Møller and M. I. Schwartzbach. The pointer assertion logic engine. In
Proceedings of the 2001 ACM SIGPLAN Conference on Programming
Language Design and Implementation, volume 37 of SIGPLAN Notices,
pages 221–231. ACM, 2001.

[64] J. M. Morris. A general axiom of assignment. In M. Broy and
G. Schmidt, editors, Theoretical Foundations of Programming Method-
ology (Proceedings of the 1981 Maktoberdorf Summer School), pages
25–51, 1982.

[65] Y. Moy. Union and cast in deductive verification. In C/C++ Verifica-
tion Workshop, Technical Report ICIS-R07015, pages 1–16, Radboud
University Nijmegen, Jul 2007.

[66] M. O. Myreen, A. C. Fox, and M. J. Gordon. A Hoare logic for ARM
machine code. In F. Arbab and M. Sirjani, editors, Proceedings of the
International Symposium on Fundamentals of Software Engineering
(FSEN 2007), volume 4767 of Lecture Notes in Computer Science,
pages 272–286. Springer, Apr 2007.

238 BIBLIOGRAPHY

[67] M. O. Myreen and M. J. Gordon. A Hoare logic for realistically modelled
machine code. In O. Grumberg and M. Huth, editors, Proceedings
of the 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2007), volume 4424 of
Lecture Notes in Computer Science, pages 568–582. Springer, 2007.

[68] G. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured:
type-safe retrofitting of legacy software. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 27(3):477–526, 2005.

[69] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermedi-
ate language and tools for analysis and transformation of C programs.
In R. N. Horspool, editor, Proceedings of the 11th International Con-
ference on Compiler Construction (CC 2002), volume 2304 of Lecture
Notes in Computer Science, pages 213–228. Springer, 2002.

[70] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robin-
son. A provably secure operating system: The system, its applications,
and proofs. Technical Report CSL-116, SRI International, 1980.

[71] Z. Ni, D. Yu, and Z. Shao. Using XCAP to certify realistic systems code:
Machine context management. In K. Schneider and J. Brandt, editors,
Proceedings of the 20th International Conference on Theorem Proving
in Higher Order Logics (TPHOLs 2007), volume 4732 of Lecture Notes
in Computer Science, pages 189–206. Springer, Sep 2007.

[72] T. Nipkow. Term rewriting and beyond — theorem proving in Isabelle.
Formal Aspects of Computing, 1(4):320–338, 1989.

[73] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[74] M. Norrish. C formalised in HOL. PhD thesis, Computer Laboratory,
University of Cambridge, 1998.

[75] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In L. Fribourg, editor, Proceedings
of the 15th International Workshop on Computer Science Logic (CSL
2001), volume 2142 of Lecture Notes in Computer Science, pages 1–19.
Springer, Sep 2001.

[76] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and in-
formation hiding. In N. D. Jones and X. Leroy, editors, Proceedings
of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 268–280. ACM, 2004.

BIBLIOGRAPHY 239

[77] D. v. Oheimb. Information flow control revisited: Noninfluence = Non-
interference + Nonleakage. In P. Samarati, P. Y. A. Ryan, D. Gollmann,
and R. Molva, editors, Proceedings of the 9th European Symposium
on Research in Computer Security (ESORICS 2004), volume 3193 of
Lecture Notes in Computer Science, pages 225–243. Springer, Sep 2004.

[78] L. C. Paulson. The foundation of a generic theorem prover. Journal of
Automated Reasoning, 5(3):363–397, 1989.

[79] V. Preoteasa. Mechanical verification of recursive procedures manip-
ulating pointers using separation logic. In J. Misra, T. Nipkow, and
E. Sekerinski, editors, Proceedings of the 14th International Symposium
on Formal Methods, volume 4085 of Lecture Notes in Computer Science,
pages 508–523. Springer, 2006.

[80] J. C. Reynolds. Intuitionistic reasoning about shared mutable data
structures. In J. Davies, B. Roscoe, and J. Woodcock, editors, Mil-
lenial Perspectives in Computer Science, pages 303–321, Houndsmill,
Hampshire, 2000. Palgrave.

[81] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th IEEE Symposium on Logic in
Computer Science (LICS 2002), pages 55–74. IEEE Computer Society,
Jul 2002.

[82] D. M. Ritchie. The development of the C language. In Proceedings of
the ACM History of Programming Languages Conference (HOPL-II),
volume 28 of SIGPLAN Notices, pages 201–208. ACM, April 1993.

[83] J. Rushby. A trusted computing base for embedded systems. In Pro-
ceedings of the 7th DoD/NBS Computer Security Initiative Conference,
pages 294–311, Gaithersburg, MD, Sep 1984.

[84] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. In Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 1999),
pages 105–118. ACM, 1999.

[85] N. Schirmer. Verification of Sequential Imperative Programs in Is-
abelle/HOL. PhD thesis, Technische Universität München, 2006.

[86] B. Schlich and S. Kowalewski. Model checking C source code for embed-
ded systems. In T. Margaria, B. Steffen, and M. G. Hinchey, editors,
Proceedings of the IEEE/NASA Workshop Leveraging Applications of
Formal Methods, Verification, and Validation (IEEE/NASA ISoLA
2005), pages 65–77. NASA, Maryland, USA, 2005. NASA/CP-2005-
212788.

240 BIBLIOGRAPHY

[87] J. Shapiro. Programming language challenges in systems codes: why
systems programmers still use C, and what to do about it. In C. W.
Probst, editor, Proceedings of the 3rd Workshop on Programming
Languages and Operating Systems: Linguistic Support for Modern
Operating Systems (PLOS 2006), page 9. ACM, 2006.

[88] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps. Coping
with type casts in C. In O. Nierstrasz and M. Lemoine, editors,
Proceedings of the 7th European Software Engineering Conference held
jointly with the 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 99), volume 1687 of Lecture Notes
in Computer Science, pages 180–198. Springer, Sep 1999.

[89] S. Sridhar and J. S. Shapiro. Type inference for unboxed types and
first class mutability. In C. W. Probst, editor, Proceedings of the
3rd Workshop on Programming Languages and Operating Systems:
Linguistic Support for Modern Operating Systems (PLOS 2006), page 7.
ACM, 2006.

[90] System Architecture Group. The L4Ka::Pistachio microkernel. White
paper, University of Karlsruhe, May 2003. http://l4ka.org/projects/
pistachio/pistachio-whitepaper.pdf.

[91] H. Tews. Verifying Duff’s device: A simple compositional denotational
semantics for goto and computed jumps, 2004. http://www.cs.ru.nl/
∼tews/Goto/goto.pdf.

[92] H. Tews. Well-behaved memory on top of virtual memory, Aug 2006.
Talk at 2nd NICTA International Workshop on Operating Systems
Verification — http://www.cs.ru.nl/∼tews/Talks/wellbehavedmem.ps.
gz.

[93] H. Tuch and G. Klein. A unified memory model for pointers. In
G. Sutcliffe and A. Voronkov, editors, Proceedings of the 12th Interna-
tional Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2005), volume 3835 of Lecture Notes in Computer
Science, pages 474–488. Springer, Dec 2005.

[94] H. Tuch, G. Klein, and G. Heiser. OS verification — now! In Proceedings
of the 10th Workshop on Hot Topics in Operating Systems (HotOS X),
pages 7–12, Santa Fe, NM, USA, Jun 2005. USENIX.

[95] H. Tuch, G. Klein, and M. Norrish. Verification of the L4 kernel
memory allocator. Formal proof document. http://www.ertos.nicta.
com.au/research/l4.verified/kmalloc.pml, Jul 2006.

http://l4ka.org/projects/pistachio/pistachio-whitepaper.pdf
http://l4ka.org/projects/pistachio/pistachio-whitepaper.pdf
http://www.cs.ru.nl/~tews/Goto/goto.pdf
http://www.cs.ru.nl/~tews/Goto/goto.pdf
http://www.cs.ru.nl/~tews/Talks/wellbehavedmem.ps.gz
http://www.cs.ru.nl/~tews/Talks/wellbehavedmem.ps.gz
http://www.ertos.nicta.com.au/research/l4.verified/kmalloc.pml
http://www.ertos.nicta.com.au/research/l4.verified/kmalloc.pml

BIBLIOGRAPHY 241

[96] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation
logic. In M. Hofmann and M. Felleisen, editors, Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2007), pages 97–108. ACM, Jan 2007.

[97] P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau, A. Chitturi, and
G. Back. Formal methods: a practical tool for OS implementors. In
Proceedings of the 6th Workshop on Hot Topics in Operating Systems
(HotOS VI), pages 20–25, Cape Cod, MA, USA, May 1997. USENIX.

[98] VerifiCard project. http://verificard.org, 2005.

[99] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification and
verification of the UCLA Unix security kernel. Communications of the
ACM, 23(2):118–131, 1980.

[100] T. Weber. Towards mechanized program verification with separation
logic. In J. Marcinkowski and A. Tarlecki, editors, Proceedings of the
18th International Workshop on Computer Science Logic (CSL 2004),
volume 3210 of Lecture Notes in Computer Science, pages 250–264.
Springer, 2004.

[101] M. Wenzel. Type classes and overloading in higher-order logic. In E. L.
Gunter and A. P. Felty, editors, Proceedings of the 10th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 97),
volume 1275 of Lecture Notes in Computer Science, pages 307–322.
Springer, Aug 1997.

[102] M. Wenzel. Isabelle/Isar — a versatile environment for human-readable
formal proof documents. PhD thesis, Institut für Informatik, TU
München, 2002.

[103] A. Wiggins, H. Tuch, V. Uhlig, and G. Heiser. Implementation of fast
address-space switching and TLB sharing on the StrongARM processor.
In Proceedings of the 8th Asia-Pacific Computer Systems Architecture
Conference (ACSAC 2003), volume 2823 of Lecture Notes in Computer
Science, pages 352–364. Springer, Sep 2003.

[104] M. Wildmoser and T. Nipkow. Certifying machine code safety: Shallow
versus deep embedding. In K. Slind, A. Bunker, and G. Gopalakrishnan,
editors, Proceedings of the 17th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2004), volume 3223 of
Lecture Notes in Computer Science, pages 305–320. Springer, 2004.

[105] H. Yang and P. W. O’Hearn. A semantic basis for local reasoning. In
M. Nielsen and U. Engberg, editors, Proceedings of the 5th International

http://verificard.org

242 BIBLIOGRAPHY

Conference on Foundations of Software Science and Computation Struc-
tures (FOSSACS 2002), volume 2303 of Lecture Notes in Computer
Science, pages 402–416. Springer, Apr 2002.

Index

s-, 25
sD, 70
sH, 70
sΦ, 70
&(-→-), 127
{-..+-}, 14
- d|-, 108
- � -, 13
- =- -, 108
- +p -, 36
- ++ -, 91
- ⇒ -, 13
- ∧∗ -, 91
- ⊥ -, 91
- .= -, 77
- ↪→g -, 92
- ≤ -, 144
- ≤τ -, 144
- −→∗ -, 91
- 7→g -, 90, 151
- 7→g

i -, 159
- 7→g

- -, 153
- B -, 126
- ⇀ -, 13
- × -, 13
- `s -, 101, 151
- `s

i -, 159
-&, 36
-addr, 27
-::τ , 13
-,- |=t -, 60, 138
-.- |=s -, 66
-(- := -), 13
-(- 7→ -), 13
- ′, 25
-(| - := - |), 13

Γ ` 〈-,-〉 ⇒ -, 107
Γ ` 〈-,-〉 ⇒- -,-, 108
-́, 25
⊥, 13
�, 90
{| -sep |}, 90
{|-|} - {|-|}, 14
b-c, 13
IN⇐, 13
IN⇒, 13

access-ti, 128
access-ti0, 128
addr, 25
adjust-ti, 131
[ADSFinal], 202
[AFEmpty], 203
[AFExtend], 203
[AFFinal], 203
[AFPad], 203
[AFTyp], 203
[AFTypPad], 203
[AgEmpty], 201
[AgPad], 201
[AgTyp], 201
[AgTypPad], 201
[AlgnEmpty], 201
[AlgnFinal], 202
[AlgnPad], 201
[AlgnTyp], 201
[AlgnTypPad], 202
aliasing

inter-type, 57
intra-type, 87
problem, 4

[Align], 30, 130

243

244 INDEX

align-of, 32, 128
align-td, 126
[AlignDvdSize], 30, 129
aligned, 170
[AlignField], 129
alloc, 167
annotation

code, 64
guard, 64, 108
invariant, 7
type, 13, 29

array, 36
bounds, 3
field names, 125
tiling, 31
type information, 31

AUXUPD, 64

behaviour
implementation-defined, 18, 20,

23, 49, 132
undefined, 19
unspecified, 19

bit-vector, 13
block, 172
byte, 25

C
history, 2
standard, 18
strictly conforming, 19

c-exntype, 45
c-guard, 49
c-null-guard, 49
c-type, 29
cast

integer, 43, 44
pointer, 44

address correspondence, 21, 24
chunks, 167
com, 39
comm-restrict, 109
comm-restrict-safe, 109
Csys

-com translation, 38
assumptions, 19
syntax, 189
type encoding, 29

datatype, 13
disjoint-chunks, 170
disjoint-fn, 154
distinct, 81
[distinct], 84
dom-exact, 98
domain

exact, 93, 98
heap, 23
heap type description, 65, 107–

108
ownership, 102
restriction, 13
singleton, 102, 152
structured separation logic, 150

[empty], 84
empty-typ-info, 131
exec-fatal, 108
export-uinfo, 135
expr-htd-ind, 109
expression

array, 36
condition, 40
evaluation

determinism, 18, 21
side-effect, 2, 18

heap dereference, 29
statement, 44

guarded, 108
translation, 41, 44, 49–53
type-safe, 3

extend-ti, 131

[FaFu], 129
[FaFuInd], 130
[FAIndEmpty], 209
[FAIndPad], 209
[FAIndTyp], 209
[FAIndTypPad], 209

INDEX 245

[FaLen], 130
[FCEmpty], 205
[FCExtend], 206
[FCPad], 205
[FCTyp], 205
[FCTypPad], 205
fd-cons-desc, 129
field monotonicity, 137, 139
field-access, 124
field-desc, 124
field-name, 31
field-names, 144
field-names-list, 132
field-of, 144
field-offset, 145
field-typ, 145
field-update, 124
fields, 152
final-pad, 133
[FIndEmpty], 208
[FIndPad], 208
[FIndTyp], 209
[FIndTypPad], 209
folding, 156–157
footprint, 59

cache, 2, 163
disjoint, 61
field, 153
inverse, 158
masked, 153
type, 77
valid, 60, 139

frame
inter-type, 76
intra-type, 87
problem, 4
rule, 9, 105, 151, 178

soundness, 114
use, 115

free, 171
free-set, 167, 172
free-set-h, 169, 172
from-bytes, 29, 128
fs-footprint, 153

[FuCom], 130
[FuEqConst], 204
[FuEqFinal], 204
[FuEqPad], 204
[FuEqTyp], 204
[FuEqTypPad], 204
[FuEqUpd], 204
[FuFaId], 129
[FuFu], 129
fun-htd-ind, 109

Γ, 107
ghost variable, 59, 64
[GIndEmpty], 208
[GIndPad], 208
[GIndTyp], 208
[GIndTypPad], 208
globals, 28
guard, 40

field monotonic, 139
initialisation, 24, 48, 134
memory safety, 108
monotonic, 109
pointer, 48
singleton heap assertion, 90
translation, 41, 48–49, 186
validity, 60

guard-mono, 139

h-val, 51
heap, 24

-state type class, 106
disjoint, 91
intermediate state, 65, 69, 141,

150
lifted, 51, 65, 141

equality, 69, 80, 141
retype, 103
update, 72–73, 144–149

merge, 91
raw state, 25
semantics, 49, 51, 134
singleton

assertion, 90, 150, 151, 153

246 INDEX

state, 101, 152
subheap, 92
update dependency, 122

heap type description, 59–64
extended, 137–141

heap-footprint, 77
heap-list, 49
heap-list-s, 66
heap-mem, 25
heap-state, 65, 141
heap-state-type, 106
heap-typ-desc, 59, 137
heap-update, 51, 134
heap-update-list, 51
[HMono], 77
Hoare

logic, 6
assignment rule, 8
mechanisation, 10, 39
weakest pre-condition, 99, 101,

102
triple, 6

[HRefl], 77
hrs-htd, 74
hrs-htd-update, 74
hrs-mem, 74
hrs-mem-update, 74
hst-htd, 106
hst-htd-update, 106
hst-mem, 106
hst-mem-update, 106
[HSym], 77
htd-update-list, 140
[HUn], 77

[ign], 84
initialisation, 22, 24, 45, 134
interval, 14, 23
intra-deps, 113
intra-safe, 109
intuitionistic, 96
[Inv], 30, 130
inv-footprint, 158
itself, 14

KMC, 165

L4
automatic variables, 26
kernel memory allocation, 23, 164
microkernel, 6, 163
Pistachio, 163

[Len], 30, 130
len-of, 34
len8, 34
[Len8Dv8], 34
[Len8Dvd], 34
[Len8Sz], 34
[LFUpdate], 210
lift, 51
lift-hst, 106
lift-state, 65, 141
liftτ , 67, 142
lift-typ-heap, 67
list, 81, 117, 159, 167, 172
list-map, 139
lookup, 126
lvalue, 22

heap update, 51
modifiable, 41, 45, 51
structure, 127

map-assert, 91
map-td, 125
[MaxSize], 30, 129
[mem], 84
mem-safe, 107
mem-type, 30, 128
memory safety, 64, 105, 106

analysis
inter-procedural, 111
intra-procedural, 109

definition, 107
mono-guard, 109
multiple typed heaps, 8, 10, 58, 65,

67, 122
allocator

invariants, 175
proofs, 175

INDEX 247

specifications, 167

norm-bytes, 135
norm-tu, 135
normalisation, 134

derived, 135

object, 18, 22
alignment, 22
heap, 23
initialisation, 24
lifetime, 22
representation, 29
structure, 124

option, 13

padup, 132
point-eq-mod-safe, 109
pointer, 35

aliasing, 4
arithmetic, 24, 31, 36, 49
automatic variables, 26
constant, 27
constructor, 36
data structures, 3
destructor, 36
function, 20, 184
proofs, 7
representation, 23

proc-deps, 113
proj-d, 66
proj-h, 66
proof obligation, 7

guard, 91
lifting, 70, 99, 144, 157
list reversal, 84, 160

Ptr, 36
ptr, 36
ptr-aligned, 49
ptr-clear, 62
ptr-coerce, 75
ptr-retyp, 140
ptr-safe, 62, 151
ptr-set, 62
ptr-tag, 62

ptr-val, 36
pure, 95

record, 13
restrict-safe, 107
retyping, 62–64, 76, 103, 140–141,

158–159, 177
rev, 81
rewriting

AC, 93
inter-procedural, 113
intra-procedural, 109
typed heap, 70–75, 144–149

ROLM, 22–24

s-addr, 141
s-footprint, 150
s-footprint-untyped, 150
s-heap-index, 141
s-heap-value, 141
[ScAssoc], 94
[SccDist], 94
[ScComm], 94
[ScdDist], 94
[Sci], 94
[ScSi], 94
[ScSiSame], 94
sep-cut, 103, 159
sep-true, 92
separation logic, 9, 10, 89–119, 149–

161
allocator

invariants, 173
proofs, 177
specifications, 172

[SExists], 94
singleton, 101, 152
[Sinj], 94
[Sinter], 94
[SiSc], 94
size-aligned, 170
size-of, 31, 128
size-td, 126
skewed sharing, 93

248 INDEX

state space, 7, 21–28, 105
synthesis, 39, 40, 133

statement
com, 40
translation, 41, 43–47

strictly-exact, 97
sub-field-update, 147
[SUniv], 94
super-field-update, 145
[SzEmpty], 202
[SzFinal], 202
[SzNZero], 30, 130
[SzPad], 202
[SzTyp], 202
[SzTypPad], 202

td-set, 127
ti-pad-combine, 132
ti-typ-combine, 131
ti-typ-pad-combine, 132
to-bytes, 29, 128
to-bytes0, 128
typ-align, 32
typ-base, 137
typ-desc, 124
typ-heap, 67
typ-info, 31, 125
typ-info, 29
typ-size, 32
typ-slice, 137
typ-slice, 139
typ-slices, 140
typ-struct, 124
typ-tag, 29
typ-tag, 29
typ-uinfo, 134
type

-safe, 3, 9, 58, 75
aggregate, 36–38
alignment, 32, 126
class, 13
combinator, 131–133

proof rules, 201–210
description, 124

functions, 195
set, 127

encoding, 29–38
structured, 123–136

information, 31, 125
construction, 131
exported, 134
levels, 150
well-formed, 129

instantiation, 14, 30, 33, 34, 37,
122, 133

phantom, 36
promotion, 41
scalar, 33–36
size, 31, 126
slice, 139
tag, 29

types, 13
TYPE(-), 14
TYPE(-)τ , 30, 125
TYPE(-)t, 30
TYPE(-)ν , 135

udvd, 170
unfolding, 151–157
[Upd], 129
update dependency order, 142
update-desc, 131
update-ti, 128
update-value, 145

[valid], 84
valid-footprint, 60, 138
validity, 60–62, 138–139
variable

automatic, 22, 23, 25–27
scope, 25, 28, 45
static, 22, 27

verification condition generator (VCG),
7, 40

verification environment, 6, 39
state, 21

wf-desc, 129
wf-field-desc, 130

INDEX 249

wf-size-desc, 129
[WFDesc], 129
[WFDescEmpty], 206
[WFDescFinal], 206
[WFDescPad], 206
[WFDescTyp], 206
[WFDescTypPad], 206
[WFFD], 129
[WFLFEmpty], 207
[WFLFExtend], 209
[WFLFFinal], 208
[WFLFPad], 207
[WFLFTyp], 207
[WFLFTypPad], 208
[WFLFUpdate], 209
[WFSizeDesc], 129
[WFSzEmpty], 207
[WFSzFinal], 207
[WFSzPad], 207
[WFSzTyp], 207
[WFSzTypPad], 207
word, 13
word-rcat, 34
word-rsplit, 34

zero, 172
zero-block, 172

	Abstract
	Copyright Statement
	Authenticity Statement
	Originality Statement
	Introduction
	Motivation
	C systems code
	Formal verification

	HOL, Isabelle and Hoare logic
	Proving pointer programs
	Related work
	Contributions
	Notation
	Outline

	Semantic model
	Execution model
	Csys assumptions
	State space
	Relaxed Object Lifetime Model (ROLM)
	Heap
	Store

	Type encoding
	Type information
	Scalar types
	Aggregate types

	Csys-com translation
	com syntax and semantics
	Notation
	Types
	Statements
	Guards
	Side-effect free expressions
	Lvalues
	Example translation

	Unified memory model
	Inter-type aliasing
	Heap type description
	Ghost variable
	Validity
	Retyping
	Annotations

	Lifting
	Rewriting
	Proof obligations
	Conditional rewrite set
	Rewrite properties
	Rules for unsafe code

	Typed heap equivalence
	Inter-type framing
	Callee rules
	Caller rules

	Example: In-place list reversal

	Separation logic embedding
	Intra-type aliasing and framing
	Shallow embedding
	Definitions
	Properties

	Lifting proof obligations
	Frame rule
	Globalised specifications
	Heap-state type class
	Memory safety
	Soundness
	Instantiation

	Examples
	In-place list reversal revisited
	Factorial

	Structured types
	C's struct, union and array types
	Structured type encoding
	Field descriptions
	Extended type tags
	Type constraints
	Type combinators
	Type installation
	Heap semantics
	Representation normalisation

	Structured UMM
	Extended heap type description
	Lifting
	Update dependency order
	Generalised rewrites
	Non-interference

	Structured separation logic
	Domain
	Shallow embedding
	Properties
	Unfolding
	Lifting proof obligations
	Retyping

	Example: In-place list reversal revisited

	Case study: L4 kmalloc
	Kernel memory management
	Data structures
	Implementation code
	Specifications
	Invariants
	Results

	Conclusion
	Discussion
	Implementation experience
	Future work
	Concluding remarks

	Csys syntax
	Type description functions
	Type combinator proof rules
	Separation property proofs
	Bibliography
	Index

