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Abstract

Traditional operating system rely on separate address-spaces for protection. The advent

of 64-bit architectures has allowed the construction of operating systems that have a single,

shared address space (single-address-space operating systems). All data in a single address

space can be identi�ed by a unique, globally valid name, its address, making the sharing of

information easy. Due to the rejection of the separate address space model, a new model

for protection needs to be designed.

This thesis describes the Mungi single-address-space operating system, and in particular,

its protection system. Protection was an integral part of Mungi's design right from the start.

Protection in Mungi has one overriding goal: not to negate the advantages that are intrinsic

in a single address space. In order to achieve this, protection in Mungi is based on password

capabilities that allow users to share information without the intervention of the kernel.

Mungi also provides support for privileged procedures that allow the safe extension of the

Mungi system, as well providing system-enforced object encapsulation. These protected

procedure calls are used for device drivers, page fault handlers, and protected subsystems

such as database servers.

The implementation of the above model will be presented and will show that the Mungi

protection mechanisms are:

� 
exible

� simple,

� easy to use,

� fast, and

� do not rely on specialised hardware.

The conclusions that can be drawn from this thesis are: a single-address-space operating

system provides an ideal environment for sharing, protection based on password capabilities

can be e�cient, and that protected procedure calls based on extension and implemented in

software can be especially fast.
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Chapter 1

Introduction

Modern operating systems are a complex interplay of a large number of integrated subsys-

tems, like memory management, I/O management and process management. A concen-

tration on these subsystems has often seen protection and security added to an operating

system as an afterthought. This design decision results in less than acceptable operation of

the protection and security systems. Mungi is a system that has incorporated protection

from the start to produce a simple, 
exible protection system. The design, implementation

and performance of the Mungi protection system is presented in this thesis.

1.1 Single Address Space Operating Systems

A system in which all transient and persistent data can be addressed using a globally valid

name is called a single-address-space system. Such systems provide an ideal environment for

the sharing of data. This advantage was recognised by systems like IBM System/38 [HSH81],

Monads [RA85] and Psyche [SLM90]. The �rst two systems used custom hardware to

implement an address space that was bigger then the available 32 bits. It was not until the

advent of the HP PA-RISC [Lee89], the MIPS R4000 [Hei91], and the DEC Alpha [Dig92]

processors that \o� the shelf" hardware became available that had a 64{bit addressing

space

1

.

A 64-bit address space represents a vast increase in addressability over the previous 32

bits, making it possible to hold all the transient and persistent data in a building sized

system of thousands of nodes. If a single-address-space system were to allocate a 4 Gbyte

object every second (this represents the full addressability of a 32-bit address space), it

would take a full 136 years to exhaust the address space. For another comparison, consider

this box , if we assume this represents the size of a 32-bit address space, then a 64-bit

address space would be represented by a large, white sheet of paper measuring 65m by

65m.

The advantages of single address operating systems have been described before [Fab74]

[Sol96] [WMR

+

95]. These include:

1

Although most of them don't support the full 64-bit address space yet.

1
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� Data sharing is made easier. The traditional multiple address space model relies on

the fact that one process cannot address data that is in another address space. Sharing

information between separate address spaces requires the intervention of the kernel

and some other subsystem (usually the �le system, or message passing system). In

contrast, a single-address-space system gives all processes the ability to address all

data in the system. This uniformity of naming and lack of explicit kernel involvement

in communications makes a SASOS an ideal environment for sharing information

between processes.

� Trivial process migration. In a distributed single-address-space system, process migra-

tion might be as simple as moving a thread control block from one node to another. As

the process starts execution on the new node its working set is automatically faulted

over to the new machine.

� Removal of reliance on message passing. The global address space is the natural

conduit for the transfer of information. There is no need to introduce another ab-

straction like IPC channels, as data can just shared between processes by simply

accessing memory.

� Lower context switch overheads. As a result of of the fact that all physical to virtual

translations are the same for all processes, there is no need to 
ush caches and trans-

lation information when switching processes. A context switch in a single address

space should only change the protection information associated with processes.

1.2 Mungi

Mungi [RSE

+

92, HERV94] is a persistent, 64-bit, single-address-space operating system that

has been designed and implemented at the University of New South Wales. Mungi provides

all processes with the same view of the shared address space, which is then used as the basis

for all services such as device management and inter-process communication. Unlike some

other systems, Mungi does not introduce other name spaces. As a result, Mungi's naming

scheme is particularly pure; all resources are named by their virtual address.

A single-node 64{bit prototype of Mungi is currently implemented on the MIPS R4x00

processor family, speci�cally on a development board [Alg95], a purpose built U4600 pro-

cessor platform [Pea98] and on an SGI Indy.

As with any system that is still under development, it is di�cult to describe a moving

target. Therefore, for the purposes of this thesis, a snapshot of 10th of April version of the

system will be discussed.

1.3 Protection

Mungi features a protection system that was integrated into the system design right from

the start. Protection in Mungi has one overriding goal: not to negate the advantages that
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are intrinsic in a single address space. In order to achieve this, protection in Mungi is based

on password capabilities that allow users to share information without the intervention of

the kernel. Other design goals for the protection mechanism were:

� Flexibility: The protection mechanism should not limit the security policies that can

be implemented using Mungi primitives. A limited range of security policies restricts

the use of the operating system to a speci�c range of of environments.

� Simplicity: Protection can only be applied to entities that can be named. In the

Mungi single address space there is only one name for each entity, its virtual address.

This allows Mungi to implement protection simply by applying the \3 R's" (read,

write and run).

� Ease of use: Good protection mechanisms don't necessarily translate to good security.

If protection is too invasive or counter-intuitive users will not routinely apply it.

Therefore, operating system primitives should allow the intuitive application of good

security practice. Further, while a na��ve user should not need to understand the

protection mechanism to apply good security practice, the security conscious user,

who does understand the protection mechanism, should be able to arbitrarily enact

any security policy that they wish.

� Performance: The need to minimise the performance impact is obvious. Protection is

not tolerated if the costs are prohibitive.

The Mungi protection mechanism provides support for privileged procedures that allow

the safe extension of the Mungi system, and are used for device drivers, page fault handlers,

and protected subsystems such as database servers.

1.4 Contribution and Structure of Thesis

The major contributions made by this thesis is that it:

� introduces a protection system for a single-address-space operating system based on

password capabilities;

� provides compelling evidence that software implementations of password capabilities

can be fast;

� adapts and extends the protected procedure call mechanism introduced by the IBM

System/38. This is done in software without sacri�cing performance;

� describes an implementation of Mungi running of top of the L4 �kernel and measures

the performance of the Mungi kernel;

� shows that the capability model of Mungi is a 
exible protection system, capable of

solving a set of well known security problems;
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� demonstrates that Mungi's \pure" address space environment together with the pro-

tected procedure calls can be used to implement device drivers;

� describes how Mungi protected procedure calls can be used to support object encap-

sulation; and

� discusses approaches to the con�nement problem in a password capability system.

The remainder of this thesis will describe the design, implementation and performance

of the protection system in Mungi. Chapter 2 will give an overview of the wide area of

protection and security. Chapter 3 gives a brief outline of the general Mungi primitives,

before discussing the Mungi protection primitives in Chapter 4. More speci�c protection

and security issues are discussed in the next two chapters; protection domain extension in

Chapter 5, and Mungi security in Chapter 6. Chapters 7 and 8 will give an insight into the

implementation and performance of Mungi, before the conclusion set out in Chapter 9.



Chapter 2

Security and Protection

Any multiuser operating system must be able to ensure that processes execute free from

malicious or accidental modi�cation by other processes. This requirement can be viewed

as an arbitration of the contention between all active entities in a system, for the set of

resources in the system. The role of arbiter usually falls to the protection and security

components of the operating system.

A protection system provides the mechanisms to support contention resolution policies

(security policies). Protection was de�ned by Butler Lampson [Lam71] as \a general term

for all the mechanisms which control the access of a program to other things in the system.".

De�ned like this, protection is a design consideration that pervades all levels of an operat-

ing system; It has implications ranging from hardware design through to user psychology.

On the other hand, Hogan [Hog88] described security as a tripartite co-operative e�ort

between \a secure operating system managed by security-conscious system administrators

and accessed by security-conscious users". Simplistically, this reduces to: protection is the

mechanism, security the policy.

A need for 
exibility and good software engineering principles dictate that policy and

mechanism are separated [WCC

+

74]. This is of particular importance in the design of a

protection mechanism, because protection is intertwined with all levels of operating system

design. If 
exibility were not a major consideration in protection design, then any change

in security policy would present a major headache in the re-implementation of not only the

protection system, but a major amount of other operating system code.

In order to discuss security and protection the reader will need to be familiar with three

de�nitions: those of subject, object and protection domain. Subject, also called agent, refers

to any entity to which access policies can be applied (eg. users, processes). An object is an

entity, access to which is controlled by the access control policy (eg. �les, disks, printers).

Each subject's protection domain is the set of objects that it can access at any time and

the associated rights. The role of an access policy is to de�ne the contents of all protection

domains.

5
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2.1 Security Taxonomy/Security Principles

In order to eventually discuss various methods of implementation of a protection mechanism,

we �rst need to look at some common requirements of security policies.

2.1.1 Hydra

Hydra[CJ75] listed and de�ned a set of problems that should be handled by a security

system and thus should be supported in a protection mechanism:

� mutual suspicion,

� modi�cation,

� limiting the propagation of capabilities,

� conservation and

� con�nement.

Mutual Suspicion

Mutual suspicion is a set of two related problems, both stemming from the \principle of

least privilege". The principle of least privilege states that any procedure should execute

with only the privilege that it needs to perform its job and no more. Mutual suspicion

becomes an issue when one procedure calls another. The calling procedure must make sure

that it only passes on the rights that the called procedure needs. The called procedure, on

the other, hand must make sure that the caller does not gain access to its private objects.

As an example consider, a user who wants to print a �le on a printer. The system is set

up so that the user cannot access the printer spool area directly, but has to make a call

to the printer spooler. If the user and the printer spooler are mutually suspicious, the the

following would happen:

� the user would only pass the read rights for the �le to the printer spooler; this being

the only �le that the spooler would need access to;

� the spooler would have to make sure that the user did not get the rights to access the

spool area directly.

In Figure 2.1, the user (U) is calling the printer spooler (P). Note that the user has

various other objects in its protection domain, but the only rights that are granted to P

are those to the �le that is about to be printed. On the spooler side, the printer spool is

wholly within the protection domain of the printer spooler.

Modi�cation

Modi�cation concerns the protection system's ability to guarantee that an object that is

passed to a procedure is not modi�ed by that procedure.
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local objects

U

P

file

print(file) printer spool

Figure 2.1: Mutual suspicion: user (U) and printer spooler (P)

Capability propagation

This problem involves the propagation of access rights. A user should be able to grant

access rights to an object to another user, without the second user being able to hand the

rights to a third party. In the above example, we need to prevent the spooler from handing

on the right to read the �le.

Conservation

This protection problem is a temporal version of the principle of least privilege, in that a

procedure does not hold on to a set a rights longer than is needed to complete a job. Using

the spooler/user example from earlier, a user wishes to give the spooler access to the �le

while it is being printed. The user then wants to make sure that access to the �le is revoked

once the spooler has �nished printing the �le.

Con�nement

Confined Protection
Domain

Confined Task

Objects Outside
Confined Domain
are inaccessible

Accessible
Objects

Figure 2.2: Con�nement
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Sometimes it is required to pass sensitive information to an untrusted procedure. In this

case, it is essential that the system has a method to guarantee that the data are not

passed onto third party. This is di�erent to capability propagation which is concerned with

guaranteeing that rights are not passed on. The issues that are involved in making the

guarantee that no data is leaked is called the con�nement problem [Lam73]. Logically this

involves erecting a barrier around the con�ned process to prevent the leakage of information,

as illustrated in Figure 2.2. The con�nement problem has recently received renewed interest

in regards with the use of Java and Active X applets that run locally on web servers [SW97].

In addressing this problem, Lampson highlighted a series of channels where information

might be leaked to a third party. Obviously, blocking all of those channels results in

con�nement. To complicate the problem, there are channels that are not easy to block.

These so-called covert channels can involve approaches such as a con�ned process varying

the page fault rate in order to communicate information to a third party. Lipner [Lip75]

claims the that use of \virtual time" provides a solution to blocking covert channels, but

concedes that his method could not be used with a time-sharing system that uses any form

of adaptive resource sharing. Virtual time means that a user program has associated with

it its own clock and that operations like page faults have assigned to them a �xed time

that does not depend on other processes that can be running at the time. In general, the

problem of blocking covert channels is ignored.

2.1.2 DoD Orange Book

The US Department of Defence de�ned a taxonomy of security policies in the \Department

of Defence Trusted Computer System Evaluation Criteria" [DoD85] (also known as the

\Orange Book"). The three main aims of the taxonomy were:

1. to allow users to have some idea of the amount of trust to be placed in the operating

system;

2. to give system designers some targets to aim for; and

3. to allow speci�cation of security requirements.

It is interesting to note that suppliers of various versions of Unix such as SCO and

Solaris [Sun] as well as Microsoft Windows NT [NT95], and other modern operating systems

have gone through the trouble of getting a DoD security accreditation for their operating

systems. In this respect, the above aims seem to have succeeded to some degree.

The Orange Book de�nes 4 levels of security, with levels from A to D. Each of the levels

in this taxonomy also may have a number of sub-levels. The taxonomy is arranged so that

each de�ned level has all the features of the levels below it.

Class A1 Veri�ed Design

Class B3 Security Domains

Class B2 Structured Protection
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Class B1 Labeled Security Protection

Class C2 Controlled Access Protection

Class C1 Discretionary Security Protection

Class D Minimal Protection

Level C provides discretionary access control, which gives the control over access to an

object to its owner. The owner is able to set arbitrary user ! frightg mappings (where

some of those rights might be null). Level B requires mandatory access control, in which

access control policies are only set by the system, and must not be modi�able by any users.

Mandatory access control is commonly used in military systems. Level A is essentially the

same as Level B, but with formal veri�cation ensuring that the implementation and design

are correct. The lowest level, D, is for those systems that do not meet the speci�cations of

any of the higher levels.

2.2 Security Models

A given system is \secure" only with respect to some speci�c policy.

Ames, Gasser and Schell, 1983

A security policy determines the validity of all accesses that are made in a system.

Security policies can be based on who a certain user is, what objects that users has previously

accessed, time of day, or just about any other factor. The protection mechanisms provided

by the system should not limit the choice of a suitable security policy. To illustrate some of

the environments that a protection system might have to support, it is worthwhile discussing

a cross section of existing security policies:

� access matrix

� Bell-LaPadula

� data integrity

� Chinese Wall

2.2.1 Access matrix

An access matrix is a logical representation of a security policy. It uses a matrix to model

the set of allowable accesses from subjects to objects in the system at any one instance;

the term access matrix was introduced by Lampson [Lam71]. One dimension of an access

matrix represents all the active entities in the system, while the other dimension represents

all the resources in the system Each entry in the access matrix corresponds to the set of

operations that an active entity can perform on the resource (see Figure 2.3).
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Figure 2.3: Access matrix

2.2.2 Bell LaPadula

Bell and LaPadula [BL76] introduced a security policy which was aimed at a military

environment. Their policy consisted of subjects, object and an access matrix like the system

described by Lampson. The di�erence came, however, in a supplementation to the system,

an ordered list of security levels (eg. unclassi�ed, con�dential, secret and top secret). Each

object in the system has an associated security label corresponding to one of the security

levels. In addition, each subject is associated with a clearance level. The legality of any

operation in the system is determined by the access matrix, subject to the following two

constraints, which are shown in Figure 2.4:

read-down: A subject may only read an object if their clearance level is above that of the

security label of the object.

write-up: A subject may have only append rights to objects that have a security label

that is higher than the security clearance of the subject.

This model is concerned about information 
ow, which is of great importance when

dealing with military data.

2.2.3 Data integrity

Clark and Wilson [CW87] felt that most of the discussion about security policy had centred

around military environments where information 
ow was of major concern, and felt that

in a commercial environment there were more pressing concerns. The main concern that

they isolated was data integrity; that is, how to make sure that the information that exists

is correct and has only been modi�ed in a controlled manner.
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Figure 2.4: Bell LaPadula read-up/write-down

In their model, data that has to be kept consistent is contained in a module called a

constrained data item (CDI). Modi�cation to a CDI is limited to transformation procedures

(TPs). There is also a function that checks the consistency of the system, called a integrity

veri�cation procedure (IVP). As an example, Clark and Wilson considered a simple double-

entry accounting system. The data that we wish to keep consistent (CDI) is the record

of the accounts. Users can only manipulate these accounts through a procedure (TP) of

double entry bookkeeping. At any point we can run an audit which can be used to verify

(IVP) the accounts.

Clark and Wilson went on to formulate nine requirements of a system that preserves

data integrity. These rules are given below, with the C-rules being the certi�cation rules

and the E-rules being the enforcement rules.

C1 All IVPs must ensure that all CDIs are in a proper state every time that they are run.

C2 All TPs must be certi�ed to be valid. ie that they perform their operations correctly.

E1 The system must ensure that only valid TPs modify CDIs.

E2 The system maintains a list of what objects a given TP may access on behalf of a given

user.

C3 The list in E2 must meet the separation of duty. This means that all complete opera-

tions must involve more then one person. This is to ensure that if fraud occurs it can

only occur when two or more people conspire to commit fraud.
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E3 The system must be able to uniquely identify each user that calls a TP.

C4 All TPs must write to an append-only log to record their actions.

C5 No TPs must act on spurious data.

E4 Only the agent authorised to do certi�cation can change the list E2.

2.2.4 Chinese Wall

The prevention of con
icts of interest is of some importance in a business environment. The

Chinese Wall policy [BN89] is designed for exactly that purpose. In fact, the Chinese Wall

security policy is enforced by law for the stock exchange or other corporate dealings [Cor89].

The policy partitions �les into con
ict classes. Two objects are in the same con
ict class

if knowledge of both would be construed as a con
ict of interest. All access is initially legal,

but as soon as a �le within a con
ict class is accessed, all other objects or �les that belong

to other members of this con
ict class are rendered inaccessible.

As an example (see Figure 2.5), consider a stock brokering �rm which might have con
ict

classes for banks and mining companies. Within the Bank class there might be three banks

A, N and Z; and within the Mining class there might be mining companies B, H and P.

The act of accessing �les that belong to Bank A will preclude access to �les from Bank N

and Z. The user is still free to access �les from the Mining con
ict class. Once a choice has

been made as to which of the mining company's �les a user is going to access, the policy

precludes them from accessing any other group within that con
ict class.

The key feature of the Chinese Wall policy is that the information that has been accessed

previously by a certain user determines future access rights to other information.

Banks Petrol

A

Conflict Class Mining

N Z
B PH

K

Figure 2.5: Chinese Wall partitioning
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2.3 Mechanisms

The previous section presented several security models, it is now necessary to consider the

mechanisms that will be used to enforce these policies. These include access control lists,

capabilities, and reference monitors.

2.3.1 Access control lists

Access control lists (ACLs) are associated with objects. In a system which has protec-

tion implemented by access control lists, all objects have associated with them a list of

<subject,rights> pairs, which is referred to as the access control list for that object. When

a subject makes an access to an object, the object's ACL is searched to determine if the

subject is making a valid access.

Access control lists have the advantage that they specify explicitly the subjects that

have access to an object. They can also implement group accesses: by making subjects

members of a group, group access rights in the ACL then give access rights to all members

of the group. Another advantage of access control lists is that they can contain negative

rights. This makes it easy to exclude certain users from accessing an object by inserting

negative rights to the object for that user.

2.3.2 Capabilities

Capability based discretionary access control on the other hand sup-

ports closer adherence to the principle of least privilege and allows

the passing of access rights between processes and principals without

mediation by the resource server.

Dan. M. Nesbit, 1987

Capabilities [Dv66] are tickets that grant access to a object. Capabilities are prima

facie evidence that the holder of the capability has access to the corresponding object.

Capabilities have several advantages:

� Capabilities introduce a global naming scheme [Fab74]. This allows users to reference

an object using with a globally valid name, giving a mechanism that allows for simple

sharing of objects.

� Capabilities provide a good adherence to the principle of least privilege. As a capa-

bility confers a set of rights on a single object, passing capabilities as arguments to

procedure calls allows users to tailor their protection domain in a natural and intuitive

way [Nes87].

Logically, capabilities consist of two parts. This �rst part is the name of the object that

the capability confers rights to. This name needs to be globally valid and unique. The
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second part of a capability is some indication of the actual sets of rights that the capability

confers. One of the drawback of capabilities is that as capabilities are associated with

subjects, it is hard to generate a list of what subjects that can access a certain object.

It should be obvious that capabilities need to be protected from modi�cation. If subjects

were allowed to construct their own capabilities, protection would be rendered useless. The

issue then is: How do we protect capabilities from forgery?

There are three main ways that capabilities can be implemented [AW88]:

� tagged,

� segregated, or

� sparse.

Tagged capabilities are implemented by physically tagging the data item in memory with

a capability bit. The hardware must either prevent modi�cation of the data word, or a write

to the word must reset the tag bit, making the capability contained in the word invalid.

This method of implementing capabilities obviously requires special hardware and is thus

not a very portable way of implementing capabilities. Tagging allowed early systems such

as the IBM System/38 [Ber80] and later Sward [MB80], to mix data and capabilities (the

advantages of which were espoused by Jones [Jon80]).

Another method of implementing capabilities is segregation. To protect capabilities in

this way, lists of capabilities belonging to a subject are stored in a region of memory which

is only accessible to the kernel. This allows traditional memory management to be used

to prevent users from writing to the capability segment. Usually, in these systems, users

reference capabilities using indices into the table in the kernel. Examples of systems that

use segregated capabilities include Hydra [CJ75], CAP [Coo78] and Mach [RTY

+

88].

The third way of protecting capabilities is to employ sparseness in the capability space.

This o�ers a probabilistic level of protection for capabilities, the strength of which can

be made arbitrarily large. There are four main ways of generating secure sparse capabili-

ties [AW88] (see Figure 2.6).

Encrypted Signature: A hash of the Object Identi�er(OID) and access rights is concate-

nated to the capability which, is then encrypted to prevent the user deducing the hash

function.

Encrypted Password: In this scheme, OIDs are chosen from a large, sparse, name space

and OID and access rights are encrypted. Validity is checked by decrypting the

capability and testing that the OID exists.

Amoeba: Amoeba suggested a system where the rights and a random number are en-

crypted together. On presentation, the encrypted word is decrypted and if the ran-

dom number matches that associated with the object, the access rights are assumed

to be correct [TM84].
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Password: A capability consists of an OID and a large random number. This number and

the associated access rights are stored with the object. The validity of a capability

is determined by matching the password with the list of valid passwords for that

object [APW86].

Port Object ID Access Rights Random

Signature

Encrypted

Encrypted Representation

Object ID Access Rights

Encrypted

ENCRYPTED SIGNATURE
ENCRYPTED PASSWORD

AMOEBA

Object ID Access Rights

Password

PASSWORD

Object ID

Encrypted Representation

Encrypted RepresentationPort Object ID

Encrypted

Figure 2.6: Sparse capabilities (adapted from [AW88])

.

The last two ways of implementing protection for sparse capabilities rely on the choice

of a good random number. This random number should come from a search space that is

large enough to prevent guessing. As the integrity of the capability relies on the inability to

guess the random number, pseudo random numbers are not good enough as they reduce the

search space because they are inherently predictable. Any system that requires good random

numbers would need hardware support for the generation of such numbers. Wallace [Wal90]

introduces a hardware device which is capable of producing 60Mbits/s of good random

numbers. It is also possible to leave the generation of random numbers up to the users,

who can use any means to generate these numbers such as one-way functions.

The main advantage of sparse capabilities is that they are user level objects. Users can

pass capabilities from one to another, without the need for kernel intervention. Users are

also able to record capabilities in arbitrary data structures.

The lack of kernel control of sparse capabilities does have a few disadvantages. Opera-

tions such as con�nement and garbage collection become more di�cult; although solutions

such as lockwords [APW86] for con�nement, and economic models [APW86][MT86][HLR98]

for garbage collection, have been suggested.

2.3.3 Reference monitors

Reference Monitors [AGS83] actively control access from subjects to objects. When a

subject wants to access an object in the system, the reference monitor is invoked. The
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Figure 2.7: Reference monitor (adapted from Ames et. al.)

monitor will then check its rule set to determine if the access is valid or not (see Figure 2.7).

The advantage of the reference monitor scheme is that by changing the rule set we can

implement any security policies that we want to. Reference monitors can also be used

in conjunction with capabilities or access matrices. The Bell-LaPadula security model for

example can be modelled by access control lists together with a monitor which makes sure

that the Read Down/Write Up policy is enforced.

2.4 Case Studies

This chapter has so far covered the area of protection and security by considering principles,

models, and mechanisms. The next section will illustrate how protection and security has

been implemented in previous systems.

2.4.1 Multics

The Multics [DD68, Sal74] system was designed with an emphasis on protection and security.

The design of the protection system followed �ve main principles:

1. Protection is based on access with the default being no access.

2. Every access to every object is checked.

3. The design is not secret, as \security by obscurity" does not work.

4. The principle of least privilege is adherence to.

5. Users are able to apply protection routinely and naturally.
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All data in Multics resides in a persistent storage system. This storage system also

contains kernel databases and �les. It is intended that the access control to the store

provides all the protection in the Multics system. All information is mapped from a storage

system to virtual memory. Access control lists are associated with each object in the

store and each process in the system has an unforgeable user identi�er associated with it,

allowing arbitrary discretionary access control. The designers cite two main reasons for

using Access Control Lists over capabilities: revocation is awkward and it is not possible

to conduct an audit of who can touch what object when using capabilities. To allow users

to implement arbitrary protection schemes, Multics provides protected subsystems, which

are a collection of procedures and data that can only be accessed by programs within that

protected subsystem. Execution of a protected subsystem can only occur at a series of

prede�ned entry points or gates. Hardware support arranges protected subsystems into a

hierarchy numbered from 0 to 7. The hardware allows subsystems of a certain level access

only to data and procedures of a level equal or less then the current level. This nesting of

protected subsystems became known as the Multics \rings of protection".

2.4.2 Unix

Unix

1

[TR74], much like Multics, also tries to have access checks applied once only. All

resources in Unix are viewed as �les. It is therefore not surprising that access permissions

are �le based. Every process in Unix has associated with it a user id and a group id. These

id's determine the access that each process has on each �le. There are three main operations

that can be performed on a �le, these are read, write and execute. All �les in Unix also have

an owner, and belong to a group. Rights to a �le are speci�ed by three sets of permissions.

The �rst is the rights of the owner, the next set determines what rights the group members

have, while the last set determines what rights all other users have.

unix> id

uid=10371(jerry) gid=10371(jerry)

unix> groups

jerry mungi accstaff

unix> ls -l

total 1130

-rw------- 1 jerry jerry 19129 Oct 30 11:35 dead.letter

-rw------- 1 jerry jerry 22190 Oct 12 1996 grub-ext2fs-floppy.gz

-rw------- 1 jerry jerry 28400 Jul 30 09:03 in-mail

drw-r-x--- 1 jerry mungi 1024 Jul 30 09:02 mungi-src

-rw------- 1 jerry jerry 8142 Jul 30 09:04 newgive.doc

-rw-r----- 1 jerry mungi 322 Jul 30 08:02 proposal

In the above example, the user id of the process is 10371 for user jerry. User jerry also

belongs to groups jerry, mungi, and accsta�. When the �les in a directory are listed, the

rights are represented as 9 characters following the letter indicating the �le type. The �rst

three letters indicate the rights that the owner jerry has on the �le; rw- in the case of �le

dead.letter, corresponding to read and write permissions. The next three indicate the

rights that the group has. In the case of the �le proposal, which belongs to the group

mungi, the permissions are r--. This means that all members of the group mungi have

1

The Unix operating system takes it name from a play on the name Multics.
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read permissions on the �le. The last three letters indicate the rights that other users in

the system have on the �les. All of the �les in the example have rights --- in this �eld.

This means that others users have no access to these �les.

Unix provides a protected procedure call through the use of set-user-id programs. When

executed, these programs run with the user id of the program's owner, usually root (the

superuser to whom no access rights checks are applied). An example of this on Solaris is

unix> ls /usr/bin/passwd

-rwsr-xr-x 1 root sys 23408 Oct 25 1995 /usr/bin/passwd

In the above example, the execute bit on the passwd �le is set to s instead of x. This

means that if any user executes this �le it will run with the user id of root. This allows users

to modify the password database, which is an operation which they are normally prevented

from doing.

The Unix protection model is simple and well known. It does, however, have two main

drawbacks. The �rst is the granularity of protection. A �le can only ever have one owner

and belong to one group. This prevents more than one group having access to a �le.

Compounding this problem is the fact that only the system administrator is able to create

groups in Unix, restricting the users ability to tailor protection for their �les

2

. The second

problem is that set-user-id programs have been the cause of many security breaches in Unix

systems, Set-user-id programs that are used to perform system duties (such as adding a

�le to the printer queue) usually are set to be uid root, as root is the only user that is

guaranteed to be able to access the caller's �le. This is in gross violation of the principle of

least privilege, in that a process that only needs to have the rights to access a user �le and

a printer spooler actually has access to all the �les in the system.

2.4.3 Hydra

Flexibility is one of the main concerns in Hydra [LCC

+

75, CJ75]. As a result, policy and

mechanism are seen as separate issues. Hydra identi�ed the set of protection problems

discussed in Section 2.1.1, and presented solutions to these problems.

The mechanisms that Hydra provides are based on capabilities. Resources in the system

are objects. Objects in Hydra have a (temporally and spatially unique) name and a type.

A representation of an object contains data and may contain a capability part that contains

pointers to other objects. Every instance of a procedure has associated with it a local name

space (LNS) which de�nes, at that instant, the objects and respective access rights that the

procedure has access to. Users can invoke other procedures by means of a CALL function.

When a CALL is performed a new LNS is set up for the new procedure. This LNS will

contain the capabilities that are speci�ed in the capability part of the procedure. Procedures

can also contain capability templates; these specify the type and rights of a capability that

the caller must provide in order to call the procedure. Templates can be thought of as

prototype capabilities. There are three types of templates in Hydra, namely:

2

Recent implementations of Unix have added ACLs to their protection mechanisms.
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1. Creation: Creates a new object to be used by the procedure.

2. Parameter: Parameter templates are the capabilities that are passed by the caller to

allow the called procedure to perform an action on the speci�ed object. If all the

templates match, the capability is added to the LNS of the called procedure, but with

the rights that are speci�ed in the template.

3. Rights ampli�cation: A capability that matches a rights ampli�cation template has its

access rights ampli�ed in the LNS of the procedure. This allows the implementation

of privileged operations.

It should be noted that any information shared between two processes has to be explicitly

passed in the procedure call, forcing the users conform to the principle of least privilege.

2.4.4 CAP

The intention is that each module of a program which is executed

on the CAP shall have access to exactly and only that data which is

required for correct functioning of the program.

Needham and Walker, 1977

The Cambridge CAP computer [Coo78, NW77] was intended to adhere closely to the

principle of least privilege. Protection is applied to segments which are contiguous memory

locations. Access to segments is controlled by capabilities. The CAP de�nes two types of

segments, one that holds data and one that holds capabilities. There are also two types

of capabilities, ones that grants access to data segments and ones that grant access to

capability segments. The protection system is set up as a hierarchy, which has at the top

a master resource list (MRL). The MRL de�nes the overriding base, limit and protection

rights for each segment. Below this top level, each process has a process resource list (PRL)

whose entries point to the PRL of the process above it in the hierarchy. It should be clear

that all hierarchies are eventually rooted in the MRL. The hardware provides a table with 16

slots which contain pointer to capability segments. A process is allowed to have immediate

access to all the capabilities that are contained in the selected capability segments. The

capabilities in these capability segments point to entries in the PRL for the current process.

Protected procedures are implemented by the enter and return instructions. During

a protected procedure call slots two through to six serve a special purpose. The enter

instruction has the e�ect of changing slots four, �ve and six to point to new capability

segments speci�ed by the enter capability. Slots two and three are used to pass capabilities

and parameters to and form the protected procedure. enter and return also change slots

two and three; when enter is called, the reference in slot two is saved and that segment

becomes inaccessible, slot three is copied to two and a new segment reference is inserted

in slot three. Note that Unlike Hydra, CAP takes the approach that, in general, a list of
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capabilities is passed rather than individually passing the capabilities. Both approaches

o�ers the same levels of protection, but are tailor to di�erent usual cases.

2.4.5 IBM System/38 and AS/400

The designers of the IBM System/38 [Ber80, HSH81] perceived the need for a high-level

interface that allowed applications to be independent of the hardware. Internally, all mem-

ory is split into segments. Segments are uniquely identi�ed by a 40-bit segment identi�er,

which is never re-used. Associated with each segment is a header that can only be seen

by the system. The header contains information such as type, as well as a list of all the

other segments that are associated with that segment. Operations are performed on objects

which are high-level constructs consisting of one or more segments.

In order to encapsulate information, no provision is made to address bytes, except for

a special object type called a space. Access to objects is controlled by capabilities called

protected pointers. Capabilities can be freely stored anywhere in memory, as they are

protected from forgery by a tag bit. The system supports four main types of capabilities,

which are:

system pointers, which are used to address objects;

space pointers, which are used to address bytes within space objects;

data pointers that address bytes and have associated type information; and �nally

instruction pointers, which are labels for code branches.

In order to resolve an object's virtual address from its name, System/38 provides an

object called a context which contains a set of mappings from names to object addresses.

An instruction is provided to resolve a name into a system pointer using a speci�ed set of

contexts.

For execution of a program, virtual machine instructions are translated into microcode

instructions when a program is loaded into a program object. A program object cannot be

modi�ed after it has been loaded and can only by started at a speci�ed entry point.

Protection domains are de�ned by objects called user pro�les, which contain lists of

authorities. The four types of authorities that can be stored in the user pro�le are listed

below.

Storage resource: This authority de�nes the amount of space that a user pro�le is able

to allocate. Any objects that are created by the pro�le are charged to the authority.

Privileged instructions: Allows access to a set of restricted virtual machine instructions,

such as the instruction to create a new user pro�le (aptly called create user pro�le).

Access rights to objects: This set of authorities speci�es a set of rights on objects.

These rights can be grouped into three main groups:

� Object existence: These include delete, rename etc.



CHAPTER 2. SECURITY AND PROTECTION 21

� Object access: Operations that grant access and grant authority.

� Access to object contents: insert, retrieve data from the object.

Special authorities: These grant authority to modify machine attributes, and provide

implicit control over all objects. This is similar to root privileges in Unix.

A space pointer can be adjusted to point to any region in a space. There are instructions

to adjust a space pointer, these do the bounds checking.

Object authorities are stored in a table for each user pro�le. This allows the system to

search for user pro�les that have authorities to objects and to list objects that a pro�le has

access to. Objects may have public and owner rights associated with them to eliminate the

need to search the user pro�le for matching capabilities.

Due to the fact that pointers are protected by the hardware, authorisation is only done on

the �rst access: future accesses are assumed to have been authorised. Retracting authority

on an object is only possible by destroying the object. Any references to the object become

and remain invalid as segment addresses are not re-used.

In order to allow user access to segments in a controlled fashion, System/38 provides

adopted user pro�les. This allows users to who have appropriate authority to substitute or

add another user's pro�le to their pro�le. A user can execute a grant instruction that will

generate an authority that allows another user the use of its pro�le. This allows users to

perform operations that they would not otherwise be authorised to perform.

The AS/400 is essentially the same as the System/38. Soltis [Sol96] cites the new AS/400

as an immediate success when it was introduced, but added \Insiders, however, know that

under the covers of every AS/400 lurks a System/38". Discussion here is therefore limited

to the System/38, except to note that the AS/400 is the only commercially successful

capability-based system.

2.4.6 Eden

Eden [LLA

+

81, ABLN85] is an object-based system. Objects in Eden are called ejects.

Each eject has a unique identi�er. Ejects communicate with each other using invocation.

The ability to invoke an eject is conferred by capabilities. Each capability has the id of the

target eject and a set of access rights. The list of capabilities that belongs to an eject is

stored in the kernel, with a copy kept in the user's address space. This was done instead

of keeping the list of capabilities in the kernel and having users access the capabilities

indirectly by means of an index into the kernel table, because:

� It eliminates the overhead of kernel calls to examine rights �elds, etc.

� Capabilities can be directly compared. This is di�cult when using an index into a

list of capabilities due to the possibility of aliasing.

� Capabilities can be copied within a program just like other variables.
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2.4.7 Amoeba

The dropping price of hardware, which allowed the building of large interconnected dis-

tributed systems, prompted the design of the Amoeba operating system [TM84, TMvR86].

Amoeba is an exclusively client-server operating system. All interaction between clients

and servers is by means of IPC, which is based on unreliable datagrams (ie. no acknowl-

edgement, no guarantee of delivery). Messages are sent to ports, and knowledge of a port

number is taken as prima facie evidence that the sender is allowed to use the port. Amoeba

chose to protect port numbers by using sparsity. Access to services is controlled by capabil-

ities (depicted in Figure 2.8) which consist of a globally unique server id (port number), an

identi�er for the object which is managed by the server, the set of rights that the capability

confers, and a check �eld which is a large random number. Once a server receives a message

from a client the server is free to do whatever further authentication that it wants to do

(potentially using the other �elds in the capability). One scheme actually implemented

encrypts the random number and the rights �elds, handing out only the encrypted infor-

mation. When a capability is presented it is decrypted and the random number compared

against the original. If they match the rights �elds are assumed to be correct.

The basic operations that the system provides are trans (transmit), getreq (get mes-

sage) and putrep (put reply). Trans is used by the client to request a service. Getreq and

putrep are used by the server to get a service request and to post a reply respectively. To

prevent programs from issuing getreqs on arbitrary ports, a novel authentication scheme

based on one-way hashing is used [MT86]. This scheme can either be implemented in

hardware or in software. It is believed that there are no implementations of the hardware

version.

Service Object Rights Random

Figure 2.8: A typical Amoeba capability

2.4.8 The Monash Password Capability System

Anderson, Pose and Wallace [APW86, AW88] introduced a system that provided protection

using password capabilities. Protection is based on objects, with all objects in the system

having associated with them an inverted tree of passwords, which represent the set valid

capabilities. Having a tree structure for the storage of passwords creates a hierarchy of

capabilities. Deleting a password from the tree also removed all the passwords below that

node in the tree, revoking all the associated capabilities.

When a capability is validated, many system tables have to be searched. In order to

reduce the validation overhead, validation information is kept in a main-memory cache

called the Active Object Table (AOT). The AOT is a hash table that is indexed with the

object's name to allow fast access. To allow addressing of words in memory, all objects that
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are currently active are mapped into a linear intermediate address space (IAS). The IAS is a

single 32-bit address space that maintains a temporary mapping of all active objects to allow

data in them to be addressed. It should be noted that the IAS is just an implementation

choice and not an intrinsic part of the password capability system.

The Monash Password Capability System also introduced a novel way to solve the

con�nement problem. Each process has associated with it a 63{bit lockword. Before a

capability is validated, the kernel will XOR its password with the lockword. In most cases

the lockword will be zero and so all capabilities are validated as is. If a user wants to con�ne

a task, the task is simply created with a non-zero lockword known only to the parent. The

passwords of all capabilities to be passed to the child task must �rst be XORed with the

lockword. During execution, all capabilities used by the child task will again be XORed

with the lockword before being validated. As a result, the child task can only use the

capabilities that the parent has explicitly passed to it. All other capabilities are invalid

after they have been XORed with the lockword. This e�ectively con�nes the child task.

As with other password capability systems, it is very di�cult to do garbage collection.

Anderson, Pose and Wallace put forward a scheme that charges a size-dependent rent for all

objects in the system, garbage is de�ned as objects that cannot be paid for. The economic

model is built into the kernel and there are also mechanisms to charge processes for the

objects that they use. The system is designed carefully to ensure that the charging system

does not violate mutual suspicion and con�nement [WP90].

2.4.9 Monads and Grasshopper

Monads and Grasshopper were related projects whose aims were to investigate object man-

agement issues such as orthogonal persistence and distribution. Both systems use capabil-

ities to protect references to data in the system.

Monads

Monads [RA85, HR91] was a system designed to support a \rational, engineering-like ap-

proach to the development of computer software". Monads has hardware support for a large,

persistent, single-level store, which is protected by capabilities. The Monads virtual mem-

ory is split into contiguous regions called address spaces. Each address space is uniquely

identi�ed by an address space number which is never re-used. An address space is logically

divided into a collection of segments, which are accessed through segment capabilities. Seg-

ment capabilities are made up of the full virtual address of the base of the segment (address

space number + o�set), the length of the segment and the rights that are conferred by the

capability. Monads also provides direct support for data encapsulation with modules. A

module is a collection of segments that are all part of the same address space. Modules are

accessed through the use of module capabilities that confer the rights to access the interface

that is presented by the module. The reason for having access protection for both segments

and objects was the observation that the frequency and type of access di�ered between

small and larger objects.
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Grasshopper

Unlike its predecessor Monads, Grasshopper [DdBF

+

94, RDH

+

96] was designed to be imple-

mented on standard hardware. Grasshopper provides three main abstractions. Containers

are the storage abstraction, they combine the features of address spaces and �les of tradi-

tional systems. Loci are the execution abstraction, a locus is at any one time executing in

a container, its host, but can jump between hosts. Protection domains de�ne the access

permissions of loci.

The data in a container are supplied by a manager. Sharing between containers is done

through one of two mechanisms:

� Mapping: Grasshopper allows a region of one container to be mapped to a region in

another container. This sets up shared memory between the two containers.

� Invocation: Each container is able to de�ne an address that is its entry point. When

a locus invokes a container, execution will start at that speci�ed address. System calls

are also implemented using the same invocation mechanism.

Access to operations on loci and containers is controlled through the use of segregated

capabilities. Each entity in the system has associated with it two kernel data structures,

namely:

� The capability table: contains all the capabilities that belong to the entity.

� The permission group table: basically contains the list of all existing capabilities for

access to the entity.

A locus is able to access the capabilities from both its own capability table as well as

that of the host container. Access to these capabilities is done through capability references

(caprefs). A capref consists of a 
ag that speci�es which capability table to look in (ei-

ther the locus or the host container) and the index in the capability table of the required

capability.

2.4.10 Mach

The Mach [RTY

+

88, RJO

+

89] �kernel is designed speci�cally to support a multiprocessor

architecture, but is 
exible enough to allow it to be ported to uniprocessor systems.

There are �ve abstractions is Mach; tasks, threads, ports, messages and memory object.

The 
exibility of the Mach system comes from its message-based protection and communica-

tion system. All entities can have an associated port, which is a communication end-point.

Operations on objects are performed by sending messages to ports. For example a thread

can be stopped by sending a stop message to the threads port. Operations on ports are pro-

tected by capabilities that are maintained by the kernel. These capabilities can be shared

by sending them in messages.

Another feature of Mach is that it allows user-level memory management by introducing

external pagers [YTR

+

87]. These external pagers are invoked due to page faults in memory

objects and are responsible for resolving the fault.
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Although Mach was intended to be a �kernel, it su�ered from poor performance, which

is shown to be a result of its large size[Lie93]

2.4.11 EROS

. . . a capability system should be both faster and simpler than a com-

parable access-control-based system

Shapiro, 1997

The aim of the Extremely Reliable Operating System (EROS) [Sha97] is to show that

capability-based systems can be fast, simple and secure. At the highest level, all storage

is in objects. Objects are protected by capabilities that grant rights of invocation on those

objects. All access is done through invocations allowing the EROS supervisor to only

implement one system call, namely the invocation trap. One of the other contributions of

the EROS system is that it provides a formal proof of correctness of its solution to the

con�nement problem [SW97].

2.5 Single-Address-Space Operating Systems

The traditional approach to protection of objects is by using disjoint address spaces. There-

fore, single-address-space systems require a novel approach to protection. Recent projects

have investigated several approaches to this problem.

2.5.1 Angel

Angel [WSO

+

92, WM96] came out of City University London.

3

The base unit of protection

in Angel is the object, a set of contiguous pages. Angel implements protection by user level

protection server called the object manager. The object manager is responsible for all

operations on objects, including access.

The current implementation of the Angel object manager implements a 
exible system

based on access control lists. When a new object is added to the domain, a bit string called

a biscuit, together with a list of permissions required for the object, is passed to the object

manager. The validity of the operation is determined by a simple rule set that is dependent

on the objects that are already in the domain. Protection is thus based on the properties of

the domain rather than that of a user, although a user could be represented by an object.

2.5.2 Opal

The University of Washington produced a single-address-space operating system called

Opal [CLBHL92, CLFL94]. There are three main abstractions in Opal: segment, thread

3

Angel is named after the nearby tube station [Wil96].
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and domain. Segments are sections of the single address space. Threads execute in a

domain, which de�nes the access rights of the threads.

Access control to segments is granted by password capabilities: A capability can be

used to attach a segment to a domain. This means that all threads that are executing in

that domain now have access to the segment. Similarly a segment can be detached from a

domain. Segments can also be implicitly attached. To allow the system to �nd the correct

capability, it is required to be registered with a name server using the publish operation.

Users with the appropriate authority can perform cross-domain calls by invoking a do-

main. To this purpose, owners of a domain can create portals for that domain. A portal

has a 64-bit ID, knowledge of which grants the rights to invoke the domain through the

portal. When a user invokes a domain through a portal, execution starts at a point that

is speci�ed by the portal. Restricting execution to start at an address that is speci�ed by

the portal allows a portal to implement its own security policy by applying further access

checks before proceeding. This is logically similar to Amoeba server that were also able to

implement their own local access policy.

2.5.3 Nemesis

An operating system project designed from the ground up to support multi-media ap-

plications was the goal of the Nemesis [LMB

+

96]. Units of protection in Nemesis are

stretches [Han97], which are contiguous segments of the single-address-space. A protection

domain is a set of mappings stretch ! frightg, where the access rights supported in Neme-

sis are read, write, execute and meta. The meta right allows modi�cation of access

rights for the stretch, and allows mapping or unmapping of physical frames of the stretch.

Stretches are protected by ACLs. A global domain is de�ned which allows global rights

to be de�ned for a stretch. There are four main operations that can be performed on the

ACLs that are associated with a stretch.

SetProt(pdom,rights) set the access rights for domain pdom to rights.

SetGlobal(rights) set the global rights to rights.

QueryProt(pdom) ! rights Return access rights of domain pdom.

QueryGlobal() ! rights Return global rights.

A stretch is allocated by a stretch allocator, of which there may be many, each managing

a separate non-overlapping part of the address space. Each stretch must be allocated to

a stretch driver, which is responsible for the backing store allocation of the stretch using

map and unmap primitives (cf. ULPs).

2.6 Summary

Consideration of protection and security issues should be given equal weighting in design

considerations as the other subsystems. Protection and security represent the implementa-
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tion and policy side of a system that ensures the safety of data and programs in a system.

This chapter has examined a range of security issues and basic mechanisms for their

support. These present the background for discussions of security issues in the following

chapters. A range of notable approaches to protection with an emphasis on capability

systems, was further presented. In lieu of discussions about these system at this stage, a

comparison and critique is presented in discussion in Chapters 4 and 5 in parallel with the

presentation of the Mungi protection system.



Chapter 3

Mungi

3.1 Introduction

Single address space systems allow all data to be named by a system-wide address; all data,

transient and persistent, has a unique address within the global address space. This is

di�erent to dominant multiple address space paradigm. In this case each process executes

in its own address-space. The di�erences in these two paradigms results in necessarily

di�erent services being provided by the operating system. This chapter will highlight the

services that the Mungi kernel provides to the user.

3.2 Etymology

Mungi is an Australian Aboriginal word. In one central Australian Aboriginal language

mungi means \message stick", which was used by the Australian Aboriginals to introduce

a messenger to a new tribe (something not unlike a capability in operating systems). In

the (extinct) language of the Aborigines of the Sydney region, mungi means lightning. The

pronunciation rules [TM94] for Mungi are as follows:

� m: similar to English,

� u: as in \put" (not like the \u" sound of \but"),

� ng: similar to the \ng" of \sing" (not like the \ng" of \�nger"),

� i: as in \bit" (not like the \i" sound in \bight").

3.3 Motivation

Re
ecting its name, Mungi is a fast, capability-based operating system that provides a

64-bit, persistent, single address space. Mungi was designed and implemented by the Dis-

tributed Systems Group at the School of Computer Science and Engineering within the

University of New South Wales, Sydney, Australia.

28
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The design of Mungi was guided by a set of goals, which determined the direction of

project.

Simplicity: Mungi should present an application with a \pure" view of the single address

space. It is the premise that a huge 
at address-space abstraction is su�cient to

implement all the needed services, without the need to introduce other name spaces.

As a result, traditional kernel services such as I/O and interprocess communication

are accomplished through the single, shared, address space. The kernel and all kernel

data structures are also part of this address space. Protection also has to be simple

and applied in a uniform manner.

Usability: Simple intuitive interface to the services that are provided by Mungi, based on

the single-address-space paradigm.

Flexibility: Mungi should provide a simple set of basic abstractions, which can be used

to build arbitrary, more complex abstractions. By keeping mechanisms and policy

separate, Mungi provides services that applications can use to implement policy.

Protection: As all data in a single address space can be addressed by any process, the

lack of address-space boundaries might super�cially be viewed as being insecure.

This perception needs to be addressed by ensuring that particular attention is paid

to protection in Mungi. The protection system has to be secure and reliable as well

as being intuitive and easy to use.

Performance: The performance of any system is nearly always one of the �rst metrics

that is used to compare operating systems. It is of little use having a simple and

intuitive abstraction if the costs of execution make it prohibitive.

No reliance on custom hardware: Mungi has to run on standard 64-bit hardware for

a variety of reasons:

� The experience of other operating systems projects has shown that projects that

involve new hardware �nd it di�cult gaining acceptance (eg. Intel 432 [Org93]

and Monads [RA85]).

� O� the shelf hardware is usually less expensive.

� O� the shelf hardware is usually more reliable.

� It is easier to show improvements in performance of an operating system when

it is running on known hardware. This allows comparisons to be made with

established systems.

3.4 Mungi Abstractions

The principal resource that is provided by Mungi is a 64-bit single address space. This 16

exabyte address space is intended to be large enough to contain all persistent and transient
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data in a typical building sized distributed system of thousands of nodes. Operations on

the address space are performed through the use of three simple abstractions, which are:

threads, objects and protection domains.

Threads: Threads are the execution abstraction in Mungi. A thread is a lightweight

instruction stream that travels through the virtual address space. Threads can be

created quickly by simply supplying a starting address and a stack pointer.

Objects: Mungi objects are consecutive pages of virtual address space and represent the

allocated regions of the Mungi address space. Only addresses that are contained in an

object can be legally addressed. All other addresses are considered to be invalid and

will cause segmentation exceptions on access. Objects in Mungi have no kernel inter-

preted type (similar to Unix where everything is a untyped �le). There is, however,

provision for assigning application speci�c types to objects in Mungi.

To aid in address-space allocation, Mungi partitions the address space across ma-

chines, with each machine being responsible for a region of the address space. Al-

locations of objects are done from a local partition, and deletes must be forwarded.

Mungi places no other signi�cant importance on partitions, in particular they have

nothing to do with the actual location of the data.

Protection Domain: Whereas objects in Mungi de�ne the regions of the address space

that can be legally addressed, a protection domain de�nes the regions of the address

space can be legally accessed. A protection domain in Mungi logically describes a

set of objects and a corresponding set of access rights to those objects. A protection

domain can be simply thought of as an operational, active view of the address space.

All threads in Mungi execute within a protection domain, which may be shared with

other threads. Naturally, any modi�cations that are made to a shared protection

domain are visible immediately by all threads sharing the protection domain.

3.5 System Interface

The operations provided by Mungi to manipulate the three main abstractions de�ne the

system call interface. The application are presented with a small set of system calls, which

can be roughly grouped into four categories (see Table 3.1).

� Address space management: This is the set of system calls that allows users to create,

destroy and change the attributes of objects. Also included in this group are the set of

system calls that deal with operations on Mungi virtual memory, such as the mapping

and unmapping of pages.

� Protection management: Protection management is the set of system calls than ma-

nipulate the kernel data structures that are associated with protection. These system

calls, and the Mungi protection system in general, are discussed in more detail in

Chapter 4.
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� Thread management: Thread related system calls include create, delete and wait calls.

� Miscellaneous: The last category provides support for semaphores and exception han-

dling.

More information on the Mungi Application Programming Interface (API) can be found

in [HVER97].

System Calls

Address Space Management

ObjCreate ObjDelete ObjInfo

ObjNewPager PageCopy PageMap

PageUnmap PageUnalias PageFlush

Protection Management

ApdInsert ApdDelete ApdLock

ApdGet ApdFlush ApdLookup

ApdCreate ApdRemove ObjDelPasswd

ObjCrePdx PdxCall ObjCrePasswd

Thread Management

ThreadResume ThreadCreate ThreadDelete

ThreadSleep ThreadWait ThreadMyId

ThreadInfo

Miscellaneous

SemSignal SemCreate SemDelete

ExcptReg

Table 3.1: The Mungi system calls

3.6 Object Table

In order to keep track of objects, all objects in Mungi have an entry in the system wide

object table. This table contains each object's meta-data, such as date of last access, length

and associated protection information, similar to i-nodes in Unix. See Figure 7.7 for the

data structure that is used to implement a Object Table node. The Object Table currently

implemented as a 256-ary B

+

tree [GBY90].

3.7 Summary

The Mungi single-address-space operating system provides a single, persistent address space.

Operation are performed using three simple abstractions; threads, objects, and protection

domains. Threads are the execution abstraction, objects are the storage abstraction, and

protection domains de�ne the view a thread has on the objects in the system. Using these

simple abstractions, applications are able to construct suitable higher-level abstractions as

needed.



Chapter 4

Protection in Mungi

The design and implementation of protection in a single-address-space operating system

presents a host of new challenges. This is due to the shift away from the separate address

space model of protection. Traditional operating systems have relied on separate address

spaces to enforce protection.

The crux of the conventional approach is to perform address translation and protection

using the same mechanism, namely the memory management hardware. Each process

executes in its own address space. Any data that is in the address space of a process has

to be explicitly mapped into the address space by the kernel. This may be done by system

calls, such as reading a �le, or other I/O operations. Protection decisions can be made

and applied by the kernel when such a request is made. As a result, only data that can be

legitimately accessed can be addressed.

In contrast, in a single-address-space system, any data can be addressed. Single-address-

space kernels can not rely on being informed explicitly when a new access is made. Instead

implicit methods have to be used to enforce protection in the system. The next chapters

will describe di�erent facets of the Mungi protection and security system and the issues

that had to be dealt with in the design of the protection system.

4.1 Protection Philosophy

One of the most obvious advantages that single-address-space systems have over separate

address space system is the ease with which sharing can be accomplished. Consequently,

the design of a protection mechanisms needs to take great care that sharing is not unduly

hindered; conversely we cannot ignore protection as this would render the resultant system

unsuitable for use in a multiuser environment.

Ideally a protection mechanism should be unobtrusive, o�er perfect safety, allow the

implementation of arbitrary security policies and have no performance impact on the system.

It is obvious that this is an impossible goal. In reality the aims are: a protection system

that is 
exible, intuitive and has as little performance impact on the user as possible. These

requirements form a subset of the Mungi design requirements; in particular the following

32
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subset provided the guiding principles for the design of the Mungi protection system.

� Flexibility: The protection mechanism should not limit the security policies that can

be implemented using Mungi primitives. A limited range of security policies restricts

the use of the operating system to a speci�c range of of environments.

� Simplicity: Protection can only be applied to entities that can be named. In the

Mungi single address space there is only one name for each entity, its virtual address.

This allows Mungi to implement protection simply by applying the \3 R's" (read,

write and run).

� Ease of use: Good protection mechanisms don't necessarily translate to good security.

If protection is too invasive or counter-intuitive users will not routinely apply it.

Therefore, operating system primitives should allow the intuitive application of good

security practice. Further, while a na��ve user should not need to understand the

protection mechanism to apply good security practice, the security conscious user,

who does understand the protection mechanism, should be able to arbitrarily enact

any security policy that they wish.

� Performance: The need to minimise the performance impact is obvious. Protection is

not tolerated if the costs are prohibitive.

4.2 Password Capabilities in Mungi

The need to �nd a balance between protection and simplicity of sharing is of crucial impor-

tance in Mungi. A suitable method of implementation needs to be chosen. On an abstract

level, all protection mechanisms are basically variants of access control lists (ACLs) or

capabilities.

Although there is no reason why ACL-based protection cannot be implemented e�ciently

in a SASOS, as Nemesis [Han97] demonstrates, capabilities were chosen as they o�er the

following advantages.

� Close mirroring of the single-address-space paradigm: One of the features of most

capability-based systems is the need for the establishment of a global name space.

Fabry [Fab74] states that \the advantage of a capability used as an address is that

its interpretation is context independent". In order to construct a global name-space,

CAP implemented a Master Resource List which contained globally valid unique ca-

pabilities; Amoeba had globally unique port numbers and The Monash Password

Capability System introduced an Intermediate Address Space into which all active ob-

jects were mapped. A SASOS o�ers a global name space without the need for another

construct.

� Ease of sharing: Capabilities are compact representations of an object, also de�ning a

set of access rights. Using capabilities as special pointers, sharing is trivially accom-

plished by transferring capabilities. In ACL based systems the sharing of information
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would take two operations; one to pass the pointer and one to set up the protection

to allow access.

� Good adherence to the principle of least privilege: Capabilities allow the construction

of protection domains that contain only objects and rights necessary to perform an

operation.

Recall that there are three methods of implementing capabilities: tagged, segregated

and sparse. A tagged implementation of capabilities is rejected due to the need for spe-

cialised hardware; one of the Mungi objectives was that it be implemented on o�-the-shelf

hardware. This leaves two possible implementations, which can be classi�ed as kernel con-

trolled or user controlled capabilities. The kernel controlled (segregated) method needs the

kernel to be invoked for every passing, comparing or storing of a capability, an unacceptable

overhead in any system that has a strong commitment to providing support for sharing. It is

for this reason that Mungi protection is implemented using password capabilities [VRH93].

The other implementations of sparse capability were rejected due to the need for encryp-

tion which is computationally expensive. Sparse capabilities in general, but particularly

password capabilities, have the advantages that are listed below.

� Password capabilities allow the passing of capabilities and thus the sharing of ob-

jects to be performed without needing kernel intervention. Mungi also supports a

user library scheme that allows for capability re�nement to be achieved without the

intervention of the kernel (see Section 6.2.4).

� Password capabilities allow data and capabilities to co-exist. This is of great advan-

tage [Jon80], as it allows capabilities to be stored in arbitrary data structures.

Address Password

64 64

Figure 4.1: Mungi password capability

4.2.1 Capability types and access modes

Mungi capabilities (Figure 4.1) are 128-bit entities, consisting of a password and the base

address of an object. Each password conveys a set of rights to the object. The access

rights that are supported by Mungi are Read, Write, Execute, Destroy and PDX (for an

explanation of PDX see Chapter 5). A capability that contains all of the DRWX rights is

called an owner capability

1

.

1

Note that execute-only rights only make sense on CPUs that support an execute-only mode of operation.

In a single-address-space, without further hardware support, if an object can be executed then it can be

read and vice-versa. This is a side e�ect of the fact that execution of a program is as simple as doing a

jump to the required start instruction and requires no kernel involvement.
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One of the weaknesses of capability based systems is that they can only specify the

right to access an object; capabilities normally do not have the power to explicitly reject

access to an object. The Mungi protection system does provide the mechanism to explicitly

deny rights by having negative versions of all of the above rights, that is, a capability that

explicitly denies certain rights for an object. For these capabilities to be useful, it must be

possible to force them to reside in a protection domain. Mungi provides a mechanism called

slot locking (see Section 4.3.6) that achieves this.

4.2.2 Object table entries

All objects in Mungi have an entry in the global object table. This entry contains object

information, part of which is a list of <password,rights> pairs. This list represents all of

the valid passwords for the object and their associated access rights. Any valid capability

for an object must consist of the base address of the object and one of the passwords in

this list. The access granted by such a capability is determined by the set of rights that is

associated with the password in the list (see Figure 4.2).

Any holder of an owner capability for an object is able to add or delete entries from the

password list for that object. Note that it is possible to have more than one capability that

grants a certain set of rights; in fact, it is possible to create a di�erent capability for every

entity that a capability is passed to, making it possible to selectively revoke access rights.

0xf53ffedfa41829670x85feb6739abdfd000

Capability

0xf53ffedfa4182967 RWX

0x123456789abcdef0

0x123456789abcdef0

0x123456789abcdef0

0x123456789abcdef0

0x123456789abcdef0

0x123456789abcdef0

Base: 

0x85feb6739abdfd000

Length:

0x23000

Object Table Entry

RWX

Figure 4.2: A valid RWX capability

4.2.3 Password management

When an object is created in Mungi, a password is speci�ed which, together with the

base address of the object, forms the new owner capability for that object. Using this
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capability it is then possible to create new capabilities for that object (including additional

owner capabilities). The system calls that implement password management are given in

Table 4.1 and are described below.

Syscalls

ObjCreate (size,password,info) ! (owner cap)

ObjCrePasswd (address,password,mode) ! (cap)

ObjDelPasswd (address,password)

Table 4.1: Object system calls

ObjCreate: The object creation call. When a object is created the kernel allocates an

entry in the object table for that object. After this, a region of the address space is

reserved for the object, the base address of this region being the base address of the

object. The password that is given as a parameter to the ObjCreate call is entered into

the object table as representing the owner capability for that object, this capability

is the return value of the system call.

ObjCrePasswd: Mungi imposes no limit on the number of valid capabilities for an object.

The ObjCrePasswd system call allows any holder of an owner capability to create

another capability for that object by adding it to the list of valid capabilities in

the Object Table. The arguments to this system call are the password for the new

capabilities together with the set of access rights that the capability is to confer.

ObjDelPassword: The opposite operation to creating a new capability is to delete or

revoke a certain capability. In Mungi the only way to revoke a capability is to make a

call the ObjDelPassword system call which will remove the entry for that capability

from the object table. The revocation is not immediate as Mungi performs extensive

caching of validations (see Sections 4.3.5 and 6.1.1). By having more then one ca-

pability that confers a certain set of access rights, a form of selective revocation can

achieved.

4.3 Protection Domains

4.3.1 Implicit validation

The fact that capabilities are not maintained by the kernel but by the users themselves

raises the obvious question: \How does a user present the kernel with a valid capability

when an access is made?" Generally, there are two ways of approaching this problem: one

is to make the user explicitly present a capability before the object that it refers to can be

accessed, the second is an implicit presentation. The implicit method requires the kernel to

�nd the required capability when an access is made. Placing the onus on the user to make

the appropriate explicit validations before access is made is rejected as being too invasive.
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Instead the Mungi kernel provides a mechanism that attempts to �nd a valid capability

when an access is made, implicitly validating the access.

To provide the necessary support for implicit validation of capabilities, Mungi sup-

ports two main data structures: the capability list (Clist), and the active protection domain

(APD).

4.3.2 Clists

As the name suggests, a Clist is simply a list of capabilities, usually grouped logically, for

example all the capabilities that pertain to a certain project. Clists are Mungi objects that

are owned by users, and are thus also able to be shared without the intervention of the

system. The kernel recognises two types of Clist, ordered and unordered. The type of the

Clist determines the search strategy that the kernel will employ when searching the list.

Ordered lists are searched using a binary search, while unordered lists are linearly searched.

As users control the Clists they can misinform the kernel by having Clists that are marked

as being ordered, but are in fact not. The security of the system does not rely of the fact

that this 
ag is correct or that the list is properly ordered. An inconsistency will only a�ect

the users using that Clist.

4.3.3 Active protection domains

Active protection domains are the top level structure that the kernel uses to maintain a

protection domain. Physically, an APD is just an array of capabilities (see Figure 4.3),

which capabilities are pointers to Clists. In this way, a protection domain is logically a

two-level hierarchy consisting of a list of pointers to lists of capabilities. Although an APD

is just an object in the address space, the kernel makes sure that the only valid capability

for any APD is the execute only capability. This capability grants the holder the permission

to start threads in this protection domain, as well as the rights to modify the APD through

the use of the system calls in Table 4.2.

while(..) {
...

}

Capability Lists

Handlers

Kernel Data User Data

Execute−Only capabilityAPD

Figure 4.3: A protection domain
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A suitably authorised user is able to add Clist pointers (capabilities) to an APD, but once

added to the APD, only the address half of the capabilities can be retrieved. This ensures

that a user who has permission to operate on a protection domain does not necessarily have

the rights to access the Clists which constitute that domain.

4.3.4 Access validation

With the aid of the above two data structures, the kernel attempts to implicitly validate all

accesses made by a thread. When a thread touches a page for the �rst time, the kernel pager

is invoked (see Section 7.4.1 for more details). The pager searches the object table to �nd

the set of valid passwords and access rights for the object that contains the faulting address.

If the address does not fall within a valid object, a segmentation exception if raised. Once

the pager has a list of valid passwords, the protection domain of the thread is searched for

a suitable capability. This is done by searching the Clists, pointed to by the APD of the

thread, one by one in the order that they appear in the APD. If a valid capability is found,

the access rights of the capability are compared with the attempted access. If the rights

provide su�cient privileges to perform the attempted access, the validation is complete. If

the rights insu�cient, the search of the protection domain continues. If no valid capability

is found that confers the necessary rights, a protection exception is raised.

4.3.5 Caching access rights

To prevent the relatively expensive validation procedure from being performed with every

new page that is accessed by a thread, the kernel maintains a small cache of validations for

each protection domain. This cache is called the validations cache (vcache). The vcache

is searched before the Object Table is searched and a hit in the vcache terminates the

validation successfully, while a miss continues the normal validation path. When the �rst

page of an object is accessed, the validation for the object is added to the vcache and thus

all the other pages of the object are implicitly also in the validations cache. When the next

page of the object is touched, only the validation cache needs to be searched. This cache is


ushed at regular intervals to ensure revocations become e�ective eventually. The vcache

represents that kernel's internal representation of a tasks protection domain.

4.3.6 Tailoring protection domains

The need to allow users to modify their protection domains is obvious. Operations like

reducing a protection domain before making a call to an untrusted procedure, adding new

objects and removing old objects are a few examples where modi�cation is required. In

Mungi there are two ways to make modi�cations to a protection domain.

� One is to add capabilities to Clists. This is mainly useful for sharing single objects

and can be done without the intervention of the kernel.



CHAPTER 4. PROTECTION IN MUNGI 39

� The other way is to modify the APD, which is the kernel's representation of a protec-

tion domain. A suitable authorised thread is able to modify its APD with the system

calls in Table 4.2.

Syscalls

ApdCreate (n caps, handler 
ag string, . . . ) ! (cap)

ApdRemove (addr)

ApdInsert (addr, pos, h or cl ptr, is handler)

ApdDelete (addr, pos)

ApdGet (addr) ! (fcptr,hptrg[n apd ], locked)

ApdFlush (addr)

ApdLookup (addr, address,mode) ! (addr)

ApdLock (addr, pos)

Table 4.2: APD system calls

All the operations that are described in Table 4.2 (except ApdCreate) require the au-

thority to execute in that domain (namely the execute-only capability for the APD itself).

The argument that is passed to the functions is the base address of the APD, which uniquely

identi�es the APD.

ApdCreate: This is the call that will create a APD. The capabilities that are speci�ed

as arguments are inserted into a new APD, an execute only capability for which is

returned to the caller. As noted above, once the Clist capabilities are inserted into

the APD, only the address part of the capability can be retrieved.

ApdRemove: Destroys an APD. This is analogous to destroying the object that the APD

exists in.

ApdInsert: This call adds the Clist pointer to the APD that is speci�ed by addr. The

capability is validated before it is inserted into the APD, as a result all of the pointers

in the APD have been validated.

2

The rest of the pointers after pos are shifted down

a slot.

ApdDelete: Delete a Clist or handler pointer from the APD, this has the a�ect of reducing

the protection domain. This call will result in the entire contents of the page-table

and the validation cache being 
ushed.

ApdGet: Returns the list of Clist and handler pointers that are currently in the APD of

the calling thread. Note that only the addresses of the Clists are returned, not the

actual capabilities for those lists.

ApdFlush: Flush the validation cache and revalidate the contents of the APD. This call

will result in the 
ushing of the entire protection domain of the caller.

2

This does not mean that they are currently valid, as they may have been revoked since.
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ApdLookup: Find the �rst capability in the protection domain, if any, that confers at

least the given rights to the address speci�ed. The return value is the address of the

capability, allowing a user with read access to the particular Clist to �nd the actual

capability. If a valid capability is found this call also has the e�ect of adding the

validation to the validation cache of the protection domain.

ApdLock: This system call will lock an entry in the speci�ed APD. The result of locking an

entry is that threads are no longer able to change that entry, even with the authority

of an execute-only capability for the APD. The result is that the particular Clist is

forced to reside in that protection domain.

4.4 Thread Creation

In Section 3.4 thread creation was brie
y mentioned. There are two speci�c kinds of thread

creation: threads can either be created in the protection domain of their parent or in a

speci�c protection domain. For a thread to be able to start a thread in another protection

domain, the parent thread has to have an execute capability on the APD.

ThreadCreate(void * ip, void * sp, APD t * pd)

4.5 Capability Handlers

It is envisaged that a typical protection domain will consist of thousands of capabilities.

The kernel is charged with the responsibility of �nding the appropriate capability when an

access is made. Even with a binary search, blindly traversing a task's protection domain in

search of a capability can be expensive. Certain applications may have a good idea of their

access patterns and the capabilities that they will need to do so. For these applications

Mungi provides capability handlers. A capability handler can be associated with each Clist

slot in the APD. During validation, when a handler slot in the APD is non-empty, the kernel

will perform an up-call to the capability handler. The job of the handler is to add a valid

capability for the access to the Clist that it is associated with. Once the capability handler

performs, the Mungi kernel will restart the validation and expect to �nd a valid capability

in the Clist associated with the handler. If a capability is not found in this Clist validation

proceeds to the next APD slot (see Figure 4.4 for details).

A capability handler is provided with the address of the fault and the access that is

required on that address. Using capability handlers, applications are free to implement

more sophisticated data structures for the traversal of a protection domain.

4.6 Protection Hardware

Single-address-space operating systems are forced to apply security policy to every access

to memory. Memory management hardware (MMU), in traditional operating systems, has

been used to provide both protection and address translation.
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search_apd(apd, /* the apd to search */

tid, /* thread id of faulter */

object, /* the accessed object */

rights) /* the rights attempted */

{

inh = false

<start,inh> = inhandler(tid)

for i=start to napd

{

if (apd[i]->hptr && !inh) /* is there a handler */

{

inhandler = <tid,i,true> /* remember this point */

call apd[i]->hptr(object,rights) /* call the handler */

}

inh = false;

if (apd[i]->cptr) /* is there a clist */

for j = 0 to apd[i]->cptr->ncaps

if (validcap(apd[i]->cptr[j], object, rights)

return true

}

return false;

}

Figure 4.4: Validation

In a SASOS all address translations are the same, so translation information remains

valid across context switches. However, in order to be able to control access to data, a

SASOS is forced to use the memory management hardware, speci�cally the translation

look-aside bu�er (TLB), to implement protection rather then to cache translations. With

a tagged TLB, this has the unfortunate side a�ect that there might still be multiple entries

for a virtual address, whose translation information is the same, but access permissions

are not. This takes up valuable TLB space. With an un-tagged TLB, the situation is

even worse, as translation information has to be 
ushed with each context switch, due to

changes in protection information. Ideally, hardware support for a SASOS would include a

separate protection cache. This was implemented in some of the earlier capability systems

that designed their own hardware. IBM's System/38 [HSH81] has a two-way associative

64-entry look-aside bu�er for caching capability translations, called a segment look-aside

bu�er (SLB). CAP's capability unit contained a slave memory that held 64 evaluated capa-

bilities [NW77]. A protection look-aside bu�er (PLB), similar to a SLB, has also recently

been suggested by Koldinger et. al. [KCE92]. The PLB would cache the protection infor-

mation while the TLB would contain only translation information. A PLB would not have

to be as large as the TLB to be e�ective, as it can cache protection information over regions

that are larger then a page, for instance a set of contiguous pages that represent an object.

This would obviously decrease the number of entries that would need to be in the PLB to

make it e�ective. Having a PLB would also allow the use of an untagged TLB.

4.7 Related Work

Like most other operating system projects, the ideas that are presented in Mungi are a mix

of old and new. The work of other projects has contributed in two ways: while some previous

ideas have been used, other have in
uenced Mungi to move in the opposite direction.
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Mungi presents a 
at protection name space. This idea was used by Multics and Unix,

which applied uniform access protection to the �le system. Mach also provided a uniform

protection name space by performing operations on ports. Single-address-based system can

also use the protection name space for addressing, allowing a simple model due to the lack

of need of another abstraction. Opal, while being a single address space operating system,

introduces another name space for its portals.

The password capabilities in Mungi are most like those presented by Anderson, Pose and

Wallace in their password capability system, and used by Opal. The capabilities in Amoeba

are also similar, but with two main di�erences: capability rights are interpreted by servers

rather than by the system and there is no uniform set of rights. This is also true for the

capabilities in Eden, with rights being interpreted by ejects. Although not truly a sparse

capability system, Eden allows users to keep a shadow copy of capabilities in user-space. It

is believed that the simple 3 Rs (Read, wRite and Run) philosophy of Mungi is a simpler

and more consistent approach to protection.

Sparse capability system, with capabilities in user-space have to be able to pass capa-

bilities to the kernel for validation. Mungi's capabilities are implicitly validated. Other

system like Opal, Amoeba and the Monash Password Capability System all require the user

to explicitly present a capability to the kernel before access. This is rejected as being far too

invasive to the users of the system. Only Opal also provides supports implicit validation, by

registering capabilities with a name server that is queried when there has been no explicit

presentation. The disadvantage of this is that it has the e�ect of bringing user-level naming

into the kernel. In Mungi naming is treated purely as a user-level issue, to allow greater


exibility.

Validation of capabilities can be an expensive operation, as potentially large lists have

to be searched. To overcome this many systems have employed hardware support to cache

validations and thus reduce the cost of validation (see Section 4.6). Hardware support

is not available on current 64-bit CPUs and thus Mungi relies on software support for

caching. The password capability system in [APW86] also supports the caching of validation

information in software by using an active object table (AOT) which is a main memory cache

of validations.

4.8 Summary

The protection mechanism that is provided by Mungi is based on password capabilities,

which consist of the address of an object and a 64{bit random number. The advantage of

password capabilities is that they are not controlled by the kernel, this allows users to store

capabilities in data structures, and supports the passing of capabilities between protection

domains without the intervention of the kernel. Password capabilities are protected from

forgery by the sparseness of the 64{bit password �eld. Validation of access is done implicitly

by the kernel, removing the need for users to worry about explicit presentation.

The protection mechanism provided by Mungi allow security conscious users to arbi-

trarily tailor their protection domains, while providing the ordinary user with operations
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that intuitively apply good security practice.



Chapter 5

Protection Domain Extension

Extensible operating systems are designed around the principle that

the service and performance requirements of all applications cannot

be met in advance by any operating system.

Stefan Savage and Brian Bershad, 1994

5.1 Motivation

Extensibility and 
exibility are goals that should be part of any operating system design.

An operating system that is extensible is able to cope with the changing demands of ap-

plications. Extensibility is the ability to add services to a system in a controlled manner.

The mechanisms for adding new services to a system can be grouped into two main classes:

static and dynamic.

Mungi allows user modules to be added to the system environment [VERH96]. These

modules, when invoked, have the power to temporarily extend the protection domain of

the caller, hence the name protection domain extension (PDX). The primary motivation

for PDX is to support extensibility. As will be discussed later, it is also the method for safe

object invocation in Mungi.

5.2 Extensibility

Early operating systems recognised the need to be be adaptable. Systems like Hydra and

Pilot were designed to be able to support a wide range of operating system personalities.

This was done through the separation of mechanisms from policy; recognising that the

system supplies the mechanism, while policy was implemented at a higher level. Using the

mechanisms to add new policies involved static addition of services to the kernel. Adding

44



CHAPTER 5. PROTECTION DOMAIN EXTENSION 45

these services forces users to access the them through a strict and well de�ned interface,

namely the kernel system call interface.

Dynamic extensibility provides a mechanism to add services to the system at any time.

Hydra's ampli�cation templates and Unix's set-user-id addressed the problem by introduc-

ing special programs that, when executed, would run with an increased set of access rights.

This allows the program to perform privileged operations on behalf of users.

Another approach to extensibility is the use of �kernels and user-level servers. New

services can be added via additional servers, with the main role of the kernel being to

support communication between clients and servers.

The implementation of extensibility in these systems creates some of the following draw-

backs:

� Adding services to the kernel makes the kernel large and error prone.

� Any additional service will execute with the same rights as the kernel, this is obviously

a breach of the principle of least privilege.

� Static addition of services requires the kernel to be recompiled whenever new services

are required. This is a major disincentive to add new services.

� While the above problems are avoided by mircokernels, early �kernel-based approaches

su�ered from performance problems blamed on the added overhead of switching be-

tween multiple address spaces [CB93].

Current research [OSD94] in extensibility focuses on the performance and protection of

extensions. The goal is to execute extensions in the same domain as either the kernel or

the user, which results in less context switches when the services are called. The two main

approaches have been investigated in order to achieve this goal.

� User level: This approach adds services at user level, making sure that the kernel

provides the mechanisms to be able to enforce some level of protection. Examples

include Cache Kernel [CD94], Exokernel [EKO95], Pilot [RDH

+

80], L4/L3 [Lie95].

� Kernel level: Adding services to the kernel in a safe and secure way. Examples

include SPIN's kernel loadable modules [BSP

+

95], and software fault isolation tech-

niques [WLAG93, SESS96].

The next sections will examine these approaches in more detail.

5.2.1 Exokernel

The Exokernel [EKO95] approach is to provide as many services as possible in the user space.

The design philosophy takes the approach that a kernel should not provide any abstractions.

Instead, the only role of the kernel is to safely multiplex access to the hardware. All other

services are constructed by using three main mechanisms.
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� Secure binding: A process can bind to a machine resource. The kernel then provides

a capability that can be used to access the resource.

� Visible revocation: When the system wishes to revoke access to a resource, a process

will be noti�ed, allowing it to cleanly release the binding.

� Abort protocol: If a process does not want to give up a resource, the kernel can

forcibly reclaim the resource.

Essentially Exokernel brings hardware up to the user, reducing switches to the kernel,

due to the fact that most code will simply run in user space.

5.2.2 SPIN

The SPIN [BSP

+

95] project at the University of Washington provides a kernel that is

dynamically extensible by adding kernel modules. Kernel modules have to be written in a

type-safe language (Modula-3 [Nel91]), and a special kernel compiler then generates code

that can run in kernel mode without compromising the safety of the kernel. SPIN relies on

four main features to achieve performance and extensibility.

Co-location: Communication between modules and the kernel is low cost since they reside

in the same address space. Operations that need high levels of kernel communication

gain the most bene�t.

Enforced Modularity: Using Modula-3, enforced typechecking and module interface bound-

aries allow code to run safely in kernel mode. These restrictions makes sure that each

module can only access authorised memory locations.

Logical Protection Domain: Each module exists within a logical protection domain. A

kernel dynamic linker resolves references at run-time, to ensure the module will be

restricted to its protection domain even though it is running in kernel mode.

Dynamic Call Binding: Extensions are bound to system events such as traps and page

faults. This ensures that the extensions are invoked in a controlled manner and

through the correct interface.

5.2.3 Software fault isolation

The second approach to add modules to the kernel is to make sure that all unauthorised

references made by the module to the kernel's address space are caught and disallowed. To

achieve this, each module is placed in its own fault domain. The software is then modi�ed so

that it cannot access memory outside its fault domain. There are two main approaches that

achieve this result, both of which can be used with any programming language, removing

the requirement to be restricted to a speci�c language such as Modula-3.

Segment matching statically determines if an instruction is going to access memory that

it is not allowed to. If this is the case then it can be dealt with at compile time. Instructions
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that rely on register o�sets cannot be examined in this way, as they depend on runtime

variables. These instructions have code placed before them to do range checking, which

calls an external exception handler if an access outside the fault domain is made.

The other method is address sand-boxing. In this approach, all unsafe instructions have

code inserted before them that sets the upper bits of the address to be the same as that of

the module. In this way, it is not possible to access memory locations that are outside the

fault domain. The system that is presented in [WLAG93] claims that, while the overhead

of the sand-boxing approach is 4%, this is o�set by the reduction in the number of context

switches.

5.3 Mungi PDX

The aim of the research outlined above is to minimise the number of domain crossings. The

advantages of introducing services in user space is that a context switch to the kernel might

be avoided altogether. Introducing services into the kernel allows them to have access to

the kernel's internal variables, but the need to protect the kernel comes at a cost; either the

code for an extension is slowed down by protection checking, or it is forced to be written in

a type safe language

1

.

The Mungi single address space allows all resources to be addressed. The protection

system uses capabilities to control access to these resources, without requiring additional

compiler support or restricting the choice of languages. In Mungi the issue is how to control

access to these capabilities. The approach taken in Mungi is to allow threads to extend

their protection domain in controlled fashion using the PDX mechanism.

5.3.1 PDX

Mungi's PDX mechanism allows the extension of a thread's protection domain for the

duration of a procedure call. A PDX module is an object containing a number of procedures

and an associated Clist. This Clist is added to the caller's protection domain when invoking

any of these procedures using the PDX system call. Mungi allows entry into the module only

at the start address of each procedure. These entry points can be individually protected by

password capabilities, allowing selective access to the procedures.

The system call

PdxCall(Cap(*proc)(Cap), Cap param, uint npd, . . . )

is used to initiate a PdxCall which executes the procedure proc. param is a capability

that is passed to the procedure. If needed this capability can be used to refer to a bu�er

that is used to supply additional parameters to the PDX procedure. Note that the param

parameter to the PdxCall isn't necessarily a capability, but the format allows two 64-bit

words. The remaining parameters to PDX call are used to construct the desired protection

1

Most modern systems avoid both these costs by allowing unchecked extensions to be dynamically loaded

into the kernel, this is at the expense of protection.
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domain. The caller can provide a set of Clist capabilities that speci�es the selected subset

of the caller's protection domain that is passed to the procedure (see Figure 5.1). The

procedure will then run in a protection domain which is de�ned as the union of the Clists

passed by the caller and the Clist associated with the PDX procedure. When the PDX

procedure �nishes, control is passed back to the caller after the caller's protection domain

has been restored.

PdxCall o�ers three di�erent ways of constructing the desired protection domain, de-

pending on the npd parameter. If npd is greater than zero, the protection domain is as

described above. If npd is -1, the caller's whole protection domain is merged with the pro-

tection domain registered for the PDX, e�ectively extending the caller's protection domain

(hence the name PDX). Lastly, in npd is 0, the protection domain consist solely of the Clist

provided by the PDX module (see Table 5.1). It is envisaged that the most common modes

of operation will be either passing the whole protection domain or none.

Protection Domain
of Task

Protection Domain
Registered for 
PDX Object

Selected Subset
of Task’s PD

Protection Domain 
During PDX Call

Figure 5.1: Protection domains before (left) and during (right) a PDX Call.

npd Result Use

0 empty PD passed device drivers, page fault handlers

-1 full PD passed \true" PDX call

> 0 selected Clists passed untrusted PDX call

Table 5.1: PdxCall parameters

Validation of object access in the Mungi system requires the searching of two large

data structures; the object table and the user's protection domain. The object table is

a distributed data structure, which may add to the cost of access. To amortise some of

the validation costs, much of the validation information is cached. Implementing protected

procedure calls based on an extension of the caller's protection domain has two main ben-

e�ts: �rstly we can re-use the cached validation information from the caller's protection

domain, and secondly the extension allows for the implicit sharing of large numbers of

objects between the caller and the protected procedure.
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5.4 Device drivers

Mungi is committed to presenting a pure view of the single address space. This is achieved

by omitting from the model anything which would introduce any other forms of name spaces.

For example, there is no I/O model; clients which require explicit control over I/O, such

as database systems, can achieve this via virtual memory operations [ERHL96], as devices

are memory mapped. The control registers of devices, as well as the contents of disk drives

and physical memory, are mapped into the virtual memory. The device driver is given the

capability to read and write the appropriate memory regions, and users can then safely

request operations from the device driver by invoking it via a PdxCall.

The interface to a device PDX module must take into account the following two condi-

tions.

� A capability for an operation should remain valid even when the version of the device

driver changes. In particular, the address of the device driver must not change over

time.

� Knowing the base address of the device driver should be su�cient to be able to deduce

the addresses of all the operations that can be performed on the device.

The Mungi device model is de�ned by the Mungi Device Interface (MDI) standard which

is similar to the Unix model. The MDI includes open, close, read, write and init primitives

which are common for all devices. Device drivers have a jump table starting at the base

address of the driver. Users are able to index into the table (see Figure 5.2). Following the

set of common operations, there is room reserved for special operations that are speci�c to

the device. As Mungi individually protects entry points into a PDX module, users can be

individually restricted to speci�c operations on the device.
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Figure 5.2: Generic Mungi device driver
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5.4.1 Case Study: Serial Driver

The current version of Mungi only has one device driver implemented. This driver is the

serial port driver, and is important since it the sole means of communication with Mungi

at the moment.

Serial
Chip

H e l l o \n

Top Half
Serial Port Driver

Bottom Half
Serial Port Driver

’H’ ’e’ ’l’ ’l’

Hell

PdxCall User thread

H e l l o \nSerial
Chip

Top Half
Serial Port Driver

Bottom Half
Serial Port Driver

printf("Hello\n");

PdxCall

User thread

write()

interrupt()

Figure 5.3: Serial port driver top/bottom half interaction

To construct the serial port device driver, a PDX object, that has access to the part of

memory which maps the device driver registers, is created. In the case of the Z85230 [Zil92]

serial chip on the U4600 boards used for prototyping Mungi, this is the page starting

at address 0x1c800000. The serial port device driver is given exclusive read and write

permissions to that object (by having the read/write capability as part of its extended

protection domain). Since the driver has the only copy of this capability, users are prevented

from writing directly to the serial port registers. A call to printf (see code below) will call

vnsprintf to build the �nal bu�er that needs to be printed. Printf then calls the PDX serial

driver, with the capability for the print bu�er as one of the arguments to the PdxCall. The

serial driver, once invoked, will then copy this bu�er to an output bu�er and return to the

caller.
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#define WRITE 0xb08e0 /* eventually this will be resolved */

/* by a naming service */

void

printf(const char *fmt, ...)

{

char pbuffer[256];

static Cap_t pobject = {0,0};

va_list args;

int r;

/* Format the print string */

va_start(args,fmt);

r = vnsprintf(pbuffer,fmt,args,256);

va_end(args);

/* Have we already found the cap for this buffer ? */

if (!pobject.address) {

pobject = ApdLookup(pbuffer,R_Read,0);

pobject.address = (void *) pbuffer;

}

/* Call the top half of the device driver, passing */

/* the print buffer along as the parameter */

PdxCall(WRITE,pobject,0); /* write() */

}

The code fragment below shows the part of the driver that deals with interrupts from

the serial chip. The Z85230 chip has a 4 character output FIFO and can be programmed

to send an interrupt when the FIFO is empty. When the kernel receives this interrupt it

makes a PdxCall to the interrupt handler. This then reads the next four characters from

the print bu�er and waits for the next interrupt (for interaction between the two halves see

Figure 5.3). If there are no further character to be printed the handler makes sure that the

transmit interrupt is reset.

void

interrupt()

{

char c;

char intcode;

uint32 i;

intcode = zsccgetreg (portb, zRR2A);

switch (intcode & INTMASK)

{

case zRR2_ARXA: /* character available */

/* deleted */

case zRR2_ATXE: /* transimit FIFO empty */

if (w_buff_size > 0) /* user output data available */

{

for(i=0;i<4 && w_buff_size > 0;i++,w_buff_tail++,w_buff_size--)

porta->udata = w_buffer[w_buff_tail]; /* send data to chip */

}

else /* turn of transmit interrupt */

{

zsccputreg(porta, zWR0, zWR0_RESETTXINT);

}

break;

}

}
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Similarly, the Z85230 chip will generate an interrupt when there is an input character

available. The kernel deals with this interrupt by again making a PdxCall to the serial

driver. This will copy the character into a input bu�er that can then be retrieved by a

PdxCall to a read function.

The serial port driver currently only exports read, write and initialise operations,

with the users only having access to the read and write operations.

5.5 User-level page fault handlers

User level pagers (ULPs) are essential for e�ciently supporting databases and implementing

persistence in Mungi [ERHL96]. A ULP is a PDX procedure which is invoked by the kernel

when a page fault occurs on an object for which that ULP had been registered. ULP

invocation uses an zero npd parameter. Hence, the ULP runs within just the protection

domain which was registered for it. As the ULP has no access to either the kernel's or the

faulting thread's protection domain, it does not need to be trusted. This is important, as

it allows a thread to access any object without the possibility that a pager associated with

that object would be able to access the threads protection domain.

2

A single ULP can handle a large number of objects. Furthermore, as the ULP is invoked

by the kernel and is passed an empty protection domain, all clients of a particular ULP can

share the same cached PDX protection domain. This limits the number of ULP protection

domains that need to be cached to one per ULP in actual use.

5.6 Object Support

The NOM object system on the IBM AS/400 [MM96] has demonstrated that it is possible

to build an object oriented system on top of abstractions like those provided by Mungi.

Here we show how Mungi can enforce encapsulation and support inheritance.

5.6.1 Encapsulation

Encapsulation can be enforced by the protection system if the provider of an object never

hands out read, write, or execute capabilities to the object. Instead, a PDX procedure is

provided which, when invoked, extends the caller's protection domain by the appropriate

capabilities to the object. Clients can thus only operate on the object by invoking this

procedure. The PDX procedure code can actually be part of the object, or it can be

separate.

5.6.2 Inheritance

To implement inheritance, jump tables used to access virtual methods are associated with

the PDX objects. Potentially, these jumps are further PDX calls to methods of other classes.

2

Note, however, that the ULP can still interfere with the client's operation by denying service.
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This can lead to a proliferation of cached PDX invocations.

A reduction of this overhead is possible if there is some trust between the classes (as

there is likely to be if they are part of the same library). The derived class can then be

given the capability to execute the superclass methods directly, i.e. by a normal procedure

call.

Window

Screen

Menu

Window

PdxCall
PdxCall

PdxCall

User 1
User 2

Menu

Figure 5.4: Inheritance

An example of this is given in Figure 5.4. There are three classes in this example: Menu,

which is derived from Window which is derived from Screen. If user 1 invokes Menu and user

2 invokes Menu as well as Window, a total of eight PDX protection domains would need to

be cached. However, if the various classes in the hierarchy trust each other, invocation of a

superclass method by a subclass is by a normal procedure call, and only 3 PDX protection

domains need to be cached.

5.7 Other Services

PDX is intended as a replacement for the \client-server" model. In Mungi users are able to

write PDX modules that allow controlled access to information that they hold. The simple

procedure call interface and object granularity protection make PDX an easy to use general

tool for users. Unlike IPC-based systems, users don't have to worry about the marshalling

of arguments before sending a request to a server. PDX can be used for services that are

usually set-user-id root in Unix, such as:

� sendmail,

� printer spoolers, and
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� graphics server like X [X90] or 8

1

2

[Pik91].

5.7.1 Parameter passing

A PdxCall system call provides a simple parameter passing mechanism. PdxCall allows for

128-bits of information to be passed directly to the called PDX module. In the case where

more than 128-bits need to be passed, the parameter is intended to be used as a capability

pointer to a parameter bu�er. This bu�er can then be used to pass information back and

forth between the caller and the PDX procedure. In practice, this can be done by calling a

stub that stores the arguments into a new object, which is then used as a parameter bu�er.

In the case where the PDX to be called is simply an extension of the caller's protection

domain, all we have to do is call a stub that passes a pointer to the area on the stack where

the parameters are stored to the PDX module (see Pdxdummy in Figure 5.5). All the PDX

module has to do is to re-create the argument list.

5.7.2 Case Study: OO1

A metric of the usability of a new protection paradigm is how easy is it to adapt an existing

application to take advantage of new protection features. Many existing applications are

large, complex systems with little or no internal protection. Mungi makes it relatively

simple to convert such an existing non-protected system into one that has stronger, internal

protection by using the PdxCall mechanism.

One of the methods that was used to measure the performance of Mungi's protection

system was an adaptation of the OO1 object-database benchmark (see Section 8.2.3 for

more details). This benchmark was initially implemented as a set of C functions with the

client code invoking the database operations (db init, db print, db insert, db delete,

db connect, db lookup and db traverse) via ordinary function calls.

Logically, it was desired that only the database operations had access to the database

data. This required the database to be implemented as a PDX module that had access

to the database. The porting task was to split the database operations from the user

operations, both physically into di�erent �les, and logically in protection domains. The

task of the physical separation was trivial as the source code for the data-base benchmark

was already split into a front end (client) and a database section. All the calls to the front

end of the object database were #defined to use a stub which called the function via a

PdxCall. This stub passes the address of the arguments to the PdxCall (see the front end

section of Figure 5.5). The modi�cations to the database side proved a little more complex,

but only due to compiler conventions. The database side required a stub that explicitly

removed all the arguments from the bu�er supplied by the front-end and copied them to the

stack of the database function. The db connect stub in Figure 5.5 uses marg get macro

to achieve this.

It would be relatively simple to hide the PDX mechanism behind a C++ like interface.

The compiler can specify the module addresses and allow simple access to the methods in

a PDX module. Arguments that are passed from caller to a method have to be put into
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a bu�er rather then passed on the stack; similarly, the called method takes its arguments

from the bu�er rather then from the stack. This simple modi�cation is a future project,

but would allow users to take advantage of Mungi PDX without having to pay the cost of

having to worry about the implementation details.

5.8 Summary

Extensibility is one of the main features of Mungi. Mungi exports a single address space that

is the basis of everything else in the system. Devices are memory mapped and protected

from unauthorised access in the same way that the rest of the address space is protected;

that is, by the use of capabilities. Mungi provides a mechanism for users to create pro-

tected services called protection domain extension (PDX). This mechanism provides for a

temporary extension of the protection domain of the caller only while executing trusted

code. PDX calls are cached so as to amortise the initial cost of set-up (see Section 8.2 for

performance �gures). Using PDX, Mungi provides a 
exible, extensible system that can

meet the requirements of a large variety of applications and users.
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/*

* simple stdarg-type macros, not very portable

*/

typedef int64 *m_arg;

#define marg_start(buffer,ptr) \

(ptr = (m_arg)buffer)

#define marg_get(type,ptr) \

((*(type *)ptr)++) /* increment ptr by sizeof type */

/* front end side stub */

int64

Pdxdummy(uint64 address, ...)

{

Cap_t pbuff = {0,0};

pbuff.address = (void *) ((int)&address + sizeof(uint64)); /* addr

of params on stack

*/

return (PdxCall(address,pbuff,-1));

}

#define DB_connect(db,from,to,type,length) \

Pdxdummy((uint64) db_connect_stub,db,from,to,type,length)

/* database side stub*/

int64

db_connect_stub(Cap_t cap)

{

DB db;

Id from;

Id to;

String type;

Int length;

m_arg ptr = (m_arg) cap.address;

/* remove arguments from buffer */

db = marg_get(DB,ptr);

from = marg_get(Id,ptr);

to = marg_get(Id,ptr);

strncpy(type,marg_get(char *,ptr),10);

length= marg_get(Int,ptr);

/* call real function */

return db_connect (db,from,to,type,length);

}

Figure 5.5: OO1 database example for db connect



Chapter 6

Security in Mungi

The previous chapters have introduced the Mungi protection mechanisms. It is pertinent at

this point to illustrate their application. Accordingly this section will brie
y sketch out the

way that the Mungi protection mechanisms can be used to implement a range of security

operations. Discussion is split into two sections: one covering some well know security

problems, while the other introduces the security framework that is currently implemented

by Mungi.

6.1 Common Security Problems

6.1.1 Hydra security requirements

The designers of Hydra introduced a set of security problems (for more information refer

back to Section 2.4.3). These problems provide a good set of initial goals for security.

Mutual suspicion

Transfer of rights is important in mutual suspicion; two procedures that call each other

want to ensure that only information that needs to be shared will be.

As pointed out previously, capabilities adhere well to the principle of least privilege.

They allow �ne grain control of information passed to a called procedure. Conversely,

the Mungi PDX mechanism allows a called procedure to be able to have private objects.

Using PDX and specifying a suitable restricted protection domain, a mutually suspicious

procedure call can be set up.

Modi�cation

Modi�cation is concerned with being able guarantee that a given object will not be modi�ed

by a procedure. The Mungi protection mechanisms allow this guarantee to be made. Placing

a modify restriction on an object requires a negative write capability, this capability; if found

in a protection domain, will deny any write access to the object. To allow this capability to

57
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be useful, one has to be able to construct a protection domain in which the following two

conditions hold: the negative capability must be found before any capabilities that grant

rights, and the capability must not be able to be removed from the protection domain. The

�rst condition can be met by placing the negative capability at the start of a Clist and

inserting this Clist as the �rst entry (ie. the �rst slot) in the protection domain. To prevent

modi�cation of the protection domain, and to satisfy the second condition, the �rst slot of

the APD is locked. Recall that a locked slot is not able to be modi�ed. Any thread that is

started in this protection domain is prevented from modifying the object.

Conservation/Revocation

Mungi capabilities can be revoked by the owner of an object by simply removing the pass-

word for that capability from the object table. Any attempts at validations of the capability,

after this point, will be rejected by the system. This revocation is not immediate for two

reasons: validations will still exist in validation caches, and pages of the object might still

be mapped into the protection domains of other threads. To aid in revocation, validation

caches are periodically 
ushed, requiring a re-validation of all accesses. It is at this point

that the revocation actually takes place. The 
ushing of the validation cache might leave

a protection domain in an inconsistent state, with some pages of the object mapped, but

without being able to access further pages of the object. It is currently left up to the ap-

plication to clean up in this case. Applications need to be aware that capabilities that are

shared can be revoked at any point by the owners of the object.

One of the issues for future work is to make revocation immediate. This can be done

by removing the mappings for the object in all protection domains when a capability is

revoked.

Capability propagation

In segregated capability systems such as Hydra it is possible to control the passing of

capabilities because the kernel controls all operations on capabilities. In a sparse capability

system, because capabilities are just treated as data, the issue of capability propagation is

equivalent to that of con�nement, the prevention of information leaking to a third party.

Con�nement

As discussed in Section 2.1.1, the ability to con�ne an untrusted procedure is sometimes

advantageous. Con�ning a thread is possible in Mungi, and relies on the fact that a thread

can only modify its protection domain if it has either write access to any of the Clists

de�ning the protection domain, or it has the capability to modify its APD. A user wanting

to con�ne a thread to a certain protection domain has to create an APD that contains only

the capabilities that the con�ned procedure needs. The caller needs to make sure that this

protection domain does not contain any writable objects readable by others. The user then

starts a thread in the newly crafted APD. As the con�ned thread does not have access to

the APD (as it is not passed the capability to operate on it), it cannot add any objects to
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its protection domain. The only means of communication is through the use of objects that

have been supplied by the caller of the untrusted code.

The method of implementing con�nement leaves it up to the caller to ensure that there

are no writable shared objects. Ideally the system should be able to o�er this guarantee.

The issue of con�nement in Mungi is an ongoing one.

6.1.2 Other policies

Reference monitors

The most general way of implementing protection is to have a reference monitor that can

check the validity of all access made in the system. By changing the reference monitor, the

security policy of the system can be changed. Mungi also provides support for a type of

reference monitor. Recall that Mungi allows a slot in an APD contain with a Clist or a

Clist/protection handler pair. In the general case, this handler is inserted by an application

that knows its access patterns and is thus able to supply valid capabilities more e�ciently

then the kernel. The validation handlers can also be PDX modules. In this case, when a

thread faults and the protection handler is called, the handler can be running a protection

domain di�erent from the faulter's. The handler thus has the potential to access capabilities

that the faulting thread cannot see. The PDX protection handler can then apply its own

security policy and add a valid capability to the domain of the faulter, depending on whether

the handler judges the access valid or not.

The reference monitor is able to model users. This is done by associating each user with

a speci�c APD. Recall that APDs are uniquely identi�ed by their base address. While the

reference monitor is running, it can get the base address of the APD from the APDGet call

and thus use it to identify the user.

Chinese Wall

Chinese Wall is a mandatory access policy, which can be implemented by a reference mon-

itor. The access of one member of a con
ict class will result in negative capabilities for the

other members being added to the protection domain of the caller.

Data Integrity

Mungi is ideally suited to implement the policy of data integrity. In the framework that is

presented in Section 2.2.3, a system can easily be set up using Mungi primitives. Trans-

formation procedures must be easy to verify and therefore should be simple. We can use

Mungi PDX to implement the transformation procedures (TP) in a straightforward way.

Constrained data items (CDI) are objects whose capability is only contained in the appro-

priate TP. This ensures that only TPs can access the CDI (rule E1). With a proper login

facility (like the one described in the next section) Mungi is able to uniquely identify all

users (rule E3). The PDX transformation procedure maintains a read-only list of objects



CHAPTER 6. SECURITY IN MUNGI 60

which can be accessed by each user (rule E2), with only the authorised agent being given

the write access to this list (rule E4).

As the implementation of PDX is fast, this is an ideal solution for the above problem.

Unix interface

The Mungi protection framework is 
exible enough to implement access control lists in gen-

eral. As an example of this, an implementation of the standard Unix protection mechanism

will be discussed.

Recall that all objects in Unix have associated with them a reduced access control list.

This list speci�es access rights for three groups of users, namely the owner, members of the

group and other users. In Mungi the same can be done for any object. All that is required

is that three capabilities with di�erent passwords exist for the object. The �rst capability

speci�es the rights that the \owner" of the object has, the second will specify what rights

members of the group have and the third will specify the rights that all other users of the

system have.

If all capabilities which represent owner rights for a particular user have the same pass-

word, then knowledge of that password would allow access to these objects with owner

rights. Similarly for group and other rights.

A logon procedure would procure a user password and logon name. With this password,

all group passwords and the \other" password are conveyed to the user. Now access is based

on the passwords that the user has. All that has to be done is to implement a capability

handler that returns the correct capability when an access occurs.

In the example in Figure 6.1 the user would have read and write access to the object,

derived from its password.

6.1.3 Language based protection

Mungi provides protection that is based on an object level. Furthermore, PDX allows

protection of methods within an encapsulated PDX module. One of the disadvantages of

having a protection granularity which is multiples of page sizes is that there is no support

for �ne grain object protection. Like Opal [CLFL94], Mungi also takes the view that �ne

grained protection is a programming language issue. Object-oriented programming provides

support for objects that are the size of integers. It is obvious that allocating an Mungi object

(which has to be at least the size of a page) would be an ine�cient method of dealing with

the problem. The Mungi protection mechanisms in conjunction with a pointer-safe and

object-safe language would provide a good compromise of performance and object-oriented

principles. Languages like Cedar [SZBH86], Pilot (mesa) [RDH

+

80] and Modula-3 [Nel91]

are candidates to be used in this fashion.

6.1.4 Other operating systems

The ability to con�ne information is also provided in other systems. Hydra allows a caller

to guarantee that capabilities have their modify rights masked. In this way, a procedure
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Capability Handler

Owner

Group

Other

DRW

RW

R

Opswd2

Opswd1

0

Object

UserID: Opasswd5

GroupID: Gpasswd1, Gpasswd3

Figure 6.1: Unix-style access control

cannot write information, and thus cannot leak. The system described in [APW86] supplied

a di�erent slant on the problem of con�nement in that they allowed the con�ned procedure

to write normally, but prevented the 
ow of information by preventing any capabilities to

be transmitted to a third party. Information that cannot be read by any other user is

therefore not leaked. EROS takes a similar approach to Hydra, making sure that a con�ned

procedure is not able to modify anything in the protection domain, therefore rendering

it unable to leak information. The authors of EROS give a proof of correctness for their

model [SW97]. L4 also allows con�nement through the use of clans and chiefs. A task is

con�ned by by restricting the only means of communication, namely IPC, to pass through

the chief before reaching any other users [JLI98].

Reference monitors allow users to implement any security policy. The Angel single-

address-space operating system implements a user level object manager which plays the

role of reference monitor; all object accesses have to be authenticated by the server.
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6.2 Mungi Framework

This section will describe the Mungi user interface in its current incarnation. Following this

we will describe how the Mungi protection system can be used to implement other security

schemes.

6.2.1 Login

Mungi currently implements a simple login based security policy, at the user level, without

placing too many restrictions on the user. When the Mungi kernel has �nished its initial-

isations, it starts the user login thread in a known protection domain. The login thread

initialises its own protection domain further as required. After the initialisations are com-

pleted the thread will issue the familiar login/password challenge. Once a user has provided

a login name, the login thread looks up the base address of the the user's APD in a system

table

1

(cf. /etc/passwd). The user is then prompted for a password which is concatenated

with the base address of the user's APD to construct a capability for the APD. The login

thread then starts a new thread in the new APD, using the constructed capability. If the

user supplies an incorrect password, the thread-create will fail and the login server will

prompt the user for another login/password pair.

6.2.2 Group management

Single-address-space operating system create an ideal environment for sharing, due to the

fact that all addresses are globally valid. In Mungi and other systems that use password

capabilities, sharing is even easier as a capability, when shared, represents a pointer to an

object as well as the right to use that object. Mungi allows Clists to be shared, this allows

groups to be set up. Users that belong to a group are given a capability that allows read

or read/write access to that Clist. By including that capability in the Clist, a user now

becomes part of the group.

It is also possible to have append-only Clists in Mungi: A PDX module is created that

includes a Clist. Users are given a read/PDX capability for that Clist. To add a capability

to the Clist, users call the PDX procedure.

Clist_t clistv;

void

clist_addcap(Cap_t cap)

{

Cap_t * ptr;

ptr = clistv.caps[clistv.n_caps];

*ptr = cap;

((Clist_t *) clistv)->n_caps++;

}

1

Note that only the address of the user's APD is needed.
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6.2.3 Name server

A single address space provides all objects with a unique, globally valid name: its base

address. These 64-bit numbers are not a natural way for users to access objects; users are

used to symbolic names for objects. To this end, the Mungi system provides name services

that map symbolic names to object addresses.

Such name services can be implemented without having any special privileges, as the

service would only store addresses of objects. Access to objects is still subject to the

possession of a capability. Currently, the Mungi nameserver is a simple mapping from strings

to addresses, but a more sophisticated naming scheme, like that used by Plan9 [PPTT90],

is envisaged for Mungi. As the name service is at user-level, users can implement their own

name space, while still being able to share objects by using their virtual address.

6.2.4 Capability re�nement

.

Mungi, with its password capabilities, allows users to share capabilities without the

intervention of the kernel. To conform with the principle of least privilege, a user might

want to pass a capability with a lesser set of access rights on to another user. As only owners

are able to create capabilities for an object, this would require a request to the owner. The

owner of the object would have to request the kernel to create a new capability and then pass

it back. This set of operations can be potentially expensive, and as such Mungi provides a

library function that implements a scheme, proposed for Amoeba [MT86], that allows user

to re�ne capabilities without calling the kernel or an owner of an object.

From the owner capability, C

rwxd

, a new capability C

rwx

= f(C

rwxd

), where f is a

well-known one-way function, can be derived, which only gives permission to read, write

and execute the object. That capability can be further restricted to C

x

= f

x

(C

rwx

), which

allows only execution, and C

rw

= f

rw

(C

rwx

), which allows only reading and writing. f

rw

and f

x

are related one-way functions, i.e. f with a constant string (s

x

; s

rw

) XOR-ed with

its argument, so that f

rw

(s) = f(s

rw

� s), f

x

(s) = f(s

x

� s). The former capability can be

further restricted to C

r

= f(C

rw

), which only allows reading. This capability hierarchy is

shown in Figure 6.2. The owner of the object would need to generate all the passwords that

conform to the protocol, but this would then allow users to perform their own re�nement.

6.3 Summary

The Mungi protection mechanisms are su�ciently 
exible to be able to address a cross

section of security problems. Mungi is able to support con�nement, conservation and re-

vocation as well as being able to support such other security policies as the Unix security

model.

The Mungi security framework provides a login based security system that caters specif-

ically for the sharing of information. This is done by allowing the sharing of capabilities
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Figure 6.2: Hierarchy of derived capabilities

and the deriving of capabilities with lesser rights all without the expense of intervention by

the kernel.



Chapter 7

Mungi Implementation

This thesis has so far presented the logical framework for the protection and security system

in Mungi. It now remains to show that these abstraction work and can be implemented

with an acceptable overhead. This chapter and the next will talk about the implementation

and performance of Mungi and the protection system.

7.1 Implementation History

The initial speci�cation of Mungi was completed in early 1993. The �rst attempt to imple-

ment Mungi was to modify CHOICES [CRJ87] to support a single address space. CHOICES

is an object-oriented operating system, the strict object-oriented design was intended to

provide the project with a rapid prototype for Mungi. This was, unfortunately not the

case, the disjoint address space model was embedded too deeply into the CHOICES ab-

stractions to allow a quick Mungi prototype to be generated. The conversion would have

required changing the lowest level abstractions that CHOICES provided. In mid 1995 the

CHOICES approach was abandoned and it was decided to prototype on top of the L4 [Lie92]

microkernel. The L4 microkernel was chosen for a variety of reasons:

� Ease of portability. The L4 mircokernel is currently implemented in 64-bit mode on

the MIPS R4x00 [EHL97] and the DEC Alpha [Sch96] (as well as the 32-bit ix86 ver-

sion), this e�ectively results in Mungi being easily ported to both these architectures.

As more 64-bit ports of L4 become available Mungi can easily by ported to these

architectures.

� Minimal duplication of e�ort. L4 provides just the right level of support, this is evident

from the close mapping between the operations provided by L4 and those supported

by Mungi. (For a description of areas that do not map well see Section 7.6.) L4

has very little code that is not needed to support the implementation of Mungi and,

more importantly, all the Mungi operations could be implemented by the mechanisms

supplied by the L4 kernel. This almost ideal match leads to a small, fast system,

65



CHAPTER 7. MUNGI IMPLEMENTATION 66

which would not be the case if Mungi had been built on top of some larger kernel such

as Mach.

� Prototyping on a small fast kernel made sure that the performance of the operating

system was not unduly degraded by the choice of prototyping platform. Recent work

has shown that building on top of L4 leads to only a small performance penalty, which

is o�set by the increase in 
exibility [HHL

+

97]. This is again in contrast to building

on top of Mach [Cha95].

Unfortunately, L4 was still under development at the time, so its predecessor (L3) was

chosen as an interim platform. This choice was motivated by L3's high degrees of similarity

with L4, both in operation and functionality. During the implementation of Mungi, care

was taken to only use system calls and services that would be eventually supported by L4.

Mungi on PC-L3 was partially implemented when PC-L4 was released. The task of porting

Mungi from L3 to L4 was relatively simple as it occurred at the early stages of Mungi

implementation. While the implementation of Mungi continued on 32-bit PC-L4, a parallel

e�ort was made to implement a 64-bit version of L4 on the MIPS R4x00 architecture. In

August 1996 the �rst version of MIPS L4 was ready and the �rst port of Mungi ran on

an 100 MHz SGI Indy in late 1996. Just before Christmas 1996 the �rst \hello world"

appeared.

7.2 L4

The current version of the Mungi kernel runs as a user-level task on top of the MIPS R4x00

versions of the L4 �kernel. Naturally, as the implementation of Mungi depends heavily on

the services that are supplied by L4, this section will describe the pertinent points of the

L4 kernel.

The L4 �kernel and its predecessor L3 were both designed by Jochen Liedtke. The

major design principle behind L4 was to construct a minimal kernel. A minimal kernel

means \. . . a concept is tolerated inside the �-kernel only if moving it outside the kernel

would prevent the implementation of the system's required functionality."

Functionally, L4 presents three simple abstractions, Address spaces, threads and inter-

process communication (IPC), which are described below.

7.2.1 L4 address spaces

Although L4 is not a single-address-space system, its 
exible address-space operations can

easily be used to construct a single address space. Address spaces in L4 are mappings

from one virtual address space to another. Address space mappings in L4 can be arbitrarily

recursed, that is any region in one address space can be mapped into another address space,

creating a mapping hierarchy. The only restriction is that mappings must not be circular;

all address mappings are eventually rooted in physical memory.
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L4 provides four operations on address space regions as described below. The results of

the operations are shown in Figure 7.1. Each bar in the �gure represents an address space

and the shaded boxes represent regions of the address space.

Grant: The owner of an address space can arbitrarily donate pages to another address

space (It should be noted that for both the grant and map operations the receiver

has to agree to receiving the page and is able to specify where in its address space

the region should appear.) The page and all control of it are then removed from the

address space of the granter.

Map: The map operation is similar to the grant operation, except for the fact that the

page and control over it are not removed from the address space of the mapper. This

allows the pages to be shared by more than one address space. The address space

that performs that map is able revoke the mapping at any time by means of the two

operations below.

Unmap: This call recursively removes a page from all address spaces that have received

the mapping from the current address space. (Remember that mappings might be

arbitrarily recursed.)

Flush: Similar to umap, except that the page is also removed from the address space of

the caller.

Map Grant

FlushUnmap

Figure 7.1: L4 address-space operations

L4 provides a default pager called �

0

which initially contains all the mappings to physical

memory. �

0

will grant any of the pages (physical frames) in its address space to the �rst

address space that requests it.

7.2.2 Tasks and threads

L4 provides support for threads and tasks. A task in L4 is an address space with one or one

or more threads running in it. A thread is a lightweight execution context. When a task

is created using the task new system call, L4 will create a task with one running thread;
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this thread is called lthread 0 (l

0

). As well as creating l

0

, L4 creates 127 inactive threads

within the task. These threads can be made active (\creating a thread") by assigning a

valid program counter and stack pointer to them with the lthread ex reg system call.

Creating a task in L4 implicitly grants the creator the right to operate on that task

identi�er. The operations that can be performed are kill and start. Having \ownership"

of a task is important as task ids in L4 are limited to 2048. A thread can also create a

task without running threads, this is essentially an operation that grants ownership to an

(inactive) task and has the e�ect of reserving the right to activate that task. A mechanism

also exists to release a task identi�er once a thread has �nished with it. The simple task and

thread paradigm leads to a fast implementation of both thread and task creation; thread

creation costs in the order of 1000 cycles (10 �s in L4 on a 100MHz R4700), while the

creation of a task is also relatively lightweight, costing 7500{10000 cycles.

7.2.3 Interprocess communication

Communication in L4 is by means of synchronous message-passing IPC. The IPC mechanism

has multiple functionality: L4 supports send, receive (from a speci�c thread) and wait

(receive from any thread). The user can specify timeouts, allowing unsuccessful IPC to

be aborted after this timeout

1

. L4 IPC [LES

+

97] is particularly fast if all the data being

passed can �t into the available registers (on the Intel 80x86 two 32-bit words, or eight

64-bit words on the MIPS R4x00 and Alpha). This \short" IPC takes about 87 cycles on

the R4700, although this �gure is a little misleading as an application has to save its register

set before making the IPC system call, adding at least another 30 cycles.

L4 IPC is the vehicle that allows the passing of memory from caller to receiver. A

message content structure (called a message dope) regulates the type, content and amount

of data that is passed during an IPC. There are three main types of data that can be passed

with IPC message:

Words: Immediate data; the IPC will transfer (copy) a speci�ed number of words from the

address space of the sender to that of the receiver. Words are 64-bits long on 64-bit

architectures and 32 bits on the 32-bit Intel 80x86 architectures.

Strings: Indirect data; strings allow the passing of arbitrary segments of memory by spec-

ifying a start address and a length.

Fpages: The mapping and granting operations (as described above) are implemented as

a side e�ect of message passing. An fpage descriptor in the message dope speci�es

what page range is to be mapped or granted into the address space of the receiver.

Fpages are segments of memory, of a power-of-two multiple of the page-size, aligned

according to their size.

2

1

Sleep is implemented by receiving from an invalid thread with the appropriate time.

2

An fpage of size 2

s

has to have a 2

s

aligned base address.
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7.2.4 Page faults, interrupts and exceptions

External events in L4 are signalled to the user with by the L4 IPC mechanism. To facilitate

this, a pager and an exceptor thread is registered for every thread.

The generation of a translation exception by the memory management hardware will

invoke the L4 kernel. The kernel will then send an IPC to the pager that is registered for

the thread that caused exception. This page fault IPC contains the faulting address and

is crafted by the L4 kernel to appear to have originated from the faulting thread. At the

same time, the L4 kernel sets up the faulting thread to wait for a mapping IPC from the

pager. The pager can then supply a page, to resolve the page fault, by sending fpage IPC

(see IPC above) to the faulting thread.

Exceptions that are generated by hardware are dealt with in the same way, that is when

an exception occurs the L4 kernel will send an IPC on behalf of the excepting thread, to its

exceptor. The exceptor is then able to handle the exception (usually by killing the excepting

thread and cleaning up).

A special receive operation will associate a thread with an interrupt. Once this interrupt

occurs, L4 will send IPC to the associated thread. Interrupt association happens on a �rst-

come, �rst-served basis: The �rst thread that performs the special receive operation on an

interrupt will have the interrupt associated with it. All subsequent requests to associate

with that interrupt will fail, until the owner thread releases the association. This allows the


exible handling of interrupts by user level handlers.

7.2.5 Clans and chiefs

To allow users to control IPC and to allow the L4 kernel to clean up when a task is destroyed,

L4 arranges all tasks into a hierarchy of clans and chiefs. When a thread creates a new

task, the creating thread's task then becomes the chief of the new task. Threads of all tasks

with the same chief, constituting a clan, are allowed to send IPC to each other or to their

chief. When a task tries to send a message to a task that is outside the sender's clan, the

IPC is redirected to l

0

of the chief of the clan. Any IPC from outside the clan directed to

a thread inside the clan is also redirected to the chief's l

0

. This e�ectively allows the chief

to control all the IPC in and out of the clan (see Figure 7.2).

To allow e�cient cleaning up of tasks and threads, when a task is destroyed, all the

tasks with that task directly or indirectly as a chief, are also destroyed.

7.3 The Mungi Kernel Implementation

The following section will describe how the Mungi kernel system is implemented as a user

task running on the L4 kernel.
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Clan boundary

Actual path

Intended path

Chief

Figure 7.2: L4 clans and chiefs

7.3.1 System calls

Mungi system calls are converted (through the use of library stubs) into IPC to the Mungi

kernel task. As a result, a null \system call" will consist of two IPCs: one to the kernel and

one as a reply from the kernel. Consequently, the theoretical minimum overhead of a null

Mungi system call is about 3 �s on the 100MHz R4700, instead, the measured overhead of

a null system call is 4.3 �s

3

(see Section 8.2.1).

The logical structure of Mungi system is portrayed in Figure 7.3. The white blocks

represent the physical system while the grey blocks represent the logical system; the Mungi

kernel, the L4 kernel and the syscall stubs are all logically part of Mungi, although system

call stubs are physically part of the application (in libraries).

7.3.2 Bootstrapping

One of the jobs-in-progress is the implementation of a PCI disk device driver. As a result, the

current version of Mungi does not yet have a disk, which means that the entire environment

has to be loaded into memory every time we reboot. Currently, an image that contains

the L4 kernel, the Mungi kernel, a user login task and a Mungi shell is created and loaded

into memory. The boot PROM starts the L4 kernel which then does all the initialisations

that it needs to do and executes the Mungi kernel. The Mungi kernel, when �rst started,

performs the following tasks:

� The initial kernel thread requests all the physical frames from �

0

by touching all of

physical memory.

� To prevent users from making calls directly to l4 task create, the kernel will start all

available (2048) tasks inactive. This essentially places all the available task identi�ers

3

The discrepancy here is probably due to cache misses.
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Figure 7.3: Mungi logical structure

and the ability to create and destroy tasks under the control of the Mungi kernel.

� All the other threads in the Mungi task are then started (see below for details of other

threads in the Mungi kernel).

� Finally the initial kernel thread starts the �rst user task.

The Mungi kernel task consists of a number of threads which are listed below.

Mungi system call server: This is the thread that deals with most of the system calls.

Mungi default pager: The Mungi default pager deals with page faults from user threads.

The pager checks the validity of the access (in accordance with the current protection

domain) and, if the access is valid, maps the page into the address space of the faulting

thread.

Serial interrupt handler: Currently the only interrupt that the Mungi kernel handles is

the interrupts from the serial chip (see Section 7.4.2). To allow for more devices, will

require one separate thread for each interrupt that the Mungi kernel wants to handle.

Semaphore handler: Handles system calls that relate to semaphores. This handler puts

threads into a waiting queue when a semaphore is zero or negative. It also deals with

the wakeup when there are threads waiting on a semaphore which has been signalled.

Timer: Provides 100ms ticks for user/kernel use.
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7.3.3 Thread and task creation

Many of the Mungi system calls map directly onto L4 system calls. Thread operations fall

into this category. A protection domain combining a running thread is implemented as

an L4 task. Mungi threads are created using the ThreadCreate system call. Logically,

there are two di�erent cases of thread creation: A thread is created in the caller's protection

domain, or the thread is created in another protection domain. L4 restricts the authority to

manipulate(create) threads in a task to the other threads in that task. As a result, Mungi

has to rely on threads that are already in a task to create other threads. For this reason,

the lthread 0 in every task performs operations on the kernel's behalf.

Lthread 0 runs on the kernel's behalf

4

within the L4 task as shown in Figure 7.4. The

lthread 0 in a user task is used by the kernel to handle exceptions (see Section 7.4.3).

All task creation is done by the Mungi kernel server, giving the Mungi kernel the ability

to kill any of the user tasks in the system. Remember that the Mungi kernel server has

already preallocated all the L4 task identi�ers (TID) so that even if a user thread tries to

call task new directly, there will be no available TIDs for a new task and therefore the

operation will fail.

The creation of a thread in the same protection domain as the caller is implemented as

shown on the left in Figure 7.5. When a thread makes a call to ThreadCreate, the system

call library stub will send a message to the Mungi kernel. The Mungi kernel will allocate

a new thread identi�er (TID) and pass this back to the stub in the reply message. Once

the stub has the new TID, it invokes the L4 l4 ex reg system call which creates the new

thread.

If the caller of ThreadCreate wants to start a thread in a di�erent protection domain,

another mechanism has to be employed. Starting a thread in a new protection domain is

implemented by starting a thread in a new L4 task. The steps that are taken to start this

new thread are also shown in Figure 7.5 and are as follows:

1. The ThreadCreate system call stub sends a message to the Mungi kernel.

2. The Mungi kernel will authenticate the use of the target protection domain. If the

request if valid a new task and thread ID are allocated, and a new task is started

using the L4 task new system call. The creation of a task in L4 will implicitly start

lthread 0 in this new task.

3. The kernel sends a message to the new task's lthread 0 containing the thread ID for

the new thread.

4. Lthread 0 in the new task will call l4 ex reg to start the user thread in the new task.

5. The Mungi kernel replies to the caller of the ThreadCreate system call, returning

the new thread ID.

4

Although the Mungi kernel relies on the fact that there is an lthread 0 running in every Mungi task,

lthread itself has no special privileges. If one of the other threads in the task decides to destroy lthread 0

this would a�ect only the ability of the task to deal with exceptions, without a�ecting the kernel or the

other tasks at all.
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User Task

User Thread

lthread 0 User Thread

User ThreadException

Figure 7.4: Mungi user threads in same APD (showing lthread 0)

Although logically there are only two cases in thread creation, implementation allows

the creation a third class; when a thread attempts to create a thread in a protection domain

that already has active threads running in it. In this case, step 2 above is omitted and the

kernel IPCs the request to start the new thread to lthread 0 of the active L4 task associated

with the protection domain.

l4_ex_reg

ThreadCreate

ThreadID

1

2 3
Mungi 
Kernel

1

4

2

3

l4_ex_reg

task_new

ThreadID

ThreadCreate

ThreadID

5
Mungi 
Kernel

lthread0

Figure 7.5: Thread creation: In local protection domain (left) and in di�erent protection

domain (right).

L4 provides no explicit way to kill a thread, short of killing a whole task and all the

threads in it. To simulate killing a thread, it is forced to execute

5

a l4 sleep system call,

with an in�nite timeout. The Mungi kernel libraries provides a stub that executes the

blocking wait. Thread deletion in Mungi is thus implemented in much the same way that

thread creation is | by restarting the thread (at the blocking wait system call). Thread

deletion is simpler when a thread wishes to delete itself. This is handled simply by the

5

Any thread (even one that is currently executing) can be forced to start execution anywhere by specifying

the new instruction pointer to l4 ex reg.
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kernel not replying to the ThreadDelete message. This will leave the thread waiting for

ever on a reply from the kernel (until the kernel chooses to re-use the thread id to start a

new user thread).

7.4 PDX

Setting up a new protection domain is not a lightweight operation; this is the dominant cost

in a PDX call. However, the setup cost can be amortised by caching the PDX procedure's

protection domain, in particular its access validations, between calls. When a thread t calls

a PDX procedure p for the �rst time, a new L4 task t

p

is created. The PDX call essentially

becomes a blocking RPC call, which spawns a new thread in t

p

for the duration of the PDX

execution. The operation of creating a new thread and transferring control to it is very

lightweight in Mungi, as it maps directly onto the corresponding L4 operations.

In the case of a true protection domain extension (i.e. npd = -1), t

p

can inherit t's cached

validations by having t

p

reference t's validation cache. If, during p's execution, new objects

are validated, these validations are prepended to t

p

's validation cache, without a�ecting t's

part of the validation cache. If t validates further accesses between calls to p, these are

inserted into t's part of the validation cache. On the next call to p, t

p

will then inherit these

further validations as well.

6

This is shown in Fig 7.6. The kernel's data structure describing

a protection domain contains references to all PDX tasks belonging to it, so these can be

cleaned up when the last thread exits.

Caller’s Domain

PDX Domain

Validation Cache

Validation cache
Pointer, PDX

PDX validations
added here

non−PDX validations
added here

Validation Cache
Pointer, non−PDX

Figure 7.6: Mungi validation caches

In the case of PDX calls where the user speci�es a protection domain (npd > 0), caching

6

The same happens if, while t executes p, another thread in t's protection domain adds further validations

| these become immediately visible to t

p

.
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can also be used, provided the Clist has not changed since the last call. The kernel can

verify this by storing a hash of the Clist with the cached protection domain.

7.4.1 Page faults

As previously mentioned, L4 page faults are translated into IPC to the thread that is

registered as the pager for the faulting thread. In Mungi, the kernel pager is set as the

default pager for all threads that are created. When a thread within a task touches a

non-resident page, the L4 kernel will send an IPC to the Mungi pager and set up a wait

for the pager on behalf of the faulting thread. The pager will then do the necessary access

validations (see Section 4.3.4), and if the request is valid, send the requested page back to

the faulting thread by means of the closed IPC that has been set up. In the case where the

pager does not respond, the faulting thread will remain blocked on the closed wait. If the

faulting address falls within an object that is managed by a user-level pager, this pager is

invoked.

7.4.2 Interrupts

Like page faults, interrupts are also converted into IPC by the L4 kernel. The current

version of Mungi only has to deal with one device interrupt, the interrupts that come from

the serial chip. Before the Mungi kernel starts the �rst user task it will associate a thread

with the serial chip interrupt that L4 will act on. When an interrupt occurs, the interrupt

handling thread will call an appropriate interrupt handler, the address of which is stored in

an interrupt vector. The serial chip interrupt handler is responsible for either receiving a

character from the serial port or the sending of the next four characters (see Section 5.4.1).

7.4.3 Exceptions

L4 exceptions that are raised by a thread are sent by IPC to the default exceptor, which

is a Mungi kernel thread. These exceptions are generated by the hardware (bus error,

reserved instruction etc.). Mungi generated exceptions, such as protection and segmentation

violations, are generated internally in Mungi. When an exception from either set occurs,

the kernel will send a message to lthread 0 of the task of the excepting thread, passing the

address of the exception handler for that task. Exception handlers can be set through the

ExcptReg system call. Lthread 0 will then re-start the excepted thread (using l4 ex reg)

starting execution at the exception handler. Due to the fact that the handler is started

in the context of the excepting thread, the exception handler can save the context of the

thread before handling the exception. The exception number and the address where the

exception occurred will be passed to the exception handler by lthread 0. A prototype of an

exception handler is given below.
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/* the system call to register an exception handler */

ExcptHndlr_t ExcptReg(Excpt_t Exception, ExcptHndlr_t Handler);

/* a prototype for an exception handler */

void handler(int64 Exception, int64 ip);

7.4.4 Capability handlers

Capability handlers are implemented much like exception handlers (see Section 7.4.3). Dur-

ing validation, if the default pager �nds a non-empty handler pointer in the APD of the

faulting task, if sends a message to l

0

of the faulting task. l

0

will then restart the faulting

thread in the capability handler. Once the handler has performed its job, it can restart the

faulting thread. The default pager remembers that the thread has just called a handler and

will thus skip calling the handler and resume the search with the Clist associated with the

handler.

7.5 Supporting Data Structures

7.5.1 Kernel information page

Mungi provides a kernel information page at a known address. This page contains informa-

tion that is used by lthread 0 and the system call stubs.

typedef struct {

l4_threadid_t kernel; /* thread id of the kernel */

l4_threadid_t pager; /* tid of kernel pager *

l4_threadid_t preempter; /* pre-empter */

l4_threadid_t semhandler; /* tid of semaphore handler */

l4_threadid_t timer; /* tid of the kernel timer */

l4_threadid_t printer;

l4_threadid_t kexhandler; /* tid of the kernel exception handler*/

int64 L4_KIP; /* the address of the L4 info page */

char KType[6]; /* "Mungi" */

int version_high;

int version_low;

int64 ProcTable; /* address of the process table

for 'ps' like operations */

} KernelInfoPage;

7.5.2 Object table

Figure 7.7 shows the data structure that is used by Mungi to keep track of objects.

7

The

�rst part of the structure is labelled the public part and can be accessed by anyone holding

a read capability for the respective object through an ObjInfo system call. Only the �rst

half of the ObjInfo t is referred to the caller, unless it holds an owner capability. The 
ags

in the object table entry are used by the kernel to indicate that the object is a valid bank

account or APD.

7

The base address and length of the object are stored in the structure of the object table and can also

be accessed.
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typedef struct {

/* public */

uint extent;

Date_t creation;

Date_t modification;

Date_t access;

Date_t accounting;

uint64 userinfo;

uint64 acctinfo;

uint64 length;

/* private */

ObjFlags_t flags;

uint n_caps;

uint n_pdx;

CapList_t CapList[O_MAX_CAPS];

PdxList_t pdxList[O_MAX_PDX];

Cap_t clist; /* for PDX */

Cap_t account;

Cap_t pager;

} ObjInfo_t;

Figure 7.7: An object table entry

7.6 L4 Limitations

This section summarises the problems and shortcomings of the approach to build the Mungi

kernel as a user task on the L4 mircokernel. In general the L4 mircokernel is well suited to

support the lowest level abstractions of Mungi. There are, however, a few areas where L4

did not quite �t the bill perfectly, speci�cally these areas are:

User Tasks

Kernel Task

Kernel Threads

User Threads

Figure 7.8: Mungi kernel with user tasks. Communication is allowed between threads in

the same task and between any threads and the kernel

� Task and thread information. Mungi and L4 both have to keep information about

threads. L4 needs this information for scheduling and Mungi needs the information

in order to be able to allocate thread ids and maintain a thread hierarchy. The Mungi

server does not have access to the L4 thread control blocks (TCBs), and as a result,

some of this information is duplicated.

� Mungi system calls are implemented as interprocess communication (IPC) to the

Mungi kernel. The pure IPC overhead adds to the execution time of a Mungi system

call. Although an L4 IPC has an overhead of only 79 instructions [LES

+

97], the cost of
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entering the kernel is 32 instructions, making the pure IPC overhead 47 instructions.

8

This cost would not need to be incurred on a native kernel.

� The L4's clans-and-chiefs structure allows tasks that are in the same clan to send IPC

to each other without having to go through the chief. This had to modi�ed for use

by Mungi to prevent information leakage (i.e. enable con�nement). The modi�cation

disallows IPC between threads of di�erent L4 tasks except via the chief, to ensure that

Mungi has control over all cross-protection-domain communication. See Figure 7.8

and Section 2.1.1. This result could also have been achieved without modifying L4,

by enclosing each task in a second task, but at the cost of needing to start twice as

many tasks and doubling the IPC overheads.

� L4 provides recursive mapping of address spaces. Mungi only uses one level of map-

pings, those from the Mungi kernel to the user threads. L4 support for recursive map-

pings is a disadvantage when unmapping pages or entire address spaces (APDFlush,

TaskDelete) as L4 has to check each page for further mappings, which also have to

be unmapped. Modifying L4 to allow only one level of mapping would make any un-

mapping operations a lot quicker, as whole ranges can be unmapped without having

to check each individual page for further mappings.

7.7 Summary

Mungi is implemented as a user level task running on top of the L4 �kernel. L4 closely

matches the needs of Mungi for lower level operations. This, together with portability and

speed, are the main reasons for taking the �kernel approach. Using the 
exible address-

space operations that L4 provides, a single address space is constructed. Mungi system calls

are implemented as stubs that send IPC to the Mungi kernel. The result is a �rst prototype

of Mungi that is able to demonstrate the bene�ts of the Mungi single address space and

primitives, without a signi�cant loss of performance.

Although L4 seemed the perfect microkernel for the job, the choice of microkernel is not

really important to the design of Mungi. The implementation on Mungi on L4 was only done

as a shortcut to a full native implementation. Several other choices of microkernel would

be possbile, with systems like EROS, with it support for capabilities built into the kernel,

being a likely candidate. Building Mungi on another microkernel would be interesting from

a technical perspective, but would add nothing new to Mungi itself.

8

These �gures are based on the MIPS R4600 version of L4.



Chapter 8

Mungi Performance

In this section, performance data for Mungi is presented and contrasted with two Unix

operating systems: Irix 6.2, a commercial Unix operating system, and Linux version 2.1.67.

1

It has recently been shown [HHL

+

97] that Linux can be run as a server on L4 with

essentially unchanged performance; whether Linux runs native or as a server on L4 makes

little di�erence in performance. It would seem a logical conclusion to claim that the �gures

presented for Mungi would be similar if Mungi were running native. It is, however, di�cult

to make direct comparisons between systems, as Mungi's superior performance is a result

of the simple abstraction and the inherent advantages of the SASOS model, as well as a

very performance-conscious implementation.

We also compare Mungi with Opal where possible. This is complicated by the fact

that the systems are built on di�erent kernels and di�erent hardware platforms, and by

the lack of availability of common benchmarks for comparison. However, we show that

the Mungi model provides signi�cantly higher performance for important operations such

as cross-domain calls, where Mungi's PDX eliminates the need for capability validation on

each call.

All the Mungi, Irix and Linux �gures were obtained on an 100MHz R4600-based SGI

Indy workstation with 64Mb of RAM (see Appendix A). Comparisons with Opal are based

on published data [CLFL94]. Opal timings had been obtained on a DEC 3000/400 AXP

(133.3 MHz Alpha CPU). According to its SPEC ratings, this machine should be roughly

as fast as the Indy (within 10{20%).

2

8.1 Microbenchmarks

Here we present timings obtained for basic Mungi system calls. These were obtained for

repeated calls (presumably hot caches), although some of the �gures varied strongly between

calls, obviously resulting from cache con
icts.

1

Linux/SGI is available from http://www.linux.sgi.com.

2

Unfortunately, no exact �gure can be given, as we only have SPEC-92 ratings for the Alpha used for

Opal, and SPEC-95 ratings for our Indy.

79
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The Indy's high cache miss penalty was evident in the fact that some �gures showed an

extremely strong dependence on the exact location of user code and stacks.

Where possible, we are comparing our timings with those obtained for comparable op-

erations on Irix and Linux, and for those reported for Opal. The following sections explain

the �gures, which are summarised in Table 8.1.

Operation Mungi Linux Irix Opal

Null system call 4.6 6.3 7.7 >88

Thread create 83/48 N/A N/A N/A

Thread delete 48 N/A N/A N/A

Thread create + delete 131/96 2,450 4,882 N/A

Thread create (new domain) 600 N/A 5,600 650

Object create 60 N/A N/A 315

Object delete 150 N/A N/A 900

Table 8.1: Microbenchmark timings (in �s). See text for explanations.

8.1.1 Null system call

The cost of a null system call is 4.6�s in Mungi, its closest approximation in Unix is the

getpid call which costs 6.3�s in Linux and 7.7�s in Irix. A lower limit for the cost in Opal

is that of a Mach null-RPC, 88�s. In spite of requiring two IPC operations, the Mungi

version of this call is signi�cantly faster than the corresponding call in the other systems.

This is an indication of the low overhead introduced by L4.

8.1.2 Tasks, threads and IPC

Creating a new thread, in the current protection domain, in Mungi takes 83�s, which

reduces to 48�s if an ID can be recycled from a thread which has already terminated. In

a context where threads are created and deleted frequently (and where consequently this

cost is most important) this should mostly be the case. Thread deletion is the same cost as

thread creation with recycling, i.e., 48�s. Thread times for Opal were published in [FCL93]

for an R3000-based DECstation (create 140�s, delete 230�s). However, as no clock speed

or SPEC ratings were quoted for that platform, it is hard to compare these �gures. Irix and

Linux do not presently have a thread interface signi�cantly more lightweight than fork(),

so we used fork()/wait()/exit() as an approximation.

Thread creation, in another protection domain, costs around 600�s in Mungi (800�s

with cold caches), the corresponding fork()/exec() in Irix around 5,600�s. In Linux we could

not measure a similar operation separately for lack of a timer of su�cient accuracy. We

measured the cost of fork()/exec()/wait()/exit() as the total of task creation and deletion.

The surprisingly high task creation cost in Linux (given its generally good performance

compared to Irix) might be a result of this version still being under development. In any

case, the operations are about an order of magnitude faster in Mungi than in the Unix

systems.
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The equivalent of creating a thread in a new protection domain in Opal, is creation and

activation of a protection domain, which takes 650�s.

8.1.3 Objects

Object creation (which, by itself, does not allocate any backing store) costs 60�s in Mungi.

Segment creation in Opal using a recycled inode costs 315�s.

Object deletion in Mungi takes 150�s, compared to 900�s in Opal. Only the combi-

nation of creation, access and deletion could easily be measured in the Unix systems. The

results were about 50 % slower in Linux and eight times slower in Irix.

8.2 Protection Performance

An important attribute of a protection mechanism is the overhead that is introduced in the

system due to protection. Security relies on the protection mechanisms performing with as

little overhead as possible: As was pointed out in Chapter 2, security has to rely on the

users being security conscious. If the penalty for security is too high in term of performance

then users will not use the secure settings.

The most obvious way to ensure that the protection penalty is not too high is to pay

attention to operations that are performed often. If the system is optimised for such op-

erations, then the operations that are performed less often can a�ord to take a little more

time.

As the protection system in Mungi is supposed to by used as a base to implement a

whole variety of security policies, we have to make sure that the base operations in Mungi

are as fast as possible.

8.2.1 Page faults and validation

Due to the invasive nature of explicit capability presentation, Mungi provides support for

implicit validation. This means that when a thread accesses an object, Mungi will attempt

to �nd a valid capability for this access. The steps that are taken by the protection system

are outlined below.

Validate(address, accesstype)

{

if (vcache(address, accesstype))

map page

return

for (caps in APD)

if (ishandler(cap))

call handler

else if (isvalid(cap,object) && grant(cap,accesstype))

vcacheadd(object, accesstype)

map page

return

raise protection exception

return

}



CHAPTER 8. MUNGI PERFORMANCE 82

When a thread tries to access a page that is non-resident, a TLB exception will cause the

L4 kernel to send IPC to the Mungi kernel pager. The pager will then attempt to validate

the access. This is done by calling the Validate function. Validate checks the validation

cache to see if the object has been validated previously, if so, validate returns and the pager

maps the page. If the address is not in the validation cache then the pager has to check

the protection domain of the caller. In order to do this, the object table is searched to �nd

all the valid capabilities for that object. The APD of the faulting thread is searched in an

attempt to �nd a valid capability. If an APD contains a pointer to a handler, this is called

at the appropriate time.

The validation process is performed whenever an access is attempted on a non-resident

page. As a result, good performance of validation is essential. The results of benchmarking

the page fault/validation process are summarised in Table 8.2.

These �gures need some explanation. The four cases benchmarked were touching a page

of an object; that was in the validation cache, touching an object for the �rst time, touching

an object for the �rst time with a larger APD, and touching an object for the �rst time

and invoking a capability handler. The timings that are presented in a bold type-font are

actually measured �gures. In order to be able to make comparisons between various modes

of validation, operations common to all were taken from the \in cache" case (such timings

are presented in normal font). The true times were higher due to cache misses. (Altough

for the case of the \In-cache" validation the calculated �gure is higher then the measured

value. This is probably due to the additional space in the cache the the benchmarking code

takes up, see Section A.4).The numbers presented give a more accurate re
ection of the

number of instructions executed, instead of including the somewhat random cache a�ects.

In the capability handler case, after the handler is invoked it returns to the instruction that

caused the �rst page fault. This then results in a further \�rst touch" page fault.

In cache First touch FT (+128 caps) cap handler

Page fault to pager 11.5 11.5 11.5 11.5

Search validation cache 4.5 4.5 4.5 4.5

Call handler { { { 104

Search APD { 6.5 39.5

Add to vcache { 17.5 17.5

Map page 12.5 12.5 12.5

Total 28.5 (26.5) 42.5 (75) 75.5 (113) 162.5 (200)

Table 8.2: Validation overhead (in �s)

As a comparison, we note that Unix systems require �les to be opened before �rst

accessing them and closed after the last access. In Linux, opening an empty �le takes 45�,

and in Irix, 252�. Opal similarly uses explicit attach and detach operations on segments.

An attach followed by a detach takes 478�s \best case". We assume that the cost of an

attach is half this time (which is most likely erring in Opal's favour). Mungi does not feature

explicit attach/detach system calls. Objects are made available to a task by inserting their



CHAPTER 8. MUNGI PERFORMANCE 83

capabilities into a user-maintained Clist (an operation that occurs less frequently than

subsequent accesses to the objects). The Mungi operation equivalent to an Unix open or

an Opal attach is touching an object for the �rst time, which was measured at 75�s. This

was the only operation we found to be faster in a Unix system than in Mungi: Opening a

�le in Linux is almost twice as fast as validating a �rst access in Mungi, obviously a result

of the simpler Unix protection model. Irix, however, is much slower.

Mapping a further page of a previously validated object takes only 29�s in Mungi (no

comparable data are available for the other systems).

8.2.2 PDX

PDX is the foundation of 
exibility and extensibility in Mungi. PDX is used to implement

many services, from device drivers to user-level pagers. It is therefore essential that PDX

can be executed quickly. Recall that the implementation of PDX requires the expense of

setting up a new L4 task initially, but once established PDX can be performed at the cost

of four IPCs. It therefore makes sense to measure both the initial and repeated timings for

PDX (these �gures are summarised in Table 8.3).

PDX allows the controlled creation of new (temporary) protection domain. The thread

that initiates the PDX is able to specify what parts of the caller's protection domain are

mirrored in the PDX protection domain. PdxCall performance, depends on whether the

kernel has to validate the new domain or not. When the caller speci�es a proper extension,

or speci�es a null protection domain, the kernel only has to validate the Clist pointer

that the PDX module itself provides. On the other hand, if the caller presents a set of

Clist capabilities that represent a new protection domain, the kernel has to validate each

capability before it is entered into the APD (column \new APD").

The cross-domain call mechanism in Mungi is PDX, which costs between 10 and 20�s.

The equivalent operation in other systems is an RPC, which costs around 450�s in Irix,

160�s in Linux and 133�s in Opal.

full APD new APD (9 clists)

PDX (�rst call) 874 1104

PDX (repeated call) 10{20 22

Opal Irix Linux

133 450 160

Table 8.3: Cross domain call performance (in �s)

8.2.3 Object benchmarks

In order to establish that PDX provides a good abstraction and incurs a reasonable perfor-

mance penalty, a subset of the OO1 benchmark [CS92] was implemented and run on various



CHAPTER 8. MUNGI PERFORMANCE 84

operating systems. OO1 is supposed to represent a benchmark that performs \typical" op-

erations on an object-oriented database. The database that is accessed in the benchmark

should be inaccessible to the user that is performing the operation. This is an ideal sit-

uation for Mungi's PDX protected procedure calls. To achieve a similar result on Unix

we had to implement a client server architecture that relied on IPC. The experiment had

two stages. First the code was written so that the database resided in the same protection

domain as the client of the database. This results in the same code running on each of

the di�erent operating systems. The second part of the experiment had the database in a

separate protection domain.

System lookup traversal insert total

forward reverse

Linux 32-bit 7.99 5.97 N/A N/A N/A

Irix 32-bit 7.44 4.77 5.13 4.76 22.10

Irix 64-bit 7.78 6.47 7.49 6.23 27.97

Mungi 64-bit 7.95 6.60 7.71 5.31 27.57

Table 8.4: OO1 benchmark times (in ms) for the single protection domain version.

System lookup traversal insert total

forward reverse

Irix 32-bit/message passing 946 1,445 1445 208 4,047

Irix 32-bit/shared memory 949 1,409 1,411 203 3,972

Linux 32-bit/message passing 344 467 461 842 2,114

Mungi 64-bit/PDX 51 59 61 16 189

Mungi 64-bit/PDX/restricted 50 58 60 16 184

Table 8.5: OO1 benchmark times (in ms) for the multiple protection domain version.

The OO1 database consisted of 20,000 parts. Insert creates 100 new random elements in

this database and connects each new node to three random node already in the database.

This results in 400 database operations. The forward and backward traverse operations

started at a random node and followed all paths connected to a depth of 7. The forward

lookup performed exactly 3,280 database operations. With the backward lookup the number

of operation depended on the starting node. It should be noted that all the versions of the

benchmark ran with the same random numbers and thus traversed the same node in each

trial.

Table 8.5 shows the results of the performance measurements of the IPC version of OO1.

Mungi outperforms Irix in average by more then a factor of 20 and Linux by more than a

factor of 10. Comparing the values from Tables 8.4 and 8.5 for 32-bit Irix code, it can be

concluded that the cost of an RPC in Irix is around 450�s, in Linux about 160�s, while the

same comparison for Mungi yields 21�s for a PDX call, which is consistent with the �gures

given in Table 8.3.

The observation that Irix shared memory IPC does not perform better than System-V
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message passing is explained by the fact that the amount of actual data passed is very small

(around two dozen bytes), so that the cost is dominated by the system call and context

switching overhead.

The last line in Table 8.5 (marked \restricted") was obtained from running Mungi on

top of a modi�ed L4 kernel, implementing IPC restrictions. In this version it is impossible

to send IPC directly between Mungi user tasks, this version therefore fully supports con-

�nement. As can be seen this is achieved without any run-time penalty, but at the cost of

a small modi�cation to the kernel.

8.3 Summary

The benchmarks show that Mungi clearly outperforms Unix operating systems on some of

the most important basic operations, as well as on an IPC-intensive benchmark of database

operations. This shows that the single-address-space approach is not intrinsically less ef-

�cient than traditional operating systems, and has a signi�cant edge for certain classes of

applications.

The microbenchmarks also clearly outperform Opal's published results. Obviously,

Opal's performance was partly a result of the platform chosen for the implementation of the

prototype. However, we have clearly demonstrated that the PDX mechanism can be imple-

mented with very high performance, and is an inherent advantage of our model, compared

to the approach taken by Opal.

The most signi�cant performance advantage of a SASOS, however, will come in areas

where the single address space can be used to avoid cross-domain calls or other operating

system intervention altogether. This can, naturally, not be demonstrated on small bench-

marks, including OO1. The DiSy group is therefore working on a port of a full-blown

object-oriented database system to Mungi, where the potential of taking advantage of the

model is particularly great.
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Conclusion

One of the traditional impediments to sharing is the fact that all processes execute in

seperate address spaces. Getting data from one address space to another requires the use

of additional operating system services such as IPC or the �le system. Single-address-space

operating systems, on the other hand, provide the ideal environment in which to share data.

The fact that there are system-wide names for all data in the system allows applications to

pass globally valid references, to any data, to other applications.

It is important that the clean sharing bene�ts of a SASOS are not negated by an intrusive

or ill-matched protection mechanism; it is no use tearing down one set of walls only to put up

new ones. Providing Mungi with a protection mechanism that is well matched to the concept

of a SASOS and that is fast and powerful is the purpose of this thesis. This disertation

has described a protection mechanism based on password capabilities that complements the

single-address-space paradigm. Below are the main achievements.

� Mungi demonstrates that software implementations of capabilities and protected pro-

cedure calls can be made e�cient. Careful design and extensive caching of address

mappings allow, for example, repeated PDX calls to be performed in 10-20 �s on a

100MHz R4600 CPU. Similarly good performance is shown for capability validation,

thread creation, and object creation.

� The Mungi operating system was implemented on top of the L4 �kernel. L4 proved

to be an excellent choice, as it provided just the right level of support: its inter-

face made the development project simpler, the abstractions L4 provided were well

matched to the task of building an new class of operating system, and the emphasis

on performance in L4 motivated similar concerns for Mungi.

� This thesis has presented a password-capability-based protection system. It has shown

the 
exibility of a capability based approach. Most modern operating systems im-

plement protection by using access control lists. One of the problems that frequently

arises in these systems is that a process that is running under a certain user id is

subverted to do something else. With an ACL based system this process has all the

rights and privileges that the user has. The amount of damage that can be done by
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the errant process in not contained. With a capability-based system every process

can be given exactly the rights that it needs to be able to perform its job. Thus if this

process is subverted, then the only damage that it can do is limited to those rights

that have been given to the process. This thesis has shown that capability based

systems have no inherent performance penalty as compared to ACL based ones.

Having a small set of abstractions also supports more intuitive protection. A user sees

only one level of protection, that is, protection of an object by password capabilities.

This is unlike traditional systems, where there is protection at the �lesystem level as

well as the memory level. A capability-based single-address-space operating system

makes it easier to think about protection implications for a user's application.

� Mungi provides a protected procedure call mechanism, called PDX, that temporarily

extends the protection domain of the caller, allowing the caller to perform privileged

operations in a controlled way. Mungi's PDX mechanism has been demonstrated to

be particularly 
exible and suitable for a wide range of applications, including device

drivers and display managers. Mungi supports protection at an object granularity,

where an object is a contiguous set of pages, allowing users to share information

selectively. Mungi also provides mechanisms to ensure that information shared can

not be leaked to a third party.

In summary, this thesis has presented the design, implementation and performance of the

Mungi protection system. With its simple abstractions and careful attention to performance

design, protection in Mungi is shown to be 
exible, powerful and fast.

Mungi introduces two abstractions that are not commonly used: single-address-space

and capability-based protection. A single address space removes the address-space obstacles

to sharing. The bene�ts that are derived from this freedom have to be realised at the higher

layers.

Convincing people to embrace a new paradigm is di�cult. Mungi presents a whole set

of abstractions that are di�erent to what people are used to. Having a single address space

removes the need for the programmer to think about run-time issues in communcation

between applications, information is just passsed in situ. Likewise the protection system

based on capabilities will look and feel di�erent to the dominant protection paradigm,

ACL based protection. Capabilities and a SASOS are well matched, both provide a global

naming scheme for objects. Capabilities in Mungi are powerful pointers that not only give

the globally valid location of data, but also provide the rights to access the data. Using

capabilities instead of pointers in Mungi will allow users to apply the principle of least

privilege naturally. With the right interface to the protection system, users will apply good

protection principles naturally.

Both single-address-space systems and capability-based systems will have to overcome

the natural resistance to move from the commonly accepted ways of doing things. There

are substantial bene�ts in the adoption of the ideas presented in this thesis. Only time will

tell if either abstraction will be adopted by the mainstream.
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Benchmarking Details

A.1 Environment

Testing and debugging was done on two platforms

� SGI Indy.

� U4600 (developed at UNSW).

Both systems have a 100MHz R4x00 single issue CPU and have 64Mb of RAM. Both systems

have two-way set associative 16kB instruction and data caches. Figures are given in �s,

which translate to about 100 instructions on the 100MHz processors.

A.2 Software

� 64-bit compiler: gcc 2.7.2.3, modi�ed to produce 64-bit code that could be assembled

by the assembler. Compiler 
ags: -O2 -G 0 -mips3

� Assembler: IRIX 6.2 assembler

� Linker: IRIX 6.2, ld. Linker 
ags: -n -64 -non shared

The PROM on both architectures are set up to only load elf-32 �les. A utility was

written which would pack an arbitrary number of elf-64 object �les into one elf-32 �le.

A.3 Measurement Details

This section will describe the methodology that was used to produce the �gures in Tables 8.1

and 8.2.

Time measurements are done by writing a timestamp into memory before and after each

operation. At the conclusion of the benchmark the timestamps are printed to the terminal

and the di�erences between timestamps are calculated. The overhead of the timestamp
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operations was measured and varied between 4.5 and 7 �s, this is probably due to cache

e�ects (See Section A.4 below). Obviously if the time of an operation was near this order

of magnitude we could only get accurate �gures by measuring the total time of multiple

iterations.

A.3.1 Thread measurements

The ThreadCreate and ThreadDelete �gures were run 20 times with the average �gures

presented. The ThreadCreate timings are generated by using the code fragment below.

A timestamp is taken before the call to ThreadCreate. The newly created thread (running

D Dummy) then sends a message back to the parent thead. When this message is received

another timestamp is taken. The di�erence between the two timestamps is taken as the

time for thread creation.

The average as reported was measured to be 48 �s with a standard deviation of 0.9�s.

/* from benchmarking code */

for(k=0;k<B_NewThread_Iter;k++) {

tstamp(4*k+4);

Thread = ThreadCreate(D_Dummy,&D_Stack[B_NewThread_SSize]);

l4_mips_ipc_wait(&next,L4_IPC_SHORT_MSG,

&mipsmsg,

L4_IPC_NEVER,&dope);

tstamp(4*k+5);

ThreadDelete(Thread,1);

}

char D_Stack[B_NewThread_SSize];

void

D_Dummy(void)

{

l4_threadid_t parent = {0x20080000000a0801}; /* hardwired TID */

l4_msgdope_t dope;

l4_ipc_reg_msg_t mipsmsg;

l4_mips_ipc_call(parent,L4_IPC_SHORT_MSG,&mipsmsg,

L4_IPC_SHORT_MSG,&mipsmsg,

L4_IPC_NEVER,&dope);

}

A similar methodology is used to measure the cost of thread creation in a di�erent pro-

tection domain. The average is the reported 600 �s but the standard deviation is signi�cant

at 70�s. The reason for this large variation can be attributed to the fact that a thread in

a new protection domain must �rst allow the pager to map its pages into the protection

domain. In the benchmark tests, a thread in a new protection domain takes six residency

faults before it was able to execute the IPC code in order to notify the parent that the

thread had started.

A.3.2 Other benchmarks

The null system call and repeated PDX are both calls that are expected to be in the same

order of magniture as the time taken to timestamp. As a result the �gure for both PDX
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and the null system call are the result of one million iterations. The object creation and

deletion benchmarks were run 1000 times with the total time taken for the 1000 operations

taken.

As the validation code measured some of the internal timings of the kernel, the bench-

marks were generated by inserting timestamping code in the kernel. The overall pagefault

timings were generated by timing the time taken to access a memory location that was

known to be unmapped. The \In-cache" benchmark was run 30 times with the average of

26.5�s and a standard deviation of 3.4�s.

A.4 Cache e�ects

Both machines have a 2-way set-associative instruction and data cache. Each cache is 16Kb,

giving 8Kb for each level of associativity. The cache is organised as 256 lines of 32 bytes for

each of the two levels of associativity. There was a signi�cant di�erence in the cache re�ll

times on the U4600 and the SGI Indy. On the U4600 it took on average about 14 cycles to

load the �rst 4 bytes after a cache miss. This overhead was measured as about double on

in the SGI, on average 28 cycles for the same result [Elp98].

Due to small size of the L4 �kernel and Mungi, there was a signi�cant variance in

benchmark timings depending on the cache alignment of user data and code relative to the

kernel. As an example, the times taken for repeated PDX varied from 12-20 �s depending on

the alignment of code and data. This indicates that further performance gains are possible

by carefully aligning Mungi's code and data relative to L4's to avoid con
ict between them.

This would free up the second level of associativity for user code and thereby eliminating

con
ict misses on system calls.
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