
School of Computer Science & Engineering
Trustworthy Systems Group

Verifying
the seL4 Microkit

Verified libmicrokit and CapDL Mapping
Trudy Weibel, Zoltan A. Kocsis, Mathieu Paturel, Robert Sison,

Isitha Subasinghe, Gernot Heiser
gordian@trustworthy.systems

2024-06-21

Abstract

This document reports on the formal verification of the seL4 Microkit. Specifically we report
on (1) the formal specification of the Microkit library, (2) the functional correctness proof of its
implementation, and (3) the verification of a mapping of the Microkit system specification
(system description file, SDF) to the CapDL formalism that describes seL4 access rights.
Both verification steps use fully automated (push-button) techniques. All artefacts are
open-sourced.

Copyright © 2024 The University of New South Wales.
Licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License.

Contents

List of Figures iv

List of Listings v

1 Introduction 1
1.1 Project background . 1
1.2 seL4 Microkit Overview . 3

1.2.1 Programming model . 3
1.2.2 Implementation . 4

1.3 Summary of outcomes . 6
1.4 Synopsis of the work covered in this report . 7
1.5 Repository . 8

2 Global Correctness – The Long-Term Objective 9

3 Local Correctness – The Task at Hand 11
3.1 The local Microkit state machine . 11
3.2 Approach taken to verify the Microkit . 11

4 Microkit Local Correctness 13
4.1 Layout of formalised specification . 13
4.2 Verifying implementation against spec . 14
4.3 Our pipeline of verification stages . 14
4.4 Verifying libmicrokit . 16

4.4.1 Steps of the verification process . 16
4.4.2 Modified approach for the basic Microkit library functions 18
4.4.3 Relationships of specs used in the verification process 18
4.4.4 Implementation details . 19

5 Formalised Specification Underpinning Local Correctness 20
5.1 Preamble . 20
5.2 Microkit abstractions – high-level specification . 20
5.3 System Description File (SDF) . 22
5.4 Structural arrangement of the Microkit specification 23

5.4.1 The model: state transitions . 23
5.4.2 Verification condition . 24
5.4.3 Roles of the various verification condition clauses 26
5.4.4 Thread-local State . 27
5.4.5 Oracle . 28

ii

5.5 Verification condition for Microkit library . 28
5.5.1 Microkit functional and implementation specification 28
5.5.2 The role of Microkit Dynamic State in the proof process 29

5.6 Executing the verification steps . 30
5.6.1 Proof Construction . 30
5.6.2 The Microkit properties we verify . 30

6 Verification of System Initialisation 32
6.1 CapDL – the key machinery . 33
6.2 Approach to formalising CapDL generation . 34
6.3 Choosing a CapDL loader . 34

7 Formal Framework for CapDL Generation 36
7.1 Preamble . 36
7.2 Abstract systems . 36
7.3 Accurate implementation with a capability distribution 38
7.4 Abstract system as used for the libmicrokit proofs 39

8 Our New Verification Tool Gordian 41
8.1 The process steps . 41
8.2 The verification condition algorithm . 42

9 Existing Infrastructure Tools for Verifier Implementation 43
9.1 C Parser . 43
9.2 GraphLang and SimplExport . 44
9.3 Rust CapDL loader . 44

10 Worked Examples – Walk-Through Of The Verification Steps With Artefacts 45
10.1 Arithmetic sum arith_sum . 45
10.2 Microkit Monitor monitor . 48

11 Limitations 52
11.1 Microkit versions . 52

11.1.1 Kernel limitations: Non-MCS . 52
11.1.2 Architecture limitations: 32-bit . 52
11.1.3 SDF to CapDL mapping: platform-aware 52
11.1.4 Build system . 53

11.2 Gap in end-to-end proof . 53
11.2.1 Verifying MSpec . 53
11.2.2 Haskell to SMT-LIB 2 transcription . 53

11.3 Threats to validity . 54

12 Achievements and Impact of Verification 55
12.1 Achievements: What we have proved and delivered 55
12.2 Impact . 56

13 Conclusions 57

Bibliography 58

iii

List of Figures

1.1 Microkit abstractions at a glance . 3
1.2 Microkit components when loaded as a whole seL4-based system. 5
1.3 Microkit-based functions . 5
1.4 Microkit verification structure . 6

2.1 Property ♣ – a representative guarantee. 9

3.1 Local state capturing the three layers of the model for the Microkit components . 12

4.1 Hierarchy of seL4 specifications. 13
4.2 Pipeline of the Microkit verification steps . 15
4.3 Control-flow graph for the handler_loop . 16
4.4 Excerpt of handler_loop’s fully function-spec annotated control-flow graph 17
4.5 Relationships between the specifications for libmicrokit verification 19

5.1 Interdependencies of the specification elements for the Microkit verification . . . 21
5.2 Completely built system using the Microkit . 23

6.1 New proof step 2 together with existing step 0 addresses initialisation 32

7.1 Example of a mapped memory range. 38

10.1 Simple control-flow graph for Arithmetic Sum . 46
10.2 Expanded control-flow graph for Arithmetic Sum 47
10.3 Simple control-flow graph for Microkit Monitor . 50
10.4 Expanded control-flow graph for Microkit Monitor 51

11.1 Translations of the specifications for the Microkit verification process. 54

12.1 Summary of verification processes for Microkit library and generated CapDL . . 55

iv

List of Listings

5.1 SDF specification of a simple system consisting of two PDs and a channel 23
10.1 C code for the Arithmetic Sum function arith_sum 45
10.2 C code for the Microkit monitor . 48

v

Chapter 1

Introduction

1.1 Project background

Formal verification uses mathematical methods to prove that software meets its
predetermined specifications. It is one of the few techniques that can positively establish the
absence of bugs in software.

The correct operation of a system depends on its underlying hardware, operating system
(OS) kernel and higher-level frameworks that provide the environment in which the system
executes. Consequently, bugs in the kernel or the frameworks can compromise the system’s
correctness and overall reliability. (Note: In this report we will use the general term “system”
to refer to a user’s complete, built software product at run-time; and “user” is meant in the
common sense of “programmer”.)

The high-performance seL4 microkernel was the first-ever general-purpose OS kernel with a
formal proof of its implementation correctness, which was later extended from its source code
in C to the binary code (thus taking the compiler out of the trust chain), proofs of security
enforcement, and proofs of its worst-case execution time [Klein et al., 2014]. Presently, the
full proof chain (including down to the binary) exists for the 32-bit Arm and 64-bit RISC-V
architectures, with the implementation-correctness proof also available for the 64-bit x86
architecture. At the same time, seL4 demonstrates best-in-class performance [Mi et al.,
2019], making it the ideal foundation for secure and dependable real-world systems.

However, far from being a full OS, seL4 is still only a microkernel, providing only basic
mechanisms for securely multiplexing hardware [Liedtke, 1995]. Its API is policy-free and very
low-level, making development of performant and correct systems on top of it costly, requiring
a high level of expertise, and generally creating a high barrier to uptake.

The recently developed seL4 Microkit [Heiser et al., 2022] (formerly known as seL4 Core
Platform) addresses this challenge by providing a small set of very simple, higher-level
abstractions that are easy to use for building modular, yet still performant, systems that
leverage seL4’s isolation properties [Parker, 2023]. It also comes with an SDK that simplifies
system generation (more on this below in the overview Section 1.2).

Microkit is still not an OS itself, but is rather a framework for building OS services and
applications. It achieves much of its simplicity by restricting the application domain: instead of
striving for generality (as the seL4 kernel does), the Microkit is designed for systems with a
static architecture, i.e. ones where all components and their possible interactions (but not

1

necessarily the implementation of those components) are known at system-build time. These
restrictions, while incompatible with desktop or cloud-hosting environments, are sufficient to
support most IoT and cyberphysical systems.

The Microkit imposes an event-driven, sequential programming model on application code
(also known as user code), which simplifies concurrency control and naturally leads to
systems that consist of communicating sequential processes in the spirit of Hoare [1978].
This model tends to result in simpler implementations [Ousterhout, 1996]. Combined with the
fact that module interfaces are enforced by verified seL4 mechanisms, that should
dramatically simplify the task of verifying Microkit-based systems.

However, the full benefit of verifying such systems will be realised only if the Microkit itself is
verified, as errors in the Microkit would render invalid any proofs about the behaviour of
applications.

Simplicity helps here as well, as the implementation of the Microkit itself is also fairly
straightforward, simple enough to experiment with a more automated verification process
than what is used for the seL4 kernel itself.

Verification of the seL4 kernel used interactive theorem proving in Isabelle/HOL, which
supports the construction of elaborate, machine-checked proofs. While powerful in what it
can prove, this manual approach is highly labour-intensive and typically requires high
expertise in Formal Methods. Furthermore, it requires manual re-verification whenever the
code is changed.

In contrast, for verifying the Microkit, we turn to automatic theorem provers, specifically SMT
solvers. These are tools that, once set up, can verify functional properties fully automatically,
therefore frequently called “push-button verification”. This supports an agile, dynamic
development style and should enable broader participation across the seL4 community.

Push-button verification was already deployed in the binary verification of seL4 [Sewell et al.,
2013], and more recently has been used in functional-correctness proofs of simple operating
systems [Nelson et al., 2017, 2019].

We note that while model checkers [Clarke et al., 2003; Holzmann, 1997] also have the
“push-button” property, SMT solvers with a suitably chosen theory are particularly fitting for
proofs of functional correctness.1

Still, significant challenges remain: The seL4 proofs were able to assume strictly sequential
execution, thanks to the non-preemptible implementation of seL4 [Peters et al., 2015]. But
this assumption cannot be imposed on the code that executes in user mode, such as the
Microkit and any system components built on top of it, as their execution can be preempted at
any time. Making verification tractable requires that this concurrency be tamed. Previous
push-button verification approaches assume these challenges away, which drastically limits
the guarantees that can be obtained from verification.

The Microkit deals with this concurrency challenge by observing that its functions execute
atomically with respect to each other, which in turn ensures that their execution does not
depend on states that can change during preemptions, except for explicitly shared memory
objects (more on the notion of executing atomically in Section 5.4.4 where we introduce
thread-local states).

1Most notably, SMT solvers are suitable for verifying Floyd-Hoare pre-/postconditions, while model checkers
are failing on this score.

2

This report outlines our verification approach and describes the steps we
have carried out so far and what gaps remain outstanding.

Specifically, we cover in detail the following, successful stages in the formal verification
process for the seL4 Microkit framework:

A formal specification of the Microkit, or more specifically, of the Microkit library,
libmicrokit, which is the interface between the Microkit and the seL4 kernel (for more
detail on the structural make-up of the specification see Section 5.4).

An automated, functional correctness proof of the Microkit implementation, meaning we
show that the implementations of the Microkit library plus Monitor satisfy their respective
specifications (for more see Section 4.4).

A verified mapping of the Microkit system specification (written in SDF format) to the
CapDL formalism [Kuz et al., 2010], which describes access rights in seL4 (as covered
in Chapter 6 – 7).

We note that this mapping to CapDL allows to connect to a variety of tools for system
initialisation, including a formally verified one – see discussion in Section 6.1.

For the time being there remain some gaps and limitations preventing end-to-end proofs.
These are discussed further in Chapter 11.

Furthermore, an early, concise account of the work and findings of the project has been
published in [Paturel et al., 2023].

1.2 seL4 Microkit Overview

1.2.1 Programming model

The programming model presented by the Microkit API is extremely simple; we only require
four abstractions as introduced below and summarised in Figure 1.1. (Section 5.2 will provide
additional details.)

Protection Domain 1

Init()

no�fied(…)

protected(…)

Memory	Region

Communication Channel

Protected Procedure Call (…)

notify(…)

Protection Domain 2

init()

no�fied(…)

Figure 1.1: Microkit abstractions at a glance

A protection domain (PD) is the program abstraction, the primary abstraction of Microkit. It
provides a simple, event-driven execution model, within which the user provides the
implementation of a handler, called the notified function, to handle interrupts (IRQs) or
notifications coming from other PDs. The user must also provide a (possibly empty)
implementation of the init function, which deals with any setup specific to the PD and
is called by the system exactly once at startup time, before any of the other entry points

3

can be invoked. The PD may also have a protected procedure protected to be executed
when another PD invokes a protected procedure call (see below) to it.

For example, a PD can be a virtual machine that can run a Linux guest operating
system (OS). Or, a PD can be a device driver, able to receive interrupt requests (IRQs)
via an implicit channel.

A communication channel (CC) connects exactly two PDs. A PD may invoke the
(non-blocking) Microkit function microkit_notify on a CC, which will result in the
underlying system (consisting of Microkit and seL4 kernel) at some future time to invoke
the notified function of the PD at the other end of that channel (the channel denotation
implicitly identifies the notifying PD).

A protected procedure call (PPC) is the mechanism by the Microkit for implementing
inter-PD function calls. In essence, a simple call is made to a user-provided handler
protected. We note that the Microkit library supplies functions that allow a PD of lower
priority to perform a protected procedure call but only to a PD with higher priority (see
also the comment at the end of the first paragraph of Section 3.2).

A memory region (MR) is the final abstraction of the Microkit. It may be accessed by (i.e.
mapped into) one or more PDs, with potentially different access rights, thus providing
shared memory for communication.

This is all that is needed to build a complete system (i.e. a user’s complete, built product at
run-time – see also the note in Section 1.1, second paragraph).

A Microkit-based system is then a collection of concurrently executing PDs (modules) that
communicate via shared memory, synchronise via notifications sent along channels,
invoke servers via PPCs, and possibly receive IRQ notifications.

In particular, systems built using the Microkit do not use seL4 kernel functions/services
directly (s.a. threads, device interrupts, etc.); instead, they rely on above mentioned simple
abstractions, which are provided by the Microkit’s library. Their composition is described in
a formalism called the system description file (SDF) format, as set out in more detail in
Section 5.3.

PDs are single-threaded.2 The Microkit guarantees that the init, notified and protected

functions execute atomically with respect to each other, eliminating the need for any
concurrency control inside a PD – much in the spirit of the CSP model of Hoare [1978].

1.2.2 Implementation

The seL4 Microkit implementation consists of three components, which are linked to
user-provided module implementations by the Microkit SDK:

• The system_initialiser is a special, privileged, system-provided PD, which allocates
system resources. The design for static architectures makes it possible to restrict this
allocation to system startup time.

• The monitor is a system-provided PD that runs after startup and acts as a fault handler,
that is it receives notifications generated by the system if a user PD faults.

2Note that a multi-threaded PD can be constructed by having several PDs share the same address mapping
and allocating them on different cores.

4

• The interface library libmicrokit is linked to each PD and maps the Microkit APIs to
seL4 system calls. For each PD, it implements an event-handler loop handler_loop that
waits for an event on any of the channels connected to the PD, and for each such event
invokes the user-provided handler functions notified or protected as appropriate.

Figure 1.2 shows how these three components in conjunction with user PDs fit together as a
whole seL4-based system.

bootloader seL4

Microkit PD	
monitor

system_ini�aliser

Microkit

user	PD1

libmicrokit

user	PD2

libmicrokit

Figure 1.2: Microkit components when loaded as a whole seL4-based system.

The key Microkit-based functions can be grouped into three categories as per Figure 1.3:

1. in red the functions that are provided by the user (as described earlier in Section 1.2.1);
2. in blue the key functions that are provided to the user by the Microkit library (such as for

notifying another PD or acknowledging an interrupt); and
3. in green the purely internal Microkit functions (most notably the event-handler loop as

mentioned just above in the third bullet point).3

main()microkit_no�fy(…)
For	each	PD
init()

no�fied(…)

protected(…)

provided	
by	user

microkit _ppcall(…,…)

microkit _irq_ack(…)

handler_loop()

provided	to	user	
by	Microkit library

purely	internal	
to	Microkit

Figure 1.3: Microkit-based functions – in red: provided by the user ; in blue: provided to the
user by the Microkit library; in green: purely internal to the Microkit.

A note of practicality regarding the components: The monitor (see top right in Figure 1.2),
while being a PD, is purely internal to the Microkit similar to other internal Microkit library
functions like the handler_loop. Accordingly, for ease of readability, we treat from now on the
Monitor as part of the Microkit library, unless explicitly stated otherwise.

Much of the research and development work is done by the Trustworthy Systems group at
UNSW – find out more on their respective project webpages about the Microkit system design
and about the Microkit verification.

3The Microkit is a very slim wrapper of seL4: the code size of libmicrokit is around 300 lines of C.

5

https://trustworthy.systems/projects/microkit
https://trustworthy.systems/projects/microkit/verification

1.3 Summary of outcomes

The Microkit tool (also referred to as the Microkit SDK) is a command-line Python tool that
processes the user-composed Microkit SDF system description file and a set of
user-provided executable files in ELF format [Wikipedia, 2001], and generates a complete
system image suitable for loading by the target platform bootloader (more details about this is
covered in Section 5.3).

The Microkit SDK is augmented to allow for incorporating/implementing the proof steps
required for verifying the Microkit and its library. At the conceptual level, Figure 1.4 gives an
overview of the various constituents and steps for verifying the Microkit and Microkit-based
systems.

CapDL spec

C
O

N
T

EX
T

CNode

. .
 .

VSpace

CSpaceThread
Object

C
O

N
T

EX
T

CNode

. .
 .

VSpace

CSpace Thread
Object

EP

Se
nd

R
ec

ei
ve

PD1 PD2

f(..);
f(){
…
}

SDF Spec
PD2PD1

pd1 pd2

Compiler/
Linker

system image

4

3

ASpec

2

init file

0

libmicrokit

Microkit spec

1

MSpec +

Figure 1.4: Microkit verification structure: Proof 0 (system initialiser) exists from prior work;
Proofs 1 (libmicrokit) and 2 (CapDL generation) are the result of work presented in this
report; Proof 3 (SMT-suitable abstraction) is still required to achieve end-to-end proof (see
also Section 11.2); Proof 4 (verifying functionality of PD implementations/ Microkit-based
systems) is ongoing and separate endeavour.

The seL4 microkernel has an abstract specification, the ASpec, against which its
implementation was verified, see Section 4.1 for more details. We base the verification of the
Microkit on a simplified specification, MSpec, which is an abstraction of ASpec. MSpec
describes only the seL4 functionality required by the Microkit, and is simple enough to be
usable by SMT solvers. We call this abstraction step from ASpect to MSpec the
M-abstraction. The correctness of the M-abstraction, i.e. Proof 3 , is not yet proved, but
investigations on its verification are in progress in Trustworthy Systems (see also further
discussion in Section 11.2.1).

Our eventual aim is to prove functional correctness of complete Microkit-based systems (or at
least their trusted computing base) by verifying PD implementations (Proof 4) and
composing these into proofs of system-wide properties.

For now our focus is on the underpinnings required for this ultimate aim:

6

Verification of Microkit-based systems depends on correct implementation
of the Microkit itself, i.e. libmicrokit, (Proof 1) as well as on correct system
initialisation (Proof 2), both of which are achieved by the work reported
here, with the latter connecting to the verified generation of a system
initialiser from a CapDL spec (Proof 0).

Specifically, we

1. provide a specification in Haskell of the run-time components of the Microkit (i.e.
libmicrokit and monitor);

2. provide an automated verification tool called Gordian, written in Python (enabling the
task immediately below);

3. prove functional correctness of the Microkit implementation by running our proof chain
including Gordian;

4. provide automated generation of a specification of seL4-level access rights in the
CapDL formalism (this translator is called CapDL-tool);4

5. provide a translation-validation framework that proves the equivalence of the generated
CapDL from a given SDF spec.

We note that the last two items link, in principle, to earlier work on generating a verified
system initialiser from CapDL, and would therefore guarantee correct initialisation of the
Microkit-based system. However, as we discuss in Section 11.1, this link is currently limited to
a fork of the seL4 kernel version, though still with a full proof-chain.

1.4 Synopsis of the work covered in this report

Figure 1.4 provides the context for the work covered in this report: an account of the proofs
for transitions 1 and 2 , namely the verification of the Microkit and of CapDL generation. The
early chapters 2–5 cover the verification of the run-time components, while the following
chapters 6–7 get us correctly to the starting line, i.e. initialisation. The final chapters 8–13
then wrap up with presenting the tools and infrastructure used, worked examples and overall
observations.

Chapter 2 on Global Correctness looks at the macro level of the Microkit correctness story,
while Chapter 3 on Local Correctness explains how, as a first, crucial step towards it, we can
hone in at the micro level. Chapter 4 then details the proof process we apply to verify the
Microkit library and Chapter 5 discusses aspects of the formalised specification.

We then turn to the verification task of the initialisation of the Microkit when in Chapter 6 we
describe the machinery we employ to verify system initialisation, CapDL, followed by a
special focus in Chapter 7 on mathematical/formal aspects of the verification of the CapDL
generation.

Chapter 8 details our bespoke verifier toolchain Gordian specifically developed as part of this
project but designed to be generic enough to be able to be used in future for other
push-button verification endeavours. Chapter 9 then features the various infrastructure tools
that we are using for our verification tasks that already exist and been employed in a
verification context. Following on in Chapter 10 we walk through the whole verification

4This translator emits an Isabelle model along with a C file to be used with the CapDL loader.

7

process with two worked examples together with their respective artefacts. In the final two
chapters 11 and 12 we consider limitations, gaps and threats to validity, and following a
summary of our achievements we point to the impact that this work has already had.

1.5 Repository

All artefacts discussed in this report, including this report itself together with the complete
code, proof and documentation package, are open-sourced and can be accessed via the
project website (under the heading “Availability”, in the latter part of that webpage).

8

https://trustworthy.systems/projects/microkit/verification

Chapter 2

Global Correctness –
The Long-Term Objective

Ultimately, our goal is to prove the functional correctness of Microkit-based systems. This
requires specifying the system in terms of a global state machine, which holds the externally
visible state of the PDs, and a trace (a time-ordered list of the Microkit API calls and shared
memory writes made by the PDs) acting as state transitions for this (global) state machine.
Correctness can then be defined in terms of permissible traces.1

Such a proof requires guarantees provided by the Microkit, consisting of formally verified
theorems about the traces possible in any system implemented in terms of the fundamental
Microkit abstractions. These guarantees in turn require a proof that the implementation of the
Microkit library (libmicrokit including monitor) is correct, based on the formal specification
of the kernel itself. Furthermore, the preconditions for these proofs require that
system_initialiser correctly initialises the system.

An instructive representative of such guarantees is the following (as visualised in Figure 2.1):

Property ♣ If PD p sent a notification on a channel c, whose other end is PD q, using the
microkit_notify(c) API call, then eventually (but no sooner than the next time PD q
makes a call to receive notifications) the PD q will execute the notified(c) function.

PD	p PD	q

PD	p PD	q
channel	c

notified(c)

A�er PD p executes microkit_notify(c)

eventually PD	q	will	execute	notified(c)

channel	c

microkit_notify(c)

�me

Figure 2.1: Property ♣ – a representative guarantee.

1Here we are considering the traces model for its denotational semantics.

9

This overarching, long-term goal requires overcoming significant obstacles, which forms part
of the longer-term research vision of the project.

(a) The guarantees required of the Microkit combine complicated liveness (finiteness of the
trace) and safety properties (ruling out certain finite prefixes of the trace). Verification of
such properties is hard with interactive theorem proving and out-of-reach for effective
automated techniques – the common theories implemented in SMT solvers do not allow
reasoning about unbounded traces.

(b) One has to show that the semantics in terms of traces does not leak, in the sense that it
actually captures the whole external state that a given protection domain may observe.

(c) Property ♣ can hold only subject to certain scheduling restrictions. As an example,
consider PDs p, q and r, where r has a higher priority than p and monopolises q with
PPCs; then, any notification from p to q will never be processed, i.e. looking at
Figure 2.1, microkit_notify(c) will be sent by p to q but q will not be able to execute the
follow-up notified function because of the PPCs from the higher priority r to q. While
this is a legal scenario, it can be prevented by limiting r’s time budget [Lyons et al.,
2018], but this requires reasoning about scheduling behaviour, which is presently not
defined in seL4’s abstract specification, the ASpec.

10

Chapter 3

Local Correctness – The Task at Hand

Given the constraints as discussed in Chapter 2 above, we set about our ultimate goal of
Global Correctness (proving functional correctness of a Microkit-based system as a whole) by
taking a first, albeit crucial and significant step towards it: We are starting off with Local
Correctness, where we accomplish verification at a local level in stages and focus on the
immediate, basic work of verifying the Microkit tool itself, i.e. libmicrokit.1

Furthermore, as pointed out in the introduction, we will need to deal with verifying the system
as it runs, as well as with getting to a correct starting point by verifying the initialisation of the
system. The latter task we will turn to in the later chapters 6 and 7.

3.1 The local Microkit state machine

We specify the Microkit API (as implemented by libmicrokit) in terms of a local state
machine, also referred to as the local Microkit state machine, which contains only the state
pertaining to the code executing in each single PD separately, and which describes:

1. the execution state of the PD making the Microkit API call,

2. the static configuration of the user system as specified by the SDF spec, and

3. the observations that one can make during the current execution about the state of the
rest of the system (such as receive calls or shared memory accesses), modeled as
single-use oracles (more on this in Section 5.4.4 and Section 5.4.5).

Figure 3.1 illustrates, how closely the concepts of the local machine aligns with the model for
the Microkit components as were illustrated in Figure 1.2.

3.2 Approach taken to verify the Microkit

Our formal specification of libmicrokit describes how the various Microkit API calls made by
the currently executing PD should affect its local state. In terms of the static configuration of
the system and the single-use oracles, we are able to express guarantees that a correct
Microkit implementation should provide. For example, we can express that a correct

1Just as a reminder, in our context of Microkit verification we are usually considering the monitor to be part of
the libmicrokit – as remarked earlier at the end of Section 1.2.2.

11

bootloader seL4

monitor

system_ini�aliser

Microkit

current	PD

other	PDs

1.	execu�on	state	of	the	current	PD

2.	sta�c	configura�on	of	the	system	as	specified	by	the	SDF	spec

3.	observa�ons	about	the	state	of	the	rest	of	the	system

Local	
State

Figure 3.1: Local state capturing the three layers of the model for the Microkit components as
illustrated in Figure 1.2.

implementation will not make a microkit_notify(c) call to a non-existent channel c, nor will a
PPC be made to a PD that has lower or equal scheduling priority than the currently executing
PD. In fact, we are able to guarantee the latter on verified systems even when the current
implementation of the library does not programmatically enforce the restrictions.

As an instructive case, let us consider the correctness condition for the handler_loop (which
is part of the libmicrokit), which executes on every PD:

Property ♢ The handler_loop never terminates. It will make a call to receive notifications
and PPCs exactly once per iteration, and will correctly handle all responses returned by
that receive call (according to the single-use oracle), including calling notified(c) if a
notification was received on a channel c, and protected(c, m) if a PPC was received on
channel c with argument m. Furthermore, it will not make “phantom” calls such as
calling notified(x) on a channel x on which no notification was received.2

These correctness conditions were formulated with an intention behind them: Over time, we
expect to make use of the facts that have been proved about the local state machine to
eventually demonstrate the global correctness condition expressed in terms of traces. For
example, in a global correctness argument one would appeal to the local condition
Property ♢ along with a delivery guarantee coming from the kernel, to establish the global
condition Property ♣ described in the previous chapter.

2We note that at the time of writing this report, PPCs are processed in the order of the priorities of the calling
PDs while notifications are prioritised by channel ID. However, this is not inherently required and therefore might
change at some time in the future.

12

Chapter 4

Microkit Local Correctness

4.1 Layout of formalised specification

As we progress to formalise the Microkit specification, we first give a bird’s-eye view of the
relevant features involved. Figure 4.1 captures the hierarchy of seL4 specs showing not only
the proved refinement relations (see [Klein et al., 2014]) but also the currently not yet
completed step 3 of Figure 1.4.

CSpec

ExecSpec

C	code spec

Haskell	code	spec
aka executable spec

ASpecAbstract	spec

MSpecM-abstrac�on
SMT-suitable	spec

Proof	
outstanding

3

Figure 4.1: Hierarchy of seL4 specifications.

For the purpose of this report, our interest lies with Microkit-relevant specs and, hence, we
will focus on MSpec. As mentioned earlier in Section 1.3, MSpec captures what is minimally
required by the Microkit from the kernel spec. We achieve this with an appropriate
(minimal/SMT-suitable) abstraction of the ASpec, which we call M-abstraction. To clarify:
MSpec is a specification of the seL4 kernel, albeit more abstract than its ASpec, it is not a
specification of the Microkit (as for the latter, we will simply refer to it as the Microkit spec).

For the Microkit, we are starting off writing our specification in a constrained subset of the
Haskell programming language. The local Microkit state machine is then defined as an
algebraic data type, and each of the Microkit APIs is defined in the form of a weakest liberal
precondition: For each API call f() and property Q we describe the weakest liberal

13

precondition wlp(Q) under which the call f() either does not terminate, or it terminates and
upon termination successfully establishes the condition Q.1

The correctness guarantees are also specified. For example, the handler loop iteration is
annotated with explicit pre- and postconditions ensuring that Property ♢ holds.

4.2 Verifying implementation against spec

We are now set up to be able to verify the libmicrokit implementation against its local spec.
Key here is a model of the kernel state, and a Coupling Invariant that relates a momentary
state t of the underlying kernel to the momentary state s of the local Microkit state. We give
here an initial flavour of how this is achieved. Let us consider the following, fairly high-level
description:

The Coupling Invariant2 s ∼ t defines that the local Microkit state s is coupled to the current
kernel state t, which can also be thought of as the current kernel state t to accurately
implement/simulate the local Microkit state s.

Our definition above of the Coupling Invariant allows the local correctness of an
implementation to be established with a simulation-like argument, specifically by showing
the following:

• The libmicrokit implementation maintains the Coupling Invariant, i.e. if s ∼ t holds for
some Microkit state s and a kernel state t, and making a Microkit API call f will leave the
Microkit in some new state s′, then executing the implementation of f , when starting
from the kernel state t, leaves the kernel in some related state t′.
Or, in short: for all s, t, if s ∼ t holds then s′ ∼ t′ holds.

The implementation maintains all the correctness guarantees (for example, that the
implemented handler loop assures the guarantee Property ♢ as defined above).

We note that ∼ allows to capture functional correctness, but will not deal with properties like
liveness, i.e. finiteness of traces.

Subsequent Section 5.4, especially Section 5.4.1, goes into more detail of how to employ the
Coupling Invariant ∼ for our local-correctness proof.

4.3 Our pipeline of verification stages

Having the overarching verification picture Figure 1.4 in mind, it is transition step 1 that is
our task at hand here.

libmicrokit

Microkit spec

1

MSpec +

1For formal reasoning purposes we allow API calls f() to potentially be non-terminating, however we note that
all seL4 API system calls will terminate given that their latencies are all provably bounded [Sewell et al., 2017].

2Formerly, the term “Implementation Relation” was used.

14

The process of verifying the Microkit implementation proceeds via multiple steps, as
visualised in Figure 4.2, and comprises for the most part automated tools or, otherwise,
essentially once-off transcription/inspection-type effort. Its various features are set out in
detail in Section 4.4.1 below.

C	code

GraphLang

tool/environment

yes	
/no

SMT-LIB	2	Theory

C	Parser

SIMPL

SimplExport

artefact	/	language

Gordian

SMT	solver	Z3

Haskell	spec

Python

m
anual	

transcrip�on

Figure 4.2: Pipeline of the Microkit verification steps – see further explanations in Section 4.4.1.

Apart from standard verification tools and environments (theorem prover Isabelle/HOL,
programming language SIMPL and SMT solver Z3), we are reusing a number of tools and
libraries developed for the seL4 kernel verification effort (see Chapter 9 for more about these
infrastructure tools). Such reuse is not just for convenience. It also reduces the risk of
semantic mismatch, where the assumptions of one artefact in the proof chain might not be
satisfied by the guarantees of the previous one. Such mismatches can be subtle and are
easily obscured by unverified correspondences.

Additionally, for the functional correctness verification task of this project we developed a
bespoke toolkit called Gordian. It is designed to bring together the source code strand with
the spec strand as an automated step – Figure 4.2 nicely displaying the central role of
Gordian. With Chapter 8 we have dedicated a whole chapter to describe the toolkit, its
components and the theoretical underpinnings.

Our verification pipeline process has been designed for verification of not only the
libmicrokit but also to allow uplifting verification to any Microkit-based programs – key here
is the general C source code that the proof pipeline and its tools accept as input together with
a given set of specs of libmicrokit functions that Gordian has available to draw upon for its
proofs.

We are marking out a set of basic Microkit library functions that any of the other Microkit
functions will be composed of and with it their proofs. To ensure integrity of using these basic
functions as a built-in library for Gordian, we need to anchor their own correctness proofs
independently – more on this in Section 4.4.2.

15

4.4 Verifying libmicrokit

4.4.1 Steps of the verification process

Let us now follow Figure 4.2 and its various verification steps of the Microkit implementation.
Consider a function of libmicrokit written in C, for example the handler_loop.

The C code is first processed by the same C Parser [Barthwal and Norrish, 2009] that is
used in seL4 kernel verification. This tool defines a semantics for a (large but
well-defined) subset of the C language and translates the C source code into a
semantically-equivalent program in the SIMPL programming language [Schirmer, 2006].
This process guarantees that we use the same C semantics as in the kernel verification.

We then perform a semantics-preserving translation of the SIMPL code into a control-flow
graph in the graph language GraphLang,3 using existing SimplExport tools. Figure 4.3
gives an idea what these graphs look like, here in the case of the Microkit handler loop.

Mem, HTD, PMS, GhostAssertions, local_context#ghost = tmp.handler_loop(Mem, HTD, PMS, GhostAssertions, local_context#ghost)

Entry

65

have_reply___char#v := WordCastSigned(0)

49

assert PGlobalValid(HTD, ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=8)), ExprSymbol(typ=TypeBitVec(size=64), name='have_signal'))

48

lhave_signal___char#v := MemAcc(Mem, ExprSymbol(typ=TypeBitVec(size=64), name='have_signal'))

47
T

loop#2#count := 0

5

assert True()

3

Not((1 = 0))

4
T

Not((have_reply___char#v = 0))

46
T

<empty>

1
F

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

32
T

Not((lhave_signal___char#v = 0))

45
F

Ret

rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0, Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.seL4_ReplyRecv(WordCastSigned(1), reply_tag___struct_seL4_MessageInfo_C#v.words_C.0, ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'), WordCastSigned(4), Mem, HTD, PMS, GhostAssertions, local_context#ghost)

31
T

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

39
T

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

44
F

assert PGlobalValid(HTD, ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='signal'))
and PGlobalValid(HTD, ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeStruct(name='tmp.seL4_MessageInfo_C')), ExprSymbol(typ=TypeBitVec(size=64), name='signal_msg'))

38
T

rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0, Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.seL4_Recv(WordCastSigned(1), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'), WordCastSigned(4), Mem, HTD, PMS, GhostAssertions, local_context#ghost)

43
T

tag___struct_seL4_MessageInfo_C#v.words_C.0 := rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0

42

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

41

badge___unsigned_long#v := MemAcc(Mem, ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

40

T

assert (0 ≤s63)
and (63 <s64)

27

is_endpoint___unsigned_long#v := ShiftRight(badge___unsigned_long#v, WordCast(63))

26
T

rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0, Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.seL4_NBSendRecv(MemAcc(Mem, ExprSymbol(typ=TypeBitVec(size=64), name='signal')), MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='signal_msg') + (0 + (8 * 0)))), WordCastSigned(1), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'), WordCastSigned(4), Mem, HTD, PMS, GhostAssertions, local_context#ghost)

37
T

tag___struct_seL4_MessageInfo_C#v.words_C.0 := rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0

36

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

35

badge___unsigned_long#v := MemAcc(Mem, ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

34

T

lhave_signal___char#v := WordCastSigned(0)

33

tag___struct_seL4_MessageInfo_C#v.words_C.0 := rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0

30

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

29

badge___unsigned_long#v := MemAcc(Mem, ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

28

T

Not((is_endpoint___unsigned_long#v = 0))

25

have_reply___char#v := WordCastSigned(1)

8
T

idx___unsigned#v := WordCastSigned(0)

24
F

rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0, Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.protected(WordCast(BWAnd(badge___unsigned_long#v, WordCastSigned(63))), tag___struct_seL4_MessageInfo_C#v.words_C.0, Mem, HTD, PMS, GhostAssertions, local_context#ghost)

7

have_reply___char#v := WordCastSigned(0)

23

Not((BWAnd(badge___unsigned_long#v, WordCastSigned(1)) = 0))

22

Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.notified(idx___unsigned#v, Mem, HTD, PMS, GhostAssertions, local_context#ghost)

21

T

assert (0 ≤s1)
and (1 <s64)

20

F

badge___unsigned_long#v := ShiftRight(badge___unsigned_long#v, WordCast(1))

19
T

idx___unsigned#v := (idx___unsigned#v + WordCastSigned(1))

18

loop#9#count := 0

12

assert True()

10

Not((badge___unsigned_long#v = WordCastSigned(0)))

11
T

Not((BWAnd(badge___unsigned_long#v, WordCastSigned(1)) = 0))

17
T

loop#2#count := (loop#2#count + 1)

2
F

Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.notified(idx___unsigned#v, Mem, HTD, PMS, GhostAssertions, local_context#ghost)

16
T

assert (0 ≤s1)
and (1 <s64)

15

F

badge___unsigned_long#v := ShiftRight(badge___unsigned_long#v, WordCast(1))

14
T

idx___unsigned#v := (idx___unsigned#v + WordCastSigned(1))

13

loop#9#count := (loop#9#count + 1)

9

reply_tag___struct_seL4_MessageInfo_C#v.words_C.0 := rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0

6

Figure 4.3: This control-flow graph is generated by the graph language tool GraphLang for
the libmicrokit function handler_loop. (Here in the graph, loop edges are marked in blue,
whereas Err nodes that result from false branches of assert statements are left out.)

GraphLang is a common intermediate language, able to represent essentially arbitrary,
unstructured control-flow. It is already used in the binary verification of the seL4
kernel [Sewell et al., 2013]. (This same tool-chain will be a natural candidate for the
eventual proof of the binary libmicrokit.)

Alongside an implementation of Microkit in C we have provided a formal specification for it in
Haskell. This spec is then manually transcribed into Python.

For the next step we have developed a new, tailor-made, automated tool, called Gordian.
It first takes the above Python description and generates a spec in SMT-LIB 2. Gordian
then verifies the given GraphLang graph against the generated SMT-LIB 2 spec. It does

3GraphLang was formerly known as SydTV-GL, Sydney Translation Validation Graph Language.

16

this by annotating the graph with the function specification – Figure 4.4 is the
corresponding annotated graph for the handler loop, providing an visual impression of
the added complexity. From this expanded control-flow graph Gordian generates a

Mem, HTD, PMS, GhostAssertions, local_context#ghost = tmp.handler_loop(Mem:1, HTD:1, PMS:1, GhostAssertions:1, local_context#ghost:1)

Entry

65

Mem/subject-arg:1 := Mem:1
HTD/subject-arg:1 := HTD:1
PMS/subject-arg:1 := PMS:1

GhostAssertions/subject-arg:1 := GhostAssertions:1
local_context#ghost/subject-arg:1 := local_context#ghost:1

stash_initial_args

assume ([smt]lc_schedstate(local_context#ghost/subject-arg:1) = [smt]BoundTCB())

pre_condition

Mem#assigned:1 := True()
HTD#assigned:1 := True()
PMS#assigned:1 := True()

GhostAssertions#assigned:1 := True()
local_context#ghost#assigned:1 := True()

badge___unsigned_long#v#assigned:1 := False()
idx___unsigned#v#assigned:1 := False()

tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:1 := False()
reply_tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:1 := False()
rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0#assigned:1 := False()

loop#2#count#assigned:1 := False()
have_reply___char#v#assigned:1 := False()
lhave_signal___char#v#assigned:1 := False()

is_endpoint___unsigned_long#v#assigned:1 := False()
loop#9#count#assigned:1 := False()

upd_n65

have_reply___char#v:1 := WordCastSigned(0)

49

have_reply___char#v#assigned:2 := True()

upd_n49

assert HTD#assigned:1

guard_n48

assert PGlobalValid(HTD:1, ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=8)), ExprSymbol(typ=TypeBitVec(size=64), name='have_signal'))

48
T

assert Mem#assigned:1

guard_n47
T

lhave_signal___char#v:1 := MemAcc(Mem:1, ExprSymbol(typ=TypeBitVec(size=64), name='have_signal'))

47
T

lhave_signal___char#v#assigned:2 := Mem#assigned:1

upd_n47

loop#2#count:1 := 0

5

assert Implies(Not((lhave_signal___char#v:1 = 0)), And((have_reply___char#v:1 = 0), ([smt]lc_schedstate(local_context#ghost:1) = [smt]BoundTCB())))
and lhave_signal___char#v#assigned:2

and Implies(Not((have_reply___char#v:1 = 0)), (reply_tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:1 = True()))
and Implies((is_endpoint___unsigned_long#v#assigned:1 = True()), (Not((is_endpoint___unsigned_long#v:1 = 0)) = Not((have_reply___char#v:1 = 0))))

and (HTD#assigned:1 = True())
and (Mem#assigned:1 = True())
and (PMS#assigned:1 = True())

and (local_context#ghost#assigned:1 = True())
and (GhostAssertions#assigned:1 = True())

and (have_reply___char#v#assigned:2 = True())
and (local_context#ghost#assigned:1 = True())

and Implies(And((badge___unsigned_long#v#assigned:1 = True()), (badge___unsigned_long#v:1 = 0)), And((is_endpoint___unsigned_long#v:1 = 0), (badge___unsigned_long#v#assigned:1 = True()), (idx___unsigned#v#assigned:1 = True()), (HTD#assigned:1 = True()), (Mem#assigned:1 = True()), (PMS#assigned:1 = True()), (local_context#ghost#assigned:1 = True()), (GhostAssertions#assigned:1 = True()), (badge___unsigned_long#v:1 = ShiftRight([smt]lc_unhandled_notified(local_context#ghost:1), [smt](_ zero_extend 32)(idx___unsigned#v:1))), (ShiftLeft(badge___unsigned_long#v:1, [smt](_ zero_extend 32)(idx___unsigned#v:1)) = [smt]lc_unhandled_notified(local_context#ghost:1)), LessEquals(idx___unsigned#v:1, 63), (0 = ShiftRight([smt]lc_unhandled_notified(local_context#ghost:1), 63)), (0 = ShiftRight(badge___unsigned_long#v:1, 63)), ([smt]Ch_set_intersection([smt]lc_unhandled_notified(local_context#ghost:1), [smt]lc_last_handled_notified(local_context#ghost:1)) = [smt]Ch_set_empty()), ([smt]Ch_set_union([smt]lc_unhandled_notified(local_context#ghost:1), [smt]lc_last_handled_notified(local_context#ghost:1)) = [smt]NR_Notification.1([smt]handler_loop_pre_receive_oracle())), ([smt]Prod_Ch_MsgInfo_Nothing() = [smt]lc_unhandled_ppcall(local_context#ghost:1)), ([smt]handler_loop_pre_unhandled_reply() = [smt]lc_last_handled_reply(local_context#ghost:1)), ([smt]NR_Unknown() = [smt]lc_receive_oracle(local_context#ghost:1))))

loop_3_latch_1

True()

3
T

T F

Figure 4.4: Excerpt of handler_loop’s control-flow graph (top right segment of Figure 4.3) when
fully annotated with its function spec; the bottom box in this graph illustrates the extensive spec
annotations that are added during this step of the verification process.

single, logical verification condition, using a variant of the weakest-precondition calculus
for unstructured programs of [Barnett and Leino, 2005] – we will refer to this as the
Barnett-Leino–variant algorithm. Furthermore, when Gordian comes across references
to basic Microkit library functions it directly relies on their respective
(pre-/post-condition) specs – see Section 4.4.2 how we avoid circularity and properly
anchor verification of the basic Microkit library functions. Figure 4.2 highlights the key
role that our Gordian tool plays, Chapter 8 details its particular features and capabilities.

The verification condition thus produced is a formula in a standard SMT-LIB 2 theory,4

meaning we can employ for our reasoning the common and standardised input and
output language for SMT solvers. This verification condition is then passed to the SMT
solver Z3) [de Moura and Bjørner, 2008], which either proves the condition or provides a
counter-model.

Thus, in summary, if the verification condition is proved, it means that the function’s
implementation in C satisfies its specification, i.e. that we have functional correctness.5

Amongst others, we aim in particular to ensure behavioural properties of the kind of absence
of common programming errors, such as:

• No null pointer dereferences and inadmissible memory accesses;

• No incorrect uses of dynamic memory during program operation (no ill-typed nor
dangling pointers, no out-of-bounds errors, etc.);

• No arithmetic overflows and exceptions (no signed integer overflows, no
division-by-zero, no invalid bit shifts, no invalid conversions, etc.);

• No other undesired behavior (not trying to use values of uninitialised local variables,
etc.).

This “good behaviour” is achieved when, as part of the semantics check, the C Parser

generates the respective assertions, which then is fed into the subsequent functional
correctness proof process.

At this point it is important to note that for our Microkit library functions, non-termination is
4In our case, we have mostly been using the standard SMT-LIB 2 theory QF_ABV (quantifier-free arrays with

fixed size bit vectors theory), or then the standard theories for quantifiers and algebraic data types.
5At this stage, the weakness of our verification process here is the translation of the function spec from Haskell

to Python to SMT-LIB 2: while straightforward, it is manual and not formally proved.

17

always an allowed behavior.6 For example, the handler loop is specified to never terminate,
and the verifier explicitly confirms7 this property.

4.4.2 Modified approach for the basic Microkit library functions

At the end of Section 4.3 we introduced the notion of basic Microkit library functions. They
comprise the following six functions: microkit_notify, microkit_ppcall,

microkit_irq_ack, microkit_msginfo_new, _microkit_recv and _microkit_ReplyRecv,
whereby the first four are known as public functions and the later two as private (or internal)
functions.

A key characteristic of these basic Microkit library functions relates to their low level
interaction with the kernel: Only these basic functions can directly make calls to the kernel.
Any of the other Microkit APIs that are composed on top of these basic ones, including any of
the other Microkit library functions like handler_loop or a user Microkit-based program, do not
interact directly with the kernel8.

As part of this project, we have verified these basic Microkit library functions using a variation
of the approach outlined just above in Section 4.4.1: we use a slightly more direct, albeit more
involved process, as outlined in Section 5.6.1 and motivated by the observations in
Section 5.4.3 . As a reminder, Gordian’s full power includes relying on correctness of the
basic functions. It is this feature that naturally must be turned off when submitting one of
these basic Microkit library functions itself to the verification process. In its place, we are
providing the SMT solver directly with the MSpec, that is that part of the formal specification
of the seL4 kernel that is relevant to the Microkit. (Remember that only these basic functions
can call the kernel directly and therefor only they will need to know about the spec of seL4,
i.e. MSpec.) This extra effort of special verification treatment is once-off and only for the six
basic functions. Thereafter, the verification process as laid out in Section 4.4.1 is applicable in
the universality as intended for general Microkit-based programs and systems.

4.4.3 Relationships of specs used in the verification process

Figure 4.5 depicts how the various specifications employed in the libmicrokit verification
process are connected, and how much or which portion of this has been accomplished as
part of our project here.

Specifications – shown in Figure 4.5 as rectangular boxes

Several specs are involved as part of our verification task; they are discussed further in this
report, mostly in Section 4.1–4.3 and Section 5.4.

light green/grey boxes: these specs are fully developed as part of this project:
6By the same token, non-termination is allowable for any program built on top of the Microkit.
7To prove non-termination, we set the postcondition to “false” and get the verification to succeed. Of course,

we also need to ensure that the precondition is not contradictory, i.e. does not evaluate to “false” (since a false
premise would always have the SMT solver succeed irrespective of the postcondition and the program). Finally,
a typical way to ascertain the precondition to be non-contradictory is to provide an example of a state which
satisfies the precondition.

8In other words, while they may trigger a kernel call, this will not happen as a direct call to the kernel but only
via calling a basic Microkit library function

18

Coupling Invariant

globalMicrokit spec kernel	spec	– ASpec

libmicrokit implementation

3

local	kernel	spec	-MSpeclocal	Microkit spec

M-abstrac�on

proof
1

Figure 4.5: Relationships between the specifications for libmicrokit verification:
green ∼ and dark red 1 are formally verified components as part of this project;
gold 3 is the verification of M-abstraction in progress;
dotted arrow is conceptualised but not formalised.

• “local Microkit spec” (usually simply referred to as” Microkit spec”),
• “local kernel spec” (“MSpec”);

black box: “kernel spec” (“ASpec”) is the pre-existing formalisation against which the seL4
kernel had been verified [Klein et al., 2014];

dashed white box: “global Microkit spec” is only conceptually formulated – as discussed in
Chapter 2.

Linkages between specifications – shown in Figure 4.5 as arrows

Similarly for the linkages between the specifications, they are developed to various degrees
as discussed across this report.

dark red arrow/relationship: the proof step 1 and the “Coupling Invariant” are the core
subject matter of this project and are dealt with in the wider context in Section 4.2–4.4
and in specific, great detail in Section 5.4, 5.5 and 5.6;

dashed arrows: these linkages have been conceptualised but remain
unverified/unimplemented, as per discussion in Chapter 2 and comment to proof step 3
in Figure 1.4.

4.4.4 Implementation details

The GraphLang export of libmicrokit consists of 3,540 lines of code. The above proof chain
with the Gordian tool is able to verify the functional correctness of libmicrokit. Using the Z3

SMT solver as the main backend, the verification takes about 20 seconds on a desktop
computer.

No manual proof effort is required once the spec and the loop invariants are formulated (the
spec is obtained through a manual transcription from an original specification that was written
in Haskell).

19

Chapter 5

Formalised Specification Underpinning
Local Correctness

5.1 Preamble

We are now adding some more flesh to the overview spec chart Figure 4.5. The augmented
Figure 5.1 now captures details about the form/kind of the various specifications, what
functions are formally specified, and generally what the interdependencies are of the various
specifications and semantics of the Microkit components and their seL4 kernel context when
ultimately proving libmicrokit.

In the following we present the formalism for the specifications, the semantics and the
relationships between them. We begin with the high-level spec, which also allows us to
describe the general approach of verifying the Microkit. We then provide insight into formal
details of the specifications to indicate how we achieve strict verification proofs.

By way of setting the scene, let us recap our overarching goal: to make seL4 easier to deploy
in security-critical scenarios, while raising the assurance levels of both libmicrokit itself and
any operating system developed using this tool kit. As mentioned in the introduction
Section 1.1, unlike the interactive theorem-proving approach that was required for the seL4
kernel, here we have set our eyes on using the automated theorem-proving approach with
SMT solvers. While the latter, once set up correctly, provides a sustainable assurance model
(via automatic re-verification when maintaining underlying source code), getting to that point
is still challenging for non-trivial systems, and frequently relies on strong assumptions about
the environment of the code to be verified.

In contrast, here for our project we aim to assume no more than the seL4 proof guarantees,
that is to merely rely on the results of [Klein et al., 2014], the seminal work about our verified
seL4 kernel as introduced in Section 1.1.

5.2 Microkit abstractions – high-level specification

The Microkit is a minimal operating system framework with an SDK built to run on the proved
secure, safe, and reliable seL4 microkernel. The kernel itself provides a small number of
services for implementing systems, such as capability-based access-control primitives, device
interrupts, endpoints for message passing, virtual address spaces, threads and scheduling

20

Coupling Invariant

handler_loop
microkit_notify
microkit_ppcall
microkit_irq_ack

global Microkit spec
[trace semantics]

ASpec
[in Isabell/HOL]

local Microkit spec:
pre/post spec

for each function
[in SMT-LIB 2]

MSpec:
pre/post spec
for each call

[in SMT-LIB 2]

seL4_Recv
seL4_ReplyRecv
seL4_SendRecv

local Microkit
state machine
[in Haskell]

local MSpec
state machine
[in Haskell]

global Microkit
state machine

ASpec
state machine
[in Haskell]

libmicrokit implementation
[in C]

3

1

Figure 5.1: Interconnections of the specification elements for the Microkit verification.
Boxes – indicate the following: specs are drawn rectangular with their corresponding state
machines shown out to the sides with small rounded corners.
Colouring – in black: prior, formally verified component of the seL4 kernel; in light green:
formally verified component as part of this project; in light grey: formally specified but not (yet)
verified component; in white: only conceptually, but not formally specified component.

contexts. However, systems built using the Microkit do not use these kernel services directly.
Instead, they rely on four simple abstractions provided by the Microkit’s library.

The four abstractions are PD, CC, PPC and MR, as were introduced in Section 1.2 and
Figure 1.2 when we conveyed how a system implemented with the Microkit is composed of
only four types of first-class objects with explicitly stated relationships between them.

These Microkit abstractions were chosen to closely mirror objects of the seL4 kernel, and
were deliberately designed in such a way that they lend themselves to very efficient
implementation in terms of the services provided by the kernel, while ruling out common
design issues that arise when seL4 abstractions are used directly in certain inappropriate
ways.

Further to their earlier definition we make the following observations about these core objects:

Protection domain (PD): The PD is the process abstraction of the Microkit: It encapsulates
a thread (executing a copy of the libmicrokit’s event-handler loop and linked to
user-provided code), a virtual address space and a capability space, all set out in a
certain, well-defined manner. Each PD also has scheduling information, including a
priority, associated with it.

Communication channel (CC): Two PDs may have a channel between them: libmicrokit
provides functions for sending and receiving asynchronous signals across channels. On
the implementation side, the existence of a channel between two PDs asserts the
presence of certain capabilities in the capability spaces of the associated PDs.

21

Receiving and acknowledging device interrupts (IRQs) is also implemented using a
slight variant of the channel concept, which in turn allows the design of repurposing to
apply in both implementation as well as verification.

Protected procedure call (PPC): PPC is an operation on a channel that invokes the
protected function in the PD across the channel, and it executes synchronously with the
caller, i.e. the underlying system will cause the protected function to execute, with any
return value from the protected function being returned to the caller before the caller
can continue. The protected entrypoint is optional, meaning that only some PDs,
informally called “servers”, may be invoked via a PPC – PPC is the Microkit’s equivalent
of a system call in a monolithic OS. The system requires (but does not enforce
programmatically) that a PPC can go only to a higher-priority PD (thus preventing
deadlock).

Memory region (MR): It represents a known, contiguous range of physical memory. A
memory region can be mapped into the virtual address space of (i.e. accessed by) one
or more PDs with possibly different privileges. As with channels, on the implementation
side the existence of a mapping between a memory region and a PD asserts the
presence of certain capabilities in the capability space of the PD, and facts about the
layout of the virtual address space of the PD.

In Section 7.2 we will do a deep dive and go full-out formal on specs and include an account
of which capabilities are to be provided by which abstractions.

5.3 System Description File (SDF)

On the back of these abstractions we now target the formal specifications of the two main
components of the Microkit, the libmicrokit library and the monitor. For that purpose, let us
start with SDF, the composition mechanics of the Microkit available to the user.

A user who wants to build a Microkit-based system, first compiles and links each task,
providing the notified, init and possibly protected functions, into a separate ELF file.

Furthermore, an XML System Description File (SDF) describes which PDs will be present
in the system, which channels will be present between them, and which PPCs will be allowed,
etc.1 See Listing 5.1 for a simple, instructive example of an SDF specification.

These user ELF files together with the SDF completely specify the user’s system, and in
conjunction with the Microkit SDK are sufficient to build the system image (using the user’s
preferred build tools), as shown in Figure 5.2.

A particular feature of a Microkit-based system is its static structure in the following sense: Its
properties as described in the SDF spec (such as the number of PDs, the channels between
them, the mappings and permissions of the memory regions, which PDs allow PPCs, etc.)
never change during the execution of the system. Therefore, in the formal model of the
Microkit framework, the data specified in the SDF spec is collectively referred to as the
Microkit Invariants. The following Section 5.4.3 highlights the practical role they play in the
design of the verification approach.

1The description of the SDF format can be found in the Microkit manual.

22

https://github.com/seL4/microkit/blob/main/docs/manual.md

1 <?xml version="1.0" encoding="UTF-8"?>

2 <system>

3 <protection_domain name="server"

4 priority="200"

5 pp="true">

6 <program_image path="server.elf" />

7 </protection_domain>

8 <protection_domain name="client"

9 priority="50">

10 <program_image path="client.elf" />

11 </protection_domain>

12 <channel>

13 <end pd="server" id="1" />

14 <end pd="client" id="1" />

15 </channel>

16 </system>

Listing 5.1: SDF specification of a simple system consisting of two PDs connected by a chan-
nel, where the PD named “server” has a PPC while the PD named “client” does not, and the
channel identifier is “1”.

system
image

libmicrokit

config file
(SDF)

client

server

User-provided

kernel

monitor

system_init

SDK

user’s build system

Figure 5.2: Completely built system using the Microkit: The user provides implementation of
PD functions (in light grey) and a config file SDF (in darker grey); the SDK (in green) organises
the Microkit library, monitor and initialisation functions plus kernel calls; the user’s own build
system then constructs the final, complete system image.

5.4 Structural arrangement of the Microkit specification

5.4.1 The model: state transitions

Verifying the implementation of the Microkit library against its local specification requires
several ingredients. In fact, we have already come across them in the earlier structural spec
diagram Figure 5.1 but now we provide definitions and put them in context.

The main ingredients are:

Microkit State – whereby the Microkit is modelled as a state transition system, and phrased
purely in terms of the four Microkit abstractions, as presented earlier in Section 1.2 and

23

5.2, with the corresponding spec called local Microkit spec.

Kernel State – whereby on the implementation side its model is again a state transition
system, and which is phrased in terms of abstractions that the kernel provides.2

Microkit Invariants describe the static properties of a Microkit-based system (and as per
last paragraph of Section 5.3 have been set in the user-provided SDF config file),
namely those of: PDs (protection domains), channels, PPCs (protected procedure
calls), MRs (memory regions) and IRQs (interrupts). These properties can differ
between two systems, but are fixed for any one single Microkit-based system – in
particular they remain fixed under Microkit-based state transitions.
Thus, not only do ’valid’ Microkit states need to satisfy these invariants, but also any
Microkit state transition needs to preserve these invariants.
Note that in formulas like the verification conditions further down, we express the
Microkit Invariant properties with the simple term inv .

Microkit Dynamic State contains that portion of the Microkit state that may change with a
state transition; in particular, it reflects relevant pieces of the kernel state. Thus, the
Microkit Dynamic State includes parts that correspond exactly to a piece of the kernel
state that is relevant to the Microkit.

Coupling Invariant is the relation3 ∼ that tells us which local Microkit state x is coupled to
which kernel state X, written as x ∼ X; we then say that the kernel state X is consistent
with the Microkit state x.

A side remark
For our Coupling Invariant ∼ we are free to choose whatever we deem suitable. However:

• If ∼ captures only few constraints, less work is required for the proofs but we are left
with only weak expressiveness. (In this case, effectively too many kernel states are
related to a Microkit state, and thus, many post-program kernel states will relate to the
post-transition Microkit state.)
If ∼ is overreaching, it can all get too complicated and unduly detailed.

• As we will see expressed with the last clause of the verification condition, Formula 5.3e,
we are looking to have the Microkit library functions with their intended correct
implementation programs maintain our Coupling Invariant ∼.

• In short, choosing the right balance and the right kind of ∼ constraints is a skilled art
when setting up a verification configuration.

• By way of example, Chapter 7, particularly Section 7.3 gives some insight how much
detail one might want to capture within this formalism.

5.4.2 Verification condition

We can now specify each function of libmicrokit by asserting the preconditions for
invoking the function, and by defining the state transition the function causes in the Microkit
state – for the formulas, we capture these with the terms pre f and post f .

2This explains the name “kernel state” for the state of the implemented Microkit; we note that this state may
also be referred to as “implementation state” or “thread state”.

3This relation has formerly been known as “Implementation Relation”; sometimes it is also known to as “Sim-
ulation Relation” or as “Local Correspondence” .

24

As first introduced in Section 4.2, we can declare in standard manner:

A Microkit state transition f is correctly implemented by an implementation program F

precisely if whenever a Microkit state x satisfies the precondition of f and is coupled to a
kernel state X, then the state f (x) of the Microkit after invoking f satisfies the postcondition of
f and is still coupled to the state F(X) of the kernel obtained by executing F when starting from
the state X.

In short (whereby ⊇ indicates is correctly implemented by4):

f ⊇ F

iff

∀x, X. inv(x) ∧ pre f (x) ∧ x ∼ X =⇒ inv(f (x)) ∧ post f (f (x)) ∧ f (x) ∼ F(X) (5.1)

whereby Formula 5.1 is referred to as the simplified verification condition – “simplified” for the
following reason:

Given that, as often is the case and particularly so with our project and its libmicrokit

functions, the implementation programs come adorned with pre- and postconditions and can
be relational in nature rather than strictly functional, we in fact work with the following
composite formula as our Verification Condition:

∀x, X. inv(x)∧pre f (x)∧x~X =⇒ inv(f (x))∧post f (x, f (x))∧preF (X)∧postF (X, F(X))∧ f (x)~F(X)
(5.2)

In fact, the practical verification condition used is written up in its simple conclusion-clause
format:

For all Microkit states x and kernel states X .

(

inv(x) ∧ pre f (x) =⇒ inv(f (x)) (5.3a)
∧

inv(x) ∧ pre f (x) =⇒ post f (x, f (x)) (5.3b)
∧

inv(x) ∧ pre f (x) ∧ x ∼ X =⇒ preF(X) (5.3c)
∧

inv(x) ∧ pre f (x) ∧ x ∼ X =⇒ postF(X, F(X)) (5.3d)
∧

inv(x) ∧ pre f (x) ∧ x ∼ X =⇒ f (x) ∼ F(X) (5.3e)
)

Putting into words, we can summarise as follows: The verification condition establishes that
the Coupling Invariant ∼ between a Microkit state and a kernel state is preserved when
accounting for satisfaction of the pre- and postconditions.

4We note that this notion of “is correctly implemented” reflects a sound refinement, but are aware that in itself
does not deliver completness; also, it is a known cause of confusion that the usual refinement symbol “⊑” points
in the opposite direction to our “⊇” which accords more directly the set of behaviours.

25

5.4.3 Roles of the various verification condition clauses

Breaking out the verification condition into its clause form Formula 5.3a – Formula 5.3e
provides a few practical insights.

Formula 5.3a – Preservation of Microkit Invariants

The first clause of the verification condition, 5.3a, simply expresses the preservation of the
Microkit Invariants (as derived from the SDF spec).5

Formula 5.3a – Only required for basic Microkit library functions

We only need to explicitly prove Microkit Invariant preservation, i.e clause 5.3a, for the basic
Microkit library functions, since such preservation is carried over to any other Microkit APIs
that are composed on top of those basic ones (as for example the handler_loop or a user
Microkit-based program).

Formula 5.3e – Limited to Microkit Dynamic State

The verification condition requires the Coupling Invariant ∼ to be maintained merely in terms
of the kernel state being consistent with the Microkit Dynamic State (rather than with the full
Microkit state) based on the following line of thoughts: The Coupling Invariant ∼ appears in
the verification condition in a conclusion only in the last clause, 5.3e. Furthermore, we know
from the assumptions of this clause 5.3e together with the first clause, 5.3a, that the Microkit
states x and f (x) satisfy the Microkit Invariants (inv(x) and inv(f (x))) and that the kernel
state X is consistent with the Microkit state x, in particular on the ’invariant’ portion of the state
x. Hence, when the requiredCoupling Invariant (f (x) ∼ F(X)) in the conclusion of clause 5.3e
says “kernel state F(X) being consistent with the Microkit state f (x)” we actually need to show
this merely for what is not invariant, i.e. we can limit the “consistency check” to the Microkit
Dynamic State.

Formula 5.3c–5.3e – Kernel state references

Kernel states appear in the verification condition only in clauses 5.3c–5.3e (there they appear
as X or F(X)). As per Section 4.4.2 the basic Microkit library functions can make kernel calls
and thus may directly access the kernel state. Therefore, any clauses in the verification
condition referencing kernel states become relevant when expressing the verification
condition for these basic functions.

For any of the other Microkit APIs (e.g handler_loop or a user Microkit-based program) quite
the opposite is the case: These non-basic functions only involve Microkit states and not
kernel states. Accordingly, none of the clauses 5.3c–5.3e are involved in the verification
condition for those non-basic functions.

5Microkit Invariant preservation means that no kernel call made by any PD (which can only be effected via a
Microkit library function) will ever put the system into a state that is not consistent with the Microkit Invariants.
And thus, the Microkit Invariants live up to their name and will hold and no Microkit-based system implementation
by a user can fail to preserve them.

26

Formula 5.3b – Only clause applied in Gordian

Bringing together above two observations “Formula 5.3a – Only required for basic Microkit
library functions” and “Formula 5.3c–5.3e – Kernel state references” means that in our
Gordian verification tool, as it is designed to be applied to non-basic functions, we encode the
verification condition effectively with the one simple clause Formula 5.3b.

A final comment about Microkit Invariants

The verification condition also brings out that the Microkit abstractions rely on the Microkit
Invariants: For any of the Microkit functions/transitions we assume, that is, we start off from a
Microkit state x satisfying the invariant (note that inv(x) only ever appears as an assumption
in any of the verification condition formulas (5.1, 5.2, or 5.3a–5.3e), and from this starting
position our function/transition of interest will not change that status.

The task to get to the right starting position needs yet to be tackled – see Chapter 6 and 7: As
a reminder, the Microkit Invariants are described by the user-provided SDF. They constrain
exactly what kernel objects the system is to have, and how capabilities to those objects are to
be distributed. This relationship between kernel state and Microkit Invariants is captured and
completely determined by the SDF-CapDL mapping as set out in Chapter 7. We furthermore
make it a proof obligation for verified system initialisation that they initialise the Microkit from
its generated CapDL description into a state consistent with the Microkit Invariants (see also
the introduction to Chapter 6).

5.4.4 Thread-local State

Even though the Microkit or a user’s Microkit-based system is (part of) an operating system, it
runs in user mode on top of the kernel. The kernel itself is single-threaded, but PDs run
concurrently with each other and the kernel.

In principle, it would be possible to develop a Microkit state structure that represents the
entire static and dynamic state of a Microkit-based system and then apply a concurrency
reasoning model. However, for the moment, this would be overkill for our present purposes
since we only intend to prove properties about single instances of libmicrokit, and each PD
runs in a single thread. As part of the long-term objective of Global Correctness, dealing with
concurrency will become a focal point.

Localising states

As a consequence, our formal construction of the Microkit state will not include the whole
state of the Microkit, but rather only the state pertaining to the current protection domain.
Similarly, the kernel state will not include the whole state of the system, but only the state that
is relevant to the implementation of libmicrokit inside the currently running thread.

To make this precise, we introduce the notion of thread-local state. Consider the abstract
specification of the seL4 kernel, the ASpec, and its abstract, global kernel state S, a datum d
in S and a thread t. We then define:

The datum d is part of the thread-local state of the thread t if the following holds:

27

In any abstract, global kernel state reachable from S, the datum d cannot change unless
the thread t makes a kernel call.6

In particular, every sequence of kernel calls that changes the datum d includes at least one
call made by the thread t.

While the relevant kernel state is a subset of the state of the entire system, it can be, and is
desirably so, a suitable, small such subset; on the other hand, it is to at least comprise the
thread-local state of t. Thus, we choose

global kernel state ⊇ relevant kernel state ⊇ thread-local state of t.

Analogous to the full kernel state being captured with seL4’s ASpec, we refer to MSpec as
the specification that corresponds to that Microkit suitable subset of ASpec, and the formation
of MSpec from ASpec we call M-abstraction (see also Section 4.1 andFigure 1.4).

5.4.5 Oracle

Notification delivery and PPCs depend fundamentally on concurrency, in the sense that the
received notifications and procedure calls depend on what the other protection domains
chose to do. We can model the concurrency-dependent operations using oracles, namely
variables whose values tell us what the concurrency-dependent calls will return in the future,
when the current thread chooses to make a concurrency-dependent call.

Normally, such oracles could be represented as lists or more advanced data structures, but
since our verifier encodes properties in SMT for automated verification, we had to choose a
representation that avoids unbounded data structures and recursion. We opted to model the
oracles as single-use.

Intuitively, single-use oracles are filled by the global state machine, and consumed by the
local one. This allows the former to summarise and communicate complex information to the
latter (notably, information only available in the traces).7 For example, when a PD’s handler
loop receives an event, it consumes the receive oracle and deduces the return value from it.
Beforehand, the global state machine had filled the oracle appropriately by observing the
trace of the system as a whole.

More technically, at the beginning of each execution iteration, the oracles become available.
The availability of the corresponding oracle becomes a precondition of each kernel call, so a
kernel call cannot be made unless the oracle is available. Similarly, the unavailability of the
corresponding oracle becomes a postcondition, so the oracle becomes invalidated, i.e.
unavailable, after a kernel call which otherwise might have affected the return value of the
next call.8

5.5 Verification condition for Microkit library

5.5.1 Microkit functional and implementation specification

With the concepts developed earlier in this section, verifying the implementation of the
Microkit will collectively rely on the following:

6This is sometimes also known as d is owned by t.
7From the perspective of the local state machine, oracles predict the future, hence the name.
8The oracle becoming unavailable once used is the reason it is referred to as “single-use”.

28

The Microkit functional and implementation specification consisting of

(a) pre- and postconditions for the Microkit state transitions, phrased in terms of the
Microkit Invariants and the Microkit Dynamic State, and

(b) pre- and postconditions for the kernel state transitions, phrased in terms of the
thread-local kernel states and MSpec.

Tying all this back to the verification condition Formula 5.2 (or, equivalently, 5.3a–5.3e), we
find that those formulas, above item (a) is expressed in the terms inv , pre f and post f , while
item (b) is expressed in the terms preF and postF.

5.5.2 The role of Microkit Dynamic State in the proof process

In observation “Formula 5.3e – Limited to Microkit Dynamic State” in Section 5.4.3 we point
out that when considering the Coupling Invariant ∼ in our verification conditions, we can limit
the Microkit states to the Microkit Dynamic State. For ease of communication, we will
accordingly apply the prefix “Dynamic” in this context and use the term Dynamic Coupling
Invariant.

In the context of our verification conditions we are handling the Dynamic Coupling Invariant
preservation (which effectively is Formula 5.3e) by initially examining the very local (which
has been carried out with this project) to then ultimately capturing the entirety of the
Microkit-based system:

• Since the thread-local state t can change only when t is executing (i.e. makes a kernel
call), we can reason about the parts of the implementation that involve only the
thread-local state using purely sequential techniques.

This naturally calls for a very localised obligation, namely that none of the kernel calls
made by t cause the thread-local state t to cease being thread-local.

The proof of this property relies, in a first instance, on the fact that with seL4 we use a
verified kernel, and practically, it relies on not using the kernel’s full specification
(ASpec), but rather using the small subset (MSpec).

• From this Coupling Invariant preservation the next step is to extend to a “thread-local
preservation” (note that for our libmicrokit functions specifically, this thread-local
preservation property indeed holds).

• Eventually, the obligation needs to deal with kernel calls that are made by any thread
not being allowed to cause the thread-local state in MSpec to cease being thread-local.

Specification in Haskell

For practical reasons, the specifications for the Microkit and its verification conditions are
written in Haskell. Such a Haskell program defines the data structures for the Microkit
Invariants and the Microkit Dynamic and the kernel states, including the oracles, and it defines
the pre- and postconditions for the state transitions (usually in weakest-precondition form).

29

5.6 Executing the verification steps

5.6.1 Proof Construction

To verify the implementation of the Microkit, we have to transform each function into a logical
verification condition which can be handed to an SMT solver. This verification condition
should be the most general, i.e. weakest precondition relative to the function’s specification.

Thus, standard SMT solver outcome delivers our proof:

• If an SMT solver can confirm that the negation of the verification condition is
unsatisfiable, we can consider the function correctly implemented.

For the basic Microkit library functions, the steps to get there are as follows:

1. The function under consideration comes with its C implementation and is annotated with
its formalised specification.

2. In turn, each C function in the implementation is annotated with its formalised
specification.

3. The generated verification condition Formula 5.3a–5.3e together with the MSpec (that
encodes the Microkit relevant information about the proven seL4 kernel behaviour) are
directly encoded in SMT-LIB 2.

4. The verification condition is checked by SMT solver.

For the non-basic Microkit function specs in general as for instance for the handler_loop or for
a user’s Microkit-based system program, the steps are as follows:

1. The function under consideration comes with its C implementation and is annotated with
its formalised specification.

2. In turn, each C function in the implementation is annotated with its formalised
specification.

3. The C source code is translated into SIMPL using the C Parser.

4. The SIMPL artefact is translated into the graph language GraphLang code via
SimplExport.

5. As part of our Gordian tool, the verification condition, which effectively is only
Formula 5.3b given observation “Formula 5.3b – Only clause applied in Gordian”, is
generated by the Python implementation of the Barnett-Leino-variant algorithm (as
mentioned earlier in Section 4.4.1) and the invariant-finding heuristics, to then go
through the verification process within Gordian (which calls in a SMT solver as its final
step).

We note that both proof procedure steps above are set up to allow to proof check with multiple
SMT solvers, which indeed has been made use of when we verified the Microkit library.

5.6.2 The Microkit properties we verify

When verifying the Microkit we verify a range of properties about the implementation of the
Microkit:

30

1. The code in libmicrokit and the monitor does not fail, and no undefined behavior is
encountered according to the C semantics induced by the C Parser. Among other
things, this means that assertions never fail, no null pointer dereferences or
out-of-bounds accesses are performed outside of user code.

2. All user-facing libmicrokit calls terminate, even calls with misinformed input.

3. The handler loop satisfies its specification. The handler loop never terminates. Once an
iteration of the loop is completed, libmicrokit code will have either received all pending
channel notifications and invoked the corresponding channel’s user-supplied notified
method exactly once, or the code will have handled a protected procedure call.

31

Chapter 6

Verification of System Initialisation

After having addressed the correctness of the Microkit at run-time, we now turn our attention
to a correct initialisation of a Microkit-based system as captured by the left-hand side of
Figure 1.4, specifically our new proof step 2 combined with the subsequent, existing proof
step 0 .

CapDL spec

C
O

N
T

EX
T

CNode

. .
 .

VSpace

CSpaceThread
Object

C
O

N
T

EX
T

CNode

. .
 .

VSpace

CSpace Thread
Object

EP

Se
nd

R
ec

ei
ve

PD1 PD2

f(..);
f(){
…
}

SDF Spec
PD2PD1

2

init file

0

Figure 6.1: Our new proof step 2 together with existing step 0 addresses the initialisation
aspect of the complete proof structure overview as presented in Figure 1.4

In the prior chapter, Section 5.4.2 and Section 5.4.3, the verification condition (Formula 5.2 or
5.3a–5.3e) and the final comment convey that functional correctness of the Microkit operates
amongst others on the assumption that the Microkit Invariants are satisfied; then, functional
correctness delivers preservation of these invariants. From a practical perspective this
assumption wants to be anchored by demonstrating that the Microkit-based system can be
initialised into such a kernel state where these invariant properties hold – the topic of the
current chapter now.

We achieve this by linking the user system spec as defined in the SDF config file with a
system capability distribution, in our case defined in CapDL, and show that this link is a
faithful representation. For this purpose, we can choose from a few suitable system
initialisers, amongst them one formally verified one.

32

6.1 CapDL – the key machinery

CapDL is the language used to describe access rights in seL4-based systems [Kuz et al.,
2010]. CapDL specifications can be used to track which objects and entities have access to
which seL4 capabilities, and to provide complete descriptions of the capability distribution in a
system running on the seL4 kernel. All this makes CapDL a powerful and versatile tool for
managing seL4-based systems.

There are several tools which can initialise an seL4-based system into a state that is
described by a given CapDL distribution spec. These include:

• the original capdl-loader, written in C and maintained by Trustworthy Systems;

• a new rust-capdl-loader [Spinale, 2023]; and

• a formally verified system initialiser called case-init, which is written in the CakeML
language, which, in turn, has a verified compiler [Tan et al., 2016].

We augment the Microkit SDK with functionality to automatically generate CapDL language
output corresponding to the system specification as captured in the SDF config file.

We note that writing the SDK in Python allows to reuse the well-tested and maintained,
pre-existing Python CapDL bindings for this process. However, since it is not feasible to
formally verify the functional correctness of the Python SDK directly, we perform instead a
Translation Validation: the Coupling Invariant1 between the input SDF and the output
CapDL is shown post hoc, in each instance.

Recall that the static configuration of a Microkit-based system (i.e. the SDF spec used to
generate the configuration) is one of the constituent parts of the local state machine for the
Microkit Section 5.4.1. Our Coupling Invariant here then couples the static configuration of
the Microkit-based system to the capability distribution in the corresponding implementation
kernel state. This means that exactly one capability distribution corresponds to a valid
implementation of an SDF. Note though, certain frame capabilities are not described by the
Coupling Invariant yet.

With this in mind, the next step is to transcribe the Coupling Invariant suitably into
Isabelle/HOL: The input SDF is imported into Isabelle/HOL as the static Microkit
configuration, while the output CapDL is imported into Isabelle/HOL as the kernel state.
Based on our pre-built proof schema, a simple proof script is then created in Isabelle/HOL,
which can be run automated to verify that the Coupling Invariant between them, i.e. the
generated capability distribution adheres to the provided SDF semantics.

In summary, given the user provided SDF the Microkit toolchain produces the following
outputs:

(1) a formal SDF, i.e. a spec in a formal description with a clear semantics;

(2) a CapDL description of the seL4 system;

(3) an Isabelle proof-script (specific for each case, and based on the outputs (1) and (2));

(4) a system image.
1While we use the term Coupling Invariant as presented earlier in Section 5.4.1, strictly speaking here we only

need a portion of that relation.

33

Note that it is the successful run of the proof (3) what confirms the Coupling Invariant
between the user-provided SDF and its generated CapDL.2

6.2 Approach to formalising CapDL generation

As outlined above, the verification of the initialisation of the Microkit is based, firstly, on
generating the CapDL spec from the SDF spec, and then on carrying out the Translation
Validation. For the dedicated and formally/mathematically inclined reader, we set out in
Chapter 7 the underlying formal definitions and a formalisation of a correct capability
distribution implementation.

For now, it is sufficient to realise that the specification defines data structures for storing the
Microkit state and invariants. In particular, the Microkit Invariants correspond exactly to the
Abstract Systems as defined formally in Chapter 7.

As part of our proof chain we capture the notion of accurately reflecting the
SDF to CapDL mapping in any given specific instance with a relation between
the given Microkit Invariants and Kernel Context.3

The main purpose of the relation is to express that it holds if the capabilities implied by the
SDF describing the Microkit Invariants have been distributed correctly to the Kernel Context
of the thread executing the current PD. This means in the formal language, amongst others,
that this mapping relation faithfully manifests clauses 1–4 of Section 7.3.

As a side note, at present, the specifications are written in Haskell and then manually
translated into Isabelle/HOL for the verification proof. Section 11.2.2 provides a more
extensive discussion about the spec translations within the Microkit proof process.

6.3 Choosing a CapDL loader

Above sections show that for user-system initialisation we can rely on a semantics-preserving
mapping from SDF spec to CapDL spec. Hence, any of our CapDL loaders mentioned above
in Section 6.1 can be chosen to initialise a Microkit-based system. However, at present they
all come with their drawbacks and limitations:

• The original capdl-loader, while versatile, is not verified and does not embed the
CapDL specification in a way that is compatible with the Microkit’s SDK model. We note
that the capdl-loader must be linked against a C version of the CapDL spec, but
fortunately, this can be produced from the CapDL spec itself using an unverified Haskell
tool).

• The new rust-capdl-loader is easy to use but also not verified (see Section 9.3 for
detail).

2We have set out in a Python file the proof to verify the CapDL generation. It contains the required definitions of
the various objects like the capabilities, PDs, channels, etc, plus the respective Coupling Invariants. It furthermore
includes seL4 theory files imports (e.g. for ASpec). And, finally, it lays out the required SDF-to-CapDL translation
proof properties together with their (eventually very short) proof script. In Section 11.1.3 we consider its limitations
in some more detail. We note that at this stage, the file has not been maintained nor re-checked against the latest
Microkit verification toolchain, but is available on public Github for reference.

3The file detailing the mapping is available on public GitHub, but we note that at the time of writing this report
it not been maintained to reflect the latest developments of the Microkit.

34

https://github.com/au-ts/nc0323/blob/main/mar/sel4cp/prebuilt/proof.thy
https://github.com/au-ts/nc0323/blob/main/mar/sel4cp/prebuilt/proof.thy

• The formally verified case-init CapDL loader is presently too restrictive, in so far as it
does not support the 64-bit Arm architecture nor the new MCS variant of the kernel (on
which the Microkit is based). It is also cumbersome to use, as it requires the use of the
seL4 kernel build system.

35

Chapter 7

Formal Framework for CapDL Generation

7.1 Preamble

In this chapter we delve into the detailed mathematical formalism underpinning the
specifications and proof obligations when verifying the Microkit. While neither self-sufficient
nor complete, it does provide insight into how particular components of the Microkit (which
interfaces to the seL4 kernel) are captured with abstract objects in a specification language.
Here, we focus on the verification of System Initialisation, specifically, the Translation
Validation as outlined in opening comments of Section 6.1.

As described in Section 1.2.1 and Section 5.2, a Microkit-based system is composed of a few
abstract, core objects and the relationships between them. The core objects are protection
domains (PD), communication channels (CC) and interrupts (IRQ), protected procedure calls
(PPC), and memory regions (MR).

PDs can interact with each other expressed through various properties. For example, one
such property is the presence of a channel that serves as a means of authorising
communications in the user’s system specification. Interactions through channels can occur
in two forms: sending notifications (microkit_notify), which provide asynchronous signalling,
and making protected procedure calls, PPCs, (microkit_ppcall), which allow for
synchronous function calls between different PDs.

7.2 Abstract systems

In order to develop the mathematical framework to capture the Microkit’s core objects with
their characteristics, we begin by introducing the following definitions.

Page size k: k ∈ N+ (i.e. k is a natural number > 0);
assume k fixed for the purpose of the definitions below.

Valid protection domain identifier v: v ∈ {0, ..., 62}; 1

V denotes the set thereof.

1In actual implementations, one bit (the 64th element) of this bit-vector is used for separate information, namely
whether a notification or a PPC has occurred.

36

Channel identifier c: c ∈ {0, ..., 62}; 2

C denotes the set thereof.

Endpoint (of a channel) (v, c): (v, c) ∈ V × C, where v is referred to as end-PD.

Channel {(v1, c1), (v2, c2)}: a channel is an unordered pair consisting of two endpoints
(v1, c1) ∈ V × C and (v2, c2) ∈ V × C, with:

• different end-PDs, i.e. v1 ̸= v2;3

• at most one channel exists between two different PDs,4 i.e.
given two channels {(v, c1), (w, d1)} and {(v, c2), (w, d2)}
then {(v, c1), (w, d1)} = {(v, c2), (w, d2)}, which means c1 = c2 and d1 = d2;

• an endpoint of a channel cannot be attached to two different PDs,5 i.e.
given two channels {(v, c), (v1, c1)} and {(v, c), (v2, c2)} then (v1, c1) = (v2, c2).

Interrupts (IRQs) I: I ⊆ N and I finite.
IRQ mapping (i, v, c): (i, v, c) ∈ I × V × C, i.e. an IRQ is mapped to an end-PD.

Memory address a: a ∈ kN (i.e. a ∈ {0, k, 2 ∗ k, 3 ∗ k, ...});
A denotes the set thereof.

Permission w: w ⊆ {W, X, C}, with W, X and C all distinct symbols (for write, execute, cached);
W denotes the set thereof.

Priority p: p ∈ {0, ..., 254};
P denotes the set thereof.

Budget-period (x, y): (x, y) ∈ N+ × N+ and x ≤ y < 264;
B denotes the set thereof.

Mapped memory range x comprises the following data:6

• a base PD b: b ∈ V ;
• a virtual address av: av ∈ A;
• a physical address ap: ap ∈ A;
• a permission w: w ∈ W ;
• a size n: n ∈ kN+, where ∀m ∈ kN with m < n: av +m ∈ A and ap +m ∈ A.

To visualise a mapped memory range including the role of size n, see Figure 7.1.

As per common usage we denote the field data for such structured objects using the attribute
symbol “.” (e.g. the base PD b of the mapped memory range x is denoted by x.b).

We have now all the ingredients to define the main concept:

Abstract system
It comprises the following data:

• set of identifiers of PDs with protected procedure call Vp: Vp ⊆ V ;

2Since channel identifiers mirror valid protection domain identifiers, we also have only 63 elements available.
3We note that self-channels are not required for the Microkit (in fact, they are not allowed), thus greatly simpli-

fying concurrency handling down the track.
4While theoretically not strictly required, for performance reasons this property is desirable and thus worth

while explicitly proving and make available; also, note that it can readily be captured, and typically is so, as part
of the Microkit Invariants.

5This property can readily be captured, and typically is so, as part of the Microkit Invariants.
6For demonstration purposes here we choose the concept of “range” over “region” purely for brevity and clarity

of the abstract definitions; modifying for “region” requires only superficial adjustments.

37

The	key	parameters	are	fixed	as	follows:
page	size	k =	4Ki	(we	drop	“Ki”	from	now	on)
addresses	A =	{0,	4,	8,	12,	16,	20,	24,	28}	
virtual	address	av =	4
physical	address	ap =	16
size	n	= 8

The	requirement	on	the	size	n	is:
m=0: av+m =	 4+0	=			4	∈A

ap+m =	16+0	=	16	∈A	
m=4: av+m =	 4+4	=			8	∈A	

ap+m =	16+4	=	20 ∈A

blue:
virtual	address	space

green:
physical	address	space

dark	red:
mapped	address	range

0 84 12 16 20 24 28

8

0 84 12 16 20 24 28

Figure 7.1: Example of a mapped memory range.

• set of channels Ch (this is a subset of all unordered pairs of end-PDs, and
loosely expressed as Ch ⊆ {(V × C), (V × C)});

• set of IRQ mappings Im: Im ⊆ I × V × C (i.e. a set of IRQs mapped to end-PDs);
• finite set of mapped memory ranges M ;
• priority map pr : V → P ;
• budget-period map bp : V → B.

It is subject to the following conditions:

(i) All channels are disjoint, i.e. if r, s ∈ Ch, then either r = s or r ∩ s = ∅.

(ii) IRQ ends and channel ends are disjoint,
i.e. if (i, e) ∈ Im with e = (v, c), and r ∈ Ch with r = {(v1, c1), (v2, c2)},
then e ̸∈ r, i.e. (v, c) ̸= (v1, c1) and (v, c) ̸= (v2, c2).

(iii) Virtual addresses (of mapped memory ranges) are disjoint,
i.e. for any two mapped memory ranges x, y ∈ M with the same base PD x.b = y.b,
then either x.av + x.n ≤ y.av
or else y.av + y.n ≤ x.av.

7.3 Accurate implementation with a capability distribution

With all the machinery in place, we can now formally capture the notion that an seL4 kernel
state implements an abstract system. This in turn underpins the formalism as sought in
Section 6.2.

Take an abstract system as defined above in Section 7.2. Consider a finite set F of user ELF
files and an assignment from PDs to these ELF files, f : V → F .

We then define that (the capability distribution of) a kernel state accurately implements a
given abstract system if the following conditions hold:

1. For each PD v ∈ V , the file f (v) is linked against the libmicrokit library and has that
library’s main() function as its entry point.

2. There is a PD Monitor with an allocated thread control block (TCB) object in physical
memory, referred to as the MonitorTCB, along with a synchronous IPC endpoint,
referred to as the MonitorEndpoint, and a reply object, referred to as the MonitorReply.
The MonitorTCB is not suspended, and has priority 254 and max-priority 254. The
Monitor has a single CNode as its CSpace, which contains capabilities to MonitorReply in

38

slot 4 and to MonitorEndpoint in slot 74. The VSpace of the Monitor consists only of the
frames required to contain the Microkit monitor executable.

3. For each IRQ i ∈ I there is an IRQ handler capability that allows a thread possessing it,
firstly, to set an endpoint which will be notified of the incoming interrupt i, and, secondly,
to acknowledge received interrupts of the same number i.

4. For each PD v ∈ V , there is a unique TCB object, referred to as the vTCB, along with a
unique endpoint, the vEndpoint, and a unique IPC buffer’ (used to transfer PPC
arguments). The vTCB is not suspended, and has priority pr(v) and max-priority pr(v).
There is a unique scheduling context, referred to as the vSC, which has budget-period
bp(v). The Fault endpoint of v is the MonitorEndpoint. There is a unique notification
object, referred to as the vNotificationObject, which is bound to the TCB object. (This
allows the PD to receive both PPC invocations and notifications on vEndpoint; by
convention, the most significant bit of the badge then allows the receiver to distinguish
between the two.)

The CSpace of the PD v consists of one CNode, which contains the following capabilities:

• An unbadged RW capability to the vNotificationObject in slot 1, referred to as the
vInputCap.

• An unbadged capability to the VSpace of v in slot 3.
• An unbadged capability to the v reply object in slot 4, referred to as the vReplyCap.
• For each u ∈ V and c, d ∈ C with {(v, c), (u, d)} ∈ Ch: an RW capability to the
uNotificationObject in slot 10 + c, badged with 2d.

• For each u ∈ Vp and c, d ∈ C with pr(u) > pr(v) and {(v, c), (u, d)} ∈ Ch: an RW
capability to the uNotificationObject in slot 74 + c, badged with 263 + d.

• For each i ∈ I and c ∈ C with (i, v, c) ∈ Im: an unbadged minted copy of the IRQ
handler capability for i in slot 138 + c.

The VSpace of the PD v contains mappings for the frames required to contain the user
ELF file f (v). For each mapped memory range m ∈ M with m.b = v, a frame is mapped
with corresponding physical and virtual addresses, write permission if W ∈ m.w,
executable permission if X ∈ m.w, and cached if C ∈ m.w .

7.4 Abstract system as used for the libmicrokit proofs

The framework of an abstract system is the foundation of the correctness proofs of the
libmicrokit as carried out for this project. The central file with specs and proof script is
written in standard SMT-LIB 2 syntax allowing to directly feed it to the SMT solver Z3 and thus
facilitating the automated proof process.

The account starts with the spec for an abstract system involving a Microkit state and a kernel
state. Together with this, memory region (in the file defined as the datatype MMR),
well-formedness (wf_MicrokitInvariants), capability mapping (relation_cap_map) and
eventually a Coupling Invariant (relation) are defined, as well as pre- and postconditions for
Microkit and kernel state transitions. With this arrangement the libmicrokit implementations
(in terms of seL4 kernel functions) are then proofed correct by the SMT solver Z3.

For example in the case of microkit_notify, which is implemented with the kernel function
seL4_Signal, the proof is set up to first show that notify’s precondition implies signal’s
precondition and then that signal’s post condition implies notify’s post condition. Similarly for

39

https://github.com/au-ts/microkit-relationship-proof

the other functions microkit_ppcall, microkit_irq_ack, _microkit_recv and
_microkit_ReplyRecv. (We note that microkit_msginfo_new is not treated in this fie since its
implementation is a straight inline call to seL4_MessageInfo_new.)

40

Chapter 8

Our New Verification Tool Gordian

8.1 The process steps

The Gordian verifier is a newly developed, automated tool designed for the verification of
functional correctness of the Microkit specifically and C programs more generally. Section 4.4
frames the context for which Gordian was developed with Figure 4.2 highlighting the central
role it plays.

Before the Gordian verifier can be invoked, the target C source code must first be exported to
the graph language GraphLang. This conversion is performed by the C Parser, the same
C-to-Isabelle parser that is used in the verification of the seL4 kernel itself [Barthwal and
Norrish, 2009]. The C Parser reads the C input and emits code in Norbert Schirmer’s SIMPL
language [Schirmer, 2006], which, unlike C, comes equipped with a formal (big and
small-step) operational semantics.

The SIMPL code is then converted to GraphLang using SimplExport, which is a verified tool
originally implemented (and still used) as part of the translation validation of the seL4 kernel.
The resulting GraphLang code is an unstructured graph program representing a control-flow
graph, whose semantics refines the C semantics induced by the C Parser. The represented
graph consists of three sorts of nodes: Basic nodes which update local variables; Cond
nodes which perform conditional jumps; and Call nodes which perform calls to other
functions. See Figure 4.3 and Figure 10.1 as examples of such a graph.

At this stage, pre- and postconditions are being inserted in the graph: These conditions are
picked up by Gordian from a submitted spec file (written in Python) and manipulated and
incorporated into the control-flow graph as the additional spec information. In this manner we
express that before a function call one needs to assert its precondition and after a function
call one gets to assume the postcondition. Figure 4.4 or Figure 10.2 are the respective
examples of these expanded graphs.

The Gordian verifier then processes its input in GraphLang along with a specification written
in a combination of Python and SMT-LIB 2. Based on these inputs, Gordian generates a
logical verification condition using a variation of Barnett and Leino’s weakest precondition
calculus for unstructured programs (see Section 8.2 for some technical details).

Finally, Gordian passes the verification condition to an SMT solver (for this project, Z3 has
been chosen), which tries to verify its validity. The successful verification of the logical
formula indicates that the C function under consideration conforms to its specification. If the

41

verification fails, the SMT solver produces a counter-model.

We note that Gordian generates its verification condition in SMT-LIB 2, a common and
standardised input and output language for SMT solvers. To a large extent, the logic theory
used is the quantifier-free theory of arrays and bit-vectors, QF_ABV, the same, standard
theory used for the binary verification proof of the seL4 kernel, and one which is supported in
all contemporary SMT solvers. In some cases, we are resorting to the more flexible, but still
standard theories for quantifiers and algebraic data types. In practice, using SMT-LIB 2 allows
us to increase both performance and certainty by running the verification condition through
multiple SMT solvers.

8.2 The verification condition algorithm

We use a minor variant of the "weakest precondition for unstructured programs" algorithm of
Barnett and Leino to determine the weakest conditions that need to be met in our control-flow
graphs to prove correctness:

• We first apply a loop-elimination transformation to the GraphLang graph, resulting in a
control-flow graph that is free from cycles and that “traces correctness”, whereby the
latter means that this modified graph represents a progam that is correct only if the
original program was correct. (This means that if the modified graph is shown correct,
we then know that the original graph must also be correct; however, if we obtain a
negative result, we are not quite sure what it means for the original graph.)

• The next step involves transforming the program into a control-flow graph in dynamic
single-assignment form. This change makes it easier for SMT solvers to do their job. In
Gordian we have implemented the loop elimination and the dynamic single-assignment
transformation, along with a comprehensive test suite.

• The final step applies the weakest precondition computation to the acyclic
single-assignment control-flow graph to generate the verification condition to be handed
to the SMT solvers.

42

Chapter 9

Existing Infrastructure Tools for Verifier
Implementation

9.1 C Parser

In our toolchain, the same C Parser tool, C Parser, has been utilised that is used to create the
Isabelle/HOL semantic model of the seL4 kernel [Barthwal and Norrish, 2009]. This tool
translates the C source code into Schirmer’s SIMPL programming language, which has a
well-defined operational semantics in Isabelle/HOL. This, in turn, allows the same semantics
to be used here for the Microkit as that for the seL4 kernel verification. Additionally, SIMPL
can be translated into the graph language GraphLang using the SimplExport tools in a way
that preserves the semantics.

The c-parser handles a reasonable subset of the C99 standard, and accounts for
architecture-defined behaviours such as endianness, or the number of bits in an int. The
most important limitations of the subset of C implemented by our Microkit verification
toolchain are the following:

1. No goto statements

2. No fall-through cases in switch statements

3. No type unions

4. No taking the address of stack variables (“automatics” in C).

These operations are already absent from the Microkit implementation, specifically the
Microkit library, and adherence to these restrictions are not expected to become a constraint
or difficulty in future development of the Microkit.

We note that an early version of the source code of the handler_loop in libmicrokit did
contain one instance of the fourth limitation, where the address of the local variable badge had
to be taken as a result of a peculiar design decision in libsel4. It turned out that a simple
workaround was available by introducing an auxiliary global variable to store this badge
(required changes: 4 LOC).

Due to the fact that the Microkit library and monitor are implemented in terms of other libraries
such libsel4, which were not written with the C Parser in mind, we had to write
preprocessing scripts before we could read the libmicrokit and monitor using the parser
and successfully pump it through to obtain an artefact in the GraphLang language using

43

SimplExport. Options to automate this process in a way that is resilient to Microkit
implementation changes are being explored.

Statistics

Taking all includes together, exporting libmicrokit yields a graph consisting of 5,627 nodes,
divided into 320 functions. However, 302 of these come from libsel4 and other includes (of
which only 6 are relevant to the verification, and which have been already covered with the
libsel4 verification process), leaving a total of 18 functions (about 110 nodes) to be verified.

The main handler_loop consists of 42 nodes, the monitor of 46 nodes.

9.2 GraphLang and SimplExport

The GraphLang language (formerly known as SydTV-GL, Sydney Translation Validation
Graph Language), being used to describe control-flow graphs was originally developed for,
and forms an integral part of, the seL4 kernel’s translation validation and worst-case
execution time analysis proofs.

Our Gordian verifier also uses GraphLang as its foundation. As per Figure 4.2 and
Section 4.4.1, in one of our verification process steps we employ the SimplExport tool to
obtain the intermediate artefact written in this graph language. This approach allows us to
create an implementation that is compatible with previous advancements and to reuse
existing code for parsing GraphLang. We improved the type-safety of the existing GraphLang
toolchain by adding new interfaces with additional checks and constraints. These fine-tunings
not only help to prevent programming errors in the new developments, but can be upstreamed
to increase the overall trustworthiness of our toolchain.

The external translation validation tools in connection with GraphLang are undergoing
development as part of the Binary Correctness and Multicore Verification topic area. Once
concluded and stable, we expect resulting improvements to be suitable to be incorporated
into the translation validation version of our toolchain Gordian.

9.3 Rust CapDL loader

Nick Spinale has recently developed a new CapDL loader implemented in Rust [Spinale,
2023], accompanied by a simple, self-contained tool that serialises a CapDL spec and adds it
to the pre-compiled loader binary. This scheme aligns it well with the Microkit ecosystem.
This Rust CapDL loader also supports a configuration whose operation is more akin to that of
the unverified C loader today, allowing for a simpler and space-efficient loader, as there is no
deserialisation at runtime. In fact, under this configuration, the loader does not even require a
heap allocator. For our purpose though, it is noteworthy that to date, this Rust CapDL loader
is not as yet verified.

Importantly and in summary, our verified version of the Microkit does, along with the verified
CASE initialiser, support (and is integrated with) Spinale’s new Rust CapDL loader.

44

Chapter 10

Worked Examples – Walk-Through Of The
Verification Steps With Artefacts

10.1 Arithmetic sum arith_sum

Summary description
s = arith_sum(n) = sum of all the natural numbers less than the given natural number n

Mathematical spec
precondition: 0 <= n ∧ n <= 100
loop invariant: 0 <= i ∧ i <= n ∧ s = (i− 1) ∗ i/2

(Note that an upper limit, in our case “100”, ensures avoiding overflow.)

C code (from the repo for demo examples)

1 // pre condition (0 <= n <= 100)

2 int arith_sum(int n)

3 {

4 int s = 0;

5 for (int i = 0; i < n; i++)

6 // loop invariant (0 <= i <= n && s == (i-1)*i/2)

7 {

8 s += i;

9 }

10 return s;

11 }

Listing 10.1: C code for the Arithmetic Sum function arith_sum

Verification stages/steps

1. Converting into GraphLang => control-flow graph Figure 10.1

2. Adding the function spec and turning graph into dynamic single-assignment form
and acyclic =⇒ expanded control-flow graph Figure 10.2

3. Computing Weakest Precondition (per Section 8.2) =⇒ Logic formula in QF_ABV

45

https://github.com/au-ts/gordian/tree/main/demo

ret__int#v, Mem, HTD, PMS, GhostAssertions, local_context#ghost = tmp.arith_sum(n___int#v, Mem, HTD, PMS, GhostAssertions, local_context#ghost)

Entry

17

s___int#v := 0

13

i___int#v := 0

12

loop#4#count := 0

7

assert True()

5

(i___int#v <sn___int#v)

6
T

assert ((s___int#v ≤s(s___int#v + i___int#v)) = (0 ≤ si___int#v))

11
T

ret__int#v := s___int#v

3
F

s___int#v := (s___int#v + i___int#v)

10
T

<empty>

1

Retassert ((i___int#v ≤s(i___int#v + 1)) = (0 ≤ s1))

9

i___int#v := (i___int#v + 1)

8
T

loop#4#count := (loop#4#count + 1)

4

assert False()

2

T

Figure 10.1: Control-flow graph for Arithmetic Sum, as generated from SimplExport.

4. Incorporating manually1 the invariant to SMT tool

5. Running SMT solver Z3 =⇒ Result = “Yes”

1This step is in the process of being automated.

46

ret__int#v, Mem, HTD, PMS, GhostAssertions, local_context#ghost = tmp.arith_sum(n___int#v:1, Mem:1, HTD:1, PMS:1, GhostAssertions:1, local_context#ghost:1)

Entry

17

n___int#v/subject-arg:1 := n___int#v:1
Mem/subject-arg:1 := Mem:1
HTD/subject-arg:1 := HTD:1
PMS/subject-arg:1 := PMS:1

GhostAssertions/subject-arg:1 := GhostAssertions:1
local_context#ghost/subject-arg:1 := local_context#ghost:1

stash_initial_args

assume (0 ≤sn___int#v/subject-arg:1)
and (n___int#v/subject-arg:1 ≤s100)

pre_condition

n___int#v#assigned:1 := True()
Mem#assigned:1 := True()
HTD#assigned:1 := True()
PMS#assigned:1 := True()

GhostAssertions#assigned:1 := True()
local_context#ghost#assigned:1 := True()

ret__int#v#assigned:1 := False()
s___int#v#assigned:1 := False()

loop#4#count#assigned:1 := False()
i___int#v#assigned:1 := False()

upd_n17

s___int#v:1 := 0

13

s___int#v#assigned:2 := True()

upd_n13

i___int#v:1 := 0

12

i___int#v#assigned:2 := True()

upd_n12

loop#4#count:1 := 0

7

assert (0 ≤si___int#v:1)
and (i___int#v:1 ≤sn___int#v:1)

and (s___int#v:1 = DividedBy((i___int#v:1 * (i___int#v:1 - 1)), 2))
and i___int#v#assigned:2
and s___int#v#assigned:2

loop_5_latch_1

True()

5
T

assume (0 ≤si___int#v:2)
and (i___int#v:2 ≤sn___int#v:1)

and (s___int#v:2 = DividedBy((i___int#v:2 * (i___int#v:2 - 1)), 2))
and i___int#v#assigned:3
and s___int#v#assigned:3

loop_5_inv_asm_1
T

assume (0 ≤si___int#v:2)
and (i___int#v:2 ≤sn___int#v:1)

and (s___int#v:2 = DividedBy((i___int#v:2 * (i___int#v:2 - 1)), 2))
and i___int#v#assigned:3
and s___int#v#assigned:3

loop_5_inv_asm_2
F

assert i___int#v#assigned:3
and n___int#v#assigned:1

guard_n6

Err

(i___int#v:2 <sn___int#v:1)

6
T

assert s___int#v#assigned:3
and i___int#v#assigned:3

guard_n11
T

assert s___int#v#assigned:3

guard_n3
F

assert ((s___int#v:2 ≤s(s___int#v:2 + i___int#v:2)) = (0 ≤ si___int#v:2))

11
T

ret__int#v:1 := s___int#v:2

3
T

ret__int#v#assigned:2 := s___int#v#assigned:3

upd_n3

<empty>

1

assert True()

post_condition

assert s___int#v#assigned:3
and i___int#v#assigned:3

guard_n10
T

s___int#v:3 := (s___int#v:2 + i___int#v:2)

10
T

s___int#v#assigned:4 := And(s___int#v#assigned:3, i___int#v#assigned:3)

upd_n10

assert i___int#v#assigned:3

guard_n9

assert ((i___int#v:2 ≤s(i___int#v:2 + 1)) = (0 ≤ s1))

9
T

assert i___int#v#assigned:3

guard_n8
T

i___int#v:3 := (i___int#v:2 + 1)

8
T

i___int#v#assigned:4 := i___int#v#assigned:3

upd_n8

loop#4#count:3 := (loop#4#count:2 + 1)

4

assert (0 ≤si___int#v:3)
and (i___int#v:3 ≤sn___int#v:1)

and (s___int#v:3 = DividedBy((i___int#v:3 * (i___int#v:3 - 1)), 2))
and i___int#v#assigned:4
and s___int#v#assigned:4

loop_5_latch_2

T

assert False()

2

T

Ret

T

Figure 10.2: Control-flow graph for Arithmetic Sum, with spec and in dynamic single-
assignment form and acyclic.

47

10.2 Microkit Monitor monitor

Summary description
The monitor’s purpose is to act as the fault handler for its dedicated PD (that is, each
PD has its very own monitor).

Specification
The monitor is to exhibit “NO undefined behaviour” in the sense of “absence of common
programming errors”.

C code (the code here is a slightly sanitised version from our repo for the example monitor)

1 monitor()

2 {

3 for (;;) {

4 char cont = 0;

5 seL4_Word badge, label;

6 seL4_MessageInfo_t tag;

7 seL4_Error err;

8 tag = seL4_Recv(fault_ep, &gbadge, reply);

9 badge = gbadge;

10 label = seL4_MessageInfo_get_label(tag);

11 seL4_Word tcb_cap = tcbs[badge];

12 if (label == seL4_Fault_NullFault && badge < 64) {

13 err = seL4_SchedContext_UnbindObject(scheduling_contexts[badge],

14 tcb_cap);

15 err = seL4_SchedContext_Bind(scheduling_contexts[badge],

16 notification_caps[badge]);

17 cont = 1;

18 }

19 if (cont==0) {

20 if (badge < 64 && pd_names[badge][0] != 0) {

21 puts(STRINGLITERAL);

22 puts(pd_names[badge]);

23 puts(STRINGLITERAL);

24 }

25 }

26 seL4_UserContext regs;

27 err = seL4_TCB_ReadRegisters(tcb_cap, 0, 0,

28 sizeof(seL4_UserContext) / sizeof(seL4_Word), &gregs);

29 regs = gregs;

30 }

31 }

Listing 10.2: C code for the Microkit monitor

Verification stages/steps with artefacts
(These are the same steps as those for the prior example except that the second step is
slightly simplified.)

1. Converting into GraphLang =⇒ control-flow graph Figure 10.3

2. We note that instead of providing an explicit functional spec, the required

48

https://github.com/au-ts/gordian/blob/main/examples/monitor.c#L4551

specification in this case of “no undefined behaviour” is being generated by the C
parser (see “C Parser semantics is met” in Section 4.4.1). Accordingly, this
verification step adds the C-Parser-generated spec and then turns the graph into
dynamic single-assignment form and acyclic =⇒ expanded control-flow graph
Figure 10.4

3. Computing Weakest Precondition (per Section 8.2) =⇒ Logic formula in QF_ABV

4. Running2 SMT solver Z3 =⇒ Result = “Yes”

2As explained in step 2, for the monitor, there are no function spec invariants that at this stage need to be
added manually to the SMT tool as a step 4, unlike in the earlier example of the Arithmetic Sum Section 10.1

49

Mem, HTD, PMS, GhostAssertions, local_context#ghost = tmp.monitor(Mem, HTD, PMS, GhostAssertions, local_context#ghost)

Entry

49

loop#2#count := 0

5

assert True()

3

Not((1 = 0))

4
T

cont___char#v := WordCastSigned(0)

46
T

<empty>

1
F

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

45

Ret

rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0, Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.seL4_Recv(0, ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'), 0, Mem, HTD, PMS, GhostAssertions, local_context#ghost)

44
T

tag___struct_seL4_MessageInfo_C#v.words_C.0 := rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0

43

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

42

badge___unsigned_long#v := MemAcc(Mem, ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

41
T

rv#space#ret__unsigned_long#v, Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.seL4_MessageInfo_get_label(tag___struct_seL4_MessageInfo_C#v.words_C.0, Mem, HTD, PMS, GhostAssertions, local_context#ghost)

40

label___unsigned_long#v := rv#space#ret__unsigned_long#v

39

assert Less(badge___unsigned_long#v, WordCastSigned(64))

38

tcb_cap___unsigned_long#v := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='tcbs') + (8 * badge___unsigned_long#v)))

37
T

And((label___unsigned_long#v = WordCastSigned(0)), Less(badge___unsigned_long#v, WordCastSigned(64)))

36

assert Less(badge___unsigned_long#v, WordCastSigned(64))

35
T

(WordCast(cont___char#v) = 0)

27

F

rv#space#ret__anonymous_enum#v, Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.seL4_SchedContext_UnbindObject(MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='scheduling_contexts') + (8 * badge___unsigned_long#v))), tcb_cap___unsigned_long#v, Mem, HTD, PMS, GhostAssertions, local_context#ghost)

34
T

ret__int#v := IfThenElse(Less(badge___unsigned_long#v, WordCastSigned(64)), 1, 0)

26
T

loop#2#count := (loop#2#count + 1)

2

F

err___anonymous_enum#v := WordCast(rv#space#ret__anonymous_enum#v)

33

assert Less(badge___unsigned_long#v, WordCastSigned(64))
and Less(badge___unsigned_long#v, WordCastSigned(64))

32

rv#space#ret__anonymous_enum#v, Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.seL4_SchedContext_Bind(MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='scheduling_contexts') + (8 * badge___unsigned_long#v))), MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='notification_caps') + (8 * badge___unsigned_long#v))), Mem, HTD, PMS, GhostAssertions, local_context#ghost)

31
T

err___anonymous_enum#v := WordCast(rv#space#ret__anonymous_enum#v)

30

Not((err___anonymous_enum#v = 0))

29

cont___char#v := WordCastSigned(1)

28
T F

Not((ret__int#v = 0))

25

assert (0 <s16)
and (0 ≤s0)

and Less(badge___unsigned_long#v, WordCastSigned(64))
and PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ("Array", 16, Type ('Word', 8)), size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='pd_names'))

24
T

Not((ret__int#v = 0))

22

F

ret__int#v := IfThenElse(Not((WordCast(MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='pd_names') + ((16 * badge___unsigned_long#v) + (1 * 0))))) = 0)), 1, 0)

23
T

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ('Word', 8), size=1)), ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'))

19
T

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ('Word', 8), size=1)), ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'))

21
F

Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.puts(ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'), Mem, HTD, PMS, GhostAssertions, local_context#ghost)

18
T

Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.fail(ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'), Mem, HTD, PMS, GhostAssertions, local_context#ghost)

20

T

assert Not((8 = 0))
and PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeStruct(name='tmp.seL4_UserContext__C')), ExprSymbol(typ=TypeBitVec(size=64), name='gregs'))

13

rv#space#ret__anonymous_enum#v, Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.seL4_TCB_ReadRegisters(tcb_cap___unsigned_long#v, WordCastSigned(0), WordCastSigned(0), WordCast(DividedBy(288, 8)), ExprSymbol(typ=TypeBitVec(size=64), name='gregs'), Mem, HTD, PMS, GhostAssertions, local_context#ghost)

12
T

assert Less(badge___unsigned_long#v, WordCastSigned(64))
and PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ("Array", 16, Type ('Word', 8)), size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='pd_names'))

17

Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.puts((ExprSymbol(typ=TypeBitVec(size=64), name='pd_names') + (badge___unsigned_long#v * 16)), Mem, HTD, PMS, GhostAssertions, local_context#ghost)

16
T

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ('Word', 8), size=1)), ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'))

15

Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.puts(ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'), Mem, HTD, PMS, GhostAssertions, local_context#ghost)

14
T

err___anonymous_enum#v := WordCast(rv#space#ret__anonymous_enum#v)

11

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeStruct(name='tmp.seL4_UserContext__C')), ExprSymbol(typ=TypeBitVec(size=64), name='gregs'))

10

regs___struct_seL4_UserContext__C#v.pc_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 0))
regs___struct_seL4_UserContext__C#v.sp_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 8))

regs___struct_seL4_UserContext__C#v.spsr_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 16))
regs___struct_seL4_UserContext__C#v.x0_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 24))
regs___struct_seL4_UserContext__C#v.x1_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 32))
regs___struct_seL4_UserContext__C#v.x2_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 40))
regs___struct_seL4_UserContext__C#v.x3_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 48))
regs___struct_seL4_UserContext__C#v.x4_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 56))
regs___struct_seL4_UserContext__C#v.x5_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 64))
regs___struct_seL4_UserContext__C#v.x6_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 72))
regs___struct_seL4_UserContext__C#v.x7_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 80))
regs___struct_seL4_UserContext__C#v.x8_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 88))
regs___struct_seL4_UserContext__C#v.x16_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 96))
regs___struct_seL4_UserContext__C#v.x17_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 104))
regs___struct_seL4_UserContext__C#v.x18_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 112))
regs___struct_seL4_UserContext__C#v.x29_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 120))
regs___struct_seL4_UserContext__C#v.x30_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 128))
regs___struct_seL4_UserContext__C#v.x9_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 136))
regs___struct_seL4_UserContext__C#v.x10_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 144))
regs___struct_seL4_UserContext__C#v.x11_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 152))
regs___struct_seL4_UserContext__C#v.x12_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 160))
regs___struct_seL4_UserContext__C#v.x13_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 168))
regs___struct_seL4_UserContext__C#v.x14_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 176))
regs___struct_seL4_UserContext__C#v.x15_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 184))
regs___struct_seL4_UserContext__C#v.x19_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 192))
regs___struct_seL4_UserContext__C#v.x20_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 200))
regs___struct_seL4_UserContext__C#v.x21_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 208))
regs___struct_seL4_UserContext__C#v.x22_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 216))
regs___struct_seL4_UserContext__C#v.x23_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 224))
regs___struct_seL4_UserContext__C#v.x24_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 232))
regs___struct_seL4_UserContext__C#v.x25_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 240))
regs___struct_seL4_UserContext__C#v.x26_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 248))
regs___struct_seL4_UserContext__C#v.x27_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 256))
regs___struct_seL4_UserContext__C#v.x28_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 264))

regs___struct_seL4_UserContext__C#v.tpidr_el0_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 272))
regs___struct_seL4_UserContext__C#v.tpidrro_el0_C := MemAcc(Mem, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 280))

9
T

Not((err___anonymous_enum#v = 0))

8

F

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ('Word', 8), size=1)), ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'))

7
T

Mem, HTD, PMS, GhostAssertions, local_context#ghost := tmp.fail(ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'), Mem, HTD, PMS, GhostAssertions, local_context#ghost)

6
T

Figure 10.3: Control-flow graph for the Microkit Monitor, as generated from SimplExport

50

Mem, HTD, PMS, GhostAssertions, local_context#ghost = tmp.monitor(Mem:1, HTD:1, PMS:1, GhostAssertions:1, local_context#ghost:1)

Entry

49

Mem/subject-arg:1 := Mem:1
HTD/subject-arg:1 := HTD:1
PMS/subject-arg:1 := PMS:1

GhostAssertions/subject-arg:1 := GhostAssertions:1
local_context#ghost/subject-arg:1 := local_context#ghost:1

stash_initial_args

assume True()

pre_condition

Mem#assigned:1 := True()
HTD#assigned:1 := True()
PMS#assigned:1 := True()

GhostAssertions#assigned:1 := True()
local_context#ghost#assigned:1 := True()

regs___struct_seL4_UserContext__C#v.x23_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x30_C#assigned:1 := False()
tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x22_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x28_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x2_C#assigned:1 := False()

label___unsigned_long#v#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x21_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x17_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x27_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x1_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x18_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x14_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.spsr_C#assigned:1 := False()

err___anonymous_enum#v#assigned:1 := False()
ret__int#v#assigned:1 := False()

regs___struct_seL4_UserContext__C#v.x16_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.pc_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x25_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x15_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x8_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x5_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x4_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x26_C#assigned:1 := False()

tcb_cap___unsigned_long#v#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x24_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x19_C#assigned:1 := False()

regs___struct_seL4_UserContext__C#v.tpidr_el0_C#assigned:1 := False()
badge___unsigned_long#v#assigned:1 := False()

regs___struct_seL4_UserContext__C#v.x6_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x13_C#assigned:1 := False()

cont___char#v#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.tpidrro_el0_C#assigned:1 := False()

loop#2#count#assigned:1 := False()
rv#space#ret__anonymous_enum#v#assigned:1 := False()

rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.sp_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x20_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x3_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x10_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x0_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x9_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x12_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x29_C#assigned:1 := False()

rv#space#ret__unsigned_long#v#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x11_C#assigned:1 := False()
regs___struct_seL4_UserContext__C#v.x7_C#assigned:1 := False()

upd_n49

loop#2#count:1 := 0

5

assert HTD#assigned:1
and Mem#assigned:1
and PMS#assigned:1

and GhostAssertions#assigned:1

loop_3_latch_1

True()

3
T

assume HTD#assigned:2
and Mem#assigned:2
and PMS#assigned:2

and GhostAssertions#assigned:2

loop_3_inv_asm_1
T

assume HTD#assigned:2
and Mem#assigned:2
and PMS#assigned:2

and GhostAssertions#assigned:2

loop_3_inv_asm_2
F

Not((1 = 0))

4

Err

cont___char#v:2 := WordCastSigned(0)

46
T

<empty>

1
F

cont___char#v#assigned:3 := True()

upd_n46

assert True()

post_condition

Ret

T

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

45

assert PMS#assigned:2
and HTD#assigned:2

and GhostAssertions#assigned:2
and Mem#assigned:2

and local_context#ghost#assigned:2

guard_n44
T

src___unsigned_long#v/call-arg:2 := 0
sender___ptr_to_unsigned_long#v/call-arg:2 := ExprSymbol(typ=TypeBitVec(size=64), name='gbadge')

reply___unsigned_long#v/call-arg:2 := 0
Mem/call-arg:2 := Mem:2
HTD/call-arg:2 := HTD:2
PMS/call-arg:2 := PMS:2

GhostAssertions/call-arg:2 := GhostAssertions:2
local_context#ghost/call-arg:2 := local_context#ghost:2

call_stash_44_pred_1
T

assert True()

call_pre_44_pred_1

rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0:2, Mem:3, HTD:3, PMS:3, GhostAssertions:3, local_context#ghost:3 := tmp.seL4_Recv(0, ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'), 0, Mem:2, HTD:2, PMS:2, GhostAssertions:2, local_context#ghost:2)

44

assume LessEquals(MemAcc(Mem:3, [smt]gbadge@global-symbol()), 63)

call_post_44

rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0#assigned:3 := And(And(And(And(Mem#assigned:2, HTD#assigned:2), PMS#assigned:2), GhostAssertions#assigned:2), local_context#ghost#assigned:2)
Mem#assigned:3 := And(And(And(And(Mem#assigned:2, HTD#assigned:2), PMS#assigned:2), GhostAssertions#assigned:2), local_context#ghost#assigned:2)
HTD#assigned:3 := And(And(And(And(Mem#assigned:2, HTD#assigned:2), PMS#assigned:2), GhostAssertions#assigned:2), local_context#ghost#assigned:2)
PMS#assigned:3 := And(And(And(And(Mem#assigned:2, HTD#assigned:2), PMS#assigned:2), GhostAssertions#assigned:2), local_context#ghost#assigned:2)

GhostAssertions#assigned:3 := And(And(And(And(Mem#assigned:2, HTD#assigned:2), PMS#assigned:2), GhostAssertions#assigned:2), local_context#ghost#assigned:2)
local_context#ghost#assigned:3 := And(And(And(And(Mem#assigned:2, HTD#assigned:2), PMS#assigned:2), GhostAssertions#assigned:2), local_context#ghost#assigned:2)

upd_n44

assert rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0#assigned:3

guard_n43

tag___struct_seL4_MessageInfo_C#v.words_C.0:2 := rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0:2

43
T

tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:3 := rv#space#ret__struct_seL4_MessageInfo_C#v.words_C.0#assigned:3

upd_n43

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeBitVec(size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

42

assert Mem#assigned:3

guard_n41
T

badge___unsigned_long#v:2 := MemAcc(Mem:3, ExprSymbol(typ=TypeBitVec(size=64), name='gbadge'))

41
T

badge___unsigned_long#v#assigned:3 := Mem#assigned:3

upd_n41

assert PMS#assigned:3
and HTD#assigned:3

and GhostAssertions#assigned:3
and Mem#assigned:3

and tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:3
and local_context#ghost#assigned:3

guard_n40

seL4_MessageInfo___struct_seL4_MessageInfo_C#v.words_C.0/call-arg:2 := tag___struct_seL4_MessageInfo_C#v.words_C.0:2
Mem/call-arg:3 := Mem:3
HTD/call-arg:3 := HTD:3
PMS/call-arg:3 := PMS:3

GhostAssertions/call-arg:3 := GhostAssertions:3
local_context#ghost/call-arg:3 := local_context#ghost:3

call_stash_40_pred_1
T

assert True()

call_pre_40_pred_1

rv#space#ret__unsigned_long#v:2, Mem:4, HTD:4, PMS:4, GhostAssertions:4, local_context#ghost:4 := tmp.seL4_MessageInfo_get_label(tag___struct_seL4_MessageInfo_C#v.words_C.0:2, Mem:3, HTD:3, PMS:3, GhostAssertions:3, local_context#ghost:3)

40

assume True()

call_post_40

rv#space#ret__unsigned_long#v#assigned:3 := And(And(And(And(And(tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:3, Mem#assigned:3), HTD#assigned:3), PMS#assigned:3), GhostAssertions#assigned:3), local_context#ghost#assigned:3)
Mem#assigned:4 := And(And(And(And(And(tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:3, Mem#assigned:3), HTD#assigned:3), PMS#assigned:3), GhostAssertions#assigned:3), local_context#ghost#assigned:3)
HTD#assigned:4 := And(And(And(And(And(tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:3, Mem#assigned:3), HTD#assigned:3), PMS#assigned:3), GhostAssertions#assigned:3), local_context#ghost#assigned:3)
PMS#assigned:4 := And(And(And(And(And(tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:3, Mem#assigned:3), HTD#assigned:3), PMS#assigned:3), GhostAssertions#assigned:3), local_context#ghost#assigned:3)

GhostAssertions#assigned:4 := And(And(And(And(And(tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:3, Mem#assigned:3), HTD#assigned:3), PMS#assigned:3), GhostAssertions#assigned:3), local_context#ghost#assigned:3)
local_context#ghost#assigned:4 := And(And(And(And(And(tag___struct_seL4_MessageInfo_C#v.words_C.0#assigned:3, Mem#assigned:3), HTD#assigned:3), PMS#assigned:3), GhostAssertions#assigned:3), local_context#ghost#assigned:3)

upd_n40

assert rv#space#ret__unsigned_long#v#assigned:3

guard_n39

label___unsigned_long#v:2 := rv#space#ret__unsigned_long#v:2

39
T

label___unsigned_long#v#assigned:3 := rv#space#ret__unsigned_long#v#assigned:3

upd_n39

assert badge___unsigned_long#v#assigned:3

guard_n38

assert Less(badge___unsigned_long#v:2, WordCastSigned(64))

38
T

assert badge___unsigned_long#v#assigned:3
and Mem#assigned:4

guard_n37
T

tcb_cap___unsigned_long#v:2 := MemAcc(Mem:4, (ExprSymbol(typ=TypeBitVec(size=64), name='tcbs') + (8 * badge___unsigned_long#v:2)))

37
T

tcb_cap___unsigned_long#v#assigned:3 := And(badge___unsigned_long#v#assigned:3, Mem#assigned:4)

upd_n37

assert label___unsigned_long#v#assigned:3
and badge___unsigned_long#v#assigned:3

guard_n36

And((label___unsigned_long#v:2 = WordCastSigned(0)), Less(badge___unsigned_long#v:2, WordCastSigned(64)))

36
T

assert badge___unsigned_long#v#assigned:3

guard_n35
T

cont___char#v#assigned:5 := cont___char#v#assigned:3
local_context#ghost#assigned:7 := local_context#ghost#assigned:4

cap___unsigned_long#v/call-arg:4 := cap___unsigned_long#v/call-arg:1
PMS#assigned:7 := PMS#assigned:4
cont___char#v:4 := cont___char#v:2

rv#space#ret__anonymous_enum#v#assigned:5 := rv#space#ret__anonymous_enum#v#assigned:2
local_context#ghost:7 := local_context#ghost:4

HTD/call-arg:6 := HTD/call-arg:3
HTD#assigned:7 := HTD#assigned:4

err___anonymous_enum#v:4 := err___anonymous_enum#v:1
rv#space#ret__anonymous_enum#v:4 := rv#space#ret__anonymous_enum#v:1

Mem/call-arg:6 := Mem/call-arg:3
err___anonymous_enum#v#assigned:5 := err___anonymous_enum#v#assigned:2

StrictC'_service___unsigned_long#v/call-arg:4 := StrictC'_service___unsigned_long#v/call-arg:1
local_context#ghost/call-arg:6 := local_context#ghost/call-arg:3

PMS/call-arg:6 := PMS/call-arg:3
Mem#assigned:7 := Mem#assigned:4

PMS:7 := PMS:4
Mem:7 := Mem:4

GhostAssertions:7 := GhostAssertions:4
GhostAssertions#assigned:7 := GhostAssertions#assigned:4

HTD:7 := HTD:4
GhostAssertions/call-arg:6 := GhostAssertions/call-arg:3

j1

F

assert Less(badge___unsigned_long#v:2, WordCastSigned(64))

35

T

assert cont___char#v#assigned:5

guard_n27

(WordCast(cont___char#v:4) = 0)

27
T

assert Mem#assigned:4
and PMS#assigned:4
and HTD#assigned:4

and badge___unsigned_long#v#assigned:3
and GhostAssertions#assigned:4

and tcb_cap___unsigned_long#v#assigned:3
and local_context#ghost#assigned:4

guard_n34
T

StrictC'_service___unsigned_long#v/call-arg:2 := MemAcc(Mem:4, (ExprSymbol(typ=TypeBitVec(size=64), name='scheduling_contexts') + (8 * badge___unsigned_long#v:2)))
cap___unsigned_long#v/call-arg:2 := tcb_cap___unsigned_long#v:2

Mem/call-arg:4 := Mem:4
HTD/call-arg:4 := HTD:4
PMS/call-arg:4 := PMS:4

GhostAssertions/call-arg:4 := GhostAssertions:4
local_context#ghost/call-arg:4 := local_context#ghost:4

call_stash_34_pred_1
T

assert True()

call_pre_34_pred_1

rv#space#ret__anonymous_enum#v:2, Mem:5, HTD:5, PMS:5, GhostAssertions:5, local_context#ghost:5 := tmp.seL4_SchedContext_UnbindObject(MemAcc(Mem:4, (ExprSymbol(typ=TypeBitVec(size=64), name='scheduling_contexts') + (8 * badge___unsigned_long#v:2))), tcb_cap___unsigned_long#v:2, Mem:4, HTD:4, PMS:4, GhostAssertions:4, local_context#ghost:4)

34

assume True()

call_post_34

rv#space#ret__anonymous_enum#v#assigned:3 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:4), tcb_cap___unsigned_long#v#assigned:3), Mem#assigned:4), HTD#assigned:4), PMS#assigned:4), GhostAssertions#assigned:4), local_context#ghost#assigned:4)
Mem#assigned:5 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:4), tcb_cap___unsigned_long#v#assigned:3), Mem#assigned:4), HTD#assigned:4), PMS#assigned:4), GhostAssertions#assigned:4), local_context#ghost#assigned:4)
HTD#assigned:5 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:4), tcb_cap___unsigned_long#v#assigned:3), Mem#assigned:4), HTD#assigned:4), PMS#assigned:4), GhostAssertions#assigned:4), local_context#ghost#assigned:4)
PMS#assigned:5 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:4), tcb_cap___unsigned_long#v#assigned:3), Mem#assigned:4), HTD#assigned:4), PMS#assigned:4), GhostAssertions#assigned:4), local_context#ghost#assigned:4)

GhostAssertions#assigned:5 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:4), tcb_cap___unsigned_long#v#assigned:3), Mem#assigned:4), HTD#assigned:4), PMS#assigned:4), GhostAssertions#assigned:4), local_context#ghost#assigned:4)
local_context#ghost#assigned:5 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:4), tcb_cap___unsigned_long#v#assigned:3), Mem#assigned:4), HTD#assigned:4), PMS#assigned:4), GhostAssertions#assigned:4), local_context#ghost#assigned:4)

upd_n34

assert rv#space#ret__anonymous_enum#v#assigned:3

guard_n33

err___anonymous_enum#v:2 := WordCast(rv#space#ret__anonymous_enum#v:2)

33
T

err___anonymous_enum#v#assigned:3 := rv#space#ret__anonymous_enum#v#assigned:3

upd_n33

assert badge___unsigned_long#v#assigned:3

guard_n32

assert Less(badge___unsigned_long#v:2, WordCastSigned(64))
and Less(badge___unsigned_long#v:2, WordCastSigned(64))

32
T

assert PMS#assigned:5
and HTD#assigned:5

and badge___unsigned_long#v#assigned:3
and GhostAssertions#assigned:5

and Mem#assigned:5
and local_context#ghost#assigned:5

guard_n31
T

StrictC'_service___unsigned_long#v/call-arg:3 := MemAcc(Mem:5, (ExprSymbol(typ=TypeBitVec(size=64), name='scheduling_contexts') + (8 * badge___unsigned_long#v:2)))
cap___unsigned_long#v/call-arg:3 := MemAcc(Mem:5, (ExprSymbol(typ=TypeBitVec(size=64), name='notification_caps') + (8 * badge___unsigned_long#v:2)))

Mem/call-arg:5 := Mem:5
HTD/call-arg:5 := HTD:5
PMS/call-arg:5 := PMS:5

GhostAssertions/call-arg:5 := GhostAssertions:5
local_context#ghost/call-arg:5 := local_context#ghost:5

call_stash_31_pred_1
T

assert True()

call_pre_31_pred_1

rv#space#ret__anonymous_enum#v:3, Mem:6, HTD:6, PMS:6, GhostAssertions:6, local_context#ghost:6 := tmp.seL4_SchedContext_Bind(MemAcc(Mem:5, (ExprSymbol(typ=TypeBitVec(size=64), name='scheduling_contexts') + (8 * badge___unsigned_long#v:2))), MemAcc(Mem:5, (ExprSymbol(typ=TypeBitVec(size=64), name='notification_caps') + (8 * badge___unsigned_long#v:2))), Mem:5, HTD:5, PMS:5, GhostAssertions:5, local_context#ghost:5)

31

assume True()

call_post_31

rv#space#ret__anonymous_enum#v#assigned:4 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:5), And(badge___unsigned_long#v#assigned:3, Mem#assigned:5)), Mem#assigned:5), HTD#assigned:5), PMS#assigned:5), GhostAssertions#assigned:5), local_context#ghost#assigned:5)
Mem#assigned:6 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:5), And(badge___unsigned_long#v#assigned:3, Mem#assigned:5)), Mem#assigned:5), HTD#assigned:5), PMS#assigned:5), GhostAssertions#assigned:5), local_context#ghost#assigned:5)
HTD#assigned:6 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:5), And(badge___unsigned_long#v#assigned:3, Mem#assigned:5)), Mem#assigned:5), HTD#assigned:5), PMS#assigned:5), GhostAssertions#assigned:5), local_context#ghost#assigned:5)
PMS#assigned:6 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:5), And(badge___unsigned_long#v#assigned:3, Mem#assigned:5)), Mem#assigned:5), HTD#assigned:5), PMS#assigned:5), GhostAssertions#assigned:5), local_context#ghost#assigned:5)

GhostAssertions#assigned:6 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:5), And(badge___unsigned_long#v#assigned:3, Mem#assigned:5)), Mem#assigned:5), HTD#assigned:5), PMS#assigned:5), GhostAssertions#assigned:5), local_context#ghost#assigned:5)
local_context#ghost#assigned:6 := And(And(And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:5), And(badge___unsigned_long#v#assigned:3, Mem#assigned:5)), Mem#assigned:5), HTD#assigned:5), PMS#assigned:5), GhostAssertions#assigned:5), local_context#ghost#assigned:5)

upd_n31

assert rv#space#ret__anonymous_enum#v#assigned:4

guard_n30

err___anonymous_enum#v:3 := WordCast(rv#space#ret__anonymous_enum#v:3)

30
T

err___anonymous_enum#v#assigned:4 := rv#space#ret__anonymous_enum#v#assigned:4

upd_n30

assert err___anonymous_enum#v#assigned:4

guard_n29

Not((err___anonymous_enum#v:3 = 0))

29
T

cont___char#v:3 := WordCastSigned(1)

28
T F

cont___char#v#assigned:4 := True()

upd_n28

cont___char#v#assigned:5 := cont___char#v#assigned:4
local_context#ghost#assigned:7 := local_context#ghost#assigned:6

cap___unsigned_long#v/call-arg:4 := cap___unsigned_long#v/call-arg:3
PMS#assigned:7 := PMS#assigned:6
cont___char#v:4 := cont___char#v:3

rv#space#ret__anonymous_enum#v#assigned:5 := rv#space#ret__anonymous_enum#v#assigned:4
local_context#ghost:7 := local_context#ghost:6

HTD/call-arg:6 := HTD/call-arg:5
HTD#assigned:7 := HTD#assigned:6

err___anonymous_enum#v:4 := err___anonymous_enum#v:3
rv#space#ret__anonymous_enum#v:4 := rv#space#ret__anonymous_enum#v:3

Mem/call-arg:6 := Mem/call-arg:5
err___anonymous_enum#v#assigned:5 := err___anonymous_enum#v#assigned:4

StrictC'_service___unsigned_long#v/call-arg:4 := StrictC'_service___unsigned_long#v/call-arg:3
local_context#ghost/call-arg:6 := local_context#ghost/call-arg:5

PMS/call-arg:6 := PMS/call-arg:5
Mem#assigned:7 := Mem#assigned:6

PMS:7 := PMS:6
Mem:7 := Mem:6

GhostAssertions:7 := GhostAssertions:6
GhostAssertions#assigned:7 := GhostAssertions#assigned:6

HTD:7 := HTD:6
GhostAssertions/call-arg:6 := GhostAssertions/call-arg:5

j2

assert badge___unsigned_long#v#assigned:3

guard_n26
T

regs___struct_seL4_UserContext__C#v.x30_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x30_C#assigned:2
regs___struct_seL4_UserContext__C#v.x30_C:3 := regs___struct_seL4_UserContext__C#v.x30_C:1

local_context#ghost#assigned:14 := local_context#ghost#assigned:7
regs___struct_seL4_UserContext__C#v.x2_C:3 := regs___struct_seL4_UserContext__C#v.x2_C:1
regs___struct_seL4_UserContext__C#v.x21_C:3 := regs___struct_seL4_UserContext__C#v.x21_C:1
regs___struct_seL4_UserContext__C#v.x27_C:3 := regs___struct_seL4_UserContext__C#v.x27_C:1

regs___struct_seL4_UserContext__C#v.x2_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x2_C#assigned:2
regs___struct_seL4_UserContext__C#v.x0_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x0_C#assigned:2

s___ptr_to_char#v/call-arg:7 := s___ptr_to_char#v/call-arg:1
PMS#assigned:14 := PMS#assigned:7

regs___struct_seL4_UserContext__C#v.x16_C:3 := regs___struct_seL4_UserContext__C#v.x16_C:1
regs___struct_seL4_UserContext__C#v.x12_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x12_C#assigned:2

arch_flags___unsigned_char#v/call-arg:3 := arch_flags___unsigned_char#v/call-arg:1
regs___struct_seL4_UserContext__C#v.x17_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x17_C#assigned:2

regs___struct_seL4_UserContext__C#v.tpidr_el0_C:3 := regs___struct_seL4_UserContext__C#v.tpidr_el0_C:1
regs___struct_seL4_UserContext__C#v.x22_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x22_C#assigned:2

ret__int#v#assigned:6 := ret__int#v#assigned:2
regs___struct_seL4_UserContext__C#v.x10_C:3 := regs___struct_seL4_UserContext__C#v.x10_C:1

regs___struct_seL4_UserContext__C#v.tpidr_el0_C#assigned:4 := regs___struct_seL4_UserContext__C#v.tpidr_el0_C#assigned:2
rv#space#ret__anonymous_enum#v#assigned:7 := rv#space#ret__anonymous_enum#v#assigned:5

regs___struct_seL4_UserContext__C#v.x19_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x19_C#assigned:2
local_context#ghost:14 := local_context#ghost:7

regs___struct_seL4_UserContext__C#v.x8_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x8_C#assigned:2
regs___struct_seL4_UserContext__C#v.x23_C:3 := regs___struct_seL4_UserContext__C#v.x23_C:1

HTD/call-arg:13 := HTD/call-arg:6
regs___struct_seL4_UserContext__C#v.x18_C:3 := regs___struct_seL4_UserContext__C#v.x18_C:1

regs___struct_seL4_UserContext__C#v.x18_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x18_C#assigned:2
HTD#assigned:14 := HTD#assigned:7

regs___struct_seL4_UserContext__C#v.x16_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x16_C#assigned:2
err___anonymous_enum#v:6 := err___anonymous_enum#v:4

regs___struct_seL4_UserContext__C#v.pc_C:3 := regs___struct_seL4_UserContext__C#v.pc_C:1
regs___struct_seL4_UserContext__C#v.x5_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x5_C#assigned:2

regs___struct_seL4_UserContext__C#v.x15_C:3 := regs___struct_seL4_UserContext__C#v.x15_C:1
regs___struct_seL4_UserContext__C#v.x4_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x4_C#assigned:2

regs___struct_seL4_UserContext__C#v.x26_C:3 := regs___struct_seL4_UserContext__C#v.x26_C:1
regs___struct_seL4_UserContext__C#v.x4_C:3 := regs___struct_seL4_UserContext__C#v.x4_C:1

count___unsigned_long#v/call-arg:3 := count___unsigned_long#v/call-arg:1
regs___struct_seL4_UserContext__C#v.x24_C:3 := regs___struct_seL4_UserContext__C#v.x24_C:1

regs___struct_seL4_UserContext__C#v.x21_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x21_C#assigned:2
regs___struct_seL4_UserContext__C#v.x26_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x26_C#assigned:2
regs___struct_seL4_UserContext__C#v.x14_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x14_C#assigned:2

regs___struct_seL4_UserContext__C#v.x13_C:3 := regs___struct_seL4_UserContext__C#v.x13_C:1
regs___struct_seL4_UserContext__C#v.tpidrro_el0_C:3 := regs___struct_seL4_UserContext__C#v.tpidrro_el0_C:1

rv#space#ret__anonymous_enum#v:6 := rv#space#ret__anonymous_enum#v:4
Mem/call-arg:13 := Mem/call-arg:6

regs___struct_seL4_UserContext__C#v.x3_C:3 := regs___struct_seL4_UserContext__C#v.x3_C:1
err___anonymous_enum#v#assigned:7 := err___anonymous_enum#v#assigned:5

regs___struct_seL4_UserContext__C#v.x24_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x24_C#assigned:2
regs___struct_seL4_UserContext__C#v.x9_C:3 := regs___struct_seL4_UserContext__C#v.x9_C:1

regs___struct_seL4_UserContext__C#v.x3_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x3_C#assigned:2
regs___struct_seL4_UserContext__C#v.x1_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x1_C#assigned:2

regs___struct_seL4_UserContext__C#v.x7_C:3 := regs___struct_seL4_UserContext__C#v.x7_C:1
regs___struct_seL4_UserContext__C#v.spsr_C#assigned:4 := regs___struct_seL4_UserContext__C#v.spsr_C#assigned:2

regs___struct_seL4_UserContext__C#v.x7_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x7_C#assigned:2
regs___struct_seL4_UserContext__C#v.x22_C:3 := regs___struct_seL4_UserContext__C#v.x22_C:1
regs___struct_seL4_UserContext__C#v.x17_C:3 := regs___struct_seL4_UserContext__C#v.x17_C:1
regs___struct_seL4_UserContext__C#v.x1_C:3 := regs___struct_seL4_UserContext__C#v.x1_C:1

StrictC'_service___unsigned_long#v/call-arg:6 := StrictC'_service___unsigned_long#v/call-arg:4
regs___struct_seL4_UserContext__C#v.x14_C:3 := regs___struct_seL4_UserContext__C#v.x14_C:1
regs___struct_seL4_UserContext__C#v.spsr_C:3 := regs___struct_seL4_UserContext__C#v.spsr_C:1

local_context#ghost/call-arg:13 := local_context#ghost/call-arg:6
regs___struct_seL4_UserContext__C#v.x29_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x29_C#assigned:2

regs___struct_seL4_UserContext__C#v.x25_C:3 := regs___struct_seL4_UserContext__C#v.x25_C:1
PMS/call-arg:13 := PMS/call-arg:6

regs___struct_seL4_UserContext__C#v.x5_C:3 := regs___struct_seL4_UserContext__C#v.x5_C:1
regs___struct_seL4_UserContext__C#v.x28_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x28_C#assigned:2

regs___struct_seL4_UserContext__C#v.x19_C:3 := regs___struct_seL4_UserContext__C#v.x19_C:1
Mem#assigned:14 := Mem#assigned:7

PMS:14 := PMS:7
regs___struct_seL4_UserContext__C#v.x6_C:3 := regs___struct_seL4_UserContext__C#v.x6_C:1

regs___struct_seL4_UserContext__C#v.pc_C#assigned:4 := regs___struct_seL4_UserContext__C#v.pc_C#assigned:2
regs___struct_seL4_UserContext__C#v.sp_C:3 := regs___struct_seL4_UserContext__C#v.sp_C:1
regs___struct_seL4_UserContext__C#v.x20_C:3 := regs___struct_seL4_UserContext__C#v.x20_C:1

regs___struct_seL4_UserContext__C#v.x9_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x9_C#assigned:2
regs___struct_seL4_UserContext__C#v.x29_C:3 := regs___struct_seL4_UserContext__C#v.x29_C:1

regs___struct_seL4_UserContext__C#v.sp_C#assigned:4 := regs___struct_seL4_UserContext__C#v.sp_C#assigned:2
Mem:14 := Mem:7

regs___struct_seL4_UserContext__C#v.x28_C:3 := regs___struct_seL4_UserContext__C#v.x28_C:1
GhostAssertions:14 := GhostAssertions:7

regs___struct_seL4_UserContext__C#v.x6_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x6_C#assigned:2
ret__int#v:5 := ret__int#v:1

regs___struct_seL4_UserContext__C#v.tpidrro_el0_C#assigned:4 := regs___struct_seL4_UserContext__C#v.tpidrro_el0_C#assigned:2
regs___struct_seL4_UserContext__C#v.x23_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x23_C#assigned:2
regs___struct_seL4_UserContext__C#v.x13_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x13_C#assigned:2
regs___struct_seL4_UserContext__C#v.x20_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x20_C#assigned:2

regs___struct_seL4_UserContext__C#v.x8_C:3 := regs___struct_seL4_UserContext__C#v.x8_C:1
suspend_source___signed_char#v/call-arg:3 := suspend_source___signed_char#v/call-arg:1

regs___struct_seL4_UserContext__C#v.x27_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x27_C#assigned:2
regs___ptr_to_struct_seL4_UserContext__C#v/call-arg:3 := regs___ptr_to_struct_seL4_UserContext__C#v/call-arg:1

GhostAssertions#assigned:14 := GhostAssertions#assigned:7
HTD:14 := HTD:7

GhostAssertions/call-arg:13 := GhostAssertions/call-arg:6
regs___struct_seL4_UserContext__C#v.x0_C:3 := regs___struct_seL4_UserContext__C#v.x0_C:1

regs___struct_seL4_UserContext__C#v.x15_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x15_C#assigned:2
regs___struct_seL4_UserContext__C#v.x25_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x25_C#assigned:2

regs___struct_seL4_UserContext__C#v.x12_C:3 := regs___struct_seL4_UserContext__C#v.x12_C:1
regs___struct_seL4_UserContext__C#v.x11_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x11_C#assigned:2

regs___struct_seL4_UserContext__C#v.x11_C:3 := regs___struct_seL4_UserContext__C#v.x11_C:1
regs___struct_seL4_UserContext__C#v.x10_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x10_C#assigned:2

j7

F

ret__int#v:2 := IfThenElse(Less(badge___unsigned_long#v:2, WordCastSigned(64)), 1, 0)

26

T

loop#2#count:3 := (loop#2#count:2 + 1)

2

assert HTD#assigned:14
and Mem#assigned:14
and PMS#assigned:14

and GhostAssertions#assigned:14

loop_3_latch_2

ret__int#v#assigned:3 := badge___unsigned_long#v#assigned:3

upd_n26

assert ret__int#v#assigned:3

guard_n25

Not((ret__int#v:2 = 0))

25
T

assert badge___unsigned_long#v#assigned:3

guard_n24
T

ret__int#v#assigned:5 := ret__int#v#assigned:3
ret__int#v:4 := ret__int#v:2

j3

F

assert (0 <s16)
and (0 ≤s0)

and Less(badge___unsigned_long#v:2, WordCastSigned(64))
and PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ("Array", 16, Type ('Word', 8)), size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='pd_names'))

24

T

assert ret__int#v#assigned:5

guard_n22

Not((ret__int#v:4 = 0))

22
T

assert badge___unsigned_long#v#assigned:3
and Mem#assigned:7

guard_n23
T

ret__int#v:3 := IfThenElse(Not((WordCast(MemAcc(Mem:7, (ExprSymbol(typ=TypeBitVec(size=64), name='pd_names') + ((16 * badge___unsigned_long#v:2) + (1 * 0))))) = 0)), 1, 0)

23
T

ret__int#v#assigned:4 := And(badge___unsigned_long#v#assigned:3, Mem#assigned:7)

upd_n23

ret__int#v#assigned:5 := ret__int#v#assigned:4
ret__int#v:4 := ret__int#v:3

j4

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ('Word', 8), size=1)), ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'))

19
T

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ('Word', 8), size=1)), ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'))

21
F

assert PMS#assigned:7
and HTD#assigned:7

and GhostAssertions#assigned:7
and Mem#assigned:7

and local_context#ghost#assigned:7

guard_n18
T

assert PMS#assigned:7
and HTD#assigned:7

and GhostAssertions#assigned:7
and Mem#assigned:7

and local_context#ghost#assigned:7

guard_n20
T

s___ptr_to_char#v/call-arg:2 := ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL')
Mem/call-arg:7 := Mem:7
HTD/call-arg:7 := HTD:7
PMS/call-arg:7 := PMS:7

GhostAssertions/call-arg:7 := GhostAssertions:7
local_context#ghost/call-arg:7 := local_context#ghost:7

call_stash_20_pred_1
T

assert True()

call_pre_20_pred_1

Mem:8, HTD:8, PMS:8, GhostAssertions:8, local_context#ghost:8 := tmp.fail(ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'), Mem:7, HTD:7, PMS:7, GhostAssertions:7, local_context#ghost:7)

20

assume True()

call_post_20

Mem#assigned:8 := And(And(And(And(Mem#assigned:7, HTD#assigned:7), PMS#assigned:7), GhostAssertions#assigned:7), local_context#ghost#assigned:7)
HTD#assigned:8 := And(And(And(And(Mem#assigned:7, HTD#assigned:7), PMS#assigned:7), GhostAssertions#assigned:7), local_context#ghost#assigned:7)
PMS#assigned:8 := And(And(And(And(Mem#assigned:7, HTD#assigned:7), PMS#assigned:7), GhostAssertions#assigned:7), local_context#ghost#assigned:7)

GhostAssertions#assigned:8 := And(And(And(And(Mem#assigned:7, HTD#assigned:7), PMS#assigned:7), GhostAssertions#assigned:7), local_context#ghost#assigned:7)
local_context#ghost#assigned:8 := And(And(And(And(Mem#assigned:7, HTD#assigned:7), PMS#assigned:7), GhostAssertions#assigned:7), local_context#ghost#assigned:7)

upd_n20

local_context#ghost#assigned:11 := local_context#ghost#assigned:8
s___ptr_to_char#v/call-arg:5 := s___ptr_to_char#v/call-arg:2

PMS#assigned:11 := PMS#assigned:8
local_context#ghost:11 := local_context#ghost:8

HTD/call-arg:10 := HTD/call-arg:7
HTD#assigned:11 := HTD#assigned:8
Mem/call-arg:10 := Mem/call-arg:7

local_context#ghost/call-arg:10 := local_context#ghost/call-arg:7
PMS/call-arg:10 := PMS/call-arg:7
Mem#assigned:11 := Mem#assigned:8

PMS:11 := PMS:8
Mem:11 := Mem:8

GhostAssertions:11 := GhostAssertions:8
GhostAssertions#assigned:11 := GhostAssertions#assigned:8

HTD:11 := HTD:8
GhostAssertions/call-arg:10 := GhostAssertions/call-arg:7

j5

assert Not((8 = 0))
and PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeStruct(name='tmp.seL4_UserContext__C')), ExprSymbol(typ=TypeBitVec(size=64), name='gregs'))

13

assert PMS#assigned:11
and HTD#assigned:11

and tcb_cap___unsigned_long#v#assigned:3
and GhostAssertions#assigned:11

and Mem#assigned:11
and local_context#ghost#assigned:11

guard_n12
T

s___ptr_to_char#v/call-arg:2 := ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL')
Mem/call-arg:7 := Mem:7
HTD/call-arg:7 := HTD:7
PMS/call-arg:7 := PMS:7

GhostAssertions/call-arg:7 := GhostAssertions:7
local_context#ghost/call-arg:7 := local_context#ghost:7

call_stash_18_pred_1
T

assert True()

call_pre_18_pred_1

Mem:8, HTD:8, PMS:8, GhostAssertions:8, local_context#ghost:8 := tmp.puts(ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'), Mem:7, HTD:7, PMS:7, GhostAssertions:7, local_context#ghost:7)

18

assume True()

call_post_18

Mem#assigned:8 := And(And(And(And(Mem#assigned:7, HTD#assigned:7), PMS#assigned:7), GhostAssertions#assigned:7), local_context#ghost#assigned:7)
HTD#assigned:8 := And(And(And(And(Mem#assigned:7, HTD#assigned:7), PMS#assigned:7), GhostAssertions#assigned:7), local_context#ghost#assigned:7)
PMS#assigned:8 := And(And(And(And(Mem#assigned:7, HTD#assigned:7), PMS#assigned:7), GhostAssertions#assigned:7), local_context#ghost#assigned:7)

GhostAssertions#assigned:8 := And(And(And(And(Mem#assigned:7, HTD#assigned:7), PMS#assigned:7), GhostAssertions#assigned:7), local_context#ghost#assigned:7)
local_context#ghost#assigned:8 := And(And(And(And(Mem#assigned:7, HTD#assigned:7), PMS#assigned:7), GhostAssertions#assigned:7), local_context#ghost#assigned:7)

upd_n18

assert badge___unsigned_long#v#assigned:3

guard_n17

assert Less(badge___unsigned_long#v:2, WordCastSigned(64))
and PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ("Array", 16, Type ('Word', 8)), size=64)), ExprSymbol(typ=TypeBitVec(size=64), name='pd_names'))

17

T

assert PMS#assigned:8
and HTD#assigned:8

and badge___unsigned_long#v#assigned:3
and GhostAssertions#assigned:8

and Mem#assigned:8
and local_context#ghost#assigned:8

guard_n16
T

s___ptr_to_char#v/call-arg:3 := (ExprSymbol(typ=TypeBitVec(size=64), name='pd_names') + (badge___unsigned_long#v:2 * 16))
Mem/call-arg:8 := Mem:8
HTD/call-arg:8 := HTD:8
PMS/call-arg:8 := PMS:8

GhostAssertions/call-arg:8 := GhostAssertions:8
local_context#ghost/call-arg:8 := local_context#ghost:8

call_stash_16_pred_1
T

assert True()

call_pre_16_pred_1

Mem:9, HTD:9, PMS:9, GhostAssertions:9, local_context#ghost:9 := tmp.puts((ExprSymbol(typ=TypeBitVec(size=64), name='pd_names') + (badge___unsigned_long#v:2 * 16)), Mem:8, HTD:8, PMS:8, GhostAssertions:8, local_context#ghost:8)

16

assume True()

call_post_16

Mem#assigned:9 := And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:8), HTD#assigned:8), PMS#assigned:8), GhostAssertions#assigned:8), local_context#ghost#assigned:8)
HTD#assigned:9 := And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:8), HTD#assigned:8), PMS#assigned:8), GhostAssertions#assigned:8), local_context#ghost#assigned:8)
PMS#assigned:9 := And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:8), HTD#assigned:8), PMS#assigned:8), GhostAssertions#assigned:8), local_context#ghost#assigned:8)

GhostAssertions#assigned:9 := And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:8), HTD#assigned:8), PMS#assigned:8), GhostAssertions#assigned:8), local_context#ghost#assigned:8)
local_context#ghost#assigned:9 := And(And(And(And(And(badge___unsigned_long#v#assigned:3, Mem#assigned:8), HTD#assigned:8), PMS#assigned:8), GhostAssertions#assigned:8), local_context#ghost#assigned:8)

upd_n16

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ('Word', 8), size=1)), ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'))

15

assert PMS#assigned:9
and HTD#assigned:9

and GhostAssertions#assigned:9
and Mem#assigned:9

and local_context#ghost#assigned:9

guard_n14
T

s___ptr_to_char#v/call-arg:4 := ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL')
Mem/call-arg:9 := Mem:9
HTD/call-arg:9 := HTD:9
PMS/call-arg:9 := PMS:9

GhostAssertions/call-arg:9 := GhostAssertions:9
local_context#ghost/call-arg:9 := local_context#ghost:9

call_stash_14_pred_1
T

assert True()

call_pre_14_pred_1

Mem:10, HTD:10, PMS:10, GhostAssertions:10, local_context#ghost:10 := tmp.puts(ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'), Mem:9, HTD:9, PMS:9, GhostAssertions:9, local_context#ghost:9)

14

assume True()

call_post_14

Mem#assigned:10 := And(And(And(And(Mem#assigned:9, HTD#assigned:9), PMS#assigned:9), GhostAssertions#assigned:9), local_context#ghost#assigned:9)
HTD#assigned:10 := And(And(And(And(Mem#assigned:9, HTD#assigned:9), PMS#assigned:9), GhostAssertions#assigned:9), local_context#ghost#assigned:9)
PMS#assigned:10 := And(And(And(And(Mem#assigned:9, HTD#assigned:9), PMS#assigned:9), GhostAssertions#assigned:9), local_context#ghost#assigned:9)

GhostAssertions#assigned:10 := And(And(And(And(Mem#assigned:9, HTD#assigned:9), PMS#assigned:9), GhostAssertions#assigned:9), local_context#ghost#assigned:9)
local_context#ghost#assigned:10 := And(And(And(And(Mem#assigned:9, HTD#assigned:9), PMS#assigned:9), GhostAssertions#assigned:9), local_context#ghost#assigned:9)

upd_n14

local_context#ghost#assigned:11 := local_context#ghost#assigned:10
s___ptr_to_char#v/call-arg:5 := s___ptr_to_char#v/call-arg:4

PMS#assigned:11 := PMS#assigned:10
local_context#ghost:11 := local_context#ghost:10

HTD/call-arg:10 := HTD/call-arg:9
HTD#assigned:11 := HTD#assigned:10
Mem/call-arg:10 := Mem/call-arg:9

local_context#ghost/call-arg:10 := local_context#ghost/call-arg:9
PMS/call-arg:10 := PMS/call-arg:9
Mem#assigned:11 := Mem#assigned:10

PMS:11 := PMS:10
Mem:11 := Mem:10

GhostAssertions:11 := GhostAssertions:10
GhostAssertions#assigned:11 := GhostAssertions#assigned:10

HTD:11 := HTD:10
GhostAssertions/call-arg:10 := GhostAssertions/call-arg:9

j6

StrictC'_service___unsigned_long#v/call-arg:5 := tcb_cap___unsigned_long#v:2
suspend_source___signed_char#v/call-arg:2 := WordCastSigned(0)
arch_flags___unsigned_char#v/call-arg:2 := WordCastSigned(0)

count___unsigned_long#v/call-arg:2 := WordCast(DividedBy(288, 8))
regs___ptr_to_struct_seL4_UserContext__C#v/call-arg:2 := ExprSymbol(typ=TypeBitVec(size=64), name='gregs')

Mem/call-arg:11 := Mem:11
HTD/call-arg:11 := HTD:11
PMS/call-arg:11 := PMS:11

GhostAssertions/call-arg:11 := GhostAssertions:11
local_context#ghost/call-arg:11 := local_context#ghost:11

call_stash_12_pred_1
T

assert True()

call_pre_12_pred_1

rv#space#ret__anonymous_enum#v:5, Mem:12, HTD:12, PMS:12, GhostAssertions:12, local_context#ghost:12 := tmp.seL4_TCB_ReadRegisters(tcb_cap___unsigned_long#v:2, WordCastSigned(0), WordCastSigned(0), WordCast(DividedBy(288, 8)), ExprSymbol(typ=TypeBitVec(size=64), name='gregs'), Mem:11, HTD:11, PMS:11, GhostAssertions:11, local_context#ghost:11)

12

assume True()

call_post_12

rv#space#ret__anonymous_enum#v#assigned:6 := And(And(And(And(And(tcb_cap___unsigned_long#v#assigned:3, Mem#assigned:11), HTD#assigned:11), PMS#assigned:11), GhostAssertions#assigned:11), local_context#ghost#assigned:11)
Mem#assigned:12 := And(And(And(And(And(tcb_cap___unsigned_long#v#assigned:3, Mem#assigned:11), HTD#assigned:11), PMS#assigned:11), GhostAssertions#assigned:11), local_context#ghost#assigned:11)
HTD#assigned:12 := And(And(And(And(And(tcb_cap___unsigned_long#v#assigned:3, Mem#assigned:11), HTD#assigned:11), PMS#assigned:11), GhostAssertions#assigned:11), local_context#ghost#assigned:11)
PMS#assigned:12 := And(And(And(And(And(tcb_cap___unsigned_long#v#assigned:3, Mem#assigned:11), HTD#assigned:11), PMS#assigned:11), GhostAssertions#assigned:11), local_context#ghost#assigned:11)

GhostAssertions#assigned:12 := And(And(And(And(And(tcb_cap___unsigned_long#v#assigned:3, Mem#assigned:11), HTD#assigned:11), PMS#assigned:11), GhostAssertions#assigned:11), local_context#ghost#assigned:11)
local_context#ghost#assigned:12 := And(And(And(And(And(tcb_cap___unsigned_long#v#assigned:3, Mem#assigned:11), HTD#assigned:11), PMS#assigned:11), GhostAssertions#assigned:11), local_context#ghost#assigned:11)

upd_n12

assert rv#space#ret__anonymous_enum#v#assigned:6

guard_n11

err___anonymous_enum#v:5 := WordCast(rv#space#ret__anonymous_enum#v:5)

11
T

err___anonymous_enum#v#assigned:6 := rv#space#ret__anonymous_enum#v#assigned:6

upd_n11

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeStruct(name='tmp.seL4_UserContext__C')), ExprSymbol(typ=TypeBitVec(size=64), name='gregs'))

10

assert Mem#assigned:12

guard_n9
T

regs___struct_seL4_UserContext__C#v.pc_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 0))
regs___struct_seL4_UserContext__C#v.sp_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 8))

regs___struct_seL4_UserContext__C#v.spsr_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 16))
regs___struct_seL4_UserContext__C#v.x0_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 24))
regs___struct_seL4_UserContext__C#v.x1_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 32))
regs___struct_seL4_UserContext__C#v.x2_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 40))
regs___struct_seL4_UserContext__C#v.x3_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 48))
regs___struct_seL4_UserContext__C#v.x4_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 56))
regs___struct_seL4_UserContext__C#v.x5_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 64))
regs___struct_seL4_UserContext__C#v.x6_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 72))
regs___struct_seL4_UserContext__C#v.x7_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 80))
regs___struct_seL4_UserContext__C#v.x8_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 88))
regs___struct_seL4_UserContext__C#v.x16_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 96))
regs___struct_seL4_UserContext__C#v.x17_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 104))
regs___struct_seL4_UserContext__C#v.x18_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 112))
regs___struct_seL4_UserContext__C#v.x29_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 120))
regs___struct_seL4_UserContext__C#v.x30_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 128))
regs___struct_seL4_UserContext__C#v.x9_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 136))
regs___struct_seL4_UserContext__C#v.x10_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 144))
regs___struct_seL4_UserContext__C#v.x11_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 152))
regs___struct_seL4_UserContext__C#v.x12_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 160))
regs___struct_seL4_UserContext__C#v.x13_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 168))
regs___struct_seL4_UserContext__C#v.x14_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 176))
regs___struct_seL4_UserContext__C#v.x15_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 184))
regs___struct_seL4_UserContext__C#v.x19_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 192))
regs___struct_seL4_UserContext__C#v.x20_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 200))
regs___struct_seL4_UserContext__C#v.x21_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 208))
regs___struct_seL4_UserContext__C#v.x22_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 216))
regs___struct_seL4_UserContext__C#v.x23_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 224))
regs___struct_seL4_UserContext__C#v.x24_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 232))
regs___struct_seL4_UserContext__C#v.x25_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 240))
regs___struct_seL4_UserContext__C#v.x26_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 248))
regs___struct_seL4_UserContext__C#v.x27_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 256))
regs___struct_seL4_UserContext__C#v.x28_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 264))

regs___struct_seL4_UserContext__C#v.tpidr_el0_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 272))
regs___struct_seL4_UserContext__C#v.tpidrro_el0_C:2 := MemAcc(Mem:12, (ExprSymbol(typ=TypeBitVec(size=64), name='gregs') + 280))

9
T

regs___struct_seL4_UserContext__C#v.pc_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.sp_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.spsr_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x0_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x1_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x2_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x3_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x4_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x5_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x6_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x7_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x8_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x16_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x17_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x18_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x29_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x30_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x9_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x10_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x11_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x12_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x13_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x14_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x15_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x19_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x20_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x21_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x22_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x23_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x24_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x25_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x26_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x27_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.x28_C#assigned:3 := Mem#assigned:12

regs___struct_seL4_UserContext__C#v.tpidr_el0_C#assigned:3 := Mem#assigned:12
regs___struct_seL4_UserContext__C#v.tpidrro_el0_C#assigned:3 := Mem#assigned:12

upd_n9

assert err___anonymous_enum#v#assigned:6

guard_n8

Not((err___anonymous_enum#v:5 = 0))

8
T

assert PAlignValid(ExprType(typ=TypeBuiltin(builtin=<Builtin.TYPE: 'Type'>), val=TypeArray(element_typ=Type ('Word', 8), size=1)), ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'))

7
T

regs___struct_seL4_UserContext__C#v.x30_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x30_C#assigned:3
regs___struct_seL4_UserContext__C#v.x30_C:3 := regs___struct_seL4_UserContext__C#v.x30_C:2

local_context#ghost#assigned:14 := local_context#ghost#assigned:12
regs___struct_seL4_UserContext__C#v.x2_C:3 := regs___struct_seL4_UserContext__C#v.x2_C:2
regs___struct_seL4_UserContext__C#v.x21_C:3 := regs___struct_seL4_UserContext__C#v.x21_C:2
regs___struct_seL4_UserContext__C#v.x27_C:3 := regs___struct_seL4_UserContext__C#v.x27_C:2

regs___struct_seL4_UserContext__C#v.x2_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x2_C#assigned:3
regs___struct_seL4_UserContext__C#v.x0_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x0_C#assigned:3

s___ptr_to_char#v/call-arg:7 := s___ptr_to_char#v/call-arg:5
PMS#assigned:14 := PMS#assigned:12

regs___struct_seL4_UserContext__C#v.x16_C:3 := regs___struct_seL4_UserContext__C#v.x16_C:2
regs___struct_seL4_UserContext__C#v.x12_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x12_C#assigned:3

arch_flags___unsigned_char#v/call-arg:3 := arch_flags___unsigned_char#v/call-arg:2
regs___struct_seL4_UserContext__C#v.x17_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x17_C#assigned:3

regs___struct_seL4_UserContext__C#v.tpidr_el0_C:3 := regs___struct_seL4_UserContext__C#v.tpidr_el0_C:2
regs___struct_seL4_UserContext__C#v.x22_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x22_C#assigned:3

ret__int#v#assigned:6 := ret__int#v#assigned:5
regs___struct_seL4_UserContext__C#v.x10_C:3 := regs___struct_seL4_UserContext__C#v.x10_C:2

regs___struct_seL4_UserContext__C#v.tpidr_el0_C#assigned:4 := regs___struct_seL4_UserContext__C#v.tpidr_el0_C#assigned:3
rv#space#ret__anonymous_enum#v#assigned:7 := rv#space#ret__anonymous_enum#v#assigned:6

regs___struct_seL4_UserContext__C#v.x19_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x19_C#assigned:3
local_context#ghost:14 := local_context#ghost:12

regs___struct_seL4_UserContext__C#v.x8_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x8_C#assigned:3
regs___struct_seL4_UserContext__C#v.x23_C:3 := regs___struct_seL4_UserContext__C#v.x23_C:2

HTD/call-arg:13 := HTD/call-arg:11
regs___struct_seL4_UserContext__C#v.x18_C:3 := regs___struct_seL4_UserContext__C#v.x18_C:2

regs___struct_seL4_UserContext__C#v.x18_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x18_C#assigned:3
HTD#assigned:14 := HTD#assigned:12

regs___struct_seL4_UserContext__C#v.x16_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x16_C#assigned:3
err___anonymous_enum#v:6 := err___anonymous_enum#v:5

regs___struct_seL4_UserContext__C#v.pc_C:3 := regs___struct_seL4_UserContext__C#v.pc_C:2
regs___struct_seL4_UserContext__C#v.x5_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x5_C#assigned:3

regs___struct_seL4_UserContext__C#v.x15_C:3 := regs___struct_seL4_UserContext__C#v.x15_C:2
regs___struct_seL4_UserContext__C#v.x4_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x4_C#assigned:3

regs___struct_seL4_UserContext__C#v.x26_C:3 := regs___struct_seL4_UserContext__C#v.x26_C:2
regs___struct_seL4_UserContext__C#v.x4_C:3 := regs___struct_seL4_UserContext__C#v.x4_C:2

count___unsigned_long#v/call-arg:3 := count___unsigned_long#v/call-arg:2
regs___struct_seL4_UserContext__C#v.x24_C:3 := regs___struct_seL4_UserContext__C#v.x24_C:2

regs___struct_seL4_UserContext__C#v.x21_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x21_C#assigned:3
regs___struct_seL4_UserContext__C#v.x26_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x26_C#assigned:3
regs___struct_seL4_UserContext__C#v.x14_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x14_C#assigned:3

regs___struct_seL4_UserContext__C#v.x13_C:3 := regs___struct_seL4_UserContext__C#v.x13_C:2
regs___struct_seL4_UserContext__C#v.tpidrro_el0_C:3 := regs___struct_seL4_UserContext__C#v.tpidrro_el0_C:2

rv#space#ret__anonymous_enum#v:6 := rv#space#ret__anonymous_enum#v:5
Mem/call-arg:13 := Mem/call-arg:11

regs___struct_seL4_UserContext__C#v.x3_C:3 := regs___struct_seL4_UserContext__C#v.x3_C:2
err___anonymous_enum#v#assigned:7 := err___anonymous_enum#v#assigned:6

regs___struct_seL4_UserContext__C#v.x24_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x24_C#assigned:3
regs___struct_seL4_UserContext__C#v.x9_C:3 := regs___struct_seL4_UserContext__C#v.x9_C:2

regs___struct_seL4_UserContext__C#v.x3_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x3_C#assigned:3
regs___struct_seL4_UserContext__C#v.x1_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x1_C#assigned:3

regs___struct_seL4_UserContext__C#v.x7_C:3 := regs___struct_seL4_UserContext__C#v.x7_C:2
regs___struct_seL4_UserContext__C#v.spsr_C#assigned:4 := regs___struct_seL4_UserContext__C#v.spsr_C#assigned:3

regs___struct_seL4_UserContext__C#v.x7_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x7_C#assigned:3
regs___struct_seL4_UserContext__C#v.x22_C:3 := regs___struct_seL4_UserContext__C#v.x22_C:2
regs___struct_seL4_UserContext__C#v.x17_C:3 := regs___struct_seL4_UserContext__C#v.x17_C:2
regs___struct_seL4_UserContext__C#v.x1_C:3 := regs___struct_seL4_UserContext__C#v.x1_C:2

StrictC'_service___unsigned_long#v/call-arg:6 := StrictC'_service___unsigned_long#v/call-arg:5
regs___struct_seL4_UserContext__C#v.x14_C:3 := regs___struct_seL4_UserContext__C#v.x14_C:2
regs___struct_seL4_UserContext__C#v.spsr_C:3 := regs___struct_seL4_UserContext__C#v.spsr_C:2

local_context#ghost/call-arg:13 := local_context#ghost/call-arg:11
regs___struct_seL4_UserContext__C#v.x29_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x29_C#assigned:3

regs___struct_seL4_UserContext__C#v.x25_C:3 := regs___struct_seL4_UserContext__C#v.x25_C:2
PMS/call-arg:13 := PMS/call-arg:11

regs___struct_seL4_UserContext__C#v.x5_C:3 := regs___struct_seL4_UserContext__C#v.x5_C:2
regs___struct_seL4_UserContext__C#v.x28_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x28_C#assigned:3

regs___struct_seL4_UserContext__C#v.x19_C:3 := regs___struct_seL4_UserContext__C#v.x19_C:2
Mem#assigned:14 := Mem#assigned:12

PMS:14 := PMS:12
regs___struct_seL4_UserContext__C#v.x6_C:3 := regs___struct_seL4_UserContext__C#v.x6_C:2

regs___struct_seL4_UserContext__C#v.pc_C#assigned:4 := regs___struct_seL4_UserContext__C#v.pc_C#assigned:3
regs___struct_seL4_UserContext__C#v.sp_C:3 := regs___struct_seL4_UserContext__C#v.sp_C:2
regs___struct_seL4_UserContext__C#v.x20_C:3 := regs___struct_seL4_UserContext__C#v.x20_C:2

regs___struct_seL4_UserContext__C#v.x9_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x9_C#assigned:3
regs___struct_seL4_UserContext__C#v.x29_C:3 := regs___struct_seL4_UserContext__C#v.x29_C:2

regs___struct_seL4_UserContext__C#v.sp_C#assigned:4 := regs___struct_seL4_UserContext__C#v.sp_C#assigned:3
Mem:14 := Mem:12

regs___struct_seL4_UserContext__C#v.x28_C:3 := regs___struct_seL4_UserContext__C#v.x28_C:2
GhostAssertions:14 := GhostAssertions:12

regs___struct_seL4_UserContext__C#v.x6_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x6_C#assigned:3
ret__int#v:5 := ret__int#v:4

regs___struct_seL4_UserContext__C#v.tpidrro_el0_C#assigned:4 := regs___struct_seL4_UserContext__C#v.tpidrro_el0_C#assigned:3
regs___struct_seL4_UserContext__C#v.x23_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x23_C#assigned:3
regs___struct_seL4_UserContext__C#v.x13_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x13_C#assigned:3
regs___struct_seL4_UserContext__C#v.x20_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x20_C#assigned:3

regs___struct_seL4_UserContext__C#v.x8_C:3 := regs___struct_seL4_UserContext__C#v.x8_C:2
suspend_source___signed_char#v/call-arg:3 := suspend_source___signed_char#v/call-arg:2

regs___struct_seL4_UserContext__C#v.x27_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x27_C#assigned:3
regs___ptr_to_struct_seL4_UserContext__C#v/call-arg:3 := regs___ptr_to_struct_seL4_UserContext__C#v/call-arg:2

GhostAssertions#assigned:14 := GhostAssertions#assigned:12
HTD:14 := HTD:12

GhostAssertions/call-arg:13 := GhostAssertions/call-arg:11
regs___struct_seL4_UserContext__C#v.x0_C:3 := regs___struct_seL4_UserContext__C#v.x0_C:2

regs___struct_seL4_UserContext__C#v.x15_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x15_C#assigned:3
regs___struct_seL4_UserContext__C#v.x25_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x25_C#assigned:3

regs___struct_seL4_UserContext__C#v.x12_C:3 := regs___struct_seL4_UserContext__C#v.x12_C:2
regs___struct_seL4_UserContext__C#v.x11_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x11_C#assigned:3

regs___struct_seL4_UserContext__C#v.x11_C:3 := regs___struct_seL4_UserContext__C#v.x11_C:2
regs___struct_seL4_UserContext__C#v.x10_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x10_C#assigned:3

j8

F

assert PMS#assigned:12
and HTD#assigned:12

and GhostAssertions#assigned:12
and Mem#assigned:12

and local_context#ghost#assigned:12

guard_n6

T

s___ptr_to_char#v/call-arg:6 := ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL')
Mem/call-arg:12 := Mem:12
HTD/call-arg:12 := HTD:12
PMS/call-arg:12 := PMS:12

GhostAssertions/call-arg:12 := GhostAssertions:12
local_context#ghost/call-arg:12 := local_context#ghost:12

call_stash_6_pred_1
T

assert True()

call_pre_6_pred_1

Mem:13, HTD:13, PMS:13, GhostAssertions:13, local_context#ghost:13 := tmp.fail(ExprSymbol(typ=TypeBitVec(size=64), name='STRINGLITERAL'), Mem:12, HTD:12, PMS:12, GhostAssertions:12, local_context#ghost:12)

6

assume True()

call_post_6

Mem#assigned:13 := And(And(And(And(Mem#assigned:12, HTD#assigned:12), PMS#assigned:12), GhostAssertions#assigned:12), local_context#ghost#assigned:12)
HTD#assigned:13 := And(And(And(And(Mem#assigned:12, HTD#assigned:12), PMS#assigned:12), GhostAssertions#assigned:12), local_context#ghost#assigned:12)
PMS#assigned:13 := And(And(And(And(Mem#assigned:12, HTD#assigned:12), PMS#assigned:12), GhostAssertions#assigned:12), local_context#ghost#assigned:12)

GhostAssertions#assigned:13 := And(And(And(And(Mem#assigned:12, HTD#assigned:12), PMS#assigned:12), GhostAssertions#assigned:12), local_context#ghost#assigned:12)
local_context#ghost#assigned:13 := And(And(And(And(Mem#assigned:12, HTD#assigned:12), PMS#assigned:12), GhostAssertions#assigned:12), local_context#ghost#assigned:12)

upd_n6

regs___struct_seL4_UserContext__C#v.x30_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x30_C#assigned:3
regs___struct_seL4_UserContext__C#v.x30_C:3 := regs___struct_seL4_UserContext__C#v.x30_C:2

local_context#ghost#assigned:14 := local_context#ghost#assigned:13
regs___struct_seL4_UserContext__C#v.x2_C:3 := regs___struct_seL4_UserContext__C#v.x2_C:2
regs___struct_seL4_UserContext__C#v.x21_C:3 := regs___struct_seL4_UserContext__C#v.x21_C:2
regs___struct_seL4_UserContext__C#v.x27_C:3 := regs___struct_seL4_UserContext__C#v.x27_C:2

regs___struct_seL4_UserContext__C#v.x2_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x2_C#assigned:3
regs___struct_seL4_UserContext__C#v.x0_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x0_C#assigned:3

s___ptr_to_char#v/call-arg:7 := s___ptr_to_char#v/call-arg:6
PMS#assigned:14 := PMS#assigned:13

regs___struct_seL4_UserContext__C#v.x16_C:3 := regs___struct_seL4_UserContext__C#v.x16_C:2
regs___struct_seL4_UserContext__C#v.x12_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x12_C#assigned:3

arch_flags___unsigned_char#v/call-arg:3 := arch_flags___unsigned_char#v/call-arg:2
regs___struct_seL4_UserContext__C#v.x17_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x17_C#assigned:3

regs___struct_seL4_UserContext__C#v.tpidr_el0_C:3 := regs___struct_seL4_UserContext__C#v.tpidr_el0_C:2
regs___struct_seL4_UserContext__C#v.x22_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x22_C#assigned:3

ret__int#v#assigned:6 := ret__int#v#assigned:5
regs___struct_seL4_UserContext__C#v.x10_C:3 := regs___struct_seL4_UserContext__C#v.x10_C:2

regs___struct_seL4_UserContext__C#v.tpidr_el0_C#assigned:4 := regs___struct_seL4_UserContext__C#v.tpidr_el0_C#assigned:3
rv#space#ret__anonymous_enum#v#assigned:7 := rv#space#ret__anonymous_enum#v#assigned:6

regs___struct_seL4_UserContext__C#v.x19_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x19_C#assigned:3
local_context#ghost:14 := local_context#ghost:13

regs___struct_seL4_UserContext__C#v.x8_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x8_C#assigned:3
regs___struct_seL4_UserContext__C#v.x23_C:3 := regs___struct_seL4_UserContext__C#v.x23_C:2

HTD/call-arg:13 := HTD/call-arg:12
regs___struct_seL4_UserContext__C#v.x18_C:3 := regs___struct_seL4_UserContext__C#v.x18_C:2

regs___struct_seL4_UserContext__C#v.x18_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x18_C#assigned:3
HTD#assigned:14 := HTD#assigned:13

regs___struct_seL4_UserContext__C#v.x16_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x16_C#assigned:3
err___anonymous_enum#v:6 := err___anonymous_enum#v:5

regs___struct_seL4_UserContext__C#v.pc_C:3 := regs___struct_seL4_UserContext__C#v.pc_C:2
regs___struct_seL4_UserContext__C#v.x5_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x5_C#assigned:3

regs___struct_seL4_UserContext__C#v.x15_C:3 := regs___struct_seL4_UserContext__C#v.x15_C:2
regs___struct_seL4_UserContext__C#v.x4_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x4_C#assigned:3

regs___struct_seL4_UserContext__C#v.x26_C:3 := regs___struct_seL4_UserContext__C#v.x26_C:2
regs___struct_seL4_UserContext__C#v.x4_C:3 := regs___struct_seL4_UserContext__C#v.x4_C:2

count___unsigned_long#v/call-arg:3 := count___unsigned_long#v/call-arg:2
regs___struct_seL4_UserContext__C#v.x24_C:3 := regs___struct_seL4_UserContext__C#v.x24_C:2

regs___struct_seL4_UserContext__C#v.x21_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x21_C#assigned:3
regs___struct_seL4_UserContext__C#v.x26_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x26_C#assigned:3
regs___struct_seL4_UserContext__C#v.x14_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x14_C#assigned:3

regs___struct_seL4_UserContext__C#v.x13_C:3 := regs___struct_seL4_UserContext__C#v.x13_C:2
regs___struct_seL4_UserContext__C#v.tpidrro_el0_C:3 := regs___struct_seL4_UserContext__C#v.tpidrro_el0_C:2

rv#space#ret__anonymous_enum#v:6 := rv#space#ret__anonymous_enum#v:5
Mem/call-arg:13 := Mem/call-arg:12

regs___struct_seL4_UserContext__C#v.x3_C:3 := regs___struct_seL4_UserContext__C#v.x3_C:2
err___anonymous_enum#v#assigned:7 := err___anonymous_enum#v#assigned:6

regs___struct_seL4_UserContext__C#v.x24_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x24_C#assigned:3
regs___struct_seL4_UserContext__C#v.x9_C:3 := regs___struct_seL4_UserContext__C#v.x9_C:2

regs___struct_seL4_UserContext__C#v.x3_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x3_C#assigned:3
regs___struct_seL4_UserContext__C#v.x1_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x1_C#assigned:3

regs___struct_seL4_UserContext__C#v.x7_C:3 := regs___struct_seL4_UserContext__C#v.x7_C:2
regs___struct_seL4_UserContext__C#v.spsr_C#assigned:4 := regs___struct_seL4_UserContext__C#v.spsr_C#assigned:3

regs___struct_seL4_UserContext__C#v.x7_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x7_C#assigned:3
regs___struct_seL4_UserContext__C#v.x22_C:3 := regs___struct_seL4_UserContext__C#v.x22_C:2
regs___struct_seL4_UserContext__C#v.x17_C:3 := regs___struct_seL4_UserContext__C#v.x17_C:2
regs___struct_seL4_UserContext__C#v.x1_C:3 := regs___struct_seL4_UserContext__C#v.x1_C:2

StrictC'_service___unsigned_long#v/call-arg:6 := StrictC'_service___unsigned_long#v/call-arg:5
regs___struct_seL4_UserContext__C#v.x14_C:3 := regs___struct_seL4_UserContext__C#v.x14_C:2
regs___struct_seL4_UserContext__C#v.spsr_C:3 := regs___struct_seL4_UserContext__C#v.spsr_C:2

local_context#ghost/call-arg:13 := local_context#ghost/call-arg:12
regs___struct_seL4_UserContext__C#v.x29_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x29_C#assigned:3

regs___struct_seL4_UserContext__C#v.x25_C:3 := regs___struct_seL4_UserContext__C#v.x25_C:2
PMS/call-arg:13 := PMS/call-arg:12

regs___struct_seL4_UserContext__C#v.x5_C:3 := regs___struct_seL4_UserContext__C#v.x5_C:2
regs___struct_seL4_UserContext__C#v.x28_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x28_C#assigned:3

regs___struct_seL4_UserContext__C#v.x19_C:3 := regs___struct_seL4_UserContext__C#v.x19_C:2
Mem#assigned:14 := Mem#assigned:13

PMS:14 := PMS:13
regs___struct_seL4_UserContext__C#v.x6_C:3 := regs___struct_seL4_UserContext__C#v.x6_C:2

regs___struct_seL4_UserContext__C#v.pc_C#assigned:4 := regs___struct_seL4_UserContext__C#v.pc_C#assigned:3
regs___struct_seL4_UserContext__C#v.sp_C:3 := regs___struct_seL4_UserContext__C#v.sp_C:2
regs___struct_seL4_UserContext__C#v.x20_C:3 := regs___struct_seL4_UserContext__C#v.x20_C:2

regs___struct_seL4_UserContext__C#v.x9_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x9_C#assigned:3
regs___struct_seL4_UserContext__C#v.x29_C:3 := regs___struct_seL4_UserContext__C#v.x29_C:2

regs___struct_seL4_UserContext__C#v.sp_C#assigned:4 := regs___struct_seL4_UserContext__C#v.sp_C#assigned:3
Mem:14 := Mem:13

regs___struct_seL4_UserContext__C#v.x28_C:3 := regs___struct_seL4_UserContext__C#v.x28_C:2
GhostAssertions:14 := GhostAssertions:13

regs___struct_seL4_UserContext__C#v.x6_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x6_C#assigned:3
ret__int#v:5 := ret__int#v:4

regs___struct_seL4_UserContext__C#v.tpidrro_el0_C#assigned:4 := regs___struct_seL4_UserContext__C#v.tpidrro_el0_C#assigned:3
regs___struct_seL4_UserContext__C#v.x23_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x23_C#assigned:3
regs___struct_seL4_UserContext__C#v.x13_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x13_C#assigned:3
regs___struct_seL4_UserContext__C#v.x20_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x20_C#assigned:3

regs___struct_seL4_UserContext__C#v.x8_C:3 := regs___struct_seL4_UserContext__C#v.x8_C:2
suspend_source___signed_char#v/call-arg:3 := suspend_source___signed_char#v/call-arg:2

regs___struct_seL4_UserContext__C#v.x27_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x27_C#assigned:3
regs___ptr_to_struct_seL4_UserContext__C#v/call-arg:3 := regs___ptr_to_struct_seL4_UserContext__C#v/call-arg:2

GhostAssertions#assigned:14 := GhostAssertions#assigned:13
HTD:14 := HTD:13

GhostAssertions/call-arg:13 := GhostAssertions/call-arg:12
regs___struct_seL4_UserContext__C#v.x0_C:3 := regs___struct_seL4_UserContext__C#v.x0_C:2

regs___struct_seL4_UserContext__C#v.x15_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x15_C#assigned:3
regs___struct_seL4_UserContext__C#v.x25_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x25_C#assigned:3

regs___struct_seL4_UserContext__C#v.x12_C:3 := regs___struct_seL4_UserContext__C#v.x12_C:2
regs___struct_seL4_UserContext__C#v.x11_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x11_C#assigned:3

regs___struct_seL4_UserContext__C#v.x11_C:3 := regs___struct_seL4_UserContext__C#v.x11_C:2
regs___struct_seL4_UserContext__C#v.x10_C#assigned:4 := regs___struct_seL4_UserContext__C#v.x10_C#assigned:3

j9

T

Figure 10.4: Control-flow graph for the Microkit Monitor, with spec and in dynamic single-
assignment form and acyclic

51

Chapter 11

Limitations

11.1 Microkit versions

The verification of the Microkit is based on an implementation version of the Microkit as was
available at the time of beginning the project mid 2022 and therefore differs in some key
details from the current upstream Microkit version available in the public git repository as of
2024.

11.1.1 Kernel limitations: Non-MCS

The upstream Microkit is built on top of the mixed-criticality scheduling (MCS) seL4 kernel.
However, the MCS kernel itself does not yet have a full verification story. In particular, the
verified case-init loader neither supports MCS nor 64-bit architectures.

In order to obtain a complete verification story for the Microkit, the verification supports not
only the upstream Microkit, but also a fork that uses the non-MCS 32-bit kernel. This fork will
be redundant once the underlying MCS kernel verification and case-init have caught up.

11.1.2 Architecture limitations: 32-bit

Similar caveats hold for the architecture as for the kernel limitations: The verified system
initialiser does not presently support 64-bit architectures but only 32-bit architectures, which
again, in turn, limits the full verification story of the Microkit.

11.1.3 SDF to CapDL mapping: platform-aware

Ultimately, the functionality for automatically generating CapDL output based on the
user-provided system SDF spec should target all platforms supported by the Microkit.
However, the Microkit code is by nature platform-aware (as opposed to platform-agnostic),
and the Microkit environment currently supports only a few development boards (essentially a
limited set of AArch64 boards). The specification may have to be generalised to be
platform-agnostic to a greater extent as support for new development boards expands.

A current particular case of such an ’architecture’ limitation relates to the Coupling Invariant
not covering memory regions due to specifics of the particular architecture of the seL4 kernel
that is used in the Microkit verification.

52

An other instance is in the context of the Isabelle proof-script in the Microkit proof toolchain
(Section 6.1 item (3) and Footnote 2): The proof-script file is well-annotated, and set to
succeed automatically on all correct inputs. The translator supports all SDF features, and the
verification script can run successfully on all these outputs. However, as the Isabelle session
Types-D remains incomplete in its port to AArch64 within the seL4 kernel verification, frame
caps are excluded from the verification checks. Consequently, the negative aspects of the
proof, which demonstrate that the translator does not issue excessive caps beyond the
specification’s requirements, cannot be implemented at this stage.
This means that, while the verifier proves that no caps were missed by the translator (and
hence that no runtime errors or warnings will occur from missing or incorrectly assigned
caps), it cannot yet provide security guarantees showing that no unnecessary caps were
issued.
Fortuitously, this is a minor and controllable limitation and can be dealt with as the required
architecture ports become available. (By way of postscriptum, proofs for the seL4 kernel on
AArch64 have been done in 2024, thus opening the path to re-evaluate the closing of this
particular gap.)

11.1.4 Build system

As mentioned in Section 9.3, our verified version of the Microkit supports and integrates with
the verified CASE initialiser as well as Spinale’s new Rust CapDL loader. The latter’s key
limitation is that it is not a verified initialiser. However it comes with many significant benefits,
in particular for build system.

A motivator for using Spinale’s new Rust CapDL loader is that it had been designed with the
SDK model in mind. The existing CapDL loader written in C required re-compilation every
time a system designer would change the capability distribution of their system. In addition,
the C CapDL loader was tightly integrated with the rest of the seL4 build system, which meant
that trying to fit it in an SDK model posed significant friction. Spinale’s new Rust CapDL
loader do not exhibit these down-sides.

11.2 Gap in end-to-end proof

11.2.1 Verifying MSpec

The key assurance gap for end-to-end proof is Proof 3 in Figure 1.4: We still need to
demonstrate that MSpec, the kernel specification relevant to the Microkit, is a provably correct
abstraction of the kernel’s abstract specification, ASpec, when we manually derive MSpec
from ASpec to make it suitable for SMT solvers.

11.2.2 Haskell to SMT-LIB 2 transcription

In our proof pipeline of the Microkit verification process (Figure 4.2) we note that the
transcription of the spec in Haskell to SMT-LIB 2 is a manual process. More specifically, it is a
2-step process of first manually transcribing the Haskell spec into Python, and then
translating with Gordian to SMT-LIB 2.

At the time, the use of Haskell for the formal specification allowed for efficient initial
prototyping and development. Meanwhile, the eventual implementation of the Microkit verifier

53

is SMT-solver based, while Isabelle/HOL is to be used for proofs of properties relating the
MSpec with the ASpec. Accordingly, a manual translation of the Haskell specification into
Isabelle/HOL is required with, eventually, an automated translation from the Isabelle/HOL
spec to SMT-LIB 2 that is simple enough to demonstrate the correspondence between these
two versions of the specification – as summarised in Figure 11.1.

Isabelle/HOL

SMT-LIB	2

Haskell

Python

ma
nua

l

G
or
di
an

manual

even
tuall

y	aut
oma

ted

Figure 11.1: Translations of the specifications for the Microkit verification process.

In fact, once the initial specs in Haskell have been translated into SMT-LIB 2 and
Isabelle/HOL, as required, these Haskell specs are no longer crucial to the verification
process. We will therefore no longer maintain the Haskell specs, and consider the
Isabelle/HOL and SMT-LIB 2 specs authoritative, with a simple automated translation directly
between the two serving to assure their correspondence.

11.3 Threats to validity

There are a number of assumptions on which the proofs reported here are based.

• We prove functional correctness only between the induced semantics for the C code
and its specification, and so the compiler and linker need to be trusted. This gap can be
bridged by combining our Microkit tool with the existing seL4 binary-verification
toolchain. This toolchain proves that the seL4 binary has the same semantics as the
verified C code, and thus ensures that the seL4 kernel proofs apply to the kernel binary.
In the same way, that toolchain should be able to extend the verification of libmicrokit
to its binary code.

• The proof work is done by SMT solvers. We therefore assume that the SMT solver used
is functionally correct and is invoked correctly. (We have alleviated this concern/gap by
having employed a variety of different SMT solvers.)

• Finally, one also has to make some bottom-level assumptions about the physical world
and other code running in the system. Tackling these have to be left to future work
(where possible) or have to be validated by empirical means. If these assumptions are
not met, faults can still occur.

In our case, the assumptions are that the hardware works as specified by the
manufacturer, the kernel has been loaded correctly, and that the libraries outside the
scope of the verification project, such as libsel4, also satisfy the properties stated in
their specs. Furthermore, the correct initialisation by system_initialiser is assumed
unless the verified case-init loader is used.

54

Chapter 12

Achievements and Impact of Verification

12.1 Achievements: What we have proved and delivered

The automated verification of the Microkit implementation proceeds via multiple stages (see
Figure 12.1) and reuses a number of tools and libraries that had been developed at the time
for the kernel verification effort.

User-supplied
ELF files

Gordian + Z3

Microkit SDK

Isabelle
SDF

libmicrokit.c
init.c

Isabelle
SIMPL

Isabelle
CapDL

Translation Validation Proof .

CapDLMicrokit SDK (new for verification)

User-
supplied

SDF config

Executable
System
Image

Microkit SDK

Microkit SDK

GraphLang
Automated

Proof

CapDL tool +
Microkit SDK
(new for verification)

Microkit
SDK
(new for verification)

User-supplied
ELF files

P
ro

of
s

fo
r

C
ap

D
L

ge
ne

ra
tio

n
P

ro
of

s
fo

r
M

ic
ro

ki
t

lib
ra

ry
 im

pl
em

en
ta

tio
n

Figure 12.1: Summary of the verification processes for the translation validation of the gen-
erated CapDL export and for the automated verification of the Microkit library. In yellow are
user-supplied files, in green formal artefacts created as part of the Microkit toolchain and in
blue the informal ones. Dark red arrows indicate the new translation and verification tools plus
expanded Microkit SDK developed over the course of this verification project, while light grey
arrows are the result of prior work. The dashed line separates the two sets of proofs.

55

Functional correctness

We have verified the Microkit implementation, encompassing both the library (libmicrokit)
and monitor task (monitor) components, using push-button methods: Upon successful
completion, the Gordian verifier confirms that a provided C function is functionally correct
according to its specification.

In particular, our proof chain with Gordian ensures the absence of Undefined Behaviour,
i.e. of common programming errors, including:

• no null pointer dereferences;

• no incorrect use of dynamic memory during program execution (e.g., no ill-typed or
dangling pointers, no out-of-bounds errors);

• no arithmetic overflows and exceptions (e.g., no signed integer overflows, no
division-by-zero, no invalid bit shifts, no invalid conversions);

• no other undefined behavior (e.g., not trying to use values of uninitialised local
variables).

Furthermore, and importantly, non-termination is allowed in the sense that in our
specifications for the Microkit components, non-termination is always an allowed behavior.
For example, the handler loop is specified to never terminate, and the verifier explicitly
confirms this property.

Re-use of Gordian

The design and development of our automated verification tool for the task, Gordian, has
been built with the intention to be re-used in the verification of future projects built within the
Microkit framework.

12.2 Impact

Error elimination

The final verification succeeded without finding new bugs or errors in the implementation.
However, we identified and eliminated two errors during the specification and verifier
development process, improving the overall quality of the code.

As a result, the insights gained during the formal specification and later verification process
have already raised the assurance levels of the Microkit and the surrounding ecosystem.

Rust CapDL loader

Moreover, the desire for better assurance led Nick Spinale to develop a new CapDL loader
written in Rust [Spinale, 2023]. Since Rust ensures memory safety at compile time using its
ownership mechanism and built-in borrow checker, the Rust CapDL loader serves as a safer
drop-in replacement for the original C CapDL loader – be this for Microkit-based systems or,
in fact, for other CapDL-based systems, legacy or otherwise.

56

Chapter 13

Conclusions

The Microkit verification project has demonstrated that automated verification techniques
have potential for reducing the cost of extending seL4’s verification into usermode
components, as long as they are simple enough. While gaps remain in an end-to-end
verification of the Microkit, these can be bridged with established techniques.

The experience from this project make us optimistic about using similar techniques in
verifying systems on top of the Microkit, specifically the new Lions OS [Heiser, 2024].

However, the experience has also shown us the need for better tooling. The current Gordian
approach of inserting verification conditions in the control-flow-graph representation of the
program (see Section 8.1) is not sufficiently scalable – the GraphLang representation is more
than an order of magnitude larger than the original C program. These annotations should be
made in the original program source – not only is the source code a far more compact and
readable representation than the control-flow graph, annotating the source will also keep
program code and spec together, and thus easier to maintain.

Addressing this issue is subject of on-going research.

57

Bibliography

Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs. In
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE), Lisbon, PT, September 2005. 17

Aditi Barthwal and Michael Norrish. Verified, executable parsing. In European Symposium on
Programming, pages 160–174, York, March 2009. Springer. 16, 41, 43

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal of the
ACM, 50(5):752–794, September 2003. 2

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 4963 of Lecture Notes in Computer Science, pages 337–340, Budapest,
Hungary, March 2008. Springer. 17

Gernot Heiser. Lions OS: Secure – fast – adaptable. In Everything Open, Gladstone, QLD,
AU, April 2024. Linux Australia. 57

Gernot Heiser, Lucy Parker, Peter Chubb, Ivan Velickovic, and Ben Leslie. Can we put the "S"
into IoT? In IEEE World Forum on Internet of Things, Yokohama, JP, November 2022. 1

C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21:
666–77, 1978. 2, 4

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23:279–295, 1997. 2

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. Comprehensive formal verification of an OS microkernel.
ACM Transactions on Computer Systems, 32(1):2:1–2:70, February 2014. 1, 13, 19, 20

Ihor Kuz, Gerwin Klein, Corey Lewis, and Adam Christopher Walker. capDL: A language for
describing capability-based systems. In Asia-Pacific Workshop on Systems (APSys),
pages 31–35, New Delhi, India, August 2010. 3, 33

Jochen Liedtke. On µ-kernel construction. In ACM Symposium on Operating Systems
Principles, pages 237–250, Copper Mountain, CO, USA, December 1995. ACM. 1

Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser. Scheduling-context
capabilities: A principled, light-weight OS mechanism for managing time. In EuroSys
Conference, Porto, Portugal, April 2018. ACM. 10

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen. SkyBridge: Fast and secure

58

inter-process communication for microkernels. In EuroSys Conference, Dresden, DE,
March 2019. ACM. 1

Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt, Emina
Torlak, and Xi Wang. Hyperkernel: Push-button verification of an OS kernel. In ACM
Symposium on Operating Systems Principles, pages 252–269. ACM, 2017. 2

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi Wang.
Scaling symbolic evaluation for automated verification of systems code with Serval. In ACM
Symposium on Operating Systems Principles, pages 225–242, October 2019. 2

John Ousterhout. Why threads are a bad idea (for most purposes). USENIX Technical
Conference (Invited Talk), January 1996. 2

Lucy Parker. High-performance networking on seL4. BSc(Hons) thesis, School of Computer
Science and Engineering, Sydney, Australia, November 2023. 1

Mathieu Paturel, Isitha Subasinghe, and Gernot Heiser. First steps in verifying the seL4 Core
Platform. In Asia-Pacific Workshop on Systems (APSys), Seoul, KR, August 2023. ACM. 3

Sean Peters, Adrian Danis, Kevin Elphinstone, and Gernot Heiser. For a microkernel, a big
lock is fine. In Asia-Pacific Workshop on Systems (APSys), Tokyo, JP, July 2015. ACM. 2

Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD
thesis, Technische Universität München, 2006. 16, 41

Thomas Sewell, Magnus Myreen, and Gerwin Klein. Translation validation for a verified OS
kernel. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 471–481, Seattle, Washington, USA, June 2013. ACM. 2, 16

Thomas Sewell, Felix Kam, and Gernot Heiser. High-assurance timing analysis for a
high-assurance real-time OS. Real-Time Systems, 53:812–853, September 2017. 14

Nick Spinale. Rust-seL4 CapDL loader, 2023. URL
https://github.com/seL4/rust-sel4/tree/main/crates/sel4-capdl-initializer. 33, 44, 56

Yong Kiam Tan, Magnus Myreen, Ramana Kumar, Anthony Fox, Scott Owens, and Michael
Norrish. A new verified compiler backend for CakeML. In International Conference on
Functional Programming, page 14, Nara, Japan, September 2016. 33

Wikipedia. Executable and linkable format, 2001. URL
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format. 6

59

https://github.com/seL4/rust-sel4/tree/main/crates/ sel4-capdl-initializer
https://en.wikipedia.org/wiki/ Executable_and_Linkable_Format

	List of Figures
	List of Listings
	Introduction
	Project background
	seL4 Microkit Overview
	Programming model
	Implementation

	Summary of outcomes
	Synopsis of the work covered in this report
	Repository

	Global Correctness – The Long-Term Objective
	Local Correctness – The Task at Hand
	The local Microkit state machine
	Approach taken to verify the Microkit

	Microkit Local Correctness
	Layout of formalised specification
	Verifying implementation against spec
	Our pipeline of verification stages
	Verifying libmicrokit
	Steps of the verification process
	Modified approach for the basic Microkit library functions
	Relationships of specs used in the verification process
	Implementation details

	Formalised Specification Underpinning Local Correctness
	Preamble
	Microkit abstractions – high-level specification
	System Description File (SDF)
	Structural arrangement of the Microkit specification
	The model: state transitions
	Verification condition
	Roles of the various verification condition clauses
	Thread-local State
	Oracle

	Verification condition for Microkit library
	Microkit functional and implementation specification
	The role of Microkit Dynamic State in the proof process

	Executing the verification steps
	Proof Construction
	The Microkit properties we verify

	Verification of System Initialisation
	CapDL – the key machinery
	Approach to formalising CapDL generation
	Choosing a CapDL loader

	Formal Framework for CapDL Generation
	Preamble
	Abstract systems
	Accurate implementation with a capability distribution
	Abstract system as used for the libmicrokit proofs

	Our New Verification Tool Gordian
	The process steps
	The verification condition algorithm

	Existing Infrastructure Tools for Verifier Implementation
	C Parser
	GraphLang and SimplExport
	Rust CapDL loader

	Worked Examples – Walk-Through Of The Verification Steps With Artefacts
	Arithmetic sum arith_sum
	Microkit Monitor monitor

	Limitations
	Microkit versions
	Kernel limitations: Non-MCS
	Architecture limitations: 32-bit
	SDF to CapDL mapping: platform-aware
	Build system

	Gap in end-to-end proof
	Verifying MSpec
	Haskell to SMT-LIB 2 transcription

	Threats to validity

	Achievements and Impact of Verification
	Achievements: What we have proved and delivered
	Impact

	Conclusions
	Bibliography

