
Fast Address-Space Switching on the StrongARM SA-1100 Processor

Adam Wiggins and Gernot Heiser

School of Computer Science & Engineering

University of New South Wales

Sydney 2052, Australia

fawiggins,gernotg@cse.unsw.edu.au, http://www.cse.unsw.edu.au/�disy

Abstract

The StrongARM SA-1100 is a high-speed low-power pro-

cessor aimed at embedded and portable applications. Its

architecture features virtual caches and TLBs which are

not tagged by an address-space identifier. Consequently,

context switches on that processor are potentially very ex-

pensive, as they may require complete flushes of TLBs and

caches.

This paper presents the design of an address-space man-

agement technique for the StrongARM which minimises

TLB and cache flushes and thus context switching costs. The

basic idea is to implement the top-level of the (hardware-

walked) page-table as a cache for page directory entries

for different address spaces. This allows switching address

spaces with minimal overhead as long as the working sets

do not overlap. For small (� 32MB) address spaces fur-

ther improvements are possible by making use of the Strong-

ARM’s re-mapping facility. Our technique is discussed in

the context of the L4 microkernel in which it will be imple-

mented.

1. Introduction

The StrongARM SA-1100 [5] is a high speed, low power

processor based on the ARM architecture [6]. It is specifi-

cally designed for portable and embedded systems. The de-

sign is based around a first generation StrongARM core and

has peripheral controllers (DRAM controller, serial ports,

etc.) integrated into a single package.

To achieve a high clock rate of �200MHz, the core

makes use of a Harvard architecture featuring separate

translation-lookaside buffers (TLBs) and caches for data

and instruction streams. Being targeted at applications

which traditionally do not use multitasking operating sys-

tems, the design has minimised support for multiple ad-

dress spaces. The caches in particular are virtually indexed

and virtually tagged and the TLBs are not tagged with an

address-space identifier.

A context switch between threads belonging to different

tasks (and thus address-spaces) implies a change of virtual

address mappings and thus a change of page tables. On an

architecture which does not tag the TLBs with an address-

space identifier, this normally implies that the TLBs must

be flushed, as they would contain incorrect translations for

the thread being scheduled. This not only implies some di-

rect overhead for invalidating all TLB entries, it also im-

plies significant indirect costs, as the thread, once it starts

executing, will experience a number of TLB misses until its

working set is mapped. Each TLB miss requires a costly

page table lookup (could be 20–100 cycles per TLB miss

on the StrongARM).

Similarly, virtual caches may contain stale data after a

context switch, which would lead to incorrect execution of

the threads. Unless the kernel is certain that no stale data

exists in the caches, they must be flushed as well. Again,

this has a direct cost of the flush operations, as well as an

indirect cost, as the thread being scheduled starts with cold

caches. The direct cost of cleaning (writing back) the data

cache is particularly high since each line must be individu-

ally cleaned.

The purpose of this paper is to present an approach to

providing fast address-space switches on the StrongARM,

and discuss its proposed implementation in the L4 micro-

kernel [1, 9, 10].

2. StrongARM Virtual Memory Architecture

In this section we summarise the StrongARM’s virtual

memory architecture as far as is relevant to the topic of this

paper. We describe general ARM features and note which

features are specific to the StrongARM.

1

2.1. ARM page table structure

The general ARM architecture specification leaves it up

to the implementation as to whether to use a unified (in-

struction and data) TLB, split (i.e., separate instruction and

data) TLBs or no TLB at all. As indicated earlier, the

StrongARM uses split TLBs.

If available, the TLBs in the ARM architecture are

hardware-loaded from a two-level page table. For clarity

we will refer from now on to the top level of the page ta-

ble as the page directory (PD), and to the second-level data

structures as leaf page tables (LPTs).

The PD is an array of 4096 section entries. Each section

entry can be in one of four states as follows:

Fault: The entry is invalid and will lead to a translation

fault on access.

Page table: The entry contains a pointer to an LPT, as well

as a domain identifier (see Section 2.3 for details) ap-

plying to the whole LPT.

Section: The entry maps a 1MB region of virtual address

space to an aligned 1MB region of RAM. The entry

contains a domain identifier and permission bits. The

domain and permission bits apply to the whole 1MB

region.

Reserved: This section entry state is reserved for future ex-

pansion and must not be used.

An LPT is an array of 256 page table entries (PTEs).

Each PTE can be in one of four states as follows:

Fault: The entry is invalid and will lead to a translation

fault on access.

Large page: The entry maps a 64kB page. The entry con-

tains a single domain identifier which applies to the

whole page, and four sets of permission bits, each set

defining accessibility of a 16kB subpage.

Small page: The entry maps a 4kB page. The entry con-

tains a single domain identifier which applies to the

whole page, and four sets of permission bits, each set

defining accessibility of a 1kB subpage.

Reserved: This section entry state is reserved for future ex-

pansion and must not be used.

It is clear from the above that the ARM supports three

different page sizes from 4kB to 1MB (in powers of 16),

and five protection granularities from 1kB up to 1Mb. Ob-

viously, TLB use is optimised by choosing the largest pos-

sible page sizes.

The StrongARM has separate data and instruction TLBs

which are fully associative and hold 32 entries each. The

implementation allows invalidation of a single data TLB en-

try or of a whole TLB.

2.2. Caches

ARMv4 supports the implementation of processors with

unified or split instruction and data caches. A write buffer,

pre-fetch buffer and branch cache may also be imple-

mented. Caches may be physically or virtually tagged; the

choice is left up to the implementor of any particular ARM

core.

2.2.1. StrongARM cache architecture. The SA-1100 uses

split instruction and data caches. These are complemented

by a read buffer, a write buffer and a mini-data cache. The

details of interest are as follows:

Instruction cache: 16kB in total, organised into 512 lines

of 32 bytes each. It is virtually tagged and 32-way set

associative. A cache control operation allows flushing

of the complete instruction cache.

Data Cache: Consists of a main data cache and a mini

data cache, with the following properties:

Main data cache: 8kB in total, organised into 256

lines of 32 bytes each. It is virtually tagged and

32-way set associative and uses a write-back pol-

icy.

Mini data cache: 512B in total, organised into 16

lines of 32 bytes each. It is virtually tagged and

2-way set associative and uses a write-back pol-

icy. The mini cache is meant to be used for pro-

cessing large data structures which would unnec-

essarily flood the main cache.

The cachable and bufferable PTE attributes define in

which, if any, of the two caches a data line may re-

side; the hardware guarantees that no line can be in

both caches at the same time. Stores do not allocate in

either cache.

Cache controls allow invalidation of the whole cache

or a single line. There is also a clean operation to force

write-back of a single line.

Write buffer: Holds up to eight blocks of data, each 1 to

16 bytes in size. The use of the write buffer is con-

trolled by the bufferable bit in the PTE corresponding

to a data line.

There is a drain operation to empty the whole write

buffer.

Read buffer: Holds up to four blocks of data, each 1 to 32

bytes in size. The read buffer is used to pre-fetch data

(not instructions) and is fully under software control.

2

For the purposes of this paper the difference between the

main and mini data caches as well as the read buffer are ir-

relevant and will be ignored. We expect to reserve the use of

the read buffer and the mini-cache to the kernel. Hence the

coherency of the read buffer and mini-cache is independent

of user address spaces.

2.3. ARM domains and protection bits

2.3.1. Domains. ARM domains are a generalisation of the

access permission bits found in many TLBs. ARMv4 sup-

ports 16 domains; each domain forms a collection of sec-

tion and page mappings defined in a page table (or TLBs),

tagged by the domain identifier.

A coprocessor register, the domain access control reg-

ister (DACR), defines the present accessibility of each do-

main, by specifying each domain’s state as one of the fol-

lowing:

No access: Any access to sections or pages belonging to

this domain will generate a domain fault exception.

Client: Accessibility is determined by the setting of the

standard permissions bits of the page table entry (with

sub-page granularity).

Master: Access is permitted independent of the setting of

the standard permissions bits of the page table entry.

Reserved: This state is reserved for future expansion and

must not be used.

2.3.2. Protection bits. The ARM page table protection bits,

along with the system and ROM protection bits of the sys-

tem coprocessor’s control register, allow specification of

memory access rights as follows:

� no access,

� kernel R/O, user no access,

� kernel R/O, user R/O,

� kernel R/W, user no access,

� kernel R/W, user R/O, and

� kernel R/W, user R/W.

2.4. The StrongARM SA-1100 PID register

The SA-1100 exhibits one more relevant feature: the

process identifier (PID) register. Whenever an address less

than 32MB is issued, that address is, prior to translation

into a physical address, bitwise OR-ed with bits 30–25 of

the PID register. This re-maps a small 32MB address space

into any aligned 32MB region of the lower 2GB half of the

virtual address space (a total of 64 “slots”).

As any addresses outside the lowest 32MB are not

remapped, this introduces a form of aliasing in the address

space. If 0 � x < 2

25 then addresses x and PIDjx refer

to the same memory location (with the same access permis-

sions).

2.5. Discussion

Domains mitigate, to a degree, the problem of TLB

entries not being tagged with an address-space identifier.

They allow the kernel to map in or invalidate large and

non-contiguous regions of virtual memory efficiently. This

supports fast address-space switches, as long as the kernel

can guarantee that there is no overlap in mapped address

spaces. If this guarantee can be made then an address-space

switch can be performed simply by reloading the DACR

with an appropriate mask.

A similar observation can be made about caches. The

architecture observes domains and protection bits even for

cached data and instructions, not only on cache misses.

Hence, as long as there is no overlap in mapped address

space between threads, it is guaranteed that a context switch

does not leave stale data in the caches. Caches need not be

flushed in that case.

We can therefore conclude that fast address-space

switches are possible on the StrongARM as long as the

kernel ensures the above condition of no overlap between

mapped address spaces. The core idea of this paper is

a technique which will ensure that this condition always

holds. This is discussed in detail in the following section.

3. Fast address-space switches

We now present our proposal on how to implement fast

address-space switches on the StrongARM. The basic idea

bears some similarity to Liedtke’s work on fast address-

space switches on the Pentium processor [8].

3.1. General idea

Normally an address-space switch is performed by re-

placing the page table. In the case of the StrongARM,

where the hardware reloads the TLB from a two-level page

table, this would be implemented by reloading the transla-

tion table base register with a pointer to the new page direc-

tory. This, by itself, is fast. However, the two address spaces

would overlap in general, and TLBs and caches would have

to be flushed.

For this reason we never change the translation table

base pointer. Instead we have the register point to a caching

page directory (CPD) which contains entries from a number

3

...

...

PD0 PD1

LPT00 LPT01 LPT11LPT10

CPD
copy

Figure 1. Caching page directory (CPD) and per-address-space page tables.

of different address spaces, each defined by its own page ta-

ble.

Figure 1 shows the idea: On a TLB miss the hardware

reloads the TLB by indexing into the CPD, which contains

pointers to LPTs of various address spaces. Each of these

address spaces is associated with a unique domain, and CPD

entries are tagged with that domain. The DACR is set up

to give client access rights to the domain associated with

the address space of the presently executing thread, and no

access to any other domains.

On a TLB reload, one of the following can happen when

the hardware accesses a CPD entry:

Translation fault: The kernel’s fault handler indexes the

current thread’s PD and, if it finds a valid entry, copies

that into the CPD and restarts the thread. The hardware

will again attempt to reload the TLB and this time find

a valid section or valid page table entry. Otherwise the

kernel treats the access as a page fault.

Valid section entry: The entry is a section entry and the

DACR indicates a valid access. If the permission bits

allow the attempted access, the hardware loads the en-

try into the TLB and proceeds. If there is a permis-

sion mismatch, the hardware raises a permission fault

which is interpreted as an invalid access by the kernel.

Domain fault: The kernel handles this as in the case of a

translation fault: The entry is reloaded from the cur-

rent thread’s PD, replacing the existing entry in the

CPD. In addition, the cache must be flushed of any

remaining entries corresponding to the replaced CPD

entry. If the current thread’s PD does not contain a

valid entry, the kernel treats the access as a page fault.

Valid page table entry: The entry is a page table entry and

the DACR indicates a valid access. The hardware fol-

lows the pointer to some address-space’s LPT which

it indexes to find a PTE. If this PTE contains a large

or small page entry, the hardware loads the entry or

raises an permission exception as in the case of a valid

section entry in the CPD.

Remember that domains and permission bits are checked

on every access, not only on a TLB load. Hence most of

these faults can also occur when accessing cached data.

This complicates handling somewhat, as in some circum-

stances the TLB must also be flushed, which wouldn’t be

necessary if the fault arose as the result of a TLB miss.

The CPD therefore caches PD entries from several dif-

ferent address spaces, similar to a direct-mapped software

TLB [2]. As long as there are enough domains for all

threads wishing to execute, no flushes are required. Caches

and TLBs must be flushed whenever a valid CPD entry is

replaced.

However, the ARM only supports 16 domains, which is

much less than the number of concurrently running tasks

a general-purpose operating system is expected to support.

We therefore need to recycle domains.

Domain recycling is required when a thread whose ad-

dress space is not yet associated with a domain becomes

runnable, and there are no free domains left. A domain

must be recycled by preempting an address space. Before

allocating a recycled domain to the new address space, the

following must be done:

� TLBs must be flushed of all entries belonging to the

recycled domain;

� the caches must be flushed of all lines corresponding

to any of the just invalidated TLB entries;

� all of the domain’s entries in the CPD must be invali-

dated.

This is obviously costly. A detailed analysis of cost will be

required to determine whether the TLBs and caches should

be flushed completely or selectively.

4

3.2. Domain preemption

In order to implement domain preemption we require a

strategy for selecting a victim. There are two rather differ-

ent scenarios in which domain preemption becomes neces-

sary:

1. the number of available domains is greater than or

equal to the working set of address spaces but less than

the number of active address spaces. In this case pre-

emption is an infrequent event triggered by changes in

the address-space working set;

2. the number of available domains is less than the work-

ing set of address spaces. In this case we experience

domain thrashing and preemption occurs frequently.

The third possibility, the number of available domains being

greater than or equal to the number of active address spaces,

is irrelevant as no domain preemption occurs in that regime.

If we assume that address-space switching only occurs

as a result of preemptive scheduling, and that address

spaces are scheduled round-robin,1 it is clear that the op-

timal domain-preemption strategies are:

� least-recently used (LRU) for case 1 above, and

� most-recently used (MRU) for the case of domain

thrashing.

To find the least or most recently used address space we

would, in theory, keep time stamps on domains. Under the

above assumptions we can then preempt optimally if we can

determine in which regime (thrashing or non-thrashing) we

are.

Note that in the non-thrashing case the preemption strat-

egy is of relatively minor importance, as domain recycling

is rare. If the “wrong” address space is preempted, this

will lead to some extra preemptions, until the working set

is established. In the thrashing case, the wrong preemption

strategy will lead to frequent costly preemptions. In par-

ticular LRU is the worst possible strategy in the thrashing

case, given the above assumption on how address spaces

are scheduled.

However, the above scheduling assumption is a gross

oversimplification, particularly for L4. L4 scheduling uses

256 hard priorities with threads being scheduled round-

robin within each priority. If several of the runnable threads

belong to the same address space, address spaces will not

be scheduled round-robin, even if threads are. Furthermore,

there are two circumstances where L4 dispatches threads

without scheduler invocation:

1The entity that gets scheduled is, of course, a thread, not an address-

space. For simplicity we use the terminology of “scheduling an address

space”, which is understood to mean “scheduling a thread running in that

address space.”

� as is typical for microkernels, L4 relies heavily on

message passing as the basic inter-process communi-

cation (IPC) mechanism. L4 IPC is blocking, and ev-

ery successful IPC operation forces a context switch

between the two communicating threads. The thread

which was blocked waiting for the IPC to take place

gets dispatched with the remainder of the partner’s

time slice;

� a thread can explicitly donate the remainder of its time

slice to an arbitrary runnable thread. This feature is

designed to be used for user-level scheduling. In an

extreme case there would be a single highest-priority

thread (the user-level scheduler) which schedules other

threads by donating its time slices. That scheduler

would be run once per time slice, about as often as

all the other runnable threads combined.

Without prior knowledge of the communication and

time-slice donation patterns of the client threads, no opti-

mal strategy can be devised under these circumstances. The

best that can be said is that an address space which has

been used frequently (like the one of the scheduler thread,

or a server which communicates with many clients) is most

likely a bad choice for preemption, as it will most likely be

used again in the immediate future. This argues in favour

of a least-frequently-used (LFU) strategy. Note that least-

recently used is no longer the worst possible algorithm in

this case.

Note also that MRU is a dangerous algorithm to use, as

it may fail to recycle domains which completely drop out

of the working set, leading to thrashing of a small subset of

domains.

What can be implemented efficiently? To answer that

question it must be understood that two costs are involved:

1. the cost of the algorithm for selecting the victim do-

main. This cost is to be paid whenever domain pre-

emption becomes necessary. As domain preemption is

inherently expensive (due to the need to flush caches

and TLBs) this cost is of minor importance;

2. the cost of maintaining the data structures required for

victim selection. This cost must be paid at potentially

each domain switch. As domain switches occur fre-

quently, this cost is critical. In particular, a domain

switch occurs on each cross-address-space IPC and we

want to keep the critical IPC path as short as possible.

In keeping with the general L4 philosophy, the kernel

should be optimised for the fast cases. In the StrongARM’s

target application areas of embedded and portable systems,

16 domains should in most cases be sufficient to hold the

address-space working set. In this case the overhead for do-

main recycling should be as close to zero as possible. In

5

particular, any slowdown of basic IPC operations should, as

long as the number of domains suffices, be kept to a mini-

mum.

3.3. Domain preemption strategies

The obvious approach to implementing a domain pre-

emption algorithm is to use a reference counting scheme

on address spaces associated with domains, and then use

an LRU approximation algorithm such as the well-known

clock scheme for selecting a victim domain.

The above requirement of minimising IPC overheads

strongly impacts on the question whether it is reasonable to

keep accurate reference counts. We will discuss the refer-

ence counting approach, as well as an alternative approach

based on approximate reference bit maintenance.

3.3.1. Using proper reference counts. Maintenance of ac-

curate reference counts requires that each domain be asso-

ciated with a reference bit, and that this reference bit is set

each time a switch to this domain is performed (that is, po-

tentially at each IPC).

We keep the reference bit in the task table, an array of

one or two 32-bit words for each of the 1024 tasks (ad-

dress spaces) supported. That word has to be loaded on

each address-space switch. Maintaining the reference bit

requires two extra cycles: for setting the bit and for storing

the word back.

The advantage of this approach is that, at no extra cost,

the reference bit can be changed to a reference count. Up

to 8 bits can be allocated to the reference count in the task

table, and adding to that field (modulo 28) is not slower than

setting it to one.

We then have the freedom to implement either a clock

algorithm (which would only check the reference count for

being non-zero), or an LFU algorithm, which appears par-

ticularly attractive in the L4 context. Which one is used in

the end is a small implementation detail, and the final deci-

sion will be made once we can benchmark the system.

In either case we occasionally preempt a busy domain

because its reference count has wrapped around to zero.

This will only occur infrequently, so the cost of occasion-

ally picking the wrong domain is irrelevant.

The advantage of accurate reference counts is that it

gives us, at no extra cost, a good measure of whether or

not we are in a domain-thrashing regime. The total num-

ber of address-space switches can be obtained by summing

all domains’ reference counts. Monitoring the number of

address-space switches per domain preemption seems to be

the best indicator of thrashing. That figure, normalised to

the number of domains, would be one in the case of maxi-

mum thrashing (e.g. n domains, n+1 address spaces sched-

uled round-robin) and would grow very high if the work-

ing set fits into the available domains. This thrashing crite-

rion would be very useful when taking special measures to

reduce thrashing, such as using the PID register (see Sec-

tion 3.4).

3.3.2. Maintaining approximate reference bits. There

is an alternative way of approximately maintaining a ref-

erence bit which has zero overhead as long as the num-

ber of domains is sufficient, at the expense of increased

domain-switching costs once preemption becomes neces-

sary. The idea is based on the method used to imple-

ment page replacement algorithms on systems without a

hardware-maintained reference bit in the TLB [7].

The method for maintaining the bit is tightly integrated

with its use in the clock algorithm for selecting a victim

domain. In addition to the reference bit we also store the

DACR value in the task table. On each domain switch, the

DACR is loaded from that task table entry.

When a domain is initially assigned to an address space,

the reference bit is turned on and the DACR value is set to

giving client rights to the domain.

When a domain is needed but no free one is available, the

clock algorithm is applied to the reference bits in the usual

fashion: All reference bits are examined round-robin, and if

one is found unset, that domain is preempted. Whenever we

encounter a reference bit which is on, we turn it off, and at

the same time set the DACR value of the associated address

space to no access (for all domains).

Turning off access rights for unreferenced domains will

force a domain fault next time that domain’s associated

address space is activated. The domain fault handler can

recognise this special case as the fault will occur on a CPD

entry which is tagged with the correct domain (and should

therefore allow access). The handler turns on the reference

bit, changes the domain’s DACR value back to the original

client setting, and loads that value into the DACR.

This algorithm introduces domain management over-

heads only when domain preemption becomes necessary

(and for a short time after, until all the domains in the work-

ing set have been accessed.)

3.3.3. Discussion. The latter approach saves two cycles on

each address-space switch (including each IPC operation).

The costs are:

� Increased frequency, and thus overhead, of domain

fault handling. However, this overhead only occurs

once domain preemption becomes necessary, and is

small compared to the cost of preempting a domain.

� Less flexibility in the choice of preemption strategy,

essentially only the basic clock algorithm is available.

As there could be performance advantages from using

LFU, this cost could be significant.

6

� No real reference counts, and therefore no accurate cri-

terion for the onset of domain thrashing. (The best that

can be done is to count the number of domain preemp-

tions per unit of time, which is probably not unreason-

able.) Whether or not this cost is relevant will depend

on how effectively the PID register can be used to re-

duce domain thrashing, see next section.

In the end, the decision will have to be made on the basis

of measured performance. We therefore plan to implement

both variants so we can benchmark them.

In addition to either method, we can keep track on how

many of an address space’s PD entries are presently cached

in the CPD for each domain. Before running one of the

above algorithms we check whether there is any domain

with currently no entries in the CPD. This would be the first

candidate for preemption since recycling it would require

no flushes.

3.4. Using the PID register

The above strategy will work on any ARM processor

with a TLB. On the SA-1100 we can use the PID register

to improve the performance of the above strategy. The PID

register can either be used to effectively increase the num-

ber of available domains (at some not insignificant cost) or

to reduce the conflicts in the CPD. Either method if success-

ful would reduce the amount of flushing required.

3.4.1. Sharing a domain for small address spaces. The

PID register allows transparent allocation of small address

spaces at non-overlapping virtual memory regions. How-

ever, such a re-mapping only affects addresses issued in

the lowest 32MB. Any larger address will be translated nor-

mally, without use of the PID register. This means that small

address spaces cannot easily share a domain.

However, we can use the PID register to implement a less

expensive version of domain preemption. We keep a small

bit for each address space, indicating whether or not that

address space has mappings above the 32MB limit. If we

need to preempt a domain and there are at least two small

address spaces currently associated with a domain, we get

these address spaces to share a domain.

In order to share a domain between several small address

spaces, we need to allocate a 32MB slot (and a correspond-

ing PID) for each in the lower 2GB of the address space.

This slot can, in principle, be shared with any of the large

address spaces, as the domain tag ensures invalid data ac-

cesses or cache incoherence are prevented. However, this

would mean that two (or more) address spaces compete for

the same CPD entries, which would defeat the purpose of

the exercise. Hence a slot should be chosen which is not

presently in use by any active address space.

If a small address space, different from the last active

small one, is to be scheduled, we have to invalidate all map-

pings left from the previous address space using the same

domain. We do this by invalidating all CPD entries cor-

responding to the previous small address space’s slot. We

then flush both TLBs. Caches, however, do not need to be

flushed, as the management of the domains ensures that no

aliases exist.

Cleaning the data cache has been identified as being sig-

nificantly more expensive than flushing the TLBs. Domain

sharing of small address spaces should therefore incur less

overhead than full domain preemption, although it is cer-

tainly not cheap. A thorough performance evaluation of the

implementation will be required to determine whether it is

worthwhile. In any case it should only be used if the system

is definitively in domain thrashing mode.

Whether the system is thrashing domains can, in prin-

ciple, be decided by counting the number of address-space

switches per domain preemption event, Section 3.3.1 dis-

cussed how this figure can be determined if reference counts

are being kept. Should the strategy presented in Sec-

tion 3.3.2 be chosen in the end, domain thrashing must be

identified (somewhat less reliably) by monitoring the do-

main preemption rate.

Note that this optimisation will only be beneficial if the

operating system personality running on top of the micro-

kernel cooperates by allocating user stacks within the first

32MB of virtual address space whenever possible.

3.4.2. Removing conflicts in the CPD. The PID re-

mapping facility could alternately be used to minimise con-

tention for the 32 CPD entries covering the first 32MB of

the virtual address space. When replacing one of these first

32 CPD entries we first check if the new entry can be relo-

cated (using the PID register) to a CPD entry in an empty

32MB slot.

By turning a CPD replacement into a PID register load

we save flushing the TLBs and caches. The first 32MB of

that address space is then relocated using the allocated PID

until either the domain or the PID is recycled. While this

method could be used on any user address space, the alias-

ing problem mentioned in Section 3.4 complicates matters.

To keep the design simple we restrict the use of the PID to

address spaces which do not contain any mappings in the

relocation slots. This is a different style of small address

space in which mappings are excluded from the region be-

tween the first 32MB and the upper 2GB. The operating

system personality running on top of the microkernel can

enhance the performance of the scheme by allocating user

stacks at non-overlapping regions in the upper 2GB of the

virtual address space.

7

3.4.3. Discussion. The above methods of utilising the PID

register are both restricted to benefiting a form of small ad-

dress space. Both also potentially complicate the original

ARM generic design, which limits the potential benefits.

Hence a full evaluation of both methods requires an imple-

mentation to explore their utility in a number of different

application environments.

Both methods still require more thought before a detailed

design can be given. The shared domain requires some

method of reloading the CPD entries of an inactive small

address spaces when a cache line of that address space is

replaced. To further complicate matters, the effect of the

PID register on abort exceptions is not sufficiently docu-

mented in [5] and its behaviour must be determined from

experimentation. As a result, the work on PID optimisation

is somewhat speculative at this stage.

4. Conclusions

The techniques presented in Section 3 are functionally

transparent above the microkernel interface, the resulting

reduction in context switching overhead will never lead

to incorrect execution. However, microkernel clients can

minimise overheads by reducing address-space conflicts as

much as possible.

Reduction of overhead by smart address-space allocation

is especially important for the StrongARM-specific optimi-

sations for small address spaces (should they turn out to be

beneficial). Standard address-space layout in Unix systems

maps code and data segments at the low end of the address

space, and the stack at the high end, thus making all address

spaces “large”.

To make efficient use of the hardware, an operating sys-

tem personality running on top of the microkernel should

allocate the stack at the top of the 32MB “small” address

space whenever possible (for the approach discussed in Sec-

tion 3.4.1) or allocate them at non-overlapping addresses in

the upper 2GB of the address space (for the approach dis-

cussed in Section 3.4.2).

The algorithms discussed in Section 3 are geared specif-

ically towards the L4 microkernel. However, they should

be mostly applicable to other systems, such as monolithic

Linux. In monolithic systems address-space switching be-

haviour typically be better approximated by round-robin.

This should make an approximate LRU preemption algo-

rithm, like clock, perform better in the non-thrashing case

(where it is somewhat less important) but possibly perform

worse in the thrashing case. Other algorithms could be im-

plemented, although their cost would almost certainly be

higher.

5. Future Work

An implementation of L4 on the StrongARM is presently

underway, we plan to have a basic kernel running at about

the time this paper goes to print. This will constitute a ba-

sis on which various embedded applications can be build.

We also plan to port L4Linux [3] and the Mungi [4] single-

address-space operating system. These will provide mul-

titasking environments in which the context switching per-

formance of L4/StrongARM can be assessed.

A single-address-space operating system will provide a

particularly interesting test of the kernel. On the one hand,

the sparse address-space use of such a system makes it

highly unlikely that the small address-space optimisation

introduced in Section 3.4 would give any benefit. On the

other hand a single address space does prevent aliasing by

construction, and thus keeps threads’ “address-spaces” dis-

joint, unless they explicitly share data. Sharing could be

supported in the kernel by allocating extra domains for map-

pings of shared data. We plan to revisit this issue once

we have gathered some experience with running a single-

address-space system on the architecture.

References

[1] A. Au and G. Heiser. L4 User Manual. SCS&E, UNSW,

Sydney 2052, Australia, Jan. 1998. UNSW-CSE-TR-9801.

Available from http://www.cse.unsw.edu.au/�disy/L4/.

[2] K. Bala, M. F. Kaashoek, and W. E. Weihl. Software

prefetching and caching for translation lookaside buffers. In

Proc. 1st OSDI, pages 243–253, Monterey, CA, USA, 1994.

USENIX/ACM/IEEE.

[3] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and

J. Wolter. The performance of �-kernel-based systems. In

Proc. 16th SOSP, pages 66–77, St. Malo, France, Oct. 1997.

[4] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and

J. Liedtke. The Mungi single-address-space operating sys-

tem. Software: Practice and Experience, 28(9):901–928,

July 1998.

[5] Intel Corp. SA-1100 Microprocessor Technical Reference

Manual, Sept. 1998. Order no: 278088-001.

[6] D. Jagger, editor. Advanced RISC Machines Architecture

Reference Manual. Prentice Hall, July 1995.

[7] H. M. Levy and P. H. Lipman. Virtual memory manage-

ment in the VAX/VMS operating system. IEEE Computer,

15(3):35–41, Mar. 1982.

[8] J. Liedtke. Improved address-space switching on Pen-

tium processors by transparently multiplexing user address

spaces. Technical Report 933, GMD SET-RS, Schloß Bir-

linghoven, 53754 Sankt Augustin, Germany, Nov. 1995.

[9] J. Liedtke. On �-kernel construction. In Proc. 15th SOSP,

pages 237–250, Copper Mountain, CO, USA, Dec. 1995.

[10] J. Liedtke. L4 Reference Manual. GMD/IBM, Sept.

1996. Available from URL http://www.inf.tu-dresden.de/-

�mh1/l3/.

8

